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Abstract

It is possible to associate temperatures with the non-extremal horizons of a large class of
spherically symmetric spacetimes using periodicity in the Euclidean sector and this procedure
works for the de Sitter spacetime as well. But, unlike e.g., the black hole spacetimes, the de
Sitter spacetime also allows a description in Friedmann coordinates. This raises the question
of whether the thermality of the de Sitter horizon can be obtained, working entirely in the
Friedmann coordinates, without reference to the static coordinates or using the symmetries of
de Sitter spacetime. We discuss several aspects of this issue for de Sitter and approximately
de Sitter spacetimes, in the Friedmann coordinates (with a time-dependent background and the
associated ambiguities in defining the vacuum states). The different choices for the vacuum states,
behaviour of the mode functions and the detector response are studied in both (1+1) and (1+3)
dimensions. We compare and contrast the differences brought about by the different choices. In
the last part of the paper, we also describe a general procedure for studying quantum field theory
in spacetimes which are approximately de Sitter and, as an example, derive the corrections to
thermal spectrum due to the presence of pressure-free matter.

1 Introduction

There exists an extensive literature on quantum field theory in de Sitter spacetimes (for a non
exhaustive sample, see Ref. [1, 2]). From a theoretical point of view, the high level of symmetry
exhibited by the de Sitter geometry makes it an important and tractable example. On the other
hand, observations suggest that the evolution of our universe is described by a (near) de Sitter
geometry both during the early inflationary phase as well as during the current accelerated phase
of expansion. While quantum effects are not expected to play a serious role in the current phase
of the expansion (see, however, [3]), they play an important role during the inflationary phase and
possibly seeds the cosmic structure we see today. This was part of the motivation to study quantum
field theory in de Sitter background.
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A key feature which arises in such a study of the de Sitter spacetime is the thermal nature of the
vacuum state and the temperature which one can associate with the horizon. One of the purposes of
this paper is to explore aspects of this thermality from different perspectives. Since it is a fairly well
trodden path, we will begin by describing the motivation (for yet another paper!) and the specific
point of view adopted here.

The connection between spacetime horizons and thermodynamics is quite well-known. The first
example of this kind, of course, was in the case of black hole spacetimes [4]. This was soon followed by
the discovery of horizon temperature in much wider contexts like, for example, in the case of Rindler
spacetime [5] and de Sitter spacetimes [6]. While all these three spacetimes (black hole, Rindler, de
Sitter) have very similar metric structure — when one uses static coordinates which cover part of the
manifold — they also have significant differences [7]. For example, one can provide a fairly rigorous
geometrical description of the black hole horizon. In contrast, the horizon in the Rindler spacetime
is just a null surface in flat spacetime as viewed by uniformly accelerated observers and is clearly
observer dependent. The situation as regard de Sitter spacetime is somewhat in between: While
it has a geometric description, it also shares with the Rindler spacetime certain level of observer
dependence. The location of the horizon surface will be different even for two different observers
who are translated with respect to each other by a spatial vector. More importantly, the de Sitter
spacetime allows, in addition to the static coordinate system, a spatially homogeneous Friedmann
coordinate description. In these coordinates, quantum field theory reduces to the quantum mechanics
of an oscillator with time dependent frequency with the well known difficulties arising from the
ambiguity of vacuum state in a time dependent background. The black hole spacetime, of course,
does not posses such a spatially homogeneous description. The Rindler spacetime does but, in this
case, the homogeneous description is just the inertial coordinates in flat spacetime with no time
dependence — thereby making that description trivial.

Another issue which crops up in the study of de Sitter spacetime is the following. Neither
the inflationary phase nor the currently accelerating phase of the universe is strictly de Sitter.
While one can provide a fairly elegant mathematical description of quantum field theory in exact

de Sitter spacetime, many of these techniques will fail when the spacetime is only approximately de
Sitter. It is interesting to ask how much progress one can make in studying such (approximately
de Sitter) spacetimes and how much of the results valid in exact de Sitter will continue to hold
(in an approximate sense) in such spacetimes. For example, it is fairly complicated to work with
an analogue of approximately static coordinate system when the universe is not strictly de Sitter.
Many of the techniques used to define the vacuum states in exactly de Sitter spacetimes will also be
inapplicable when the manifold has no de Sitter symmetry.

It is thus clear that, given the special features possessed by de Sitter spacetime, one can approach
the problem of quantum field theory in de Sitter spacetime from many different perspectives, not
all of which will be easily generalizable to an approximately de Sitter spacetime. This motivates
us to examine closely several aspects of quantum field theory in de Sitter spacetime delineating the
properties which arise (in one way or the other) from the symmetry of de Sitter spacetime from those
which are of more general nature. Such a study also reveals some significant differences between de
Sitter spacetime in (1+1) dimension and de Sitter spacetime in (1+3) dimensions.

We will now briefly describe some of these issues which will be discussed in detail in the paper.
As we mentioned earlier, there is a very standard procedure for obtaining the thermality of the
horizon in the static coordinate system. This procedure works for a very wide class of spacetimes
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and can, for example, handle Rindler, black hole and de Sitter spacetimes at one go. But when
the cosmological spacetime is not exactly de Sitter, no static coordinate system will exist. One can
still define an “approximately static” coordinate system but this proves to be difficult to handle
mathematically.

If one decides to work with a Friedmann coordinate system, then the mathematics simplifies
considerably because we will be dealing with a quantum mechanical problem rather than quantum
field theory. But conceptually, we now have to tackle the issue of defining the vacuum state in a
time dependent background. This turns out to be reasonably straight forward in (1+1) dimension
in which conformal invariance of a massless scalar field helps the analysis. But in (1+3) dimension
it is not possible to have sensible limits for the mode functions in the infinite past if one works with
the massless scalar field Φ(t,x) as the primary variable. The usual trick is to work instead with the
variable χ(t,x) ≡ a(t)Φ(t,x) and define a vacuum state in the asymptotic past for χ(t,x). When
t→ −∞, a(t) → 0 and it is the scaling out of this factor which allows us to define a sensible vacuum
state in (1+3) dimensions. The resulting vacuum state is the well known Bunch-Davies vacuum [8]
for the de Sitter spacetime. Clearly, this depends on the behaviour of a(t) and there is no natural
analogue of this vacuum state for non-de Sitter spacetimes.

An alternative to the above procedure is to define a vacuum state at some fixed time t = t0, say,
by choosing the modes which behave as close to the positive frequency modes as possible at this
instant. We will call this the co-moving vacuum since it is based on the co-moving time coordinate
of Friedmann spacetime. In general, this vacuum state differs from the Bunch-Davies vacuum but
it has the advantage that the evolution of a(t) for t < t0 becomes irrelevant for its definition. It is,
therefore, well suited to study spacetimes which are de Sitter at late times with deviations from de
Sitter geometry in the early epochs.

Once the vacuum state is defined, in the asymptotic past or at some other chosen moment, one
could study the mixing of positive and negative frequency modes due to the time dependence of the
background expansion. In particular, one would be interested in knowing whether the mixing leads
to a thermal nature for the state at later times. It does happen in the case of (1+1) dimension but
the spectrum is not strictly Planckian in the case of (1+3) dimensions. There are some interesting
peculiarities which arise in this context when we try to obtain thermality working entirely in the
Friedmann coordinates.

Finally, one can also study the inter-relationship between the mode functions defined in Fried-
mann coordinate system and those defined with static coordinates. This is an exercise in evaluating
the Bogolioubov coefficients and we do find that one recovers standard Planck spectrum without any
deviation. This allows us to establish a correspondence between the vacuum states defined using
the two coordinate systems but — since static coordinate systems do not exist for approximately de
Sitter spacetimes — the approach does not allow an easy generalization to more realistic cases.

In the last part of the paper we study the mode functions in approximately de Sitter spacetimes
in Friedmann coordinates. We find an explicit solution to the wave equation, correct to the necessary
order of approximation, and use it to describe the deviations from the exact de Sitter spacetime.
This approach is quite general and is capable of handling a wide variety of cases when the evolution
is approximately de Sitter.

The plan of the paper is as follows: We briefly review thermal aspects of horizons in static
coordinate system in Section 2. In Section 3, we solve for the modes of a massless scalar field in
spatially flat de Sitter spacetime in (1+1) and (1+3) dimensions and define the Bunch-Davies and
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comoving vacuum states in the Friedmann coordinate patch. These modes evolve in time and the
physical content of the modes at later times is determined by evaluating the mixing coefficients in
Section 4, working entirely in the Friedmann coordinates. In Section 5, we study the response of a
detector coupled with the field as a way to provide an operational meaning to the mixing coefficients.
We next compare, in Section 6, the mode functions defined in the Friedmann patch with those defined
in the static patch of the de Sitter spacetime to reproduce some standard results. Finally, we study
the corresponding effects in the quasi-de Sitter geometry. We consider a small perturbation to the
de Sitter metric and develop the perturbative framework to find the corrections to the field modes
and the corresponding power spectrum in the quasi-de Sitter case. This procedure is illustrated by
taking the model of the universe containing pressure-free matter and cosmological constant which
behaves like quasi-de Sitter at late times. Section 8 describes the conclusions.

2 Thermality in static coordinates

To set the stage, we shall begin by briefly reviewing some well known results (see e.g., chapter 14
of Ref. [9] for more details) related to the temperature of horizons in static coordinates. Several
spacetimes of interest including the Schwarzschild, de Sitter, Rindler, can be described by a line
element of the form

ds2 = f(r)dt2 − dr2

f(r)
− dL2

⊥ (1)

where dL2
⊥ is the transverse metric and f(r) vanishes at the horizon, r = r0 with f ′(r0) ≡ 2κ 6= 0.

Then, using a Taylor series expansion near the horizon, we can write f ≈ 2κl where l = (r− r0) and
the metric near the horizon takes the form:

ds2 = 2κl dt2 − dr2

2κl
− dL2

⊥. (2)

In the case of Rindler spacetime, this is exact and κ denotes the acceleration of the Rindler observer.
In other cases, the metric reduces to this form close to the horizon with κ denoting the surface
gravity.

This (Rindler) form of the metric makes it obvious that the singular behaviour of the metric near
l = 0 is a coordinate artefact. It is possible to introduce several, different, sets of coordinates which
will cover the entire manifold without any pathology at the horizon. One such choice, (T,X), which
we will call Kruskal-like coordinates is obtained by the transformations:

κX = eκr∗ coshκt; κT = eκr∗ sinhκt; r∗ ≡
∫

dr

f(r)
(3)

which lead to the metric

ds2 =
f

κ2(X2 − T 2)
(dT 2 − dX2) + dL2

⊥ (4)

that covers the full manifold. Here f should be treated as a function of (T,X). The horizon at
r = r0 is now mapped to T 2 = X2 but with the factor f/(X2 − T 2) remaining finite at the horizon.

It is now possible to show that the vacuum state of a quantum field defined on the T = 0
hypersurface appears as a thermal state to observers confined on the right wedge X > |T |. This is
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most easily done by making an analytic continuation to the imaginary time coordinates by TE = −iT
and tE = −it. The time evolution of the system in terms of TE will take the field configuration
from TE = 0 to TE → ∞ and will be governed by a global Hamiltonian Hgl. One can equivalently
describe the same evolution in terms of tE, which behaves like an angular coordinate from tE = 0
to tE = 2π/κ when we use the Hamiltonian Hst which determines time evolution in the static time
coordinates. The entire upper half-plane T > 0 can be covered in two completely different ways:
either in terms of the evolution in TE or in terms of the evolution in tE . In (TE ,X) coordinates, we
vary X in the range (−∞,∞) for each TE and vary TE in the range (0,∞). In (tE , x) coordinates,
x varies in the range (0,∞) for each tE which varies in the range (0, π/κ) like an angular variable.
This allows us to prove, using standard path integral techniques [9, 10] that,

〈vac|φL, φR〉 ∝ 〈φL|e−πHst/κ|φR〉. (5)

where φL and φR are the field configurations in left and right parts of the plane on the T = 0
hypersurface. One can find the density matrix for observations confined to the right wedge by
tracing out the field configuration φL on the left wedge. This computation gives:

ρ(φR, φ
′
R) =

〈φR|e−2πHst/κ|φ′R〉
Tr(e−2πHst/κ)

(6)

which is thermal with the temperature β−1 = κ/2π. Thus, the vacuum state of the field defined on
the T = 0 hypersurface leads to a thermal density matrix with temperature κ/2π as far as static
observers in the right hand wedge are concerned.

In the case de Sitter the metrics in the static and Kruskal-like coordinates

ds2 = (1−H2r2)dt2 − dr2

(1−H2r2)
− dL2

⊥

=
4

[H2(X2 − T 2) + 1]2
(dT 2 − dX2)− dL2

⊥ (7)

are connected by the coordinate transformations:

X =
1

H

(

1 +Hr

1−Hr

)1/2

coshHt, T =
1

H

(

1 +Hr

1−Hr

)1/2

sinhHt; (8)

From the form of the metric in in the two coordinate systems, it is obvious that the (T,X) coordinate
system is not static because the metric depends on T . On the other hand, the coordinate system
(t,x) which covers the right wedge has a static time coordinate t. It is well known that defining
a vacuum state in a time dependent background is non-trivial and often ambiguous. In the above
analysis we have chosen to define a vacuum state at a particular space-like hypersurface T = 0 and
examine its properties in terms of the static coordinates. A different definition for the vacuum state,
in general, will lead to a different description in static coordinates. We will see that similar issues
arise later on when we study de Sitter universe in the Friedmann coordinates as well.

An alternative procedure to determine the thermal nature of the horizon is based on the cal-
culation of relevant Bogoliubov coefficients. Since we have two coordinate systems — Kruskal-like
and static — covering part of the manifold, one can obtain, in principle, the relation between the

5



field modes which are natural to these coordinate systems and compute the Bogoliubov coefficients
between them. Let the field modes be given by some functions φ(T,X) and χ(t, r) in the Kruskal-like
and static coordinates respectively in the region of the manifold where both are well defined. (For
simplicity, we have ignored the dependence on the transverse coordinates which play no role in the
discussion, as we shall see.) It is often not possible to obtain closed expressions for the field modes
due to mathematical complexity. However, it is possible to evaluate the Bogoliubov coefficients
using a simple trick: Since the Bogoliubov coefficients that relate the two sets of field modes are
independent of the hypersurface which is used to evaluate the Klein-Gordon inner product, we can
choose this hypersurface to be arbitrarily close to the horizon. The field equations reduce to a two-

dimensional wave equation near the horizon making the dependence in the transverse coordinates
(and the mass of the field) irrelevant. Conformal invariance then allows us to determine the field
modes near the future horizon which take the form of plane waves in the relevant coordinates. That
is,

χω(t, r) =
1√
2ω
e−iωu (9)

and

φk(T,X) =
1√
2k
e−ikU . (10)

where u = t− r∗ and U = T −X respectively. These are related by κU = −e−κu which signifies an
exponential redshift near the horizon. As is well known, the relevant Bogoliubov coefficient (which
we will have the occasion to evaluate explicitly later on) will now lead to a thermal spectrum of
particles.

This discussion is, of course, applicable to the de Sitter universe described by the metric in Eq. (1)
with f(r) = 1−H2r2 and will lead to a temperature H/2π. More precisely, if we introduce Kruskal-
like coordinates in the de Sitter manifold and define a vacuum state on the T = 0 hypersurface,
then such a vacuum state will lead to a density matrix with temperature H/2π for the observers
confined to the region r < H−1. Once again, it should be stressed that the de Sitter metric in the
Kruskal-like coordinates is not static and the vacuum state is defined using the T = 0 hypersurface.

This analysis is completely in tune with what could be done in black hole spacetimes as well
as in the case of Rindler spacetime. But in the case of de Sitter we have an alternative coordinate

system available to us, viz.., the standard Friedmann coordinate system. This allows us to study the
dynamics of a quantum field entirely in the Friedmann coordinate system and explore whether we
can recover the thermality of the horizons and other features. In such a study we necessarily have
to work with a time dependent background but — as we have emphasized above — this is implicit
even when we use Kruskal-like coordinates and relate them to static coordinates. We can, therefore,
adopt a similar strategy in the Friedmann coordinate system by defining a vacuum state at some
suitable hypersurface and studying its particle content as the evolution proceeds.

This approach has one extra advantage. The static coordinate system exists only for the exact de
Sitter universe. When there are deviations from de Sitter nature, we can still describe the universe
in a very natural fashion using Friedmann coordinate system. But in this case, we will not have the
luxury of an alternative static coordinate system to describe the physics. Therefore, a formalism
which addresses issues like thermality working entirely in Friedmann coordinate system, without
using any of the symmetries of the de Sitter universe, is well suited for the study of near de Sitter
geometry. We will find that obtaining thermal nature of the horizon working entirely in Friedmann
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coordinates is — surprisingly — not an easy task. In fact we could not find any previous work
in published literature which discusses quantum field theory in de Sitter spacetime from such an
approach and obtains thermal nature of the horizon. We shall now turn to this study.

3 Massless scalar field modes in de Sitter spacetime

Throughout the paper, we will confine ourselves to massless, minimally coupled scalar field in de
Sitter spacetime. The action for the field Φ(t,x) is given by:

S[Φ] =
1

2

∫

dnx
√−g ∂aΦ∂aΦ (11)

It turns out that the dynamics is somewhat different in (1+1) dimensional spacetime compared to
(1+3) dimensional spacetime. We will first study the behaviour in (1 + 1) and then follow the same
procedure for the (1 + 3) case. This will bring out the similarities and some curious differences
between the two cases.

3.1 Field modes in dS2 spacetime

We will describe the de Sitter spacetime in Friedmann coordinates with k = 0. Then, the (1+1)
dimensional metric is given by,

ds2 = dt2 − a2(t)dx2 (12)

and the field equation reads,

∂2tΦ+
ȧ

a
∂tΦ− 1

a2
∂2x Φ = 0. (13)

We decompose Φ in terms of a complete set of orthonormal functions fk in the form

Φ(t, x) =

∫ ∞

−∞

dk

2π

[

âkfk + â†kf
∗
k

]

. (14)

Spatial homogeneity allows us to separate out the x dependence and write:

fk(x, t) = eikx ψ|k|(t) (15)

Substituting in Eq. (13) and solving the resulting equation, we find that

ψk(t) = Aksk(t) + Bks
∗
k(t); sk(t) =

1√
2k

exp

(

−ik
∫

dt

a(t)

)

(16)

(The k in these expressions actually stand for |k|; we will not explicitly show the modulus sign
hereafter for notational simplicity.) The result is obvious from the fact that in (1+1) dimension the
scalar field action is conformally invariant and any Friedmann spacetime is conformally flat with the
conformal time coordinate η defined through dη = dt/a(t). For dS2 with the scale factor a(t) = eHt,
the solution is,

sk(t) =
1√
2k

exp

[

− ik
H

(

1− e−Ht
)

]

(17)
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where the phase ensures that, in the H → 0 limit, the mode function reduces to standard flat
spacetime modes. The constants Ak and Bk in Eq. (16) are determined using the appropriate
boundary conditions and thus decide the choice of the vacuum state for the field. For example, when
H → 0, the choice Ak = 1 and Bk = 0 gives the positive frequency mode and selects the standard
inertial vacuum for the flat spacetime.

In the presence of an expanding background, it is difficult to define a unique choice for the
vacuum and we need to study different choices and their physical properties. One possible choice
would be to define the vacuum state at the asymptotic past by choosing the field modes such that
they reduce to positive frequency modes in this limit. It is, however, clear that the mode function
in Eq. (17) does not have a well defined phase when t → −∞. (This is related to the fact that
in the asymptotic past a → 0.) The usual procedure adopted in the literature to circumvent this
problem is to abandon the idea of defining a vacuum state using the t coordinate and instead use
the conformal time η which, for the de Sitter universe, can be taken to be η ≡ (1− e−Ht)/H. (The
integration constant is chosen to give the correct limit of η → t when H → 0.) Then our mode
function in Eq. (17)

sk(η) =
1√
2k
e−ikη (18)

is indeed a positive frequency solution with respect to η (at all times) and therefore the choice Ak = 1
and Bk = 0 gives a natural choice for the vacuum. This is the conventional Bunch-Davies vacuum
defined with respect to conformal time by the choice of mode functions

ψ
(BD)
k (t) =

1√
2k

exp

[

− ik
H

(

1− e−Ht
)

]

(19)

While the Bunch-Davies vacuum is the preferred choice in the literature, it is clear that it is
more in tune with the conformal time coordinate η than with the co-moving time coordinate t. In
the Friedmann metric, the co-moving time t has a direct physical significance as the proper time of
the co-moving, geodesic clocks. This motivates us to look at the possibility of defining a co-moving

vacuum with mode functions which behave as close as possible to the positive frequency modes with
respect to co-moving time coordinate t. We can take a cue from the discussion in the last section
where we saw that, even in the Kruskal-like coordinates for the de Sitter spacetime, the metric is
time dependent and the vacuum state is defined on a particular hypersurface T = 0. In a similar
fashion, we can choose the modes in Eq. (16) by demanding that at some time t = t0 they behave
like positive frequency modes. Because of the time translational invariance, we can take t0 = 0,
without the loss of generality, as long as t0 is finite. That is, we impose the conditions:

ψk(0) =
1√
2k
e−ikt|t=0 ; ψ̇k(0) =

−ik√
2k

e−ikt|t=0. (20)

(The same physics is obtained if we take t0 6= 0 with the replacement of k by ke−Ht0 which ensures
that k is the co-moving wave number defined at t0 = 0). These conditions imply that at t = t0(= 0)
the mode function and its derivative behave like a positive frequency mode.

We can now determine the coefficients Ak and Bk using this condition and — somewhat curiously

— we will again find that Ak = 1 and Bk = 0. That is, the mode function ψ
(CM)
k (t), evolved from the

co-moving vacuum defined at t = t0(= 0) is same as Bunch-Davies state ψ
(BD)
k (t) defined earlier in
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dS2. This result is independent of the choice for t0 thereby showing that the Bunch-Davies vacuum
can also be interpreted as a co-moving vacuum state defined using the conditions in Eq. (20).

We will see later, this equivalence is a special feature of (1+1) dimension and does not hold in
(1+3) dimensions where the co-moving and Bunch-Davies vacua are different.

3.2 Field modes in dS4 spacetime

We shall now follow the same procedure as above in the (1+3) dimensions. The metric is now given
by

ds2 = dt2 − exp(2Ht)dx2 (21)

where H is the Hubble constant and sets the only length-scale (or time-scale) in the problem to be
1/H. The field equation for Φ(t,x) in this metric reads:

∂2tΦ+ 3H∂tΦ− exp(−2Ht)∂2x Φ = 0 (22)

As usual we expand the field in terms of a complete set of orthonormal functions fk and write:

Φ(x, t) =

∫

d3k

(2π)3

{

âkfk(t,x) + â†
k
f∗
k
(t,x)

}

(23)

where spatial homogeneity allows us to express the field modes in the form:

fk(t,x) = eik·x ψk(t) (24)

where k = |k|. The equation in ψk(t) then becomes,

ψ̈k + 3Hψ̇k + exp(−2Ht)k2ψk = 0. (25)

with the solution,
ψk(t) = Aksk(t) + Bks

∗
k(t) (26)

where

sk(t) =
1√
2k

exp

[

− ik
H

(

1− e−Ht
)

](

iH

k
+ e−Ht

)

(27)

(Because of the existence of Ak and Bk, the normalization of sk is not unique; we choose it in
such a way that, when Ak = 1 and Bk = 0, the functions sk satisfy the standard orthonormality
conditions with respect to the Klein-Gordon inner product.) Again, the constants Ak and Bk are
to be determined using the appropriate boundary conditions which makes a choice for the vacuum
state for the field. In (1+3) dimensions also, we see that when H → 0 the choice Ak = 1 and Bk = 0
leads to the standard positive frequency mode in flat spacetime and selects the inertial vacuum. Our
interest is to explore the different choices in the presence of expanding background.

As in dS2 case, let us first study the behaviour of the modes in the asymptotic past. We see
that, in the t→ −∞ limit, the expression in Eq. (27) goes to:

sk(t) →
1√
2k

exp

(

ik

H
e−Ht

)

e−Ht. (28)
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This does not have a well-defined limit and hence cannot be used to define a vacuum state for the
field. In this respect, both (1+1) and (1+3) dimensional results are similar.

We found that, in the (1+1) dimensional case we could use the conformal time coordinate η to
define a natural vacuum state in the asymptotic past. In the present case, however, the situation is
different. In terms of the conformal time η, the mode function becomes (in the asymptotic past):

sk(η) →
1

a(η)

e−ikη

√
2k

(29)

and we see now the crucial difference from the (1 + 1) dimensional case. There is an extra a(η) in
this case which prevents us from treating it as the standard positive frequency mode.

The result also suggests a possible way-out which is usually adopted in the literature. Instead of
quantising Φ we may choose to quantise Φ̄ ≡ a(t)Φ. This is a (time dependent) point transformation
of the dynamical variable which is permissible in the classical description. We then see that the
choice Ak = 1 and Bk = 0 will give the modes exp(−ikη) which has the standard form for Φ̄, when
treated as a quantum field. This is the usual procedure in the literature and this choice leads to
the conventional Bunch-Davies vacuum. But note the the situation was not as straightforward as in
the case of (1 + 1) dimensions and we needed to remove a factor a(t) to define the vacuum state in
(1+3) dimensions.

The difference is more acute when we try to define a co-moving vacuum. As in the case of (1+1)
dimension one can define the co-moving vacuum by imposing the conditions given in Eq. (20) and
thus determining Ak and Bk. Because of the time translation invariance, we can again define the
co-moving vacuum at at t = 0 and the result for any other time, t0 can be obtained by a finite shift.
Hence the conditions we impose on the modes are

ψk(0) =
1√
2k
e−ikt|t=0 ; ψ̇k(0) =

−ik√
2k

e−ikt|t=0. (30)

These allow us to determine the constants Ak and Bk as:

Ak =
H + 2ik

2ik
; Bk =

H

2ik
(31)

which define the mode function, ψ
(CM)
k (t), evolved from the co-moving vacuum choice defined at

t = 0.
When we did this in (1+1) dimension, we found that Ak = 1 and Bk = 0 - instead of the

expressions in Eq. (31) — thereby showing the equivalence of co-moving and Bunch-Davies vacuum.
But in (1+3) dimensions we get a different result, viz. that the co-moving vacuum is different from
the Bunch-Davies vacuum. The difference can be traced, algebraically, to the existence of the a(η)
factor in Eq. (29).

To summarise, we can define the vacuum states by imposing suitable boundary conditions on the
mode functions and thus determining the constants Ak and Bk. If we work in the asymptotic past,
then one can choose the modes to be exp(−ikη) in (1+1) dimension, thereby defining the Bunch-
Davies vacuum. In (1+3) dimensions this is not possible with the original scalar field. But if we
work with a(t)Φ, instead of Φ, one can again define the modes such that they behave as exp(−ikη)
in the asymptotic past. Alternatively, one can attempt to define a co-moving vacuum by imposing

10



the condition that the modes must behave as close to positive frequency solutions as possible, with
respect to the co-moving time coordinate t, at some time t = t0. Because of time translation
invariance, we can choose t0 = 0 without loss of generality. We then find that, in (1+1) dimension,
the co-moving vacuum is equivalent to the Bunch-Davies vacuum. But in (1+3) dimensions, these
two mode functions (and hence the vacua are different). We shall now explore the properties of these
vacuum states.

4 Evolution and mixing coefficients at later times

The Bunch-Davies and the co-moving vacua are defined by the condition that the mode function is
purely positive frequency at a given moment of time t = t0. In the case of Bunch-Davies vacuum,
this is done in the asymptotic past (t0 → −∞) while in the case of co-moving vacuum we choose
this to be t0 = 0. Once this initial condition is set, expansion of the universe will evolve the mode
functions to a mixture of positive and negative frequency modes, with respect to the co-moving time
coordinate, at any later time. This mixing can be analysed in terms of two mixing coefficients, αν

and βν in the expansion:

ψk(t) =

∫ ∞

0

dν

2π

(

αν e
−iνt + βν e

iνt
)

(32)

It is slightly more convenient to let the frequency vary over both positive and negative values and
write:

ψk(t) =

∫ ∞

−∞

dν

2π
f(ν) e−iνt (33)

so that
αν = f(ν), βν = f(−ν); ν > 0 (34)

The mixing coefficients defined by Eq. (32) are similar to Bogoliubov coefficients but not the same.
We stress that in Eq. (32) ψk(t) is expanded in terms of the complete set of orthonormal functions
exp(±iνt) which are not the solutions to scalar field wave equation in the de Sitter background.
Physically, one can think of these functions exp(±iνt) as defining the instantaneous positive and
negative frequency mode functions with respect to the co-moving time. But as we shall see, these
mixing coefficients have interesting properties and in fact play a direct role in the response of detec-
tors. We shall say more about it later on.

The task of determining the mixing coefficients is thus reduced to calculating the the Fourier
transform of ψk(t),

f(ν) =

∫ ∞

−∞
dt eiνt ψk(t). (35)

Often we will be interested in |αν |2 and |βν |2 which can be obtained from the power spectrum |f(ν)|2.
We shall now compute these for the different cases.

4.1 Mixing coefficients in dS2

We will begin with the (1+1) dimensional case for which the modes are

ψk(t) =
1√
2k

exp

[

− ik
H

(

1− e−Ht
)

]

(36)

11



So, the Fourier transform is:

f(ν) =
e−ik/H

√
2k

∫ ∞

−∞
dt eiνt eik/H e−Ht

=
e−ik/H

√
2k

(

1

H

)(

k

H

)iν/H

Γ

(

− iν
H

)

eπν/2H . (37)

Similarly,

f(−ν) = eik/H√
2k

(

1

H

)(

k

H

)iν/H

Γ

(

− iν
H

)

e−πν/2H . (38)

so that the modulus square of the coefficients of mixing in Eq. (34) are given by :

|αν |2 =
1

2kν

βeβν

eβν − 1
; |βν |2 =

1

2kν

β

eβν − 1
; β =

2π

H
. (39)

That is the power spectrum per logarithmic band at negative frequencies (given by |βν |2) is Planckian
at temperature, H/2π. At first sight this might look like the familiar result, well known in literature.
However, there are some peculiar features which need to be commented on.

Note that we have started with a solution to the wave equation in de Sitter background (given
by Eq. (36)) and expanded it using the complete set of functions exp(±iνt). These functions have

no “legality” in the de Sitter spacetime since they are not the solutions of the wave equation. We
could have, for example, used any other complete set of orthonormal functions in place of exp(±iνt)
and could have defined the mixing coefficients through an equation like Eq. (32). The two properties
which favour our choice are: (a) they were precisely the mode functions used to define the co-moving
vacuum and (b) they are instantaneous, monochromatic, plane waves with respect to the co-moving
time t. It is therefore interesting that the overlap between positive and negative frequencies in such
an expansion gives rise to the thermal spectrum.

If we had used the conformal time instead of co-moving time, then the result would have been
very different — and very trivial. In terms of the conformal time, the modes are just exp(±ikη) at all
η and there is no mixing of the positive and negative frequencies defined with respect to η. So if we
had defined another set of mixing coefficients with an equation like Eq. (32) but with conformal time
η, then we would have got the trivial result βν = 0. So if we define the vacuum state with respect to
conformal time and work entirely in terms of conformal time we will see no trace of thermal spectrum
in the de Sitter universe. This is, of course, obvious from the fact that the metric is conformally
flat in (η, x) coordinates and the scalar field theory is conformally invariant in (1+1) dimension; so
we are back to the evolution of inertial vacuum in flat spacetime. On the other hand, the modes
undergo exponential redshift when frequencies are defined with respect to co-moving time and —
as we had already mentioned — the exponentially redshifted wave will lead to a thermal mixing
coefficient. We will next see that the situation is somewhat different in the (1+3) dimensional case.

4.2 Mixing coefficients in dS4

In this case, which we want to study in detail, it is convenient to work with a general mode function,
having arbitrary coefficients Ak and Bk. From Eq. (26), we have,

ψk(t) = Aksk(t) + Bks
∗
k(t) = ψ

(1)
k (t) + ψ

(2)
k (t) (40)
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where

sk(t) =
1√
2k

exp

[

− ik
H

(

1− e−Ht
)

](

iH

k
+ e−Ht

)

(41)

Recall that taking Ak = 1 and Bk = 0 gives Bunch-Davies state and for the co-moving state
the corresponding values are provided by Eq. (31). We again choose the normalization such that
fk ≡ sk exp(ik · x) satisfies the standard orthonormality conditions (fk, fk′) = δ3(k−k

′) with respect
to the Klein-Gordon inner product:

(Φ1,Φ2) ≡ −i
∫

t
d3x a3(t)[Φ1∂tΦ

∗
2 − Φ∗

2∂tΦ1] (42)

where the integral is evaluated over a hypersurface of constant t.
Some amount of algebra yields the following results for the Fourier transform of the respective

parts, ψ
(1)
k (t) and ψ

(2)
k (t):

f (1)(ν) = Ak
2e−ik/Heπν/2H

(2k)3/2

(

k

H

)
iν
H

Γ

(

− iν
H

)

(

i+
ν

H

)

f (2)(ν) = Bk
2eik/He−πν/2H

(2k)3/2

(

k

H

)
iν
H

Γ

(

− iν
H

)

(

−i− ν

H

)

. (43)

Taking the square of the modulus of the above expressions we get,

ν|f (1)(ν)|2 =
H2

2k3
|Ak|2

βeβν

eβν − 1

(

1 +
ν2

H2

)

ν|f (2)(ν)|2 =
H2

2k3
|Bk|2

β

eβν − 1

(

1 +
ν2

H2

)

(44)

where β = 2π/H. For negative frequencies, the forms of power spectrum are:

ν|f (1)(−ν)|2 = H2

2k3
|Ak|2

β

eβν − 1

(

1 +
ν2

H2

)

ν|f (2)(−ν)|2 = H2

2k3
|Bk|2

βeβν

eβν − 1

(

1 +
ν2

H2

)

(45)

Let us first consider the Bunch-Davies state, with Ak = 1 and Bk = 0. This gives αν = f (1)(ν) and
βν = f (1)(−ν) so that we find:

|αν |2 =
H2

2k3ν

βeβν

eβν − 1

(

1 +
ν2

H2

)

(46)

|βν |2 =
H2

2k3ν

β

eβν − 1

(

1 +
ν2

H2

)

(47)

In contrast to the (1+1) dimensional case, these are not thermal, due to the extra factor (1+ν2/H2).
So the expansion of the universe leads to a mixing of positive and negative frequencies but the
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resulting mixing coefficients do not have a thermal form. It should be noted, however, that the ratio
of the mixing coefficients is

|βν |2
|αν |2

=
|f (1)(−ν)|2
|f (1)(ν)|2 = e−βν (48)

When the field ψk(t) couples linearly to a detector, the rate of upward and downward transitions
between any two levels of the detector will be determined by the mixing coefficients. Therefore,
when the condition in Eq. (48) holds, one is led to a level population in the detector at thermal
equilibrium with the temperature β−1 = H/2π. Any multiplicative function h(ν2) with αν and βν
drops off in the ratio. [Usually, one works with Bogoliubov coefficients which satisfy the constraint
|α|2 − |β|2 = 1; in that case, if Eq. (48) holds, then |β|2 must be thermal. In the case of mixing

coefficients we have defined, the condition |α|2 − |β|2 = 1 does not hold which allows extra factors
like (1 + ν2/H2).]

Let us next consider the co-moving vacuum which holds more surprises. We now require the
square of the modulus of complete f(−ν) which is combination of individual quantities, |f (1)(−ν)|2,
|f (2)(−ν)|2 evaluated above and a cross-term given by,

2ν|f (1)(−ν)||f (2)(−ν)| cos θ = H2

k3
|Ak||Bk|

(

1 +
ν2

H2

)

β
eβν/2

eβν − 1
cos θ (49)

where

θ = arg(f (1), f (2)). (50)

The complete expression becomes:

ν|f(−ν)|2 = H2β

2k3

(

1 +
ν2

H2

)

[(

|Ak|2 + |Bk|2eβν
)

N + 2|Ak||Bk|
√

N(N + 1) cos θ
]

(51)

where

N =
1

eβν − 1
(52)

is the Planckian factor and Ak,Bk given by Eq. (31). This result shows that for a massless scalar
field prepared in the co-moving vacuum state, we obtain an expression having the Planckian factor
with the temperature H/2π. In addition, we obtain an interference term involving

√

N(N + 1)
which can be thought of as the fluctuation in the occupation number in thermal equilibrium. This
factor has been noticed earlier [11] in the case of horizon thermodynamics though no clear physical
explanation is available. As far as we know, this has not been noticed earlier in the case of de Sitter
spacetime in any context.

5 Detector response in de Sitter spacetime

The mixing coefficients defined through Eq. (32) are directly related to the response of a co-moving
geodesic detector in Friedmann universe. Since the clock carried by such a detector will measure the
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co-moving time t, the rate of transition between the levels of the detector will involve the factors
exp(±it∆E) where ∆E is the energy difference between the two levels. This gives an operational
meaning to the mixing coefficients and we will show that the response of a co-moving, geodesic
detector shows features very similar to what we obtained in the last section.

Consider a stationary detector, located at the spatial origin in a de Sitter spacetime and coupled
to the massless scalar field by monopole interaction. The amplitude for excitation of this detector
during the time interval (−T,+T ) due to its interaction with the scalar field can be computed, in
first order perturbation theory as:

Ak = M
∫ T

−T
dτ eiν τ 〈1k|Φ(x[τ ])|0〉 (53)

where M = iλ〈E|m̂(0)|E0〉 is amplitude of transition in the internal levels of the detector with λ as
the coupling constant and m̂(0) is the detector’s monopole operator. (In the above expression, we
are confining our attention to a final field state containing a particle with a specified momentum k.
The total excitation probability for the detector is obtained by integrating |Ak|2 over all k.) The
detector interacts with the field only during the period −T to T and xa(τ) = xa(t) = (t, 0, 0, 0) is
the trajectory of the detector. Expanding Φ(x[τ ]) as in Eq. (14), we find that the only term that
survives in the T → ∞ limit is the negative frequency term. The amplitude arising from this term
is given by,

Ak = M
∫ T

−T
dt eiνt

[ A∗
k√
2k
eik/H

(

− iH
k

+ e−Ht

)

e−ik/H e−Ht

+
B∗
k√
2k

e−ik/H

(

iH

k
+ e−Ht

)

eik/H e−Ht

]

. (54)

This can be recast as

Ak =
MA∗

k√
2k

eik/H
(

− iH
k

)

lim
µ→1

(1− ∂µ) Iµ(ν)

+
MB∗

k√
2k

e−ik/H

(

iH

k

)

lim
µ→1

(1− ∂µ) I
∗
µ(−ν) (55)

where

Iµ(ν) =

∫ T

−T
dt eiνte−ikµ/H e−Ht

=

(
∫ ∞

−∞
dt −

∫ −T

−∞
dt −

∫ ∞

T
dt

)

eiνte−ikµ/H e−Ht

. (56)

The above integral can be evaluated to give,

Iµ =
1

H

(

k

H

)iν/H

e−πν/2He
iν
H
lnµ

[

Γ

(

− iν
H
, i
kµ

H
e−HT

)

− Γ

(

− iν
H
, i
kµ

H
eHT

)]

(57)

where Γ(a, b) is an incomplete gamma function. With this the amplitude becomes,

Ak =
Meik/H√

2k

(−iH
k

)

A∗
k

(

1− iν

H

)

I1(ν) +
Me−ik/H

√
2k

(

iH

k

)

B∗
k

(

1− iν

H

)

I∗1 (−ν) (58)
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where we have ignored terms coming from differentiating the gamma functions since those are purely
oscillatory and can be made to vanish in the large ν limit by using the standard iǫ prescription. The
probability Pk for the transition is now given by,

Pk = |Ak|2 =
M2H2

2k3

(

1 +
ν2

H2

)

(

|Ak|2|I1(ν)|2 + |Bk|2|I1(−ν)|2

+2|Ak||Bk||I1(ν)||I∗1 (−ν)| cos θ) (59)

To avoid the transients arising due to finite T , we will take the limit of HT ≫ 1. In this case, an
elementary computation gives:

I1 ≈
e−πν/2H

H

(

k

H

)iν/H

Γ

(

− iν
H

)

− i

k
e−HT e−i k

H
eHT

e−iνT . (60)

so that

|I1(ν)|2 =
βN

ν
− 2e−HT

k

√

βN

ν
cos θ′ +O(e−2HT )

|I∗1 (−ν)|2 =
βeβνN

ν
+

2e−HT eβν/2

k

√

βN

ν
cos θ′′ +O(e−2HT ) (61)

where N = (eβν − 1)−1 and β = 2π/H. Therefore, when HT ≫ 1, we get the transition probability
to be,

Pk =
M2H2

2k3

(

1 +
ν2

H2

)

β

ν

[(

|Ak|2 + |Bk|2eβν
)

N + 2|Ak||Bk|
√

N(N + 1) cos θ
]

(62)

A comparison with Eq. (51) shows that the detector response is triggered by essentially |f(−ν)|2
which should be obvious from the fact that the amplitude in Eq. (53) picks out the negative frequency
component of the field when the time integration is extended over the range (−∞,∞). This result
shows that our mixing coefficients have a direct connection with the operational definition of particle
content, as determined by the detector response.

The above result is general and is valid for arbitrary Ak,Bk. By taking specific values we can
determine the detector response in Bunch-Davies and co-moving vacuum. In the Bunch-Davies case,
we have Ak = 1 and Bk = 0 giving

Pk =
M2H2

2k3

(

1 +
ν2

H2

)

β

ν
N (63)

This result shows that the detector response does pick up the extra factor (1 + ν2/H2) just as the
mixing coefficients do. (The same factor has been noticed earlier in ref. [12]). The corresponding
result for co-moving vacuum can be obtained by substituting Eq. (31) into Eq. (62) but the result has
no special features worth mentioning. The above results arise because, by definition, the geodesic
detector measures the co-moving time t.
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6 Relation to the results in static coordinate system

In Sec. 2, we briefly described how thermal nature of the de Sitter horizon arises in the static
coordinate system and in the last few sections we studied the field theory in Friedmann coordinate
system. Since both coordinate systems coexist in part of the de Sitter manifold, one can make an
explicit comparison of the quantum states defined in these two coordinate systems. (This is similar to
comparing the states in inertial coordinate system and Rindler coordinate system in flat spacetime.)
For this, we need to compute the relevant Bogoulibov coefficients on a spacelike hypersurface between
the relevant mode functions by using the Klein-Gordon inner product. As we shall see, this is fairly
straightforward in (1+1) but somewhat complicated in (1+3).

6.1 Comparison in dS2

We begin by noting that the metric,

ds2 = dt2 − e2Htdx2 (64)

in (t, x) coordinates can be written in the static coordinates (t̃, x̃) as

ds2 =
(

1−H2x̃2
)

dt̃ 2 −
(

1−H2x̃2
)−1

dx̃2

=
(

1−H2x̃2(x∗)
)

(dt̃ 2 − dx̃2∗) (65)

where
x̃ = eHtx ; t̃ = t− 1/2H ln

(

1−H2x̃2
)

(66)

and

x̃∗ =

∫

dx̃

(1−H2x̃2)
. (67)

is the tortoise coordinate. Using these transformations we can express the field modes in the time-
dependent dS2 coordinates in terms of the static coordinates. We will focus on a fixed (k > 0) mode
so that the mode function

fk(t, x) =
1√
2k
e−ik/Heikxeik/H e−Ht

(68)

becomes

fk(t̃, x̃) =
1√
2k

exp

(

ike−Ht̃

(1−H2x̃2)1/2
+

ike−Ht̃x̃

H (1−H2x̃2)1/2

)

=
1√
2k
ei(k/H) e−Hu

(69)

in static coordinates where u ≡ t̃− x̃∗. In the static deSitter patch, conformal flatness of the metric
in Eq. (65) allows us to write down the solution to the field equation as exp(±iωu). This allows the
expansion

ΦR
ω =

1√
2ω

(

b̂ωe
−iωu + b̂†ωe

iωu
)

(70)

etc. which is valid on the complete manifold. We now need to determine the Bogoliubov coefficients
that relate the above two sets of field modes. These are given by the standard Klein-Gordon inner
product.

βωk = −i
∫

t̃
dx̃∗

(

ΦR
ω∂t̃ fk − fk ∂t̃Φ

R
ω

)

(71)
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where the integral is over any spacelike hypersurface. Choosing t̃ = 0 surface, the above integral
over x̃∗ can be recast as:

βωk =
−i√
2ω

∫ ∞

−∞
du
(

e−iωu∂ufk − fk ∂ue
−iωu

)

(72)

Integrating the first term by parts gives,

βωk =
√
2ω

∫ ∞

−∞
du e−iωufk(u) + fk e

−iωu|∞−∞

=
√
2ω

∫ ∞

−∞
du e−iωufk(u) (73)

since the second term vanishes. Thus

βωk =

√

ω

k

∫ ∞

−∞
due−iωueik/H e−Hu

=

√

ω

k

(

1

H

)(

k

H

)iω/H

Γ

(

− iω
H

)

e−πω/2H . (74)

We find that modulus |βωk|2 is again Planckian at temperature, H/2π:

|βωk|2 =
β

k(eβω − 1)
; β =

2π

H
. (75)

This shows that the Bunch-Davies vacuum (which is the same as the co-moving vacuum in (1+1)
dimension) has a thermal character in the static patch bounded by the horizon.

6.2 Comparison in dS4

The transformation from the Friedmann coordinates to static coordinates goes through in dS4 exactly
in the same way as dS2. The metric

ds2 = dt2 − e2Ht
(

dr2 + r2dΩ2
)

(76)

in (t, r,Ω) system can be written in the static coordinates (t̃, r̃,Ω) as

ds2 =
(

1−H2r̃2
)

dt̃ 2 −
(

1−H2r̃2
)−1

dr̃2 − r̃2dΩ2

=
(

1−H2r̃2(r∗)
)

(dt̃ 2 − dr2∗)− r̃2(r∗)dΩ
2 (77)

with the same transformations as before

r̃ = eHtr ; t̃ = t− 1/2H ln
(

1−H2r̃2
)

(78)

and defining the tortoise coordinate

r∗ =

∫

dr̃

(1−H2r̃2)
. (79)
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In the static coordinates, the field equation reads
[

∂2

∂t̃2
− f(r̃)

r̃2
∂

∂r̃

(

r̃2f(r̃)
∂

∂r̃

)

− f(r̃)L̂2

r2

]

Φ(t̃, r̃,Ω) = 0 (80)

where f(r̃) = (1−H2r̃2) and L̂ is the standard angular Laplacian operator. Taking
Φ = φl(r̃)Ylm(Ω)e−iωt̃/r̃, we find that φl(r̃) satisfies the equation:

− ω2φl −
f

r̃

d

dr̃

(

r̃2f
d

dr̃

(

φl
r̃

))

− l(l + 1)f

r̃2
φl = 0. (81)

Since f(r̃) vanishes at the horizon r̃ = 1/H, only the s-mode makes a dominant contribution near
the horizon and hence we will focus on l = 0 mode. For this mode, the wave equation becomes

d2φ

dr2∗
+

(

ω2 − ff ′

r̃

)

φ = 0 (82)

where the prime denotes derivative with respect to r̃. Clearly, in the near horizon limit (f → 0), the
solutions behave as exp(±iωr∗). Thus near the past horizon, r̃ → 1/H and t̃ → −∞, the modes in
the static coordinate system behave as exp(±iωv).

On the other hand, the modes describing the Bunch-Davies vacuum can be expressed in spherical
coordinates by the standard plane wave expansion

ΦBD
k =

e−ik/H

√
2k

∞
∑

l=0

il(2l + 1)jl(kr)Pl(cos θ)e
ik/He−Ht

(

iH

k
+ e−Ht

)

(83)

Using the transformations in Eq. (78) we can express this in (t̃, r̃) coordinates. Concentrating on
the s-wave contribution we obtain

Φ
(BD)
k =

e−ik/H

√
2k

(

eik/He−Hu − eik/He−Hv
)

(

iH

k
eHt̃

(

1−H2r̃2
)

+ 1

)

. (84)

which, near the past horizon, r̃ → 1/H and t̃→ −∞, behaves as

Φ
(BD)
k → 1√

2k
ei(k/H)e−Hv

. (85)

We now use the fact that the Klein-Gordon inner product between the field modes is independent
of the surface over which it is evaluated. It is, therefore, convenient to evaluate the Bogoliubov
coefficients on a space-like surface very close to the horizon. Since the Bunch-Davies mode behaves as
ei(k/H)e−Hv

while the static modes behave as exp(±iωv), it is obvious that the Bogoliubov coefficients
defined in Eq. (73) will give

βωk =
√
2ω

∫ ∞

−∞
dv e−iωvΦ

(BD)
k (v) (86)

which has a thermal character:

|βωk|2 =
β

k(eβω − 1)
; β =

2π

H
. (87)
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We again see that the Bunch-Davies vacuum has a thermal property when viewed in the static patch
in (1+3) dimensions as well. In this sense, (1+1) and (1+3) dimensions behave identically. It is
also straightforward to show that a detector at rest in the static coordinates will perceive a thermal
radiation in the Bunch-Davies vacuum state. On the other hand, we saw earlier that a freely-falling

detector will also see the modified thermal spectrum [see Eq. (63)] in the same vacuum state. It
should be noted that this is somewhat contrary to the results in black hole spacetime.

Finally, we quote the result for the co-moving vacuum transformed to static coordinates. The
analysis is again straightforward when we use the fact that the co-moving modes can be expressed
in terms of the Bunch-Davies modes by the relation

ψ
(CM)
k (t) = Akψ

(BD)(t) + Bkψ
(BD)∗(t) (88)

Therefore,

Φ
(CM)
k → 1√

2k

(

Ake
ik/He−Hv

+ Bke
−ik/He−Hv

)

. (89)

on the past horizon. It follows that the spectrum is now given by

k|βωk|2 =
(

|Ak|2 + |Bk|2eβν
)

βN + |Ak||Bk|β
√

N(N + 1) cos θ (90)

where

N =
1

eβν − 1

We once again see that the co-moving vacuum introduces an interference term in the form of
√

N(N + 1) even when we compare the modes between Friedmann description and static description
suggesting that there must be some physical explanation for the origin of this factor. We hope to
address this question in a future publication.

7 Quantum fields in quasi-de Sitter spacetime

So far, we have been concentrating on the features which are special to de Sitter spacetime. However,
in the evolution of the real universe, it is impossible to obtain a pure de Sitter evolution due to the
presence of external matter. Both, during the inflationary phase as well as during the late time
acceleration phase, we only have a quasi-de Sitter phase rather than a pure de Sitter universe.
In this section we will extend the formalism described earlier to a quasi-de Sitter spacetime by
determining an approximate solution to the wave equation. This approach is quite general and can
take into account any first order deviation from the pure de Sitter universe. After developing the
formalism we will apply it to a specific example to illustrate its utility.

7.1 The perturbative framework

Consider a Friedmann spacetime with the scale factor given by:

a(t) = e(Ht+ǫλ(t)) ≈ eHt (1 + ǫλ(t)) = a0 + ǫλa0 (91)

which can be treated as quasi-de Sitter if the condition λ̈≪ λ̇H is satisfied. In the above expansion,
we have retained the perturbation to first order as indicated by the bookkeeping parameter ǫ (which
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will be set to unity at the end of the computation). Correspondingly, the mode functions, which are
the solutions to the wave equation in the perturbed metric, will differ from those in the de Sitter
spacetime by a small amount:

ψ(t) = ψ0(t) + ǫ δψ(t) (92)

where ψ0(t) is the unperturbed mode function and we have omitted the subscript k for notational
simplicity. Substituting the above expressions for a(t) and ψ(t) into the time dependent part of the
wave equation written in the form:

d2ψ

dt2
+ 3

(

ȧ

a

)

dψ

dt
+
k2

a2
ψ = 0. (93)

we get,
d2(δψ)

dt2
+ 3H

d(δψ)

dt
+ 3λ̇

dψ0

dt
− 2

k2

a20
λψ0 +

k2

a20
δψ = 0. (94)

This equation can be solved by writing δψ = ψ0 s. The function s(t) then satisfies the equation,

d2s

dt2
+

(

2
ψ̇0

ψ0
+ 3H

)

ds

dt
= µ(t) (95)

where

µ(t) ≡ 2
k2

a20
λ− 3λ̇

ψ̇0

ψ0
(96)

acts like a source term. Eq. (95) is first order in ds/dt and hence can be immediately integrated.
(This result holds for a generic class of second-order homogeneous linear differential equation; see
Appendix B for details). The solution for s(t) is

s(t) = C

∫ t

dt′ψ−2
0 e−3Ht′ +

∫ t

dt′ ψ−2
0 (t′) e−3Ht′

∫ t′

dt′′ψ2
0(t

′′)e3Ht′′µ(t′′) (97)

where C is a constant of integration. Thus, given a model for λ(t) and appropriate boundary
conditions we can, in principle, solve for the perturbation δψ by this method.

7.2 An example: late-time accelerated phase of the universe

As an illustration of the above method, let us consider the late time accelerated phase of the universe
containing dust-like matter and a cosmological constant. The expansion factor of such a universe is
given by

a(t) = 22/3
(

sinh
3

2
Ht

)2/3

(98)

In the spirit of the above discussion, we will treat this as a perturbation to an exact de Sitter universe
and write

a(t) ≈ eHt

(

1− 2

3
e−3Ht

)

(99)
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where λ(t) = −(2/3) exp(−3Ht) which vanishes as t goes to infinity. This behaviour suggests that
we use the boundary conditions s(∞) = 0 and ṡ(∞) = 0 in our general solution given by Eq. (97).
In the pure de Sitter case, the mode functions can be taken to be

ψ0(t) =
1√
2k

exp

[

− ik
H

(

1− e−Ht
)

](

iH

k
+ e−Ht

)

(100)

which amounts to taking Ak = 1 and Bk = 0 in the Eq. (26) i.e., we have chosen to work with
Bunch-Davies state. Calculating the integrals in Eq. (97) is straightforward (see Appendix C for
details) and we obtain,

s(t) =
7k2

15H2
e−5Ht (101)

Therefore, the first-order change in the mode function is given by:

δψ(t) = ψ0(t)s(t) =
7ik e−ik/H

15H
√
2k

(

1− ik

H
e−Ht

)

e−5Hte
ik
H
e−Ht

. (102)

We can now compute the Fourier transform of this expression to determine the first order correction
in Fourier space:

δf(ν) =

∫ ∞

−∞
dt δψ(t)eiνt

=
7ik

15H
√
2k
e−ik/H

∫ ∞

−∞
dt

(

1− ik

H
e−Ht

)

e−5Hte
ik
H
e−Ht

eiνt

=
7ik

15H
√
2k
e−ik/H lim

µ→1
(1− ∂µ)

∫ ∞

−∞
dt e−5Ht+iνte

ikµ
H

e−Ht

=
−7H3 e−ik/H

15k4
√
2k

(

k

H

)iν/H

eπν/2H
(

6− iν

H

)

Γ

(

5− iν

H

)

(103)

The resulting power spectrum, to the lowest order, is given by:

ν|F (ν)|2 ≈ ν|f(ν)|2 + ǫ νRe[2f∗(ν)δf(ν)] (104)

where we have reintroduced ǫ for bookkeeping and

νRe[2f∗(ν)δf(ν)] =
7H5

15k6
βeβν

eβν − 1

(

144
ν

H
+ 64

ν3

H3
− 79

ν5

H5
+
ν7

H7

)

(105)

is the correction to the power spectrum in the case of quasi-de Sitter phase arising from the matter
contribution in the late-time acceleration.

8 Conclusions

The periodicity in the Euclidean time allows us to attribute a temperature H/2π using the static
coordinates on the de Sitter manifold. In this sense, de Sitter spacetime behaves just like other static
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spacetimes with a horizon. However, in such an analysis, one has to define a vacuum state on a
T = 0 hypersurface in the Kruskal-like coordinate system which is not static. In this particular case,
thermal nature of the de Sitter horizon arises because the vacuum state in Kruskal-type coordinate
system leads to a thermal density matrix for the observers bounded by the de Sitter horizons.

The de Sitter spacetime is unique in the sense that it also allows introducing Friedmann coordi-
nates in which the metric is homogeneous. This, in turn, reduces the field theoretic problem to that
of a quantum oscillator with a time dependent frequency. In such a, time dependent, background
there is no unique definition for the vacuum state and the best one could do is to introduce well
motivated vacuum states and study their physical properties. Quite generically, such states can be
introduced by giving a suitable boundary condition for the mode functions at some time t = t0. The
question arises as to whether one can understand the thermality of de Sitter universe working en-

tirely within the Friedmann coordinates i.e., without comparing the results between Friedmann and
static coordinates. (We have not seen such a derivation in the literature for a massless scalar field.)
We investigated several aspects of this question both in (1+1) dimension and in (1+3) dimensions
in this paper.

Two natural vacuum states one can introduce are the Bunch-Davies and co-moving vacuum states
in this spacetime. In (1+1) dimension, the Bunch-Davies vacuum state corresponds to choosing the
modes to be positive frequency with respect to the conformal time η in the asymptotic past while the
co-moving vacuum state corresponds to imposing the positive frequency condition at some arbitrary
instant of time t = t0. It turns out that both these states are identical in (1+1) dimension. To study
the time evolution of this state, we expand the mode function in terms of positive and negative
frequency modes defined with respect to the co-moving time. The mixing of positive and negative
frequency modes then reveals a thermal character with temperature H/2π. This, of course, does
not happen during the time evolution in the conformal time; the positive frequency mode remains a
positive frequency mode at all times.

The situation in (1+3) dimensions is quite different. To begin with, co-moving vacuum state and
the Bunch-Davies vacuum state do not coincide in (1+3) dimensions. Further, the mixing coefficient
between positive and negative frequency modes does not have a pure thermal character (and is
modified by an extra frequency dependent factor) in the case of Bunch-Davies vacuum. The result
for the case of co-moving vacuum is more complicated and involves an interference term containing
√

N(N + 1) factor which is reminiscent of the fluctuations in the occupation numbers of massless
thermal radiation.

The physical meaning of the mixing coefficients introduced to analyse the above phenomena
can be understood by studying the response of particle detectors in the de Sitter spacetime. We
computed the rate of excitation of a geodesic detector evolving in co-moving time. This rate exactly
matches with the particle content of the state as determined by the mixing coefficients in both
Bunch-Davies vacuum and co-moving vacuum.

We also compared the states defined using Friedmann coordinate system with those defined
using the static coordinate system. This requires evaluating the necessary Bogoliubov coefficient
between the mode functions defined in the static patch and Friedmann patch in the region of the
manifold where they coexist. We found that the Bunch-Davies vacuum appears to be a thermal
state for static observers bounded by the horizon, both in (1+1) and (1+3) dimensions. This is in
contrast with the results obtained within the Friedmann coordinate system where the results for
(1+3) dimensions differ from the results for (1+1). On the other hand, the co-moving vacuum in
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(1+3) dimension, defined in Friedmann coordinates, does not have a simple thermal interpretation
in the static coordinates.

In the last part of the paper, we studied the effects of small deviations from de Sitter evolution
and the resulting corrections to the mode functions. This formalism is sufficiently general to handle
any functional form of the deviation in the lowest order of perturbation theory. As an illustration
of this formalism, we studied the deviations in the power spectrum arising due to the existence of
pressure-free matter during the late time accelerated phase of the universe. This formalism might
have applications for studying the spectral deviations in the case of inflationary universe as well.

Acknowledgements

SS is supported by a fellowship from the Council of Scientific and Industrial Research (CSIR), India.
CG would like to thank IUCAA for hosting her in the VSP program. TP’s research is partially
supported by the J.C.Bose Research Grant of DST, India.

A Calculation of the Fourier transform in Eq. (33)

To evaluate

I =

∫ ∞

−∞
dt eiνt e

ikµ

H
e−Ht

,

we define u = e−Ht and b = kµ/H. This gives,

I =
1

H

∫ ∞

0
duu−1− iν

H eibu

=
1

H
exp

[

iν

H
ln

∣

∣

∣

∣

kµ

H

∣

∣

∣

∣

+
πν

2H
sign

(

kµ

H

)]

Γ

(

− iν
H

)

=
1

H

(

k

H

)iν/H

eπν/2HΓ

(

− iν
H

)

e
iν
H
lnµ. (106)

B A result in perturbation theory

Consider a generic second-order homogeneous linear differential equation

a(t)ẍ(t) + b(t)ẋ(t) + c(t)x(t) = 0

Let x0 be the solution of above equation for some functions a0(t), b0(t) and c0(t). We are now
interested in the corresponding solution of the equation when the parameter functions a, b and c are
perturbed about their original forms. Then, to the first order in perturbation, we have

a0δẍ+ ẍ0δa+ b0δẋ+ ẋ0δb+ c0δx+ x0δc = 0. (107)

Scaling the perturbation δx with the unperturbed solution as, δx ≡ x0s, gives for s(t) the equation

s̈+A(t)ṡ = B(t) (108)
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with

A(t) = 2
ẋ0
x0

+
b0
a0

B(t) = − ẍ0
x0

δa

a0
− ẋ0
x0

δb

a0
− δc

a0
(109)

which is a first order differential equation in ṡ and can be solved immediately.

C Solution of Eq. (97) for late-time accelerated phase

The basic ingredients that go in are

ψ0 =
1√
2k

exp

[

− ik
H

(

1− e−Ht
)

](

iH

k
+ e−Ht

)

,

which gives
ψ̇0

ψ0
=

− ik2e−2Ht

H
(

i+ k
H e

−Ht
)

and

µ(t) = 2k2e−2Htλ− 3λ̇
ψ̇0

ψ0
= −4

3
k2e−5Ht +

6ik2e−5Ht

(i+ k/H e−Ht)

so that under the conditions s(∞) = ṡ(∞) = 0, we can set C, the constant of integration in the
homogeneous part to be zero and obtain:

s(t) =

(

H2

6k

)

e−
2ik
H

∫ ∞

t
dt′

e−3Ht′

ψ2
0(t

′)

∫ ∞

t′
dt′′ e

2ik
H

e−Ht′′

e−2Ht′′
[

−14− 4
k2

H2
e−2Ht′′ + 10

ik

H
e−Ht′′

]

=

(

H

12

)
∫ ∞

t
dt′ e−

2ik
H

e−Ht′

e−3Ht′
[

−14γ

(

2,−2i
k

H
e−Ht′

)

+ γ

(

4,−2i
k

H
e−Ht′

)

−

5γ

(

3,−2i
k

H
e−Ht′

)]

Noting that,

−14γ (2, x) + γ (4, x)− 5γ (3, x) = −18 + ex(18− 18x+ 2x2 + x3)

we can evaluate s(t) in the late-time approximation to give

s(t) =
7k2

15H2
e−5Ht (110)

as the leading order correction term.

25



References

[1] L. Parker, Phys. Rev. Lett., 21, 562 (1968); D. Lohiya and N. Panchapakesan, J. Phys. A:
Math. Gen. 11 1963 (1978); E. Mottola, Phys. Rev. D31, 754(1985); B. Allen, Phys. Rev. D32,
3136 (1985); B. Allen and A. Folacci, Phys. Rev. D35, 3771 (1987); A. Frolov and L. Kof-
man, JCAP, 0305 009 (2003) [arXiv:0212327]; Y. Kim, C. Y. Oh and N. Park, Jour. of the
Korean Phys. Soc. 42, 573 (2003) [arXiv:0212326]; R. P. Woodard, UFIFT-QG-04-2 (2004)
[arXiv:gr-qc/0408002]; P. R. Anderson, C. Molina-Paris and E. Mottola, Phys. Rev. D80,
084005 (2009) [arXiv:0907.0823]; S. P. Miao, N. C. Tsamis and R. P. Woodard, J. Math. Phys.
51, 072503 (2010) [arXiv:1002.4037] S. P. Kim, Int. J. Mod. Phys. Conf. Ser. 10: 43-54 (2012)
[arXiv:1202.2227v2]; G. Acquaviva, R. Di Criscienzo, M. Tolotti, L. Vanzo and S. Zerbini, Int.
J. Theor. Phys. 51, 1555 (2012) [arXiv:1111.6389]; J. D. Bates, H. Cho, P. R. Anderson and B.
L. Hu (2013) [arXiv:1301.2501].

[2] For textbook discussion see, N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space

(Cambridge Univ. Press, Cambridge, 1982); V. F. Mukhanov and S. Winitzki, Introduction to

Quantum Effects in Gravity(Cambridge Univ. Press, Cambridge, 2007); L. Parker and D. Toms,
Quantum field theory in curved spacetime(Cambridge Univ. Press, Cambridge, 2009).

[3] T. Padmanabhan, Research in Astron. Astrophys., 12, 891(2012) [arXiv:1207.0505]; T. Pad-
manabhan and H. Padmanabhan (2013) [arXiv:1302.3226].

[4] J. D. Bekenstein, Nuovo Cimento Letters, 4, 737 (1972); S. W. Hawking, Nature, 248, 30
(1974); S. W. Hawking, Commun. Math. Phys., 43, 199 (1975)

[5] P. C. W. Davies, J. Phys. A 8, 609 (1975); W. G. Unruh, Phys. Rev. D14, 870 (1976).

[6] G. W. Gibbons and S .W .Hawking, Phys. Rev. D15, 2738-2751(1977).

[7] T. Padmanabhan, Mod.Phys.Letts. A 17, 923 (2002). [gr-qc/0202078] ; Physics Reports 380,
235-320 (2003) [hep-th/0212290].

[8] T. S. Bunch and P. C. W Davies, J. Phys. A, 11, 1315 (1978).

[9] T. Padmanabhan, Gravitation(Cambridge Univ. Press, Cambridge, 2010);

[10] T. D. Lee, Nucl. Phys. B, 264, 437 (1986).

[11] K. Srinivasan, L. Sriramkumar and T. Padmanabhan, Phys. Rev. D56, 6692 (1997); S. Singh
and T. Padmanabhan, Phys. Rev. D85, 025011(2012).

[12] B. Garbrecht and T. Prokopec, Class. Quant. Grav., 21, 4993 (2004) [arXiv:gr-qc/0404058].

26

http://arxiv.org/abs/gr-qc/0408002
http://arxiv.org/abs/0907.0823
http://arxiv.org/abs/1002.4037
http://arxiv.org/abs/1202.2227
http://arxiv.org/abs/1111.6389
http://arxiv.org/abs/1301.2501
http://arxiv.org/abs/1207.0505
http://arxiv.org/abs/1302.3226
http://arxiv.org/abs/gr-qc/0202078
http://arxiv.org/abs/hep-th/0212290
http://arxiv.org/abs/gr-qc/0404058

	1 Introduction
	2 Thermality in static coordinates
	3 Massless scalar field modes in de Sitter spacetime
	3.1 Field modes in dS2 spacetime
	3.2 Field modes in dS4 spacetime

	4 Evolution and mixing coefficients at later times
	4.1 Mixing coefficients in dS2
	4.2 Mixing coefficients in dS4

	5 Detector response in de Sitter spacetime
	6 Relation to the results in static coordinate system
	6.1 Comparison in dS2
	6.2 Comparison in dS4

	7 Quantum fields in quasi-de Sitter spacetime
	7.1 The perturbative framework
	7.2 An example: late-time accelerated phase of the universe

	8 Conclusions
	A Calculation of the Fourier transform in Eq. (33)
	B A result in perturbation theory
	C Solution of Eq. (97) for late-time accelerated phase

