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Abstract

In this paper we develop approximations to the characteristic roots of delay differential
equations using the spectral tau and spectral least squares approach. We study the influence
of different choices of basis functions in the spectral solution on the numerical convergence
of the characteristic roots. We found that the spectral tau method performed better than
the spectral least squares method. Legendre and Chebyshev bases provide much better
convergence properties than the mixed Fourier basis.

1 Introduction

Delays are inherent in many natural and physical processes, for example our ability to locate the
direction of the sound source comes from the capacity of our ears to detect the small time lag
(delay) between the sound perceived by our left and right ear [1]. In engineering, DDEs are used
as mathematical models in analyzing manufacturing processes [2], real-time sub-structuring [3],
and in control theory [4].

Stability analysis of DDEs is important, particularly to find parameters for which the physical
process is stable or to estimate the largest delay that a system can tolerate to remain stable. In
machine tool vibrations, for example, the tool dynamics are governed by DDEs [5] and with the
help of stability analysis we can find machining parameters for decreased surface roughness.
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DDE:s are infinite dimensional systems, inasmuch as their characteristic equations have infinitely
many roots. The Lambert W function [6, 7, 8], Laplace transforms [9], and D-subdivision meth-
ods [10] can be used to study stability of DDEs with single delay. Asymptotics can be used to cal-
culate roots of scalar DDEs with few delays [11]. Lyapunov functions [12, 13, 14] can also be used
to determine the stability of DDEs. General methods for obtaining the stability of DDEs with
multiple delays first convert the DDE into a partial differential equation (PDE) [15, 16, 17, 18]
with a linear boundary condition. Then, ordinary differential equations (ODEs) based approxi-
mation for the PDE can be developed by using spatial discretization methods, such as:

e Semi-discretization [19]

Spectral least squares [20]

Spectral tau methods [15, 21]

Pseudo-spectral collocation [22, 23, 24]

Time finite elements [25, 26]

Continuous time approximation [27, 28|

Finite difference methods [17, 29|

As we represent a DDE using a PDE with a linear boundary condition, the way in which we
incorporate the boundary condition while developing the ODE approximations will influence the
spectrum (roots of the characteris equation of the DDE). For example the boundary condition
can be incorporated using spectral-tau method [15, 21], or by spectral-least squares [20] method.
In this paper we compare the spectral-tau and spectral-least squares approaches for obtaining
the characteristic roots of DDEs. Spectral methods are advantageous due to their exponential
convergence rates [30] to the actual solution. We also study the influence of the choice of spectral
basis, i.e, shifted Chebyshev, shifted Legendre, and mixed Fourier basis on the convergence of
the characteristic roots for some example problems.

2 Recasting and solving a delay equation as an advection
equation

We consider the scalar delay equation with m delays

m

B(t) + ax(t) + Y bgr(t —74) =0, 7, > 0. (1)
qg=1
The initial function is specified as
z(t) =6(t), -7 <t <0, (2)



where 7 = max(7my, T, ..., T;y). By introducing the so-called shift of time y(s,t) = x(t + s),
s € [—1,0), the initial value problem (Egs. (1)-(2)) can be recast into the following initial-
boundary value problem for the advection equation [16, 17]

dy(s,t)  Oy(s,t)

T T € [-1,0), (3)
8y(a? t> - = _ay O t Z bqy Tq’ ) (4)
y(s,0) =40(s), s € [—T, 0]. (5)

We discuss two methods, the spectral-tau method and spectral-least squares method for the
approximate solution of Egs. (3-5).

2.1 Spectral-tau method

In the spectral-tau method we assume a solution to the PDE (Eq. (3)) of the following form:

= > ailshm(e), ©)

where ¢;(s) are the basis functions and 7;(t) are the time dependent coordinates. For practical
reasons the sum is terminated at N terms, i.e.

y(37t> = ¢(5>Tn(t)7 (7>

where @(s) = [91(s), ¢2(8), ..., on(s)]T and n(t) :,[m(t)’ na(t), ...,nn(t)]T. Substituting the
series solution Eq. (7) in Eq. (3) we get (the symbol = denotes derivative with respect to s)

o(s)"n(t) = ¢ (s)"m(?). (8)
Pre-multipling Eq. (8) with ¢(s) and integrating over the domain we get:

0

/ &(5)(s) dsn(t) / () () dsm(t). (9)
In matrix form
As(t) = Bn(t). (10)
with .
A= [ as)ots)ds (11)
B= [ 6(s)'(s)"ds. (12)



Substituting Eq. (7) in Eq. (4) we get the scalar equation
$(0)7 (1) = [—acb Zb ¢(=7) ] n(t). (13)

Note that (10, 13) provide N + 1 independent equations. To arrive at a determinate system we
truncate the system (10) and augment it with (13) to form

MTau";’(t) = KTaun(t)a (14)
where i
MTau = |: ¢(O)T :| ) (15)

B
{ _a¢(O)T - Z;n:1 bq¢(_7q)T } 7
and matrices A, B are obtained by deletmg the last row of matrix A and B, respectively. The
initial conditions for Eq. (14) is p(0) = M! f ¢(5)0(s)ds and the solutlon of the DDE can

be obtained as z(t) = y(0,t) = qb(O)Tn(t). The ﬁmte dlmensmnal system (14) represents an
approximation for Eq. (1).

KTau - (16)

2.2 Spectral least-squares method
The error in the PDE (3) due to the substitution of the truncated approximate solution y(s,t) =

S, o) s |
e(s,t) = @(s)"n(t) — ¢ (s) n(t). (17)
A good approximation is characterized by a ”"small” error e(s,t) subject to the boundary con-

straint Eq. (13). To minimize the error, we aim to solve the following constrained optimization
problem:

win / e(s.t°ds = winz / [b(s) (1)~ &' (5)"m(1)] " ds (18)

5.t (0)" n(t) = [—a¢(0)T -y bq¢(—Tq)T] n(t), (19)

q=1

i.e. we are interested to find 7(¢) such that the integral of the square of the error function over
the domain is minimized. We introduce a Lagrange multiplier A and construct the following
Lagrangian

—A [cb(O)T?'?(t) +ag(0) n(t) + ) chb(—Tq)T"?(t)] : (20)



We seek to minimize L(n(t), A). The first order optimality conditions for the minimization of L
are [31]

% =0, (21)
g—f\ = 0. (22)
Substituting Eq. (20) in Eq. (21) and Eq. (22) we get:
An(t) = Bn(t) + ¢(0)A, (23)
®(0)"n(t) = —ag(0)"n(t) - i byd(~74)" n(t), (24)

where A and B are the basis-dependent matrices defined in Eq. (11) and Eq. (12) respectively.
Solving Eq. (23) and Eq. (24) for the Lagrange multiplier yields

CewrAtB 0 (e
A=Az ~ ST ( H0" + D bt ) . (@)
Substituting the value of A in Eq. (23) and simplifying we get:
An(t) = Kpsn(t), (26)
where
1 T A -1 TN T
Kis =B - o 07ra-160) <¢(0)¢(0) A" B+ag(0)¢(0) +;bq¢(0)¢(—7q) ) - (27)

Equation (26) represents the ODE approximation of the DDE Eq. (1).

3 Computing Spectra

Substituting z(t) = ce* in Eq. (1) we obtain the characteristic equation (C () is the characteristic
function)

CA)=A+a+) be =0 (28)
qg=1
A complex root A of the characteristic equation (eigenvalue of Eq. (1)) is written as
A=a+if. (29)
Using Euler’s identity in (28) and separating the real and imaginary parts yields
a+a+ Z bye ™ cos(f7,) =0, (30)
q=1
B8 — Z bye” " sin(f7,) = 0. (31)
g=1



Equations (30, 31) are transcendental (exponential quasipolynomials) and have infinitely many
roots. We define the spectrum of (1) as the set of roots of the characteristic equation, i.e.

The approximate spectrum obtained by calculating the eigenvalues of the N x N system Eq. (14)
is defined as

[ {)\ | det (me _ KTW) — 0, Red; > Rey > } , (33)
and for Eq. (26) as

S’LS = {/A\l | det (AS\Z — KLS) = O, Rej\l Z Rej\g Z } . (34)
The error in the k-th eigenvalue is defined as

ao= e ()] (35)

The accuracy of the rightmost R roots of the approximate spectrum S is characterized by
the “tolerance”

T (R) = max g. (36)

1<k<R

We expect the choice of basis functions ¢(s) in Eq. (7) to play an important role in the con-
vergence of the eigenvalues. To test this hypothesis we consider three different basis functions:
mixed Fourier basis [21]

o(s) =1, s, sin(gs),sin(st)...]T, (37)

-
shifted Legendre polynomials [30)]

(20 —3) 2 () gi1(s) — (i —2) i2 (5)

2
61(s) = La(s) = 1+ =, 6,(s) = 1 =3 (38)
and shifted Chebyshev polynomials [30]
2
d1(s)=1,02(s) =1+ ?S, 0i () =202 (8) Gi—1 (8) — i (s),i =3, ... (39)

4 Results

Here we compare the spectral tau and spectral least squares methods introduced in Sections
2.1 and 2.2 on equations containg one, two, and (for a good measure) thirty delays. We use
mixed Fourier (Eq. 37), Legendre (Eq. 38), and Chebyshev (Eq. 39) basis functions to study
convergence properties of the two methods.

We first consider the equation with one time delay



It is an important case, since the eigenvalues of its characteristic equation

A+ bie ™ = (41)
can be obtained in closed form in terms of Lambert W function [6] as
1
A= —Wo(=bimy), r=—00,...,—1,0,1,...00. (42)
!

Here W, corresponds to k™" branch of the Lambert W function.

Figure 1 shows the number of converged roots for tolerance T'(R) = 107 for increasing N.
As expected, increasing the number of terms in the series solution will yield more and more
eigenvalues. It is however surprising to see the poor performance of the mixed Fourier basis for
both the tau and the least squares method. Figures 4(a)-(c) show spectra of (41) obtained through
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Figure 1: Number of converged roots for tolerance T (R) = 10~* for increasing N (a) spectral
least squares method (b) spectral tau method. The parameters are 77 = 1 and b; = 1.

Eq. (42) for the case by = 7y = 1 (other parameter values yield similar results). Superimposed
on the graph are the roots obtained by the Legendre tau method for N = 25 (Fig. 4(a)), N = 50
(Fig. 4(b)), and N = 100 (Fig. 4(c)). We again see that for increasing N more and more
eigenvalues of the approximate spectrum S (Eq. 33) converge to the exact eigenvalues.

After having established the positive influence of increasing N on convergence, we used N = 25
to obtain the rest of the results.

Figure 3 shows the average error in each eigenvalue g for 1000 simulations for spectral tau
method and for spectral least squares method. The delay 7, and b; were randomly selected from
uniform distributions between 7, € [0.1, 1] and by € [—10, 10] respectively. We see that the
Legendre tau method has the best performance.

We also studied the total number of roots R that converge to the required tolerance of 104, To
cover a large number of test cases, 10000 simulations were performed with randomly selected pa-
rameters from uniform distributions for a two-delay equation (a € [—10, 10], b; € [—10, 30], by €

7



500 O Exact roots
400 - Legendre tau (N=100)

O Exact roots
400 - Legendre tau (N=25)

5001 o Exact roots
400 - Legendre tau (N=50)

ImQ\)
o
Im(\)
o
Im(\)
o

-15 -30 =25 -20 -15 -10 -30 -25 -20 -15 -10
Re(\) Re(\) Re(\)

(a) (b) ()

Figure 2: Comparison of exact roots obtained with Lambert W function with approximate roots
obtained from Legendre tau method for (a) N = 25 (b) N = 50 and (¢) N = 100. The parameters
are ; = 1 and b; = 1.
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Figure 3: Average error in the roots for spectral least squares and spectral tau methods with
N = 25. The results are generated using 1000 Monte Carlo simulations with b; and 7 selected
from a uniform distribution on [0.1, 1] and [—10, 10], respectively.



[—10, 50], 73 € [0.1, 5.1], and 75 € [0.1, 10.1]) and the equation with thirty delays (a € [—10, 10],
7 € 0.1, 10.1], by € [—10, 50], &k = 1,2,..,30). The results are summarized in Figures 4(a) and

(b).

\ R o1 ]2]3]4]5]6][7][8]9]10]11]
Fourier least squares 92| 8 |0O|0O|J0O]O|O]O] O 0 0 0
Legendre least squares 0/010{0J0]0|1]|7|69|10|13| 0
Chebyshev least squares | O | 0 |0 | O[O |0 |1 |7 |70 11]|12] O
Fourier tau 1815|141 ]1,0]0[0| 0 0 0 0
Legendre tau 010 [0]0]0]0|0|3 27|15 |54 1
Chebyshev tau 000|100 ]0]0]|3 27|15 |53 |1

(a)

\ R | 0 [1]2]3]4]5]6 [7]8]9]10]11]
Fourier least squares 100(0]0(0]O0|0O] 0|0 O ]0|O0 0
Legendre least squares 0O |0]0]0]0|0]|37]|8|48]2| 4 ] 0
Chebyshev least square | 0 |0 [ 0|0 |0|0|37|7|48|2| 4 | 0
Fourier tau 100(0{0]J0]j]0O0O|0] 0]0]01]0] 0 0
Legendre tau 0O |0|0|0O|1]0|39|8|47|2| 3| O
Chebyshev tau 0O |10|0|0O|0]1]39|8|46|2| 3 | O

Figure 4: Percentage of number of converged roots for different methods and for different basis
functions. The results are obtained by performing 10000 Monte Carlo simulations with param-
eters taken from uniform distributions (a) Two-delay equation (a € [—10, 10], b; € [—10, 30],
by € [—10, 50], 7, € [0.1, 5.1], and 7 € [0.1, 10.1]) (b) Thirty-delay equation (a € [—10, 10],
7 € [0.1, 10.1], by, € [~10, 50], k = 1,2, .., 30).

It is clear that the choice of the mixed Fourier basis has an adverse effect on the number of
eigenvalues found. We also note that the expected number of “correct” eigenvalues in the thirty-
delay case is smaller than that of the two-delay case, but this might be due to the different range
of parameters selected for the simulations.

5 Discussion and Conclusions

It is worth investigating why the mixed Fourier basis performs badly in terms of convergence
compared to shifted Legendre and shifted Chebyshev basis. In the mixed Fourier basis, we have
d(s) =[1, s, sin(ws/7),...,sin((N — 2)7s/7)]" and we can see that only the first two terms have
non-zero values at s = —7 and for s = 0 only one term remains. The information about the



rightmost delay appears in the spectral matrices Mpg,, K7 and Kpg through a term like
¢(—7)Tn(t), so the coupling terms for the largest delay are not strong (as most of the terms in
@(s)" are zeros). This is not the case with the Legendre and Chebysev bases, where ¢(s)7 is
fully populated. We thus conjecture that the sparse nature of ¢(s)? at s =0 and s = —7 is a
(if not the) reason for the bad convergence behavior for the mixed Fourier basis.

We have studied the spectral-tau method and spectral-least squares method for obtaining char-
acteristic roots of a linear DDE. We found that the spectral tau method performed better than
the spectral least squares method. Also the Legendre or Chebyshev basis performed much better
in terms of error convergence compared to mixed Fourier basis. The spectral-tau method is easy
to code and understand, also it performs better than the spectral-least squares method, so we
recommend spectral-tau method for analyzing the stability of linear DDEs.
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