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A region growing method for detecting interfaces in

X-ray view cell images
Phanindra Jampana, Sirish Shah and John Shaw

Abstract—X-ray transmission videography is used to observe
the thermodynamic phase behavior of heavy oil mixtures of
industrial interest that are opaque to visible light. The knowledge
of the volumes of various phases provide important information
for enhancing oil refining technology. Phase boundaries are
usually marked by visual examination based upon which the vol-
umes and densities of the phases are computed. Typically phase
behavior is computed at various temperatures and pressures
to generate the phase diagram. This paper presents an image
processing algorithm which automates the task of detecting phase
boundaries in the generated images. The interface and region
models are first obtained from the image generation process.
Using these models a new method for interface detection based
on the Mumford-Shah model is presented. Results are presented
to show that the algorithm detects the phase boundaries to sub-
pixel accuracy.

Index Terms—X-ray view-cell, image processing, automatic
boundary detection

I. INTRODUCTION

Information about the phase behavior of heavy oil mixtures

such as Bitumen + Water and Athabasca Vacuum Bottoms

(ABVB) + pentane, decane and hydrogen at various temper-

atures and pressures can be used to optimize existing tech-

nologies and develop novel methods for Bitumen production

and refining. Due to this reason, there is significant interest

in obtaining the phase behavior data in the form of phase

diagrams. Standard instruments for measuring phase behavior

are based on view cells employing visible or infrared light. It

has been observed that these techniques fail to identify all bulk

phases present due to the opacity of the mixtures e.g. when

asphaltene mass fractions exceed 5 wt%. A recent method to

overcome the limitations of the traditional instruments is by

the use of X-rays in place of infrared or visible light (Abedi

et al. (1999)). Prior to this technology the phase behavior of

important mixtures could not be computed.

The X-ray view cell apparatus is already being successfully

employed to obtain phase behavior data. For example, the

effect of phase behavior of ABVB + Decane + Hydrogen on

coke deposition of catalyst used for hydro-treating is studied

in (Zhang & Shaw (2006)). The phase behavior of Bitumen

+ Water mixtures has recently been reported by (Mohammad
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et al. (2013)). In both the cases, the images resulting from the

X-ray view cell have been analyzed manually to obtain the

phase data.

The X-ray view cell consists of a 0.15m long, 0.17m outside

diameter/0.05 inside diameter Beryllium tube that is bolted

to stainless steel plates at the top and bottom (Beryllium is

virtually transparent to X-rays due to its low density and

absorbency). The top plate is attached to a stainless steel

bellows for varying the internal volume. A Beryllium insert

which permits detection of small volumes of dense liquid

phases is attached to the bottom plate. Above this insert sits

a magnetic stirrer, which is used to mix and homogenize the

sample. The cell is surrounded by a programmable, refractory-

lined heating-jacket. The sample is contained inside the hollow

portion of the Beryllium tube and transmitted X-ray images

of the whole setup are obtained (Zou & Shaw (2006); Abedi

et al. (1999)). The complete schematic is shown in Figure 1

(Abedi (1998)) (In this Figure, ADC refers to the Analog to

Digital Converter).

Fig 2 shows the individual components of the view cell as

described above. The slotted plate in Fig 2b is used to restrict

the stirrer from falling into the insert. The top plate is clasped

to the upper part of the view cell and the insert along with the

slotted plate and the stirrer is fitted into the hollow part of the

view cell at the bottom. The stirrer is then operated using an

external magnetic field. X-ray images of the whole setup are

obtained.

The intensity of X-ray decreases due to photoelectric

absorption in the medium. Absorption increases with the

thickness, density and the mass absorption coefficient of the

medium. This process is mathematically explained by Beer’s

Law :- For monochromatic X-ray’s of wavelength λ,

I(λ) = I0(λ) exp{−ρ∆xµ(λ)} (1)

where I(λ), I0(λ) are the intensities of the transmitted and

incident X-ray beam and ∆x, ρ, µ(λ) are the path length,

density of the medium and the mass absorption coefficient

respectively. For poly-chromatic X-rays,
∑

i

I(λi) =
∑

i

I0(λi) exp{−ρ∆x
∑

k

wkµk,i} (2)

where λi’s are the different wavelengths and
∑

k wkµk,i is

the weighted average of mass absorption coefficients of the

constituent elements of the substance at wavelength λi.

The change in the intensity due to the image intensifier

and the imaging lens (the detector) (Fig 1) is independent of

the sample present in the view cell. Hence, all the observed

image intensities are scaled by the same amount. This scaling
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Fig. 1: The complete schematic of the X-ray view cell apparatus (Reproduced from Abedi (1998))

in intensity is not an important factor in our analysis as we

use the physics only to estimate the approximate shape of the

intensity profile in the images. The shape is largely unaffected

by a scaling in the pixel intensities.

Fig 3 shows a typical X-ray image from this apparatus along

with markings of the relevant regions. The base of the cell is

at the left. The visual appearance of a phase is dependent upon

its density and the mass absorbency (2). As the intensity of

transmitted X-ray’s decreases with an increase in the density,

the corresponding image segment appears darker. Note that

this is in contrast to traditional medical radiography.

For example, the vapor phase is the least dense and appears

light. There are two liquid phases shown in this image and

both of them have higher density than the vapor phase and

hence look darker. The predominant dark area in the image

corresponds to the non-hollow portion of the heating mantle

which is used to maintain temperature of the cell. Note that the

size and shape of the beryllium cylinder as seen in the image

may vary. However, the orientation is always horizontal in the

present study.

From these images, the volumes of all the phases can

be obtained by computing the distance between the various

interfaces and the base plate as the cross-sectional area of the

hollow part of the Beryllium cell at any given elevation is

known a priori. An automatic image processing algorithm is

helpful in two ways :

1) Typically X-ray images are obtained very frequently

and human marking of the interfaces is time consuming

when a large volume of images are to be analyzed

to investigate phase properties of fluids at different

conditions.

2) Hand marking of the interfaces might not be accurate.

In this paper, we present an image processing method that

can be used for automatic detection of all the interfaces

present. As requirements for our algorithm we have the

following:

1) Boundary detection must be precise. Sub-pixel accuracy

is desired as small errors in the interface detection

impact estimation of the phase equilibrium behavior.

2) The computational time of the algorithm should be very

small to ensure large collections of images are processed

quickly.

The paper is organized as follows. Section II describes the

geometry of the set up, interface and region model. Section III

discusses general edge detection and segmentation methods

and gives results for two optimal edge detection algorithms.

Section IV gives the novel region growing method used in in-

terface detection. Section V provides the rule based procedure

to find the interfaces and boundaries. In Section VI, results and

comparison with the optimal filters and the proposed method

are given. Section VII gives the concluding remarks.

II. GEOMETRY AND REGION, INTERFACE MODELS

The image model given by Equation (2) provides informa-

tion regarding the “shape” of the regions as observed in each

scan line when the geometry is taken into consideration. Fig-

ure 4a gives the geometry of the set-up. The distance between

the X-ray source and the detector is a := d + e + f = 1.5m
where f = 0.5m. The minimum path length e = 0.12m occurs

at about pixel number 300 (in the x direction) for the image
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(a) Top plate with bellows (b) Beryllium insert, filter
and the magnetic stirrer

(c) Hollow Beryllium rod
from top view

Fig. 2: Components of the X-ray view cell

(a) Example X ray view cell image (b) Example X ray view cell image
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Fig. 3: X-ray view cell image and markings

previously in Figure 3b. In other words, pixel number 300 is

closest to the X-ray source in these images. For other pixels,

the path length is longer. For a location on the detector at

distance h from closest point to the source, the path length

is p(h) = e
√

1 + h2

a2 by simple geometry. Therefore, the

intensity at this location is given by I(h) = I0 exp (−ρµp(h)).
The image dimensions are 512 × 512 and hence approxi-

mately half of the cylinder is above the X-ray source and the

other half below. Using the fact that a = 1.5m and the total

length of the Beryllium cylinder to be 0.15m the maximum

variation in h is approximately 0.12m from the point on the

detector corresponding to the minimum path length.

For many organic compounds used in the X-ray view cell

µ ≈ 0.23cm2/g and ρ ≈ 0.85g/cm3. The variation in

exp

(

−0.023
√

1 + h2

1.52

)

with h is depicted in Figure 4b.

Let the intensity change by the detector be described by

Id(λ) = I(λ)κ

where κ is a characteristic of the detector therefore indepen-

dent of the physical properties of the substance being analyzed

for phase behavior. I(λ) is the incident intensity of the X-rays

on the detector.

Then, the observed intensity is given by

Id(λ) = I0(λ)κ exp{−ρ∆xµ(λ)}

Therefore, the observed intensity is only scaled by a factor. As

values of I0, κ change with experimental conditions we do not

try to quantity deviation from linearity observed in Figure 4b.

However, we note that, if we discount the factor I0κ, the curve

is approximately linear for small ranges of h. This is especially

true for larger values of h as can be seen from Figure 4b.

Figure 5 shows a row (horizontal line) from the real image

shown previously in Figure 3b. It can be observed that

around pixel 300 the curve is more non-linear (note that this

corresponds to h ≈ 0) than for larger values of h. From this

we can assume that the factor I0κ does not significantly alter

the shape of the curve shown previously in Figure 4b. Note

also the change in “slope” of the real data in Figure 5 about

the pixel 300 as expected.

The vapour phase has h ≈ 0.02m and the variation in h is

approximately 0.01m for this phase. For this small variation,

the change in intensity should be approximately linear as

mentioned before. This can indeed be verified in Figure 4b

As phases occupy only a small percentage of the overall

image width, the assumption that variation is linear is valid.

Importantly, these small variations from linearity do not seem

to the affect the proposed method.

It can be further noticed from Figure 5 that the interfaces

are approximately linear in nature. At interfaces, however, the

variation is not just due to path length differences but also due

to density and mass absorption co-efficient differences.

Based on the above observations, the region and interface

models are assumed to be linear : the gray levels vary

linearly at interfaces as well as within constant density regions

(phases). Therefore, a region growing method configured to

find linear patches can be used to find the interfaces and the

phases simultaneously.

III. GENERAL EDGE DETECTION AND SEGMENTATION

METHODS

In this section, a few methods for edge detection and

segmentation relevant for the purpose of interface detection

in X-ray view cells are reviewed. The interface and region

models as obtained in the previous section are not enforced in

these methods. We show results from the Canny method and

one of its generalizations.
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Fig. 4: Geometry producing approximate linear variation in pixel intensities for small ranges of h
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Fig. 5: A row inside the object of interest

A. Edge Detection

Canny edge detection uses first order derivatives but re-

moves the weak edges by a process called non-maximum

suppression, wherein responses which are not local max-

ima/minima are suppressed. After this, hysteresis thresholding

is performed to trace the edges (Canny (1986)). In this method,

the noise in the image is assumed to Gaussian. In X-ray

images, the observed noise is Poisson. However, we present

this method as it is considered to be a state of the art edge

detection technique. The noise observed in the X-ray images

in the current study is analyzed in Appendix A.

In the one dimensional setting of the current problem, it

was found that hysteresis thresholding was not required as

non-maximum suppression gives a gradient where there are no

connected edges. Therefore, we use only one global threshold

on the suppressed gradient. In practice it was observed that

non-maximum suppression is very effective in removing spu-

rious maxima/minima.

Figure 6a and 6b show the gradient and its non-maximum

suppressed version for a row from the image shown in Fig-

ure 3a. Figure 6b shows the detected edges. Edge localization

depends on the scale σ used in the Gaussian smoothing. To

better illustrate this, variation of the detected location of the

right interface with σ is shown in Figure 6c. It can be seen

that for scales ranging from 6.0 to 10.0, the interface location

varies by four pixels. For σ < 6 many spurious interfaces were

detected so this case is not reported here.

For better edge localization, zero crossings of the second

derivative can be used. Figure 7 shows the second derivative

of the row focusing on the pixels near the right interface.

The accurate location obtained by a visual reading for the

location of the right interface is around pixel 483. It can be

seen that the second derivative values are very small in the

vicinity of the edge and no zero-crossing exists. This may be

attributed to the noise present in the image. For accuracy, first

and second derivative computation was performed using the

filter taps given in (Farid & Simoncelli (2004)).

Canny’s method is optimal for detecting step edges in

images. Similar optimal filters for detecting edges resembling

ramps (which are more relevant in the present study) are

described in (Petrou & Kittler (1991)). As with the Canny

method, it is assumed that image contains Gaussian noise.

The edge model considered is

c(x) =

{

1− e−sx/2 if x ≥ 0

esx/2 if x ≤ 0

where s controls the shape of the edge. The authors list

the optimal filter coefficients for the convolution filter (edge
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Fig. 7: Interface detection by Zero-crossings with σ = 6.0

detector). The filter used in the present analysis is

y(x) = (exp(Ax)(K1sin(Ax) +K2cos(Ax)))+

+ (exp(−Az)(K3sin(Ax) +K4cos(Ax)))+

+K5 + (K6exp(sx)) ∀x ≤ 0

(3)

A = 1.42

K1 = 0.028

K2 = 1.737

K3 = −0.113

K4 = −0.055

K5 = −1.33

K6 = −0.35

For x > 0, y(x) = −y(−x) is used. Figure 8a shows the

convolution of the row with such a filter. This method was

observed to be robust for limited variation in s and w (where

w is the filter width). However, the base of the view cell and

the edge below the liquid-liquid interface also have significant

gradient values when compared to the actual interface. From

Figure 8b it can be seen that (near pixel 200) a threshold needs

to be fine tuned to extract the liquid-liquid interface on the left

side.

A heuristic method for detecting the left interface can still be

obtained in spite of the above mentioned issue. For example, as

there is only a single interface present in the Beryllium insert,

the edge with the largest possible x-value can be considered to

be an interface. However, an important problem with methods

based on convolution is that detection of interfaces near the

image boundary is an error-prone process. This problem arises

due to lack of sufficient data for gradient estimation. The

problem is amplified if the filter width is large. More results on

the two methods are showed in Section VI where the problem

of detection of interfaces near the boundary is also discussed.

In the paper (Elder & Zucker (1998)) the variance of

the noise is taken into account for computing derivatives.

The authors derive conditions for the existence of a nonzero

gradient at a point in the image by computing the probability

that the gradient is not the response of noise alone. This criteria

is expressed in terms of the second moment of the sensor noise

and the scale of the derivative of Gaussian operator used to

detect the edges. Similar formulae are also derived for the

second derivative operators.

A unique minimum reliable scale is computed at every pixel

location by using the above criterion. From this, derivative

estimates at these scales are obtained and zero crossings

detected. These locations give the edges. Note that this method

is easily applicable only when the sensor noise is constant

throughout the image and not a function pixel location or

intensity.

In the current set of images, the noise observed in the

image is not constant and varies with the location of the pixel.

Therefore, the method does not directly apply to the present

situation.

B. Segmentation

The interfaces can also be detected as the boundaries of

the regions resulting from a segmentation algorithm. The

Mumford-Shah model is one of the standard models for image

segmentation in the energy minimization framework. The

piece-wise constant restriction has been thoroughly analyzed

in the original paper (Mumford & Shah (1989)).
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(a) Result of optimal edge detector for ramp edges
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(b) Non-maximum suppression of the result

Fig. 8: Detection of Ramp Edges, with s = 1, w = 2 (w is filter width)

Much attention has been given to curve evolution methods

for finding local minima of the energy functional for images

containing two regions (Chan & Vese (2001)), which rely on

gradient descent for optimization. Typically, curve evolution

methods depend on the initialization of the contour and are rel-

atively slower when compared to the combinatorial approaches

discussed next.

Recently, combinatorial optimization techniques have been

used (El-Zehiry et al. (2011); Leo & Chirstopher (2009)) for

obtaining solutions to the piece-wise constant and the piece-

wise smooth versions. Both of these approaches try to obtain

the global minimum instead of the local minima typically

attained in curve evolution methods.

Both the papers cited above describe binary image seg-

mentation (i.e. segmenting the image into foreground and

background regions). In the second paper, the combinatorial

analogue of the Mumford-Shah model is developed first. The

optimization is then split into two parts: solving for f, g
(where f is the foreground and g is the background) given

the boundary and then solving for the boundary given f, g.

This process is repeated until convergence. The optimal f, g
given the boundary are obtained in a straight-forward manner.

For computing, the optimal boundary given f, g, the method

requires the estimation of f, g outside the foreground and

background regions respectively.

The literature available for multi-region segmentation in

two-dimensions using curve evolution or combinatorial meth-

ods is small compared to the two region case. 2D global

segmentation techniques such as these might not provide sub-

pixel accuracy as desired in the present method. Omission

of the correct region and interface (edge) models into these

general edge detection or segmentation methods might affect

their performance. However, these methods are useful when

no such models are available apriori.

In the next section, we present an image segmentation

method based on the Mumford-Shah model configured to

detect linear patches. The advantage of this method over the

gradient based methods is two fold:

1) Robustness of detection over a large range of input

parameters

2) Sub-pixel accuracy for interface detection

3) Interfaces near the boundary of the image can also be

accurately retrieved

IV. REGION GROWING METHOD FOR INTERFACE

DETECTION

A. Mumford Shah model

One of the canonical approaches for image segmentation

is the minimization of the Mumford Shah energy func-

tional (Mumford & Shah (1989)). The minima of the func-

tional is the desired segmentation. The Mumford Shah func-

tional is defined as :

E(f,K) =

∫

Ω

(f − g)2dµ+

∫

Ω\K

|∇f |dµ+ λσ(K) (4)

where the first term prohibits the solution f from being very

different from g, the second term ensures that in each region

f is smooth and the last term measures the total length of

the boundary between the regions. Here µ and σ are the two

dimensional Lebesgue and Hausdorff measures respectively.

In the case when f is assumed to be piece-wise constant,

it is known that there exists a minimizer to (4) (Mumford &

Shah (1989); Morel & Solimini (1995)). Local minima can

be found using a region merging algorithm as described by

(Koepfler et al. (1994)). Note that in this case, the second

term vanishes and the f which minimizes the first term is the

mean of g in each of the regions.

The piece-wise constant assumption is not appropriate here

as the regions do not have a constant gray level. As noted

before the gray levels vary linearly inside each region. We

therefore modify the Mumford Shah energy to incorporate a

linear interface and region model. A one dimensional modifi-

cation of the Mumford Shah model is described next.

B. Modified Mumford Shah Model

The new energy functional is defined as:-

E(f,K) =

∫

Ω

(f − g)2dx+ λ|K| (5)
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where f is constrained to be a combination of linear regions

(i.e. f is piece-wise linear), |K| is the cardinality of the set

of all end-points of the linear regions. As before, λ gives

the penalty for maintaining more regions and g is the source

line. Note that this model is a generalization of the piece-wise

constant model. Therefore, regions of constant pixel intensities

can also be detected by this method.

A region merging algorithm can be used to obtain a local

minima for (5). More specifically, all points on the scan line

are initially assumed to be individual regions. Each region

is represented by two points: (i, ai), (j, aj), the first point is

the initial point of the straight line describing the region and

second point is the end point of this line. In the beginning,

both these points coincide for all the regions. Here i represents

a location in the row whereas ai represents the reconstructed

intensity at that location.

Adjacent regions are selected for merging if the merged

region (represented by a straight line connecting the end points

of the two regions) has smaller energy than the combined

energy of the two regions. More precisely, if (i1, ai1), (i2, ai2)
and (j1, aj1), (j2, aj2) are the two regions, the merged region

is represented by (i1, ai1), (j2, aj2) assuming without loss of

generality that i1 < j2. If the original segmentation is f1 and

f2 is the segmentation after merging, the energy difference is

∆E =
∫

Ω
(f2−g)2dx−

∫

Ω
(f1−g)2dx−λ. If ∆E < 0 then the

regions are merged. The process is repeated until no merging

is possible.

If a region R is described by y = mx+C where x ∈ [a, b],
the error of the segmentation

∫

Ω∩R(f − g)2 in this region is

computed by projecting each of the pixels of the row in the

range [a, b] on to the straight line and summing up all these

errors. For obtaining the total error
∫

Ω
(f − g)2, all the errors

for individual regions are added.

At any given stage there might be many adjacent regions

whose merging decreases the overall energy. In this case, the

regions whose merging gives the smallest energy decrease are

merged. We summarize the steps below (let g be the original

row).

1) Initialization: Each pixel in the scan line is represented

by (i, ai), (i, ai) where i is the location of the pixel and

ai is the pixel intensity at that location. Tag each region

with an error term equal to zero. (Denote by e(i) the

error of region i).
2) For every pair of adjacent regions R1 = {(i1, ai1)

, (i2, ai2)} and R2 = {(j1, aj1), (j2, aj2)} (with i1 <
j1)

a) Project g(k) ∀k, i1 ≤ k ≤ j2 onto the straight

line determined by the two end points, (i1, ai1) and

(j2, aj2). Let the projections be given by gp(k).
Compute

∑

k gp(k).
b) ∆E =

∑

k gp(k)−e(R1)−e(R2)−λ. If ∆E < 0,

then select these regions as potential candidates for

merging.

3) Find the regions whose merging gives the maximum

energy reduction.

4) Go to step two and repeat until no two regions exist for

which ∆E < 0.

Note that no assumptions on the noise are made in the region

growing method. In fact, based on a noise model of the pixels

in a single region, the region growing method can be enhanced.

However, as shown in Appendix A, the Poisson noise model

with constant mean inside the phases, is not a true reflection

of the actual noise observed in the image. The fact that mean

is not constant within a phase also follows from the earlier

analysis as the intensity was seen to vary linearly.

V. EDGE LOCALIZATION USING A STAGE-WISE

PROCEDURE

The result of the segmentation depends on the value of λ.

In a typical image, all the phases are not separated by a large

difference in pixel intensities. When an interface separates two

phases whose mean intensity difference is low, a smaller value

of λ is required. Larger values of λ will merge the two phases

as a single region.

Hence, the final interfaces are detected in a stage-wise

fashion by using multiple λ’s. Note that, when λ = 0, no

merging is done and for λ = ∞, all pixels will fall under

a single region. We now describe a rule based procedure to

identify the phase boundaries.

A. Procedure

The base of the cell, the edge below the liquid-liquid

interface and stirrer location do not vary for experiments in

a given set-up. Therefore, this information is given apriori

to the algorithm. Similarly the object has the same y co-

ordinates throughout a set of experiments. Therefore, detection

of boundaries in the y-direction is not performed. Using the

given y-co-ordinates the center row is chosen for analysis.

Note that y-co-ordinates can be found using the present

analysis in the y-direction. However as the aim is to obtain

precise location of the boundaries, information that is known

to be constant in a given set of experiments is directly used

as input to the algorithm to reduce the errors in boundary

localization.

By separating the row as left and right parts to the stirrer,

different values of λ can be used for the left and the right parts

of the row (say λl, λr). This is required as the interfaces on

the left side have been observed to be very faint as compared

to the interfaces in the right part. For example, Figure 9 shows

segmentations using two different values of λ on the right and

left parts. Note that the given row is divided into the left and

right parts based on the specified location of the stirrer.

To avoid fine tuning the values of λl, λr for different set-

ups, we assume that the number of interfaces in the left and

right parts of the image are known. For a range of temperatures

and pressures, the number of interfaces on either side does not

change. Therefore, the assumption that number of interfaces

are known is not too restrictive. If l interfaces are present in the

left part, l regions are chosen based on regions with maximum

slope. Similarly, if r interfaces are present in the right part, r
regions are chosen depending on maximum slope.

The extreme right boundary of the object varies from image

to image so it is not known apriori. This boundary is estimated
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(a) Fine segmentation with λl = 0.01 for detection of interfaces in the
left part
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(b) Coarser segmentation on the right part with λr = 0.1

Fig. 9: Segmentation with different values of λ

by considering the line segment with the largest negative slope

in the right part of the row.

All the interfaces and boundaries are marked as the mid-

points of the corresponding line segments. This gives sub-pixel

accuracy for interface detection. The result using the method

just described is shown in Figure 10.

VI. RESULTS AND COMPARISON

In this section, we compare the results from the proposed

method with interface readings obtained manually on a set of

forty images similar to the image shown in Figure 3a. These

images are obtained to study the phase behaviour of Bitumen

+ Water.

In Figure 11a the results for detection of the interface on

the right part are shown. The original values are eye readings,

where the interface location is taken to be the mid-point of the

ramp part of the edge. The results for the Canny method shown

here are after removing spurious detections on three images.

In one instance, this was due to boundary effects (i.e. lack

of data across the boundary of the image to apply smoothing

and derivative operators) and in the other two the spurious

detections were because of a high threshold (t = 0.2 on

the normalized non-maximum suppressed gradient was used).

Reducing the threshold to t = 0.1 resulted in many spurious

edges.

Interestingly, in all the these three images the proposed

method gave accurate results. This can be attributed to the

fact that the proposed method does not rely on convolution

operations and therefore does not require image data beyond

the boundary. Also, as gradient computation is not performed,

the method is more robust to small local changes in pixel

intensity.

Further, for the image shown in Figure 3a, the interface

location was constant at 483.5 for all 0.03 ≤ λr ≤ 0.1 in

the proposed method. This is in contrast to the Canny method

where the detected interface location changes with σ. This

shows that the proposed method is very robust to a large range

of input parameters.

Figure 11b shows similar results for the detection of the

extreme right boundary of the view cell. In this case, the

spurious detection by the Canny method has been shown. This

error resulted as non-maximum suppression failed to detect

Errors Right Interface Right Boundary

Proposed 136 (C), 160 (P) 330.5 (C), 330.5 (P)

Canny 177.5 351

Petrou 169.5 325

TABLE I: Comparison of errors of the proposed method with

Canny (C) and Petrou (P) methods. Note that two different

values for C and P are given corresponding to the proposed

method as the spurious detections were different in both the

cases. The errors mentioned were after removing these.

the right boundary as a maximum point due to lack of data

towards the right of this boundary.

Finally, Figure 12 shows the comparison for the method

in Petrou & Kittler (1991) (we shall refer to this method as

Petrou below). One spurious detection was observed on the

same image for which the Canny method failed. Again, this

is due to lack of data for gradient estimation near boundary.

To check the accuracy, sum of absolute differences of the

original and the proposed method are computed. Similar values

for the Canny method and the Petrou method are computed.

All of these values are tabulated in Table 1 after removing the

spurious detections from the Canny and the Petrou methods.

In the Table, C and P refer to Canny and the Petrou methods,

respectively. We list two different values as the spurious

detections were different in both cases.

It can observed from Table I that the current method out-

performs the Canny method in terms of accurate detection of

interface locations. The proposed method gives better accuracy

compared to the Petrou method for interface detection whereas

the Petrou method is slightly better for Boundary detection.

Note that this is after removing the spurious detections.

Overall, the proposed method gives robust estimates near

image boundaries and is very accurate. Also, the method

is stable for a large range of input parameters as observed

previously.

VII. CONCLUSIONS

In this paper, we analyzed the image generation process to

obtain a region and edge model of the X-ray images. Based

on this a novel extension of the region merging algorithm has
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(a) An example detection with λ = 0.1, λl = 0.01, λr = 0.1, l =

1, r = 1

(b) An example detection with λ = 0.1, λl = 0.01, λr = 0.1, l =

0, r = 1

Fig. 10: Detection along the x-direction
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(a) Detection of the phase boundaries in the right part. Error for the
current method is 136 whereas for the Canny method the error is 177.5.
Canny method is used with σ = 6.0 and threshold of t = 0.2 on the
normalized non-maximum suppressed gradient
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(b) Detection of the extreme right boundary of the view cell using t =
0.2 and σ = 6.0 as before

Fig. 11: Comparison of original and detected interface and boundary
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(a) Detection of the interface in the right part using the convolution filter
given in Eq 3 and threshold of t = 0.2 on the normalized non-maximum
suppressed gradient
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(b) Detection of the extreme right boundary using the same method

Fig. 12: Comparison of original and detected interface and boundary using the method in Petrou & Kittler (1991)

been proposed. The new method consists of approximating

each region and edge as a straight line segment. Using simple

rules derived from the structure of the image, the approach

automatically discovers the regions and the precise location

of the interfaces. It was observed that the proposed method

is robust to changes in the input parameters and detection

of edges near image boundary. The interfaces and boundaries

were detected to sub-pixel accuracy. The proposed method

is compared with general methods and it was observed that

results obtained with respect to accuracy of edge detection are

superior.

APPENDIX A

NOISE MODEL

It is known that the noise observed in X-ray images is

Poisson distributed.

P (X = k) =
λke−λ

k!

where, X is the observed intensity in a given phase and λ is

the mean value of pixel intensities in the phase.

Hypothesis testing is carried out to know if the pixels in a

given region are generated from the same Poisson distribution.

We consider the statistic described in (Brown & Zhao (2002)).

The method is based on the variance stabilizing transforma-

tion of Anscombe. The null hypothesis and the test statistic
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considered are :

H0 : Xi ∼ Poiss(λ)

T = 4

n
∑

i=1

(Yi − Ȳ )2

where, Yi =
√

Xi +
3

8
and T ∼ χ2

n−1. The test statistic has

approximately χ2
n−1 distribution. From this, H0 is rejected at

confidence level 1− α if T > χ2
n−1,1−α.

The number of pixels in all the regions is observed to be

at-least two hundred. For large n, T is close to a Gaussian dis-

tribution with mean and variance (n−1), 4(n−1) respectively

(here n is the number of pixels in the region). The p-values for

most of the regions were insignificant (very close to zero) and

therefore the null hypothesis that all the pixels in a given phase

are independent realizations of the same Poisson distribution

is rejected. This is due to the change in pixel intensity within

a phase due to the variation of the path length of the X-rays

as was observed in Figure 5.
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