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Similarity Based Reasoning Fuzzy
Systems and Universal Approximation

Sayantan Mandal and Balasubramaniam Jayaram

Abstract I
n this work, we show that fuzzy inference systems based on Similarity

Based Reasoning (SBR) where the modification function is a fuzzy impli-
cation is a universal approximator under suitable conditions on the other
components of the fuzzy system.

Key words: Similarity Based Reasoning, Fuzzy implications, Universal ap-
proximation.

1.1 Introduction

The term approximate reasoning (AR) refers to methods and methodologies
that enable reasoning with imprecise inputs to obtain meaningful outputs [?].
AR schemes involving fuzzy sets are one of the best known applications of
fuzzy logic in the wider sense. Fuzzy Inference Systems (FIS) have many de-
grees of freedom, viz., the underlying fuzzy partition of the input and output
spaces, the fuzzy logic operations employed, the fuzzification and defuzzifi-
cation mechanism used, etc. This freedom gives rise to a variety of FIS with
differing capabilities. One of the important factors considered while employ-
ing an FIS is its approximation capability. Many studies have appeared on
this topic and due to space constraints, we only refer the readers to the
following exceptional review on this topic [?] and the references therein.

In this work, we consider a Similarity Based Reasoning (SBR) FIS where
similarity between the inputs and the antecedents is used to subsequently
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modify the consequents to obtain a final output. Such inference schemes are
also known as plausible reasoning scheme [?]. After detailing the inference
mechanism in an SBR, we show that when the modification functions are
modeled based on fuzzy implications, under suitable conditions on the other
components of an SBR, the FIS based on SBR does become a universal
approximator, i.e., can approximate a continuous function over a compact
set to arbitrary accuracy. Also we deal only with single variable functions,
alternately where the rule base consists of Single Input Single Output (SISO)
rules.

1.2 Preliminaries

We assume that the reader is familiar with the classical results concerning
fuzzy set theory and basic fuzzy logic connectives, but to make this work more
self-contained, we introduce some notations, concepts and results employed
in the rest of the work.

1.2.1 Fuzzy Sets

If X is a non-empty set then we denote by F(X) the fuzzy power set of X,
i.e., F(X) = {A|A : X → [0, 1]}.

Definition 1. A fuzzy set A is said to be

• normal if there exists an x ∈ X such that A(x) = 1,
• convex ifX is a linear space and for any λ ∈ [0, 1], x, y ∈ X, A(λx+(1−λ)y) ≥

min{A(x), A(y)}.

Definition 2. For an A ∈ F(X), the Support, Height, Kernel and Ceiling of
A are denoted, respectively, as Supp A, Hgt A, Ker A and Ceil A and are
defined as:

Supp A = {x ∈ X|A(x) > 0} ,
Hgt A = sup{A(x)|x ∈ X} ,
Ker A = {x ∈ X|A(x) = 1} ,
Ceil A = {x ∈ X|A(x) = Hgt A} .

A is said to be bounded if Supp A is a bounded set. Note that for a normal
fuzzy set Ker A = Ceil A.

We denote the space of fuzzy sets which are bounded, normal, convex and
continuous as FBNCC(X). Clearly FBNCC(X) ⊆ F(X).
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Fig. 1.1 An Illustrative Example for 1
3

-type partition in Definition ??

.

Definition 3. Let P be an arbitrary collection of fuzzy sets of X, i.e, P =
{Ak}nk=1 ⊆ F(X). P is said to form a fuzzy partition on X if

X ⊆
n⋃
k=1

Supp Ak .

In literature, a partition P of X as defined above is also called a complete
partition.

Definition 4. A fuzzy partition P = {Ak}nk=1 ⊆ F(X) is said to be

• consistent if Ak(x) = 1 then Aj(x) = 0 for any j 6= k.

• Ruspini partition if

n∑
k=1

Ak(x) = 1 for every x ∈ X.

Definition 5. Let {xk}nk=1 be a classical partition ofX, i.e.,X =

n−2⋃
k=1

[xk, xk+1)∪

[xn−1, xn]. If P = {Ak}nk=1 be a fuzzy partition of the space X in such a way
that

• each Ak is normal at xk ∈ X, i.e., Ak(xk) = 1,

• Supp Ak =
(
xk−1 + xk−xk−1

3 , xk+1 − xk+1−xk

3

)
for k = 2, . . . , n − 1, while

Supp A1 =
[
x1, x2 − x2−x1

3

)
and Supp An =

(
xn−1 + xn−xn−1

3 , xn

]
,

we call this type of partition as 1
3 -type partition.

For instance, see Fig. ?? for n = 5.
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1.2.2 Defuzzification

Often there is a need to convert a fuzzy set to a crisp value, a process which is
called Defuzzification. This process of defuzzification can be seen as a map-
ping g : F(X) −→ X. There are many types of defuzzification techniques
available in the literature, see [?] for a good overview. In this work, we use
the following defuzzifier extensively.

Example 1. For an A ∈ F(X), the First of Maxima (FOM) defuzzifier gives
as output the smallest of all those values in X with the highest membership
value, which can be mathematically expressed as

FOM(A) = min{x|A(x) = max
w

A(w)} . (1.1)

Similarly the Last of Maxima (LOM) defuzzifier is defined as

LOM(A) = max{x|A(x) = max
w

A(w)} . (1.2)

1.2.3 Fuzzy Logic Connectives

Definition 6 ([?]). A binary operation T : [0, 1]2 → [0, 1] is called a t-norm,
if it is increasing in both variables, commutative, associative and has 1 as the
neutral element.

Definition 7 ([?]). A function I : [0, 1]2 → [0, 1] is called a fuzzy implication
if it is decreasing in the first variable, increasing in the second variable and
I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0. The set of all fuzzy implications will be
denoted by I.

Definition 8 ([?]). A fuzzy implication I : [0, 1]2 → [0, 1] is said to

• satisfy the ordering property, if

I(x, y) = 1⇐⇒ x ≤ y , x, y ∈ [0, 1] . (OP)

• be a positive fuzzy implication if I(x, y) > 0, for all x, y ∈ (0, 1).

1.3 Fuzzy Inference Mechanism

Given two non-empty classical sets X,Y ( R, a fuzzy Single Input Single
Output (SISO) IF-THEN rule is of the form:

IF x̃ is A THEN ỹ is B, (1.3)
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where x̃, ỹ are the linguistic variables and A ∈ F(X), B ∈ F(Y ) are the
linguistic values taken by the linguistic variables. A knowledge base consists
of a collection of such rules. Hence, we consider a rule base of n SISO rules
which is of the form:

IF x̃ is Ai THEN ỹ is Bi , (1.4)

where x̃, ỹ and Ai ∈ F(X), Bi ∈ F(Y ), i = 1, 2, . . . n are as mentioned above.
As an example, consider the rule

IF Temperature is High THEN Fanspeed is Medium.

Here Temperature and Fanspeed are the linguistic variables and High, Medium
are the linguistic values taken by the linguistic variables in a suitable domain.
Now given a single SISO rule (??) or a rule base (??) and given any input ” x̃
is A′” , the main objective of an inference mechanism is to find B′ such that
” ỹ is B′ ”. Many types of inference mechanisms are available to us in [?],
[?], [?], etc. Here we consider only the case of Similarity Based Reasoning.

1.4 Similarity Based Reasoning (SBR)

Consider the fuzzy if-then rule (??). Let the given input be x̃ is A′. Inference
in Similarity Based Reasoning (SBR) schemes in AR is based on the calcu-
lation of a measure of compatibility or similarity M(A,A′) of the input A′

to the antecedent A of the rule, and the use of a modification function J to
modify the consequent B, according to the value of M(A,A′).

Some of the well known examples of SBR are Compatibility Modification
Inference (CMI) [?], ”Approximate Analogical Reasoning Scheme” (AARS)
in [?] and ”Consequent Dilation Rule” (CDR) in [?], Smets and Magrez [?],
Chen [?], etc. In this section, we detail the typical inferencing mechanism in
SBR, but only in the case of SISO fuzzy rule bases.

1.4.1 Matching function M

Given two fuzzy sets, say A,A′, on the same domain, a matching function
M compares them to get a degree of similarity, which is expressed as a real
in the [0, 1] interval. We refer to M as the Matching Function in the sequel.
Formally, M : F(X)×F(X)→ [0, 1].

Example 2. Let X be a non-empty set and A,A′ ∈ F(X). Below we list a few
of the matching functions employed in the literature.

• Zadeh [?]: MZ(A,A′) = max
x∈X

min(A(x), A′(x)).
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• Magrez - Smets [?]: Given a fuzzy negation N ,

MM(A,A′) = max
x∈X

min(N(A(x)), A′(x)).

• Measure of Subsethood [?]: For an I ∈ FI,

MS(A,A′) = min
x∈X

I(A′(x), A(x)).

Definition 9. Let F∗ ⊆ F(X) be an arbitrary collection (not necessarily a
fuzzy partition) of fuzzy sets on X. M is said to be consistent with F∗ if
for any A ∈ F∗,

M(A,A) = 1. (MCF)

Definition 10. Let P = {Ak}nk=1 ⊆ F∗ be the given fuzzy partition of X.
Let A′ ∈ F∗. M is said to be consistent with P (and F∗) if

n∑
k=1

M(A′, Ak) ≤ 1. (MCP)

Definition 11. The matching function M is said to be Strong if

Ker A ⊆ Ker B or Ker B ⊆ Ker A =⇒M(A,B) = 1 (MS)

Example 3. Let X ( R be any bounded interval and F∗ = FBNCC(X). For
a given fuzzy partition P = {Ak}nk=1 ⊆ FBNCC(X) , we define a maching
function as,

MP(Ak, A
′) =

Area(A′ ∩Ak)

Area(A′)
, A′ ∈ FBNCC(X). (1.5)

Clearly M satisfies (??), (??) and (??).

Example 4. Let X ( R be any bounded interval. Let the antecedent fuzzy
sets {Ak}nk=1 = PX ⊆ F∗(X) partition the input space X such that it forms
a partition of the type defined in Definition ??.

Now, if x′ ∈ X is the input let A′ ∈ F(X) be the fuzzified input such
that A′ attains normality at x′, i.e., A′(x′) = 1. Then the matching function
defined as M(A′, A) = A(x′) for any A ∈ F(X) has the property (??).

1.4.2 Modification Function J

Let A′ be the fuzzy input and s = M(A,A′) ∈ [0, 1], a measure of the
compatibility of A′ to A.

The modification function J is again a function from [0, 1]2 to [0, 1] and,
given the rule (??), modifies B ∈ F(Y ) to B′ ∈ F(Y ) based on s, i.e., the
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consequent in SBR, using the modification function J , is given by

B′(y) = J(s,B(y)) = J(M(A,A′), B(y)), y ∈ Y.

In AARS [?] the following modification operators have been used:

(i) JML(s,B) = B′(x) = min{1, B(x)/s} , x ∈ X;
(ii) JMVR(s,B) = B′(x) = s ·B(x) , x ∈ X.

In CMI [?] and CDR [?] J is taken to be a fuzzy implication operator. In
fact, JML(s,B) = IGG(s,B), where IGG is the Goguen implication [?].

1.4.3 Aggregation Function G

In the case of multiple rules

Ri: IF x̃ is Ai THEN ỹ is Bi, i = 1, 2, . . . ,m,

we infer the final output by aggregating over the rules, using an associative
operator G : [0, 1]2 → [0, 1] as follows:

B′(y) = Gmi=1

(
J
(
M(Ai, A

′), Bi(y)
))
, y ∈ Y. (1.6)

Usually, G is a t-norm, t-conorm or a uninorm [?].

1.5 Fuzzy Systems F based on SBR

An SBR fuzzy inference system can be represented by the hexatuple F =
{R(Ai, Bj), f,M, J,G, g} where

• R is the fuzzy if-then rule base formed from the fuzzy partitions {Ai}, {Bj}
on X,Y , respectively,

• f : X −→ F(X) is called the fuzzification mapping that maps an element
x ∈ X to a fuzzy set of F(X),

• M is matching function,
• J is modification function,
• G is aggregation function, and
• g : F(Y ) → Y is any defuzzifier, that converts the output fuzzy set to a

crisp value y ∈ Y .

We consider F with the following assumptions on the different components /
elements.
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1.5.1 The Fuzzy Partitions Ai, Bj

Let X,Y ( R be arbitrary but fixed and let F∗(Z) = FBNCC(Z), where
Z = X or Y .

Let the antecedent fuzzy sets {Ak}nk=1 = PX ⊆ F∗(X) partition the input
space X such that it forms a partition of the type defined in Definition ??,
which also implies it is complete.

Similarly, let the consequent fuzzy sets {Bj}mj=1 = PY ⊆ F∗(Y ) form a
complete and Ruspini partition of the output space Y .

1.5.2 The Fuzzified Input A′

Let us consider a fuzzification f : X −→ F∗(X) that maps x′ ∈ X to a fuzzy
set of A′ ∈ F∗(X) = FBNCC(X) such that

Supp (f(x′) = A′) ∩ Supp Ak 6= ∅,

for some Ak ∈ PX . Moreover it is assumed that A′ intersects only two of the
adjacent fuzzy sets Ak i.e, Supp A′∩ Supp Ak 6= ∅ if and only if k = m,m+1
for some m ∈ Nn−1.

Note that it is with this fuzzified input A′ the antecedents Ai of the dif-
ferent rules are matched against.

Example 5. Let {xk}nk=1 be a crisp partition of X. Let{Ak}nk=1 partitioning
the input space X be such that Ak ∈ PX and forms a fuzzy partition of the
type defined in Definition ??. Then if we take

| Supp A′| ≤ 1

3
·

l
min
i=1

{
|xi+1 − xi|

}
,

then A′ intersects atmost two of the adjacent fuzzy sets Ak.

1.5.3 The Operations M,J,G

We choose a matching function M such that M is Consistent w.r.to the
partition PX given in Section ??, i.e M satisfies both (??) and (??).

We choose the modification function J to be a fuzzy implication, i.e.,
J ∈ FI. For notational convenience we will denote it by ” −→ ” in the
sequel.

The aggregation function G is any t-norm T .
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1.5.4 The Fuzzy Output B′

With the above assumptions, the output fuzzy set B′ for a given crisp input
x′ (or fuzzy input A′) takes the form as given in the following lemma:

Lemma 1. With the operations of of the SBR FIS (??) as in Sections ?? -
?? the fuzzy output of the SBR FIS (??), for a given input x′ ∈ X is given
by

B′(y) = T [sm −→ Bm(y), sm+1 −→ Bm+1(y)] , (1.7)

where sm = M (A′, Am) and sm+1 = M (A′, Am+1).

Proof. With the above operations M,J,G the fuzzy output for a given input
x′ ∈ X is given by (??) as follows:

B′(y) =T
[
M(A′, A1) −→ B1(y)),M(A′, A2) −→ B2(y), . . . ,

. . . ,M(A′, An) −→ Bn(y)
]
.

We can write the above as

B′(y) = Tnk=1[M(A′, Ak) −→ Bk(y)] . (1.8)

By the choice of our fuzzification based on our above notations on A′, Ak,
viz., that A′ intersects only two adjacent fuzzy sets among the {Ak}, say
Am, Am+1, we have that M(A′, Ak) = 0 for all k 6= m,m+ 1. Note also that
I(0, y) = 0 −→ y = 1 for any y ∈ [0, 1]. Now, the fuzzy output B′(y) for any
y ∈ Y which is given by (??) becomes

B′(y) = Tnk=1[M(A′, Ak) −→ Bk(y)] ,

= T
[
Tk 6=m,m+1

(
M(A′, Ak) −→ Bk(y)

)
,

M (A′, Am) −→ Bm(y),M (A′, Am+1) −→ Bm+1(y)
]

= T
[
M (A′, Am) −→ Bm(y),M (A′, Am+1) −→ Bm+1(y)

]
= T [sm −→ Bm(y), sm+1 −→ Bm+1(y)] = (??) .

1.5.5 The Defuzzified Output g(x′)

We have chosen the modification function J to be a fuzzy implication, i.e.,
J = I ∈ FI. Assuming that the considered modification function J has (??),
we define the defuzzification function g appropriately so that g is continuous.
In the following, we discuss the explicit formulae for g. Note that g is also
known as the system function of the fuzzy system F [?], [?].
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1.6 SBR Fuzzy Systems and Universal Approximation

In this section, we show that F = {R(Ai, Bi),M, J,G, g} such that the fuzzy
partitions {Ak}, {Bk} and the operations M,J,G, g as given in Sections ??
- ?? are universal approximators, i.e., they can approximate any continuous
function over a compact set to arbitrary accuracy.

Theorem 1. For any continuous function h : [a, b] → R over a closed in-
terval and an arbitrary given ε > 0, there is an SBR fuzzy system F =
{R(Ai, Bi),M, J,G, g} with M having the property (??) w.r.to PX = {Ai},
J having (??), G being a t-norm and g as given in (??) or (??) such that
max
x∈[a,b]

|h(x)− g(x)| < ε.

Proof. We prove this result in the following steps.
Step I : Choosing the points of normality
Since h is coninuous over a closed interval [a, b], h is uniformly continuous

on [a, b]. Thus for a given ε > 0 there exists δ > 0 such that

|w − w′| < δ =⇒ |h(w)− h(w′)| < ε

2
.

Step I (a): A Coarse Initial Partition
With the δ = δ(ε) defined above and taking l =

⌈
b−a
δ

⌉
we now choose

wi ∈ X, i = 1, 2, . . . l, such that |wi − wi+1| < δ.
Let zi = h(wi), the value h takes at the above chosen wi, for i = 1, 2, . . . l.

We call these points wi and zi the points of normality on the input space and
the output space respectively.

In Fig. ??, the points w1, w2, . . . , w11 and the points z1, z2, . . . z8 are the
points of normality in the input and the output spaces, respectively.

Step I (b): Redundancy Removal and Reordering
Let us choose the distinct zi’s from the above and sort them in ascending

order. Let σ : Nl −→ Nk denote the above permuation map such that zi =
uσ(i), for i = 1, 2, . . . l and uj , j = 1, 2, . . . , k are in ascending order.

By rearranging the zi’s in ascending order and renaming them we have
obtained: u1 = z1, u2 = z8, u3 = z6, u4 = z5, u5 = z7, u6 = z2, u7 = z4, u8 =
z3.

Step I (c): Refinement of the input space partition:
Thus for each i = 1, 2, . . . , l we have h(wi) = zi = uσ(i). However, note

that consecutive points of normality wi, wi+1 in the input space need not be
mapped to consecutive points of normality uσ(i), uσ(i)+1 or uσ(i), uσ(i)−1.

In Fig. ??, h(w1) = u1 and h(w2) = u6. Thus for the consecutive points
w1 and w2 the function values are u1 and u6, which are not consecutive.

To ensure the above, we further refine the input space partition. To this
end, we refine every sub-interval [wi, wi+1], for i = 1, 2, . . . l − 1 as follows.
Note that h(wi+1) = uσ(i+1).
Refinement Procedure:
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Fig. 1.2 An Illustrative Example for Step I in the proof of Theorem ??.

For every i = 1, 2, . . . l − 1 do the following:

(i) If uσ(i+1) = uσ(i)+1 or uσ(i)−1 then we do nothing.
(ii) Let uσ(i+1) = uσ(i)+p, where p ≥ 2. For every u ∈ {uσ(i)+1, uσ(i)+2, . . . ,

uσ(i)+p−1} we find a point v ∈ [wi, wi+1] such that h(v) = u. Note that the
existence of such a v ∈ [wi, wi+1] is guaranteed by the continuity - essentially
the ontoness - of the function h. If u = uσ(i)+q, for some 1 ≤ q ≤ p− 1, then

we denote the point v as w
(q)
i,i+1.

(iii) Similarly, let uσ(i+1) = uσ(i)−p, where p ≥ 2. For every u ∈ {uσ(i)−1,
uσ(i)−2, . . . , uσ(i)−p+1} we find a v ∈ [wi, wi+1] such that h(v) = u. Once

again, if u = uσ(i)−q, for some 1 ≤ q ≤ p− 1, then we denote v as w
(q)
i,i+1.

From Fig. ??, it can be seen that we have inserted points w1
1,2, w

2
1,2, w

3
1,2,

w4
1,2 ∈ [w1, w2]. Proceeding similarly, the following sub-intervals, shown in

Fig. ??, have been refined: [w2, w3], [w4, w5], [w8, w9] and [w9, w10].
Step I (d): Final Points of Normality:
Once the above process is done, we again rename the points of normality

w
(q)
i,i+1 in the input space X in ascending order as x1, x2, . . . , xn(n ≥ l) and

the uσ(i)’s of the the output space as y1, y2, . . . yk.
Step II : Construction of the Fuzzy Partitions
In the next step, we construct fuzzy sets on both the input and output

spaces with the above obtained xi’s and yj ’s as the points of normality, as
given below.
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Step II (a): Fuzzy Partition on the input space We construct l fuzzy sets
such that

• each Ai is centered at xi,

• Supp Ai =
(
xi−1 + xi−xi−1

3 , xi+1 − xi+1−xi

3

)
for i = 2, . . . , l − 1, while Supp

A1 =
[
x1, x2 − x2−x1

3

)
and Supp Al =

(
xl−1 + xl−xl−1

3 , xl

]
,

• each Ai is normal at xi, i.e., Ai(xi) = 1,
• each Ai is a continuous convex fuzzy set,
• {Ai}li=1 form a partition as defined in Definition ??.

For instance, if each of the Ai’s (i = 2, . . . , l − 1) is a triangular fuzzy set
and A1, Al are half-triangular with all of them attaining normality at xi then
clearly we can construct {Ai}li=1’s partitioning the input space X as in Def-
inition ?? and are continuous, convex, of finite support and Ai(xi) = 1.

Step II (b): Fuzzy Partition on the output space
Now we have the output space partition points as y1, y2, . . . yk. We parti-

tion the output space such that B1, B2, . . . Bk form a Ruspini partition (as
above) with Bj(yj) = 1, j = 1, 2, . . . k. Here obviously,

|yj − yj−1| <
ε

2
, j = 1, 2, . . . k.

Further, let the fuzzy sets {Bj}kj=1 be continuous, convex and of finite
support along the same lines as the Ai’s above, i.e., Supp B1 = [y1, y2), Supp
Bj = (yj−1, yj+1), j = 2, 3, . . . k − 1, Supp Bk = (yk−1, yk].

Step III: Construction of the smooth rule base
We construct the rule base with l rules of the following form:

IF x is Ai THEN y is Bi , i = 1, 2, . . . l, (1.9)

where the consequent Bi in the i-th rule is chosen such that i = j is the index
of that yj = h(xi), where xi is the point at which Ai attains normality.

Note that, since h is continuous, by the above assignment of the rules,
we have that rules whose antecedents are adjacent also have adjacent conse-
quents, i.e., for any i = 1, 2, . . . l−1 we have Supp Bi ∩ Supp Bi+1 6= ∅. Thus
the constructed rule base is smooth as defined in [?].

Step IV : Approximation capability of the output
Now we consider an SBR fuzzy system with Multiple SISO rules of the

form (??). Let x′ ∈ X be the given input. Clearly, x′ ∈ [xm, xm+1] for some
m ∈ Nl. Now as in section ??, we fuzzify x′ in such a way that the fuzzified
input A′ (with A′(x′) = 1) intersects atmost two of the Ai’s, say, Am, Am+1.

For instance, one could take A′ as in Example ??.
So we have the following,
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B′(y) = T
[
M (A′, Am) −→ Bm(y),

M (A′, Am+1) −→ Bm+1(y)
]

= T
[
sm −→ Bm(y), sm+1 −→ Bm+1(y)

]
,

where sm = M (A′, Am) and sm+1 = M (A′, Am+1). Note that by our as-
sumption on M , we have that sm + sm+1 ≤ 1.

The output fuzzy set B′ is given by (??). We consider the kernel of B′,
i.e., Ker B′ = {y : B′(y) = 1}. We choose the defuzzified output y′ such that
it belongs to Ker B′.

Since T is a t-norm, we know that T (p, q) = 1 if and only if p = 1 and
q = 1. Noting that J has (OP), i.e., p −→ q = 1⇔ p ≤ q and sm+sm+1 ≤ 1,
we have

Ker B′ = {y : B′(y) = 1}

= {y : sm −→ Bm(y) = 1}
⋂
{y : sm+1 −→ Bm+1(y) = 1}

= {y : sm ≤ Bm(y)}
⋂
{y : sm+1 ≤ Bm+1(y)} .

Let αm = min{α : sm −→ α = 1} and βm+1 = min{β : sm+1 −→ β = 1}.
Since J has (OP), clearly αm = sm and βm+1 = sm+1.

By the continuity and convexity ofBm, Bm+1 there exist am, bm, am+1, bm+1

such that Bm(am) = Bm(bm) = sm and Bm+1(am+1) = Bm+1(bM=1) =
sm+1. By the monotonicity of the implication in the second variable, for every
y ∈ [am, bm] we have that sm → Bm(y) = 1 and for every y ∈ [am+1, bm+1]
we have that sm+1 → Bm+1(y) = 1. Thus,

{y : sm ≤ Bm(y)} = [am, bm] , and

{y : sm+1 ≤ Bm+1(y)} = [am+1, bm+1] .

Hence, Ker B′ = {y : B′(y) = 1} = [am, bm]
⋂

[am+1, bm+1]. (1.10)

Claim: Ker B′ = [am+1, bm] 6= ∅.
Firstly, note that for any sm ∈ [0, 1] by the normality of Bm we have that

Bm(ym) = 1 and hence ym ∈ {y : sm ≤ Bm(y)} = ym ∈ [am, bm] 6= ∅.
Similarly, ym+1 ∈ [am+1, bm+1] 6= ∅. it suffices to show that am+1 ≤ bm from
whence Ker B′ = [am+1, bm].

Note that since m < m + 1, ym < ym+1 and from am+1 ∈ Supp Bm+1

we have that ym ≤ am+1 ≤ ym+1. Similarly, ym ≤ bm ≤ ym+1. Hence,
ym ≤ am+1, bm ≤ ym+1.

Since Bm+1 is monotonic on [ym, ym+1],
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Fig. 1.3 The Output fuzzy set B′.

am+1 > bm implies Bm+1(am+1) ≥ Bm+1(bm)

implies sm+1 ≥ 1−Bm(bm)

implies sm+1 ≥ 1− sm
implies sm + sm+1 ≥ 1 .

Since M satisfies (??), sm + sm+1 ≤ 1 and hence sm + sm+1 = 1. Now,

sm + sm+1 = 1 implies Bm+1(am+1) +Bm(bm) = 1

implies Bm+1(am+1) = 1−Bm(bm)

implies Bm+1(am+1) = Bm+1(bm)

implies bm ∈ [am+1, bm+1], i.e., am+1 ≤ bm .

Now, we define g(x′) as either of the following - (??) or (??):

y′ = g(x′) = FOM(B′(y)) = am+1 (1.11)

y′ = g(x′) = LOM(B′(y)) = bm (1.12)

Now from the above we have the system function as, y′ = g(x′) =
am+1 or bm. Now clearly, am+1, bm ∈ [ym, ym+1] and hence,

|ym − g(x′)| < ε

2
or |ym+1 − g(x′)| < ε

2
.

WLOG, let |ym−g(x′)| < ε
2 i.e, |ym−y′| < ε

2 . Now since x′ ∈ [xm, xm+1],
we have |h(x′)− ym| < ε

2 . Finally we have the following,

|g(x′)− h(x′)| = |y′ − h(x′)|
≤ |y′ − ym|+ |ym − h(x′)|

<
ε

2
+
ε

2
< ε.

Since x′ is arbitrary we have, max
x∈[a,b]

|h(x)− g(x)| < ε .
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Remark 1. Note that with g as in (??) or (??) and since M satisfies (??), if
x′ = xk ∈ X we have M(A′, Ak) = 1 and we obtain B′ = Bk, i.e., g(x′) = yk
and the interpolativity of the inference is preserved.
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