Conjugacy Relation via Group Action on the set of Fuzzy Implications

VEMURI Nageswara Rao and JAYARAM Balasubramaniam

 $\begin{array}{c} Department\ of\ Mathematics\\ Indian\ Institute\ of\ Technology\ Hyderabad\text{--}502\ 205.\\ INDIA \end{array}$

E-mail: ma10p001@iith.ac.in, jbala@iith.ac.in

Let Φ denote the set of all increasing bijections on [0,1] and \mathbb{I} the set of fuzzy implications. In [1], the authors proposed a new way of generating fuzzy implications from fuzzy implications using order automorphisms $\varphi \in \Phi$ on the unit interval via the following equation

$$I_{\varphi}(x,y) = \varphi^{-1}(I(\varphi(x),\varphi(y))), \qquad x,y \in [0,1] , \qquad (1)$$

where $I \in \mathbb{I}$. Here I_{φ} is called the φ -conjugate of I.

Moreover, in the same work, they proposed also a conjugacy relation on I, as follows:

$$I \sim J$$
 if and only if $J = I_{\varphi}$ for some $\varphi \in \Phi$. (2)

Clearly, \sim is an equivalence relation on \mathbb{I} and partitions \mathbb{I} into conjugacy classes. Let us denote by [I] the set of all φ -conjugates of I where φ varies over whole of Φ .

Recently, in [2], the authors proposed a novel method of generating fuzzy implications from fuzzy implications as follows:

Given $I, J \in \mathbb{I}$ we define

$$(I \circledast J)(x,y) = I(x,J(x,y)), \ x,y \in [0,1]$$
 (3)

Further, it was shown that the above binary operation imposes a monoid structure $(\mathbb{I}, \circledast)$ on the set of all fuzzy implications.

In this present work, we show that the conjugacy relation defined via Eq. (2) is nothing but a group action of \mathbb{S} on the set \mathbb{I} , where \mathbb{S} is the set of all invertible elements of the monoid $(\mathbb{I}, \circledast)$. In other words, we show that the conjugacy classes [I] obtained from Eq. (2) are exactly the pieces in the partition obtained by the group action of \mathbb{S} on the set \mathbb{I} .

References

- [1] M. Baczyński, J. Drewniak: Conjugacy classes of Fuzzy Implications. Reusch.B (Ed.), Computational Intelligence, Theory and Applications, 6th Fuzzy Days, Springer. (1999) 287–298.
- [2] N. R. Vemuri, B. Jayaram: Fuzzy implications: Novel generation process and the consequent algebras. Greco, S. et al. (Eds.), Advances on Computational Intelligence 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2012, Springer. (2012) 365-374.

Acknowledgement The authors would like to acknowledge CSIR HRDG-INDIA (09/1001/(0008)/2011-EMR-I), DST -INDIA, (SR/FTP/MS-030/2010), respectively, for their financial support.