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Abstract 
The band structure, density of states, Fermi surface (FS) topology and vibrational properties of 
the ferromagnetic Heusler alloys, Cu2MnX (X = Al, In, Sn) have been studied using the first 
principles electronic structure calculation at ambient as well as under compression. The major 



contribution to the total magnetic moment arises from the Mn atom with adequate exchange 
splitting as revealed from the calculated local magnetic moment as well as from the density of 
states plots. The Fermi surface topology is found to be similar for the majority band for all the 
compounds and remain unaltered under compression, where we have seen the linear variation of 
the density of states (N(EF)) at the Fermi level, whereas the FS topology change is observed in 
the minority spin band with non-monotonic variation of the N(EF). Apart from this, under 
compression at nearly V/V0=0.75, we have seen the Fermi surface topology of the minority spin 
of Cu2MnSn to change drastically resembling the majority band Fermi surface. From the phonon 
dispersion relation, we find a lattice instability in the case of Cu2MnSn with negative slope 
around Γ point at ambient as well as under compression and this might induce the anomalous 
behavior observed in the Fermi surface topology, whereas for other compounds we have found 
the positive slope at the same point with all positive frequency under all compression, ensuring 
the dynamical stability of these compounds. 
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Chapter 1 
Introduction 
With the advent of technology and advanced studies with electron spin, an intrinsic property of 
elementary particle, it is possible to explore various new properties, by virtue of its nature such 
that it can align itself either parallel or antiparallel to applied magnetic field, like half-metallicity, 
storage data in memory devices and many more, which maps to a new industry known as 
spintronics and many new materials are found promising with spintronic applications. Hence it is 
quite interesting and mandatory to focus our research in search of such materials and one such 
class of materials are the famous Heusler alloys. 

Heusler alloys are the promising materials for spintronics application due to Half-metallic 
behavior, because the existence of a gap in the minority-spin band structure leading to 100% spin 
polarization of the electron states at the Fermi level and makes these systems attractive for 
applications in the emerging field of spintronics. Besides this, some Heusler compounds are 
magnetic in the martensitic phase, and exhibit magnetic shape memory (MSM) effect. The MSM 
alloys are of great interest as promising smart materials for future technological applications. 
They can be used as sensors and actuators in different fields of applications. In 1903, Heusler [1] 
reported that the addition of sp elements (Al, In, Sn, Sb or Bi) turn Cu-Mn alloy into a 
ferromagnetic material even though the alloy contains none of the ferromagnetic elements.   

           Heusler alloys are ternary intermetallic compounds with basic formula X2YZ, where X, Y 
are transition metals, X can be 3d ,4d or 5d element like Co, Ni, Cu etc., Y=Mn, Fe, Cr, etc. and 
Z=Al, In, Sn, Sb, Si, Ga, Ge and As.  X2YZ type Heusler alloys are formed by the combination 
of the metallic element of rock-salt like “YZ” structure, where X is occupied in every tetrahedral 
void. In our present study we have analyzed the electronic structure of the Cu based Heusler 
alloys Cu2MnX, where X = Al, In, and Sn. The Cu2MnAl, is the first compound of Heusler 
family which show soft magnetic behavior and possess Curie temperature of about 600 K [2]. 
Previous studies on Cu2MnAl reveal a rare combination of ferromagnetism and structural phase 
transition from a cubic high-temperature phase into a tetragonal and less symmetric low-
temperature phase. The structural properties of Cu2MnAl have been studied by Robinson et. al 
[3], where the authors have found the Heusler phase to be unstable when mechanically milled 
over extended periods. It was also reported that the perfect L21 order for Cu2MnAl cannot be 
achieved after optimum preparation. Cu2MnAl was found to be decomposed into Cu3MnAl and 
Cu2Al4  phases above 600 K and this temperature range might vary from 600 to 790 K as per the 
different studies. To understand the electronic, magnetic and dynamical stability of the Cu2MnX 
(X = Al, In, Sn), we have studied the electronic structure, Fermi surface and vibrational 
properties of all the above Cu2MnX compounds. The lattice instability is seen in some of the Ni 
based Heusler alloys, where the authors have reported the same due to an unusual behavior of the 
optical modes. In addition the phonon instability in Ni2MnGa was explained due to the Fermi 
surface nesting. So in this present work we have studied the dynamical stability of all the 
compounds and find a lattice instability in Cu2MnSn, at ambient  and under compression. The 



Fermi surface topology is found to change for the minority spin band of all these investigated 
compounds under compression. To accomplish this, Density functional theory (DFT), a 
quantum mechanical modeling method is used, which basically used to investigate the electronic 
structure (principally the ground state) of many body system, in particular atoms, molecules, and 
the condensed phases.  

The rest of the thesis is organized as follows: In chapter 2 we discuss about the theoretical 
methods which are necessary to perform the calculations. In chapter 3 we discuss about the 
computational details, which we used to calculate the properties of these compounds. Results and 
discussion are explained in the chapter 4 and finally chapter 5 summarizes the results with 
conclusions. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Chapter 2                                                                          
Theoretical Background                                       
The fundamental postulates of quantum mechanics assert that microscopic system are described 
by ‘wave function’ that completely characterize all the physical properties of the system called 
observables of various operators defined in quantum mechanics. 

Consider a many body system having, P nucleons of charge ZI at position RI for n=1, 2…..P and 
N electrons at position ri for i=1, 2...N.  The main interest is to find approximate solution of non-
relativistic time independent Schrödinger equation.                                                                               

H|Ψ〉=E|Ψ〉                                                                                 

 

 

Many body wave function is of form Ψ ≡ Ψ (R1, R2……RP; r1, r3……..rN) and E is the 
total energy of the system. The Hamiltonian H consists of following. 

 

H= 

 

Where R = {RI}, I = 1 . . .  P, is a set of P nuclear coordinates, r = {ri}, i = 1. . . N, is a set of N 
electronic coordinates. ZI and MI are the nuclear charges and masses, respectively and e amd m 
are electron charge and mass respectively. It includes kinetic energy (K.E) of all nucleus and 
electron, the inter nuclei repulsion energy, electron-electron repulsion energy and nuclei-electron 
attraction energy. In operator form we can write    

H=Tn + Te + Vnn +  Vee + Ven 

                                                                                                      

                      

H Ψi(r,R) = EiΨ (r,R)                             

Electrons are fermions, and the total electronic wave function must be anti-symmetric with 
respect to exchange of two electrons. Nuclei can be fermions, bosons or distinguishable particles, 
according to the particular problem under consideration. All the ingredients are perfectly known 



and in principle, all the properties can be derived by solving the many-body Schrodinger 
equation:  

                        

Although this equation is exact within the non-relativistic regime, it is not possible, except for 
trivially simple cases to solve it. Consequently the many-body wave function is a complicated 
mathematical object that incorporates the effects of correlation, preventing the separation of the 
electronic degrees of freedom into single-body problems. Thus we must search for 
approximations that render the Schrödinger equation tractable to numerical solution, while 
retaining as much of the key physics as is possible. 

2.1.         Approximation to solve the Many-Body Problem: 
2.1.1 Born–Oppenheimer Approximation:  
 
Ψ(R, r)= ɸ(R, r) χ(R)   
 

 Since the electrons are much lighter than the nuclei by three orders of magnitude, makes nucleus 
almost immobile with reference to electrons. This can be exploited by treating the wave function 
in separable form, as 

  
 
 
Where χ(R) is a nuclear wave function and ɸ(R, r) is an electronic wave function that depends 
parametrically on the nuclear positions. Besides this, we can neglect the term K.E. of nuclei and 
consider the term nuclear-nuclear interaction as constant, so our Hamiltonian H reduces to 
                

H= 

 
 2.1.2 Hartree-Fock Approximation: 
      Electrons are independent, and interact only via the mean-field Coulomb potential. 

Hartree took a different approach to consider the interacting electrons via their own e-e 
electrostatic interaction and electron-nucleus electrostatic interaction. He thought that whole 
system can be assume as ‘independent particles/electrons’ and interacting only through mean 
field coulomb potential. This leads to 

ɸ(r1, r2, r3………rN) =ɸ( r1) ɸ( r2) ɸ( r3)…….. ɸ( rN) 

 

 



i.e. electrons are independent. This yields one electron Schrödinger eq.  

 
 

             

Where V(r) is the potential in which the electrons move, this includes, both the nuclear and 
electron interaction.  

 

 

 

 

 

And the mean field arises from the other N-1 electrons. We smear the other electrons out into a 
smooth negative charge density ρ (r') leading to a potential of the form 

 

 

 

                                                                  Where ρ(r') = ∑i |ɸ(r) |2 

Although these Hartree equations are numerically manipulable via the self-consistent field 
method, it is not surprising that such a crude approximation fails to capture elements of the 
essential physics. Since the Pauli Exclusion principle demands that the many-body wave 
function be anti-symmetric with respect to interchange of any two electron coordinates, e.g. 

      .                       ɸ(r1, r2, ……… rN )=- ɸ(r2, r1, ………rN)    

This cannot be satisfied by a non-trivial wave function of the independent electron wave function 
form. This exchange condition can be satisfied by forming a Slater determinant of single-particle 
orbitals 

      

 

Where A is an anti-symmetrizing operator, i.e. it ensures that all possible anti-symmetric 
combinations of orbitals are taken. Again, this decouples the electrons, leading to the single-
particle Hartree-Fock equations of the form 



                                                                                                                                                                                                     

The last term on the left-hand side is the exchange term, this looks similar to the direct Coulomb 
term, but for the exchanged indices. It is a manifestation of the Pauli Exclusion principle, and 
acts to separate electrons of the same spin. The exchange term adds considerably to the 
complexity of these equations. 
         The Hartree-Fock equations deal with exchange exactly, however, the equations neglect 
more detailed correlations due to many-body interactions. The effects of electronic correlations 
are not negligible; indeed the failure of Hartree-Fock theory to successfully incorporate 
correlation leads to one of its most celebrated failures. The requirement for a computationally 
practicable scheme that successfully incorporates the effects of both exchange and correlation 
and leads us to consider the conceptually simple and elegant Density Functional Theory. 

 
2.2 Density Functional Theory: 
DENSITY FUNCTIONAL THEORY (DFT), is a powerful formulation of many body quantum 
mechanics, which states that the ground state properties of a quantum many particle system 
depends only on density. In particular, the ground state density is found by minimizing the 
energy functional, whose value at minimum also gives the ground state energy. The electron 
density is defined as  
 
ρ(r) = N ʃ……….ʃ |Ψ(r1, r2,………….rN ) |2 dr1 dr2 ….drN 

 
 
 
 
 
ρ(r) determine the probability of finding any of the N electrons within the volume element dr1 

but with arbitrary spin, while the other N-1 electrons have arbitrary spin and position in the state 
represented by Ψ. ρ(r)  is a non-negative function of only the three spatial variables which 
vanish at infinity and integrate to total number of electrons   
            ρ(r         ∞ ) = 0  and   
               ʃ ρ(r) dr  = N 
 
2.3 Thomas Fermi Model: 
     The original density functional theory of quantum mechanics is the idea drawn from Thomas 
[4] and Fermi [5] proposed in 1927. Although their approximation is not accurate enough for 
present day electronic structure calculations, the approach illustrate the way to density functional 
theory. In the original Thomas–Fermi method, the K.E. of electrons is approximated as an 
explicit functional of density, idealized as non-interacting electrons in the homogenous gas with 
the density equal to the local density at any given point. Both Thomas and Fermi neglected the 



exchange and correlation among the electrons; however this was extended by Dirac in 1930, who 
formulated the local approximation for exchange still in use today. This leads to the energy 
functional for the electrons in an external potential Vext (r). 
 
 

 
Extension to account for the effect of inhomogeneity have been proposed by many people, 
known as the Weizsacker correction,   but more recent work has found the correction to reduce . 
 
The attraction of DFT theory is evident by the fact that one equation for density is remarkably 
simpler than the full many body Schrödinger equation that involves 3N degree of freedom for N 
electrons. The Thomas Fermi approach starts with approximation that are too crude, missing 
basic physics, such as shell structure and binding of molecules, thus it falls short of the goal of a 
useful description of electrons in matter. 
 
2.4 Hohenberg- Kohn Equations: 
 
       Hohenberg, Kohn and Sham established a theoretical basis for justifying the replacement of 
the many body wave function by one-electron orbitals [6, 7, 8]. They used two fundamental 
theorems which leads to modern density functional theory, an alternative approach to deal with 
many body problem in electronic structure theory. 
      The charge density is a distribution of probability, i.e.  ρ(r1)d3r1   represents, in a probabilistic 
way, the number of electrons in the infinitesimal volume d3r1. This applies to any system of 
interacting particles in an external potential Vext (r), including any problem of electrons and fixed 
nuclei, where the Hamiltonian can be written as H= T + V + U 
 

 
   

                                                                               
  
          Where T is K.E., U is the interaction energy. 
           
2.4.1 Hohenberg theorems: 
 
First theorem: “For any system of interacting particles in an external potential Vext (r), the total 
energy, is a unique functional of the electron density  ρ(r)”. 
 
Second theorem: “A universal functional for the energy E[n] can be defined in terms of density. 
The density that minimizes the total energy is the exact ground state density”. 
 
2.5 Kohn-Sham equations: 
Later Kohn and Sham provided [6] a workable computational method based on the following 
result. 



       For each interacting electron system, there is a local potential Vks, which result in a density ρ 
equal to that of interacting system. A lot of work was done to find T[n], Vee[n] [Thomas, Fermi, 
Slater, Dirac etc], however the most successful approach come back to an ‘exact expression’ for 
the kinetic energy ‘T’, by re-introducing one body orbitals. To do that, Kohn-Sham introduced a 
fictitious equivalent system of non-interacting electrons under the action of an effective potential 
Veff generating the same density ρ(r) of the real system. 
. 
                                   ρ(r2                            (1)                                                                                                                   
 

 and an orbital dependent exchange charge density, HF for ith orbital 

 

ρi
HF(r,r') =  ∑ ɸ⋆j(r') ɸi⋆(r')  ɸi⋆(r) ɸi(r)  δsi,sj                                                                                                                             

               j=1 to N                     ɸi⋆(r) ɸi(r)   

 

 

 

 

This density involves a ‘spin’ dependent factor which couples only (i, j) with the same spin 
coordinate (si, sj). With these defined charge densities, it is possible to define corresponding 
potentials, the coulomb or Hartree potential,VH, and  is defined as 

 

                    (2) 

 

and an exchange potential can be defined as  

 

 

                    

 

 



 
 

This combination results in the following Hartree- Fock equation 

 

 

 

Once the Hartree–Fock orbitals have been obtained, the total Hartree-Fock electronic energy of 
system, EHF can be obtained from 

 

 

                            

 

 
 

 

Thus the Kohn-Sham energy functional is formally written as  

 

                                         HKS =                                              (3) 
Where the effective potential is defined as for an one-electron potential, i.e. 

Veff = VN (ρ)+ VH (ρ)+ Vxc (ρ) 

 

 

                           

EHF is not a sum of the Hartree- Fock orbitals energy Ei. The factor of one half in the e-e terms 
arise since the e-e interactions have been double counted in the coulomb and exchange 
potentials. The Hartree- Fock Schrödinger equation is slightly more complex than the Hartree 
equation.                                                                                                                                                    
Note that in contrast with Equation   



 

 

 

 

Vxc is now without an index, as it is only for one electron. Also note the dependence of each 
potential term on the charge density ρ, which is implicitly defined from the set of occupied 
energies Ψi, i=1, 2….N of the equation (3) by equation (1). The energy term associated with the 
nuclei – electron interaction is ˂VN|ρ˃, while that of e-e interaction is ˂VH|ρ˃, where VH is 
Hartree potential 

 

                   

            

 
                                 The Kohn- Sham energy functional is of following form  

 

 

                                                                                                                                                                                                                                                                                 

 

And the Konh-Sham equation for electronic structure of matter is given as 

+ VN (r)+ VH (r)+ Vxc [ρ(r)]) Φi(r) =  Ei Φi(r) 

 

This equation is usually solved ‘self-consistently’. An approximate charge is assumed to estimate 
the exchange-correlation potential, and this charge is used to determine the Hartree potential 
form of Eq (2). These approximate potentials are inserted in Kohn-Sham equation and the total 
charge density is determined as in Eq (1). The ‘output’ charge density is used to construct new 
exchange correlation and Hartree potentials. The process is repeated until the input and output 
charge density or potentials are identical within some tolerable limit. Once self-consistency is 
achieved, a solution of the Kohn-Sham equation is obtained, and the total energy can be written 
as  

 

EKS = =  ∑ Ei  - ½ ʃρ(r)VHd3r –  ʃ ρ(r) Exc [ρ(r)]  - Vxc[ρ (r)] d3r                                                                                                                             



          i=1 to N                                

 

The algorithm of this self-consistent calculation is shown in Fig 2.1. 

 

2.6 Local Density Approximation (LDA): 

A key contribution by Kohn and Sham is the local density approximation, which is used to 
approximate the exchange energy and is expressed as 

Ex [ρ(r)] = ʃρ(r)ɛx(ρ(x))d3r 

 

Where ɛx[ρ] is the exchange energy per particle of an uniform gas at a density ρ. The exchange 
potential is replaced by a potential determined from derivative of Ex [ρ] 

 

 + VN (r)+ VH (r)+ Vxc (ρ(r)) =  Ei Φi(r) 

    

Vxc[ρ]= and the corresponding exchange potential is  Vx.                                                                                                             
The expression for either of these quantities is unknown, from Hartree –Fock theory one can 
show that the exchange energy is given by  

 

Which is the Hartree Fock expression for the exchange energy of a free electron gas. In this 
expression, k is the wave vector for a free electron; it can be related to the momentum by p = ћk. 
The highest wave vector is given by kF, where the Fermi energy is given by EF = ћ2kF

2 / 2m.  One 
can write   

Ex [ρ] = (3π2)1/3ʃ [ρ(r)]4/3d3r                                                                                                    
.               

And its functional derivative      

   Vx[ρ]  = - (3π2ρ(r))1/3                                                           
.                                                                                                                       

                                                                                                                                                                                                                     

2.7 Generalized Gradient Approximation (GGA): 

As the LDA approximate the energy of the true density by the energy of a local constant density, 
it fails in the situations where the density undergoes rapid change such as in molecules. An 



improvement to this can be made by considering the gradient of the electron density, so called 
Generalized Gradient Approximation, symbolically it can be written as  

                                                            Ex= Exc [ρ(r), ρ(r)] 

This can lead to a large improvement over LDA result. 

 Some of these are semi-empirical, in that experimental data e.g. atomization energy is useful in 
their derivation. A commonly used functional are PBE, PW91 functional, due to Perdew-Burke-
Ernzerhof parameterization, Perdew and Yan respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              

Algorithm of Self-Consistent Calculation 

 



 

 

 

 

 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Algorithm for self-consistent calculation 

Chapter 3 



Computational Details  
 

3.1 The LAPW method: 
 
         The linearized augmented plane wave (LAPW) method is among the most accurate methods 
for performing electronic structure calculations for crystals. It is based on the density functional 
theory for the treatment of exchange and correlation and uses e.g. the local spin density 
approximation (LSDA). Several forms of LSDA potentials exist in the literature, but recent 
improvements using the generalized gradient approximation (GGA) are available too. For 
valence states relativistic effects can be included either in a scalar relativistic treatment or with 
the second variational method including spin-orbit coupling. Core states are treated fully 
relativistically. The LAPW method is a procedure for solving the Kohn-Sham equations for the 
ground state density, total energy, and (Kohn-Sham) eigenvalues (energy bands) of a many-
electron system (here a crystal) by introducing a basis set which is especially adapted to the 
problem [9]. 
 

                                                      
 Figure 3.1: Partitioning of the unit cell into atomic spheres (I) and an interstitial region (II) 

This adaptation is achieved by dividing the unit cell into (I) non-overlapping atomic spheres 
(centered at the atomic sites) and (II) an interstitial region. In the two types of regions different 
basis sets are used: 

• Inside atomic sphere t of radius Rt a linear combination of radial functions times 
spherical harmonics Ylm(r) is used (we omit the index t )     

                     

                              

 



Where  is the regular solution of the radial Schrödinger equation for energy El 
(chosen normally at the center of the corresponding band with l-like character) and 
the spherical part of the potential inside sphere t . l (r, El) is the energy derivative of ul 
taken at the same energy El. A linear combination of these two functions constitute 
the linearization of the radial function; the coefficients Alm and Blm are functions of kn 
determined by requiring that this basis function matches (in value and slope) the 
corresponding basis function of the interstitial region  and l are obtained by numerical 
integration of the radial Schrödinger equation on a radial mesh inside the sphere.  

 

• In the interstitial region a plane wave expansion is used     

                                                    

Where kn=k+Kn; Kn are the reciprocal lattice vectors and k is the wave vector inside the first 
Brillouin zone. Each plane wave is augmented by an atomic-like function in every atomic sphere.  
The solutions to the Kohn-Sham equations are expanded in this combined basis set of LAPW's 
according to the linear variation method  

                                                              
and the coefficients cn are determined by the Rayleigh-Ritz variational principle. The 
convergence of this basis set is controlled by a cutoff parameter RmtKmax= 6 - 9, where Rmt is the 
smallest atomic sphere radius in the unit cell and Kmax is the magnitude of the largest K vector. 
 
 
3.2 Details of calculation 
 
All the present calculations were performed by using the Full Potential Linearized Augmented 
Plane Wave (FP-LAPW) method as implemented in the WIEN2k [10, 11] code, within 
generalized gradient approximation (GGA) for the exchange correlation potential corresponding 
to the PBE-GGA (Perdew-Burke-Ernzerhof parameterization of the Generalized Gradient 
Approximation) approximation [12]. For the energy convergence, the RMT (radius of muffin tin 
spheres) value for each atom was fixed as 2.10 a.u. for Cu atom and Mn atom, 1.95 a.u for Al 
atom and 2.00 a.u for In atom and Sn atom. The plane wave was expanded with the criterion     
RMT*Kmax=7 for all the investigated compounds, where Kmax is the plane wave cut-off. The 
potential and charge density were Fourier expanded till Gmax=12. For the electronic properties 
like band structure, density of states and Fermi surfaces we have used 32×32×32 k-mesh within 
Monkhorst-Pack [13] scheme which generates 897 k-points in the irreducible part of the Brillion 



zone (BZ). The densities of states (DOSs) were obtained by the modified tetrahedron method. 
Birch-Murnaghan [14] equation of states was used to fit the total energies as a function of 
primitive unit cell volume to obtain the Bulk modulus and the equilibrium lattice parameter for 
all compounds. The three dimensional Fermi surface were drawn using the Xcrysden molecular 
structure visualization program. The total energy was converged up to 106 Ry. 
 
       Quantum espresso package [15] has been used for the phonon dispersion. In order to deal 
with the possible convergence problem for metals, a smearing technique is employed using the 
Methfessel-Paxton (MP) scheme, with the smearing parameter set to 0.02 Ry for all compounds. 
For the description of the electron-ion interaction the ultrasoft pseudopotential was used. For the 
energy convergence we have used the wave function and charged-density cutoffs of 30 Ry and 
360 Ry, respectively. Phonons are calculated on an 2×2×2 q- point grid with Brillouin zone 
integrations on a 32×32×32 Monkhorst-pack-point mesh. The phonon frequencies and atomic 
displacements were subsequently obtained using the linear response method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 



Chapter 4 
Results and Discussion 
The magnetic properties, band structure, Fermi surface topology and vibrational properties of the 
ferromagnetic Heusler alloys, Cu2MnX (X = Al, In, Sn) have been studied using the first 
principles calculations at ambient as well as under compression.  
 
4.1 Ground state properties: 
To calculate the theoretical lattice parameter and bulk modulus for all the investigated 
compounds, we have used the Birch-Murnaghan [14] equation of states and the values are 
reported in Table 4.1 along with the available experimental lattice parameters. The atomic 
positions are taken as Cu (0.25, 0.25, 0.25), Mn (0.0, 0.0, 0.0), X (0.5, 0.5, 0.5) (X = Al, In, Sn) 
and the corresponding crystal structure is shown in Fig. 4.1. 
 
 
 

 
 

Fig. 4.1 Crystal structure of Cu2MnX (X = Al, In, Sn). 
 

Table 4.1 Ground state properties of Cu2MnX (X = Al, In, Sn). 



PARAMETERS Cu2MnAl Cu2MnIn Cu2MnSn 

aexp  (Å) 5.950 6.200 6.170 
atheo (Å) 5.925 6.177 6.213 
B   (GPa) 126.72 108.15 105.36 

 
From the calculated values we have found the maximum error in the lattice parameter to be 
0.695 % for Cu2MnSn and the minimum error of 0.35 % for Cu2MnIn. The bulk modulus of all 
the compounds are found to be comparatively high indicating all the compounds to be stiffer, and 
again the bulk modulus values decrease when X is replaced by Al, In and Sn respectively.  
 
4.2 Magnetic properties, Electronic structure, density of states and Fermi surface: 
4.2.1 Magnetic Moment: The calculated total magnetic moments of all the three compounds and 
the atomic specific magnetic moments are shown in Table 4.2, along with the corresponding 
experimental values. Our calculated magnetic moments for all the compounds agree quite well 
with the available experimental results. From the Table 4.2, we can see that, the Cu2MnAl has a 
local magnetic moment of 0.046 μB on Cu and 3.34 μB on Mn leading to the total magnetic 
moment of 3.52 μB for experimental lattice parameter, indicating the exchange interaction to be 
more in the case of Mn in comparison to the Cu and is also well evident from the density of 
states as we discuss later. The scenario is same for rest of the other compound Cu2MnIn and 
Cu2MnSn. 
 
Table 4.2. Calculated and experimental values of total and partial magnetic moments (in 
µB) of Cu2MnX, X=Al, In, Sn. 
COMPOUNDS TOTAL MAGNETIC 

MOMENT  (µB) 
PARTIAL MAGNETIC  MOMENT   

(µB) 
 EXPERIMENT CALCULATED Cu Mn X 

Cu2MnAl 3.7 3.52 0.04 3.34 -0.038 
Cu2MnIn 4.0 3.74 0.03 3.53 -0.019 
Cu2MnSn 4.1 3.86 0.05 3.52 -0.0006 

 
4.2.2 Band structure and density of states:  
The band structures for the compounds Cu2MnX (X= Al, In, Sn) are illustrated in Fig.4.2, at the 
corresponding experimental volumes (V0). Our calculated band structure for Cu2MnAl is found 
in good agreement with earlier study of Ref. [16]. It was apparent that the band structures at the 
vicinity of the Fermi level for all the three compounds Cu2MnX ( X= Al, In, Sn,) are similar in 
all high symmetry points at zero pressure for the majority spin and the minority spin band, and is 
well reflected in the Fermi surface, which we discuss in next section. The lowest single valence 
band at nearly -7 eV in majority as well as in minority spin states are mainly due to s orbital  of 
Al, In and Sn and are well screened and remain insensible by exchange interaction between the 
two transition metals Cu and Mn. The bands lying close to the Fermi level are the one’s arising 
from the hybridization of Cu-d states and Mn-d states including a minor contribution from p 



states of X (X =Al, In, Sn). The majority and minority bands for all the compounds are strongly 
metallic in nature with comparatively more in minority band for Cu2MnIn, Cu2MnSn than the 
majority band, whereas we have seen the metallization to dominant by majority band for 
Cu2MnAl over minority band and is well confirm from the density of states (Fig. 4.3). Again 
when we compare the band structure of In containing compounds with Sn containing compound, 
we can see the band filling in the case of Cu2MnSn, due to an electron extra in the case of Sn in 
comparison with In. The total spin polarized density of states (DOS) for all the investigated 
compounds are illustrated in Fig. 4.3, along with the l and m projected DOS from each atom. Fig 
4.3, signifies the strong hybridization between the Cu-d, Mn-d with small contribution of X-p at 
the vicinity of Fermi level. Apart from this, we can see the exchange splitting between majority 
and minority spin and crystal field splitting between participating atom’s deg and dt2g orbitals. It 
is evident that the exchange splitting is dominate in Mn atom when compared to Cu atom, which 
implies Mn atom to contribute more for the total magnetic moment and it can be seen from the 
magnetic moment as reported in the Table 4.2. In addition, it is also found that the crystal field 
splitting between deg and dt2g orbitals of Mn is more than the Cu as shown in Fig. 4.3. Our 
calculated density of states for Cu2MnAl also agree well with the earlier study of Ref. [17]. 
 

                            
 
 
 
 
 
 
 
 
 



                       

                            
   
Fig. 4.2: Band structures of Cu2MnX (X = Al, In, Sn) at ambient, left panel for the majority 
band and right panel for minority band. 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 



 
Fig. 4.3: Density of states for Cu2MnX (X = Al, In, Sn). 

 
4.2.3 Fermi surface: 
 The Fermi surfaces of all the compounds for majority as well as minority spin are shown in Fig. 
4.4 and 4.5, respectively. At ambient condition for the majority spin band, we find the Fermi 
surfaces to be almost similar for all the compounds indicating the strong hybridization of Cu-d 
and Mn-d orbital. Among all surfaces first Fermi surface for the majority band is hole like 
centered at Γ-point in the Brillion zone, having a shape of roundish octahedron and second, third 
Fermi surface have mixed character i.e. hole as well as electron like open sheet and is well 
evident from the band structure in Fig. 4.2, which shows three bands to cross at the 
corresponding symmetry point on the Fermi level in the majority band for all the compounds. 
For the minority spin we find two Fermi surface for Cu2MnAl, and Cu2MnIn, but for Cu2MnSn 
we find only one Fermi surface. We observe Fermi surface to be electron like pocket at X point 
as well at K point for all the compounds (see Fig. 4.4). When we compare the Fermi surface of 
In and Sn containing compounds we can see the electron pocket to be larger in size for Cu2MnSn 
in comparison to the In containing compounds due to band filling, as we discussed earlier in the 
band structure. Having an extra electron in the case of Sn leads to opening of the electron pocket, 
which is centralized and closed at X point in minority spin FS for the other compounds as shown 
in Fig. 4.5. Our calculated Fermi surface for Cu2MnAl is quite similar to earlier report of Ref. 
[15].                                   
 
 
 
 



Fig. 4.4: Majority band Fermi surface of Cu2MnAl (upper panel), Cu2MnIn (middle panel) 
and Cu2MnSn (lower panel) 



Fig. 4.5: 



Minority band Fermi surface of Cu2MnAl (upper panel), Cu2MnIn (middle panel) and 
Cu2MnSn (lower panel). 
4.3 Effect under compression: 
The variation of magnetic moment with the pressure is presented in Fig. 4.6, along with local 
magnetic moments of Cu and Mn site. It is observed that total magnetic moment decreases with 
pressure. Under compression, magnetic moment is found to be increased for Cu but the overall 
decrease in the total magnetic moment is mainly due to the Mn atom in all these investigated 
compounds and is also revealed from this figure. In addition, we have also calculated the DOS 
under pressure and is plotted in Fig.4.7, which indicates that, for majority spin there is no 
significant change in density of states under compression and the Fermi surface for the same spin 
are also inert to compression, whereas for minority spin it is the Mn atom which play a vital role 
in inducing the variation of total density of states but the behavior of Mn atom is different in 
different compounds. In addition, for all these investigated compounds Cu2MnX (X = Al, In, Sn) 
we observe Fermi surface to be unaltered under compression for the majority spin, with the 
linear variation of the N(EF) as shown in Fig.4.7. But when we analyze the minority band Fermi 
surface we find the topology to be changed with non-monotonic variation of the density of states. 
For the minority spin, we observe the first Fermi surface, hole like character for Cu2MnAl and 
Cu2MnIn at Γ point to vanish under compression around V/V0 = 0.90 and V/V0 = 0.80 for 
Cu2MnAl and Cu2MnIn, respectively. The second Fermi surface, which is common in all three 
investigated compounds, the electron concentration increasing at K and X symmetry points and 
the Fermi Surface gets merged as shown in Fig.4.8. These can be well observed from band 
structure, Fig.4.9, where we can see the band to move down particularly at K symmetry point 
leading to the increase in the concentration of electron at K symmetry point under compression. 
Besides this in the case of Cu2MnSn, the Fermi surface at around (V/V0) = 0.80 shows a strange 
change, which might be due to  an extra valence electron compared to Al and In and might also 
be due to the presence of lattice instability. First, we have seen a new extra electron like Fermi 
surface to appear due to dipping of the band down to the Fermi level at symmetry point W    
(Fig. 4.8(e)), and secondly, the complicated surface topology is found to change slowly and 
looks similar to the Fermi surface of majority spin band FS of Cu2MnSn, which is well evident 
from the Fig 4.4(h). The corresponding FS under compression are shown in Fig. 4.8(d). 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.4.6: Variation of magnetic moment under compression for Cu2MnX (X = Al, In, Sn). 

 



 

          
Fig. 4.7: Variation of the total density of states (N(EF)) and the atomic density of states at 
the Fermi level for Cu2MnX (X = Al, In, Sn), left panel for majority spin and right panel 
for minority spin. 

 



 
 
Fig.4.8: Fermi surface under compression (a) Cu2MnAl at V/V0=0.9, (b) Cu2MnAl at V/V0= 
0.8, (c, d) Cu2MnSn at V/V0= 0.9 and 0.8 respectively (e) New sheet at V/V0= 0.8 in 
Cu2MnSn. 

 
 
 
 
 

 

 

 

 

 



           

 

 

 

Fig. 4.9: Band structure of Cu2MnX under compression for minority spin. 

 

 

4.4 Vibrational properties: 



In addition to this we have also calculated 
the phonon dispersion along the high symmetry direction for all the compounds to ensure the 
dynamical stability of these compounds. From the calculated dispersion plots as shown in 
Fig.4.10, we find the imaginary mode with negative slope only in the case of Cu2MnSn, 
indicating the compounds to be dynamical unstable at ambient as well as under compression, 



whereas  Cu2MnAl and Cu2MnSn is found to be dynamically stable at ambient as well as under 
compression. In previous study the L21 phase of the Cu2MnAl was speculated to be unstable, but 
we find the Heusler phase to be stable in the case of Cu2MnAl, which further needs experimental 
clarification. The lattice instability in the case of the Cu2MnSn might induce the observed 
unusual Fermi surface topology change in the minority spin as we discussed in the previous 
section. 

 

    

 

 

 

 

 

 

 

 

Fig. 4.10 Phonon dispersion along the high symmetry directions for Cu2MnX (X = Al, In, 
Sn) at ambient and under compression. 

 

Chapter 5 
Conclusion 
The first principles study of electronic structure, density of states, Fermi surface and vibrational 
properties of the Cu2MnX (X = Al, In, Sn) has been performed with full potential linearized 
augmented plane wave method at ambient as well as under compression. The exchange splitting 
is found to be more in the case of the Mn, resulting in the major contribution towards the total 
magnetic moment from the Mn and is also well evident from the density of states. The observed 
strong hybridization of Cu-d and Mn-d orbital in all compounds is reflecting well in the majority 
band FS, where we have found the majority FS topology to be almost similar, whereas under 
compression at nearly V/V0 = 0.75, the minority band Fermi surface of Cu2MnSn is found to be 
similar to that of majority band of Cu2MnSn and which might be due to the lattice instability of 
Cu2MnSn. From the phonon dispersion relation we have found the lattice instability in the case 
of the Cu2MnSn with negative slope at Γ at ambient as well as under compression, whereas for 
other compounds we have found the positive slope at the same point with all positive frequency 



under all compression. The Fermi surface topology is found to be unaltered for all the 
investigated compounds in the majority band under compression, which correlates well with the 
linear variation of the density of states at the Fermi level. At the same time the Fermi surface 
topology change is observed in the minority spin band with non-monotonic variation of the 
N(EF).  
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