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Abstract 

 

The feasibility of friction stir welding (FSW) of Al 5083 and Al 6082 sheets using 

different pin profiles: straight cylindrical (Cy), threaded cylindrical (Th), triangular 

(Tr) and square (Sq) are studied, as cylindrical and threaded cylindrical generate 

regular stirring action whereas, triangular and square pin profiles produce pulsating 

stirring action in the flowing material due to their flat faces. Further in-depth 

investigations are made to understand the effects of these tool pin profiles on 

microstructures, hardness, crystallographic texture and tensile strength of the welded 

specimens. All specimens showed minimum hardness values in their heat affected 

zone in the AA 6082 side and they fractured as well in this region during the tensile 

tests. Having comparable microstructures and hardness values in all the specimens, 

only the threaded cylindrical joined specimen showed the lowest tensile strength due 

to the presence of maximum <001>tensile direction texture component in its heat 

affected zone.  

 

There are varied applications of aluminum alloys (for e.g. Al 5083 and Al 6082: 

marine, automobile, and aeronautical applications). For the application point of view 

the conventional welding involving liquid state joining of two dissimilar aluminum 

alloys is not desirable because of poor weldability due to difference in chemical, 

mechanical, thermal properties of welded materials and formation of hard and brittle 

intermetallic phases in large quantity, leading to decrease in mechanical strength of 

the welded joint. 

To overcome this problem, there exists a relatively new welding technique known as 

friction stir welding (FSW), an energy efficient and eco-friendly solid state joining 

process invented by The Welding Institute (TWI) of Cambridge, England in 1991. 

FSW appears to offer a number of advantages over conventional fusion welding 

techniques, such as no need for expensive consumable filler materials, good 

mechanical and metallurgical properties of the resultant joint, absence of 

solidification crack, no porosity, low distortion and less energy consumption. 
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Nomenclature 

 

FSW        -    Friction Stir Welding 

TWI        -    The Welding Institute 

TMAZ     -    Thermo mechanically Affected Zone 

HAZ        -    Heat Affected Zone 

Cy           -    Cylindrical 

Th           -    Threaded  

Tr            -    Triangular  

Sq            -    Square  

NC          -    Numerical Control 

CNC        -    Computer Numerical Control 

MTS        -    Material Testing System 

UTS         -    Ultimate Tensile Strength 

OIM         -    Orientation Image Microscopy 

SEM         -    Scanning electron Microscopy 

EBSD        -   Electron Backscatter Diffraction 

IPF           -    Inverse Pole Figure 

TD            -   Transverse and Tensile Direction  

ND            -   Normal Direction 

WD           -   Welding direction 
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Chapter 1 

 

Introduction 

Metal joining:  

Metal joining is a method to join two or more materials by the help of some external means. 

There are huge requirements of metal joining because of limitation to manufacture a large or 

complicated work piece design by conventional manufacturing processes such as casting, 

forging, rolling, extrusion etc. There are many methods exist to join materials as shown in 

Figure 1.1. 

 

 

  

                Welding                                                                       Soldering/Brazing 

 

                                                 Metal joining process                      

 

              

           Fasteners                                                                        Adhesive bonding 

 

Figure 1.1: Different of methods of metal joining [1] 

 

Welding: 

 Welding is a fabrication process that joins materials, usually metals or thermoplastics, by 

causing coalescence. Welding is one of the absolutely necessary and widely used 

manufacturing processes in any manufacturing/production industries. The main aim of 

welding technology is to achieve the optimal condition for defect free joint.  

There exist mainly two types of welding; one is conventional fusion welding and other is 

solid state welding. In fusion welding a heat source is used to melt the material and after 

melting pressure is applied to join the materials but solid state welding is performed below 

the work piece’s melting temperature such as friction stir welding (FSW). All types of 

welding processes are mentioned in Figure 1.2.  
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Figure 1.2: Flow chart of welding process [2] 

There are general problems associated with fusion welding and these are [3,4]: 

 Decline of mechanical properties due to melting & re-solidification.  

 Presence of Hot cracking, solidification cracking and porosity.  

 Inclusions of Hydrogen, Oxygen and Nitrogen from surrounding. 

 Requirement of expansive consumable filler material.  

 Application or use of flux and Shielding gas.    

 Energy Consumption is high 

 Environmental problems because of flue gases. 

 

Types of Welding Process 

Fusion welding Solid State welding 

Ultrasonic 
welding 

Pressure 
welding 

Roll 
welding 

Explosive 
welding 

Forge 
welding 

Friction 
welding 

Friction Stir welding Linear friction welding Rotary Friction welding 
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Certainly, solid state welding is advantageous over the above given reasons of fusion 

welding. Since my M.Tech. thesis work is on Friction stir welding (FSW), a solid state 

welding process so now onwards, FSW will only be explained in detail. 

 

Friction Stir Welding: 

Friction stir welding (FSW) is an emerging, energy efficient, attractive and eco-friendly 

solid state welding process invented in 1991 in England [4]. FSW appears to offer a number 

of advantages over conventional fusion welding techniques, such as no need for expensive 

consumables filler materials, good mechanical and metallurgical properties of the resultant 

joint, absence of solidification crack, no porosity, low distortion and less energy 

consumption [5]. In the beginning this emerging welding technique has been applied for 

aluminum [4] but later on it has been used for joining of magnesium [6], titanium [7], 

copper [8], and ferrous alloys [9] also. 

 

Principle of Operation: 

A non-consumable cylindrical-shoulder tool, with a threaded/unthreaded probe (pin) is 

rotated at a constant speed and is inserted/plunged in-between the two separate work piece 

sheets or plates to be joined and subsequently fed at a constant rate along the joint line 

shown in figure 1.3.  

The tool serves mainly three functions: (i) Softening of material arising from heating of the 

work piece, (ii) movement of material or plastic deformation of material to produce the 

joint, (iii) forging of the hot material behind the tool shoulder [4-5]. Heat is generated within 

the work piece and tool due to friction between the rotating tool shoulder and pin with work 

piece and by severe plastic deformation of the work piece materials. Materials become 

soften around the pin and welding occurs while traversing along the welding direction. The 

main function of the non-consumable rotating tool pin is to stir the plasticized metal and 

move the same behind it to have sound (or defect free) joint [10] 
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(i)                                                      (ii) 

   

Figure 1.3: FSW processing diagram. Ref. (i) http://katjakovanen.com/Slavic-force-and-

friction-experiments-for-kids/ . (ii) Our own FSW experiment. 

 

Advantages or Benefits of FSW  

Due to the absence of parent (base) metal melting, the new FSW process is observed to offer 

several advantages over conventional fusion welding. Key benefits of friction stir welding 

with respect to the Metallurgical, Energy and Environment are listed below [5,11,12] 

 

Metallurgical benefits  

 Solid state joining process.   

 Excellent mechanical and metallurgical properties in the joint region. 

  Low distortion.  

 Fine microstructure: Grain refinement process takes place and fine equiaxed grain 

is obtained. 

 Absence of Hot cracking, solidification cracking and porosity.  

 Residual stress is low. 

 No loss of alloying elements.   

 Good dimensional stability and repeatability.   

 Dissimilar materials/alloys can be welded. 

 

 

Energy benefits  

 Improved materials-use (e.g., joining different thickness) allows reduction in 

weight.  
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  Decreased fuel consumption in light weight aircraft, automotive and ship 

applications.  

 

Environmental benefits  

  Expensive consumable materials such as filler, fluxes, and shielding gas are not 

required.  

  No surface cleaning required.  

  Eliminate grinding wastes.    

 No harmful emissions. 

 

 

There are certain limitations of FSW also and these are:  

 Exit hole left when tool is withdrawn. 

 Insufficient weld temperature, weld material is unable to accommodate the 

extensive deformation result in long, tunnel like defects. 

 Large down forces required with heavy-duty clamping necessary to hold the plates 

together. 

 Expensive equipment. 

 

Distinct Regions of Weld Zones  

Weld zones of FSW is divided in four different regions [13,16] as shown in figure 1.4. 

Weld nugget: In the central region of the weld which is fully recrystallized area and this 

region occupies fine equiaxed grains and, sometimes called the stir zone, refers to the zone 

previously occupied by the tool pin.  

Thermomechanically affected zone (TMAZ): In this region, the FSW tool has plastically 

deformed the material, and the heat from the process will also have exerted some influence 

on the material and there is generally a distinct boundary between the recrystallized zone 

(weld nugget) and the deformed zones of the TMAZ. 

Heat-affected zone (HAZ): In this region, material experience changes in microstructure 

and material properties from the heat of welding, but not from plastic deformation.  

Unaffected material or base metal: Material may experience a thermal cycle from the 

weld but is unaffected in terms of structure or material properties. 
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(i)                                                                 (ii) 

Figure 1.4: Different regions of welded zones. Ref. (i) http://www.twi.co.uk, (ii) 

http://materialteknologi.hig.no/Lettvektdesign/joining%20methods/joining-welding-

friction%20stir%20weld.htm 

 

Welding Parameters and Their Role in Welding: 

There are mainly three factor responsible for sound weld joint as shown in Figure 1.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Factor responsible for a defect free joint 

Factors responsible 

Sufficient Hear generation Material flow Forging action 

   Pin Profile 

Rotation and welding speed Shoulder Dia.     Pin dia. 

Plunge depth       Tilt angle 
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Heat generation: 

During FSW, heat is generated within the work piece and tool due to friction between the 

rotating tool shoulder and pin with work piece and by severe plastic deformation of the 

work piece material. Heat generation is influenced by the weld parameters, weld tool 

geometry, thermal conductivities of the work piece materials, and backing anvil. Welding 

parameters responsible factor for heat generation are rotation and welding speed, shoulder 

diameter, plunge depth. Generally hot welds are produced with high rpm and low travel 

speed, and cold welds with low rpm and high travel speeds. For defect free weld we need 

sufficient heat generation. If the material is cold then voids or other flaws may be presented 

in the stir zone and in extreme cases the tool may break. At other end of the scale excessive 

heat input may be detrimental to the final properties of the weld [12,14]. 

 

 Mainly frictional heat is generated between tool shoulder and work piece but some amount 

of  heat also generate between the pin tool and the work piece due to friction or plastic 

deformation, depending on whether slide or stick conditions prevail at the interface. The 

amount of heat input from deformational heating around the pin tool has been estimated in 

the range from 2% to 15%. 

 

Material Flow: 

The localized heating softens the material around the pin and combination of tool rotation 

and translation leads to movement of material from the front of the pin to the back of the 

pin. However, the material flow behavior is predominantly influenced by the FSW tool 

profiles, FSW tool dimensions and FSW process parameters. Weld parameters, coupled 

with the pin tool design and materials, control the volume of metal heated, of which a 

portion is then swept by the mechanical working portion of the process [15]. 

Tool Rotation speed: 

Tool rotation speed means how fast the tool is rotating. This welding parameter plays a 

crucial role to get a defect free joint. Tool rotation speed decides how much heat will 

generate during welding. . In general, if rotation speed is increased or traverse speed is 

decreased then heat input will increase and vice versa.  If rotation speed is high it create 

void in the upper surface due to release of stirred material in the FSW zone but if rotation 

speed is less proper mixing will not take place due to lack of stirring action by tool pin.  
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Welding or Traverse speed: 

Welding speed means how fast tool is moving along the joint line during welding. Welding 

speed also plays an important role in productivity of the welded joints. When the tool 

traveled at higher speeds, heat generation is less, which creates voids due to poor 

consolidation during forging of the welded materials. Generally, low transverse or welding 

speed results a weld with a higher strength. 

Tool Design and its role in welding: 

The design of the tool is a crucial factor for improvement of both the quality of the weld or 

resultant joint strength and the maximum possible welding speed cause progress in 

productivity. Tool design mainly consists of two parts shoulder and pin. During welding, 

major of heat is generated due to friction between shoulder and work piece during plunging 

of shoulder inside of work piece. This heat is help to soften the material and after softening, 

tool pin play a crucial role in welding. The primary function of the non-consumable rotating 

tool pin is to stir the plasticized metal and move the same behind it to have good joint. Pin 

profile plays a crucial role in material flow and in turn regulates the welding speed of the 

FSW process [16].  

The pin generally has cylindrical plain, frustum tapered, threaded and flat surfaces. Pin 

profiles with flat faces (square and triangular) are associated with eccentricity. This 

eccentricity allows incompressible material to pass around the pin profile. Four different pin 

profiles are shown in figure 1.6. 

 

 

Figure 1.6: Different pin profiles 

Eccentricity of the rotating object is related to dynamic orbit which is the part of the FSW 

process. In addition, the triangular and square pin profiles produce a pulsating stirring action 

in the flowing material due to flat faces [17]. 

The square pin profile produces 60 pulses/s and triangular pin profile produces 45 pulses/s 

when the tool rotates at a speed of 900 rpm. There is no such pulsating action in the case of 

cylindrical, tapered and threaded pin profiles. The higher number of pulsating action 
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experienced in the stir zone of square pin profile produces very fine microstructure and in 

turn yields higher strength and hardness [3,12]. 

 

Welding Forces: 

There are a number of forces that act on the tool during welding and are given below [16]: 

(i) Downwards force:  A downwards force is essential to maintain the position of 

the tool at or below the material surface. This force is increase when tool is 

plunged into the materialor mainly when shoulder touches the work piece.  

(ii) Traverse force: The traverse force acts parallel to the tool motion and is 

positive in the welding direction. Since this force arises as a result of the 

resistance of the material to the motion of the tool 

(iii) Lateral force: The lateral force may act perpendicular to the tool traverse 

direction and is defined here as positive towards the advancing side of the weld. 

(iv) Torque:  Torque is required to rotate the tool, the amount of which will depend 

on the downward force and friction coefficient (sliding friction) and/or the flow 

strength of the material in the surrounding region (sticking friction). 

 

Plunge Depth: 

Plunge depth is a crucial parameter for ensuring weld quality. The plunge depth is defined 

as the depth of the lowest point of the shoulder below the surface of the weld plate and this  

helps to ensure sufficient forging of the material at the rear of the tool [18] as shown in 

figure 1.7.  

 

Figure 1.7: Plunge depth in FSW process. Ref. 

[http://sttechnica.blogspot.in/2011/04/weldment-technology-friction-stir.html] 
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Tool Tilt: Tilting the tool by 2-3 degrees, such that the rear of the tool shoulder is lower 

than the front and it has been found to assist this forging process [18]. Tilting of tool is 

shown in figure 1.8. 

 

Figure 1.8: Schematic diagram of FSW. [http://www.aws.org/itrends/07-02/feature2.html  

 

Dwell: 

This is the time when tool is only rotating at a constant speed into the work piece material to 

generate a sufficient heat to soften the material before it to move in the direction of welding  
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Chapter 2 

Literature Survey on FSW of 

Aluminum Alloys: 

 

 Before the invention of FSW in 1991, it was difficult to weld some of aluminum alloys 

with conventional fusion welding as it gives poor fatigue, fracture strength of these 

aluminum alloys due to poor solidification microstructure and porosity in the fusion zone. 

These alloys have limited application due to their poor weldability and fusion welding is not 

attractive joining process for aluminum alloys. To overcome this problem The Welding 

institute invented a new joining technique with a name Friction Stir Welding in 1991 in 

Cambridge, England. A US patent for FSW, # 5,460,317, was filed in November 1992 with 

W. H. Thomas et al as inventors, assigned to TWI [4, 16]. 

 

Friction Stir Welding is an emerging, energy efficient and ecofriendly solid state joining 

process. Solid state joining means welding occurs below the melting temperature; generally 

temperature reach 80% of the melting temperature because of this solid state nature a high-

quality weld is created. This characteristic greatly reduces the ill effects of high heat input, 

including distortion, and eliminates solidification defects. Friction stir welding also is highly 

efficient, produces no fumes, and uses no filler material, which makes this process 

environmentally friendly [16]. 

 

Initially this joining process applied on aluminum alloys but the rapid development of the 

FSW process in aluminum alloys and its successful implementation into commercial 

applications has motivated its application to other metals such as magnesium (Mg) , copper 

(Cu), titanium (Ti), ferrous alloys even thermoplastics. However, there is a high challenge 

for welding of high temperature materials such as Titanium and steel because of 

requirement of efficient tool material for welding [4-9].  

 

Welding of two dissimilar aluminum alloys by conventional fusion welding is not desirable 

because of poor weldability due to difference in chemical, mechanical, thermal properties of 

welded materials and formation of hard and brittle intermetallic phases in large quantity, 
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leading to decrease in mechanical strength of the welded joint [19]. So this problem is 

overcome by the invention of Friction Stir Welding because FSW is solid state joining 

process so welding is mainly occurs by deformation of materials below melting temperature. 

 

Table given below shows the overview of the welding of two dissimilar alloys or metals by 

FSW [5]. 

Table 2.1 

 

 

In FSW of dissimilar aluminum alloys, Peel et al. [20] used only one kind of pin profile 

(cylindrical threaded) for welding and this paper help to reach the optimization parameters 

and show that the possibility of the welding of two dissimilar aluminum alloys (AA 5083-

AA 6082). They noticed minimum hardness is the location of fracture in the tensile test and 

this is the heat affected Zone (HAZ) and minimum hardness is because of coarsening of 

precipitate due to over aging.  

 

In the FSW studies with different profiles, Elangovan et al. [17] used five kind of different 

pin profiles such as straight cylindrical, cylindrical taper, cylindrical threaded, triangular, 

square etc. on AA 6061 and observed the effect of all five different pin profiles. 

 In another investigation on the effect of tool shape on mechanical properties and 

microstructure of aluminum alloys by H. Fuji et.al. [21]. They used three types of pin 
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profiles straight cylindrical, threaded cylindrical and triangular prism shape probes to weld 

three types of aluminum alloys 1050-H24, 6061-T6 and 5083-O.    

In FSW of dissimilar aluminum alloys, R.PALANIVEL et al. [22] used five types of tool 

pin profiles straight cylindrical, threaded cylindrical, square, tapered square, and tapered 

octagon and investigate the effect on mechanical and metallurgical properties of dissimilar 

AA6051- AA5083H111.  

 

                                                                         

Objectives 

In this study, authors studied the feasibility of FSW joining of Al 5083 and Al 6082 sheets 

using different pin profiles: straight cylindrical (Cy), threaded cylindrical (Th), triangular 

(Tr) and square (Sq) and investigations are performed on the welds to study the pins 

profiles effects on microstructure, hardness, texture and tensile strength of welded joint 

dissimilar Al alloy (AA5083 and AA6082). 
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Chapter 3 

Equipment’s Used 

3.1 Lathe Machine: 

A lathe Machine (as shown in figure 3.1) is a machine tool which rotates the work piece on 

its axis to perform various operations such as cutting, knurling, drilling, or deformation with 

tools that are applied to the work piece to create an object which has symmetry about an 

axis of rotation. I used for the purpose to fabricate cylindrical shoulder tools.  

 

 

Figure 3.1: Lathe Machine used for tool fabrication 

 

3.2 Cut Saw: 

A saw is a tool that uses a hard blade, or wire with a toothed edge to cut soft 

materials as shown in figure 3.2. We used electricity powered saw to cut the 

required size of work piece from a large sheet. 

 

Figure 3.2: Saw used for cutting work piece from 

sheet.[http://www.mcfeelys.com/tech/ftplungecutsaws.htm] 
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3.3 Milling Machine: 

A milling machine is a machine tool used to machine solid materials as shown in figure 

3.3. The milling machine removes metal with a rotating cutting tool called a milling cutter. 

Milling machines can be used for boring, slotting, circular milling dividing, and drilling. I  

used this machine for sample facing and fabrication of tool pin profiles by the help of 

indexing. This machine can also be used for cutting keyways, racks and gears and for fluting 

taps and reamers. 

 

 

                 

(a)                                                                               (b) 

Figure 3.3: Milling Machine used to prepare sample and tool (a) NC milling (IIT Hyderabad). 

(b) Manual control in IISc Banglore 

3.4 Belt emery: 

Belt emery is a mechanical grinding machine to remove the extra scrap which came after the 

milling of work piece sample. This machine consists of a belt of abrasive material as shown 

in figure.  
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Figure 3.4: Belt emery Machine used for grinding 

 

3.5 ETA Friction Stir Welding (FSW) Machine: 

This machine provides a rotation speed in the range between 70rpm to 3000rpm and 

traverse speed range between 0.1mm/min to 2000mm/min with up to 100KN axial force as 

shown in figure 3.5. Generally, FSW machines have vertical axis like as milling machine 

but we used horizontal axis CNC FSW machine. In this machine we can control three axis 

moments according to our requirement to get an appropriate condition for welding. 

 

 

Figure 3.5: Friction Stir Welding (FSW) Machine 

 

3.6 Cutting Machine: 

Secotom (precision cutting) performs precise and fast deformation-free cutting for all types 

of materials like metals, ceramics, biomaterials, minerals as shown in figure 3.6. I used this 

machine to transverse section of the welded sample of dimension of 50 mm x10mm x6 mm.   



17 

 

Figure 3.6: Precise Cutting Machine 

 

3.7 Grinding machine: 

Grinding machine requires SiC grinding papers (180-500 Grit) which are rotated on a wheel 

(~300-800 rpm) and the sample is pushed face down while cooled and cleaned with water as 

shown in figure 3.7. Small SiC particles are glued to the grinding paper so these are also 

sometimes called fixed abrasives. While rotated these particles slowly remove chips from 

specimen surface.  

 

 

 

Figure 3.7: Mechanical grinding machine 

 

3.8 Polishing machine: 

This polishing machine is same as grinding except the abrasive particles are loose and no 

water cooling is performed as shown in figure 3.8. Diamond suspension having particles 1 - 
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9μm diameter are used. This is an automatic polishing machine in which diamond 

suspension particles is supplied automatically according to the need. 

 

 

 

Figure 3.8: Automatic polishing machine 

3.9 Electropolishing and Etching: 

STRUERS LectroPol-5 ® machine as shown in figure 3.9. is used for 

electropolishing of the cross section of the welded sample for EDSB. The FSW 

specimens were electropolishing with a mixture of 30 pct nitric acid in methanol, for 15 to 

25 seconds at 12V  and etched with Keller’s regent.  

 

 

Figure 3.9: Electro polishing machine 

 3.10 Optical Microscope: 

The optical microscope, which often referred to as the "light microscope", is a type 

of microscope which uses visible light and a system of lenses to magnify images of 
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small samples. I used hot stage automated upright microscope (Leica DM 6000M) as 

shown in figure 3.10.  

 

Figure 3.10: Optical microscope 

3.11 Vickers Micro hardness: 

Micro hardness testing of metals, ceramics, and composites is useful for a variety of 

applications for which 'macro' hardness measurements are unsuitable. The term micro 

hardness test usually refers to static indentations made with loads not exceeding 1 kgf. Dura 

Scan 20 Emco- Test Vickers hardness with diamond pyramid shaped indenter was used and 

is shown in Figure 3.11. 

 

 

Figure 3.11: Vickers microhardness  

3.12 Electron Backscattered Diffraction (EBSD) attached in Scanning Electron 

Microscopy (SEM): 

EBSD is a microstructural-crystallographic characterization technique used to examine the 

crystallographic orientation of crystalline materials, used to determine their texture or 
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preferred orientation. I performed this on FEI Quanta-200HV SEM as shown in figure 3.12. 

A source of electron beam (from few 100 volts to 30 eV) when focused on a thick 

crystalline material, electron backscattered diffraction pattern also called Kikuchi pattern is 

generated which is then acquired by the camera and matched with the computer generated 

Kikuchi pattern of the input crystal system specification by the software and the crystal 

orientation is determined. When this step is repeated after regular interval of distance while 

scanning over the specimen surface, an orientation image map containing variety of 

crystallographic details is obtained.   

 

Figure 3.12: SEM-EBSD 

 

3.13 MTS Tensile Machine: 

The MTS Load Frame with hydraulic operating machine is utilized for tensile, 

compressive and fatigue loading and is shown in Figure  3.13. Welded specimen of dog 

bone shape is fixed in the clamping device. 

 

Figure 3.13: MTS Tensile machine 



21 

Chapter 4 

Experimental procedure 

 

Work piece materials: 

1. Work piece dimensions: Two dissimilar aluminum plates (AA 5083 and AA 6082)  

of thickness 6mm, have been cut into required size of (150 mm x 50 mm) by power 

saw as well as NC milling for face milling to remove extra scraps from work piece. 

 

2. Composition and Mechanical Properties of Al alloys: The chemical composition 

and measured mechanical properties are given in Table 1. 

Table 4.1. The chemical composition and mechanical properties of Al alloys 

Alloys Si 

(wt%) 

Mn 

(wt%) 

Mg 

(wt%) 

UTS 

(MPa) 

 0.2 %          

yield 

(MPa) 

Elongation 

to 

Failure % 

Hardness 

(HV) 

5083 0.4 0.4-

1.0 

4.0-4.9 256 203        8.96 75 

6082 0.7-

1.3 

0.4-

1.0 

0.6-1.2 328 315 18.11 110 

 

 

Tool design: 

1. Tool material: Non consumable tool material for fabrication of weld joint is H13 

tool steel which is selected from variety of other tool materials like high speed steel, 

tool steel, high carbon high chromium steel (HCHCr), carbide, tungsten etc. because 

of its high hardness, high strength, tough, good oxidation resistance, low thermal 

conductivity, easy in manufacturing process, low cost and easy availability in the 

market.  

 

2. Different tool pin profiles: Fabrication of different pin profiles is done by lathe 

and NC milling machine by using indexing and are shown in figure 2. After the 

manufacturing of all, tools are oil hardened up to a hardness of 48HRc to 52HRc. 
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Figure 4.1: different pin profiles; (a) Straight cylindrical. (b) Threaded. (c) Triangular (d) 

Square 

 

 

3. Tool dimensions and welding process parameters: Tool dimensions and welding 

process parameters are given in Table 3. Tool have a shoulder diameter of 18mm 

and the diameter of the two column pins and the diameters of circumscribed circle 

of the triangular and square were 6mm and for threaded pin, a right hand 0.6 mm 

pitch thread is used and pin length of 5.5 mm.  

 

 

Table 4.2.Optimized welding parameters used for all pin profiles 

Pin profile used Rotatio

n speed 

(rpm) 

Welding 

speed 

(mm/min) 

Shoulde

r Dia. 

(mm) 

Pin 

Dia 

(mm) 

Pin 

length 

(mm) 

Tilt 

angle 

(deg) 

Plunge 

depth 

(mm) 

Cylindrical (Cy), Thread 

(Th), Triangular (Tr), 

Square (Sq) 

 

900 

 

70 

 

18 

 

6 

 

5.5 

 

2 

 

0.2 

 

                                                   

ETA Friction Stir Welding (FSW) machine is used to weld work piece sheet or plates by 

different pin profile. This machine provide a rotation speed in the range between 70 rpm to 

3000 rpm and traverse speed range between 0.1mm/min to 2000mm/min with up to 100 KN 

axial force. Optimized welding parameter for welding are achieved by visual inspection and 

optical microscopy observations of each FSW joint and try to get sound (defect free) joint. 

The welded sample is cut on the transverse section perpendicular to the welding direction by 
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precision cutting machine (Secotom) of the dimension 50 mm x 10 mm x 6 mm for hardness 

and microstructural measurement. Further grinding is performed on the transverse section 

by 800 and 500 Grit SiC paper and fine polishing by 9µm, 6µm, 3µm, 1µm diamond 

colloidal solutions followed by etching and electropolishing according to the requirements. 

The FSW specimens were etched with Keller’s regent and electropolishing with a mixture 

of 30% nitric acid in methanol, for 15 to 25 seconds at 12V. Their optical images were taken 

using optical microscopy with a magnification of 5X. 

 

First of all hardness is measured perpendicular to weld line in the transverse section at the 

middle of thickness by Vickers hardness with a load of 0.3 kg at regular  interval of 1mm. 

After that optical images were taken on the transverse section of the specimens and several 

zones like interface or nugget or stir zone, Thermo-mechanically affected zone (TMAZ), 

heat affected zone (HAZ), and base material were identified. Further microstructural 

characterization using Scanning Electron Microscope- Electron Backscattered Diffraction 

(SEM-EBSD) is performed at the various locations of the welded samples such as at 

Nugget, (TMAZ), (HAZ), and base materials.    

 

Orientation Image Microscopy (OIM) is used for microstructural evaluation for pole figures, 

inverse pole figures and average grain size (obtained by the area fraction method 

determination) is determined. 

Dog bone shaped tensile test specimens are prepared perpendicular to the welding direction 

by the help of wire EDM and tested is on MTS machine with a strain rate of 0.001/sec.  
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Chapter 5 

Results 

        

Variation in torque, downward force and welding position vs time: 

Figure 5.1 given below shows, how downward force, torque, x- and z- position varies 

according to time during welding.  

Variation in downward force and torque: As pin started to plunge in between the work 

piece, downward force and torque increased due to resistance of the material to deform but 

as pin reached inside the material, it become soft then downward force and torque decreased 

in some amount but as tool shoulder touch the work piece force and torque again increased 

and after some time material become soft and force and torque become constant for the 

remaining time.  

 

 

 

Figure 5.1: Variation in torque, downward force and welding position vs time: 

 

 

Variation in x and z- axis positions: 

At first all tools start moving down in z-direction for plunging and after the dwell time the 

tool moves in x- direction for welding, which is called welding direction. 

 

 

-10

-5

0

5

10

15

20

25

0 20 40 60 80 100

downword force

Torque

X-axis position

Z-axis position

Time 



25 

Orientation Image Microscopy (OIM) images and Inverse pole figure (IPF) of 

base materials: 

The orientation images of the two base materials on plane perpendicular to welding 

direction with their inverse pole figures of the base materials parallel to the tensile direction 

(TD) with the scale bar are shown in Figure 5.2 (a) and (b) respectively.  

 

Base 

Material 

(a) Orientation Image (b) Inverse Pole Figure  TD 

 

 

 

AA5083 

<GS> = 39.5 µm 

 
            

 

 

 

AA6082 

<GS> = 79.3 µm 

 
          

 

Figure 5.2. (a) Orientation image of base materials on the plane perpendicular to the welding 

direction. (b) Inverse pole figure (IPF) of the base materials parallel to the Tensile Direction 

(TD) with the scale bar. Their average grain sizes are also mentioned. 

 

Average grain sizes of 39.5 m and 79.3 m are found in AA 5083 and AA 6082 

respectively. Aluminum 5083 alloy has texture components TD(tensile direction)<001> 

and TD<112> to <111>. Whereas, AA 6082 base alloy contained crystallographic 

directions from <103> to <113> parallel to the TD. 

 

400µm 

ND 

400µm 
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Optical micro-graphs of the welded sample for all four different pin profiles: 

The optical images of the FSW specimens joined with four different pin profiles are given in 

Figure 5.3. The optical image of the welded zone is divided mainly into four different 

regions: nugget or stir zone, thermomechanically affected zone (TMAZ), heat affected zone 

(HAZ) and base materials. All optical images are taken with a same magnification of 5x and 

from same area as 8mm in AA 5083 region and 13 mm in AA6082 region from the interface 

or center line. The reason for these different distances is due to no microstructural changes 

(TMAZ and HAZ) observed in the AA 5083 region.  

Creating edges in the pins, it’s static to dynamic ratio increases i.e. decrease in the contact 

area with the work piece but in turn increase in the pulsating stirring action [8]. Hence, the 

triangular and the square pin welded specimens are expected to generate lower distance 

HAZ from the nugget zone than the cylindrical and the threaded cylindrical welded 

specimens. 

 

 

(a) Cylindrical Pin 

 

 

(b) Threaded Pin 
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(c) Triangular Pin 

 

 

(d) Square Pin 

Figure5.3: Optical images of welded samples with distinct regions with distance of fracture 

from interface line for (a) Cylindrical pin (b) Threaded pin (c) Triangular (d) Square. 

 

 

Vickers micro-hardness test profile for different pins: 

 Their micro-hardness profiles for all four different pins in the transverse section are given 

in Figure 5.4. There is less variation noted in the hardness profile of AA 5083 side.  The 

base material AA5083 has hardness of 75HV and has not varied towards the nugget zone. 

This might be due to the annealed state of the base aluminum alloy with stable 

microstructure undergoing no further softening in the heat-affected Zone (HAZ). However, 
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there noticed variation in hardness profile in the retreating AA 6082 side (shown in Figure 

5.4).  The base material AA 6082 has hardness of 110HV.   

 

 

 

(a) Cylindrical Pin Profile 

 

 

(b) Threaded Pin Profile 
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(c) Triangular Pin Profile 

 

 

(d) Square Pin Profile 

Figure5.4: Vickers micro-hardness for all four different pin profiles (a) Cylindrical (b) 

Threaded (c) Triangular (d) Square 

 

 

Combined micro-hardness profile for all four tool pin profiles: 

Combined micro-hardness profiles for all four different pin profiles are given in figure 5.5. 

This shows that square pin profile gives maximum hardness at the interface which is due to 
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most fine grains (will be shown in next section) and there is a shifting of the minimum 

hardness value in the HAZ also.  

 

 

               Figure 5.5: Combined micro-hardness profile for all four pin profiles 

 

It can be seen that for all the four specimens the minimum hardness is obtained in between 7 

mm to 10 mm from the center of the nugget zone depending on the pin profile used (Figure 

5.5). For straight cylindrical and threaded cylindrical pin welded specimens the minimum 

hardness is located between 9 to 10 mm but for triangular and square pin welded specimens 

the minimum hardness is obtained between 7 to 7.5 mm. 

 

Hardness along the thickness in the transverse section: 

Hardness along the thickness in the transverse section for square and cylindrical pin profiles 

are shown in figure 5.6. These hardness profiles are measured at distances of 1.5 mm, 3 mm 

and 4.5 mm from the top surface of the welded sample. The nature of the hardness profile 

for three layers is almost similar but only the value of minimum hardness and the position of 

minimum hardness vary. As middle layer gives minimum hardness than other two layers 

and minimum hardness shifted  towards interface line from top layer to bottom layer. 
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(a) Square pin profile 

 

(b) Cylindrical pin profile 

Figure 5.6: Hardness along the thickness in the transverse section for (a) Square and (b) 

Cylindrical pin profile 

 

Orientation Image Microscopy (OIM) images for all four different welded 

samples: 

OIM images from the nugget zone and the heat affected zone (HAZ) in the transverse 

section are also given in Figure 5.7. Their noticed grain refinement with decreased grain 

size in the nugget zones of all the four specimens suggesting better joining strength. In all 

welded samples, square pin welded specimen generating smallest grain size microstructure 

in the nugget zone (due to more number of sides and pulsating stirring action). 

0

10

20

30

40

50

60

70

80

90

100

110

120

-25 -20 -15 -10 -5 0 5 10 15 20 25

Upper layer

Middle layer

Bottom layer

0

10

20

30

40

50

60

70

80

90

100

110

120

-25 -20 -15 -10 -5 0 5 10 15 20 25

Series1

Series2

Series3

Base AA6082 

Base AA6082 

Base AA5083 

Base AA5083 

HAZ 

HAZ 

HV 

HV 



32 

HAZ region          

Microstructure(a) 

Nugget  zone Microstructure(b) 

Cy; <GS> = 72.42 µm 

 

Cy; <GS> = 10.28 µm 

 

Th; <GS> = 71.01 µm 

 

Th; <GS> = 14.24 µm 

 

Tr; <GS> = 76.47 µm 

 

Tr; <GS> = 13.51 µm 

 

 

S; <GS> = 66.73 µm 

  

S; <GS> = 9.00 µm 

TD 

 200 µm 

 200 µm 
 200 µm 

 200 µm 
200µm 

 200 µm 

 200 µm 

 200 µm 

Figure 5.7: OIM maps of welded joints at (a) HAZ (b) Interface. 

ND 
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Texture analysis:  

Crystallographic texture (inverse pole figure) for base materials: 

 

              

(a) AA 5083-IPF                                                               (b)  AA 6082-IPF  

 

Figure 5.8: the inverse pole figures (IPF) of base materials on the plane perpendicular to the 

welding direction (TD- ND plane) (a) AA 5083 (b)AA 6082 with  IPF color scale bar. 

 

Inverse pole figure for all four different pin profiles: 

Microstructural characterization is performed through Electron Backscattered Diffraction 

(EBSD) at the location of minimum hardness which falls in the HAZ of welded sample for 

all four different pin profiles. The inverse pole figures were evaluated by orientation image 

microscopy (OIM) and are shown in figure 5.9. 

              

        (a)Cylindrical                                                (b)Threaded  

 

IPF [010]  TD 

IPF [100]  ND 

IPF [001]  WD 

IPF [100]  TD 

IPF [010]  TD 

IPF [001]  TD 
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    (c)Triangular                                                     (d)Square 

 

Figure 5.9: the inverse pole figures (IPF) on the plane perpendicular to the welding direction 

(TD- ND plane) at the HAZ in the AA 6082 side for (a) Cylindrical (b)Threaded (c) Triangular 

(d)Square with same color scale bar as in figure 5.8.               

 

 

Tensile Tests: 

 

Base Material AA 5083 and AA 6082: 

The various tensile values obtained from the base materials (AA 5083 and AA 6082) 

and given below in Figure 5.10. 

        

(a) Base material 5083 

IPF [001]  TD 

IPF [100]  TD 

IPF [010]  TD 
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                                                 (b)Base Material 6082 

            Figure 5.10: Tensile properties of base materials (a) AA 5083 (b) AA 6082                            

 

Tensile tests on different pin profiles specimens: 

 

To check the strength of the welded joints, tensile tests on the four specimens are performed 

and are compared with the base materials. The tensile properties of the weld joints are 

shown in Figure 5.11 and their values are given in Table 3. 

 

            

(a) Cylindrical pin                                      
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(b) Threaded pin 

 

           

 

(c) Triangular Pin  

 

       

(d) Square pin Profile 

Figure 5.11: Tensile properties of four different pin profiles (a) Cylindrical (b) Threaded 

(c) Triangular and (d) Square 
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                              Figure 5.12:  Fractured Samples after tensile test 

 

The cylindrical and the threaded welded specimens fractured at 9.0 mm and 10.0 

mm and the triangular and the square welded specimens fractured at 7.5 and 7.0 mm 

respectively, all when measured from the center of the nugget zone. Figure 5.12 

shows fractured samples after tensile test. 

 

Table 3: Tensile Properties for dissimilar material weld by four different pin profile 

 

Pin Profiles UTS 

(MPa) 

0.2%Yield 

(MPa) 

Elongation to 

Failure (%) 

Location of Failure 

(mm) from 

Interface 

Cylindrical 206 136 4.86 9 

Threaded 162  96 4.20 10 

Triangular 215 150 4.57 7.5 

Square 205 145 4.63 7 
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Chapter 6 

Discussions 

Optical micrographs with OIM images, inverse pole figure (IPF) and micro-

hardness for all four different pin profiles: 

Optical micrographs from the transverse plane perpendicular to the welding direction of the 

four different pin profiles welded samples with the OIM images from the nugget zone and 

the heat affected zone (HAZ) in the AA 6082 side with mentioned average grain sizes and 

the inverse pole figures (IPF) parallel to the Tensile Direction at the HAZ in the AA 6082 

side and Vickers micro hardness profiles are shown in Figure 6.1. Although there is not 

much grain size difference between the HAZ regions welded with different pin profiles in 

AA 6082 side and the base AA 6082 ,still there found variation of hardness (Figure 6.1) and 

which may be due to over-aging or dissolution of the initially present hardening precipitates 

(thermal effects) during friction welding. M.J. Peel et al. [20] reported this variation in 

hardness of AA 6082 due to the coarsening of existing ’’ precipitates or transforming of 

them into softer ’ precipitates during FSW. The behavior of hardness profile depends on 

two strengthening mechanisms; one is grain boundary strengthening and other is 

precipitation hardening. There noticed grain refinement with decreased grain size in the 

nugget zones in all the four specimens suggesting better joining strength according to Hell- 

Petch Equation. As we move towards the HAZ, hardness is going to decrease due to 

coarsening of precipitates or transforming of them into softer  precipitates and reached a 

minimum value in HAZ. It can be seen that for all the four specimens the minimum 

hardness is obtained in between 7 mm to 10 mm from the center of the nugget zone 

depending on the pin profile used (Figure 5.5). For straight cylindrical and threaded 

cylindrical pin welded specimens the minimum hardness is located between 9 to 10 mm but 

for triangular and square pin welded specimens the minimum hardness is obtained between 

7 to 7.5 mm. On comparing with their respective adjacent optical images the low hardness 

regions can be seen exactly falling over their heat affected zones (HAZ).Creating edges in 

the pins, their static to dynamic ratio increases i.e. decrease in the contact area with the work 

piece but in turn increase in the pulsating stirring action [17]. Hence, the triangular and the 

square pin welded specimens are expecting to generate lower distance HAZ than the 

cylindrical and the threaded cylindrical welded specimens. Also, expected is the square pin 
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welded specimen generating smallest grain size microstructure in the nugget zone (due to 

more number of sides and pulsating stirring action). 

(a) Cylindrical Pin Profile:   

                  Cy; <GS> = 10.28 µm            Cy; <GS> = 72.42 µm,    

                                 

 

                                                                                                 

 

(a) Distance from interface or center line (mm)         

HAZ 

200µm 200µm 

IPF [010]  TD 

Base AA5083 Base AA6082 
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(b) Threaded Pin Profile:  

              Th; <GS> = 14.24 µm           Th; <GS> = 71.01 µm 

                     

 

 

 

 (b) Distance from interface or center line (mm) 

HAZ 

200µm 200µm 

IPF [010]  TD 

Base AA5083 Base AA6082 
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(c) Triangular Pin Profiles:  

               Tr; <GS> = 13.51 µm,       Tr; <GS> = 76.47 µm 

                         

 

 

 (c) Distance from interface or center line (mm) 

200µm 200µm 

IPF [010]  TD 

Base AA5083 Base AA6082 
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(d) Square pin profiles:   

               Sq; <GS> = 9.0 µm    Sq; <GS> = 66.73 µm 

                        

 

 

 (d) Distance from interface or center line (mm) 

HAZ 

200µm 200µm 

IPF [010]  TD 

Base AA5083 Base AA6082 
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Figure 6.1: Optical micrographs from the transverse plane perpendicular to the welding 

direction. Also, given are the OIM images from the nugget zone and the heat affected zone 

(HAZ) in the AA 6082 side with mentioned average grain sizes and the inverse pole figures 

(IPF) parallel to the Tensile Direction at the HAZ in the AA 6082 side and Vickers micro 

hardness profiles of the four different pin profiles welded samples. (a) Cylindrical (b) Threaded 

(c) Triangular (d) Square.    

 

The highest ultimate tensile strength is obtained in the triangular pin welded specimen and 

the lowest strength is found in the cylindrical threaded pin welded specimen. The cylindrical 

and the square pin welded specimens generated almost similar strengths. Upon finding the 

location of fracture for these specimens, it was noted that the fracture did not occur at the 

weld joint but always few mm into the AA 6082 side. The cylindrical and the threaded 

welded specimens fractured at 9.0 mm and 10.0 mm and the triangular and the square 

welded specimens fractured at 7.5 and 7.0 mm respectively, all when measured from the 

center of the nugget zone. Now, it can be clearly noticed that the fractured areas are indeed 

the heat affected zones (HAZ) of the four specimens containing lowest hardness values. But 

there is no significant variation noticed in the hardness values and the grain sizes from the 

HAZ of the four specimens that can explain the relatively lower tensile strength of the 

threaded cylindrical welded specimen. For that, the crystallographic textures (inverse pole 

figuresTensile Direction, TD) in the fractured region (HAZ) of the four specimens were 

studied (given in Figure 6.1).  

 

The IPF’s of all the specimens are distinct but only the threaded cylindrical welded 

specimen showed a strong <001>TD texture component. It is known that in aluminum 

alloys, being face centered cubic (FCC), the slip takes place in the {111} <011> slip 

systems. For cubic crystals the Taylor factor is the minimum for the <001> TD (tensile 

direction) and the maximum for the <111>TD and the <110>TD components [23]. The 

strength of the polycrystalline material decreases with low Taylor’s factor.  In the present 

case, the threaded pin profile specimen having the highest content of <001>TD component 

provided  lower mean value of Taylor factor and hence,  attained lower tensile strength and 

fractured quickly at the HAZ. All the FSW specimens failed at the HAZ only and the way to 

improve their fracture strength is either completely stopping the generation of HAZ by rapid 

quenching during FSW itself or tailoring the texture and microstructure in the HAZ with 

edged pin profiles. 
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Chapter 7 

Conclusions 

In conclusion, defect-free welds (sound joints) through friction stir welding were achieved 

on two dissimilar aluminum alloys by all the four different pin profiles (cylindrical, 

threaded cylindrical, triangular and square).SEM-EBSD characterization at the welded 

nugget zone showed the development of fine grain microstructure with all the pin welded 

specimens which is due to proper mixing and hence, indicating better joint strength. 

Irrespective of generating better welds, during tensile tests, all the specimens failed earlier 

than the base materials at their fragile heat affected zone (HAZ) in the AA 6082 side 

containing lower hardness values. The location of fracture or minimum hardness of the 

welded sample varies for different pin profiles. The cylindrical and the threaded welded 

specimens fractured at 9 mm and 10 mm and the triangular and the square welded 

specimens fractured at 7.5 and 7 mm respectively. Out of all the four specimens, the 

threaded pin welded specimen showed the least ultimate tensile strength due to the presence 

of higher amount of <001>tensile direction texture component which rendered low Taylor 

factor and hence, poor strength. 
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