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Abstract

The current work develops a general purpose Navier-Stokes semi implicit solver capable of handling

three-dimensional unstructured grids. The flow needs to be laminar and incompressible. Species

transport equation can also be solved using a segregated algorithm. Pressure Poisson equation that

takes most of the solving time has been parallelized using CUDA programming language on GPU,

with Algebraic Multigrid for orthogonal unstructured grids. Domain decomposition has been done

using greedy colouring method. Single phase jets have been studied in presence of walls has been

studied, which is of interest in Internal Combustion engines. Large Eddy simulation (LES) modeling

has been employed for simulating turbulent flows using Static Smagrosnky model. Validations have

been presented for turbulent round and plane jets. Laminar and turbulent coaxial jets for different

velocity ratios for has been simulated and the effect of faster annular jet on the core of inner jet is

analyzed and presented.
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Chapter 1

Introduction

1.1 Scope of current work

To solve computational flows through complex domains for solving engineering problems, unstruc-

tured grids are used for grid generation because of the incentive of lesser computational cost for

same, and their ease in adapting the complex domain, when compared to structured grids. Most of

the engineering problems involve turbulent flow through complex flow domains. Interestingly, very

less work is being done in development of unstructured solvers. There are mainly two type of grids

defined by their connectivity:

• Structured Grid

• Unstructured Grid

Stuctured meshes generally tend to give better results, but take a lot of time of grid generation, and

are difficult to implement over complex geometries. Unstructured grids are used for grid generation

because of the incentive of lesser computational cost for same, and their ease in adapting the complex

domain, when compared to structured grids.

Finite Volume method has been used for discretization of governing equations. In the Finite Volume

method, the solution domain is subdivided into a number of finite volume cells defined by the

coordinates of their vertices read from the CGNS grid. Collocated grid arrangement has been

implemented where all the dependant variables are defined at the centroid of the individual cells.

Primitive variables (like velocity and temperature) are being solved directly.

Most of the time for solving Navier Stokes is consumed in pressure poisson equation. In order to

reduce the computational cost,parallization is implemented for the pressure poisson routine. Graph-

ical Processing Unit (GPU) parallelization has been studied on unstructured grids, for which a novel

colouring algorithm has been developed using the greedy colouring technique. Classical Algebraic

Multigrid (AMG) has been used to further accelarate the solver. It was found that classical AMG

was successful for orthogonal meshes, but for non orthogonal meshes, the AMG was not found to

be effective as the diagonal dominance was not found in this case due to cross diffuson terms. The

solver has been tested for few benchmark laminar cases for which results have been compared with

literature and have been found to be in good agreement. Also speedup of these cases against the

serial code is presented.
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The scope of the solver is limited to GPU parallelized AMG solver for steady and unstead flows,

using semi implicit segregated solver for incompressible flow with species transport equation with

turbulence moodeling. Turbulence is ubiquitous in nature. Hence to study turbulence on unstruc-

tured grids in order to study and solve flow phenomena on complex problems, Large Eddy Simulation

(LES) is being implemented in the solver. The LES model used for this purpose is Static Smagorinsky

model.

1.2 Literature Survey

Unstructured grids are of great importance to reduce computational time for complex gemetries. The

governing equations were discretized using a collocated, cell-centered arrangement of velocity and

pressure. Date [1] described a procedure for discretization of three-dimensional transport equations

on unstructured meshes. The discretization was carried out by constructing a special line structure

so that evaluations at the cell-centers can be carried out in a manner close to the structured grid.

The present work relies heavily on the unstructured grid handling schemes proposed by Dalal et

al [2].

Jets are of great practical relevance to both engineering applications and natural phenomena.

Understanding the nature of Jets is crucial in many fields like mixing of fuels in an automobile or

a jet engines, dispersion of pollutants in the atmosphere, cooling of gas turbine blades and exhaust

gas cooling etc. In fluids, it is not a rare occurrence to see one fluid intruding into quiencient

environment. Common examples are discharges from pipes into rivers or lakes and plumes exiting

from industrial chimneys and in vantilator ducts. Spray injetction in internal combustion engine

can also be categorized into one of such applications. In every case, a fluid with some momentum

and/or buoyancy exits from a relatively narrow orifice and intrudes into a larger body of fluid with

same or different characteristics, such as different speed, temperature . Laminar and turbulent jets

have been a subject of interest due to such wide applications. Such study of turbulent round jet of

air discharging into quiescent air was studied experimentally was conducted by Panchapakesan and

Lumley [3] for a variety of Reynolds number. Large eddy simulation has been a tool of preference

for the study of jets. A novel algorithm to solve large eddy simulation on unstructured domains

was propesd by Krishnan et. al [4]. The algorithm was based on predictor corrector method, but

was based on explicit time stepping of second order. Moreover, the algorithm proposed to take

pressure at cell faces, to make pressure gradient term from the boundaries conservative in terms

of their contribution to kinetic energy. As explicit solutions take a longer time and a smaller

time step, the semi implicit algorithm was adapted for the sameusing second order implicit Crank

Nicolson time stepping for our algorithm.The parallelization of Gauss sidel on unstructured grids

using CUDA programming language for NVidia Graphical Processing Units (GPU) has been done

by Jin [5]. Solving Navier stokes on GPU has been attempted multiple times. Corrigan et al [6]

solved the euler equation on GPU for compressible flows, and was able to achieve speedup of 9.5X.

Incompressible Navier Stokes was solved using finite element method by . Asouti et al. [7] also solved

unsteady Navier Stokes using vertex-centered finite volumes for unstructured grids on GPUs,but the

implementation was limited to two dimensions. Goddeke et. al [8] has solved Navier stokes equation

using finite element method in three dimensions. Shin and Vanka [9] [10] [11] have solved LES and

DNS on GPU using finite difference method in three dimensions. Geometrical multigrid has been

2



used to further accelerate the solver. Greedy colouring was used in the paper for unstructured grids,

that was used for domain decomposition. Classical Algebraic Multigrid (AMG) was described by

Falgout [12], which was modified and used for implementation on GPU. Coaxial inlets have been

widely used for Gas combustors. Moin et.al. [13] have carried out large eddy simulation of multiphase

combustion for coaxial inlets. Swirl has been extensively studied for coaxial jets and simlations have

also been caried out for the same by Pierce et. al [14]. Coaxial jets have been a subject of study for

their application to airblast atomizers that has been described by Lefebvre [15]. Mixing regimes for

various coaxial jet ratios has been studied by Rehab et. al [16], but the study is mostly focused on

high velocity ratios and turbulent structures.

1.3 Thesis Organisation

• Chapter 2 Deals about CGNS format and mesh handling capability of the solver.

• Chapter 3 Discusses about discretization of governing equations for unstructured grid.

• Chapter 4 Details the parallelization and its implementation on unstructured grids. Moreover,

it discusses the implementation of Algebraic Multigrid (AMG) on GPU.

• Chapter 5 Code validations and their results have been presented.

• Chapter 6 Discusses about Turbulence, Large eddy simulation, its governing equation, imple-

mentation and validation.

• Chapter 7 Simulation and Analysis of Coaxial jets has been presented for various velocity

ratios.
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Chapter 2

CGNS Format

2.1 Introduction to CGNS format

CGNS(CFD General Notation System) originated in 1994 as a joint effort between Boeing and

NASA, and has since grown to include many other contributing organizations worldwide. It is an

effort to standardize CFD input and output including grid(both structured and unstructured),flow

solution, connectivity, boundary conditions, and auxiliary information within a single format. CGNS

is also extensible,and allows for file-stamping and user-inserted-commenting. It employs ADF (Ad-

vanced Data Format), a system which reads binary files that are portable across computer platforms.

CGNS also includes a second layer of software known as the mid-level library, API (Application Pro-

gramming Interface), which eases the implementation of CGNS into existing codes.

A CGNS file is an entity that is organized (inside the file itself) into a set of nodes in a tree-like

structure, in much the same way as directories are organized in the UNIX environment. The top-

most node is referred as the root node. Each node below the root node is defined by both a name

and a label, and may or may not contain information data. Each node can also be a parent to one

or more child nodes. An example of the CGNS tree-like structure is shown in figure below.

A typical grid for a CFD problem may be divided into several zones (or blocks) each representing

Figure 2.1: CGNS data structure
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a section of the flow domain. In CGNS the CFD data is organized according to a topologically based

hierarchical tree structure. In this topologically based graph, overall organization is by the zones;

information pertaining to a particular zone, including its grid coordinates or flow solution, hangs of

that zone. A simplified illustration of the database hierarchy is shown in Fig.2.2 for unstructured

and in Fig.2.3 for structured grid.

Figure 2.2: Database hierarchy for unstructured grids

Hanging of the root node of the database is a node containing global reference state informa-

tion, such as free-stream conditions, global convergence criteria etc. Grid Coordinates of the mesh

points,flow solution data arrays, boundary conditions and connectivity information etc. all hang

from the individual zone nodes. The figure only shows the nodes that hang of the first zone; similar

nodes will hang of each zone in the database.

In the present work CGNS version 2.4 file-format is used to store grids and flow solutions.Post

processing is done using Tecplot and Paraview.

2.2 Unstructured Grid terminology in CGNS format

The major difference in the way structured and unstructured grids are recorded lies in the element

definition. In a structured grid, the indices are recorded in (i,j,k) format (for 3D cases) and elements

are indexed by the minimum of the connecting vertices. An example is shown for a 2D structured

grid in Fig . Thus, in a structured grid, the elements can be recomputed using the computational

coordinates. The element number [i,j] will always be made up of nodes [i,j], [i+1,j], [i+1,j+1] and

[i,j+1]. Its 4 neighbouring elements will be [i-1,j] to the left,[i+1,j] to the right, [i,j+1] at the top,

and [i,j-1] at the bottom. Clearly there is no need to store element connectivity information for

structured grids. However,connectivity between zones would have to be stored as the latter do not

have the same predictable pattern as elements within zones.

In an unstructured grid, the nodes are numbered using single index convention from 1 to N, where

5



Figure 2.3: Database hierarchy for structured grids

N denotes the number of nodes in that zone. Further the node numbering follows no particular order.

So element-connectivity information, i.e. , the information that tells us what are the node numbers

that constitute a particular element, cannot be built easily. This additional information is generally

added to the data file. The element information typically includes the element type or shape, and

the list of nodes for each element numbers.

(a) Structured Grid (b) Unstructured Grid

Figure 2.4: Structured and Unstructured Grids

The present solver handles 3-D unstructured meshes only. CGNS supports 4 types of linear

element shapes for unstructured grids. These are Tetrahedrals (with 4 triangular faces), Pyramids

(with one quadrilateral and 4 triangular faces), Prisms which are also called or Pentahedrals (with 2

triangular faces and 3 quadrilateral faces) and Hexahedrals (with 6 quadrilateral faces). The bound-

ary patches are described using 2D elements which may be Triangles or Quadrilaterals depending

on the type of face of the corresponding 3D cell that falls on the boundary patch. The ordering of

the nodes within an element is important. Since the nodes in each element type could be ordered

in multiple ways, it is necessary to define numbering conventions. The following insets describe the

element numbering conventions used in CGNS for the different element types.
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(a) Traingle 2D element (b) 2D Quadrilateral element (c) 3D Tetrahedral element

(d) 3D Hexahedral element

Figure 2.5: Unstructured Grid Elements and Node Numbering

2.3 Processing connectivity information

An unstructured grid may be divided into several zones. Each zone occupies a certain portion of

the flow domain. The zone volume may be divided into three parts. The volume itself that is the

interior of the zone, the zone faces that abut a boundary of the flow domain, and the zone faces that

abut a neighbouring zone. They are classified as the interior section, boundary sections (which may

be more than one if the zone coincides with two or more domain boundaries) and interfaces (which

again may be more than one if there are several neighbouring zones) respectively. All local data

pertaining to the mesh constructed within this zone are stored below the node in the datastructure

corresponding to the zone (either in the zone datastructure itself or in one of its subsequent sub-

nodes). A homogeneous grid is defined as one which is meshed by one and only one element type in

all its zones. A mesh is called a hybrid grid and treated by the CGNS as such if either of the two

situations described below hold true,

1. Each zone is composed of only one element type but element types are different for the different

zones.

2. At least one zone exists which is made up of a mixture of two or more elements.

The information we can read directly from a grid converted to CGNS format are:-

• The total number of zones.

• Type of grid, hybrid or homogeneous.

• Number of interior elements in each zone.

7



• Number of sections in each zone-There will be one interior section and as many additional

sections as there are boundary patches. Sections are not defined for interfaces.

• Start and end element numbers in each section of a zone. CGNS numbering system ensures

that all elements numbering between the start and end element numbers of a section belong

to that section.

• Element Connectivity information for each section of a zone.

• Number of interfaces for each zone

• The name label of the zone abutting a particular interface (this adjoining zone is called the

DonorZone) of a zone.

• list of nodes that constitute an interface of the zone. This is called PointList.The zone in

question in whose data-node PointList is being stored is called the Parent Zone corresponding

list of nodes in the DonorZone that constitute the same interface.This is called PointListDonor.

The Element Connectivity information is arranged in the form of a 1-D array. There is a seperate

array for each section of each zone. Here ElType is an integer which characterizes the type (Hexa,

Tetra etc.) of element. N1, N2 .. are the global node numbers of the nodes that comprise it. For

each element, the node numbers in the Connectivity array come in the order defined by the CGNS

element numbering conventions discussed in Section 2.2. For a homogeneous grid, element type is

fixed for the section and hence ElType is not included in the element-connectivity information.

The following connectivity information are subsequently evaluated in the code :-

• Neighbour Element information that stores the neighbour element number for each face of

each element. Default values are stored if the face is found to be at the boundary or interface.

• ParentElement information that has two memory locations for each boundary face element

where we store the boundary section number and the number of the 3D parent cell whose face

coincides with the boundary element.

• Interface Data which has four memory locations for each interface face-element. The first

location stores Parent Element Number which gives the 3D interior element number of the

current zone whose face coincides with this interface face. The second location stores Parent

Face Number which gives the corresponding face number of this coinciding face. The third

location stores Donor Element Number that gives the 3D interior element number of the

adjoining donor zone whose face is coinciding with the same interface face. Finally, the fourth

memory location stores Donor Face Number that gives the corresponding face number of this

coinciding face.

Neighbour Element information is obtained by using the principle that if two elements share a

face then they must have 3 (for triangular face) or 4 (for quadrilateral face) nodes in common.This is

checked for in all the faces that constitute an element. When we get a matching element, its number

is calculated from the position it occupies in the ElementConnectivity array. If no matches are

found,then that face will lie on an interface or on a boundary section. If the face lies on a boundary

section, its nodes must be present in the ElementConnectivity data of one of the boundary sections
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of the zone. Otherwise, if it is at the interface,they must be present in a pointlist. Thus all the

relevant information are extracted during the initialization process for a CFD simulation and stored

in the DataStructure for future use.

2.4 Geometrical Properties

The following subsections describe how the different geometrical parameters are calculated.

2.4.1 Cell Center

CellCenter coordinates are evaluated from the mean of the coordinate values of that element’s

constituting nodes. Of course the number of nodes an element has will vary depending on its type.

So we have,

Xc =

∑n
i−1Xi

n
(2.1)

where Xc is the coordinate of cell centroid, Xi is the coordinate of nodes making the cell and n is

the number of nodes the element has. For 2D boundary elements, the formula is the same as in 2.1;

only these will be called FaceCenters.

2.4.2 Surface Area

Surface area vector of a triangular face of a 3D element is evaluated using the expression:

A = 0.5(r31 × r21) (2.2)

1 2

3

r31

r21

Figure 2.6: Surface Area evaluation for Triangular Face

The Surface Area vector of a Quadrilateral Face is evaluated using the expression, (refer Fig 2.7)

A = 0.5(r24 × r31) (2.3)
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r

4

1 2

31

3

24

Figure 2.7: Surface Area evaluation for Quadrilateral Face

Care has been taken to ensure that the surface area vector is directed out of the 3D cell at all the

faces. Along with surface area vectors, magnitude of the area |A| and unit surface normal nf are

also stored. Clearly:

nf =
A

|A| (2.4)

2.4.3 Volume

For Hexahedral cells the expression for evaluating volume is given by,

1

2
3

4

5

6

7

8

r71

Figure 2.8: Volume evaluation for Hexahedral Cell

V =
1

3
|r71.(A1234 +A1265 +A1584)| (2.5)

For a Tetrahedral cell, the expression for evaluating volume is,

V =
1

6
|(r1 × r2).r3| (2.6)
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r1

r3

r2

1

2

3

4

Figure 2.9: Volume evaluation for Tetrahedral Cell

2.5 Example of Unstructured Domain

Consider an unstructured zone in the shape of a cube, with each edge of the zone having three nodes.

The resulting unstructured grid has a total of 27 nodes, as illustrated in the exploded figure below.

Figure 2.10: Exploded view of a single unstructured zone

This zone contains eight hexahedral cells, numbered 1 to 8, and the cell connectivity is:

Element Number Element Connectivity
1 1, 2, 5, 4, 10, 11, 14, 13
2 2, 3, 6, 5, 11, 12, 15, 14
3 4, 5, 8, 7, 13, 14, 17, 16
4 5, 6, 9, 8, 14, 15, 18, 17
5 10, 11, 14, 13, 19, 20, 23, 22
6 11, 12, 15, 14, 20, 21, 24, 23
7 13, 14, 17, 16, 22, 23, 26, 25
8 14, 15, 18, 17, 23, 24, 27, 26

Table 2.1: Element connectivity table
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In addition to the cells, the boundary faces could also be added to the element definition of this

unstructured zone. There are 24 boundary faces in this zone, corresponding to element numbers

9 to 32. Each boundary face is of type QUAD4. The boundary faces will have only one neighbou

which will be their parent cell.

2.6 Closure

In this chapter, the methods for handling unstructured data were thoroughly discussed. While the

principle applied for finding neighbours, parents and other relevant connectivity information is not

complex, it is somewhat time consuming if the number of cells in the domain is large. Hence in

the code we have kept the option of writing the relevant connectivity information in files. So if a

grid is generated for a particular problem, all the connectivity data are evaluated once only. In all

subsequent runs, they are read directly from the file resulting in significant time savings.
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Chapter 3

Governing Equations

3.1 Introduction

In this chapter we discuss the governing equations and their differential forms. As the solver is finite

volume based, hence the discretization shall be carried out using the finite volume method.

3.1.1 Finite Volume Method

The Finite Volume method for solving the incompressible Navier Stokes equations has become very

popular in recent years because of the following advantages:

1. It is easy to implement on non-orthogonal curvilinear grids.

2. The solution can be obtained in the actual physical domain without transforming the governing

equations.

3. It is easy to implement the boundary conditions.

In the Finite Volume method, the solution domain is subdivided into a number of finite volume

cells defined by the coordinates of their vertices read from the CGNS grid file. Collocated grid

arrangement has been used where all the dependant variables are defined at the centroid of the

individual cells. Primitive variables i.e. velocity and temperature are being solved directly. Thus

the governing differential equations may be written for each of these small cells. While discretizing

the equations there are two primary assumptions we make that during an integration over the cell

volume, the value of the variable is constant and equal to its value at the cell center; while during a

surface integral over a cell face, the value of the variable is constant throughout the surface and is

equal to the face center value.

3.2 Partial Differential Equations

Navier Stoke equation has been discussed for incompressible, newtonian fluids for which the govern-

ing equations can be represented as following.
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Continuity Equation

∂(ρui)

∂xi
= 0 (3.1)

Momentum Transport Equation

∂(ρui)

∂xi
+
∂(ρuiuj)

∂xj
− ∂2(µui)

∂xj∂xj
= − ∂p

∂xi
+ Sui

(3.2)

where µ is the coefficient of dynamic viscosity and Sui
is a source term which may or may not

be present; p is the pressure and ui represent the different velocity components.

Species Transport Equation:

∂(ρφ)

∂t
+
∂(ρφuj)

∂xj
− ∂

∂xj

(
Γ
∂φ

∂xj

)
= Sφ (3.3)

where φ is the species in question , Γ is its diffusion coefficient and Sφ is the corresponding source

term.

3.3 Governing Equations: Integral Form

The integral form of the governing differential equations is obtained when the differential forms are

integrated over the entire flow control volume. Using the Gauss-Divergence theorem, the integral

form of the governing equations are,

Continuity Equation ∫
S

ρu · dS = 0 (3.4)

Momentum Transport Equation

∂

∂t

∫
V

ρuidV +

∫
S

(ρujui − µ
∂ui
∂xj

)dSj = −
∫
S

pdSi +

∫
V

Sui
dV (3.5)

Species Transport Equation

∂

∂t

∫
V

ρφdV +

∫
S

(ρujφ− Γ
∂φ

∂xj
)dSj =

∫
V

SφdV (3.6)

3.4 Discretization Procedure

The integral form of the equations is then discretized using the following

3.4.1 Discretization of the Continuity Equation

The continuity equation is discretized in the following way:
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∫
S

ρu · dS ≈
∑
j

ρj (u · S)j =
∑
j

ρjuj · Sj (3.7)

where Sj is the surface vector representing the area of the jth cell face and uj is the velocity

defined at the face center j. Here ρj is the volume interpolated face centred value of ρ. If density

is constant then this term may be taken out of the summation. Thus the discretized form of the

continuity equation is:

∑
j

Fj = 0 (3.8)

where the Fj is the outward mass flux through face j, defined by

Fj = ρjuj · Sj (3.9)

3.4.2 Discretization of the General Convection-Diffusion Equation

Looking at Eq (3.5) and Eq. (3.6), it is clear that the only difference between these two equation is

that in Eq (3.5) an additional source term due to pressure is present. So discretization of all other

terms will be the same for both. Thus in this section, φ will denote both velocity components and

species.

Rate of Change For the discretization of the temporal term it has been assumed that the value

of the dependent variable at the centroid is the average over the entire control volume.

∂

∂t

∫
V

ρφdV ≈ (ρφV )n+1
P − (ρφV )nP

∆t
≈ VP

(ρφ)n+1
P − (ρφ)nP

∆t
(3.10)

where VP is the volume of the cell P and the suffix P denotes the centroidal value.

Convection Fluxes The approximation of the surface integral over convection flux of variable φ

has been done in the following way:

∫
S

ρuφ · dS ≈
∑
j

ρjφj(u · S)j =
∑
j

Fjφj (3.11)

where φj is the value of φ at the center of the face j. To avoid unphysical oscillations that

frequently occur for convection dominated flows, upwinding needs to be used to discretize the con-

vective terms. In unstructured grids, higher order upwinding schemes like QUICK cannot be im-

plemented. However, first order upwinding is not very accurate and introduces excessive numerical

diffusion. Hence a linear combination of Central Difference Scheme(CDS) and Upwind Differencing

Scheme(UDS) is used to discretize the convective term.
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Fjφj = (Fjφj)
UDS + γ[(Fjφj)

CDS − (Fjφj)
UDS ] (3.12)

In Central Difference discretization a volume interpolation is used to evaluate the value of the

variable φ at the face center. In upwind scheme, this value is taken to be equal to that at the

upstream cell center. Thus Eq. (3.12) can be expanded as:

Ffφf = φP [|Ff , 0|]− φn[| − Ff , 0|] + γ{Ff (
Vn

Vn + VP
φP +

VP
Vn + VP

φn)

− φP [|Ff , 0|] + φn[| − Fe, 0|]} (3.13)

Here [[p, q]] denotes the maximum of p and q, suffix f denotes the particular face of the cell in

question and suffix n denotes values for the corresponding neighboring cell.

A fully implicit method for time-stepping has been used, where the upwind part of the above

equations are incorporated in the coefficients of the unknown velocity during the pressure velocity

iteration. The CDS terms are evaluated using previous iteration values and used as a source term

on the right hand side of the same equation. This is called as “deferred correction” approach

of Khosla and Rubin [?]. Multiplication of the explicit part by a factor γ (0 ≤ γ ≤ 1) allows the

introduction of the numerical diffusion (γ = 0 means pure UDS, γ = 1 means pure CDS). The

deferred correction approach enhances the diagonal dominance of the coefficient matrix, which adds

to the stability of the solution algorithm.

Diffusion Fluxes The surface integral over diffusion flux of variable φ can be approximated as

∫
S

Γφ∇φ · dS ≈
∑
f

(Γφ∇φ · S)f =
∑
j

−Fdφf (3.14)

So for any face f, the diffusion flux is given by,

Fdφf
= −Γf (∇φf · Sf ) (3.15)

The face area vector is represented as Sf . Its magnitude is given by Af and its unit vector by

n̂f . Suppose that this face has the cell Pn as its neighbor. Let n̂1f be the unit vector along the

line joining the center of the current cell P and the cell center of this neighbor Pn. Let r1f be the

magnitude of this distance. So,

r1f = xn − xP (3.16)

r1f =‖ xn − xP ‖ (3.17)

n̂1f =
r1f
r1f

(3.18)
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Next we define a new vector n′2f as (refer Fig 3.1),

nf

r1f

P

nP

n1f

f2

nf

n’

Figure 3.1

n̂f = n̂1f + n′2f (3.19)

Clearly, one can calculate the vector n′2f at all those faces of a cell that do not lie at a boundary.

Hence for any face that lies at the interior,

(∇φ)f · Sf = Af (∇φ)f · n̂f
= Af (∇φ)f · (n̂1f + n′2f ) (3.20)

Since,

(∇φ)f · (n̂1f ) =
φn − φP
r1f

(3.21)

Using (3.20) and (3.21) we get,

(∇φ)f · Sf = Af [
φn − φP
r1f

+ (∇φ)f · n′2f ] (3.22)

Now, setting

βf =
Af
r1f

(3.23)

n2f = Afn
′
2f (3.24)

we get
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(∇φ)f · Sf = βf (φn − φP ) + (∇φ)f · n2f (3.25)

So for all interior cell faces the diffusion flux is discretized as,

Fdφf
= −Γf

[
βf (φn − φP ) + (∇φ)f · n2f

]
(3.26)

Discretizing (∇φ)f · n2f :–

By the Gauss Divergence Theorem,

∫
V

∂φ

∂x
dV =

∫
S

φî · dS =
∑
f

φfSfx (3.27)∫
V

∂φ

∂y
dV =

∫
S

φĵ · dS =
∑
f

φfSfy (3.28)∫
V

∂φ

∂z
dV =

∫
S

φk̂ · dS =
∑
f

φfSfz (3.29)

Hence for a control volume cell,

(
∂φ

∂x

)
P

=
1

VP

∑
f

φfSfx (3.30)

(
∂φ

∂y

)
P

=
1

VP

∑
f

φfSfy (3.31)

(
∂φ

∂z

)
P

=
1

VP

∑
f

φfSfz (3.32)

where values of φ at the faces is obtained using volume interpolation,

φf =
VnφP + VPφn
Vn + VP

(3.33)

The Gradient of φ at the cell centers (∇φ)P can be written as,

(∇φ)P =

(
∂φ

∂x

)
P

î+

(
∂φ

∂y

)
P

ĵ +

(
∂φ

∂z

)
P

k̂ (3.34)

Using the known values of (∇φ)P , (∇φ)f can be evaluated using volume interpolation,

(∇φ)f =
Vn(∇φ)P + VP (∇φ)n

Vn + VP
(3.35)
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Thus (∇φ)f is evaluated at all interior cell faces. Finally,

(∇φ)f · n2f = (∇φ)fxn2x + (∇φ)fyn2y + (∇φ)fzn2z (3.36)

Pressure Term: Pressure terms come as a source term in the momentum equation.The pressure

term of Eq. (3.5) can be discretized as,

−
∫
S

pdS ≈ −
∑
f

pfSfi (3.37)

pf is the pressure at the f th face center and Sfi is the ith direction component of the surface

vector for face f. As usual, volume interpolation will be used to evaluate pressure at the face centers.

Other Source Terms: The source term is integrated over the cell volume as follows:

∫
V

SφdV ≈ (Sφ)PVP (3.38)

In the momentum equations, buoyancy source terms may be present for a natural convection

driven flow, while in species transport equations chemical reactions may act as a source term.

3.5 Handling of terms at the Boundary

The boundary sections are composed of two dimensional Triangular or Quadrilateral elements. We

assume these to be zero volume cells with their centroids coinciding with the face centers. We

implement face normal formulation for implementing boundary conditions on the boundary sec-

tion. However the intuitive approach would be to use Face Centeroid formulation, which has been

explained in the following subsection.

3.5.1 FaceCentroid Formulation

In this method, the boundary conditions are used to find the values of φ at the face centers of the

boundary cells. At the boundary face b, the vector r1b is defined as the vector joining the centroid

of the parent cell to the boundary face center (refer Fig. 3.2).

The corresponding unit vector is n̂1b and magnitude is r1b . So at the boundary face the vector n′2b
is defined as,

n̂b = n̂1b + n′2b (3.39)
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Figure 3.2: The Face Centroid Formulation

βb =
Ab
r1b

(3.40)

n2b = Abn
′
2b (3.41)

the Eq.(3.25) for diffusion flux is modified at the boundary faces to become

(∇φ)b · Sb = βb(φb − φP ) + (∇φ)b · n2b (3.42)

Clearly both φb and (∇φ)b needs to be estimated in order to obtain the diffusion fluxes at the

boundary. Let us see how this is done for Dirichlet and Neumann boundary conditions.

Dirichlet Condition: In Dirichlet boundary condition φb is given. So this value is used directly

as the value at the boundary face center and no further calculation is necessary. However estimating

(∇φ)b proves to be difficult. The simplest approximation is,

(∇φ)b ≈ (∇φ)P (3.43)

which makes

(∇φ)b · Sb ≈ βb(φb − φP ) + (∇φ)P · n2b (3.44)

Neumann Condition: Here outward flux normal to the boundary cell is specified as φ̇b. So

clearly,

(∇φ)b · Sb = Abφ̇b (3.45)

and nothing needs to be done to evaluate diffusion fluxes. But we still need φb to evaluate

convective fluxes at the boundary face. Using (3.42) we get,

Abφ̇b = βb(φb − φP ) + (∇φ)b · n2b (3.46)
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Again (∇φ)b · n2b is difficult to evaluate and we use Eq.(3.43) to rewrite Eq.(3.46) as,

Abφ̇b ≈ βb(φb − φP ) + (∇φ)P · n2b (3.47)

Thus,

φb = φP +
Abφ̇b
βb
− 1

βb
(∇φ)P · n2b (3.48)

However from Eqns.(3.30)— Eq.(3.34), it is clear that to evaluate (∇φ)P we need to know φb

beforehand. So Eq.(3.48) needs to be solved iteratively for φb, which makes the process of evaluating

boundary conditions complex.

A test was done on the accuracy of Face centroid formualtion by Dalal [2], which compared

analytical results with numerical results and found that this formulation produced errors beyond

acceptable levels. Many complex approaches were also tested in the same paper, which were scraped

to favor a much simpler formulation as discussed in next subsection.

3.5.2 FaceNormal Formulation

In the face normal formulation, the boundary values φb are stored for the point where the perpen-

dicular dropped from the centroid of the Parent Cell meets the boundary face. If we denote the

centroid point as P, then in Fig 3.3 N is the point on the boundary face where the perpendicular

from C meets the boundary face.We shall call this the Face Normal Point. The point B is the face

center of the boundary face. Since
−→
PN is normal to the Surface Area Vector Sb, n̂b will be its unit

vector. Also, n̂1b will lie along
−→
PB.

B

N
n1

nb

P

Figure 3.3: The Face Normal Formulation

Defining ∠(BPN) as θ we have,

|
−→
PB | = r1b (3.49)

cos θ = n̂1b · n̂b (3.50)
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So in the right 4PNB we have,

|
−→
PN | = |

−→
PB | cos θ

= r1b(n̂1b · n̂b) (3.51)

Then the diffusion flux at the boundary face may be written as,

(∇φ)b · Sb = Ab(∇φ)b · n̂b
= Ab

(φN − φP )

|
−→
PN |

= Ab
(φN − φP )

r1b(n̂1b · n̂b)
(3.52)

Defining the value of β at the boundary faces as,

βb =
Ab

r1b(n̂1b · n̂b)
(3.53)

the final expression for diffusion flux at the boundaries become,

(∇φ)b · Sb = βb(φN − φP ) (3.54)

The coordinate values of these Face Normal Points are also needed for the cases where the

boundary condition is a function of space. If rP be the position vector of Cell Centroid P and rN

be the position vector of the face normal point N, then,

rN = rP + PN

= rP + (|PB| cos θ)n̂b

= rP + [r1b(n̂1b · n̂b)]n̂b
= rP +

Ab
βb

n̂b (3.55)

Hence coordinates of the face normal points are given by,

xN = xP +
Ab
βb

n̂bx (3.56)

yN = yP +
Ab
βb

n̂by (3.57)

zN = zP +
Ab
βb

n̂bz (3.58)

Next we look at how the Face Normal formulation handles the boundary conditions.
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Dirichlet Boundary Conditions: The boundary values of φ are known and are stored directly

at the Face Normal Points. Subsequently, Eq.(3.54) is used to calculate the diffusion fluxes at the

boundary faces.

Neumann Boundary Conditions: Here the flux at the boundary φ̇b is given. Hence using

Eq.(3.54),

Abφ̇b = (∇φ)b · Sb
= βb(φN − φP ) (3.59)

So the values of φ at the Face Normal Points is given by,

φN =
Abφ̇b
βb

+ φP (3.60)

Notice that unlike Eq.(3.48) of the FaceCentroid formulation, Eq.(3.60) does not need to be

solved iteratively for φ at the boundary faces. This helps to decrease code runtime. It was found

by Dalal [2] that the current formulation was not only simpler to implement, but also had a better

numerical accuracy, as compared to the face centroid formulation.

3.5.3 Summary

The above discusses about handling of boundary condition and Face Normal based discretization

.Face Normal Discretization has been adopted as the preferred discretization scheme in the Unstruc-

tured Solver due to its ease of implementation and its superior numerical accuracy. The subscript “b”

will henceforth be used to denote variable values stored at the Face Normal points of the boundary

elements.

3.6 Solution Algorithm

The final discretized form of the governing differential equations are:-

Continuity: The Continuity equation is discretized as follows,

∑
f

Fn+1
f = 0 (3.61)

where

Ff = un+1
f Sfx + vn+1

f Sfy + wn+1
f Sfz (3.62)

23



Momentum: The momentum equation is discretized as follows,

VP
(ρPuP )n+1 − (ρPuP )n

∆t
+
∑
f

Fn+1
f un+1

f +
∑
f

Fn+1
duf =

−
∑
f

pn+1
f Sfx + (Su)PVP (3.63)

VP
(ρP vP )n+1 − (ρP vP )n

∆t
+
∑
f

Fn+1
f vn+1

f +
∑
f

Fn+1
dvf =

−
∑
f

pn+1
f Sfy + (Sv)PVP (3.64)

VP
(ρPwP )n+1 − (ρPwP )n

∆t
+
∑
f

Fn+1
f wn+1

f +
∑
f

Fn+1
dwf =

−
∑
f

pn+1
f Sfz + (Sw)PVP (3.65)

Scalar Equation: The scalar equations have the generic form,

∆VP
(ρPφP )n+1 − (ρPφP )n

∆t
+
∑

Fn+1
f φn+1

f +
∑

Fn+1
dφf = Sφ (3.66)

where (n+ 1) denotes the unknown values of the current time step.

In the present study, the Navier Stokes and Energy equations have been solved using the finite

volume method. We have used non-staggered (collocated) grid arrangement, where the dependent

variables are calculated at the centroid of the finite volume. But this arrangement can produce non-

physical oscillations in the pressure field, the so-called checker-board pressure distribution. When

central differencing is used to represent both the pressure gradient term in the momentum equations

and the cell-face velocity in the continuity equation, it then happens that the velocities depend on

pressure at alternate nodes and not on adjacent ones and the pressure too depends on velocities at

alternate nodes. This behaviour is called velocity-pressure decoupling (Patankar [17]).

To avoid this decoupling, the momentum interpolation method, first proposed by Rhie and Chow

[18] has been used. In this approach, the cell-face velocity in the continuity equations are evaluated

by linearly interpolating the so-called “mass” velocities computed without the pressure terms in the

discretized equations while directly evaluating the pressure gradient using values at the adjacent cell

centers. This results in a strong velocity-pressure coupling. The pressure gradient terms, appearing

in the momentum equations, are still represented by the central difference approximation.

The segregated solvers are used only if the scalars are not coupled with momentum transport

equation and a steady state solution is needed. For all other cases, coupled solvers are used. In

coupled solvers, the velocity values at each time step are used to find the values of the scalar at

that time step. In segregated solver, first the velocity values are completely converged to steady

state using the false transient method; and only then these steady state velocity values are used to

separately converge the scalars to steady state. This results in significant time savings in the case

when the problem is steady and the scalars and velocity equations are not coupled.
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3.6.1 SemiImplicit Algorithm

In the Semi-Implicit algorithm the Navier Stokes and Scalar equations are solved using flux value of

the previous time step. This eliminates the need for flux convergence loop, decreasing the amount

of time taken to acheive convergence. One expects Fully Implicit scheme to be more accurate, but

both are 1st order accurate in time. Hence Semi-Implicit algorithm gives acceptable results even for

unsteady problems. Initial Conditions for velocity and pressure are prescribed at all points in the

domain and boundary conditions are defined at the start of the problem,

Step 0: Fix all parameters and initialize all variables to their respective initial conditions.

Step 1: Evaluate the so called “mass velocities”, u∗ , by solving the “mass velocity equation”

which is basically the Navier Stokes equation but without the pressure term. These are given by,

VP
(ρPuP )∗ − (ρPuP )n

∆t
+
∑
f

Fnf u
∗
f +

∑
f

F ∗duf = (Su)nPVP (3.67)

VP
(ρP vP )∗ − (ρP vP )n

∆t
+
∑
f

Fnf v
∗
f +

∑
f

F ∗dvf = (Sv)
n
PVP (3.68)

VP
(ρPwP )∗ − (ρPwP )n

∆t
+
∑
f

Fnf w
∗
f +

∑
f

F ∗dwf = (Sw)nPVP (3.69)

Usually the source terms are lagged to the values of the previous time step. Note the flux values

of the previous time step are being used here.

Step 2: Calculate the “mass” flux at each face of the control volume using the newly evaluated

mass velocity values.

F ∗f = u∗f · Sf (3.70)

u∗f =
VPu∗n + Vnu∗P
VP + Vn

(3.71)

Step 3: Evaluate the value of pressure at (n+ 1)th time step using the pressure Poisson equation,∑
f

(∇pn+1
f ) · Sf =

ρ

∆t

∑
f

F ∗f (3.72)

Step 4: Calculate the volume flux of (n+ 1)th time step using the expression,

Fn+1
f = F ∗f −

∆t

ρ
(∇pn+1

f ) · Sf (3.73)

Note that the volume flux will satisfy continuity.
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Step 5: Solve the complete Navier Stokes equation given by ,

VP
(ρPuP )n+1 − (ρPuP )n

∆t
+
∑
f

Fnf u
n+1
f +

∑
f

Fn+1
duf =

−
∑
f

pn+1
f Sfx + (Su)PVP (3.74)

VP
(ρP vP )n+1 − (ρP vP )n

∆t
+
∑
f

Fnf v
n+1
f +

∑
f

Fn+1
dvf =

−
∑
f

pn+1
f Sfy + (Sv)PVP (3.75)

VP
(ρPwP )n+1 − (ρpwP )n

∆t
+
∑
f

Fnf w
n+1
f +

∑
f

Fn+1
dwf =

−
∑
f

pn+1
f Sfz + (Sw)PVP (3.76)

to get converged values of un+1,vn+1 and wn+1. Here the fluxes are taken from previous time

step values. The source terms are usually lagged to the previous time step values.

Step 6: Solve for the scalars using the expression,

∆VP
(ρPφP )n+1 − (ρPφP )n

∆t
+
∑

Fnf φ
n+1
f +

∑
Fn+1
dφf = Sφ (3.77)

to get φn+1. This step is omitted for the Segregated scheme.

Step 7: If this is a steady state problem, check if the velocities and scalars have converged to

the required level of accuracy. If not converged then set un+1 → un, Fn+1
f → Fnf , φn+1 → φn,

t→ t+ ∆t and go to Step 1. If it is an unsteady problem then continue for as many time steps as

needed.

3.7 Discretizing the Pressure Poisson Equation

The pressure Poisson equation is given by,

∑
f

(∇pf ) · Sf =
ρ

∆t

∑
f

F ∗f (3.78)

Its discretization will be identical to that of
∑
f (∇φ)f ·Sf when we replace p with φ. So following

Eq.(3.25), at the interior faces we have,

(∇p)f · Sf = βf (pn − pP ) + (∇p)f · n2f (3.79)
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While Eq. (3.54) gives the discretization at the boundary faces,

(∇p)b · Sb = βb(pb − pP ) (3.80)

where pb is the value of pressure at the Face Normal Point.

3.8 Closure

The present chapter has presented the discretization procedures and solution algorithms imple-

mented in the unstructured code in some detail. Method for handling boundary values was dis-

cussed. Next the code is validated using benchmark problems. This constitutes the subject matter

of the next chapter.
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Chapter 4

Parallelization of Solver

4.1 Introduction

Complex engineering problems are computationally expensive. The expense comes in form of solving

computational domain and mesh generation. In order to be successfully able to solve such problems

we need to reduce the cost. The use of unstructured grids has already reduced the mesh generation

cost, but this leads to additional increase in solution time. The pressure poisson equation takes

about 60% of the total solution time. Hence in order to reduce the overall computational time, this

equation needs to be parallelized. The parallelization done here is the Graphical Processing Unit

(GPU) parallelization using Compute Unified Device Architecture (CUDA) programming language

on NVidia GPUs. Moreover classical Algebraic Multigrid (AMG) has also been explored and an

algorithm with AMG+GPU has been implemented, for overall acceleration of the solver. However,

the limits of AMG have been encountered while testing for non-orthogonal grids. In this chapter, we

discuss about the concept, implementation of parallelization implemented in the solver. This work

was done in collaboration with Ravitej K. and Dr. Naveen Sivadasan of Department of Computer

Science and Engineering, Indian Institute of Technology, IIT-Hyderabad. In the thesis by Ravitej

[19], one can find in depth details of the work.

4.2 Algebraic Multigrid

As mentioned earlier, Pressure Poisson equation consumes most of the time during solving for flow

field. The equation can be represented as:

∑
f

(∇p∗f ) · Sf =
ρ

∆t

∑
f

F ∗f (4.1)

whose discretization has been described in 3.7. But to apply AMG, the equation must be

expressed in the form :

Au = f (4.2)
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Figure 4.1: Comparison between CPU and GPU architectures [20]

Please refer Appendix A for details of discretiztion. This represents a system of sparce matrices,

where A is n×n matrix with real entries aij , u and f are vectors. The numerical methods that exist

to solve set of linear equations can be categorized into direct solvers like Gauss Elimination, LU

factorization etc. and iterative solvers like Gauss Seidel, Jacobi, Conjugate Gradient etc. Though

direct solvers give exact solution, they are inefficient for solving large set of sparse linear equations.

Hence, iterative methods which give reasonably accurate approximate solution are preferred over

direct solvers. Gauss Seidel is an efficient and most commonly used iterative solver. It starts with an

initial guess and produces series of improving results till convergence. Multigrid (MG) method is an

efficient and scalable approach that accelerates the convergence of the iterative solvers. In multigrid

method, the problem is solved on coarser representation and the solution is interpolated back to the

finer representation to get a better approximation faster. This is recursively applied which creates an

hierarchy of coarser grids. Algebraic multigrid is a multigrid technique which derives the hierarchy

of grids from the information available in the set of linear equations.

4.3 GPU Architecture

Graphics Processing Units (GPUs) which were primarily designed for accelerating video or graphics

rendering, had all its functionalities hardwired. Over the last few years, GPUs became programmable

and are being used to solve general purpose programs, also called as General Purpose Computation

on GPUs (GPGPU).

GPUs are specially designed hardware devices to cater the needs of highly parallel and compute

intensive applications. CPU and GPU are designed using two completely different philosophies.

Figure 4.1 compares and contrasts the CPU, GPU architectures.

CPU aims at minimizing the latency where as GPU tries to hide the latency. CPU has large cache

memory and does sophisticated things like out of order instruction execution, branch prediction etc.

It is for this reason, more transistors are dedicated to control unit than arithmetic logic units (ALUs).

CPU is well suited for sequential/serial code execution. On the flip side, GPU has relatively smaller

cache and more transistors are dedicated to ALUs than the control unit. GPU can execute large

number of threads in parallel and is well suited for compute intensive tasks. To execute large number

of threads in parallel, GPU uses an architecture called SIMT (Single Instruction Multiple Threads).

It is closely related to SIMD (Single Instruction Multiple data) where different processing elements

execute same instruction but on different data items. In SIMD all the threads follow same execution
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Figure 4.2: Thread Organization in CUDA

path where as SIMT facilitates threads to take different execution paths. A typical GPU contains

ALU, Control Unit, cache memory and DRAM. GPU cores are organized as an array of Streaming

Multiprocessors (SMs). Each SM contains number of Streaming Processors (SPs or simply GPU

cores), instruction cache and control unit. In GPU computing model, the terms host, device are

used to refer to CPU and GPU respectively. Each SM creates, manages and executes threads in

group (typically of size 32) called warps. Warp Scheduler, which is also a part of SM schedules these

warps for execution.

4.4 CUDA Programming Model

Compute Unified Device Architecture (CUDA) is an interface that enables programmer to utilize the

massive parallel computing capability provided by the GPU for general purpose computing. CUDA

also provides developers a set of libraries and extensions to standard programming languages like C,

C++ etc. A CUDA source file will be a mixture of host code - which runs on the CPU and device

code - which runs oxn the GPU. The CUDA compiler segregates the code into host and device code.

4.4.1 Execution Model

Using CUDA, the compute intensive and data parallel parts of an application are parallelized by

launching large number of concurrent threads on GPU. Each thread executes same instruction but

on different data. For this purpose, users define kernel which contains the code to be executed

by each thread. Kernel configuration specifies the number, organization of the threads and can

be determined either at compile time or run time. In CUDA, threads are organized in two level

hierarchy namely blocks and grids as shown in Fig 4.2.

At the first level, the threads are grouped into thread blocks. The block size is a multiple of

warp size and is decided by the programmer. Block size of 128 or 256 is most frequently used and

often provide optimal performance. Each thread block can run independent of other and hence

can be scheduled across any SM. The thread blocks are further grouped into grids. The size of

grid is determined by the size of data that the application is dealing with. CUDA allows user to
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organize blocks and grids in one, two or three dimensions thereby allowing easy mapping of threads

to multi-dimensional data structures. Each block within the grid is uniquely identified using the

built-in blockIdx variable, from the kernel. Similarly, each thread in a thread block is uniquely

identified using the built-in threadIdx variable. Both blockID and threadID are built in structures

that contains three components to store index in each dimension. The thread and block size are

stored in built-in variables blockDim & gridDim. CUDA maps each software thread block to a

hardware SM. Multiple blocks can be mapped to same SM and are executed in time sharing fashion.

Threads within a block can communicate with each other using shared memory and can synchro-

nize using syncthread() method. However, threads across the blocks can’t synchronize with each

other and can communicate only using global memory. Any data that kernel operates on should

reside in device global memory. CUDA API provides three functions for this purpose: (a) cudaMal-

loc allocates memory on the device (b) cudaMemcpy transfers the data from host to device and

vice-versa and (c) cudaFree is used to free the memory on the device.

4.4.2 Memory Hierarchy

The GPU memory is organized as three level hierarchy as shown in Fig 4.3

...

Processor 1 Processor 2

Registers Registers

..

Device Memory

Streaming Multiprocessor 2

Streaming Multiprocessor n

Shared Memory

Processor m

Constant cache

Instruction
Unit

Texture

Streaming Multiprocessor 1

cache

Registers

Figure 4.3: CUDA Memory Hierarchy

• Device Memory : It is the the largest memory in the hierarchy and also the one with

highest latency. Device Memory is to GPU what DRAM is to a CPU. Device memory is

logically further divided into global memory, local memory and constant, texture memory. All

threads can access global memory and is the only part of device memory which CPU can read

as well as write. The local memory which is private to each thread also resides on device

memory. Constant memory is used to store read only data such as constant tables etc. and is

cached into constant cache. Texture memory which is cached into texture cache is optimized

for 2D spatial locality and is preferred over global memory when there is no access pattern to

do memory coalesceing. GPU can only read from constant and texture memory where as CPU

can only write to them.
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• Shared Memory : It is per SM memory that resides on-chip and is shared by all the threads

within a thread block. Access to shared memory is very fast when compared to that of global

memory. Any data that is shared or reused by the threads within a block can be transferred

to shared memory for improved performance. Shared memory can also be used to share data

among threads of same thread block.

• Registers : Each thread has its own set of registers. Accessing data in the registers is

extremely fast and the CUDA compiler automatically tries to place the frequently accessed

variables by the thread into registers.

4.4.3 Performance Optimizations

In addition to effective parallelization of the code, it is crucial to optimize the implementation

with respect to the underlying GPU architecture to extract maximum performance [21]. The opti-

mizations include maximizing SM utilization, memory and instruction throughput [22]. Increasing

occupancy, coalesced memory access and avoiding warp divergence greatly increase the performance

of the applications. Occupancy is defined as the ratio of number of active warps to maximum num-

ber of warps supported by SM. Access to global memory data requires hundreds of clock cycles and

the warp scheduler switches between warps to hide this latency. Increasing thread pool size i.e.,

occupancy of SM helps in hiding the latency and also maximizes SM utilization. The hardware

also checks if all the threads in a warp are accessing collocated global memory locations. In such

scenario, all the accesses can be consolidated and is known as Coalesced memory access. Scattered

memory access by threads in a warp will results in unnecessary data transfer from global memory

to cache. Hence, storing the data accessed by thread warp in collocated global memory locations

results in increased memory throughput. Conditional statements in the kernel may cause threads of

same warp to follow different execution paths, called as Warp Divergence. Warp divergence causes

delay in execution of entire warp and can be avoided by re-ordering the data so that all the threads

in warp take same branch.

4.5 Multigrid Methods

Multigrid (MG) method offers an efficient way of solving large system of linear equations especially

those from finite volume, finite difference and finite element discretizations of governing PDEs.

Multigird methods are known to scale linearly with respect to number of unknowns i.e., for a given

level of convergence multigrid methods provide a solution in O(n) time where n is the number of

unknowns [23]. Instead of working on a single mesh, multigrid method works on hierarchy of meshes,

which are carefully constructed in such a way that the low frequency error in finer mesh turns out

to be high frequency level in the coarse mesh, which can again be effectively smoothed using an

iterative method. Multigrid method is a recursive error correcting method and has following steps:

Smoothing: Reduce high frequency error component using iterative methods like Jacobi or

Gauss Seidel

Restriction: Transfer the residual from finer mesh to coarser mesh

Prolongation: Transfer the error correction calculated on coarser mesh to finer mesh
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Defining MG components include constructing hierarchy of grids, defining inter-grid transfer

operations i.e., restriction and prolongation. Two different multigrid approaches exist namely, Ge-

ometric multigrid (GMG) and Algebraic multigrid (AMG) [24]. Geometric multigrid, uses the ge-

ometry of the problem (grid) to define various multigrid components. On the other hand, algebraic

multigrid uses only the information present in the set of linear equations obtained by dicretizing the

governing PDEs to define various multigrid components.

Though GMG is more natural or intuitive, its applicability is restricted due to requirement of ex-

plicit knowledge about problem geometry. Also, the coarsening becomes very complicated/impossible

for complex and concave grids. AMG is preferred over GMG due to following advantages:

• It is purely a matrix based approach and doesn’t use any geometric information

• No special handling is required for concave grids during coarsening

• AMG can be used as a black-box to solve problems without any geometric background provided

the underlying matrices has certain properties [?].

4.5.1 Algebraic Multigrid

In AMG, it is often very helpful to visualize the n × n matrix A as a graph G on the vertex

set {1, . . . , n}. Each variable corresponds to a vertex in G and each non-zero matrix entry aij in

the matrix A (which is assumed to be symmetric positive definite) corresponds to a directed edge

between vertices i and j. In the rest of the paper, the terms grid, mesh, graph and mesh graph are

used interchangeably. So, are the terms nodes, points and vertices. If there is a directed edge from

vertex u to vertex v then we say that u depends on v and that v influences u. AMG works on the

heuristic that the smooth error varies slowly in the direction of relatively large negative coefficients

of the matrix A [12].

Definition 1 (Strength of Connection, [12]) Given a threshold 0 < θ ≤ 1, the variable i strongly

depends on variable j if

−aij ≥ θmax
k 6=i
{−aik}

Strength of connection is always measured relative to the largest off diagonal entry. Off diagonal

entries which do not satisfy above condition are considered weak connections. The matrix obtained

by deleting weak connections in A is called Strength Matrix As. We note that strength of connection

need not be symmetric i.e., a variable i can strongly depend on j but not vice-versa.

Each level of AMG uses a prolongation matrix P , and the corresponding restriction matrix PT

which is the transpose of P . These matrices are defined based on corresponding strength matrix and

is discussed in Section 4.5.3. The coarser system will have lesser number of variables, say nc < n

where n is number of variable in the finer system. Hence P is an n × nc matrix. Let Au = f be

the equations governing the finer system. Main steps in a two level AMG (which can be extended

to multi-level) can be summarized as:

Compute estimate u∗ for u in Au = f ;

Compute the residual r = f −Au∗ = Ae;
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Solve for ec in the coarser system Ac · ec = PT · r, where Ac = PTAP ;

Correct u∗ ← u∗ + P · ec.

Couple of smoothing steps are executed while computing the initial estimate for u∗ and after

obtaining the correction from the coarser system.

4.5.2 Multigrid Generation

In classical AMG, hierarchy of grids are created from the initial grid by applying a coarsening

algorithm recursively. Coarsening algorithm partitions the points into two disjoint sets. One is set

of C-points i.e., points that are part of coarse grid as well and the other is F -points i.e., points that

are not part of the coarse grid. To compute C, the coarsening algorithm [24] considers the strength

matrix As and the corresponding mesh graph Gs. Each vertex u is assigned a weight which is the

total number of vertices that depend on u. The algorithm proceeds iteratively and at each step, a

vertex u with highest weight is chosen as a C point and all vertices depending on u are marked as

F points. The weights are updated for vertices that are connected by outgoing edges from the new

set of C and F vertices. Weights of all points that influence the new C point is decremented by

one. For each new F point u, weights of all points that influence u is incremented by one. Figure

5.4 illustrates the coarsening process.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.4: Illustration of the coarsening algorithm. (a) The graph corresponding to the A matrix. (b) The
graph after deleting weak connections. (c) Nodes of the graph are assigned a weight equal to the number
of nodes that depend on it. (d) A point with maximal weight is chosen as a C-point. (e) The neighbors
of the new C-point are marked as F -points. (f) For each new F -point, increment the weights of nodes that
influence it to make them more likely to be C-points. (g) For new C-point, decrement the weights of nodes
that influence it. The algorithm continues in this way until all points are either C or F points.

35



4.5.3 Computing Matrices P and Ac

Given the C/F splitting of points, the goal is to define P and thereby compute Ac. Let nc denote

the size of C and let n denote the size of C ∪F . We follow the approach in [24] to define the n× nc
matrix P . Let u1, u2, . . . , u|C| be an ordering of the vertex set C. Let Ci denote subset of C that

strongly influence vertex i. For each i ∈ C ∪F and each j ∈ {1, . . . , |C|}, the entry wij of P is define

as :

wij =


1 if i ∈ C and i = uj ;

aij/
∑
k∈Ci

aik if i /∈ C and uj ∈ Ci;

0 otherwise.

The coarser system Ac is obtained using the Galerkin operator

Ac = PTAP.

In the following, we discuss the specific algorithmic improvements that we incorporate for faster

GPU implementation.

4.6 Improved Coarsening

The accuracy of the solver also depends on the quality of the coarsening. Each level in the multigrid

should retain adequate number of boundary nodes and the coarsening algorithm as such will not

ensure this. To overcome this, we modify the coarsening (Algorithm 1) and at each stage of coars-

ening, the boundary nodes are assigned a weight which is α times the number of points that depend

on it, for a predefined α > 1. As shown in the experiments, by this coarsening, more number of

boundary nodes become part of highly coarser grids and thereby improving the coarsening quality.

Algorithm 1 Improved Coarsening

Require: Graph representation of matrix A

1: Delete weak connections in the graph

2: For each non-boundary point u, assign a weight equal to the number of points that depend on

u.

3: For each boundary point v, assign a weight equal to α times the number of points that depend

on v.

4: Choose a point p with maximum weight as C point.

5: Mark points depending on p as F points.

6: For each new F point u, increment weights of all points that influence u by one.

7: Decrement the weights of all points that influence p by one.

8: Repeat steps (4) to (7) till all the points are marked as C or F .
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4.7 Modifying Ac for Faster Smoothing in Coarser Grids

‘ We incorporate the following transformation to matrix Ac in our coarsening procedure for improving

the performance of GPU implementation. As we go down the AMG hierarchy, the number of

neighbors for each node in the coarser graphs increases rapidly making the coarse systems more

denser. Large degrees result in fetching more data from global memory during smoothing operation

in GPU and thereby degrading the GPU performance on coarser systems. To overcome this, our

coarsening procedure modifies matrix Ac in such a way that the neighbors with insignificant influence

in the corresponding graph is ignored. Entries aij in the ith row of Ac are modified as follows. Let δ

denote the average value of off-diagonal entries in row i (they are negative valued in Ac and positive

valued in the graph). Let J ′ denote the subset of columns such that for each j ∈ J ′, aij ≤ β · δ,
where β is a user defined constant. Let |J ′| = n′ and let ε =

∑
j /∈J′ aij/n

′. Modified aij is given by

aij ← aij + ε if j ∈ J ′, and aij = 0 otherwise.

By the above modification, we ignore all the neighbors whose influence is less than β times

the average influence, and their total influence is distributed among the remaining neighbors of i.

Though this might slightly slow down the convergence, it is compensated by the reduced smoothing

time in coarser grids.

4.8 Parallelization of Gauss-Seidel Iterative Method

To smooth high frequency error component at each level in the multigrid, iterative solvers like

Jacobi or Gauss-Seidel can be employed. Both these methods assume an initial guess and visit

nodes in an arbitrary order to update the value at the node. However, they differ in the values of

neighboring nodes that are used during updating. Jacobi method is preferred if vector or parallel

processor is available at disposal due to its ease of parallelization. However, Gauss-Seidel method has

faster convergence than Jacobi methods and hence is used in this work. Gauss-Seidel is inherently

sequential as we can’t update all the inter-dependent nodes simultaneously. Graph vertex coloring in

the corresponding mesh graph is used to obtain independent sets corresponding to the color classes

(Fig 4.5). All points in one color class can be updated in parallel [5, 25]. We discuss the details in

the next chapter.

4.9 GPU Implementation

We use CUDA programming model for our implementation. Implementing graphs algorithms on

GPU is challenging due to irregular data access pattern associated with graphs. Using appropriate

data structures and data organization/arrangement that maximizes coalesced memory access is the

key for effective GPU implementation. A total of seven GPU kernels are used in our implementation:

One kernel to perform smoothing, two kernels each for restriction and prolongation operations. A

kernel for array reduction is used to get root mean square error for convergence testing. The different

algorithmic techniques and data structures used for GPU implementation of the solver are discussed

in the following.
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(a) (b)

Figure 4.5: Multi Colored Gauss Seidel Smoother (a) Graph corresponding to the matrix A (b)The graph
is colored to get independent sets of nodes

4.9.1 Vertex Coloring

To parallelize Gauss-Seidel iterative smoothing, we use standard vertex coloring technique to get

independent sets of nodes in the graph. As no two adjacent nodes have same color, each color class

forms an independent set. The minimum number of colors required to color a graph G is called

its chromatic number denoted by χ(G). As Gauss-Seidel method allows us to update nodes in any

arbitrary order, we update them in the order of color class i.e., update nodes in one color class

after the other. Within a color class, all the nodes can be updated in parallel as they form an

independent set. Though an easy ∆ + 1 coloring is possible for any graph, where ∆ is maximum

degree, a χ(G) coloring is known to be NP-hard in general. We use the standard greedy coloring

algorithm employed in [5], which gives a 6 coloring for planar graphs. Let the vertices of the graph

be ordered as u1, u2, . . . , un, in such a way that ui is a minimum degree vertex in the graph induced

by vertices {u1, u2, . . . , ui}. Now color each vertex with a free color in the order u1, u2, . . . , un.

4.9.2 Graph Representation

The memory representation of graph used for GPU processing has significant impact on the perfor-

mance. Graph data includes (a) Data corresponding to each vertex - degree, value at vertex etc. (b)

Edge information - indices of neighboring vertices and their corresponding scale factors etc. Vertex

data is re-ordered according to the color of vertices i.e., data of all the vertices having same color

will be co-located. An array of pointers is maintained to store the starting index of each color class.

The implementation processes the vertices of each color in sequence and for each color, creates as

many threads as the number of vertices in the color class. Re-ordering the data according to color

results in coalesced memory access [5] as show in Fig 4.6 (adapted from [5]).

To store edge data, we use the semi-compact column major matrix representation as in [5] which

requires O(∆ · |V |) space for a graph with maximum degree ∆, which is generally small for many

practical problems. Each column stores the adjacency information of a single vertex. The edge data

accessed by threads will be collocated and hence results in a coalesced access as shown in Fig 4.7

(adapted from [5]).
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Figure 4.7: Coalesced memory access in column major adjacency

4.9.3 Multigrid Implementation

Hierarchy of grids created during pre-processing phase are stored on device memory. The inter-grid

transfer operators which include prolongation and restriction matrices (stored in column major ma-

trix representation) are also stored as part of grid. Following GPU kernels are used for implementing

different steps in the multigrid method.

• Smoothing The kernel takes the starting and ending index of each color class, creates as many

thread as the number of vertices in the color class and updates the value at each vertex.

• Restriction Two kernels are used for implementing restriction operation. One of the kernels

creates as many threads as the number of vertices in the finer mesh and calculates residual at

each vertex. The other kernel creates as many threads as the number of vertices in the coarser

mesh and updates residual at each vertex using restriction matrix.

• Prolongation Two kernels are used for implementing prolongation operation as well. One of

them creates as many threads as the number of vertices in the coarser mesh and calculates

error correction at each vertex. The other kernel creates as many threads as the number of

vertices in the finer mesh and updates the value at each vertex using prolongation matrix.

We use V -cycle multigrid, which is made up of a down cycle and up cycle. Down cycle is a

sequence of smoothing and restriction operations performed alternately starting from finest grid

till we reach coarsest grid. Up cycle is a combination of prolongation and smoothing operations

performed alternately starting with the coarsest grid till we reach finest grid. The multigrid V -cycle

is repeated till the desired convergence is reached.
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4.10 Classical Algebaic Multigrid

Classical AMG has been implemeted to accelerate the performance of the solver. AMG implemen-

tation led to considerable speedups in most of the problems. But some discrepancies were found

while doing experiments with the code.

4.10.1 Selection of boundary nodes

In the jet problem, the inlet boundary patch is quiet small, as compared to that of the domain size.

When the AMG is performed, with equal preference to interior and boundary cells,with number of

levels more than 2, it was found that insufficient number of inlet nodes were taken for simulation,

hence giving false results, or no results at all. One of he possible ways was to increase the number of

inlet boundary cells, but that would also lead to increase in preprocessing and computational time.

In order to avoid thisfrom happening the priority for selecting the boundary nodes was increased in

each level. This resulted in selection of more number of boundary nodes, and better results.

4.10.2 Classical AMG and Non orthogonal unstructured grids

According to Classical AMG theory as refered in 4.5.1, the Au = f is the format of the equation to

be solved. As we have also seen in the same section, the matrix A must be diagonally dominant, that

is one of the pre requisites of AMG to be successfully applied. Also the discretization of pressure

poisson leads to introduction of cross diffusion terms. The detailed discretization has been given

in Appendix A. Upon seeing the discretization on non orthogonal grids, it is clear that the final

equation involves the dependence of cell center on its neighbours and its neighbours of neighbours,

increasing the degree of connectivity for each cell.Experimentally, it was found that the matrix A

was no longer diagonally doominant, and hence the solver diverged, with any given grid of mesh

skewness 0.85. This problem can be eliminated using a modified algorithm for AMG as given in

Lonsdale et al [26].

Hence the current solver is capable of solving orthogonal unstructured grids on GPU accelerated

AMG, but for non orthogonal grids, pressure poisson has been accelerated as given in section 4.8.

This has been considiered as the future scope for the work.

4.11 Closure

In this section,we discussed the basics of Algebraic Multigrid (AMG) to solve a set of linear equa-

tions. We also looked into modified alorithm for better coarsening through giving highe priority to

boundary nodes. Implementation of AMG and Gauss seidel on GPU through greedy colouring was

also discussed along with experimntal findings and shortcomings of the algorithm.
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Chapter 5

Laminar Validation cases

5.1 Introduction

The code has been validated for 3D laminar benchmark problems. The problems have been also

tested with and without AMG and GPU for speedup and accuracy, and have also been compared

with the benchmark problems.

The problems that have been considered are:

1. 3D Lid driven cavity.

2. Flow over Square Cylinder at low Reynold numbers.

3. Heat transfer through solid cube.

The results have been presented and discussed in the following sections of this chapter.

5.2 Lid Driven Flow

The lid-driven cavity problem has long been used a test or validation case for new codes or new

solution methods.The problem consists of Dirichlet boundary condition at all sides with fluid con-

tained in a cubical domain, with all stationary sides and one moving side (with velocity tangent

to the side). Pressure has uniform neumann boundary condition on all the sides. The domain has

been shown schematically in figure 5.1. This problem is a nice one for testing for several reasons.

First, as mentioned above, there is a great deal of literature to compare with. Second, the (laminar)

solution is steady. Third, the boundary conditions are simple and compatible with most numerical

approaches.

The domain size for our problem 1x1x1, with different number of unstructured hexahedral cells.

The figures below represent the results obtained by coarsest configuration on 0.1 million cells for

Reynolds Number 100 and 1000. Results have been compared for X and Y component of velocity

with vertical and horizontal centerline which have been presented in figure 5.2. For same number of

cells and same flow conditions, results have also been computed for unstructured tetrahedral cells.

The results obtained have been compared against Ku. et. al. [27].
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Figure 5.2: Comparison of (a) the horizontal velocity component along the vertical centerline and (b) the
vertical velocity component at the horizontal centerline of cubical lid driven cavity at Re = 100 and 1000
with the results of Ku et al. [27]

Figure shows the results to be in good agreement with the standard literature. Validations were

performed for both serial and parallel code.

Table 5.1 shows comparison of multigrid speedup obtained by GPU and GPU Multigrid over

serial code for different mesh sizes in first timestep of solving Pressure poisson.
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Table 5.1: Pressure Poisson Solve Time Comparison for Flow Over Lid Driven Cavity Problem

Grid Size serial GPU without MG GPU with MG
1060000 3 hr 8 min 54 sec 21.09 sec 9.69 sec
1580000 5 hr 23 min 33 sec 42.89 sec 18.84 sec
2100000 11 hr 30 min 50 sec 1 min 16 sec 33.09 sec
2620000 20 hr 8 min 37 sec 2 min 4 sec 1 min 19 sec

5.3 Flow over Square Cylinder

In this section we analyze flow over square cylinder, the domain for which has been sketched in fig.

aa. The flow simulated is essenially 3D, but to test the code and boundaries, as well as the stability

of code for unsteady problem and for concave mesh, this problem was chosen. The results have been

compared in fig 5.3 with work of breuer et. al. [28] for a range of Reynold number. The reynold

number for this problem is defined as : RE = UD
ν , where U is the velocity through the inlet, D is

the side of the square, and ν is the kinematic viscosity of the fluid.

When the flow is set upon a square cylinder, at very low reynold number (RE=0.7)which is <1, we

see that creep flow develops as viscous forces dominate leading to no separation of flow, but as we

increase the reynold number beyond 1, it leads to formation of wake beyond the cylinder where a

recirculation zone is formed leading to a low pressure zone just behind the cylinder. With increasing

Re, the flow separates first at the trailing edges of the cylinder and a closed steady recirculation

region consisting of two symmetric vortices is observed behind the body. The size of the recirculation

region increases with increase in RE.
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Figure 5.3: Comparison of (a) The domain for flow over square cylinder and (b) Validation of recirculation
length vs reynold number with results of Breuer et al. [28]

Different meshes were used to test the solver and mesh independece and speedup obtained from
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muligrid for the problem. As the problem is two dimensional in current regime(ref), and the solver

can handel three dimensional problems, the grid is only a single unit in the Z direction, i.e only a

single cell width is given in Z direction, and symmetry boundary condition is applied on the faces

(front and back) normal to Z direction. The boundary conditions imposed are shown as below:

• Inlet: u = 1; v = w = 0; ∂P∂n = 0

• Symmetry front and back : ∂u
∂n = ∂n

∂z = ∂P
∂z = 0, w = 0

• Symmetry top and bottom : ∂u
∂n = ∂w

∂n = ∂P
∂z = 0, v = 0

• Outlet : ∂u
∂n = ∂v

∂n = ∂v
∂n = 0, P = 0

• Cylinder : u = v = w = 0; ∂P∂n = 0 where “n” is the direction normal to the plane of boundary.

The flow has the property to be steady below Reynold number 54. The recirculation zone starts

forming at around RE 1, and as we keep on increasing the Reynold number, When this critical

Reynolds number Recrit is exceeded, the well-known von Karman vortex street with periodic vortex

shedding from the cylinder can be detected in the wake.As we go beyond RE, the wake becomes

unstable and starts shedding vortices that travel through the domain and exit through outlet bound-

ary, without inducing any numerical instability in the flow.

Simulation has not been performed beyond RE 60, as the intention is to test for laminar flow, steady

and unsteady (vortex street) and to not go in transition and turbulent regime. Moreover this regime

gives us a 2 dimensional flow. The streamlines plots for the same have been presented in the figures

below:
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Figure 5.4: Streamlines at different Reynold Number. (a) RE0.7, (b) RE5, (c) RE10, (d) RE20, (e) RE60
vortex shedding.

The speedup obtained through GPU and GPU AMG implementation is given as in Table 5.2
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Table 5.2: Pressure Poisson Solve Time Comparison for Flow Past Square Cylinder Problem

Grid Size CPU without MG GPU without MG GPU with MG
203748 2 hr 2 min 25 sec 41.35 sec 6.61 sec
302310 3 hr 4 min 40 sec 57.09 sec 9.19 sec
403510 7 hr 13 min 14 sec 2 min 1 sec 15.47 sec
1713160 26 hr 19 min 48 sec 13 min 53 sec 1 min 33 sec

5.4 Heat transfer through solid cube

A solid cube represents a case of pure conduction. The temperature equation can be substituted

in the scalar equation for pure conducion and forced convection, where the temperature field does

not affect the flow field. To validate the scalar implementation as described in ref chap, the scalar

variable φ was donsidered as Temperatue. As it is a solid, there would be no convection. Same

mesh used for Lid driven cavity is used for the purpose. The material was assumed to be Copper,

which has a density as ρ = 8933kg/cm3, thermal sensible heat transfer coefficient as Cp = 385 and

thermal conductivity K = 401. The diffusion coefficient γ can be defined for heat transfer problem

as γ = K
Cp

. The problem is solved for following boundary conditions:

• Top, Bottom, Right, Left, Rear Wall: u = v = w = 0; ∂P∂n = 0, φ = 300K

• Bottom Wall : u = v = w = 0; ∂P∂n = 0φ = 600K where “n” is the direction normal to the

plane of boundary.

The analytical solution for a 2D conduction problem can be given as:

T = T1 + (T2 − T1) ∗ (
2

π
) ∗ (

∞∑
n=1

(−1)n+1 + 1

n
sin

nπx

W

sinh nπy
W

sinh nπH
W

) (5.1)

details on which can be found in works by Holman [29]. The results have been compared at Z= 0.5

plane of the geometry for X center line.
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Figure 5.6: Comparison of analytical and numerical solution

5.5 Closure

In this chapter, we have seen the validation of the code against problems listed in section 5 and the

speedup obtained when compared with serial code. The serial simulations were carried out on Intel

Xeon E5-2600 2.60 GHz processor. Parallel simulations which includes non-multigrid and multigrid

GPU implementations of AMG solver are run on NVIDIA Kepler K20Xm GPU with CUDA driver

version 5.5. The GPU has 2668 cores, 6GB device memory. We can conclude that the solver is fairly

accurate for the type of problems we aim to solve.
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Chapter 6

Turbulence modeling using Large

Eddy Simulation

6.1 Introduction

Turbulence is ubiquitous phenomenon. Fluid flows generally encountered in engineering applications

are turbulent in nature which is characterized by

1. Random and Chaotic nature - temporally and spatially.

2. Diffusivity - intense mixing due to the fluctuating quantities.

3. Large Reynolds number phenomenon - occurs at high Re number regime.

4. Three-Dimensionality 1 - fluctuations are three dimensional even though the mean flow field

is two dimensional.

5. Rotationality - always involves vortices.

6. Dissipative - more energy consuming compared to laminar flow.

7. Continuum - smallest possible eddies in the flow field are larger than the molecular mean free

path

Whenever a moving fluid enters a quiescent body of the same fluid, a velocity shear is created between

the entering and ambient fluids, causing turbulence and mixing. There are many computational

strategies to solve the turbulent fluid flow problems which are described in the following section.

6.2 CFD Methods for turbulence

6.2.1 Direct Numerical Simulation

The most accurate of solutions of turbulent flows is Direct Numerical Simulation (DNS) which solves

the complete Navier-Stokes equations directly without any modelling assumptions. A good DNS has

to resolve the complete spectrum of length scales which is very broad in a turbulent fluid flow. A
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very fine grid has to be taken in order to resolve the smallest possible length scale, defined by the

Kolmogorov length scale, which in turn increases the number of grid points needed. In DNS, the

number of grid points are related to Reynold number as

N Re
9
4 (6.1)

As we can see the compuatational cost for DNS is vey large, and hence is avoided in industries.

DNS is generally used for academic purpose. It is also regarded as numerical experiment as the

results obtained are highly accurate.

6.2.2 Large Eddy Simulation

One of the methods to simulate turbulent flows is Large eddy simulation (LES). Turbulence consists

of a continuous spectrum of scales ranging from the largest scale to the smallest scale. The transfer

of energy from one scale to other is called energy cascading.

An implication of Kolmogorov’s theory of self-similarity is that the large eddies of the flow are

dependent on the geometry while the smaller scales more universal. This feature allows one to

explicitly solve for the large eddies in a calculation and implicitly account for the small eddies

by using a sub-grid-scale model (SGS model). Hence complete Navier stokes is solved for energy

containing large eddies, whereas eddies in sub inertial region are modelled using some mathematical

model. Mathematically, one may think of separating the velocity field into a resolved and sub-grid

part. The resolved part of the field represent the ”large” eddies, while the subgrid part of the velocity

represent the ”small scales” whose effect on the resolved field is included through the subgrid-scale

model.Formally, one may think of filtering as the convolution of a function with a filtering kernel G:

ūi(~x) =

∫
G(~x− ~ξ)u(~ξ)d~ξ, (6.2)

resulting in ui = ūi + u′i
, where ūiis the resolvable scale part and u′i is the subgrid-scale part. However, most practical (and

commercial) implementations of LES use the grid itself as the filter (the box filter) and perform no

explicit filtering

Navier stokes equation is solved for region up to sub grid region decided using low pass filtering.

For sub inertial region, terms are modelled. They appear like viscous terms, hence are called sub

grid stress modelling. Static Smagornski Model of LES has been implemented in the solver for

simulation of turbulent flows.

The filtered equations are developed from the incompressible Navier-Stokes equations of motion:

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

(
ν
∂ui
∂xj

)
. (6.3)

Substituting in the decomposition ui = ūi+u′iand p = p̄+p′and then filtering the resulting equation

gives the equations of motion for the resolved field:

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
ν
∂ūi
∂xj

)
+

1

ρ

∂τij
∂xj

. (6.4)
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We have assumed that the filtering operation and the differentiation operation commute, which is

not generally the case. It is thought that the errors associated with this assumption are usually

small, though filters that commute with differentiation have been developed (”ref?”). The extra

term
∂τij
∂xj

arises from the non-linear advection terms, due to the fact that

uj
∂ui
∂xj
6= ūj

∂ūi
∂xj

(6.5)

and hence

τij = ūiūj − uiuj (6.6)

Similar equations can be derived for the subgrid-scale field (i.e. the residual field). Subgrid-scale

turbulence models usually employ the Boussinesq hypothesis, and seek to calculate (the deviatoric

part of) the SGS stress

Static Smagornski Model

Static Smagornski Model could be summarized as:

τij −
1

3
τkk = −2(Cs∆)2Sij

∣∣S̄∣∣ (6.7)

Where the filter width is usually taken to be

∆ = (Volume)
1
3 (6.8)

In Static Smagorinsky model, eddy viscosity is modelled by:

νsgs = (Cs∆)2
∣∣S̄∣∣ (6.9)

S is symmetric tensor and can be represented as:

§ij =
1

2
(
∂ūi
∂xj

+
∂ūj
∂xi

) (6.10)

and

S̄ =
√

2SijSij (6.11)

Hence the effective viscosity is calculated:

νeff = νmolecular + νsgs (6.12)

Hencethe complete Navier Stokes equation is given as:

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
[ν + νt]

∂ūi
∂xj

)
, (6.13)

where we have used the incompressibility constraint to simplify the equation and the pressure

is now modified to include the trace term τkk δij/3. For Cs, value around 0.1 is found to be good

for various engineering flow problems. For the scalar equation, the Static Smagornski model can be
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given as:

γsgs =
(Cs∆)2

∣∣S̄∣∣
Sc

(6.14)

hence

γeff = γ + γsgs (6.15)

where Sc is the Schmidt number of the flow.

6.3 Validation

The turbulent flow has been simulated for a Reynolds Number of 11000 and has been validated

with the results of Panchapakesan and Lumley [3]. Simulations have been carried out with Static

Smagorisky model for modeling turbulence. Two inlets were simulated for the flow, a square inlet

and a circular inlet.

6.3.1 Turbulent Jet

The domain that has been used for the simulation along with the boundary conditions has been

shown below.

Figure 6.1: 3 Dimensional Domain for simulation of Turbulent Jet

Boundary conditions

• Inlet Inner: w = 1;u = v = 0; ∂P∂n = 0φ = 1
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• Inlet outer : w = u = v = 0; ∂P∂n = 0φ = 0

• Outlet : ∂u
∂n = ∂v

∂n = ∂v
∂n = 0P = 0∂φ∂n = 0

• Bottom Symmetry : ∂u
∂n = ∂w

∂n = v = 0P = 0∂φ∂n = 0

• Walls : u = v = w = 0; ∂P∂n = 0∂φ∂n = 0 where ‘n’ is the direction normal to the plane of

boundary.

The size of the domain is 40Dx20Dx80D, with the inner inlet of D and outer inlet of 2D. Only half

of the domain has been simulated to lower the computational cost of the simulation. The number

of cells for which the simulation was caried out was 2.3 million unstructured hexahedral cells.

The structures obtained are shown in the figures below for flow time of 12 seconds:
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Figure 6.2: Velocity contors for round Turbulent Jet at Y = 0 plane
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Chapter 7

Numerical Simulation and Analysis

of Coaxial Jets

7.1 Introduction

Jets are of great practical relevance to both engineering applications and natural phenomena. Un-

derstanding the nature of Jets is crucial in many fields like mixing of fuels in an automobile or a

jet engines, dispersion of pollutants in the atmosphere, cooling of gas turbine blades and exhaust

gas cooling etc. This use of coaxial jets is wide spread in context of air blast atomizer. The coaxial

jets geometry, operating with a large outer (annular) to inner (central) momentum ratio is used for

its ability to destabilize, fragment and mix the central stream in the outer, rapid stream at higher

speeds. Jet emerging into quiencient fluid in presence of walls from a single inlet at Reynold number

10 and 100 have been discussed. In present work, the properties of single phase laminar coaxial jets

for different velocity ratio Vr = Uouter
Uinner

for RE 10 has been discussed, mainly focusing on changes in

the structure of inner jet, due to fast moving outer jet.

7.2 Jet emerging into quiencient fluid

Free shear layers are unaffected by walls and develop and spread in open ambient fluid. They possess

velocity gradients, created by some upstream mechanism, which try to smooth out viscous diffussion

in ppresence of convective decelaration. Study of Round jet issuing into quincient air is a classical

free shear problem. A jet emerging into still and ambient and identical fluid from its inlet is con-

sidered for simulation in presence of walls,which are sufficiently away. It is investigated whether the

free behaviour of the flow is retained in such a case. The domain simulated for our problems is given

in figure 7.1.

The diameter of inlet of domain is D, and the domain size is 5D radially, and 50 D in axial direction.

The flow has been defined using the inlet Reynold number, defined as RE = UD
ν where U is the

inlet velocity, D is inlet diameter of the inner inlet, and ν is the kinematic viscosity of the fluid. The

boundary conditions for the problem have been discussed as below.
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Figure 7.1: Domain for Free shear jet

• Inlet Inner: w = 1;u = v = 0; ∂P∂n = 0φ = 1

• Inlet outer : w = u = v = 0; ∂P∂n = 0φ = 0

• Outlet : ∂u
∂n = ∂v

∂n = ∂v
∂n = 0P = 0∂φ∂n = 0

• Walls : u = v = w = 0; ∂P∂n = 0∂φ∂n = 0 where ‘n’ is the direction normal to the plane of

boundary.

Mesh of 0.5 million unstructured hexahedral elements have been used for both the cases. If the

jet emerges with sufficient momentum, it remains narrow and grows slowly, with radial changes

being much larger that axial.

The simulations have been carried out for inlet Reynold numbers of 10 and 100, for Navier Stoke

and species transpor equations using semi implicit segregated algorithm as described in section 3.6.1.

7.2.1 Jet emerging from inlet at Reynold Number 10

Fluid enters the domain through innner inlet and outer inlet remains a part of the wall. Following

results were obtained for single jet entering in quincient fluid. This case is the control jet with

Vr = 0.

The axial profile has been validated against the analytical solution given by Schlichting [30] as:

U(r, z) =
3K

8πν(z − z0)
(1 +

3K

64π(ν)2
(

r

z − z0
)2)−2 (7.1)

where z0 is the vitual origin of the jet, r denotes the radial distance from the jet centerline and K

is the momentum supplied by point source at z=z0. We find that the results are in good agreement

with the numerical simulation. We can see from the figure that the fluid diffuses near the inlet itself
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Figure 7.2: Contour at Y = 5D midplane for (a)Velocity (b)Passive Scalar solution at RE 10
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Figure 7.3: Validation against analytical solution for RE = 10

due to low Reynold number and therefore due to low momentum. As the flow simulated is at very

low RE and diffuses near the inlet. As the Reynold number is very small, the fluid diffuses and looses

its momentum far before it can reach the outlet. The same case was simulated on Fluent commercial

solver with same boundary conditions. The comparisons at near wake and far wake have been given

in figure 7.4. Figure 7.5, the velocity and the scalar profiles have been normalized with respect

to the local maximum values and then plotted. The Schmidt number for the flow can be defined

as Sc = µ
γ , where γ is the diffusivity of scalar and µ is the dynamic viscosity of the fluid.Schmidt

number is taken to be 1, but still the diffusion boundary layer and the momentum boundary layer
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Figure 7.4: Comparison at Y = 5D midplane for (a)NearWake at axial distance of 2D (b)FarWake at axial
distance of 4D
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Figure 7.5: Comparison at Y = 5D midplane for normalized with respect to local maxima for velocity and
scalar profiles (a)NearWake at axial distance of 2D (b)FarWake at axial distance of 4D

do not coincide with each other.

On plotting the pressure gradient of the flow along the center line of Y = 5D centre plane in

figure, we find that the pressure gradient is not zero at the inlet, and hence the difference. Developing

jet is displacing a stationary fluid, hence work has to be done as therefore this will act as a sink
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Figure 7.6: Presure Gradient variation along the axial length of the domain

term in the momentum equation. As we see that the slope is positive, i.e. the jet is working against

an adverse pressure gradient and therefore energy is being spent to overcome this adverse pressure

gradient.

7.2.2 Jet emerging from inlet at Reynold Number 100

Now the simulations were carried out for inlet RE = 100. The velocity and scalar contours have been

shown in figure 7.7. The validation was carried out for axial velocity distance using the analytical
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Figure 7.7: Contours of (a) Velocity Magnitude (b) Scalar for RE = 100
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soloution given by equation 7.2.1.
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Figure 7.8: Validation against analytical solution for RE = 100

As we can see from the figure 7.7, the flow is bounded by the walls, which constrains the fluid

flow. The velocity and scalar profiles have been plotted and compared with Fluent for different axial

distances, as given in figure 7.9 and figure 7.11 .
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Figure 7.9: Comparison at Y = 5D midplane for (a) NearWake at axial distance of 2D (b) NearWake at
axial distance of 10D

The variation of pressure gradient with axial distance has been shown in figure 7.13. Due to

presence of pressure gradient throughout the flow, the momentum and diffusion layers donot coincide

with each other.The speedup obtained through GPU for first time step for Re 10 is shown in table

7.1.

59



X

p
h
i/
P
h
i_
C

0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.2

0

0.2

0.4

0.6

0.8

1

1.2

Scalar
Velocity

X

p
h
i/
P
h
i_
C

0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.2

0

0.2

0.4

0.6

0.8

1

1.2

Scalar
Velocity

(a) (b)

Figure 7.10: Comparison at Y = 5D midplane for normalized with respect to local maxima for velocity
and scalar profiles (a)NearWake at axial distance of 2D (b)FarWake at axial distance of 4D
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Figure 7.11: Comparison at Y = 5D midplane for (a) FarWake at axial distance of 30D (b) NearWake at
axial distance of 42D

Table 7.1: Pressure Poisson Solve Time Comparison for Jet

Grid Size Serial GPU without MG GPU with MG
203748 2 hr 2 min 25 sec 41.35 sec 6.61 sec
302310 3 hr 4 min 40 sec 57.09 sec 9.19 sec
403510 7 hr 13 min 14 sec 2 min 1 sec 15.47 sec
1713160 26 hr 19 min 48 sec 13 min 53 sec 1 min 33 sec
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Figure 7.12: Comparison at Y = 5D midplane for normalized with respect to local maxima for velocity
and scalar profiles (a)NearWake at axial distance of 30D (b)FarWake at axial distance of 42D
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7.3 Laminar Coaxial Jets

We shall study the effect of different velocity ratio (Vr) for the control problem , as given in section

7.2 for Reynold Number 10. Same geometry and boundary conditions have been used, but for one

notable exception that the outer inlet shall now be prescribed velocity. The results of the laminar

coaxial flow control jet have been described in section 7.2.1. The boundary conditions for the coaxial

cases is given as following :

• Inlet Inner: w = 1;u = v = 0; ∂P∂n = 0;φ = 1

• Inlet outer: w = Vr;u = v = 0; ∂P∂n = 0;φ = 0

• Outlet : ∂u
∂n = ∂v

∂n = ∂v
∂n = 0P = 0; ∂φ∂n
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• Walls : u = v = w = 0; ∂P∂n = 0; ∂φ∂n where ‘n’ is the direction normal to the plane of boundary.

The contours obtained for the steady state velocity and scalar are shown as below:
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Figure 7.14: Contours of (a) Velocity Magnitude (b) Scalar for Vr = 2 at Re =10
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Figure 7.15: Contours of (a) Velocity Magnitude (b) Scalar for Vr = 4 at Re =10
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Figure 7.16: Contours of (a) Velocity Magnitude (b) Scalar for Vr = 8 at Re =10
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Figure 7.17: Contours of (a) Velocity Magnitude (b) Scalar for Vr = 16 at Re =10

At large axial distances from the end of the inner potential core, the two jets merge in a single

jet carrying the sum of the momenta injected in each jet, and this distance also depends upon the
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outer jet. The outer jet shears the inner jet, peeling and stretching the core of the jet, thus leading

to decrease in boundary layer thickness but increases in its length. We can see that as the Reynolds

Number of the annular jet increases, the momentum of the inner jet decreases and so does the

boundary layer thickness. The scalar region becomes thinner with increase in Reynolds number.

Before diffusing in the domain, the width of boudary layer increases like a plume as represented in

the countours. The scalar magnitude for all the velocity ratio has been plotted for near wake for a

distance of 2D and 10D and in the far wake at a distance of 20D, 30D and 48D as in figure 7.18 (a)

,(b), (c) ,(d) and (e) respectively.

As we can see from the figure 7.18 (a), the boundary layer thickness is maximum for least value of

Vr. But as we move from near wake towards far wake, the boundary layer becomes zero for velocity

ratio in increasing order. For example by Z = 10D, the boundary layer thickness becomes zero for

Vr = 0, where as the stretching continues for other velocity ratios. At Z= 20D, the plume like

structure of scalar magnitude exists for Vr = 4, due to which the scalar magnitude has decreased for

the same, but the boundary layer thickness is at its maximum, before diffusing into the quiencient

fluid. As we go further downstream, we see the jets keep diffusing with increasing velocity ratio.

At just near the outlet, the plume like structure is formed for Vr = 8, due to which its boundary

layer thickness is at maximum, which shall decrease and then diffuse in quiencient fluid. The trend

is assumed to be continued in a larger domain for Vr = 8and16 and scalar diffusion occurs first for

Vr = 8 and then for Vr = 16.

7.3.1 Effect of Injector inside the domain

To study the effect of surrounding wall near the inlet on the flow an injector inside the computational

domain, as shown in figure 7.19. The injector was placed at 5D axial distance from the previous

location of the inlet. Same boundary conditions as given in section 7.2.1 were used for this problem.

The velocity and scalar contours have been in shown for RE 10 and RE 100 in figures 7.20 and

7.21 respectively.
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Figure 7.19: 3 Dimensional Domain with injector inlet at an axial distance of 5D from previous inlet

(a) (b)

Figure 7.20: Contours of (a) Velocity Magnitude (b) Scalar for Re =10
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(a) (b)

Figure 7.21: Contours of (a) Velocity Magnitude (b) Scalar for at Re =100 with Injector in domain

The velocity and scalar have been comapared in the figures given below:

(a) (b)

Figure 7.22: Comaprison of Velocity and Scalar on Y = 5D midplane at (a) Z = 2D (b) Z = 4D Re =10
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(a) (b)

Figure 7.23: Comaprison of Velocity and Scalar on Y = 5D midplane at (a) Z = 2D (b) Z = 40D Re
=100

(a) (b)

Figure 7.24: Pressure Graient of (a) Re 10 (b) Re =100 along axial direction

As we can see from the figures, due to existance of pressure gradient at the inlet, the diffusion

layer and the velocity boundary layer donot coincide, and hence we obtain results similar to previous

case.
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7.4 Turbulent Coaxial Jets

Turbulent jet was simulated with coaxial inlets, with Velocity ratio Vr = 2 and diameter ratio also

of 2. The Reynolds number of the core jet is taken to be 11000. The scalar is also injected from the

same inlet, with boundary conditions as given below:

• Inlet Inner: w = 1;u = v = 0; ∂P∂n = 0φ = 1

• Inlet outer : w = Vr;u = v = 0; ∂P∂n = 0φ = 0

• Outlet : ∂u
∂n = ∂v

∂n = ∂v
∂n = 0P = 0∂φ∂n = 0

• Bottom Symmetry : ∂u
∂n = ∂w

∂n = v = 0P = 0∂φ∂n = 0

• Walls : u = v = w = 0; ∂P∂n = 0∂φ∂n = 0 where ‘n’ is the direction normal to the plane of

boundary.

The domain used for the simulation is given as following:

Figure 7.25: 3 Dimensional Domain for simulation of Turbulent coaxial Jet

The size of the domain is 40Dx20Dx80D, with the inner inlet of D and outer inlet of 2D. Only

half of the domain has been simulated to lower the computational cost of the simulation. The

number of cells for which the simulation was caried out was 3.3 million unstructured hexahedral

cells. Following results have been obtained for flow time of 4 seconds.

We see that the jet is being stretched by the fast moving outer jet, and the instabilities have

started to set in. Vortices are being generated and dissipated due to the turbulent nature of the

flow.
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Figure 7.27: Scalar contours from inner inlet at Y = 0 plane

70



Z

X

0 2 4 6 8
0

1

2

3

4

5

6

7 Level
Vorticity Magnitude:

1
0.9

10
2.97551

19
5.05102

28
7.12653

37
9.20204

46
11.2776

Figure 7.28: orticity Magnitude contours and line contours at Y = 0 plane

71



Appendix A

The Coefficient Framework for the

Unstructured Solver

A.1 For Diffusive Flux

A.1.1 Basic Expression For Diffusive Flux

The Basic expression for Diffusive Flux at a cell P surrounded by Neighbor Cells (denoted by sub-

script “n”) and having interior faces (denoted by subscript “f”) and faces on the boundary (denoted

by subscript “b”) is

Fdiff =
∑
f

Fdφf
+
∑
b

Fdφb
(A.1)

where

Fdφf
= −Γf (∇φf · Sf ) (A.2)

Fdφb
= −Γb(∇φb · Sb) (A.3)

Where Γb and Γb is the volume interpolate value of the diffusion coefficient at that boundary and

interior face respectively. The Face area vector is represented as Sf . Its magnitude is given be Af .

Similarly for boundary face we have Sb and Ab.

Now, if n̂f be the unit vector normal to Face “f” and n̂1 be the unit vector joining the cell center

of P with the neighboring cell center of Pn, r1f being the corresponding magnitude, then we can

define a new unit vector, n′2f as,

n̂f = n̂1 + n′2f (A.4)
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Also,

(∇φf ) · n̂1 =
φn − φP
r1f

(A.5)

where the subscript “n” denotes values at the neighboring cell.

But

(∇φ)f · Sf = Af (∇φ)f · n̂f
= Af (∇φ)f · (n̂1 + n′2f )

So using Eq.(A.4) and Eq.(A.5) above we get,

(∇φ)f · Sf = Af

[
φn − φP
r1f

+ (∇φ)f · n′2f
]

(A.6)

Now, setting

βf =
Af
r1f

(A.7)

n2f = Afn
′
2f (A.8)

we get

(∇φ)f · Sf = βf (φn − φP ) + (∇φ)f · n2f (A.9)

For a boundary face, Face Normal Formlation (Section 3.5.2) is being used. In this discretiza-

tion scheme the boundary values are stored at the point where the perpendicular from parent cell

centroid meets the boundary face. This eliminates the need for a cross diffusion term. So we get,

(∇φ)b · Sb = βb(φb − φP ) (A.10)

where,

βb =
Ab

r1b(n̂1 · n̂b)
(A.11)

A.1.2 Evaluating the Diffusion Coefficients

In this section we shall evaluate
∑
f Fdφf

and
∑
b Fdφb

, and flesh out coefficients that can be stored

apriori. Since the faces are interior ones, we can write for each face “f”
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ϑn =
Vn

Vn + VP
(A.12)

ϑP =
VP

Vn + VP
(A.13)

(∇φ)f = ϑn(∇φ)P + ϑP (∇φ)n (A.14)

We have,

(∇φ)P =
1

VP


∑
f φfSfx +

∑
b φbSbx∑

f φfSfy +
∑
b φbSby∑

f φfSfz +
∑
b φbSbz

 (A.15)

(∇φ)n =
1

Vn


∑
fn
φfSfx +

∑
bn
φbnSbnx∑

fn
φfSfy +

∑
bn
φbnSbny∑

fn
φfSfz +

∑
bn
φbnSbnz

 (A.16)

But,

φf = ϑnφP + ϑPφn (A.17)

So,

1

VP

∑
f

φfSfx =
1

VP
φP
∑
f

(ϑnSfx) +
1

VP

∑
f

(ϑPSfxφn) (A.18)

1

VP

∑
f

φfSfy =
1

VP
φP
∑
f

(ϑnSfy) +
1

VP

∑
f

(ϑPSfyφn) (A.19)

1

VP

∑
f

φfSfz =
1

VP
φP
∑
f

(ϑnSfz) +
1

VP

∑
f

(ϑPSfzφn) (A.20)

Hence setting

BxP =
1

VP

∑
f

ϑnSfx (A.21)

ByP =
1

VP

∑
f

ϑnSfy (A.22)

BzP =
1

VP

∑
f

ϑnSfz (A.23)

for each cell and setting
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DxPf
=

1

VP
ϑPSfx (A.24)

DyPf
=

1

VP
ϑPSfy (A.25)

DzPf
=

1

VP
ϑPSfz (A.26)

for each face of a cell we can express Eq. (A.15) as,

(∇φ)P =


BxPφP +

∑
f DxPf

φn +
∑
b
Sbx

VP
φb

ByPφP +
∑
f DyPf

φn +
∑
b
Sby

VP
φb

BzPφP +
∑
f DzPf

φn +
∑
b
Sbz

VP
φb

 (A.27)

Similarly the gradient of Neighbor Cells can be expressed as

(∇φ)n =


Bxnφn +

∑
fn
Dxnfn

φnn
+
∑
bn

Sbnx

Vn
φbn

Bynφn +
∑
fn
Dynfn

φnn
+
∑
bn

Sbny

Vn
φbn

Bznφn +
∑
fn
Dznfn

φnn
+
∑
bn

Sbnz

Vn
φbn

 (A.28)

So since

(∇φ)f · n2f = (ϑn(∇φ)P + ϑP (∇φ)n) · n2f (A.29)

We can put Eq. (A.27) and Eq. (A.28) above to give

(∇φ)f · n2f = φPϑn(BxPn2fx +ByPn2fy +BzPn2fz )

+ φnϑP (Bxnn2fx +Bynn2fy +Bznn2fz )

+ ϑnn2fx

∑
f

DxPf
φn + ϑnn2fy

∑
f

DyPf
φn

+ ϑnn2fz

∑
f

DzPf
φn + ϑPn2fx

∑
fn

Dxnf
φnn

+ ϑPn2fy

∑
fn

Dynf
φnn

+ ϑPn2fz

∑
fn

Dznf
φnn

+ ϑn
∑
b

Sbx
VP

φbn2fx + ϑn
∑
b

Sby
VP

φbn2fy

+ ϑn
∑
b

Sbz
VP

φbn2fz + ϑP
∑
bn

Sbnx

Vn
φbnn2fx

+ ϑP
∑
bn

Sbny

Vn
φbnn2fy + ϑP

∑
bn

Sbnz

Vn
φbnn2fz

(A.30)
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where xnn represents the value of x at the cell adjacent to the neighbor cell i.e. “neighbor-of-

neighbor” cell. From Eq. (A.9) it is clear that

∑
f

(∇φ)f · Sf =
∑
f

[βf (φnf
− φP )] +

∑
f

(∇φ)f · n2f (A.31)

Putting Eq. (A.30) into the above equation and rearranging the terms carefully we get,∑
f

(∇φ)f · Sf = φP
∑
f

GCf
+
∑
f

Gnφn +
∑
bP

Gbφb

+
∑
f

∑
fn

Gnn
φnn

+
∑
bn

Gbnφbn

 (A.32)

where the coefficients are,

GCf
= −βf + [ϑn(BxPn2fx +ByPn2fy +BzPn2fz )] (A.33)

Gn = βf + ϑP (Bxnn2fx +Bynn2fy +Bznn2fz ) +DxPf

∑
f

(ϑnf
n2fx )

+DyPf

∑
f

(ϑnf
n2fy ) +DzPf

∑
f

(ϑnf
n2fz )

(A.34)

Gb =
Sbx
VP

∑
f

ϑnn2fx +
Sby
VP

∑
f

ϑnn2fy +
Sbz
VP

∑
f

ϑnn2fz (A.35)

Gnn = Dxnfn
ϑPn2fx +Dynfn

ϑPn2fy +Dznfn
ϑPn2fz (A.36)

Gbn =
Sbnx

Vn
ϑPn2fx +

Sbny

Vn
ϑPn2fy +

Sbnz

Vn
ϑPn2fz (A.37)

According to the Normal Point Formulation,

∑
b

(∇φ)b · Sb =
∑
b

φbβb − φP
∑
b

βb (A.38)

So,

Fdiff = −1

ρ

∑
f

Γf (∇φ)f · Sf +
∑
b

Γb(∇φ)b · Sb


Thus, using Eq. (A.32) and Eq. (A.38) above, the final coefficient based formulation of the diffusion

term becomes,
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Fdiff = −1

ρ

φP (
∑
f

ΓFGCf
+
∑
b

ΓbGCb
) +

∑
f

ΓfGnφn +
∑
bP

ΓbGbφb+

∑
f

Γf

∑
fn

Gnnφnn +
∑
bn

Gbnφbn

 (A.39)

where the coefficients are redefined as,

GCf
= −βf + [ϑn(BxPn2fx +ByPn2fy +BzPn2fz )] (A.40)

GCb
= −βb (A.41)

Gn = βf + ϑP (Bxnn2fx +Bynn2fy +Bznn2fz ) +DxPf

∑
f

(ϑnf
n2fx )

+DyPf

∑
f

(ϑnf
n2fy ) +DzPf

∑
f

(ϑnf
n2fz )

(A.42)

Gb = βb +
Sbx
VP

∑
f

ϑnn2fx +
Sby
VP

∑
f

ϑnn2fy +
Sbz
VP

∑
f

ϑnn2fz (A.43)

Gnn = Dxnfn
ϑPn2fx +Dynfn

ϑPn2fy +Dznfn
ϑPn2fz (A.44)

Gbn =
Sbnx

Vn
ϑPn2fx +

Sbny

Vn
ϑPn2fy +

Sbnz

Vn
ϑPn2fz (A.45)

If Γ is not a function of space, then it can come out of the summations of Eq.(A.39)

A.2 For Convective Flux

We know that (Eq.(3.12)),

Ffφ
l+1

f =
[
Ffφ

l+1
f

]
1stupwnd

+ γ
[
(Ffφf )lCD − (Ffφf )l1stupwnd

]
= φl+1

P [|Ff , 0|]− φl+1
n [| − Ff , 0|] + γ

[
Ff (ϑnφ

l
P + ϑPφ

l
n)
]

−γφlP [|Ff , 0|] + γφln [| − Ff , 0|] (A.46)

where “(l + 1)” denotes values in the current iteration ,“l” denotes values at the previous iteration

and γ is the ratio of central difference to first upwind scheme specified by the user. The convective

term is given by,
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Fconv =
∑
f

Ffφ
l+1

f +
∑
b

Fbφ
l+1

b (A.47)

So using Eq.(A.46) in the above equation and rearranging the terms we get,

Fconv = H1φ
l+1

P +H3φ
l
P −

∑
f

H2φ
l+1

n +
∑
f

H4φ
l
n +

∑
b

Fbφb (A.48)

where,

H1 =
∑
f

|Ff , 0| (A.49)

H2 = | − Ff , 0| (A.50)

H3 =
∑
f

(γϑnFf )−
∑
f

γ|Ff , 0| (A.51)

H4 = γϑPFf + γ| − Ff , 0| (A.52)

A.3 Final Form and Implementation

The Convective Diffusion equation is of the form,

VP
∆t

(φl+1
P − φnP ) +

∑
f

Ffφ
l+1
f +

1

ρP
F l+1
diff = Sl (A.53)

Using Eq.(A.39) and Eq.(A.48) above we get the final expression as,

φl+1
P

VP
∆t

+H1 −
1

ρP

∑
f

ΓfGCf
+
∑
b

ΓbGCb

+
∑
f

φl+1
n

[
−H2 −

Γf
ρP

(Gn)

]

+
∑
b

φbP

[
Fb −

Γb
ρP

(Gb)

]
+
∑
f

−Γf
ρP

(
∑
fn

Gnn
φl+1
nn

+
∑
bn

Gbnφ
l+1
bn

)


= Sl −H3φ

l
P −

∑
f

H4φ
l
n +

VP
∆t

φnP (A.54)

A.4 Pressure Equation

The pressure poisson equation is given by,∑
f

(∇p∗f ) · Sf =
ρ

∆t

∑
f

F ∗f (A.55)
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Clearly, the left hand side of the equation is identical to the diffusion term and hence will have

identical coefficients. So in the coefficient framework, the pressure equation may be written as,

pP

∑
f

GCf
+
∑
b

GCb

+
∑
f

(pnGn) +
∑
b

(pbPGb)

+
∑
f

(
∑
fn

Gnnpnn +
∑
bn

Gbnpbn)

 =
ρ

∆t

∑
f

F ∗f (A.56)

A.4.1 Modifications in the algorithm

Modifications made in the solution algorithm mainly pertain to when the coefficients are to be eval-

uated. The diffusion related coefficients (denoted here by the symbol “G”) depend on geometry

information only and are calculated just once . In contrast the convection related coefficients (de-

noted here by the symbol “H”) depend on flux values and hence need to be evaluated once per time

step for the Semi-Implicit Scheme.
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