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Abstract 

 

Carbon Nanotube (CNT) has revolutionized the world of nanotechnology with 

several novel applications in the field of sensors and actuators. Such popularity of 

CNT is due to its excellent mechanical and electrical properties. There are several 

studies done on understanding the modeling of mechanical and electrical properties 

using different approaches ranging from molecular to continuum based method. In 

this thesis, we focus on estimating the mechanical properties of single walled carbon 

nanotube (SWCNT) mainly based on stress-strain relationship.  

 

There are several approaches such as molecular mechanics, molecular dynamics, 

coupled molecular-structural mechanics, exponential Cauchy born based continuum 

method, etc, for estimating the linear and nonlinear stress-strain relationship in order 

to find elastic modulus of SWCNT. In this thesis, we first find the analytical model 

using molecular mechanics approach to study the variation of elasticity with the 

diameter of SWNT under different configurations. It is found that the elasticity 

becomes size independent if the diameter is above 1 nm. Moreover this approach 

does not help us to get accurate nonlinear stress-strain relationship. Therefore, we 

used coupled molecular-structural approach to study the nonlinear variation of 

stress-strain relationship for different configurations. Then, we come up with 

compact formulas in order to predict the nonlinear stress-strain relationship. 

Capitalizing on this approach, we find the equivalent mechanical properties of a 

beam element for the corresponding C-C bond that exists in CNT. Thereafter, we 

use these properties to do structural modeling in ANSYS which drastically reduces 

the modeling effort as compared to molecular dynamics approach. In order to 

standardize this approach, we do several comparisons and tests with existing results 

based on other methods. It is found that the results are in good agreement with the 

literature. After validating the stress-strain properties of  SWCNT under different 

configurations, we do modal analysis to find the first few frequencies for fixed-fixed 

and cantilever kinds of support. On comparing the results with analytical model 

based from continuum theory, we get relatively good match for cantilever under 
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wider range of aspect ratio- a ratio of length to diameter of SWNT. However, 

analytical result for the fixed-fixed condition matches well only for larger length to 

diameter ratio.  Furthermore, we investigate different modes of graphene and 

SWCNT under different configurations to demonstrate the capabilities of this 

method.  

 

Finally, we develop an approach based on coupled molecular-structural mechanics 

method keeping in mind two main objectives. First, to reduce the simulation time 

and second is to generate different configuration of SWNT.  The method developed 

in this thesis can be utilized to study different aspect of multi-walled carbon 

nanotubes. However, applicability of the method can be increased by validating the 

approach with more experimental results. 
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Nomenclature 

CNT – Carbon Nanotube 

SWCNT – Single Walled Carbon Nanotube 

MWCNT – Multi Walled Carbon Nanotube 

CVD – Chemical Vapor Decomposition 

C – Chiral vector 

Φ - Chiral angle 

T - Translation vector 

   (   ) – Interatomic and intermolecular potential 

    – Bond Distance between atoms i and j 

     - Repulsive interaction energy 

      - Attractive interaction energy 

Eb – Chemical binding energy 

MD – Molecular Dynamics 

STM - Scanning Tunneling Microscope 

AFM - Atomic force microscope 

SFM - scanning force microscope 

TEM - Transmission Electron Microscope 

  – Total potential energy  

         ,    – Potential energy corresponding to stretching 

        ,    – Potential energy corresponding to stretching 

         ,    – Potential energy corresponding to torsion 

     – Potential energy corresponding to Van der Waals forces 

   - Young’s Modulus 
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   - Axial spring stiffness 

   - Spiral spring stiffness 

      ,     are Morse-Modified Potential constants 

t - Thickness of the CNT 

FEM – Finite Element Method 

   – strain energy under pure tension 

   – strain energy due to bending 

   – strain energy due to torsion 

E - Elasticity of Beam 

I – Moment of Inertia 

G - Rigidity Modulus 

d – diameter of beam element 

  ,   ,      - Force Constants 

L/D – Length to diameter ratio of CNT 

   – Fundamental frequency 
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Chapter 1 

Introduction 

   

1.1 Carbon Nanotubes 

The carbon nanotubes (CNTs), since their discovery in the year 1991 by Iijima, have 

evolved to be an interesting field of research. These nanotubes fall in the fullerenes 

structural family which is sometimes capped by bucky ball structure. The diameter of the 

carbon nanotubes will be in the range of nanometers, while the length can go upto 18 

centimeters, and hence length to diameter ratio is extremely high. The methods of 

synthesizing the CNTs essentially require the pyrolysis or the thermal decomposition of an 

appropriate carbon source, such as hydrocarbons or carbon monoxide. The three popular 

techniques for synthesizing CNTs are the chemical vapor decomposition (CVD), arc 

discharge and Laser Ablation. These methods produce variety of nanotubes with a 

distribution of diameter. [1-3] 

 

1.1.1 Application of CNTs 

The CNTs have a huge range of applications in the field of nanotechnology, because of their 

excellent mechanical and electrical fields. The structural applications include the 

composites; light weight sports goods, bullet proof jackets and many others. CNTs can act 

as very good super conductors at low temperatures, field emitting transistors and have 

varied electromagnetic applications. They are even used for the physical and chemical 

sensing devices such as the electrochemical sensors, resonator sensors, thermal sensors, 

optical sensors, flow sensors, force sensors, electromechanical actuators, acoustic sensors 

etc. Even in the field of medicine, these are exclusively used as Bio-sensors. 

1.1.2 Characterization of CNTs  

The usage of the CNTs in such a wide range of applications can be done only when there 

are studies to have a basic level characterization of its properties. The characterization 

involves the study of the physical, electrical, magnetic, chemical and mechanical properties 

of the CNTs. The mechanical characterization of the CNTs deals with the measurement and 

analysis of the hardness, elastic modulus, viscoelastic properties, and localized deformation 

studies. These studies at the atomic and molecular sizes, needs a state-of-art theories and 
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experiments to be conducted for the evaluation to be perfect. In this study an emphasis is 

made on predicting the elasticity of the CNTs using the existing theories. The elasticity of 

CNTs is most essential in establishing the mathematical modeling of mechanical 

applications at nano-scale.  

 

1.2 Important parameters of CNTs 

1.2.1 Geometry and Configuration of CNTs 

The atomic structure of nanotubes can be described in terms of the tube chirality, or helicity, 

which is defined by the chiral vector C the chiral angle Φ (figure 1). The graphene sheet is 

cut along the dotted lines as shown in figure and the then rolled such that the tip of the chiral 

vector touches its tail. The chiral vector is also known as the roll up vector and is given as   

                                                                                                           

Where a, b are the unit base vectors and n, m are the integers.  

Based on the chiral vector and the chiral angle, three configurations of nanotubes are 

available (figure 1&2). 

 The zig-zag configuration has a chiral angle of 0 degrees represented by a chiral 

vector (n,0) 

 The arm-chair configuration has a chiral angle of 30 degrees represented by a chiral 

vector (n,n) 

 The chiral configuration has a chiral angle of 0< Φ < 30 degrees represented by a 

chiral vector (n,m) 

Another important geometrical parameter is the translation vector T, which is perpendicular 

to the chiral vector C and is given as  

      
    

 
  

    

 
                                           

Where                   

 

The diameter of the CNT is given in terms of the C-C bond length r0 and the chiral indices 

n, m as below, 

Diameter of the CNT = DCNT = 
    

 
√         
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1.2.2 Classification of CNTs  

The CNTs are broadly classified into Single Walled Nanotubes (SWNT) and Multi Walled 

Nanotubes (MWNT). The SWNT can be visualized as wrapping of one atom layer thick 

graphene sheet into a seamless cylinder. Single-walled nanotubes are an important variety of 

carbon nanotube because they exhibit electric properties that are not shared by the multi-

walled carbon nanotube (MWNT) variants.[1-3] 

Fig 1: Graphene sheet with the unit vectors, chiral vector, the translation vector 

Fig 2: CNT configurations Arm-chair, zig-zag and chiral 
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Multi-walled nanotubes (MWNT) consist of multiple rolled layers (concentric tubes) of 

graphite. There are two models describing the structures of multi-walled nanotubes. (a) 

Russian Doll model - sheets of graphite are arranged in concentric cylinders, e.g. a (0,8) 

single-walled nanotube (SWNT) within a larger (0,17) single-walled nanotube; (b) 

Parchment model - a single sheet of graphite is rolled in around itself, like a scroll of 

parchment or a rolled newspaper. The interlayer distance in multi-walled nanotubes is 

approximately 3.4 Å. 

 

1.3 Inter-atomic potentials used in CNTs 

A branch of nanotechnology, Computational nanotechnology deals with the mathematical 

modeling and the computer based simulations to predict and compute the dynamics of 

nanostructures. This area widely employs the concepts from the classical and quantum 

mechanical many-body theories on which a study of the formation, evolution and the 

properties of nanostructures and the mechanisms of Nano process. This can be achieved by 

performing atom-by-atom modeling and simulations. The precision of this numerical 

analysis depends on the accuracy of the interatomic and intermolecular potentials energy 

functions used. These potentials are heavily used in the computational analysis of the 

nanostructures. The most widely used approaches used in modeling of these nanostructures 

composed of several millions of atoms, using the above potentials, are Monte Carlo 

Simulation and the molecular dynamics simulation. 

The forces experienced by the atoms and molecules are obtained from prescribed two-body 

or many-body interatomic and intermolecular potentials,   (   ), according to  

     ∑     (   )                                         

   

 

Where     is the separation distance between two particles i and j 

Intermolecular potential energies include pairwise additive energies as well as many-body 

interactions. The inter-particle interaction potential energy between molecules or atoms is 

represented as  

                                                            

Where r is the intermolecular distance,      and      are the repulsive and the 

attractive interaction energies respectively.  

The interaction force (F) is thus given as  
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The important pairwise additive energies include the repulsive potentials, van der Waals 

energies, interactions involving polar and polarization of molecules, interactions involving 

the hydrogen bonding and the strong intermolecular energies which include covalent and 

coulomb interactions. [5-7]  

Abell originally derived the general analytic form of the intra-molecular potential energy 

from the chemical pseudo-potential theory. Abell gave an expression for the chemical 

binding energy Eb over the nearest neighbours as –  

    ∑ ∑             
 (   )

      

                  

The functions         and   (   ) are pair-additive interactions that represent all 

interatomic repulsions and attraction from valence electrons, respectively.     is the distance 

between pairs of nearest-neighbor atoms i and j, and     is a bond order between atoms i and 

j. 

There are many interatomic potential models available for different class of materials. But 

as we are dealing with the CNTs in our current studies, the C-C covalent bond interatomic 

potentials that were of importance are Tersoff Many-body Potential Model, Brenner-Tersoff 

First Generation Hydrocarbon Potentials, Brenner-Tersoff Second-Generation Hydrocarbon 

Potentials, Modified Morse Potential.  

 

  

 

 

 

Fig 3: Plot of Bond Potential vs Interatomic Distance for different C-C covalent bond 

potentials 

CNT range 
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The non-bonding potentials include the weak van der Waals interactions and others. The 

Lennard-Jones and Kihara potentials can be used to define the intermolecular interactions 

between carbon clusters (such as C60) and between the basal planes in a graphite lattice. 

For a range of interatomic distance ranging from 0.05nm to 2.5nm, the comparison of 

different potential models as evaluated on MATLAB is represented in Figure (3) 

 

1.4 Literature Survey on analysis of mechanical properties of CNTs 

Lourie etal,[8] using the Raman Spectroscopy, evaluated the Young’s modulus of single- 

and multiwall nanotubes using the D*-band shift method experimentally. Tienchong Chang 

etal,[10] predicted the chirality and size dependent elastic properties of SWCNT using stick-

spiral model via a molecular mechanics approach. J.R. Xiao etal,[11] used the stick-spiral 

model to numerically evaluate the stress-strain relationship for the CNT structures 

considering a single unit. Tserpes etal,[14] formulated a linkage parameters between the 

molecular mechanics and structural mechanics that can be used in the Finite Element 

Analysis of the CNTs. Ehsan Mohammadpour etal,[16] used the approach of the Tserpes to 

model the CNTs in ANSYS. An elaborate detail of the different approaches used in the 

present study are discussed in the later chapters.  
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Chapter 2 
 

Analytical Studies on Carbon Nanotubes  

   

2.1 Various approaches available for studies on CNTs 

There are experimental, theoretical and numerical studies available to analyze the 

mechanical properties of Carbon Nanotubes. The experimental procedures on CNTs are 

very expensive and complicated. The theoretical approach utilizes the principles of the 

nano-mechanics field in the mechanical characterization of the CNTs. Also the interatomic 

potentials form the base within the classical multi-body dynamics to 

provide deterministic mechanical models of CNTs at the atomic scale/resolution. Numerical 

methods of solution of these models are called molecular dynamics (MD), [13] and 

sometimes molecular mechanics.  

  

2.2 Experimental Approach 

As we are dealing with the sizes at atomic and molecular levels, the apparatus that can 

handle the test specimen and taking the measurements is a tough job. With the molecular 

and atomic interactions coming into action, which are normally neglected in macroscopic 

experiments, should also be given high priority for the final evaluation of the desired 

properties. Often indirect experimental methods are utilized to overcome such problems. 

Still the challenges existing even with the most sophisticated experimental apparatus.  

  The commonly used apparatus in the experimental setup is the scanning tunneling 

microscope (STM) which is used to image the surfaces at atomic level. Atomic force 

microscope (AFM) or scanning force microscope (SFM) is the high-resolution type 

scanning probe microscope. The indirect experimental procedures involve the Micro-Raman 

spectroscopy which is used to monitor the compressive deformation of the carbon nanotubes 

embedded in an epoxy matrix. Then using a concentric cylinder model for thermal stresses, 

the elastic modulus is calculated from the D* band shift. [8] The elasticity is also estimated 

by observing the freestanding room temperature vibrations of the SWNT using 

Transmission Electron Microscope (TEM).[9] 

http://en.wikipedia.org/wiki/Deterministic
http://en.wikipedia.org/wiki/Numerical_methods
http://en.wikipedia.org/wiki/Numerical_methods
http://en.wikipedia.org/wiki/Molecular_dynamics
http://en.wikipedia.org/wiki/Molecular_mechanics
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Also many other experimental techniques are available which give a good hope in 

evaluating the mechanical properties with better accuracy.  

 

2.3 Molecular Mechanics Approach 

Molecular Mechanics approach is a statistical mechanics approach, used at a nano-scale, 

which uses the concepts of the valency and bonding. The molecules are constructed with the 

balls (atoms) and springs (bonds) where in the electronic configuration is neglected. 

Typically the electronic structure is only considered in the ab-intito, Tight-Binding and 

semi-empirical Quantum Mechanics approaches. [10-12] 

In this approach, a bond is considered to be the force that connects two atoms (represented 

as rigid balls) together which can be modeled by a spring. This model depends strongly on 

the concepts of the bonding and follows the Newtonian laws.  

For a nano structure, with a bond between two atoms or molecule, energies due to the bond-

stretch, bond-angle bending, dihedral angle torsion, out of plane torsion, van der Waals 

interactions are considered for small deformations. Using the molecular mechanics 

approach, nano-materials are modeled in many ways to determine their properties based on 

the loading conditions or the property to be determined. Some of those are the stick-spiral 

model, beam-element model etc.  

                                                                      

 

 

 

Based on the different potential models chosen, each individual term has a specific value  

which can be used to determine the energy of the system. The properties can be then derived 

based on these potentials analytically or by employing simulation tools.  

Fig 4: Different atomic interactions due to the mechanical loading on CNTs 
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2.3.1 CNT size effects on Elasticity 

Based on the molecular mechanics approach, considering a stick-spiral model, a closed form 

solution is found to derive the analytical expression for the elasticity of the carbon nanotube, 

based on the chirality. We utilized the work done by Tienchong etal,[10] to verify the 

effects of the chirality and elasticity on the frequency of the CNTs. This gives an insight of 

the essentiality of finding the elastic properties, which are very much crucial in the sensor 

technology field applications. The description about the parameters and complete derivation 

can be accessed from the actual work of Tienchong etal.[10]  

 

 

 

  

  

 

Choosing Model Choosing Potential 

Equilibrium Equations 

 Force Constants 

 Boundary Conditions 

  Closed form Solution Numerical Solution 

Flow Chart 1: Molecular Mechanics approach for evaluation of mechanical properties  



10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The analytical expression for the Young’s modulus is given as  

     
    

√       
                                       

Where      expressions on chiral indices n, m 

  depends on bond length   , force constants      and    

    - Axial spring stiffness 

   - Spiral spring stiffness 

Using this expression the chirality and size dependence of the elasticity of the CNTs were 

plotted. To calculate the modulus of elasticity, the thickness of the CNTs is considered as 

0.08nm in this case. The results clearly show that the dependence of the elasticity of CNTs 

is more when the diameters are low. The elasticity difference of the two limiting 
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Fig 7:  (a) A SWCNT subjected to axial tensile force (b)&(c) geometry and force 

interactions in side view and top view respectively 
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configurations is almost 70 GPa at 0.4nm diameter range which then drastically reduced to 

10 GPa at 1 nm diameter range.  At higher diameters (more than 1nm) of the CNTs, the 

value of the elasticity is almost same for the two configurations.  

 

 
Fig 6: Elasticity vs diameter of CNTs for arm chair and zigzag 

configurations 

 

 

Fig 7: Frequency vs Elasticity and Change in Frequency vs diameter of 

CNTs for arm chair and zigzag configurations 

 
When these Elasticity values for different configurations are used in calculating the 

resonance frequency for the model given in the motivation section, it shows the importance 

of the prediction of elasticity at low diameters. The frequency variations between two 

limiting configurations (zigzag and arm-chair) is more at smaller diameters, say less than 1 

nm, compared to the higher diameters. There is huge frequency difference of 130 MHz at 
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diameter range of 0.4nm, which reduced to 40MHz for 1 nm diameter range of CNT. Hence 

the prediction of the size, chirality dependence of the CNTs is of more important in sensor 

applications in particular. 

 

2.3.2 Stress-Strain Relationship for Armchair CNT 

With the stick-spiral model, using the Morse-modified potential model, the stress-strain 

relationships can be derived from the geometric, force, moment equilibrium equations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this approach, the morse modified potentials are used to evaluate the stick-spiral model, 

for deriving the stress-strain relationship for both armchair and zigzag configurations. This 

is a simple static model, which utilizes the geometric, force and moment equilibrium 

equations for estimating the required properties.  

The total energy of the C-C bond can be expressed using the morse modified potentials, 

neglecting the torsion and dihedral terms as, 

   (9) 

  (10) 

   (11) 

F

F(a) 

(b) 

Fig 8:  (a) An Armchair SWCNT subjected to axial tensile force (b) Force and 

Moment interactions in a unit 
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From the Estretch, the stretch force can be calculated as 

    (12) 

  (13) 

Using the Eangle term, the moment function interms of Δθ  

    (14) 

  (15) 

For an armchair configuration, the bond lengths are a, b, b and bond angles are α, β, β as 

shown in the fig 8(b).  

By force equilibrium over bond OA, 

    (16) 

Using the moment equilibrium over the bond OA,  

  (17) 

Φ is the torsion angle between the planes OA-OB and OA-OC 

    (18) 

For arm-chair configuration,  

  (19) 

Differentiating the above term we get,  

 (20) 

   (21) 

Considering, ‘t’ as the thickness of the CNT, the axial stress over the unit cell considered is 

defined as,  

         
 

         (
 

 
) 

  (22) 

Also the axial strain can be represented as,  

 (23) 
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The actual work of J. R. Xiao etal,[11] gives a numerical approach in estimating the stress 

and strains. In this work, we tried to achieve a closed form solution that can give accurate 

results as compared with the original work.  

Using the above set of equations, 

 

   (24) 

 (25) 

 
Neglecting the (Δα)

4
 term in the above expression as change in bond angle is very less 

compared to the bond stretching,  

    (26) 

 

Finally, strain is given as  

             
              (

 

 
) (

 

 
)
 
    (

 

 
) 

             (
 

 
)

  (27) 

 

Where    
                       

   (
 

 
)

   (28) 

  
   (

 

 
)    (

 

  
)       

       
    (29) 

      ,     are Morse-Modified Potential constants 

 

    is the change in bond length of bond ‘b’ and t is the thickness of the CNT 

 

Applying a bond strain gradually, plot for stress vs strain (fig 9) was obtained for armchair 

configuration using MATLAB programming, for different diameters that change due to 

chirality index number n.  
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As seen from the plot, the stress-strain relationship is linear until the strain of 0.08 and then 

non-linearity starts up. With the increasing strains after 0.1, the non-linea effects are more 

rapid. It can also be noted that the behavior of the armchair configuration is almost similar 

for almost all diameters and hence the elastic properties are insensitive to the size of the 

armchair CNTs. However, there will be slight variation in the elastic properties at higher 

strains and is slightly dependent on the diameter, more particularly in the non-linear zone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The present work is compared with the work of Xiao etal,[11] and the results are very much 

satisfactory. The error in the stress-strain relationship for the two models is increases with 

the increasing Chirality index of the armchair CNTs and however the % error as seen in 

fig15 is almost   negligible.  

  

Fig 9: Non-Linear stress strain relationship for Arm chair configurations of 

different diameters 

Fig 10(a): % Error in stress for (4,4) and (12,12) arm chair configurations w.r.t J.R. 

Xiao etal 



16 

2.3.3 Stress-Strain Relationship for zigzag CNT 

Using the same approach for the zigzag configuration, as discussed earlier for the arm-chair 

configuration, we deduced a closed form solution for stress-strain relationship.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Here, the bond lengths are considered as a, a, b and bond angles are taken as α, α, β as 

shown in the fig 10(b). Due to the geometric differences between the considered unit cells 

for analysis, the torsion angle is given as,  

    (30) 

Change in bond angle Δβ is expressed as,  

   (31) 

Now f is deduced as,  

    (32) 

From the force and moment equilibrium equations, over the bond OA, 

     (33) 

 (34) 

 

F

F

(b) 

(a) 

Fig 10:  (a) Zigzag SWCNT subjected to axial tensile force  

   (b) Force and Moment interactions in a unit 
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Now, stress and strain are given as,  

    (35) 

  (36) 

 
Using the above equations, we get,  

 (37) 

 

  (38) 

 (39) 

 
Neglecting the (Δα)

4
 term in the above expression, Δα can be derived as,  

    (40) 

Using Δα in the stress and strain expression, we get 

       
                        (

  

 
)          

                     
  (41) 

 

Where    
     [         ]       

         
   (42) 

 

  
          (

 

 
)       

    (
 

 
)

   (43) 

  

       ,     are Morse-Modified Potential constants 

   is the change in bond length of bond ‘a’,     is the change in bond length of bond ‘b’ and 

t is the thickness of the CNT.    can be calculated using the above expression for various 

   values with the below expression.  

  (44) 

For small change in bond strains, the stress and strain behavior of the unit cell is calculated 

using the above analytical expressions on MATLAB over different diameters of zigzag 

configuration (fig 11).  
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Unlike the armchair configuration, the behavior of the zigzag CNTs are dependent on their 

diameters and this effect is more in the non-linear zone at higher strains. Also the linear 

relationship exist only upto 0.06 strain and there after the non-linear effects are more 

dominating. However the linearity strain limit increases with the increasing size of the 

zigzag configuration. Finally, it is evident that the zigzag CNTs are sensitive to their 

chirality index number. 

 

 

When compared with the results of the existing work by Xiao etal,[11] the results are 

very much coinciding and the effect of neglecting fourth order term of change in bond 

angle is nil.  

Fig 11: Non-Linear stress strain relationship for zigzag chair configurations of 

different diameters 

Fig 11 (a): % Error in stress for (4,0) and (20,0) configurations w.r.t J.R. Xiao etal 
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Chapter 3 
 

Numerical Analysis of Carbon Nanotube  

  

3.1 Beam Element Modeling of CNT 

The beam element model is also a molecular mechanics approach which falls under the 

structural mechanics sub-section. Unlike the stick-spiral model, this model can take care of 

the torsion effects in the C-C bond. This method can be effectively used for analyzing the 

CNT structure by combining with the FEM approach on a readily available analysis 

packages such as ANSYS, ABAQUS etc. [14] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The basis of this method is derived from the energy equivalence of the structural and 

molecular mechanics. As per molecular mechanics approach the main contributions 

for a Covalent bond under small deformations are - 

 

 

Beam 
Element

Node   

M M 

T T 

F F 

(a) 
(b) (c) 

Fig 12 : (a) CNT Structure 

              (b) A unit hexagon ring with beam elements and nodes 

              (c) Stretching, Moment and Torque Interactions on the beam element 
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Bond stretch interaction energy 

   
 

 
         (45)   

Bond angle bending energy 

   
 

 
         (46) 

Dihedral angle Torsional energy 

   
 

 
        (47) 

 

For the classical structural mechanics approach the strain energies for a beam structure are - 

 

Under pure axial Force 

   
  

  
        (48) 

Under pure bending 

   
  

  
       (49) 

Under pure torsion 

   
  

  
       (50) 

 
Therefore a direct relationship between the parameters of the molecular mechanics  

and structural mechanics can be established as – 

  

 
     

  

 
     

  

 
     (51) 

For a circular beam section with diameter ‘d’, the linkage parameters can be obtained as  

   √
   

  
    

  
  

    
    

  
    

    
  (52) 

Using C-C bond length of 0.1421nm as L and the force constants of         

           ,                        ,                           

The final values for the beam element to be used in FEM procedure are evaluated as d= 

0.147nm, E = 5.49 TPa, G = 0.871 TPa [14] 

 

3.2 Modeling tools and approach for ANSYS analysis 

The modeling of the CNTs in ANSYS APDL needs well-defined nodal and elemental 

information. For this purpose, a initial set of 3 rows of atomic points in xyz coordinate 

frame are pulled from the Nanotube Modeler (Trial Version) software from JCrystalSoft. 

Then MATLAB coding is done to generate the required number of points based on the 

length and chirality of the CNTs. The nodal points generated are in a sequential order for 

each row. The program also generates the elemental information as per the structures of the 

armchair and zigzag configurations. Also the programs are written to generate the graphene 

nodal and elemental data for a given length and width. The main advantage with the 

MATLAB programming is that the codes are capable enough to write the nodal and 

elemental data on the text files in the format as required for the ANSYS APDL command 
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line prompt. The only parameters that are required are the index number (n) and the L/D 

ratio. For the analysis of CNTs, the ANSYS APDL 13.0 (non-commercial version for 

educational purpose) has been utilized. ANSYS has been extensively used for the static and 

modal analysis of the armchair, zigzag CNT configurations and Graphene. In ANSYS two 

node beam element 188 is used for CNT analysis which has a 6 degrees of freedom on each 

node. This element has the capability to capture the non-linearity effectively with the 

NLGEOM, ON option and is well-suited for linear, large rotation, and/or large strain 

nonlinear applications. The non-linear element properties needs to be plugged into the 

ANSYS for this element in the material properties. Care needs to be taken that the initial 

slope of the non-linear stress strain data is equal to the initial elasticity value entered.  

From the Morse modified potential, the force vs the bond strain effect is introduced in to the 

beam element by calculating the stress-strain relationship for the beam dimensions. The 

below force function in terms of the initial and final bond distance is derived from the 

Morse stretch potential function.  [16] 

                                         (53) 

Where       are the Morse modified potential function constants and r, r0 are the final and 

initial distance between two atoms. The bond strain is thus calculated as 

                  
    

  
     (54) 

Using this force function, the stress generated in the beam element is calculated against the 

bond strains. The required dimensions for calculating the stress and strain in the beam 

element are already available from the previous section. This stress-strain relationship is 

used in defining the non-linearity for the beam element in the ANSYS package. This step is 

very much essential to tap the non-linear effects in the CNTs.   

 

 

 
Fig 13: (a) Force vs εb plot for Morse Modified Potential 

(b) Stress vs strain relationship used for the ANSYS beam element 

(a) (b) 
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The Density of the beam element is necessary for the Modal Analysis of the CNT/Graphene 

structures in ANSYS. As the structure of the CNT/Graphene is a honey comb structure, 

each carbon atom is shared between three beam elements. The effective mass contribution 

of one carbon atom on each beam is one-third of its mass (mass of carbon atom is 19.9x10
-27

 

Kg). As a beam element contains two carbon atoms at its nodal points, the overall mass of 

the beam element is two-third of a carbon atom. With the earlier calculated beam 

dimensions, the effective density of the beam element is found to be 5.501x10
3 
Kg m

-3
. 

 

3.3 Scaling Factors and details of CNT/Graphene Models on ANSYS 

For modeling the CNTs with nano dimensions, a sufficient scaling factor needs to be taken 

for each of the parameters for the input and output of the ANSYS simulations.  

Sl.  
No. 

Parameter 
True Value 

Units 
True Value 

Ansys 
Value 

Scaling  
Factor *** 

1 Diameter (Beam Element) m 1.47x10-10 1.47 10-10 

2 Length (Beam Element) m 1.42x10-10 1.421 10-10 

3 Stress (Beam Element) N/m2 1.00x1010 1.00x10-10 1020 

4 Strain (Beam Element) m/m 1.00 1 1 

5 Elasticity (Beam Element) N/m2 5.49x1012 5.49x10-8 1020 

6 Rigidity (Beam Element) N/m2 8.71x1011 8.71x10-9 1020 

7 Density (Beam Element) Kg/m3 5.501x103 5.501x10-27 1030 

8 Force on CNT/Graphene N 1.00 1.00 1 

9 Displacement on CNT/Graphene m 1.00x10-10 1 10-10 

10 Frequency of CNT/Graphene Hz 1.00 1x10-5 105 

 

 

 

 

*** Multiply the Ansys Value with Scaling Factor to get True value 

 True Value = Ansys Value x Scaling Factor 

Table 1:  Table with the details of the Scaling factors for different parameters for simulating 

CNT/Graphene in ANSYS 



23 

The information on the dimensions, number of nodes, number of elements and the 

maximum displacement applied for various configurations of CNTs and Graphene are listed 

in the below table.  

 

 

3.4 Comparison of the ANSYS simulation results 

The CNTs and graphene are loaded gradually with displacements by fixing one end; the 

reaction force for each loading is taken from the ANSYS to calculate the stress on the 

CNTs/graphene. The stress-strain relationships are obtained for each of the configurations 

and are plotted as below. [15] [16] 

The armchair CNTs (fig.14) have a linear region upto a strain limit of 0.08 and the non-

linearity increases rapidly after 0.1 strain. The size effect on the elastic properties of the 

armchair configuration CNT is almost negligible. The effect of diameter comes into play at 

larger strain rates and however, the effects are negligible. 

 

 

Sl.  

No. 
Structure Configuration 

Diameter/ 

Width (A) 

Thickness 

(A) 

Length 

(A) 

No. of 

Nodes 

No. of 

Elements 

Max. 

Disp 

(A) 

1 CNT Armchair (5,5) 6.7848 3.4 80 660 980 12.5 

2 CNT Armchair (8,8) 10.8556 3.4 129.2 1696 2528 20 

3 CNT Armchair (10,10) 13.5695 3.4 161.2 2640 3940 25 

4 CNT Zigzag (8,0) 6.2675 3.4 77.45 592 880 12 

5 CNT Zigzag (10,0) 7.8344 3.4 94.5 910 1350 15 

6 CNT Zigzag (16,0) 12.535 3.4 154.17 2352 3504 24 

7 Graphene Armchair (5,5) 24.2 3.4 80 804 1160 12.5 

8 Graphene Armchair (8,8) 36 3.4 129.2 1926 2817 20 

9 Graphene Armchair (10,10) 44 3.4 159 2882 4235 25 

10 Graphene Zigzag (8,0) 19.69 3.4 79.6 646 922 12 

11 Graphene Zigzag (10,0) 24.61 3.4 96.62 966 1392 15 

12 Graphene Zigzag (16,0) 39.38 3.4 156.3 2442 3572 24 

Table 2:  The details of the different configurations of CNTs/Graphenes used for simulation in 

ANSYS 
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On the other hand, the zigzag configuration (fig.14) is relatively sensitive to the size of the 

CNT. The diameter effects on the behavior of the zigzag CNTs are more at larger strain 

values. The linear region of the zigzag configuration can be observed until the 0.06 strain 

limit and then it becomes rapid after 0.08 strain value.  

 

As the graphene sheets are two dimensional structures, the size effects for both the armchair 

and zigzag configurations are negligible (fig 15). The stress-strain relationship is linear for 

almost 0.08 strain for the armchair graphene sheet, whereas for zigzag configuration the 

linear strain limit is 0.06. The effect of non-linearity is predominant after 0.1 strain limit for 

the armchair configuration and for zigzag the effect is active from 0.08 strain value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 14: Stress Vs Strain plots for armchair and zigzag CNTs 

Fig 15: Stress vs Strain plot for different Graphene Configurations 
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Comparing the stress-strain behavior of the two configurations of CNTs and the 

corresponding graphene configurations, the effect of rolling graphene into CNT can be 

analyzed. Here it can be noticed that the deviation in the behavior is more for armchair CNT 

and Graphene configuration. Also the effect of rolling in the tensile behavior increases with 

increasing strain rates for the armchair configuration. However there is no significant effect 

of rolling on the zigzag configuration of the CNTs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ANSYS model is compared with the previous stick-spiral model, and a large variation 

in stress-strain behavior can be observed. The values of stress for a given strain for ANSYS 

model are lesser compared to the stick spiral model, as the analysis is stick-spiral model is 

based on a single unit and the results are not capable enough to capture the behavior of the 

overall structure. As the ANSYS model utilizes the FEM background, the effects of the 

neighboring atoms and bonds are nicely simulated. However the ANSYS model also needs 

to be improvised for better accuracy in results.  

  

Fig 16: Stress vs Strain comparison plot for Armchair, Zigzag and Graphene Configurations 

Fig 17: Stress vs Strain comparison plot for Stick-spiral and Beam Element models 
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The fig.18 shows the beginning of the decrease in the instantaneous elasticity derived from 

the stress-strain behavior of the armchair and zigzag configurations. The reduction in 

elasticity is sudden and drastic in case of zigzag configuration. Also the initial elastic 

modulus of 0.8 TPa for the CNTs matches with most of the available literatures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The force vs displacement for each of the configurations of CNTs and graphene are plotted 

in the fig.19. These plots give a brief overview on the stiffness changes in CNTs and 

graphene at various loading conditions. These properties are very much essential in deriving 

the non-linear stiffness coefficient for dynamic analysis of CNTs and graphene.  

 

 

 

 

  

Fig 18: Elasticity variation in Armchair and Zigzag CNTs with Strain 

Fig 19: Force Vs Displacement plots for various configurations of CNTs and Graphene 
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Chapter 4 
 

Modal Analysis of CNTs 

   

4.1 Continuum Models for Modal Analysis 

The CNT/Graphene models are also subjected to the Modal Analysis in ANSYS and the 

results are compared with that of the available continuum models of CNTs for fixed and 

cantilever end conditions. 

 

Fixed Beam subjected to free vibrations with zero axial load: 

Considering the CNT as a hollow cylindrical structure, using the continuum models, for a 

beam subjected to axial load P, the governing equation for the lateral vibrations is given as – 

[4] 

  
   

       
   

     
   

        (55) 

 

Where                       
    

   ⁄ ,        are the radius and thickness 

of the CNT respectively 

 

The natural frequency of the beam without pre-strain is obtained as – 

       
     

    
 √(

  

  
)   (56) 

 

Cantilever Beam subjected to free vibrations: 

For a cantilever beam subjected to free vibrations, the governing equation is given as –  

  
   

              (57) 

The first natural frequency of the beam is obtained as – 

   
      

     √(
  

  
)   (58) 
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The modal frequencies obtained from the ANSYS simulations are compared with the 

theoretical natural frequencies calculated from the above formulae are listed in the tables 3 

and 4. The results are satisfactorily matching with the continuum models at higher L/D 

ratios for all the configurations in both fixed-fixed and cantilever end conditions.  

 

Sl.  

No. 
Configuration 

Diamete

r (A) 

Thickness 

(A) 

L/D 

Ratio 

Elasticity 

(Gpa) 

Theoretical 

Frequency  

(GHz) 

ANSYS 

Frequency 

(GHz) 

% 

Error 

1 Armchair (10,10) 13.5695 3.4 12 809.42 125.98 114.02 9.49 

2 Armchair (10,10) 13.5695 3.4 10 809.42 181.41 156.00 14.01 

3 Armchair (10,10) 13.5695 3.4 8 809.42 283.45 233.52 17.61 

4 Armchair (10,10) 13.5695 3.4 6 809.42 503.91 372.90 26.00 

5 Zigzag (16,0) 12.535 3.4 12 803.51 136.56 115.37 15.52 

6 Zigzag (16,0) 12.535 3.4 10 803.51 196.65 160.13 18.57 

7 Zigzag (16,0) 12.535 3.4 8 803.51 307.26 235.44 23.37 

8 Zigzag (16,0) 12.535 3.4 6 803.51 546.25 375.04 31.34 

 

 

 

Sl.  

No. 
Configuration 

Diamete

r (A) 

Thickness 

(A) 

L/D 

Ratio 

Elasticity 

(Gpa) 

Theoretical 

Frequency 

(GHz) 

ANSYS 

Frequency 

(GHz) 

% 

Error 

1 Armchair (10,10) 13.5695 3.4 12 809.42 19.80 19.50 1.51 

2 Armchair (10,10) 13.5695 3.4 10 809.42 28.51 27.51 3.49 

3 Armchair (10,10) 13.5695 3.4 8 809.42 44.54 43.54 2.26 

4 Armchair (10,10) 13.5695 3.4 6 809.42 79.18 76.39 3.52 

5 Zigzag (16,0) 12.535 3.4 12 803.51 21.46 19.55 8.89 

6 Zigzag (16,0) 12.535 3.4 10 803.51 30.90 27.94 9.57 

7 Zigzag (16,0) 12.535 3.4 8 803.51 48.28 43.12 10.70 

8 Zigzag (16,0) 12.535 3.4 6 803.51 85.84 74.79 12.87 

 

 

 

 

Table 4: Comparison of the First natural frequency for different configurations from 

ANSYS simulations w.r.t. Continuum Model (Cantilever beam) 

Table 3: Comparison of the First natural frequency for different configurations from ANSYS 

simulations w.r.t. Continuum Model (Fixed beam) 
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4.2 Bending Modes and Fundamental Frequencies  

The first three bending mode frequencies for different end conditions, at different L/D ratios 

for armchair and zigzag configuration of CNTs are plotted as below. [17] [18] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the fig. 21 & fig. 22, it is evident that the frequencies for each mode are higher at 

lower L/D ratios. Even the subsequent ratios for the higher modes w.r.t to the corresponding 

fundamental frequencies are also well maintained for different L/D ratios of different 

configurations of CNT under both cantilever and fixed end conditions.   

Fig 21: First three bending mode frequencies for cantilever and fixed Armchair configuration 

over various L/D Ratios 

Fig 22: First three bending mode frequencies for cantilever and fixed Zigzag 

configuration over various L/D Ratios 
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The first fundamental frequency for bending for different end conditions, over the different 

L/D ratios for armchair and zigzag configuration of CNTs are plotted as below.  

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the fig. 23 & fig. 24, for each configuration under different end conditions, the 

fundamental frequencies are increasing with decreasing L/D ratios.  The plots obtained 

above will have a good curved shape if the analysis is conducted for the intermediate ratios 

of the L/D ratios.  

 

Fig 23: First fundamental frequency for bending mode for Armchair configuration in 

cantilever and fixed conditions w.r.t L/D Ratio 

Fig 24: First fundamental frequency for bending mode for Zigzag configuration in 

cantilever and fixed conditions w.r.t L/D Ratio 
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4.3 Different modes of vibrations  

 

 

 

 

  

Fig 25: Different modes of vibration for Cantilevered Armchair configuration with L/D 6 ratio 

Bending, Torsion, Warping 

Fig 26: Different modes of vibration for Cantilevered Armchair configuration with L/D 12 ratio 

Bending, Torsion 
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Fig 27: Different modes of vibration for Cantilevered Graphene with L/D 6 ratio 

Bending, Twisting 

Fig 28: Different modes of vibration for Cantilevered Graphene with L/D 12 ratio 

Bending, Twisting 



33 

   

Fig 29: Different modes of vibration for Cantilevered Zigzag configuration with L/D 6 ratio 

Axial, Torsion, Bending, Warping 

Fig 30: Different modes of vibration for Cantilevered Zigzag configuration with L/D 12 ratio 

Bending, Torsion 
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Fig 31: Different modes of vibration for Fixed Armchair configuration with L/D 6 ratio 

Bending, Torsion, Warping 

Fig 32: Different modes of vibration for Cantilevered Armchair configuration with L/D 12 ratio 

Bending, Torsion, Warping 
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Fig 33: Different modes of vibration for Fixed Graphene with L/D 6 ratio 

Bending, Twisting 

Fig 34: Different modes of vibration for Graphene with L/D 12 ratio 

Bending, Twisting 
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Fig 35: Different modes of vibration for Fixed Zigzag configuration with L/D 6 ratio 

Bending, Torsion, Warping 

Fig 36: Different modes of vibration for Fixed Zigzag configuration with L/D 12 ratio 

Bending, Torsion 



37 

Chapter 5 
 

Conclusion 

  

5.1 Conclusion 

In this thesis, we have developed a methodology in order to static and dynamic analysis of 

single walled carbon nanotube under different configurations. The main attraction of this 

approach is that it is helpful in capturing different modes in less time.  

 

To develop this methodology, we started with the structural details of CNTs and discussed 

different potential models of the covalent bond systems like C-C bond that exist in carbon 

nanotube. We found that the Brenner second generation and the Morse modified potential 

are most accurate potential models of C-C bond. Subsequently, using the Morse modified 

potential; we used stick-spiral model to estimate elastic modulus of SWCNT based on the 

available literature. We came up with a compact formula for estimating linear and nonlinear 

stress-strain relation in SWCNT. In order to increases the applicability of this approach, we 

used beam element based coupled molecular-structural approach where the equivalent 

properties of beam element are computed to replace the C-C bond.  These properties are 

then used to do modeling of graphene and carbon nanotube for different configuration and 

aspect ratios. It is found that this approach can be utilized to effectively capture the 

dynamics CNTs.  

 

Such method can be extended to do different analysis for multi-walled carbon nanotube. It 

can be effectively used to improve the design of carbon nanotube based sensors and 

actuations.  
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