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Abstract

Automatized life like representation of natural objects has been a cherished goal for humanity.

Towards achieving this goal we propose a novel framework for the reconstruction of the 3D object.

We laid the foundation for the representation of the signal by a developing a theory which deals

with different sampling techniques(both Uniform and Non-uniform) for signals in the euclidean

space, finite element method(Interpolative basis) for signals in the topological domain and finally

the compressive sampling using which we can capture and represent the compressible signals by

exploiting the sparsity.

Multiple view camera array is considered to capture the whole 3600 view of the object, also

for the reason that single camera cannot provide information about 3D content. 3D reconstruction

from the multiple views captured necessitate estimation of the camera parameters. Existing camera

calibration methods either require an external object or they may not provide unique camera param-

eters which introduces ambiguity in 3D reconstruction. Hence a novel auto calibration method has

been proposed based upon Factorization algorithm and implemented using images captured from

multiple views. Auto calibration requires finding corresponding points in all views captured(could

be more than single camera). Whole 3D manifold is generated by iteratively applying aforemen-

tioned calibration method on a selected neighborhood around the corresponding points found in the

previous iteration.

3D reconstructed data obtained will be generally very huge in size which puts a constraint

on real time transmission. Compressing the data without loosing the quality of reconstruction is

challenging. In this regard we framed 3D compression problem in Compressive Sensing framework.

Solution to this framework is possible if we can construct a basis for the manifold generated under

which it has a sparse representation. We demonstrated this for a analogous problem of 2D image

super resolution where a high resolution images is generated from a single low resolution image.
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Chapter 1

Introduction

In the field of communication, entertainment and medical image processing there is a demand for

high precision representation of the signal. Various applications including environment capture,

autonomous navigation and 3D Telepresence systems need life like representation of the objects. 3D

Telepresence stands out to be an important application might necessitate the use of a multi-camera

networks in different configurations to effectively capture all the features of the 3D object.

1.1 3D Telepresence System

The overall block diagram of the 3D Telepresence is given by Figure 1.1

Figure 1.1: Block Diagram of the 3D Telepresence

A 3D Telepresence system should be able to reconstruct 3D object data captured from multiple

images taken from different views and compress the data to transmit over communication channel.

At the receiver end it should be able to decompress and represent the 3D data received maintaining

color, luminous and texture consistency and render it to display. The block by block description of

3D Telepresence system is
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1.1.1 Acquisition of Multiple 2D views:

A single camera cannot be able to represent the whole object, it can only capture single perspec-

tive(view). Hence it is intuitive that a 3D Telepresence system need more than one cameras to

represent whole object. As shown in the figure 1.1 the input to system is an array of 2D images

captured in different views covering whole 360o space around the object(person). It is obvious that

how many cameras are required? and where to place the cameras? are two basic questions that

strikes to our mind. But there is no proper research was done in this direction.

1.1.2 3D Reconstruction:

Multiple 2D images, captured by the network, play a central role in providing the depth related

information that is difficult to perceive from individual 2D images. 3D reconstruction from single

views is not a straight forward problem as we loose one dimension(depth) in the process of capturing

image from a camera. This is considered as a ill-posed problem. The basic pinhole camera model

can be seen in Figure 1.2.

Figure 1.2: pinholecamera.

To lay down the mathematical framework for3D object reconstruction, the working of a pin-hole

camera needs to be completely understand and the transformation it affects on the 3D object when

converting it into a 2D image. The set-up illustrated in Figure 1.3. shows how a 3D world coordinate

is captured on to a 2D image plane.

Figure 1.3: Camera and image plane placement in the world coordinate system.

The drop from three-dimensional space to a two-dimensional image is a projection in which one
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dimension is lost. This is modeled using a process of central projection in which a ray from a point

in space is drawn from the 3D object through the center of projection. This will intersect the image

plane at a corresponding image point. To completely characterize the transformation between the

image and the real world co-ordinates, the complexity of the situation can be increased incremen-

tally starting from a base case. Consider a 3D projective space represented by P 3 called the world

co-ordinates where the points are written in terms of homogeneous co-ordinates (X,Y, Z, 1)T . The

camera is placed with the origin,(0, 0, 0, 1)T , as the center of projection C and its principal axis

aligned with the Z-axis. The image plane, represented by P 2 where the points are written in terms

of homogeneous co-ordinates (x, y, 1)T , is placed at a distance Z equal to the focal length of the

camera and parallel to the XY-plane. The 2D image co-ordinates are defined with the origin at the

point of intersection of the Z-axis and the image plane. The matrix that transforms the object point

to the image point is denoted by P and is called the camera projection matrix and can be expressed

as:

s

 x

y

1

 = P


X

Y

Z

1

 (1.1)

Most existing data acquisition systems for 3D reconstruction use stereo cameras. The idea behind

stereo vision is to mimic human biology by trying to recreate the behavior of human eyes. The eyes

behave like two pin-hole cameras displaced by a certain distance. Each eye generates a slightly

different perspective of the 3D scene and the brain then extracts position and depth information

from these two 2D images. Stereo cameras with parallel axes model the human eye and are the ideal

choice for 3D data acquisition applications. But stereo camera gives only depth information from

only one perspective i.e., complete representation of the object is not possible. Multiple camera array

is a possible solution to obtain complete information. Multiple 2D images, captured by the network,

play a central role in providing the depth related information that is difficult to perceive from

individual 2D images. 3D shape reconstruction using visual hulls generated based on Silhouettes of

images captured from multiple views is an interesting method which is suitable for multiple camera

systems.

1.1.3 3D Compression:

Generally for the best representation of the signal the samples should be continuous, but with

continuous signals we face problem while encoding i.,e we require infinite number of bits to encode

which is not practical. So we digitize the signal so that we can encode and transmit. But when we

digitize the signal we loose some information, therefore we cannot have best possible representation

of the signal at the decoder or receiver. So, we should look for some better way of representing the

signal so that no or less information is lost.

When we captured an image with the help of a camera we will be getting the data as set of intensity

values representing a particular frame. 3D reconstructed data from multiple 2D views will generally

be very large but there are limitations on bandwidth allocated to transmit, also the processing delay

should be very low for real time transmission.We can never have a camera or a senor that will capture
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points of interest i.e., the number of points that a camera can capture is nothing but fixed.So, there

is high likelihood that we can have some redundant information in the views captured(Overlapping

cameras is a trivial example). So how to get rid of the this redundancy. One can pose a very

interesting problem here i.e., Can we put a constraint on the number of views to be taken to have a

minimal representation of the data?. what type sampling one should prefer to balance both quality

and bandwidth requirements.

In the transmitter(Encoder) 3D reconstruction of the object(person or scene) is done from 2D images

captured in multiple views. The reconstructed 3D image is compressed and transmitted over the

communication channel.

1.1.4 3D Decompression and Rendering:

The decompression algorithm is run at the receiver based upon the compression algorithm used in

the transmitter. 3D rendering is one of very important aspects of the 3D-Telepresence system. The

3D display should be able to provide viewer dependent view(motion parallax) and also it should be

able to maintain color consistency, luminous consistency.

The most common solutions are stereoscopic displays with tracking. Stereoscopic displays

(Ezra,1995) can emit only two distinguishable light beams from each pixel, this is the reason for the

compromises: the viewer dependent view (that is, the 3D scene is correct only from a single point

of view), thus the necessity of tracking (Woodgate, 1998) to create motion parallax, but still, this

will provide a correct view only for the driver (who leads the session and wears the object that is

tracked). Perspective for all other participants who are not looking at the same direction will be

incorrect. Tracking systems also introduce a small amount of latency, which can be reduced, but

still disturbing. All these limitations are responsible for the seasickness and headache after using

these systems for longer sessions. There are many more 3D display technologies but failed to give

elegant solution.
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Chapter 2

Signal Representation and

Compressive Sensing

In this chapter we will discuss the various methods of representing the signal. Here we are trying to

remove the redundancy so that we can simultaneously achieve both compression and having a sparse

representation.We will start with the most basic form of representing the signals i.e; uniform sampling

and then introuduce Non-uniform sampling[Multi coset sampling] further we will go through the most

commonly used representation used in the image processing domain which is the wavelet basis and

then about the most recent development which is the contourlets and then discuss about the theory

of Finite Element Method which uses interpolative basis for representation of the siganl and finally

the compressive sensing which requires a basis under which the signal has a sparse representation.

2.1 Uniform Sampling

Continuous signals are represented in computers by their samples.The samples are taken according

to the famous Uniform sampling theorem.Uniform sampling is the shanon-nyquist sampling theorem

which states that when a signal(considering 1D-signal) is bandlimited in the frequency domain say

B Hz it has to be sampled at a rate ≥ 2B Hz which is the Nyquist rate.The samples that we

obtain by using the Nyquist rate are placed at uniform intervals of 1
2B Hz.In essence, it shows that

a bandlimited analog signal that has been sampled can be perfectly reconstructed from an infinite

sequence of samples if the sampling rate exceeds 2B samples per second.An image can be thought

of as Piecewise constant function, or Uniform sampling of some underlying function.

But when the signal is not bandlimited but is a multiband signal with finite frequency spectral

support then uniform sampling of such a signal at nyquist rate leads to more number of samples,

so we consider the non uniform sampling[Multi coset Sampling] which is described in the following

section.
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sampling.jpg

Figure 2.1: Illustration of Sampling in 1D

2.2 Non-Uniform Sampling

In this section we will explain multi coset sampling which is a Non-uniform sampling technique.Multi-

coset sampling is a periodic nonuniform sub-Nyquist sampling technique for acquiring continuous-

time spectrally-sparse signals.

A multiband signal x(t) is a bandlimited, continuous-time, squared integrable signal that has all

of its energy concentrated in one or more disjoint frequency bands (of positive Lebesgue measure).

Denoting the Fourier transform of x(t) by X(jω),

X(jω) =

∫ −∞
+∞

x(t)e−jωt

a bandlimited signal is one whose spectrum is bounded, i.e., X(jω) = 0 for−πW ≤ ω ≤ πW radians

per second, for some positive real number W . Here, W/2 is the bandwidth of x(t) and W is therefore

the Nyquist frequency. The spectral support of a multiband signal is the union of the frequency

intervals that contain the signals energy. A sparse multiband signal is thus a multiband signal whose

spectral support has Lebesgue measure that is small relative to the overall signal bandwidth. If, for

instance, all the active bands have equal bandwidth B Hz and the signal is composed of K disjoint

frequency bands, then a sparse multiband signal is one satisfying KB << W .

Multi Coset Sampler:Multi-coset sampling (MC) is a periodic nonuniform sub-Nyquist sampling

technique for acquiring sparse multiband signals [9]. For a fixed time interval T that is less thanor

equal to the Nyquist period and for a suitable positive integer L, Multi coset samplers sample x(t)

at thetime instants t = (kL + ci)T for 1 ≤ i ≤ q, k = 0, 1, . . . . The time offsets ci are distinct,

positive real numbers less than L and are known collectively as the multi-coset sampling pattern.

The system thus collects q ≤ L samples in LT seconds, or equivalently, exhibits an average sampling

rate of q/LT Hz. Here we set T equal to the Nyquist period T = 1/W , thereby referencing the

systems sampling rate to the Nyquist rate. Multi-coset samplers are parameterized by q, L, andci,

and the system design depends on conditioning them properly to ensure successful recovery of x(t)
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from the output samples. MultiCoset samplers are most easily implemented as multichannel systems

where channel i shifts x(t) by ci/W seconds and then samples uniformly at W/L Hz see figure2.2.

Figure 2.2: Multi-coset sampler implemented as a multi-channel system. In this case, the base
sampling period equals the Nyquist rate W Hz.

2.2.1 MultiCoset Sampling

Let x(t) be a sparse multiband signal. Then by inspection of 2.2 we have the following time and

frequency domain relationships for the ith channel,i = 1, . . . , q.

Shifting in time :

x(t+ ci/W ) FT←→ X(jω)ejci/Wω)

Sampling/Aliasing:

yi(k) = x(kL/W + ci/W )

DTFT of the above equation

Yi(e
jωL/W ) =

W

L

bL2 ( ω
πW +1)c∑

m=−dL2 ( ω
πW −1)e+1

X(jω − 2π
W

L
m)e−j

ci
W (ω−2πWL m)

The summation limits are finite for a given ω because x(t) is assumed bandlimited. Because

Yi(e
jωL/W ) is periodic with period 2πW/L, we can, without loss of information, restrict Yi(e

jωL/W )

to one period.

e−j
ci
W ωYi(e

jωL/W ) =
W

L

bL2 ( ω
πW +1)c∑

m=−dL2 ( ω
πW −1)e+1

X(jω − 2π
W

L
m)e−j

2π
L cim

for i = 1, . . . , q, where1[ ) denotes the indicator function. Note that the restriction to[πW/L, πW/L)

removes the dependence on ω in the summation limits since within this interval Yi(e
jω L

W ) is a linear

combination of a particular (finite) set of spectral segments of x(t). We can therefore write this
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expression in a matrix-vector formulation

z(ω) = φs(ω)

where

zi(ω) = e−j
cq
W ωYi(e

jωL/W )1[−πWL ,πWL ]

φi,l =
W

L
e−j

2π
L clml

sl(ω) = X(ω − 2π
W

L
ml)1[−πWL ,πWL ]

for i = 1, . . . , q, l = 1, . . . , L, and ml = −b 12 (L+ 1)c+ l

2.3 Interpolative Basis(FEM)

Both uniform and Non-uniform sampling used to represent a class of functions with domain as the

euclidean space.But to represent a class of functions on a topological space we need an interpolative

basis.Using the interpolative basis we can get back the surface by consider only a subset of signal

points on the topological surface.Finite Element Method (FEM)is in a topological domain, allows

more complex element behavior to be modeled. The FEM was originally just an extension of matrix

structural analysis, developed by structural engineers. It has since been used in just about every

field where differential equations define the problem behavior. The basic idea of the finite element

method is to break up a continuum into a discrete number of smaller ”elements”. These elements

can be modeled mathematically by a stiffness matrix and are connected by nodes that have degrees

of freedom.

2.3.1 Finite Element Method Implication

It is a numerical procedure for obtaining approximate solutions to many of the problems en-

countered in engineering analysis.FEM use interpolative basis to reconstruct the total image.

Here we see a problem which is solved using the FEM. Given an initial model representing general

knowledge of the object, and incomplete or missing information about geometry or material prop-

erties. The method is based on iterative analysis of the difference between the actual and predicted

behaviour.Large differences indicate that an objects properties are not captured properly by the

model describing it. These error are due to flaws in the model parameter estimation such as geom-

etry and material properties. ’P’ is sparse points, ’Q’ is set of correspondence[10] of guide search.

Figure 2.3: General approach
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Example:-Hand Motion Analysis

Since large deformations occur during any hand motion, physical laws should be used to model

not only the skeletal motion, but also the nature of the deformations in soft tissues. Research has

shown that finite element theory can be used to model near-correct muscular motion.Frame-to-frame

correspondence recovery is based on the iterative analysis of the directed Hausdorff distance between

the model and the next frame in the sequence.Graphically interpreting nonlinear behavior through

animation allows us to verify and visualize displacement results. An obvious high pressure around

the base of the thumb is readily visible.

Figure 2.4: (a) Motion model of left hand and its
analysis [10]

Figure 2.5: (b) Motion model of right hand and
its analysis [10]

2.3.2 Relating FEM to Image Processing

FEM has many applications in the field of image processing. Many parts of the body will be

reconstucted as 3D models with the help FEM from the slices of 2D imges like CT-Scan, MRI-Scan

etc.FEM model representation of suface is nothing but interpolative basis selection, where we select

the node points to represent total object.For transmission of 3D data we need more bandwidth.In

real world it is not possible to dedicate more bandwidth for single user.So, we do compression of this

3D data by modeling using FEM.We use the mesh nodes for represent surface,from which we will

reconstruct the total object.Any point on 3D surface can be represent by using the function of nodes

points.My teammate Mr.Srikanth is also subjecting the same problem with the help of compressive

sensing framework.Our objective is to select the node points in such way that we will reconstruct

the object with better representation.In the above hand model we disscussed about the changing

the properties by using the motion of hand[10].But out problem is to change the node points such

way that we will get the good representation of object.

2.4 Compressive Sensing

Compressive Sensing or Compressive Sampling is the recent advancement in signal processing.According

to Compressive Sensing theory if a signal has a sparse representation in a particular basis then it can

be recoverd far less samples than the number of samples according to Nyquist Sampling theorem.

2.4.1 Compressive Sensing Theory

Consider a real-valued, finite-length, one-dimensional, discrete-time signal x, which can be viewed

as an N×1 column vector in RN with elements x[n], n = 1, 2, · · · , N. (We treat an image or higher-

dimensional data by vectorizing it into a long one-dimensional vector.).Any signal in can be repre-

9



sented in terms of a basis of N × 1 vectors . For simplicity, assume that the basis is orthonormal.

Using the N × N basis matrix ψ = [ψ1|ψ2|...|ψN ] with the vectors ψi as columns, a signal x can be

expressed as

X = ψs. (2.1)

where s is the N × 1 column vector of weighting coefficientssi =< xi, ψi >= ψTX and T denotes

transposition. Clearly,x and s are equivalent representations of the signal, with x in the time or

space domain and s in the ψ domain.The signal x is K-sparse if it is a linear combination of only

K basis vectors; that is, only K of the si coefficients are non zero and (N−K) are zero. The case

of interest is when K<<N. The signal x is compressible if the representation has just a few large

coefficients and many small coefficients.

Transform Coding and its Inefficiencies: The fact that compressible signals are well approx-

imated by K-sparse representations forms the foundation of transform coding . In data acquisition

systems (for example, digital cameras) transform coding plays a central role: the full N-sample signal

x is acquired; the complete set of transform coefficients si is computed via si = ψTx ; the K largest

coefficients are located and the (N−K) smallest coefficients are discarded; and the K values and lo-

cations of the largest coefficients are encoded. Unfortunately, this sample-then-compress framework

suffers from three inherent inefficiencies. First, the initial number of samples N may be large even

if the desired K is small. Second, the set of all N transform coefficients simust be computed even

though all but K of them will be discarded. Third, the locations of the large coefficients must be

encoded, thus introducing an overhead.

Compressive Sensing Problem: Compressive sensing address these inefficiencies by directly ac-

quiring a compressed signal representation without going through the intermediate stage of acquiring

N samples. Consider a general linear measurement process that computes M ¡ N inner products be-

tween X and a collection of vectors (φj)
M
j=1 as in Yj =< X,φj >.Arrange the measurements YJ in

an M × 1 vector Y and the measurement vectors φTj as rows in an φ M N matrix . Then, by

substituting ψ from 2.1, Y can be written as

Y = φX = φψs = Θs

where Θ = φψ is an M × N matrix. The measurement process is not adaptive, meaning that

φ is fixed and does not depend on the signal X. The problem consists of designing a) a stable

measurement matrix φ such that the salient information in any K-sparse or compressible signal is

not damaged by the dimensionality reduction XεRN to Y εRM and b) a reconstruction algorithm

to recover X from only M K measurements Y (or about as many measurements as the number of

coefficients recorded by a traditional transform coder).

Desigining a Stable Measurement Matrix:

The measurement matrix φ must allow the reconstruction of the length-N signal X from M < N

measurements (the vector Y). Since M< N, this problem appears ill-conditioned. If, however,X is

K-sparse and the K locations of the nonzero coefficients in s are known, then the problem can be

solved provided M≥K. A necessary and sufficient condition for this simplified problem to be well
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conditioned is that, for any vector v sharing the same K nonzero entries as s and for some ε > 0

1− ε < ||Θv||2
||v||2

< 1 + ε

That is, the matrix Θ must preserve the lengths of these particular K-sparse vectors. Of course, in

general the locations of the K nonzero entries in s are not known. However, a sufficient condition for

a stable solution for both K-sparse and compressible signals is that Θ satisfies (3) for an arbitrary

3K-sparse vector. This condition is referred to as the Restricted Isometry property (RIP).

Desigining a Stable Reconstruction Algorithm: The signal reconstruction algorithm must

take the M measurements in the vector Y, the random measurement matrix φ and the basis ψ

and reconstruct the length-N signal X or, equivalently, its sparse coefficient vector s. For K-sparse

signals, since M < N in there are infinitely many ś that satisfy Θś=Y . This is because if Θs = Y

then Θ(s+r) = Y for any vector r in the null space N(Θ) of Θ . Therefore, the signal reconstruction

algorithm aims to find the signals sparse coefficient vector in the (N− M)dimensional translated null

space H =N(Θ) + s.

• Minimum l2 norm reconstruction:

Define the lp norm of the vector s as (||s||p)p =
∑N
i=1 |si|p .The classic appraoch to inverse problems

of this is to find the vector in the translated null space with the smallest l2 norm (energy) by solving

ŝ = argmin||́s||2 such that Θś = Y

This optimization has the convenient Closed form solution ŝ=Θ(ΘΘT )−1Y . Unfortunately, l2 min-

imization will almost never find a K-sparse solution, returning instead a nonsparseŝ with many

nonzero elements.

• Minimum l0 norm reconstruction:

Since the l2 norm measures signal energy and not signal sparsity, consider the l0 norm that counts

the number of non-zero entries in s. (Hence a K-sparse vector has l0 norm equal to K). The modified

optimization

ŝ = argmin||́s||0 such that Θś = Y

can recover a K-sparse signal exactly with high probability . Unfortunately, solving (5) is both

numerically unstable and not tractable, requiring an exhaustive enumeration of all

(
N

K

)
possible

locations of the nonzero entries in s.

• Minimum l1 norm reconstruction:

Surprisingly, optimization based on the l1 norm

ŝ = argmin||́s||1 such that Θś = Y

can exactly recover K-sparse signals and closely approximate compressible signals with high proba-

bility using onlyM ≥ cKlog(N/K) iid Gaussian measurements.

Here we looked at different ways of representing the signal i.e; from a finite discrete set of points

11



we can capture the whole object. We developed this framework that will be useful in later chapter

which is a real life problem.
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Chapter 3

3D Reconstruction

Here we will consider the real life application of reconstruction of 3D object.The problem is to recon-

struct the 3D object faithfully without losing any information. Intuition says that information from

a single perspective is not sufficient to reconstruct the whole 3D object.So we need a multicamera

array for capturing the entire information about the object.

3.1 Problem statement

To reconstruct a 3D object from images(say M) taken from different views covering the whole 360

space around the object.

3.2 Camera Modelling

To reconstruct the 3D object we need to get back the depth information that was lost while capturing

the object using the camera.To understand how a camera projects a point in the 3D world coordinate

system into the image coordinate system we consider the Camera Modelling.

Camera projects a 3D point on to the 2D image plane from the first principles of optics. This is

known as projective transformation that defines how real-world objects are projected on the image

plane. Projective transformation is defined by camera intrinsic and extrinsic parameters. The four

most important parameters define the focal length in x and y direction and the possible displacement

of the image center away from the optic axis(known as principal point). The focal length ideally is

the distance between the center of projection and the image plane. These parameters are summarized

in the matrix, which is called the intrinsic camera matrix. The matrix of intrinsic parameters does

not depend on the scene viewed and, once estimated, can be re-used (as long as the focal length is

fixed (in case of zoom lens)). The following equation gives the basic structure projective geometry

and the calibration parameters are useful in finding the 3D world coordinates.

s

 x

y

1

 =

 fx γ u0

0 fy v0

0 0 1


 r11 r12 r13 | t1

r21 r22 r23 | t2

r31 r32 r33 | t3




X

Y

Z

1

 (3.1)
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s

 x

y

1

 = K
[
R | t

]


X

Y

Z

1

 (3.2)

where the 3 × 3 matrix K is dictated by the internal parameters of the camera, and the 3 × 4

matrix [R|t] by external parameters.

where (u0, v0) denotes the image coordinate of the point where the principal axis meets the image

plane, fx and fy are focal lengths along image coordinate axes, and γ is a skewness index. If an image

from camera is scaled by some factor, all of these parameters should be scaled (multiplied/divided,

respectively) by the same factor.

Further, [R| t], where the 3× 3 matrix R is unitary, and indicates 3D rotation operation, where

3× 1 vector t collects three translation prameters along the three world coordinate axes.

3.3 Solution

Outline: The solution involves dealing with an inverse problem. We find set of corresponding points

through all the input images. The visibility matrix takes care of points present only in a subset of

images. The matrix containing corresponding points (x) now has to be factorized in such a way

that we recover the structure of Projective motion P̂ and also projective shape X̂(x = PX).This is

achieved by rank 4 factorization.

The Various steps that are required to obtain the 3D object is illustrated by using a flow chart:

3.4 Point Correspondence

Finding point correspondences in two or more images has many applications such as image regis-

tration,object recognition and camera calibration.Correspondence matching consists of three steps

:

• Interest point/Feature Point detection

• Feature Vector/Descriptor selection

• Matching

3.4.1 Interest Point Detection

Interest points are the points that are more or less easily differentiated from their surrounding

points.Corners, blobs, T-junctions etc. are examples of such points. The obvious argument that can

be made is, pixel values are very different at corners or edges than at the background.A large value

of derivative, taken in either X or Y direction, indicates possibility of an edge and a large derivative

taken in XY direction indicates presence of a corner.These are,of course,very crude methods of

detection. Harris Corner Detector,Canny edge detector etc. are some widely used schemes. For

detection of blob like regions and Hessian matrices are popular;that too detect points and edges.
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Figure 3.1: Masks used for interest point detection

Some methods use trace of Hessian matrix and some use determinant of it.

The concept behind Hessian matrix is as follows: Given a point X = (x, y) in an image I, the Hesian

matrix H(X,σ) at X with scale σ is:

H(X,σ) =

(
Lxx(X,σ) Lxy(x, σ)

Lxy(X,σ) Lyy(x, σ)

)

where Lxy(X,σ) is convolution of second order derrivative of Gaussian kernel with image I at point

X. The determinant value of Hessian matrix indicates presence of an Interest point; if the value

is above some threshold. The threshold selection is an important step that determines number of

points detected. The sign of the determinant indicates nature of the point(e.g.dark point on lighter

background).We also quantize the LoG values to integers,then the filter masks look like what is

shown below:

Our method is very similar to Speeded Up Robust Features[1] but it excludes many of SURF’s

artifacts at present making it simpler for our purpose. We take a Gaussian Kernel at fixed variance

and find determinant of Hessian matrix at each point in the images at hand. After observing the

values of determinants for the particular image database we fix a threshold for recording a point as

an Interest point.Original SURF[1] performs this task at multiple scales and localizes the point if it

is detected at three scales. The interset point detected for an image is shown below:

points.jpg

Figure 3.2: Interest Points Detected for a Toy image
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3.4.2 Building Descriptor:

Once an Interest point is detected,next task is to assign a feature vector or descriptor to it, which

is needed for Matching step.For finding a feature vector a neighbourhood around every Interest

point is selected.Then various properties of these neighbourhood are extracted that form the feature

vector.SURF [1] suggests to find a dominant orientation (using a scale dependant circular neighbour-

hood) around an Interest point before finding a feature vector.This gives rotation invariance to the

descriptor in matching step.For our application we do not practice this part.Next,the neighbourhood

selection is advised to be scale dependant(the scale at which Interest point was detected); which is

fixed in our case.

Having selected a neighbourhood we take sum of pixelwise differences in x and y directions along

each row and column of neighbourhood matrix,respectively. These are recorded as
∑
dx and

∑
dy

respectively.In order that these differences should not cancel each other (giving a sum zero for a row

or column,falsely showing lack of distinguishing properties around Interest point) ;we also record

sum of absolute values of these differences which are
∑
|dx| and

∑
|dy| respectively. This constitutes

a 9 × 4 × 3 descriptor in our case, which takes colour information into account. This offers more

robustness.

Feature Vector =


∑
dx∑
dy∑
|dx|∑
|dy|


9×4×3

The colour part is absent in original SURF for computation purpose. Histogram of the neigh-

bourhood is also a factor in feature vector which is used by SIFT and GLOH in different ways.

3.4.3 Matching

Matching step requires calculating distance between feature vectors of Interest points in two images.

Choice of distance measure and threshold for recording a correspondence match determines quality

of overall scheme.Distance measure can be Euclidean distance,Mahalanobis distance, etc. We use

sum of squared differences method.We select one point each in two images between which point

correspondences are to be found.Then we take total 108(= 9 × 4 × 3; size of feature vector for each

point) differences and add them. This gives a score for two points in reference.In this way we try

to match a point with each and every point in next image. The pair which gives least SSD score is

recorded as corresponding points pair.

3.5 Correspondence Matching in Multiple Images

Here we explain the method to find correspondences in multiple images. An Interest point is first

selected in an image,then with a full search in next image we try to find corresponding point.

During next iteration we select only those points in the second image which have correspondence

in first image and do a full search in third image and so on for multiple images. This is achieved

by simple management of multidimensional flags assigned to each Interest point.This also reduces
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Figure 3.3: point correspondence in two images

copmutation time as we perform a selective search except for first iteration. We end up with point

correspondences in k images out of N images entered. Figure below shows the correspondence for 4

images It is intuitive that as the number of images increases the point correspondences in mulitple

Figure 3.4: Correspondence Matching for 4 images

images decreases.In order to get more corresponding points we first select a small neighborhood

around the corresponding point and preform the above steps by reducing the threshold value for

matching around the small neighbourhood of the correspoind point in the multiple images and again

perform the matching so that we get more corresponding points.

3.6 Auto Calibration of Multi-Camera Array

For 3D reconstruction using images from multiple views, simultaneous camera calibration and lo-

calization of multiple camera array is the most rudimentary and most signification step in order

to extract the 3D attributes from the 2D images. Many researchers from Computer Vision, Image

Processing domains tried to solve this problem, but still there is no elegant solution to this problem.

To calibrate a single camera, one would have to determine the 5 internal and 4 external parameters

that govern image formation. In a multi-camera network, this problem is further compounded, since

for want of efficiency each camera cannot be calibrated individually.

The calibration of a network of cameras employs concepts of multi-view geometry[2], like epipolar
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geometry and projective transformations in addition to the basic physics of image formation. How-

ever, most traditional calibration algorithms are photogrammetric, i.e. they use a calibration target

like a checkerboard.In[8] two step calibration method was used to compute the intrinsic, extrinsic

and localization parameters with the help of virtual object(marker detection) and Vision Graphs.

First step constitutes of calculating intrinsic and extrinsic parameters of each camera using Tsai’s

method[5], in the second step external calibration using virtual calibration object and vision graphs

to find 6 external parameters describing orientation and position of each camera with regard to

selected reference camera.

This is not a scalable solution for a multi-camera array since the camera networks might be large

and not all cameras in the network maybe able to view the target. Also, this method has the basic

limitation of using a cumbersome target and an elaborate set-up as the size of the target will also

be a problem. This necessity of someone being physically present at the scene with a calibration

target makes the process of multi-camera network deployment and data acquisition tedious. Hence,

camera calibration would become robust if we were to somehow extract the internal and external

parameters of the constituent cameras in the network from the 3D scene that is being captured itself,

i.e. auto-calibration.

HP coliseum [6] uses a cube with four colored squares on each face(totaling 24 colors plus black

and white) as a calibration object. The face components supply the determining the calibration

parameters. Lens distortion correction is computed by determining the radial polynomial that

straightens the target faces’ black boundaries. Intrinsic parameters are found using Zhang’s [3]

method. External parameters are estimated in a two-stage process that starts with initial adjacent-

pair pose estimates using a nonlinear variant of a stereo solver[7].

Although these traditional methods are accurate, they require physical access to the observed

space and involve an offline precalibration stage for every configuration of the network. This is im-

practical and costly in most remote applications or deployments in hazardous locations. Deviating

from conventional methods that employ calibration targets, self-calibration algorithms that compute

the parameters of the camera from the scene or a set of uncalibrated images has been attempted

and developed to an extent. Hartley[17] presents a stratified approach, assuming that the intrinsic

parameters are constant, where an affine calibration stage is used to compute a rectifying homogra-

phy H. These methods require computation of correspondences between images and requires much

more overlap between cameras than might be available in camera networks. In such a setting, the

factorization approach to the problem of extracting 3D shape information and camera parameters

simultaneously proposed by Han and Kanade[4] is quite appealing.

3.6.1 Factorization Algorithm

The factorization-based method recovers shape and motion of the 3D object from multiple uncali-

brated perspectives. They accomplish the task of computing 3D object shape and camera parameters

by tracking a set of feature points on the object in all the multiple views. However, the basic draw

back of this approach is the limitation that not all the feature points that have been marked for

tracking may be visible in all the cameras in the network. Assuming that we have M cameras and

N object points the overall projective transformation matrix is givenby
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Ws =


s11

[
x11

y11

]
. . . s1N

[
x1N

y1N

]
...

. . .
...

sM1

[
xM1

yM1

]
. . . sMN

[
xMN

yMN

]


=


P1

P2

...

PM


[
X1 . . . XN

]

=⇒ Ws =


P1

P2

...

PM


[
X1 . . . XN

]
(3.3)

Kanade’s Iterative Projective Factorization Algorithm

1. Set sij = 1, for i = 1 . . . n and j = 1 . . .m;

2. Compute the current scaled measurement matrix Ws by Equation (3.3);

3. Perform rank4 factorization on Ws, generate the projective shape and motion;

4. Resetsij = P
(3)
i Xj where P

(3)
i denotes the third row of the projection matrix Pi;

5. If sij ’s are the same as the previous iteration, stop; else go to step 2.

The goal of the projective reconstruction process is to estimate the values of the projective depths

(sij ’s) which make Equation (3.3) consistent.

The factorization of Equation (3.3) recovers the motion and shape up to a 4 × 4 linear projective

transformation H:

Ws = PX (3.4)

= PHH−1X (3.5)

= P̂ X̂ (3.6)

where P̂ = PH and X̂ = H−1X

P and X are referred to as the projective motion and the projective shape. Any non-singular 4× 4

matrix could be inserted between P and X to get another motion and shape pair.

3.6.2 Auto Calibration of Multiple View camera array

Let x be the measurement matrix of M cameras stacked that captures 3D points X which are visible

from more than one cameras.

If we assume that the distance between the object center and the camera is large, then the scal-

ing factor is independent of the position of the 3D object point and the camera projection can be

modeled as:

sixij = PiXj
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Case1: All points are visible to all cameras

Now, if all the N tracked feature points are visible from all the M cameras in the network, the global

camera projection can be modeled as:



x11 . . . x1N

y11 . . . y1N

1 . . . 1
...

...

xM1 . . . xMN

yM1 . . . yMN

1 . . . 1


=


1
s1
K1[R1|t1]

1
s2
K2[R2|t2]

...
1
sM
KM [RM |tM ]



X1 . . . XN

Y1 . . . YN

Z1 . . . ZN

1 . . . 1

 (3.7)

x = PX (3.8)

Problem statement: To choose {P,X} such that ‖x − PX‖F is minimized subject to the

constraint that rank(P)≤ 4.

Solution: Choose P, X such that ‖x − P̂ X̂‖F is minimized subject to the constraint that

rank(P)≤ 4.

where P̂ , X̂ are found by singular value decomposition of x and subsequently picks the best

rank-4 estimate to obtain the solution.In this preliminary case, Han and Kanade’s algorithm can be

implemented and the global projection matrix can be obtained by rank-4 decomposition. The brief

description of algorithm is as follows

From SVD, x3M×N = U3M×3MΣ3M×3MV
T
3M×N

where the singular values in Σ are arranged in descending order. To obtain the rank-4 decom-

position estimate, we write

Σ̂ =


Σ11 0 0 0

0 Σ22 0 0

0 0 Σ33 0

0 0 0 Σ44



where, Σ =


Σ11

Σ22

. . .

Σ3M,3M


If U = [u1, u2, . . . , u3M ], then Û = [u1, u2, u3, u4]. Similarly, if V = [v1, v2, . . . , v3M ], then V̂ =

[v1, v2, v3, v4] . Now, solving for x = UΣV T = PX,

we write, P̂ = Û Σ̂H and X̂ = H−1V̂ T for every invertible H
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We now have x̂ = P̂ X̂, thus for every choice of (P,X) = (P̂ , X̂), we evaluate the frobenius norm to

determine how much error the rank-4 decomposition would entail,

‖x− P̂ X̂‖F = ‖UΣV T − Û Σ̂V̂ T ‖F
= ‖Û cΣ̂cV̂ cT ‖F

=

3M∑
k=5

Σkk

where, U = [Û |Û c] and V = [V̂ |V̂ c]. Thus,the task is now to choose P, X such that ‖x − P̂ X̂‖F is

minimized subject to the constraint that rank(P)≤ 4.

Case 2: All Points are visible to more than one cameras

In this case all points may not be visible to all cameras. Let Θ be the visibility matrix which defines

what features points are visible to what camera.Now the observation matrix cannot be modeled as

equation (3.3), this is because x will be having holes if any particular camera cannot see any point

in X

Problem Statement: To choose {P,X} such that ‖Θ� (x− PX)‖F is minimized subject to the

constraint that rank(P)≤ 4

Solution: Choose P, X such that ‖Θ � (x − P̂ X̂)‖F is minimized subject to the constraint that

rank(P)≤ 4.

where P̂ , X̂ are estimated by singular value decomposition(rank 4 decomposition) of x The detailed

algorithm to compute P̂ , X̂ is as follows

Initialization step: we break the M cameras into q clusters, such that every camera in the jth

cluster can see Nj tracked feature points. We now apply Han and Kanade’s method to cluster j to

obtain the initial estimates of P̂j and X̂j .

From SVD, x3Mj×Nj = U3Mj×3Mj
Σ3Mj×3Mj

V T 3Mj×Nj

where the singular values in Σ are arranged in descending order. For want of simplicity, we shall

drop the index j referring to the jth cluster, keeping in mind that this same procedure is adapted

for every cluster. To obtain the rank-4 decomposition estimate, we write

Σ̂ =


Σ11 0 0 0

0 Σ22 0 0

0 0 Σ33 0

0 0 0 Σ44



where, Σ =


Σ11

Σ22

. . .

Σ3M,3M
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If U = [u1, u2, . . . , u3M ], then Û = [u1, u2, u3, u4]. Similarly, if V = [v1, v2, . . . , v3M ], then V̂ =

[v1, v2, v3, v4] . Now, solving for x = UΣV T = PX,

we write, P̂ = Û Σ̂H and X̂ = H−1V̂ T for every invertible H

We now have x̂ = P̂ X̂, thus for every choice of (P,X) = (P̂ , X̂), we evaluate the frobenius norm to

determine how much error the rank-4 decomposition would entail,

‖x− P̂ X̂‖F = ‖UΣV T − Û Σ̂V̂ T ‖F
= ‖Û cΣ̂cV̂ cT ‖F

=

3M∑
k=5

Σkk

where, U = [Û |Û c] and V = [V̂ |V̂ c]. Thus,the task is now to choose P, X such that ‖x − P̂ X̂‖F is

minimized subject to the constraint that rank(P)≤ 4. At the end of the first step, we have P̂j and

X̂j , for every cluster j = 1, 2, . . . , q. Our goal is to populate the global image point matrix x3M×N

by using the directly observed image coordinates of the points that are visible and by estimating

the coordinates of those points which are otherwise invisible to a given camera. In the second step,

estimating invisible points is done by calculating point correspondences using fundamental matrices,

trifocal tensors or multifocal tensors as per the situation. Since the first step gives us P̂ from which

the corresponding camera matrix P can be obtained and the knowledge of the camera matrices is

used to generate the fundamental matrix or the trifocal or multifocal tensors required to generate

the point correspondences.

Visibility Matrix Θ: While the point correspondences are being computed, a mask Θ3M×N is

generated whose entries in the ith column is 1 if the tracked feature point is visible to the ith cam-

era, else it is set to 0. This mask Θ is important as it helps us calculate the error metrics that will

be used to verify whether or not the iterative procedure is indeed converging and also to help decide

when to stop the iteration.

In the third step, the global image point matrix x3M×N is created using both the directly observable

points and the global camera projection matrix is created by stacking individual camera matrices

in the order corresponding to that of the estimated invisible points. global image matrix. Once this

global image point matrx is obtained, in step 4, step 1 is again computed using the new global image

point matrix.

Error Criteria: The error criterion is computed by applying a mask to the regular error minimiza-

tion constraints that were used to determine P̂ and X̂. Thus, we evaluate the Frobenius norm to

determine how much error the invisible point estimation carries,

‖Θ � (x− P̂ X̂)‖F = ‖Θ � (UΣV T − Û Σ̂V̂ T )‖F
= ‖Θ � (Û cΣ̂cV̂ cT )‖F

Once the Frobenius norm is calculated, the error metric for successive iterations is compared and

if it converging, after suitable number of iterations, the process is halted. If the error metric is not
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within bounds, the next iteration goes back to step 2 and estimates the invisible points by using

the camera matrices obtained from the fresh P̂ and X̂ evaluated in step 4 of the previous iteration.

With these new estimates, the global image coordinate matrix and the global camera matrix are

evaluated and step-1 is evaluated to obtain the fresh set of P̂ and X̂ that will be used in the next

iteration. The error metric is calculated and is within bounds or converging, the process is halted,

else the iteration goes back to step-2 and runs all over again.

At the end of the last iteration when the error metric is finally found to be converging and well

within a certain threshold, the freshly updated P̂ and X̂ matrices represent the camera matrices

and the world coordinates of the N tracked feature points. Thus, employing this iterative procedure

will enable us to not only perform self-calibration and obtain the camera parameters of all the M

cameras in the network but also obtain the shape information of the 3D object as the N tracked

feature points will help determine the shape of the object.

3.7 Generating Manifold

From the AutoCalibration we obtain the projective motion P̂ and projective shape X̂ which is the

3D coordinates of the corresponding points.We plot those 3D coordinates to obtain the surface of

the 3D object as shown in the previous section.But we require more number of 3D points to depict

the surface of the 3D object. The 3D points obtained from the auto calibration are not sufficient to

generate the surface .To obtain more 3D points we need to generate more number of corresponding

points using SURF method as discussed in section 2.We illustrate this by considering two images as

shown in the 3.5 below.

Figure 3.5: Generating more feature points

As shown in the figure we generate more interest points by selecting a neighbourhood around the

corresponding points by reducing the filter threshold around the small neighborhood of the corre-

sponding point. We then obtain the corresponding points by using the new interest points by using

the SURF technique as discussed in section 2. Figure below shows the more corresponding points

generated by reducing the threshold.
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Figure 3.6: Increased Corresponding Points

We now perfom the auto calibration method using the new corresponding points and again

estimate both Projective motion P̂ and Projective shape X̂.We repeat this steps until we get sufficient

number of 3D points to get smooth surface of the 3D object.
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Chapter 4

Compressive Sensing Framework of

3D Reconstruction

4.1 3D Compression: A Compressive Sensing Framework

From the aformentioned chapter we obtain the manifold of the 3D object.

Compressed sensing(CS) suggests that a signal, sparse in some basis, can be recovered from a

small number of random projections.So, the problem in the compressive sensing framework we

assume that there exists an orthonormal basis in which the signal on the mainfold has a sparse

representation.The assumption is valid because most of the natural images have sparse representation

when represented in a particular basis.The basis under which the signal on the manifold has a sparse

representation has to be constructed.We can use the wavelets [14] that are widely used in the image

processing for compression and the Contourlets[15] which have added directionality compared to

the wavelets.Assuming that we have a basis under which the signal on the manifold has a sparse

representation the 3D reconstruction problem can be stated in the Compressive Sensing domain:

4.1.1 Problem Statement:

To compress the obtained signal say X on the manifold so that we can have minimal representation.

Solution: Construct a basis for the signal on the manifold so that it can have sparse represen-

tation in that particular domain.

Mathamatical Formalism: Let X be the signal on the manifold, then

let φ be the random measurement matrix such that

Xd = φX

=⇒ Xd = φψX̂

In particular, suppose that there exists an orthonormal basis ψ such that X = ψX̂, where X̂

is K-sparse, i.e., the vector X̂ has only K nonzero entries. Then a solution exists if the following
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conditions are met:

(1− ε)‖X̂‖2 ≤ ‖φψX̂‖2 ≤ (1 + ε)‖X̂‖2
K ≤ length(φψX̂) ≤ length(X̂),

where ε is a loss factor, usually chosen to be small.

At this point it is difficult to demonstrate the solution to the above problem as we don’t have a

manifold that accurately depicts the 3D object and also the basis under which the object has a sparse

representation has to be constructed.For the basis construction we can use the wavelet transform or

the contourlet transform. We show the wavelet decomposition and the contourlet decompostion of

the 2D images by which we can infer that the manifold can also have sparse representation in that

basis(which has to be constructed).

We consider the analogous problem of compressive image superresolution where we have low reso-

lution image which can be considered as a manifold for the 3D reconstruction problem and a the

basis as a wavelet basis(daubechies 8) under which the image has a compact representation and by

framing the problem in the compressive sensing domain we obtain a high resolution image (upsam-

pled by a factor of 4) by using greedy algorithms and show that the same can be applied for the 3D

Compression.

27



Chapter 5

Image Super Resolution

To solve the actual 3D problem we require the manifold of the 3D object and a basis on that manifold

which we are not able to demonstrate at present. So we consider the analogous problem of 2D image

Super Resolution where the main challenge is to recover the high frequency information that was

lost in the process of generation of low resolution images.The goal of Image Super Resolution is to

recover the missing information in a way that approximates the original high resolution image by

posing it in the compressive sensing domain and demonstrate how powerful the compressive sensing

can be.The basic idea is that after reconstruction the high resolution image will be sparse in a

transform domain and we can therefore use the compressed sensing theory to directly solve for the

sparse coefficients from the low-resolution image.

5.1 Super Resolution Problem in Compressive Sensing Do-

main

The theory of compressive sensing demonstrates how a subsampled signal can be faithfully recon-

structed through non-linear optimization techniques as disussed in section 2.4.

5.2 Problem Statement:

Let X represent the desired high resolution image as an n- dimensional vector ∈ Rn and X̃ ∈ Rm

represent the low-resolution input.We want to estimate the high-resolution signal from the low

resolution input X̃ ∈ Rm where m � n. We assume that X̃ has been acquired from the original

through a linear downsampling measurement process written as:

X̃ = SX (5.1)

where S is a sampling matrix that performs the linear measurements on X .

Intially this seems like an impossible feat since the m samples of X̃ yield a (n − m) dimensional

subspace of possible solutions for the original X that match our given observations. So we apply a
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key assumption of compressed sensing that the transformed version of the signal, X̂, is k sparse under

some basis ψ, meaning that it has atmost k non-zero coefficients in that basis i.e; ||X̂||0 ≤ k.This

is not an unreasonable assumption, since we know that high-resolution imafe will be a “real world

image”, and so it will be compressible in a transform domain(wavelet). Now we write 5.1 as:

X̃ = SψX̂ = ΘX̂ (5.2)

where Θ = Sψ is a general m×n measurement matrix.The conditions that have to be satisfied are

m ≥ 2k and Θ should satisfy the Restricted Isometry Property

1− ε < ||ΘX̂||2
||X̂||2

< 1 + ε (5.3)

then we can find the desired X̂ by solving the l1 optimization problem

min||X̂||1such thatX̃ = ΘX̂. (5.4)

This can be done with methods such as basis pursuit and greedy algorithms[12]. We cannot use 5.2

directly in compressed sensing beacuse they donot meet the 5.3.In order to fullfill the condition, we

modify the equation5.2 by filtering the high-resolution image before downsampling.In other words, we

can write our desired high resolution image as Xs which is filtered by matrix Φ to result in a blurred

,high resolution version Xb = ΦXs. This blurred version is then downsampled by equation5.1:

X̃ = SXb = SψX̂ (5.5)

We are using a Gausssian filter as our filter Φ.By expressing the high resolution image in wavelet

basis we can modify equation5.5 as:

X̃ = SXb = SψX̂s. (5.6)

With this formulation in hand, we can now solve for Xs by posing it as a compressed sensing problem

by assuming that its transform X̂s is sparse in the wavelet domain:

min||X̂s||1such thatX̃ = ΘX̂. (5.7)

5.3 Solution:

As stated earlier there are greedy methods by which we can approximate a solution to the opti-

mization problem. Given an initial low-resolution image X̃, we would like to solve for the wavelet

transform of the sharp, high-resolution image X̂s as in equation5.7. The idea is once we solve for

image X̂s, we can take its inverse wavelet transofrm ψX̂s to recover our high-resolution image Xs.To

do this, we use the Orthogonal Matching Pursuit greedy algorithm.

Algorithm for Orthogonal Matching Pursuit:
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Input parameters: We are given the meaurement matrix Θ, the vector X̃ and the error threshold

ε0

Initialization:Initialize k=0, and set

• The initial solution X̂0
s = 0

• The initial residual r0 = X̃−ΘX̂0
s = X̃

• The initial support I0=support{X̂s}=φ

Main Iteration: Increment k by 1 and perform the following steps:

• sweep: Compute the errors e(j)=min||θjzj − rk−1||22 for all j using the optimal choice z∗j =

θTj r
m−1/||θj ||22. where θj corresponds to column j of the meaurement matrix Θ

• Update Support: Find a minimizer j0 of e(j) : ∀j /∈ Ik−1, e(j0) ≤ e(j), and update Ik =

Ik−1 ∪ {j0}.

• Update Provisional Solution: Compute X̂k
s , the minimizer of

||ΘX̂s − X̃||22 subject to support{X̂s} = Ik

• Update Residual: Compute rk = X̃−ΘX̂k
s

• Stopping Rule: If ||rk|| < ε0, stop. Otherwise, apply another iteration.

Output: The approximate solution is X̂k
s ≈ X̂s obtained after k iterations.

Once we obtain X̂s we can take its inverse wavelet transform ψX̂s to obtain the high-resolution

image Xs.

30



Chapter 6

Results and Conclusion

6.1 Point Correspondence

1. Pair wise correspondence between the images captured by 2nd and 3rd cameras using SURF

feature extraction method

Figure 6.1: Pair wise correspondence between 2nd and 3rd cameras

Point correspondence between the images captured by 7th and 8th cameras using the SURF

method is shown in the fig:6.2 below
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Figure 6.2: Pair wise correspondence between 7th and 8th cameras

2. 4 camera cluster correspondence(points visible to all cameras in cluster using SURF feature

extraction method)

Considering the images captured by 4 cameras as a single cluster and finding the point corre-

spondence between them.The corresponding points that we obtain are points that are visible

all the 4 cameras in the cluster.

Figure 6.3: Cluster correspondence

6.2 Auto Calibration

6.2.1 Kanade’s Factorization

3D reconstruction of the observed feature points using Kanade’s Factorization algorithm
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Figure 6.4: Reference Object

Figure 6.5: Reconstruction 3D points of the object feature points

6.2.2 Proposed method(Notion of Visibility)

3D reconstruction of the observed feature points using proposed method(Visibility Matrix)

Figure 6.6: Reference Object
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Figure 6.7: Reconstruction 3D points of the observed feature points

6.3 SuperResolution

High-resolution image by using the compressive sensing framework:

1. Consider the low resolution image 6.8 as input and the high-resoltion image obtained by

upsampling the low-resolution image by a factor of 4 .

2. The High-resolution image obtained by considering a 256 × 256 low-resolution image as input

and upsampling it by a factor of 4.
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Figure 6.8: 128 × 128 low-resolution image

Figure 6.9: 512 × 512 high-resolution image

Figure 6.10: 256 × 256 low-resolution image
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Figure 6.11: 1024 × 1024 high-resolution image
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