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Abstract

State Estimation plays an predominant role in modern power systems. The error in the mea-
surements and the communication system will influence the estimated system states. The present
work provides procedure to suppress the influence of these errors, which includes Weighted Least
Square (WLS) state estimation, constrained state estimation. The algorithm for bad data detec-
tion is implemented and the results are discussed. Measured values and initially estimated values
are obtained from data acquisition system that is used for performing Newton Raphson load flow/
power flow analysis. The error between the states is minimized by minimizing the objective function.
Weighted Least Square method for state estimation is implemented on IEEE-14 and IEEE-30 bus
system and constrained state estimation is performed on a 3-bus test system. The error function is
minimized using optimization techniques in GAMS software. State estimation algorithm and power

flow analysis are implemented using MATLAB.
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Chapter 1

Introduction

1.1 Introduction

Power system state estimation is the process carried out in the energy control centers in order to
provide a best estimate of the system state based on the real-time system measurements and a
pre-determined system model. A redundant set of real-time measurements, including bus voltage
magnitudes, real and reactive power injections at the buses, real and reactive line power flows, and
sometimes line current magnitudes, are collected from the entire network through the Supervisory
Control And Data Acquisition (SCADA) system.These telemetered raw measurements are usually
corrupted by different kinds of errors. State estimator is a digestive system that removes these impu-
rities statistically to determine the state of the system. In formulating power system state estimation
problem, the complex bus voltages (bus voltages magnitudes and phase angles) are commonly used
as the state variables. Once system state is determined, the entire system quantities such as line
power flows, line current magnitudes and bus power injections can be calculated.

Power-system State Estimation (PSE) was introduced by Fred Schweppes at MIT in 1969 [1], it
has remained an extremely active and challenging area. At present, state estimation not only plays
an essential role in modern Energy Management Systems (EMS) providing a complete, consistent,
accurate and reliable database but also helps in execution of other key functions of the EMS system,
such as security monitoring, optimal power flow, security analysis, on- line power flow studies,
supervisory control, automatic voltage control and economic dispatch control [2,3].

The deregulation of the electric power industry has transformed state estimation from an im-
portant application into a critical one. Many critical commercial issues in the power market, such
as congestion management, need to be founded and justified on a precise model of power system,
which is derived from the state estimation process. Hence, the improvement of the state estimation
to achieve a more accurate and more reliable system state is a timely task.

Although the role of a state estimator is clear, there is much freedom of choice in its practical
implementation. One of the important options is that of the statistical methodology used to purify
the measured data. Various methods for state estimation have been introduced [4,5] in the past
decades. Among those methods, Weighted Least Squares (WLS) algorithm is the most popular one.
The objective function to be minimized of this method is chosen as the weighted sum of squares of the

measurement residuals. Since this kind of problem can be solved by efficient numerical techniques,



state estimators based on WLS approach have been installed in almost all the EMS systems all
over the world. However, WLS method is highly sensitive to bad data in the measurement set .
In order to solve this problem, an alternative formulation of the state estimation problem, Weight
Least Absolute Values (WLAV) [6,7], has been used. It defines the sum of the weighted absolute
values of the measurement residuals as the objective function. Although this method is not widely
used in the industry due to slower speed compared to WLS method, its capability of automatic bad
data rejection makes it useful in some special issues such as topology error identification.

When a state estimation model fails to yield estimates with in a degree of accuracy compatible
with the standard deviations of the quantities estimated, one must conclude either that the measured
quantities contain spurious data or that the model is unfit to explain the measured quantities. The
procedure to identify and solve the former problem is called bad data analysis [8] while for the later
one is topology error detection/identification. There exist many bad data analysis techniques and
they are successfully utilized. However, the conventional state estimators are still vulnerable to
errors in the topology of the system, which show up when the assumed status of the circuit breakers
and switches do not coincide with their true statuses.

Observability analysis is another important procedure closely related to state estimation. Some-
times state estimation is not possible if it is not given enough measurements. If all the state variables
(bus voltage magnitudes and relative phase angles) can be estimated using the available measure-
ments, a system is said to be observable. Various methods proposed for network Observability

analysis have been well document in the literature [9].

1.1.1 State Estimation

State estimation is a mathematical algorithm that estimates the states (bus voltages and angles)
from the network data and sensor information . It can also be used to calculate system quantities
where sensors are not available. A state estimator generally acquires the measurements in real time
and processes them to obtain a snapshot of the power system. The data to the state estimator may
get updated every few seconds to minutes or whenever there is a change in status of the network.
A static state estimator is a steady state estimator that calculates the unknown values based on
the most recent measurements. A dynamic state estimator predicts the future states based on the

present variations and forecasted loads.

1.1.2 Thesis Outline

Chapter 2 gives background information about the sensors present in a power system, the energy
control centre role of state estimation in control centres and the Newton Raphson (NR) technique
for linearization. Chapter 3 presents the work that has been done in the field of state estimation

Chapter 4 explains the problem solution.The problem statement and description. 5 provides
approach results and discussion for state estimation algorithms. Chapter 6 provides conclusions and

future work.



Chapter 2

Background

2.1 Introduction

A typical electric power system consists of generation, transmission and distribution systems. In
Alternating Current (AC) power systems the power from generating units is transmitted to substa-
tions at higher voltages through transmission lines. The voltages are stepped down at the substation
with the help of transformers and the power is then either sub-transmitted to other substations or
distributed to the loads. The generating units at the generation facility, transmission lines, and
transformers at the substation and loads at the power consumers are monitored by various sensors
or measurement devices. They provide the operating conditions of the power system components.
The energy control center which coordinates the energy management function of the power system
requires the measurements from the sensors to assess the operating condition of the system. It is
necessary to have information regarding every state of the power system to determine the operating
condition of the system. Any kind of corrective or preventive actions can be taken based on the
operating condition of the power system [2]. It is not possible to have all the states of the power
system as measurements from the sensors as it is uneconomical to place sensors at all parts of the
power system on every line, transformer and load. State estimation is used at the control centers
to filter the measurements and calculate every state of the power system given the available set of

measurements.

2.2 Sensors Monitoring Used In Electric Power System

2.2.1 Sensors in power system

At present, power systems are monitored with numerous measuring and control devices. Potential
Transformers (PT), Current Transformers (CT), relays, and Phasor Measurement Units (PMU) are
the important sensors used in power system networks. PTs and CTs measure the high level voltages
and currents and convert them to operating level signals. Relays and PMUs are fed by CTs and
PTs. Fig 2.1 shows some of the sensors that are used in power system.

Using relays, voltages and currents are sampled and converted into a digital format for fur-

ther processing. Relays analyze these signals to provide the necessary protection. A conventional



Figure 2.1: Sensors in power system

measuring device measures the quantities across the power system at different instances of time.
The measurements have to be synchronized to get an accurate picture of the power system. Apart
from the above discussed sensors, there are also other sensors which monitor the temperature and
pressure of the transformer oil. The measurements from the devices may not be accurate due to
improper calibration, a loose connection and/or aging of the measurement devices. The error might
be introduced due to noise in communication networks when the data is transmitted from the field

to control center.

2.2.2 Supervisory Control and Data Acquisition System

SCADA is a type of industrial control system that acquires data from different remote locations and
monitors the systems at remote places using the acquired data [8]. In the electric power industry,
the data in the form of analog and digital quantities, is obtained from different sensors (discussed in
the previous section) located at the electric utility substations. The sensors transmit the data to a
Remote Terminal Unit (RTU) at the substation. An RTU relays the data (such as voltage, current,
circuit breaker status, etc.) from the substation to computers at the control room of the utility
center through a communication network. The information received from the RTU is processed by
a state estimator to get a better picture of the system. The operators monitor the system (such as
opening or closing remote circuit breakers) with the help of the available information [10]. Fig. 2.2

shows state estimation in a SCADA system.

Zubstation & Sensors

Figure 2.2: State Estimator in SCADA system



2.3 Energy Control Centers

An energy control centre is a place where operators of the electric utility grid use computer-aided
tools to monitor, control and optimize the generation, transmission and distribution processes of a

power system.

2.4 Newton Raphson Method

The non-linear equations are generally represented by Taylor series expansion. The Newton Raphson
(NR) algorithm is derived from Taylor series expansion by neglecting the higher order terms in
Taylor series. The higher order terms (higher order derivatives/partial derivatives of the equation
with respect to variables) are neglected assuming that the initial guess for the iterative process is
closer to the solution. Hence the equation for Newton Raphson (NR) method is one of the reduced
forms of Taylor series expansion.

The NR method is an iterative process for solving non-linear equations. In the iterative process,
the Jacobean (first order derivative of non-linear equation with respect to variables) and the input
vector (input vector is obtained by substituting the values for variables in non- linear equation) are
calculated at an initial guess of the variables for the first iteration. The change in variables is then
calculated by solving linear equations that contains the Jacobean and input vector. The change
in variable is used for updating the variables in each iteration. The updated variables are used in
successive iteration. The iterative process is stopped when the error (difference of the function values
of non-linear equations calculated at the updated variable) reaches a pre-specified tolerance. NR
method is useful to linearize the power flow equations which are non-linear. The LU factorization
is used to solve the linear system of equations obtained from NR method. State Estimation uses
the same equations as power flow for representing the measurements such as line flows and power

injections. Hence NR method is very important for this research work.

2.5 State Estimation in Energy Control Centers

2.5.1 State Estimation and its Functions

State estimation is a algorithm that calculates the values of all the states and other relevant system
data from the available set of measurements with error. Voltage magnitudes and bus angles are
the states in the state estimation program. A state estimator acts as a filter between the measure-
ments and various energy management functions like contingency analysis, economic dispatch and
automatic generation control. The network data and raw measurements are the inputs to the state
estimator. Generally, estimated measurements along with voltage magnitudes and angles at every

bus of the power system are the outputs of the state estimator in an energy control center.

2.5.2 Major Functions of State Estimation

Bad data processing Needed to detect, identify, and eliminate or process the bad data in the

measurement set



Topology processing Based on the telemetered values of the circuit breaker and switch statuses,

most likely states of them are determined, and a single line diagram of the system is prepared

Observability analysis state estimation is that the system states should be uniquely determined
based on the available measurements. Numerical or topological observability analysis algorithm

can be used
Parameter estimation Estimation of the parameters (such as the line impedances) is also a part
of the state estimation process
2.5.3 Measurements Available for State Estimation
- Voltages at buses.
- Real power line flows.
- Reactive power line flows.
- Real power injections.
- Reactive power injections.
- Current measurements.

- Voltage and current angles from PMUs

2.6 Summary

This chapter briefly explains background information related to present sensors used in the power
system, state estimation and its functions in an energy control centre. The concepts of energy control
centre and a state estimation tool with its inputs and outputs are also presented. The application
of different numerical methods that are used for solving complex problems in power system analysis

is also provided here.
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Chapter 3

Literature Review

3.1 Introduction

This chapter reviews the research work related to state estimation algorithms, constrained state
estimation, bad data processing techniques developed to identify and eliminate bad data from early

research to most recent.

3.2 Evolution of State Estimation Technique

Power system state estimation refers to the collection of a redundant set of measurements from
around the system and computing a state vector of the voltage magnitude and load angle at each
observed bus. While technology has improved state estimators and other control center applications
over many decades, the fundamental concepts and algorithms behind these proven techniques remain
much the same. Measurements which are non-linear functions of the system state are collected and
load-flow-like calculations are performed to iteratively determine the most probable system state
from the known information. This chapter presents the mathematical basis for traditional state
estimation techniques and investigates several reformulations of these algorithms in the estimator
to improve the quality of the estimate.

The state of the power system is a function of several parameters. These include system level
variables such as real and reactive power flows, power injections and voltages which are unknown
but measured, network topology, and parameters such as resistance, reactance, and susceptance of

transmission lines which is assumed to be known|[3].

3.3 State Estimation Methods

For this research work it is important to review the literature related to different types of state
estimation methods that are developed. The parts of the state estimation such as bad data processing

and observability analysis are also explained in this section.
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3.3.1 Weighted Least Squares Method

Fred C. Schweppe and J. Wildes [1] first developed the mathematical model for the state estimation
problem. They used the weighted least squares method to solve the state estimation problem.The
weighted least squares method developed by them minimized the weighted sum of squares of the
difference between the measured and estimated values.The weight for each measurement is obtained
from the accuracy of the device which is termed as the standard deviation of the measurement.
Greater accurate measurements will be given more weight so that the estimation procedure can
influence the solution based on the strong confidence in measurements of greater accuracy. Full
Newton Raphson(NR) method was used for linearization and solving the states iteratively. Fast
decoupled formulation of weighted least squares method was later developed which utilized less
memory and was computationally faster than full NR weighted least square method. H.M. Merrill
et.al [11] proposed a bad data suppression method based on quadratic constant and weighted least
square method. The bad data is suppressed in a post processing step after initial weighted least
square iterations.A.Monticelli et.al[12]investigated an improved bad data processing method for the
weighted least square state estimation considering the coherence between measurement with largest
normalized residuals and the remaining measurements. S.Y.Lin [13]proposed a method to perform
distributed state estimation using weighted least square method.The state estimation is performed
by distributing the network on different computers.A.Monticelli[12]developed an innovative method
to include status of breakers into weighted least square method along with measurements. The
gross errors introduced due to status of the breakers and measurements are handled by the devel-
oped method by imposing constraints on status and analog errors.Shan Zhong[4]et.al developed a
method to update the weights in weighted least square method based on variances obtained from
recorded measurement residuals.It was extended to tune the weights automatically for online pro-
cess.J.H.Teng[15] proposed a method to include current measurements in the weighted least square
method for both distribution and transmission systems. The comparison was made on different test

cases for the weighted least square approach with and without a fast decoupled formulation.

3.3.2 Least Absolute Value Method

R.Irving,R.C.Owen and M.J.H.Sterling[16]investigated the Least Absolute Value(LAV)method for
solving the state estimation problem.The objective function for minimization in this method is the
sum of the absolute values of the difference between measured and estimated quantities with con-
straints on equations for measurements. They used linear programming techniques to formulate and
solve the problem as a linear programming problem.W.W.Kotiuga and M.Vidya Sagar [17] devel-
oped the Weighted Least Absolute Value (WLAV) state estimator which is more robust than the
WLS method. It has the inherent bad data identification and rejection properties. A.Abur and
M.K.Celik[18],developed a faster and efficient version of WLAV method. Their method consumed
less time of simulation and was able to solve the problem of leverage points present in the method
described in [19].A.Abur and also introduced equality and inequality constraints on the measure-
ment residual(difference between the measured and estimated value) to solve the LAV problem
using Simplex method of linear programming. Their efforts increased the reliability of LAV state
estimation by increasing the performance and computational efficiency of the algorithm.H.Singh and

F.L.Alvarado [19] extended the interior point method of solving the linear programming problem to

12



the least absolute value state estimation problem. They proved to hat the method is more efficient
than the Simplex method in terms of convergence and computational time. R.A.Jabr and B.C.Pal
used the Newton Raphson(NR)method to solve the least absolute value problem.They applied the
least squares implementation method to weighted least absolute value problem without using the

linear programming techniques.

3.3.3 M-Estimators

M-Estimators are maximum likelihood estimators which minimize an objective function expressed
as the function of difference between measured and estimated values with constraints imposed on
the equation for measurements [20].E.Handschin,F.Schweppe,J.Kohlas and A.Fitcher[21]introduced
Quadratic Constant (QC), Quadratic Linear (QL),and Square Root(SR) based objective functions
for the M type state estimators.These methods are designed to suppress the bad data within the
iterative process of solving the state estimation problem.

All the state estimation methods work to minimize the difference between measured and es-
timated quantities. They produce an output which has the voltage magnitudes,bus angles and
estimated values of the measurements.Additional information about the system can be calculated

from these values.

3.3.4 Bad Data Processing Method

Bad data in state estimation problem can cause wrong results so we need to identify presence of bad
data.Large measurement errors, measuring the values by reversing the terminals of the devices,large
interference due to communication systems and faulty measurement devices are some of the sources
of bad data [20,6].State estimation algorithms employ different bad data processing techniques.
Weighted least squares method has the bad data processing as a post processing step. The chi-square
test [20,6] is employed after the estimation of states by the WLS method to detect the presence
of bad data. The test uses the weighted sum of the squared residuals and an error probability
against a threshold to detect the presence of bad data. The largest normalized residual testing and
hypothesis testing identification methods [22] were developed to identify the bad data. In normalized
residual testing the normalized residuals are calculated by dividing the absolute value of each residual
(difference between measured and estimated value) with the corresponding diagonal element of the
covariance matrix. The largest among the normalized residuals is chosen and compared against
an identification threshold. The measurement is removed if its corresponding normalized residual
exceeds the identification threshold and the weighted least squares state estimation is re-run to
find better estimates. Hypothesis testing identification [23] is an improved method of bad data
identification which can handle multiple bad data based on estimating the measurement errors.
It uses two types ol hypotheses to make decisions whether to accept or reject a rule. The two
hypotheses are complements to each other. For example, if two out of six measurements have
normalized residuals greater than a threshold, then the rules can be as:(i)Measurement 1 is bad
and measurement 2 is good. (ii) Measurement 2 is bad and measurement 1 is good.(iii) Both the
measurements are bad.Each rule is implemented by removing the bad measurement and re-running
the state estimator. After implementing every rule, the chi-square test can be employed to detect

the presence of bad data. If the chi-square test fails, then the hypothesis is true; otherwise it is

13



false [20]. The M-estimators and least absolute value methods have inherent bad data processing

capabilities which make them more robust than traditional weighted least squares method.

3.3.5 Observability analysis

A power system is said to be observable if the states of the system can be solved from an available set
of measurements. The state estimator breaks down if the numbers of measurements are less than the
number of states. The observability analysis helps the state estimator to avoid such problems.The
general condition to meet the observability criteria is the rank of the measurement Jacobian must
be equal to the number of states.Pseudo-measurements can be added to the system to make the

system observable [20,24].
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Chapter 4

Problem Formulation

4.1 Introduction

This chapter narrates the formulation of a method [25,26] to compare the performance of algorithms
in terms of norms and error indices. The performance indices obtained from the norms can also
be used to identify a better state estimation algorithm at different data redundancy levels. This
chapter also describes the method of introducing error in measurements, norms, error indices and

the flow chart of different state estimation algorithms.

4.2 Addition of error to measurements

The measurements obtained from the sensors are not exact values. They are erroneous due to ac-
curacy limits,bad calibration,of the sensors and also communication noise. The exact values of
measurements are obtained from a power flow program [18].A random error is introduced into the
measurements in this work to represent an erroneous measurement.The random error is introduced
into the actual values. This is generally used in iterative techniques to solve non-linear equations.
The errors obtained as a result of one iteration when added to the measured value has a chance to
make the measured value accurate. The accuracy of the measured values lack the error portion and
from the iteration we can determine the rough error to be added. This is mainly done to reach the
final accurate state estimation is done faster. Z; = A; * (1 + RAN x 0;)

Z;=Measured valve i=1,2,3...m

4.2.1 Norms and error indices

A norm is a quantity that describes length, size or extent of an object [27].Different types of norms
are used in this thesis to compare the performance of the state estimation algorithms.The norms are
used to represent the difference between the measured and estimated values. Smaller the value of a
norm, the better is the performance of the algorithm with loss of data.The norms are described in

the following sections.



4.2.2 Infinity norm

Infinity norm is the maximum of the absolute value of the difference between measured and estimated
values. The expression for the infinity norm is given by the infinity norm is applied on the array of
measurement residuals[28]. Infinity norm= Maximum (|Z,, — Z|)

Where, Z,,,= measured value Z = estimated value of the measurement from state estimator

4.3 Maximum Likelihood Estimation

The mathematical stochastic theory is applied in state estimation to estimate system states is method
called maximum likelihood estimation. It begins by creating the likelihood function of the measure-
ment vector.The likelihood function is simply the product of each of the probability density functions
of each measurement. Maximum likelihood estimation aims to estimate the unknown parameters of
each of the measurements probability density functions through an optimization[20].

It is assumed that the probability density function for power system measurement errors is the

normal (or Gaussian) probability density function.

L5y

12) = o=

Where, Z is the random variable of the probability density function,u is the expected value, and

(4.1)

o is the standard deviation. This function would yield the probability of a measurement being a
particular value. Therefore, the probability of measuring a particular set of m measurements each
with the same probability density function is the product of each of the measurements probability

density functions, or the likelihood function for that particular measurement vector.

In(2) =11 1) (4.2)
i=1
Where Z; is the i*" measurement and
_ ., -
22
[z]-]"7 (1.3)
L Z"n -

Maximum likelihood estimation aims to maximize this function to determine the unknown parame-

ters of the probability density function of each of the measurements

This can be done by maximizing the logarithm of the likelihood function, f,,(Z) or minimizing

the weighted sum of squares of the residuals[3]. This can be written as

Minimize

m
Z wiief (44)
=1
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Subject to

The solution to this problem is referred to as the Weighted Least Squares estimator for x.

4.4 Formation of Measurement function

Most commonly used measurement types are bus power injections, line power flows and bus voltage
magnitudes in power system state estimation.These measurements can be expressed in form of
equations using the state variables.

Consider a system having N buses; the state vector will have (2N — 1) components which are
composed of N bus voltage magnitudes and (N — 1) phase angles. The state vector is equal to
(Jv1], |v2, [vn|©1, ©2,0,) such as 0 is set to be the phase angle of one reference bus. If we define as
the admittance of the series branch line connecting buses i and j ,and as the admittance of the shunt
branch connected at bus i ,the equivalent II model[20,28]. The nominal I circuit of a transmission

line

Figure 2.1 Nominalm-network of a transmission line.

Real and reactive power injection at bus i can be expressed by,
Pi = |V—J|Ej\£N1|V}|(G”COSQU + BZJSZTLQZJ) (46)
Qi = |VilZ i n, [Vi|(Gijsindij + Bijcostiz) (4.7)
Real and reactive power flow from bus i to bus j are
Pij = Vil (gsi + 9i5) — [VillVj|(gijcos0ij + bijsini;) (4.8)
Qij = —|Vil*(bsi + bij) — |Vil|V;|(gijsinbs; + bijcosty;) (4.9)
Jacobian matrix H components for real power injection measurement are

0P,

m = Zj=1|‘/j|(Gij6080ij + BHSZTLQH) - “/1|2G“ (410)
oP; .
TVN - |V;'|(Gij(3089ij + Bijsmﬁij) (411)

17



OP;

90, = 2j=1|V;||V}|(—Gijcosﬁij + BZJSZTL@”) — |V;|QB“ (412)

oF; .
20, = |M||V3|(G”sm6’” + Bz‘jCOé‘eij) (413)

Jacobian matrix H components for reactive power injection measurement are
6@1 _ vN . 2
m = Ej:1|Vj|(—GijSZTl9ij + BijCOSQij) — |V1| Bii (4,14)
1
0Q; ) .
W% = |W|(G1382n9” — Bijcosﬁij) (410)
1

0Qi _ N [VIVi|(Giyeostiy + Byysing Vi[2G 4.16
a0, — Zi=ilVillVil(Gijeostis + Bijsindiy) = V|G (4.16)
%ng = |V;'||‘/j|(—GijCOS€ij — Bijsineij) (417)

Jacobian matrix H components for real power flow measurement are,

OP;; .

_8‘/1] = _|‘/i|(gij0050ij + bijSZTlﬂij) (418)
P;; .

O — \ViIV; (gigsindi; + bigeostiy) (4.19)

a0,

P, .

O — VAV (gigsindis + bigeosty) (4.20)

J

The H matrix has rows at each measurement and columns at each variable. If the System is
large, the H matrix has more zero components. Therefore, usually the sparse matrix technique is
used to build this matrix.

4.4.1 The Measurement Jacobian

the measurement Jacobean is simply the derivative of the measurement function with respect to
the state vector, for application purposes it is simpler to construct this matrix from a symbolic
representation and derivative of the measurement function. The measurement Jacobian has the

following general structure[20].

00 ov
9Pfiow 9Priow
00 ov
9Qinj 9Qinj
00 ov
H = | 90100  0Q10n (4.21)

a0 ov
9limag 9limag

00 ov
OVinag

0 ov
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The order of the measurement vector will correspond to the order of the rows in the measurement
function, and therefore, the measurement Jacobian. While the above partitioning is not required,
consistency between the measurement vector and these two matrices is important. Similarly, the
columns will correspond to the order of the state vector. Once constructed, the Jacobian matrix
elements are each non-linear functions of the state variable and are re-evaluated for each iteration

of the estimation solution.

4.5 Description of steps involved in state estimation methods

The steps described in this section are the same for state estimation methods.

4.5.1 Solving for the states of the system

The states are solved with the help of equation obtained after minimization of the objective function
from the specific state estimation method. The following subsections explain solving for the states

with different state estimation methods.

4.5.2 Weighted Least Squares Method

In weighted least square method, the objective function, f,to be minimized is given by equation The
state estimator takes the measurements received from the power system and uses them to estimate
the system states. As it is an estimate,there will be some nominal errors associated with each
measurement. This mathematical relationship is expressed below[6,31].

Consider the nonlinear measurement model

I Z1 1 [ hl (l’l Tro T3 . . l‘n) 1 I €1 1
ZQ h2 (!L‘l To I3 . . l'n) €9
Z h ..xy
3 _ 3 (1 z2 a3 Tn) n €3 (4.23)
Zm h (x1 22 23 . . ) en

Consider a measurement vector denoted by containing 'm’ number of measurements and a state
vector denoted by containing n number of state variables.The Measurement sets which are non-
linear functions of the system state vector.These functions are denoted by and can be assembled in
vector form as well. These functions, evaluated at the true system state would yield a measurement
set, containing the true measurement values. However, all of these measurements each have their
own unknown error associated with them denoted by in vector form.

The errors are assumed to be independent and uncorrelated with a zero mean. Furthermore,
they are assumed to have a Gaussian (Normal) distribution. The covariance matrix associated with

the errors will be a diagonal matrix R with the variance of the measurements as its entries.
E(e;) =0 (i=1,2,3,...m) (4.24)
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E(e;ej) =0 (i1=1,2,3,...m)
(j=1,2,3,...m)

cov(e) = E(eel) = R = diag(o?,03....0%)) (4.25)

m

WLS method estimation will be applied to the above equations in order to extract the state quanti-
ties, bus voltages and angles, from the measured values, power flows, injections and PMU measure-

ments. WLS estimation to minimize the weighted sum of the squares of the measurement errors.

This minimization will occur when the following objective function is minimized

J(x) = B2 (2 — hi(2)?)/ Ris (4.26)
= [z = hi(2)]" R [z — hy()] (4.27)

To minimize the above function,we simply set its first derivative with respect to x equal to zero, as

shown below.

6) = 22— m@)T R - b)) = 0 (4.28)
H(@) =29 (4.29)

We can apply the Gauss-Newton method to solve the above equation as shown below.
Tpi1 = xk — [G(z)] Lg(zy) (4.30)

Above, is the iteration index and k

G(zy) = % = —[H(z)]". R 'H(x;) =0 (4.31)

g(zx) = [H(zp)]".R™ [z — h(z)] (4.32)

The gain matrix is typically rather sparse and decomposed into its triangular factors. For every

iteration,forward and backward substitutions are used to solve the following linear equations.

[G(zr)]Azprr = [Mz)]T.R™ [z — h(xy)] (4.33)
= [H(z1)]" R Az (4.34)
ATpy1 = Thg1 — Tk (4.35)

These iterations will continue until one of the two following conditions is satisfied. The first condition
would be the maximum number of allowable iterations is exceeded while the second condition would
be that the change in state variables within an acceptable range.

It is clear that the only information required to iteratively solve this optimization is the covariance
matrix of measurement errors, R, and the measurement function h(x). The measurement Jacobian,
H(x) is simply the derivative of the measurement function with respect to the state vector. The

measurement function and measurement Jacobian can be constructed using the known system model
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including branch parameters, network topology, and measurement locations and type. The error
covariance matrix should also be constructed prior to the iterations with the accuracy information
of the meters installed in the system.

For the first iteration of the optimization the measurement function and measurement Jacobian
should be evaluated at flat voltage profile, or flat start. A flat start refers to a state vector where all
of the voltage magnitudes are 1.0 per unit and all of the voltage angles are 0 degrees. In conjunction
with the measurements, the next iteration of the state vector can be calculated again and again

until a desired tolerance is reached.

4.5.3 WLS Algorithm

| Start
Set iteration index k=0
Set € and k value

limiz

Initialize x* typically as a flat start

No
Convergence

Calculate the measurement function h(x*)

.

the measurement Jacobian H (x*)
Build G(x*)=H" (x")R"'H (x")
7 Update x**' = x* + Ax*

Update k =k +1

Calculate the vector Az* = z—h(x*) 1

Calculate Ax* by | G(x5) ‘A\" =HT(*) R A

End

Figure 4.1: Flow chart WLS

WLS state estimation algorithm is started with an initial guess,which is typically chosen as the
flat start, i.e. all bus voltages are assumed to be 1.0 per unit and in phase with each other.The

flow-chart of the iterative algorithm for WLS state estimation problem can be outlined.

1. Initially set the iteration counter £ = 0 , define the convergence tolerance € and the iteration

limit kjjmse values
2. If K > kjjmit. then terminate the iterations
3. Calculate the measurement function,h(z*) the measurement Jacobian H(z*), and The gain

matrix G(z*) = H[(*)]T.R™1.H(2*)
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4. Solve Az* using gain matrix

5. if |[Az¥| < € then go to step2

Else, Stop Algorithm Converged

4.5.4 Constrained State Estimation

State estimation can be implemented by considering system constraints to minimize error function
minimization problem. Some buses in the network may have neither load nor generation. They are
cases with zero power injection at buses, called virtual measurements. The idea is to use this very
accurate information in order to enhance the accuracy of these estimates. These measurements are
treated separately from the telemetered measurements and imposed them as additional constraints
to the WLS problem|[20,31].

The objective function:

J(z) = 1/2[z — h(x)|R [z — h(z)] (4.36)
sub ¢(z)=0
The constrained
L(r,x,\) = 1/2[z — h(z)]R7 [z — h(z)] + AT ¢c() (4.37)
OLgy B

The optimal solution may be obtained by an iterative solution method for the non-linear equations

at each iteration the following linearized equation is solved.

(4.39)

HT(MRTH(z®) T(zF) s HT(@F)R™Y r(2h)
c(x*) 0 AL —c(zk) 0

the coefficient of matrix in equation (4.39)is no longer positive definite.care must be exercised in the

triangular factorization of the matrix ¢(x) is the constraint equation Jacobian matrix

WhereH (z) = ?andc(m) = % (4.40)
x x

The coefficient matrix above is indefinite, therefore row ordering must be employed in order to
preserve numerical stability. Constrained weighted least-squares problem can be solved by using
GAMS program and MATLAB to do that we have to use the formulation as mention below using
GAMS we can minimize this function. we can give all input parameters values through MATLAB
and variable declarations in GAMS and calling through MATLAB interfacing.

All measured values are taken from data acquisition system.

f = Z(Zmeasered,i - Zestimated,i)2 (441)
=1

Zestimated,i = fi(vestimatedy 6estimated)

Zmeasered,i =7Z

Z =[P, Qi, Py, Qij, i, 05] (4.42)
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x = [v,0]

Zestimated,i(Z) = constraints

2= [P, Qi, Pyj, Qij, i, 0] (4.43)

& = [8,4] (1.44)

- m S > m12 il 5 mi2 _

e=Y WiVi= V") + Y WyP[Py(X) =PI + > WyllQu(X)—Qy™  (445)
=1 i=1,j=1 i=1,j=1

Equality constraints: Power balance at each nodes

N
ka —pk = Z VEU; |Gl €08 O + B sin O] (4.46)
i=1
N
QkG — Q,? = Z v0;[Gri sin g + By cos O] (4.47)
i=1

Estimated Parameters
Assuming transmission line parameters as PI-Model network

Active and Reactive power flow

Pi = |‘/}|E;\£N1|V3|(G”(,Ob0” + BijSiTLeij) (448)
Qi = |V—1|2§\£N2|V—J|(G”SZTL€Z] + BijCOSQij) (449)

Active and Reactive power injections
Pyj = |Vil*(gsi + 955) — |VillVi|(gijcos0i; + bijsindij) (4.50)

Qij = —|Vil*(bsi + bij) — |Vil[V;|(gijsinbij + bijcosty;) (4.51)

4.6 Bad data Detection and Identification

4.6.1 Introduction

Bad data due to various reasons such as random errors and telecommunication medium errors
always exists in the measurements set. This data can affect the estimation result heavily so bad
data detection and identification is an essential function of the state estimator.When using WLS
estimation method, this function algorithm can be done by processing the measurement residuals.
The performance of this function program also depends on the redundancy of the measurement set
and the number of bad data. Besides, bad data also appear in several different ways depending upon
the type, location and number of them.

They can be classified as: (1) single bad data which means only one of the measurements in the
entire system has a large error; (2) multiple bad data which means more than one measurement
have errors.[20,32]

The chi-square test is employed after the estimation of states by the WLS method to detect
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the presence of bad data. The test uses the weighted sum of the squared residuals and an error
probability against a threshold to detect the presence of bad data. The largest normalized residual
testing and hypothesis testing identification methods were developed to identify the bad data. In
normalized residual testing the normalized residuals are calculated by dividing the absolute value of
each residual(difference between measured and estimated value) with the corresponding diagonal el-
ement of the covariance matrix. The largest among the normalized residuals is chosen and compared
against an identification threshold. The measurement is removed if its corresponding normalized
residual exceeds the identification threshold and the weighted least squares state estimation(WLS)
is rerun to find better estimates. From random theory, we know that if a set of N independent
random variables (X1, X2 . . Xn, X;) where each has the standard normal distributionX; ~ N (0, 1)
then the random variables[20]. The first step in any bad-data filtering algorithm is to detect the
presence of bad data. This is commonly accomplished using the Chi squares test. The minimization

function which minimizes the sum of the squared residuals, J(x), over the system state, z. J(z).

4.6.2 Chi-square Test

Chi-square-x?(N)-distribution with N degrees of freedom, assuming X}, follows a standard normal
distribution N(0,1). In the case of the objective function J(z) N equals (Nm — Ns), which is
the number of degrees of freedom (DOF) in the system. This is because, with Nm > Ns in the
power system, at most (N,, — N;) of the measurement errors will be linearly independent. A plot
of the x2(N) probability density function (p.d.f.), represents the probability of finding J(z) in the
corresponding region. The mean value of x?(N) is vVDOF = (N,, — N;) with standard deviation
of In the Chi-squares testing method, if the value of J(z) is above a set threshold, we say there is
a presence of bad data in the SE. The thresholdz; designated as the dashed line in is often chosen
to constitute a 5% probability of error, or false alarms. For reference in choosing a threshold, tables
exist in statistical literature giving Chi-square distribution function values for different degrees of
freedom|[20,32].

N
Y => X’ (4.52)
=1

X% distribution with N degrees of freedom for power system sate estimation the objective function

can be written as,
m

JX) =3 F =D (=) =D () (4.53)
i=1

i=1 i=1 v

S

Where €¥(0,1) Then J(x) has a Chi-squares distribution with mn degrees of freedom. mn is the
number of redundant measurements in the power system m-n being the number of measurements

and states respectively

4.6.3 Test for Bad Data

The mathematical model of WLS sate estimation. as shown So the WLS state estimation function
can be used the test for bad data. The steps are as follows: Solve the WLS estimation problem and

compute the objective function:
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X is the estimated state vector with dimension n Look up the value from the Chi-squares distribution
table corresponding to a detection confidence with probability p(e.g.0.95)and m n degrees of freedom.
Say this value is.

Test if J(X) > X%m—n,p) If so, then bad data is detected, otherwise there is no bad data in the
measurement set.Once the bad data is detected in the measurement set, it should be identified and
eliminated from the measurement set. Largest Normalized Residue (LNR) method which uses the
properties of the residue is widely used present single bad data identification program. (At the same

time, LNR can also be used as bad data detection).

Linearized measurement equation:
AZ =HAX +e (4.55)
Then the WLS estimated result is given by:
AX =(H"R™1H)'H"R™1AZ = GT1HTR™1AZ (4.56)
And the estimated value of measurement:
AZ = HAX = kAZ (4.57)
k= HG 1H" R 1calledhatmatriz (4.58)
Then the measurement residue can be written as:
KH=HG 1H"R"1H=H (4.59)
Then the measurement residue can be written as:
r=AZ—-AZ (4.60)
r=(1-kAZ
r=(1—-k)(HAX +e¢)
r=(1-ke
r = Se (4.61)

Where S is called as the residual sensitivity matrix which represents the sensitivity of the mea-

surement residuals to the measurement errors. Also note that S has the properties:
§58.8=5

S.RST=SR (4.62)

Then the covariance matrix € of the error term can be calculated as:
Q = cov(r) = [rrT] (4.63)
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Q = SE[eeT)|ST
Q= SRST
0 =SR (4.64)

N sl il (4.65)

" T i VRuSs

Therefore the residue has the distribution r ~ N(0, Q) and normalized residual for the measure-

N |74

i

ment iis r}’ = Jon VRS which means 7V ~ N(0,€) thus the largest normalized residue can

be compared against a statistical threshold decide it bad data.

4.6.4 Bad Data processing Algorithm

1.

Determine 2 considering all the measurement

Determine Z by employing the relative Z =Hz

Determine é through the relationship é = Z — Z
Calculate Y ;" | w;é?

Calculate k through the relationship k£ = N,,, — N,
Choose valve of o

check weather f < f,ia if the condition should be satisfied there is no bad data other wise go
to step7 Confidence level zero% always bad data

Calculate \/;— and eliminate the measurement that corresponds ;7 and the redo the state

i

—

estimation

go to step2,else,stop

Largest Normalized Residual
The steps of Largest Normalized Residual(LNR) method is as follows

Solve the WLS state estimation problem and obtain the measurement residual vector

ri=Z; — hi(z) i =1,2,3..m

e Calculate the normalized residues rlN = I%\”

e Find K such that is the largest among all ¥ i = 1,2,3..m

e if 7V > threshold ,than the K*" measurement is treat as bad data,

e Else Stop there is no bad data in the measurement set

e Eliminate the K*" measurement and go to the first step
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4.7 Summary

This chapter discussed state estimation techniques and presented the formulation of the WLS solu-
tion of a non-linear state estimation algorithm, constrained state estimation. This chapter provided
an overview about the formulation of state estimation program using different state estimation meth-
ods. The LNR method is that it is based on the residuals which may be strongly correlated. Hence,
in case of multiple bad data, this correlation may lead to comparable size residuals for good as well
as bad data. Thus another way to distinguish good and bad data is by estimating the measure-
ment errors directly. Hypothesis testing method [21], [28] is one of such approach. Although we did
not implement this algorithm in this research, applying this approach can also be part of future work.
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Chapter 5
Approach and Results

5.0.1 Introduction

Weighted Least Square State Estimation(WLS)and Constrained State Estimation(CSE),Bad data
detection and Identification method, discussed in earlier chapter. the results of this methods are

shown in this chapters.

5.0.2 Approach

The operating condition of a power system is always determined with the help of measurements
obtained from the sensors monitoring the grid. The measurements for this research are obtained
from the power flow program . The sensors are assumed to be distributed in such a way that the
system is observable. The measurements are assumed to be lost due to failure of communication

system or sensors. The power system is always assumed to be in steady state.

5.1 WLS IEEE 14 Bus System

Bus Estimated Values Actual Values

No | Voltage(p.u) | Angle (deg) | Voltage(p.u) | Angle(deg)
1 1.0071 0 1.06 0
2 0.9902 -5.523 1.043 -3.1628
3 0.9522 -14.1944 1.0285 -5.6057
4 0.9583 -11.4067 1.0099 -7.4709
5 0.9618 -9.7523 1.01 -7.6213
6 1.0187 -16.0885 1.0785 -10.5268
7 0.9923 -14.7293 1.0224 -12.0301
8 1.0291 -14.7268 1.01 -14.9634
9 0.9768 -16.4851 1.0392 -11.2786
10 0.9752 -16.8683 1.0494 -11.4797
11 0.993 -16.5868 1.082 -11.4473
12 1.0011 -17.0283 1.0581 -11.1648
13 0.9941 -17.0662 1.071 -11.0619
14 0.9681 -17.5463 1.0473 -11.562

Table 5.1: Measured and Estimated Values for WLS method
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5.2 WLS IEEE 30 Bus System

Bus Estimated Values Actual Values
No | Voltage(p.u) | Angle (deg) | Voltage(p.u) | Angle(deg)
1 1.06 0 1.06 0
2 1.043 -5.3404 1.043 -5.3404
3 1.0246 -7.5846 1.0246 -7.5846
4 1.0165 -9.3449 1.0165 -9.3449
5 1.01 -14.1167 1.01 -14.1167
6 1.0176 -11.1558 1.0176 -11.1558
7 1.0068 -12.8957 1.0068 -12.8957
8 1.02 -11.9344 1.02 -11.9344
9 1.0537 -14.1747 1.0537 -14.1747
10 1.0469 -15.7609 1.0469 -15.7609
11 1.082 -14.1747 1.082 -14.1747
12 1.0596 -14.9474 1.0596 -14.9474
13 1.071 -14.9474 1.071 -14.9474
14 1.0451 -15.8287 1.0451 -15.8287
15 1.0409 -15.921 1.0409 -15.921
16 1.047 -15.5629 1.047 -15.5629
17 1.0416 -15.9078 1.0416 -15.9078
18 1.0309 -16.5553 1.0309 -16.5553
19 1.0281 -16.7422 1.0281 -16.7422
20 1.032 -16.554 1.032 -16.554
21 1.0324 -16.2675 1.0324 -16.2675
22 1.0387 -16.0988 1.0387 -16.0988
23 1.0323 -16.2732 1.0323 -16.2732
24 1.0274 -16.4657 1.0274 -16.4657
25 1.0251 -16.0949 1.0251 -16.0949
26 1.0075 -16.5081 1.0075 -16.5081
27 1.0321 -15.6082 1.0321 -15.6082
28 1.0173 -11.8197 1.0173 -11.8197
29 1.0125 -16.8167 1.0125 -16.8167
30 1.0011 -17.6836 1.0011 -17.6836

Table 5.2: Measured and Estimated values of WLS method.
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5.3 Constrained State Estimation Using GAMS

Variable

LOWER LEVEL

UPPER MARGINAL

—-VAR vl
—-VAR v2
—-VAR v3
—VAR d2
—-VAR d3
—VAR e

-INF 1.022
-INF 0.980
-INF 1.001
-INF -0.100
-INF -0.078
-INF 7.806

+INF 8.2392E-9
+INF -3.839E-9
+INF -4.782E-9
+INF -2.068E-9
+INF -2.375E-9
+INF

Table 5.3: Constrained State Estimation

Variable | MATLAB

GAMS

vl
v2
v3
dl
d2

1.0357
0.0996
0.9964
-0.0977
-0.2024

1.022
0.980
1.001
-0.100
-0.078

5.4 Test for Bad Data

Voltage(p.u)

Angle (deg)

1.06
1.043
1.0285
1.0099
1.01
1.0785
1.0224
1.01
1.0392
1.0494
1.082
1.0581
1.071
1.0473

0

-3.1628
-5.6057
-7.4709
-7.6213
-10.5268
-12.0301
-14.9634
-11.2786
-11.4797
-11.4473
-11.1648
-11.0619
-11.562

Table 5.4: Bad Data Processing

Above result derived based on x2 test.The consideration as follows.

Number of Measurements(N,,)=41
Number of State variables(N,)=28
Number of Degrees of freedom (k) = (N, — N,) = 41-28=13

a = 0.05 arca under the curve between o2 and x?2

critical value f;=22.36

the value derived from the program f.=13.29

fe < f: According to the x2 test statement we are confident that there is no bad data in measure-

ments.
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Chapter 6

Conclusion and Future scope

State estimation in power system is an important task in security analysis to initiate control action
at power control centres. We have used Weighted Least Square method(WLS) and Constrained
State Estimation(CSE) algorithms to minimize error function. Since the sate estimation algorithm
is to be completed in stipulated time we are interested to go with the advanced techniques. The
required algorithm should minimize the error function in minimum iterations.

Weighted Least Square state estimation (WLS) and Constrained State Estimation (CSE) meth-
ods provide a way to a new hybrid method for quick and accurate estimation system.

The estimation based on available data is necessary for any kind of restorative or corrective
action. The comparison of state estimation algorithms on different test cases based on error indices
helps to indicate the best algorithm for getting an accurate picture of the power system.

This work has provided the groundwork for the situational awareness needed to move forward

with the help of different state estimation algorithms, when uncertain data is available.
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Appendix A

Test System

The typical power network models are
e IEEE 14 Bus System
e IEEE 30 Bus System

e 3 Bus System
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A.1 1IEEE 14 Bus System

i
@ GENERATORS 13
SYNCHRONOUS 12
COMPENSATORS "
O
. o
L
[
e —
— 2
ol ——

THREE  WINDING
TRANSFORMER EQUIVALENT

Figure A.1: IEEE 14 bus system
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Line data of IEEE 14 bus system

Half line shunt
Line | Bus Code | Resistance | Reactance | Conductance | Susceptance | Off-nominal
No (p-q) (p-w) (p-u) (p-w) (p-w) ratio
1 1-2 0.01938 0.05917 0.00 0.0264 1.00
2 2-3 0.04699 0.19797 0.00 0.0219 1.00
3 2-4 0.05811 0.17632 0.00 0.0187 1.00
4 1-5 0.05403 0.22304 0.00 0.0246 1.00
5 2-5 0.05695 0.17388 0.00 0.1700 1.00
6 3-4 0.06701 0.17103 0.00 0.0173 1.00
7 4-5 0.01335 0.04211 0.00 0.0064 1.00
8 5-6 0.0000 0.25202 0.00 0.0000 0.932
9 4-7 0.0000 0.20912 0.00 0.0000 0.978
10 7-8 0.0000 0.17615 0.00 0.0000 1.00
11 4-9 0.0000 0.55618 0.00 0.0000 0.969
12 7-9 0.0000 0.11001 0.00 0.0000 1.00
13 9-10 0.03181 0.08450 0.00 0.0000 1.00
14 6-11 0.09498 0.19890 0.00 0.0000 1.00
15 6-12 0.12291 0.25581 0.00 0.0000 1.00
16 6-13 0.06615 0.13027 0.00 0.0000 1.00
17 9-14 0.12711 0.27038 0.00 0.0000 1.00
18 10-11 0.08205 0.19207 0.00 0.0000 1.00
19 12-13 0.22092 0.19988 0.00 0.0000 1.00
20 13-14 0.17093 0.34802 0.00 0.0000 1.00

Table A.1: Line data of IEEE 14 bus system
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Bus data of IEEE 14 bus system

Bus Voltage Load Generation
No | magnitude | MW | MVAR | MW | MVAR
1 1.06 0 0 0 0
2 1.045 21.7 12.7 40 42.4
3 1.01 94.2 19 0 23.4
4 1 47.8 -3.9 0 0
5 1 7.6 1.6 0 0
6 1.07 11.2 7.5 0 12.2
7 1 0 0 0 0
8 1.09 0 0 0 17.4
9 1 29.5 16.6 0 0
10 1 9 5.8 0 0
11 1 3.5 1.8 0 0
12 1 6.1 1.6 0 0
13 1 13.5 5.8 0 0
14 1 14.9 5 0 0

Table A.2: Bus data of IEEE-14 bus system

Regulated Bus Data of IEEE 14 bus system

Bus | BUS Voltage(mag) | Minimum | Maximun
No p.u. MVAR MVAR
2 1.045 -40.00 50.00
3 1.010 0.00 40.00
6 1.070 -6.00 24.00
8 1.090 -6.00 24.00

Table A.3: Regulated bus data of IEEE 14 bus system

Shunt capacitor Data of IEEE 14 Bus system

Bus No.

Susceptance(p.u.)

9

0.190

Table A.4: Shunt capacitor data of IEEE 14 bus system



A.2 1TEEE 30 Bus System

Figure A.2: IEEE-30 bus system
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Line data of IEEE 30 bus system

Half line shunt
Sl Node Resistance | Reactance | Conductance | Susceptance | Off-nominal
No. | Connected (p-w) (p-w) (p-w) (p-w) ratio
1 1-2 0.01927 0.0575 0.00 0.0264 1.0
2 1-3 0.04520 0.1852 0.00 0.0204 1.0
3 2-4 0.05700 0.1737 0.00 0.0184 1.0
4 3-4 0.01320 0.0379 0.00 0.0042 1.0
5 2-5 0.04720 0.1983 0.00 0.0209 1.0
6 2-6 0.05810 0.1763 0.00 0.0187 1.0
7 4-6 0.01190 0.0414 0.00 0.0045 1.0
8 5-7 0.04600 0.1160 0.00 0.0102 1.0
9 6-7 0.02670 0.0820 0.00 0.0085 1.0
10 6-8 0.01200 0.0420 0.00 0.0045 1.0
11 6-9 0.00000 0.2080 0.00 0.0000 1.0155
12 6-10 0.00000 0.5560 0.00 0.0000 0.9629
13 9-11 0.00000 0.2080 0.00 0.0000 1.0
14 9-10 0.00000 0.1100 0.00 0.0000 1.0
15 4-12 0.00000 0.2560 0.00 0.0000 1.0129
16 12-13 0.00000 0.1400 0.00 0.0000 1.0
17 12-14 0.12310 0.2559 0.00 0.0000 1.0
18 12-15 0.06620 0.1304 0.00 0.0000 1.0
19 12-16 0.09450 0.1987 0.00 0.0000 1.0
20 14-15 0.22100 0.1997 0.00 0.0000 1.0
21 16-17 0.08240 0.1932 0.00 0.0000 1.0
22 15-18 0.10700 0.2185 0.00 0.0000 1.0
23 18-19 0.06390 0.1292 0.00 0.0000 1.0
24 19-20 0.03400 0.0680 0.00 0.0000 1.0
25 10-20 0.09360 0.2090 0.00 0.0000 1.0
26 10-17 0.03240 0.0845 0.00 0.0000 1.0
27 10-21 0.03480 0.0749 0.00 0.0000 1.0
28 10-22 0.07270 0.1499 0.00 0.0000 1.0
29 21-22 0.01160 0.0236 0.00 0.0000 1.0
30 15-23 0.10000 0.2020 0.00 0.0000 1.0
31 22-24 0.11500 0.1790 0.00 0.0000 1.0
32 23-24 0.13200 0.2700 0.00 0.0000 1.0

(continued....)
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Sl Node Resistance | Reactance | Conductance | Susceptance | Off-nominal
No. | Connected (p-u) (p-w) (p-u) (p-w) ratio
33 24-25 0.18850 0.3292 0.00 0.0000 1.0
34 25-26 0.25440 0.3800 0.00 0.0000 1.0
35 25-27 0.10930 0.2087 0.00 0.0000 1.0
36 28-27 0.00000 0.3960 0.00 0.0000 0.9581
37 27-29 0.21980 0.4153 0.00 0.0000 1.0
38 27-30 0.32020 0.6027 0.00 0.0000 1.0
39 29-30 0.23990 0.4533 0.00 0.0000 1.0
40 8-28 0.06360 0.2000 0.00 0.0214 1.0
41 6-28 0.01690 0.0599 0.00 0.0065 1.0

Table A.5: Line data of TEEE-30 bus system.

Bus data of IEEE 30 bus system

Bus Voltage Load Generation
No | magnitude | MW | MVAR | MW | MVAR
1 1.05 0 0 0 0
2 1.0338 21.7 12.7 57.56 2.47
3 1 2.4 1.2 0 0
4 1 7.6 1.6 0 0
5 1.0058 94.2 19 24.56 | 22.57
6 1 0 0 0 0
7 1 22.8 10.9 0 0
8 1.023 30 30 35 34.84
9 1 0 0 0 0
10 1 5.8 2 0 0
11 1.0913 0 0 17.93 | 30.78
12 1 11.2 7.5 0 0
13 1.0883 0 0 16.91 | 37.83
14 1 6.2 1.6 0 0
15 1 8.2 2.5 0 0
16 1 3.5 1.8 0 0
17 1 9 5.8 0 0
18 1 3.2 0.9 0 0
19 1 9.5 34 0 0

(continued..)
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Bus Voltage Load Generation
No | magnitude | MW | MVAR | MW | MVAR
20 1 2.2 0.7 0 0
21 1 17.5 11.2 0 0
22 1 0 0 0 0
23 1 3.2 1.6 0 0
24 1 8.7 6.7 0 0
25 1 0 0 0 0
26 1 3.5 2.3 0 0
27 1 0 0 0 0
28 1 0 0 0 0
29 1 2.4 0.9 0 0
30 1 10.6 1.9 0 0

Table A.6: Bus data of IEEE-30 bus system

Regulated Bus Data of IEEE 30 bus system

Bus | BUS Voltage(mag) | Minimum | Maximun
No p-u. MVAR MVAR
2 1.0338 -20.0 60.0
5 1.0058 -15.0 62.0
1.0230 -15.0 50.0
11 1.0913 -10.0 40.0
13 1.0883 -15.0 45.0

Table A.7: Regulated bus data of IEEE 30 bus system

Shunt capacitor Data of IEEE 30 bus system

Bus No. | Susceptance(p.u.)
10 0.19
24 0.043

Table A.8: Shunt capacitor data of IEEE 30 bus system
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A3

3 Bus System

O

&

Figure A.3: 3 Bus System

Line data of 3 bus system

Half line shunt
Sl. | Bus Code | Resistance | Reactance | Conductance | Susceptance | Off-nominal
No. (p-q) (p-u) (p-u) (p-u.) (p.u.) Ratio
1 1-2 0.020 0.010 0.000 0.0164 1.00
2 1-3 0.0025 0.15 0.000 0.0246 1.00
3 2-3 0.025 0.197 0.000 0.0219 1.00
Table A.9: Line data of 3 bus system
Bus data of 3 bus system
Bus | Type | BUS Voltage Generation Load
No (Magnitude) | MW(P.u) | MVAR(P.u) | MW(P.u) | MVAR(P.u)
1 slack 1.0 0.50 0.00 0.00 0.00
2 PV 1.05 0.25 30.00 0.34 0.15
3 PQ 095 0.95 0.00 0.40 0.00

Table A.10: Bus data of 3 bus system
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