
Parallel AMG Solver for Three Dimensional

Unstructured Grids Using GPUs

RaviTej Kamakolanu

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Computer Science and Engineering

June 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Archive of Indian Institute of Technology Hyderabad

https://core.ac.uk/display/38678156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

At the outset, I would like to express my sincere gratitude to my thesis adviser Dr. Naveen Sivadasan

for his constant encouragement, patience and immense knowledge. Without his guidance and per-

sistent help, this dissertation would not have been possible. I would like to thank Dr. Raja Banerjee

and Vatsalya Sharma for their support and help in understanding the domain related concepts. Fur-

ther, I would also like to thank Dr. Ramakrishna Upadrasta for introducing me to many interesting

topics in compiler optimization. I am also thankful to Jin Sebastian for the numerous fruitful con-

versations on GPU computing. Finally, I thank almighty, my family and friends for their support

and constant encouragement.

iv

Abstract

Consider a set of points P in three dimensional euclidean space. Each point in P represents a

variable and its value is dependent on the value of its neighborhood scaled by predefined constants.

The problem is to solve all the variables which reduces to solving a large set of sparse linear equa-

tions. This kind of representation arises naturally while solving flow equations in Computational

Fluid Dynamics (CFD). Graphics Processing Units (GPUs), over the years have evolved from being

graphics accelerator to scalable co-processor. We implement an algebraic multigrid solver for three

dimensional unstructured grids using GPUs. Such a solver has extensive applications in Computa-

tional Fluid Dynamics. Using a combination of vertex coloring, optimized memory representations,

multi-grid and improved coarsening techniques, we obtain considerable speedup in our parallel im-

plementation. For our implementation, we used Nvidia’s CUDA programming model. Our solver

is used to accelerate solutions to various problems like heat transfer, Navier-Stokes etc. Our solver

achieves 2157 and 29 times speed up for steady state and unsteady state head transfer problem re-

spectively on a grid of size 2.3 million, compared to serial non-multigrid implementation. Our solver

provides significant acceleration for solving pressure Poisson equations, which is the most time con-

suming part while solving Navier-Stokes equations. In our experimental study, we solve pressure

Poisson equations for flow over lid driven cavity, laminar flow past square cylinder and plain jet

problems. Our implementation achieves 915 times speed up for the lid driven cavity problem on

a grid of size 2.6 million and a speed up of 1020 times for the laminar flow past square cylinder

problem on a grid of size 1.7 million, compared to serial non-multigrid implementations. For plain

jet problem, our solver achieves a speed up of 47 times, compared to serial non-multigrid implemen-

tation on a grid of size 2.7 million. We also implement multi GPU AMG solver which achieves a

speed up of 1.5 times, compared to single GPU solver for heat transfer problem.

v

Contents

Declaration . ii

Approval Sheet . iii

Acknowledgements . iv

Abstract . v

Nomenclature vii

1 Introduction 1

1.1 Three Dimensional Unstructured Grid Problem . 1

1.2 Related Work . 2

1.3 Overview of the Work . 3

1.4 Thesis Outline . 3

2 GPU Architecture and CUDA Programming Model 4

2.1 GPU Architecture . 4

2.2 CUDA Programming Model . 5

2.2.1 Compiler Model . 5

2.2.2 Execution Model . 5

2.2.3 Memory Hierarchy . 6

2.3 Performance Optimizations . 7

3 Algebraic Multigrid 9

3.1 Multigrid Methods . 9

3.2 Algebraic Multigrid . 10

3.2.1 Multigrid Generation . 11

3.2.2 Computing Matrices P and Ac . 11

4 Algorithmic Improvements and Parallelization of AMG 13

4.1 Improved Coarsening . 13

4.2 Modifying Ac for Faster Smoothing in Coarser Grids 14

4.3 Parallelization of Gauss Seidel Iterative Method . 14

5 GPU Implementation 16

5.1 Vertex Coloring . 16

5.2 Graph Representation . 16

5.3 Multigrid Implementation . 17

vi

5.4 Integration with CFD Solver . 18

6 Experiments and Results 19

6.1 Performance Metrics . 19

6.2 Heat Transfer Problem . 19

6.2.1 Steady and Unsteady State Heat Transfer Problem 19

6.2.2 Experimental Setup . 20

6.2.3 Results . 20

6.3 Accelerating Pressure Poisson Solving in Navier-Stokes Problem 25

6.3.1 Experimental Setup . 25

6.3.2 Results . 25

6.4 Performance Gain Due to Improved Coarsening and Ac Transformation 33

7 Multi GPU Implementation and Results 38

7.1 Domain Decomposition . 38

7.2 Multi GPU Implementation . 39

7.2.1 Non-Multigrid Solver . 39

7.2.2 Multigrid Solver . 39

7.3 Experimental Setup . 39

7.4 Results . 40

8 Conclusion and Future Work 45

References 46

vii

Chapter 1

Introduction

Over the years, Graphics Processing Units (GPUs) have transformed from being hardwired graph-

ics accelerator to programmable devices for general purpose computing known as General Purpose

Computation on GPUs (GPGPU). Increase in computing capability coupled with decrease in cost

resulted in GPUs becoming cost-effective scalable co-processors and an integral part of high perfor-

mance computing (HPC). Modern day GPUs which come with thousands of cores are being used

to accelerate compute intensive tasks of applications in various fields such as Computational Fluid

Dynamics [1], Computer Vision, Linear Algebra [2] and Digital signal Processing [3]. The ease of

GPU programming increased especially with interfaces like CUDA from NVIDIA and OpenCL from

Khronos group.

Computational Fluid Dynamics (CFD) deals with solving and analyzing fluid flows using various

numerical methods and algorithms. CFD simulation of complex problems is highly computationally

intensive and is usually done on super computers. Navier-Stokes equations are central to flow

equations that are used to solve the velocity-pressure field. Solving pressure Poisson equations

consumes most of the computing time in Navier-Stokes simulations [4]. Multi-fold speed up in many

CFD applications can be gained by accelerating solvers for these equations.

1.1 Three Dimensional Unstructured Grid Problem

Consider a set of points P in a three dimensional Euclidean space. For each point i ∈ P , its neigh-

borhood N(i) ⊆ P is defined. The neighborhood definition depends on type of discretization used.

Each point i ∈ P represents a variable, whose value is dependent on the values of its neighborhood

N(i). The value at i is given by the sum of values at points in N(i) scaled by some pre-determined

constants as shown in Fig 1.1. The value v(i) at i is given by,

v(i) =
�

j∈N(i)

aijv(i) and
�

j∈N(i)

aij < 1

where aij is the constant by which v(i) is scaled.

The goal is to solve v(i) for all i ∈ P . These kind of representations are frequently encountered

in Computational Fluid Dynamics while solving flow governing equations. Three dimensional un-

structured grid defined by point set P forms the domain. The problem reduces to solving large set

1

j3j4

j5

j1

j2

aij4

aij3

aij5 aij2

aij1

i

Figure 1.1: Point i with neighborhood connectivity

of sparse linear equations of the form

Au = f

where A is n×n matrix with real entries aij , u and f are vectors in R
n. The numerical methods

that exist to solve set of linear equations can be categorized into direct solvers like Gauss elimination,

LU factorization etc. and iterative solvers like Gauss Seidel, Jacobi, Conjugate Gradient etc. Though

direct solvers give exact solution, they are inefficient for solving large set of sparse linear equations.

Hence, iterative methods which give reasonably accurate approximate solution are preferred over

direct solvers. Gauss Seidel is an efficient and most commonly used iterative solver. It starts with an

initial guess and produces series of improving results till convergence. Multigrid (MG) method is an

efficient and scalable approach that accelerates the convergence of the iterative solvers. In multigrid

method, the problem is solved on coarser representation and the solution is interpolated back to the

finer representation to get a better approximation faster. This is recursively applied which creates an

hierarchy of coarser grids. Algebraic multigrid is a multigrid technique which derives the hierarchy

of grids from the information available in the set of linear equations. The typical size of the problems

considered in the work is in the order of millions which makes it a computationally intensive and

time consuming task. Hence, GPUs can be used to accelerate the solution.

1.2 Related Work

Since the introduction of algebraic multigrid in 1980’s [5, 6], many improvements to classical AMG

have been proposed [7,8]. There are research works [9,10] that use GPU to solve the unstructured grid

problems. They are mainly aimed at parallelization of unstructured solvers but not on combining

them effectively with multigrid methods. Considerable work is done on parallelizing AMG [11–

16] which includes implementing various parallel coarsening and smoothing techniques on parallel

computers. They focused mainly on efficient solvers for structured grids and using coalesced memory

access with reported speed up ranging from ten to thousand times. The usability of these solvers is

limited to problems with simple geometry. A conjugate gradient solver on GPU was given by Gundolf

Haase et al. [17]. They use conjugate gradient algorithm with algebraic multigrid preconditioner.

Our focus is algebraic multigrid solver with Gauss-Seidel iterative smoother.

2

In AMG, the grid is represented as a graph and it is critical to have a GPU aware graph repre-

sentation for improved performance. Different graph representations for GPU processing have been

proposed in [18–22] to implement number of graph algorithms on GPU.

The polyhedral model [23] is a formal framework by which parallelism in input for-loop programs

of a specific variety, called Affine Control Programs (ACLs) could automatically be found using

Rational and Integer Linear Programming techniques. Examples of ACLs are dense matrix programs

like matrix-matrix multiplication, matrix-vector multiplication, stencil computations etc. Polyhedral

frameworks also have developed advanced code generation tools and techniques suitable for modern

heterogeneous architectures with multi-cores or GPUs. PluTo [24] is a well known source-to-source

polyhedral compiler with both input and output languages being C. It however cannot be used with

our code which is in C++ which has dependencies spanning across functions, sparse matrices and

pointer accesses. Another new popular polyhedral compiler is the Polly framework [25] of the LLVM

compiler infrastructure. Though Polly applies transformation on an intermediate representation, it

also suffers from similar limitations making it unusable for our work.

1.3 Overview of the Work

As part of this work, we implement a parallel algebraic multigrid solver for three dimensional un-

structured grids using GPUs. Our main contributions are (a) efficient parallel implementation of

AMG solver for 3D unstructured grids on GPU (b) improved AMG coarsening techniques for accel-

erated GPU performance and (c) Multi GPU implementation. To evaluate the performance of the

solver, we solve (i) Steady and unsteady state heat transfer problem (ii) Navier-Stokes problem by

accelerating pressure Poisson using our solver. We also validate the results obtained using the solver

by comparing them against standard experiment or commercial software generated results.

1.4 Thesis Outline

The thesis is structured as follows. In chapter 2 we give a brief overview of GPU architecture,

CUDA and performance optimizations. We discuss the algebraic multigrid solver in chapter 3, its

parallelization and our proposed improvements to AMG coarsening in chapter 4. Chapter 5 describes

the GPU implementation details. We discuss experimental results in chapter 6. Chapter 7 describes

the multi GPU implementation details and results. We discuss future work in chapter 8.

3

Chapter 2

GPU Architecture and CUDA

Programming Model

Graphics Processing Units (GPUs) which were primarily designed for accelerating video or graphics

rendering, had all its functionalities hardwired. Over the last few years, GPUs became programmable

and are being used to solve general purpose programs, also called as General Purpose Computation

on GPUs (GPGPU). GPUs can be used both as a programmable graphics processor and a scalable

parallel computing platform. The ease of GPU programming increased especially with interfaces like

CUDA from NVIDIA and OpenCL from Khronos group. Power efficient and less expensive modern

days GPUs which come with thousands of cores offer massive computational capacity and have be-

come an integral part of High Performance Computing (HPC). GPUs are being used to accelerate

parts of applications spanning across different fields that have an ever-increasing demand for com-

puting power. This chapter presents a brief overview on GPU architecture, CUDA programming

model and performance optimizations. The reader is referred to [26–29] for details.

2.1 GPU Architecture

GPUs are specially designed hardware devices to cater the needs of highly parallel and compute

intensive applications. CPU and GPU are designed using two completely different philosophies.

Figure 2.1 compares and contrasts the CPU, GPU architectures.

DRAM

ALU

ALU

ALU

ALU

CACHE

CONTROL

UNIT

CPU GPU

DRAM

Figure 2.1: Comparison between CPU and GPU architectures

4

CPU aims at minimizing the latency where as GPU tries to hide the latency. CPU has large cache

memory and does sophisticated things like out of order instruction execution, branch prediction etc.

It is for this reason, more transistors are dedicated to control unit than arithmetic logic units (ALUs).

CPU is well suited for sequential/serial code execution. On the flip side, GPU has relatively smaller

cache and more transistors are dedicated to ALUs than the control unit. GPU doesn’t support

speculative execution and branch predictions. GPU can execute large number of threads in parallel

and is well suited for compute intensive tasks. To execute large number of threads in parallel, GPU

uses an architecture called SIMT (Single Instruction Multiple Threads). It is closely related to SIMD

(Single Instruction Multiple data) where different processing elements execute same instruction but

on different data items. In SIMD all the threads follow same execution path where as SIMT facilitates

threads to take different execution paths. A typical GPU contains ALU, Control Unit, cache memory

and DRAM. GPU cores are organized as an array of Streaming Multiprocessors (SMs). Each SM

contains number of Streaming Processors (SPs or simply GPU cores), instruction cache and control

unit. In GPU computing model, the terms host and device are used to refer to CPU and GPU

respectively. Each SM creates, manages and executes threads in group (typically of size 32) called

warps. Warp Scheduler, which is also a part of SM schedules these warps for execution.

2.2 CUDA Programming Model

Compute Unified Device Architecture (CUDA) is an interface that enables programmer to utilize the

massive parallel computing capability provided by the GPU for general purpose computing. CUDA

also provides developers a set of libraries and extensions to standard programming languages like

C, C++ etc. We briefly discuss CUDA programming, compiler, execution models and performance

optimizations in the following sections:

2.2.1 Compiler Model

A CUDA source file will be a mixture of host code (which runs on the CPU) and device code (which

runs on the GPU). The CUDA compiler segregates the code into host and device code. Nvidia’s nvcc

compiler translates the device code into pseudo-assembly code known as Parallel Thread Execution

(PTX) code. PTX code can either be converted to binary form called cubin object or can be loaded

by the application at the runtime and get compiled using just-in-time compilation. Just-in-time

compilation enables the application to benefit from latest compiler improvements but increases the

application load time. CUDA compiler replaces the constructs in host code used for device code

invocations by CUDA run time functions. The host code is compiled using a CPU compiler (C or

C++) and the Cubin, CPU object files are linked to get an CPU-GPU executable file as shown in

Fig 2.2

2.2.2 Execution Model

Using CUDA, the compute intensive and data parallel parts of an application are parallelized by

launching large number of concurrent threads on GPU. Each thread executes same instruction but

on different data. For this purpose, users define kernel which contains the code to be executed

by each thread. Kernel configuration specifies the number, organization of the threads and can

5

Device Code

CUDA Object CPU Object
Linker

CPU −GPU

Files F iles

executable

NV CC Compiler CPU Compiler

Host Code

Figure 2.2: CUDA Compilation Model

Block(0, 0) Block(1, 0) Block(2, 0)

Block(0, 1) Block(1, 1) Block(2, 1)

Grid

Thread(3, 0)

Block(1, 1)

..

..

Thread(1, 0) Thread(2, 0)

Thread(0, 2) Thread(1, 2) Thread(2, 2) Thread(3, 2)

Thread(3, 1)Thread(2, 1)Thread(1, 1)Thread(0, 1)

Thread(0, 0)

Figure 2.3: Thread Organization in CUDA

be determined either at compile time or run time. In CUDA, threads are organized in two level

hierarchy namely blocks and grids as shown in Fig 2.3.

At the first level, the threads are grouped into thread blocks. The block size is a multiple of

warp size and is decided by the programmer. Block size of 128 or 256 is most frequently used and

often provide optimal performance. Each thread block can run independent of other and hence

can be scheduled across any SM. The thread blocks are further grouped into grids. The size of

grid is determined by the size of data that the application is dealing with. CUDA allows user to

organize blocks and grids in one, two or three dimensions thereby allowing easy mapping of threads

to multi-dimensional data structures. Each block within the grid is uniquely identified using the

built-in blockIdx variable, from the kernel. Similarly, each thread in a thread block is uniquely

identified using the built-in threadIdx variable. Both blockID and threadID are built in structures

that contains three components to store index in each dimension. The thread and block size are

stored in built-in variables blockDim & gridDim. CUDA maps each software thread block to a

hardware SM. Multiple blocks can be mapped to same SM and are executed in time sharing fashion.

Threads within a block can communicate with each other using shared memory and can synchro-

nize using syncthread() method. However, threads across the blocks can’t synchronize with each

other and can communicate only using global memory. Any data that kernel operates on should

reside in device global memory. CUDA API provides three functions for this purpose: (a) cudaMal-

loc allocates memory on the device (b) cudaMemcpy transfers the data from host to device and

vice-versa and (c) cudaFree is used to free the memory on the device.

2.2.3 Memory Hierarchy

The GPU memory is organized as three level hierarchy as shown in Fig 2.4

(a) Device Memory : It is the the largest memory in the hierarchy and also the one with highest

latency. Device Memory is to GPU what DRAM is to a CPU. Device memory is logically further

divided into global memory, local memory, constant and texture memory. All threads can access

global memory and is the only part of device memory which CPU can read as well as write. The

local memory which is private to each thread also resides on device memory. Constant memory

is used to store read only data such as constant tables etc. and is cached into constant cache.

6

...Processor 1 Processor 2

Registers Registers

..

Device Memory

Streaming Multiprocessor 2

Streaming Multiprocessor n

Shared Memory

Processor m

Constant cache

Instruction
Unit

Texture

Streaming Multiprocessor 1

cache

Registers

Figure 2.4: CUDA Memory Hierarchy

Texture memory which is cached into texture cache is optimized for 2D spatial locality and is

preferred over global memory when there is no access pattern to do memory coalescing. GPU

can only read from constant and texture memory where as CPU can only write to them.

(b) Shared Memory : It is per SM memory that resides on-chip and is shared by all the threads

within a thread block. Access to shared memory is very fast when compared to that of global

memory. Any data that is shared or reused by the threads within a block can be transferred

to shared memory for improved performance. Shared memory can also be used to share data

among threads of same thread block.

(c) Registers : Each thread has its own set of registers. Accessing data in the registers is extremely

fast and the CUDA compiler automatically tries to place the frequently accessed variables by

the thread into registers.

2.3 Performance Optimizations

In addition to effective parallelization of the code, it is crucial to optimize the implementation

with respect to the underlying GPU architecture to extract maximum performance [28]. The opti-

mizations include maximizing SM utilization, memory and instruction throughput [29]. Increasing

occupancy, coalesced memory access and avoiding warp divergence greatly increase the performance

of the applications. Occupancy is defined as the ratio of number of active warps to maximum num-

ber of warps supported by SM. Access to global memory data requires hundreds of clock cycles and

the warp scheduler switches between warps to hide this latency. Increasing thread pool size i.e.,

occupancy of SM helps in hiding the latency and also maximizes SM utilization. The hardware

also checks if all the threads in a warp are accessing collocated global memory locations. In such

scenario, all the accesses can be consolidated and is known as Coalesced Memory Access. Scattered

memory access by threads in a warp will results in unnecessary data transfer from global memory

7

to cache. Hence, storing the data accessed by thread warp in collocated global memory locations

results in increased memory throughput. Conditional statements in the kernel may cause threads of

same warp to follow different execution paths, called as Warp Divergence. Warp divergence causes

delay in execution of entire warp and can be avoided by re-ordering the data so that all the threads

in warp take same branch.

8

Chapter 3

Algebraic Multigrid

The numerical methods that exist to solve set of linear equations can be categorized into direct

solvers like Gauss Elimination, LU factorization etc. and iterative solvers like Gauss Seidel, Jacobi,

Conjugate Gradient etc. Direct methods compute the solution in finite number of steps and usually

provide an exact solution (assuming no rounding errors exist). On the flip side, iterative methods

provide only an approximate solution. Iterative methods start with an initial guess and produce a

sequence of improving solutions. The method terminates when the solution reaches desired accuracy.

Iterative methods may or may not terminate in finite number of steps and are called convergent if

they terminate for given initial guess. Understanding the problem background helps us in choos-

ing good initial guess which reduces the number of iterations required for convergence. To solve

large system of linear equations, iterative methods are preferred over direct methods which are too

expensive. In iterative methods, error is defined as the difference between exact solution and the

current estimate. Iterative methods like Jacobi or Gauss Seidel are very effective at smoothing high

frequency error component (rough error) in the system of equations and typically take only few

iterations to do so. However, they are not so effective in smoothing low frequency error (smooth

error) and require more number of iterations.

3.1 Multigrid Methods

Multigrid (MG) method offers an efficient way of solving large system of linear equations especially

those from finite volume, finite difference and finite element discretization of governing partial dif-

ferential equations(PDEs). Multigird methods are known to scale linearly with respect to number

of unknowns i.e., for a given level of convergence multigrid methods provide a solution in O(n) time

where n is the number of unknowns [30]. Instead of working on a single mesh, multigrid method

works on hierarchy of meshes, which are carefully constructed in such a way that the low frequency

error in finer mesh turns out to be high frequency level in the coarse mesh, which can again be

effectively smoothed using an iterative method. Multigrid method is a recursive error correcting

method and has following steps:

Smoothing: Reduce high frequency error component using iterative methods like Jacobi or

Gauss Seidel.

9

Restriction: Transfer the residual from finer mesh to coarser mesh.

Prolongation: Transfer the error correction calculated on coarser mesh to finer mesh.

Defining MG components include constructing hierarchy of grids and defining inter-grid trans-

fer operations i.e., restriction and prolongation. Two different multigrid approaches exist namely,

Geometric multigrid (GMG) and Algebraic multigrid (AMG) [31]. Geometric multigrid, uses the

geometry of the problem (grid) to define various multigrid components. On the other hand, algebraic

multigrid uses only the information present in the set of linear equations obtained by discretizing

the governing PDEs to define various multigrid components.

Though GMG is more natural or intuitive, its applicability is restricted due to requirement of ex-

plicit knowledge about problem geometry. Also, the coarsening becomes very complicated/impossible

for complex and concave grids. AMG is preferred over GMG due to following advantages:

• It is purely a matrix based approach and doesn’t use any geometric information

• No special handling is required for concave grids during coarsening

• AMG can be used as a black-box to solve problems, provided the underlying matrices have

certain properties [32].

3.2 Algebraic Multigrid

In AMG, it is often very helpful to visualize the n × n matrix A as a graph G on the vertex

set {1, . . . , n}. Each variable corresponds to a vertex in G and each non-zero matrix entry aij in

the matrix A (which is assumed to be symmetric positive definite) corresponds to a directed edge

between vertices i and j. In the rest of the paper, the terms grid, mesh, graph and mesh graph are

used interchangeably. So, are the terms nodes, points and vertices. If there is a directed edge from

vertex u to vertex v then we say that u depends on v and that v influences u. AMG works on the

heuristic that the smooth error varies slowly in the direction of relatively large negative coefficients

of the matrix A [33].

Definition 1 (Strength of Connection, [33]) Given a threshold 0 < θ ≤ 1, the variable i strongly

depends on variable j if

−aij ≥ θmax
k �=i

{−aik}

Strength of connection is always measured relative to the largest off-diagonal entry. Off diagonal

entries which do not satisfy above condition are considered weak connections. The matrix obtained

by deleting weak connections in A is called Strength Matrix As. We note that strength of connection

need not be symmetric i.e., a variable i can strongly depend on j but not vice-versa.

Each level of AMG uses a prolongation matrix P , and the corresponding restriction matrix PT

which is the transpose of P . These matrices are defined based on corresponding strength matrix and

is discussed in Section 3.2.2. The coarser system will have lesser number of variables, say nc < n

where n is number of variable in the finer system. Hence P is an n × nc matrix. Let Au = f be

the equations governing the finer system. Main steps in a two level AMG (which can be extended

to multi-level) can be summarized as:

10

Compute estimate u∗ for u in Au = f ;

Compute the residual r = f −Au∗ = Ae;

Solve for ec in the coarser system Ac · ec = PT · r, where Ac = PTAP ;

Correct u∗ ← u∗ + P · ec.

Couple of smoothing steps are executed while computing the initial estimate for u∗ and after

obtaining the correction from the coarser system.

3.2.1 Multigrid Generation

In classical AMG, hierarchy of grids are created from the initial grid by applying a coarsening

algorithm recursively. Coarsening algorithm partitions the points into two disjoint sets. One is set

of C-points i.e., points that are part of coarse grid as well and the other is F -points i.e., points that

are not part of the coarse grid. To compute C, the coarsening algorithm [31] considers the strength

matrix As and the corresponding mesh graph Gs. Each vertex u is assigned a weight which is the

total number of vertices that depend on u. The algorithm proceeds iteratively and at each step, a

vertex u with highest weight is chosen as a C point and all vertices depending on u are marked as

F points. The weights are updated for vertices that are connected by outgoing edges from the new

set of C and F vertices. Weights of all points that influence the new C point is decremented by

one. For each new F point u, weights of all points that influence u is incremented by one. Figure

3.1 illustrates the coarsening process.

3.2.2 Computing Matrices P and Ac

Given the C/F splitting of points, the goal is to define P and thereby compute Ac. Let nc denote

the size of C and let n denote the size of C ∪F . We follow the approach in [31] to define the n× nc

matrix P . Let u1, u2, . . . , u|C| be an ordering of the vertex set C. Let Ci denote subset of C that

strongly influence vertex i. For each i ∈ C ∪F and each j ∈ {1, . . . , |C|}, the entry wij of P is define

as :

wij =

1 if i ∈ C and i = uj ;

aij/
�

k∈Ci

aik if i /∈ C and uj ∈ Ci;

0 otherwise.

The coarser system Ac is obtained using the Galerkin operator

Ac = PTAP.

11

(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.1: Illustration of the coarsening algorithm. (a) The graph corresponding to the A matrix. (b) The
graph after deleting weak connections. (c) Nodes of the graph are assigned a weight equal to the number
of nodes that depend on it. (d) A point with maximal weight is chosen as a C-point. (e) The neighbors
of the new C-point are marked as F -points. (f) For each new F -point, increment the weights of nodes that
influence it to make them more likely to be C-points. (g) For new C-point, decrement the weights of nodes
that influence it. The algorithm continues in this way until all points are either C or F points.

12

Chapter 4

Algorithmic Improvements and

Parallelization of AMG

In the following, we discuss the specific algorithmic improvements that we incorporate for faster

GPU implementation.

4.1 Improved Coarsening

The accuracy of the solver also depends on the quality of the coarsening. Each level in the multigrid

should retain adequate number of boundary nodes and the coarsening algorithm as such will not

ensure this. To overcome this, we modify the coarsening (Algorithm 1) and at each stage of coars-

ening, the boundary nodes are assigned a weight which is α times the number of points that depend

on it, for a predefined α > 1. As shown in the experiments, by this coarsening, more number of

boundary nodes become part of highly coarser grids and thereby improving the coarsening quality.

Algorithm 1 Improved Coarsening

Require: Graph representation of matrix A

1: Delete weak connections in the graph

2: For each non-boundary point u, assign a weight equal to the number of points that depend on

u.

3: For each boundary point v, assign a weight equal to α times the number of points that depend

on v.

4: Choose a point p with maximum weight as C point.

5: Mark points depending on p as F points.

6: For each new F point u, increment weights of all points that influence u by one.

7: Decrement the weights of all points that influence p by one.

8: Repeat steps (4) to (7) till all the points are marked as C or F .

13

4.2 Modifying Ac for Faster Smoothing in Coarser Grids

We incorporate the following transformation to matrix Ac in our coarsening procedure for improving

the performance of GPU implementation. As we go down the AMG hierarchy, the number of

neighbors for each node in the coarser graphs increases rapidly making the coarse systems more

denser. Large degrees result in fetching more data from global memory during smoothing operation

in GPU and thereby degrading the GPU performance on coarser systems. To overcome this, our

coarsening procedure modifies matrix Ac in such a way that the neighbors with insignificant influence

in the corresponding graph is ignored. Entries aij in the ith row of Ac are modified as follows. Let δ

denote the average value of off-diagonal entries in row i (they are negative valued in Ac and positive

valued in the graph). Let J ′ denote the subset of columns such that for each j ∈ J ′, aij ≤ β · δ,

where β is a user defined constant. Let |J ′| = n′ and let ǫ =
�

j /∈J ′ aij/n
′. Modified aij is given by

aij ← aij + ǫ if j ∈ J ′, and aij = 0 otherwise.

By the above modification, we ignore all the neighbors whose influence is less than β times

the average influence, and their total influence is distributed among the remaining neighbors of i.

Though this might slightly slow down the convergence, it is compensated by the reduced smoothing

time in coarser grids.

4.3 Parallelization of Gauss Seidel Iterative Method

To smooth high frequency error component at each level in the multigrid, iterative solvers like

Jacobi or Gauss-Seidel can be employed. Both these methods assume an initial guess and visit

nodes in an arbitrary order to update the value at the node. However, they differ in the values of

neighboring nodes that are used during updating. Jacobi method is preferred if vector or parallel

processor is available at disposal due to its ease of parallelization. However, Gauss-Seidel method has

faster convergence than Jacobi methods and hence is used in this work. Gauss-Seidel is inherently

sequential as we can’t update all the inter-dependent nodes simultaneously. Graph vertex coloring in

the corresponding mesh graph is used to obtain independent sets corresponding to the color classes

(Fig 4.1). All points in one color class can be updated in parallel [34, 35]. We discuss the details in

the next chapter.

14

(a) (b)

Figure 4.1: Multi Colored Gauss Seidel Smoother (a) Graph corresponding to the matrix A (b)The graph
is colored to get independent sets of nodes

15

Chapter 5

GPU Implementation

We use CUDA programming model for our implementation. Implementing graphs algorithms on

GPU is challenging due to irregular data access pattern associated with graphs. Using appropriate

data structures and data organization/arrangement that maximizes coalesced memory access is the

key for effective GPU implementation. A total of seven GPU kernels are used in our implementation:

One kernel to perform smoothing, two kernels each for restriction and prolongation operations. A

kernel for array reduction is used to get root mean square error for convergence testing. The different

algorithmic techniques and data structures used for GPU implementation of the solver are discussed

in the following.

5.1 Vertex Coloring

To parallelize Gauss-Seidel iterative smoothing, we use standard vertex coloring technique to get

independent sets of nodes in the graph. As no two adjacent nodes have same color, each color class

forms an independent set. The minimum number of colors required to color a graph G is called

its chromatic number denoted by χ(G). As Gauss-Seidel method allows us to update nodes in any

arbitrary order, we update them in the order of color class i.e., update nodes in one color class

after the other. Within a color class, all the nodes can be updated in parallel as they form an

independent set. Though an easy Δ + 1 coloring is possible for any graph, where Δ is maximum

degree, a χ(G) coloring is known to be NP-hard in general. We use the standard greedy coloring

algorithm employed in [35], which gives a 6 coloring for planar graphs. Let the vertices of the graph

be ordered as u1, u2, . . . , un, in such a way that ui is a minimum degree vertex in the graph induced

by vertices {u1, u2, . . . , ui}. Now color each vertex with a free color in the order u1, u2, . . . , un.

5.2 Graph Representation

The memory representation of graph used for GPU processing has significant impact on the perfor-

mance. Graph data includes (a) Data corresponding to each vertex - degree, value at vertex etc. (b)

Edge information - indices of neighboring vertices and their corresponding scale factors etc. Vertex

data is re-ordered according to the color of vertices i.e., data of all the vertices having same color

will be co-located. An array of pointers is maintained to store the starting index of each color class.

16

The implementation processes the vertices of each color in sequence and for each color, creates as

many threads as the number of vertices in the color class. Re-ordering the data according to color

results in coalesced memory access [35] as show in Fig 5.1 (adapted from [35]).

11 1 1 1 221 2

Thread warp

8 8

Figure 5.1: Re-ordered for coalesced memory access

To store edge data, we use the semi-compact column major matrix representation as in [35] which

requires O(Δ · |V |) space for a graph with maximum degree Δ, which is generally small for many

practical problems. Each column stores the adjacency information of a single vertex. The edge data

accessed by threads will be collocated and hence results in a coalesced access as shown in Fig 5.2

(adapted from [35]).

Δ

|V |

- -

- --

1 4 3

Thread warp

8

3

5

0

7

8

2

Figure 5.2: Coalesced memory access in column major adjacency

5.3 Multigrid Implementation

Hierarchy of grids created during pre-processing phase are stored in device memory. The inter-grid

transfer operators which include prolongation and restriction matrices (stored in column major ma-

trix representation) are also stored as part of grid. Following GPU kernels are used for implementing

different steps in the multigrid method.

• Smoothing The kernel takes the starting and ending index of each color class, creates as many

threads as the number of vertices in the color class and updates the value at each vertex.

• Restriction Two kernels are used for implementing restriction operation. One of the kernels

creates as many threads as the number of vertices in the finer mesh and calculates residual at

each vertex. The other kernel creates as many threads as the number of vertices in the coarser

mesh and updates residual at each vertex using restriction matrix.

17

• Prolongation Two kernels are used for implementing prolongation operation as well. One of

them creates as many threads as the number of vertices in the coarser mesh and calculates

error correction at each vertex. The other kernel creates as many threads as the number of

vertices in the finer mesh and updates the value at each vertex using prolongation matrix.

We use V -cycle multigrid, which is made up of a down cycle and up cycle. Down cycle is a

sequence of smoothing and restriction operations performed alternately starting from finest grid

till we reach coarsest grid. Up cycle is a combination of prolongation and smoothing operations

performed alternately starting with the coarsest grid till we reach finest grid. The multigrid V -cycle

is repeated till the desired convergence is reached.

5.4 Integration with CFD Solver

In order to solve Navier-Stokes equation, the solver has been integrated with in-house developed

CFD software. The solver accelerates pressure Poisson equation solving and the block diagram of

the CFD solver is shown in Fig 5.3.

Write Output

Start

End

Write Time Step Data into

If true

If false

Read from CGNS Generating Connectivity
 Information

Initializing Simulation Initializing Flow

Calculation of Predictor
 Velocity

 Parameters Field
 File

GPU Accelerated
Pressure Poisson Solving

Calculating Updated
 Velocity

termination condition
Check for

 till Convergence

Initialize Current Solution

 File

 as Flow Field

Figure 5.3: Block Diagram of CFD Solver with GPU Accelerated Pressure Poisson Solving

18

Chapter 6

Experiments and Results

6.1 Performance Metrics

The usual performance metric used for non-multigrid solver is number of iterations for convergence.

However, the same can’t be used for multigrid as the grids are of different size and the amount of

work done per iteration is not same across all levels. Hence work units [36] is generally used as

the performance metric for multigrid solvers. Work units is defined as the sum total of number of

updates in all levels normalized to number of points in the finest grid

Work units =
Total no. of updates in all levels

No. of points in finest grid

The speed up achieved is calculated relative to non-multigrid serial implementation. Pre-processing

time is not considered for result comparison as it is a one time activity. Often, different analy-

sis/simulations are carried on same mesh and pre-processing need not be repeated. The pre-processed

multigrid can also be stored persistently on the disk for further simulations.

6.2 Heat Transfer Problem

Heat transfer, as name suggests is the transfer of thermal energy from a body at a high temperature

to another at a lower temperature. In unsteady state heat transfer problem, the temperature within

the system varies with time. The unsteady state heat transfer problem is one of the fundamental

problems in CFD and many other physical processes like potential flow, mass diffusion, flow through

porous media etc. are governed by similar mathematical equations.

6.2.1 Steady and Unsteady State Heat Transfer Problem

The steady state heat transfer is governed by the equation,

∇.k∇T = 0

19

where T is the temperature and k is the conductivity. The discretization for the above governing

equation is,

aiTi =
�

j∈N(i)

aijTj

aij =
kijsij
dij

ai =
�

j∈N(i)

aij

where, kij = mean conductivity of i and j, sij = interface area between i and j and dij = distance

between i and j.

The unsteady state heat transfer is governed by the equation,

ρc
∂T

∂t
= ∇.k∇T

where T is the temperature, ρ is the density, c is the specific heat and k is conductivity of the

material. The discretization for the above governing equation is,

aiTi =
�

j∈N(i)

aijTj + a0iT
0
i

a0i =
ρcvi
Δt

aij =
kijsij
dij

ai =
�

j∈N(i)

aij

where, kij = mean conductivity of i and j, sij = interface area between i and j, dij = distance

between i and j and vi = control volume around i and Δt is the time step size [37].

6.2.2 Experimental Setup

Serial implementations which include non-multigrid as well as multigrid implementations are run on

Intel Xeon E5-2600 2.60 GHz processor. The operating system used is 64-bit Ubuntu 12.04 LTS.

Parallel implementation which includes non-multigrid and multigrid GPU implementations of AMG

solver are run on NVIDIA Kepler K20Xm GPU with CUDA driver version 5.5. The GPU has 2668

cores, 6GB device memory. The solver has been written in C++ and is compiled using g++ 4.6.3,

nvcc 5.5 compilers.

6.2.3 Results

The steady and unsteady state problems are solved on an unstructured unit cube as show in Fig 6.1.

For steady state problem, the temperature at all faces except one is set constant at 300 and one face

is set constant at 600. For unsteady state problem, the temperature at all faces except one is set

constant at 300 and one face is kept sinusoidally varying, starting from 600 at time zero. The time

step size of 0.01 is used and the experiment is run for 24000 time steps. The temperature variation

given for each time step is

T = 600 + 100 sin
2πt

24

The multigrid parameters for different grids used in experiment are shown in Table 6.1. At each

level in the multigrid, two iterations of Gauss Seidel is used to smooth the error. The α value used

is 5. The β values starts with value of 1 in the first level and is incremented for each level.

20

X

Y

Z

1

1

1

300

300

300

300

600

(a)

X

Y

Z

1

1

1

300

300

300

300

600 + 100 sin(2× 3.14× time/24)

(b)

Figure 6.1: Computational Domain for (a) Steady state heat transfer problem (b)Unsteady state heat
transfer problem

Grid Size θ Number of levels
89126 0.15 4
200337 0.1 4
305334 0.15 5
510940 0.1 5
701161 0.1 5
1699751 0.1 5
2345137 0.2 6

Table 6.1: Multigrid Parameters

Results for Steady State Heat Transfer Problem

Table 6.2 gives the work unit comparison between non-multigrid and multigrid solvers. The solve

time for serial, parallel implementations of non-multigrid and multigrid solvers is summarized in

Table 6.3. The speed up achieved by serial multigrid, parallel non-multigrid and parallel multigrid

solvers is shown in Fig 6.2. Serial multigrid and parallel non-multigrid solvers achieve a speed up of

19x and 41x respectively where as the multigrid solver on GPU achieves speed up close to 2157x.

Grid Size Without Multigrid With Multigrid
89126 810 25.88
200337 1293 38.73
305334 1528 23.63
510940 2019 25.44
701161 2369 28.95
1699751 3555 28.76
2345137 4219 29.21

Table 6.2: Work Unit Comparison Between Non-multigrid and Multigrid Solvers

The temperature contour along Z = 0.5 plane for a grid of size 0.1 million is shown in Fig 6.3.

21

 1

 10

 100

 1000

 10000

0.0 500.0k 1.0M 1.5M 2.0M 2.5M

L
o
g
 S

c
a
le

 o
f
S

p
e
e
d
 u

p

Grid Size

Speed up for steady state heat transfer problem

CPU Multigrid
GPU without Multigrid

GPU Multigrid

Figure 6.2: Solve time speed up comparison for flow steady state heat transfer problem

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T

600

580

560

540

520

500

480

460

440

420

400

380

360

340

320

300

Figure 6.3: Temperature contour along Z = 0.5 plane

Results for Unsteady State Heat Transfer Problem

The solve time for serial, parallel implementations of non-multigrid and multigrid solvers is summa-

rized in Table 6.4. The speed up achieved by serial multigrid, parallel non-multigrid and parallel

multigrid solvers is shown in Fig 6.4. Parallel non-multigrid solver achieve a speed up of 20x where

as the multigrid solver on GPU achieves speed of 29x. The speedup achieved by multigrid GPU

implementation is understandably low when compared to that of steady state problem due to the

fact that once steady state is reached, the multigrid has little impact as it takes only few iterations

22

Table 6.3: Solve Time Comparison for Steady State Heat Transfer Problem

Grid Size CPU CPU-MG GPU GPU-MG
89153 14.68 sec 3.86 sec 1.19 sec 0.11 sec
200337 59.85 sec 7.69 sec 3.43 sec 0.21 sec
305334 1 min 40 sec 15.52 sec 5.4 sec 0.22 sec
510940 3 min 53 sec 19.83 sec 11.09 sec 0.3 sec
701161 6 min 25 sec 27.81 sec 17.62 sec 0.4 sec
1699751 24 min 37 sec 1 min 48 sec 1 min 0.92 sec
2345137 40 min 38 sec 2 min 6 sec 1 min 38 sec 1.13 sec

for convergence at each time step.

 1

 10

 100

0.0 500.0k 1.0M 1.5M 2.0M 2.5M

L
o
g
 S

c
a
le

 o
f
S

p
e
e
d
 u

p

Grid Size

Speed up for unsteady state heat trasnfer problem

CPU Multigrid
GPU without Multigrid

GPU Multigrid

Figure 6.4: Solve time speed up comparison for flow unsteady state heat transfer problem

Table 6.4: Solve Time Comparison for Unsteady State Heat Transfer Problem

Grid Size CPU without MG CPU with MG GPU without MG GPU with MG
89153 9 min 5 sec 8 min 9 sec 1 min 9 sec 40.16 sec
200337 23 min 46 sec 21 min 20 sec 1 min 52 sec 1 min 13 sec
305334 33 min 46 sec 31 min 6 sec 2 min 23 sec 1 min 36 sec
510940 58 min 9 sec 54 min 49 sec 3 min 32 sec 2 min 27 sec
701161 1 hr 20 min 25 sec 1 hr 17 min 4 min 40 sec 3 min 18 sec
1699751 3 hr 34 min 43 sec 3 hr 25 min 43 sec 10 min 44 sec 7 min 34 sec
2345137 4 hr 54 min 47 sec 4 hr 45 min 14 sec 14 min 34 sec 10 min 4 sec

Correctness

The results of steady and unsteady problem obtained using our solver are compared against those

obtained using commercial software ANSYS FLUENT. For steady state problem, Fig 6.5 compares

the temperature on a line along Z dimension at X = 0.1 and Y = 0.5. For unsteady state problem,

23

Fig 6.6 compares the temperature at point X = 0.01, Y = 0.5 and Z = 0.5. The implementation in

this work suffers an average error of 1.7% with respect to ANSYS results.

 300

 350

 400

 450

 500

 550

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
e
m

p
e
ra

tu
re

Z

Fluent Solver vs AMG Solver

AMG Solver
Fluent Solver

Figure 6.5: Temperature on a line along Z dimension at X = 0.1 and Y = 0.5

 500

 550

 600

 650

 700

 0 50 100 150 200

T
e
m

p
e
ra

tu
re

Time

Fluent Solver vs AMG Solver

AMG Solver
Fleunt Solver

Figure 6.6: Temperature at point X = 0.01, Y = 0.5 and Z = 0.5

24

6.3 Accelerating Pressure Poisson Solving in Navier-Stokes

Problem

In our experiments, we consider Navier-Stokes equations that are solved to obtain velocity and

pressure field using semi-implicit predictor-corrector approach [38]. The governing equations are

discretized using finite volume approach. We use our GPU AMG solver to accelerate solving pressure

Poisson equations, which is the most time consuming task in these simulations. The pressure Poisson

equation is given by

∇2.P =
ρ

Δt
∇.�U

where P is the pressure, ρ is density of the fluid, t is the time step and �U is the velocity field vector.

Finite volume discretization of the equation is given by

�

f

∇Pf .Sf =
ρ

Δt

�

f

Ff

where ∇Pf is gradient of pressure at each face of the cell, Sf is the surface area of respective face

of the cell and Ff is the flux through each face of the cell. Expanding the above equations further

will result in equation of the form

aiPi =
�

j∈N(i)

aijPj −
�

j∈N(i)

bijFj

We solve Navier-Stokes equations for (a) 3D flow over lid driven cavity problem (convex grid)

(b) 3D laminar flow past square cylinder problem (concave grid) and (c) Plain Jet Problem (concave

grid).

6.3.1 Experimental Setup

Serial implementations which include non-multigrid as well as multigrid implementations are run

on Intel Xeon CPU X3430 2.40 GHz. The operating system used is 64-bit CentOS 5.10. Parallel

implementation which includes non-multigrid and multigrid GPU implementations of AMG solver

are run on NVIDIA Kepler K20Xm GPU with CUDA driver version 5.5. The GPU has 2668 cores,

6 GB device memory and is controlled by host with Intel Xeon E5-2600 2.60 GHz processor. The

operating system used is 64-bit Ubuntu 12.04 LTS. The solver has been written in C++ and is

compiled using g++ 4.6.3, nvcc 5.5 compilers.

6.3.2 Results

Solving Navier-Stokes consists of solving pressure Poisson equations for multiple discrete time steps.

Reaching Navier-Stokes steady state will take around thousands of such time steps. For our result

comparisons, we use the time taken by our AMG solver to solve pressure Poisson equations for one

such time step.

25

Results for Flow Over Lid Driven Cavity Problem

We solve Navier-Stokes equation for 3D flow over lid driven cavity. The computational domain is

unit cube as shown in Fig 6.7. We use Dirichlet boundary condition for velocities at all the surfaces

(u = 1, v = 0 and w = 0 for lid and u = 0, v = 0 and w = 0 for all other surfaces) and Neumann

boundary condition for pressure at all surfaces (∂P∂n = 0). The multigrid parameters for different

grids used in experiment are shown in Table 6.5. At each level in the multigrid, two iterations of

Gauss-Seidel is used to smooth the error.The β values starts with value of 1 in the first level and is

incremented for each level.

Lid

X

Y

Z

u = 1, v = 0, w = 0 and ∂P
∂n

= 0 at lid

u = 0, v = 0, w = 0 and ∂P
∂n

= 0 at all other faces

1

1

1

Figure 6.7: Computational domain for flow over lid driven cavity problem

Table 6.5: Multigrid Parameters for Flow Over Lid Driven Cavity Problem

Grid Size θ Number of levels α

1060000 0.05 4 5
1580000 0.25 4 5
2100000 0.05 4 5
2620000 0.05 4 5

Table 6.6 gives the work unit comparison between non-multigrid and multigrid solvers. The

Pressure Poisson solve time for serial, parallel implementations of non-multigrid and multigrid solvers

is summarized in Table 6.7. The speed up achieved by serial multigrid, parallel non-multigrid and

parallel multigrid solvers is shown in Fig 6.8. Serial multigrid and parallel non-multigrid solvers

achieve a speed up of 3x and 600x respectively where as the multigrid solver on GPU achieves speed

up close to 915x.

To validate the solutions, we solve Navier-Stokes problem till steady state using our GPU AMG

solver to accelerate pressure Poisson solution. The X velocity contour along Z = 0.5 plane for grid

of 1.06 million cells for RE 100 is shown in Fig 6.9. We also compare X, Y velocity plots along

center-line on Z = 0.5 plane for the same grid with those obtained by Ku et al. [39], using pseudo

spectral method for RE 100 and RE 1000. Figures 6.10, 6.11 confirm that the results are in good

agreement with the experimental results.

26

Table 6.6: Work Unit Comparison Between Non-multigrid and Multigrid Solvers for Flow Over Lid Driven
Cavity Problem

Grid Size Without Multigrid With Multigrid
1060000 19604 1226.86
1580000 26620 1784.54
2100000 36036 3175.43
2620000 47242 8644.2

 1

 10

 100

 1000

 10000

1.0M 1.5M 2.0M 2.5M

L
o
g
 P

lo
t
o
f
S

p
e
e
d
 u

p

Grid Size

Speed up for Lid Driven Cavity Problem

CPU Multigrid
GPU without Multigrid

GPU Multigrid

Figure 6.8: Pressure Poisson solve time speed up comparison for flow over lid driven cavity problem

Table 6.7: Pressure Poisson Solve Time Comparison for Flow Over Lid Driven Cavity Problem

Grid Size CPU without MG CPU with MG GPU without MG GPU with MG
1060000 3 hr 8 min 54 sec 1 hr 2 min 20 sec 21.09 sec 9.69 sec
1580000 5 hr 23 min 33 sec 1 hr 52 min 13 sec 42.89 sec 18.84 sec
2100000 11 hr 30 min 50 sec 3 hr 14 min 20 sec 1 min 16 sec 33.09 sec
2620000 20 hr 8 min 37 sec 10 hr 48 min 34 sec 2 min 4 sec 1 min 19 sec

Results for Laminar Flow Past Square Cylinder Problem

We also solve Navier-Stokes equations for laminar flow past square cylinder problem. The compu-

tational domain is concave as shown in Fig 6.12. We use the following boundary conditions:

• At Inlet : Dirichlet boundary condition for velocities (u = 1, v = 0 and w = 0) and Neumann

boundary condition for pressure (∂P∂n = 0)

• At Outlet : Dirichlet boundary condition for pressure (P = 0) and Neumann boundary condi-

tion for velocities (∂u∂n = 0, ∂v
∂n = 0 and∂w

∂n = 0)

• At all other surfaces : Dirichlet boundary condition for velocities (u = 0, v = 0 and w = 0)

and Neumann boundary condition for pressure (∂P∂n = 0).

27

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

VelocityX

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1

Figure 6.9: X velocity contour along Z = 0.5 plane for RE 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1 -0.5 0 0.5 1

Y
 c

o
-o

rd
in

a
te

Velocity in X direction

Ku. et. al vs AMG Solver

Ku. et. al - Re 100
AMG Solver Results - Re 100

Ku. et. al -Re 1000
AMG Solver Results -Re 1000

Figure 6.10: Velocity in X direction along the center line

The multigrid parameters for different grids used in experiment are shown in Table 6.8. At each

level in the multigrid, two iterations of Gauss-Seidel is used to smooth the error.

Table 6.9 gives the work unit comparison between non-multigrid and multigrid solvers. The

pressure Poisson solve time for serial, parallel implementations of non-multigrid and multigrid solvers

is summarized in Table 6.10. The speedup achieved by serial multigrid, parallel non-multigrid and

parallel multigrid solvers is shown in Fig 6.13. Serial multigrid and parallel non-multigrid solvers

achieve a speed up of 2x and 113x respectively where as the multigrid solver on GPU achieves speed

up close to 1020x.

28

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1 -0.5 0 0.5 1

X
 c

o
-o

rd
in

a
te

Velocity in Y direction

Ku. et. al vs AMG Solver

Ku. et. al - Re 100
AMG Solver Results - Re 100

Ku. et. al -Re 1000
AMG Solver Results -Re 1000

Figure 6.11: Velocity in Y direction along the center line

inlet

10

30

1
20

outlet

0.1

1

square cylinder

Figure 6.12: Computational domain for laminar flow past square cylinder problem

Table 6.8: Multigrid Parameters for Laminar Flow Past Square Cylinder Problem

Grid Size θ Number of levels α β

203748 0.12 3 5 0.2
302310 0.1 3 5 0.2
403510 0.01 4 5 0.2
1713160 0.05 4 5 0.2

Table 6.9: Work Unit Comparison between Non-Multigrid and Multigrid Solvers for Laminar Flow Past
Square Cylinder Problem

Grid Size Without Multigrid With Multigrid
203748 179829 11030
302310 189092 12087.1
403510 326385 15430.6
1713160 634579 31458.3

To validate the solutions, we solve Navier-Stokes problem till steady state using our GPU AMG

solver to accelerate pressure Poisson solution. The X velocity contour along Z = 0.5 plane for grid

29

 1

 10

 100

 1000

 10000

200k 250k 300k 350k 400k

L
o
g
 P

lo
t
o
f
S

p
e
e
d
 u

p

Grid Size

Speed up for Flow Over Square Cylinder Problem

CPU Multigrid
GPU without Multigrid

GPU Multigrid

Figure 6.13: Pressure Poisson solve time speed up comparison for laminar flow past square cylinder problem

Table 6.10: Pressure Poisson Solve Time Comparison for Laminar Flow Past Square Cylinder Problem

Grid Size CPU without MG CPU with MG GPU without MG GPU with MG
203748 2 hr 2 min 25 sec 55 min 7 sec 41.35 sec 6.61 sec
302310 3 hr 4 min 40 sec 1 hr 39 min 10 sec 57.09 sec 9.19 sec
403510 7 hr 13 min 14 sec 1 hr 55 min 22 sec 2 min 1 sec 15.47 sec
1713160 26 hr 19 min 48 sec 14 hr 56 min 10 sec 13 min 53 sec 1 min 33 sec

of 0.3 million cells for RE 30 is shown in Fig 6.14. We also plot re-circulation length against Reynold

number (Fig 6.15) and validate the same against those of Breuer M et al. [40].

Results for Plain Jet Problem

We solve Navier-Stokes equations for plain jet problem. The computational domain is concave as

shown in Fig 6.16. We use the following boundary conditions:

• At Inlet 1 : Dirichlet boundary condition for velocities (u = 0, v = 0 and w = 1) and Neumann

boundary condition for pressure (∂P∂n = 0) .

• At Inlet 2 : Dirichlet boundary condition for velocities (u = 0, v = 0 and w = 0) and Neumann

boundary condition for pressure (∂P∂n = 0).

• At Outlet : Dirichlet boundary condition for pressure (P = 0) and Neumann boundary condi-

tion for velocities (∂u∂n = 0, ∂v
∂n = 0 and∂w

∂n = 0).

• At all other surfaces : Dirichlet boundary condition for velocities (u = 0, v = 0 and w = 0)

and Neumann boundary condition for pressure (∂P∂n = 0).

The multigrid parameters for different grids used in experiment are shown in Table 6.11. At each

level in the multigrid, two iterations of Gauss-Seidel is used to smooth the error.

30

X

Y

0 5 10 15 20 25 30
0

5

10

15

20

25

VelocityX

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1

Figure 6.14: X velocity contour along Z = 0.5 plane for RE 30

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60 70

R
e
-c

ir
c
u
la

ti
o
n
 L

e
n
g
th

Reynold Number

Reynold Number vs Re-circulation Length

Breuer, M., et al.
AMG Solver

Figure 6.15: Reynold number vs re-circulation length for laminar flow past square cylinder problem

Table 6.12 gives the work unit comparison between non-multigrid and multigrid solvers. The

pressure Poisson solve time for serial, parallel implementations of non-multigrid and multigrid solvers

is summarized in Table 6.13. The speedup achieved by serial multigrid, parallel non-multigrid

and parallel multigrid solvers is shown in Fig 6.17. Serial multigrid is slower than non-multigrid

implementation and parallel non-multigrid solvers achieves a speed up of 15x where as the multigrid

solver on GPU achieves speed up close to 47x.

31

40d

2d

d

inlet 2

inlet 1

200d

outlet

Figure 6.16: Computational domain for plain jet problem

Table 6.11: Multigrid Parameters for Plain Jet Problem

Grid Size θ Number of levels α β

281328 0.15 3 30 0.2
1547208 0.05 5 30 0.2
1930968 0.05 5 30 0.2
2698488 0.05 5 30 0.2

Table 6.12: Work Unit Comparison between Non-Multigrid and Multigrid Solvers for Plain Jet Problem

Grid Size Without Multigrid With Multigrid
281328 518388 79350.9
1547208 924602 51743.5
1930968 1038050 59595.8
2698488 1334640 67704

 0.1

 1

 10

 100

200k 400k 600k 800k 1M 1M 1M 2M 2M

L
o
g
 S

c
a
le

 o
f
S

p
e
e
d
 u

p

Grid Size

Speed up for Flow Over Plain Jet Problem

CPU Multigrid
GPU without Multigrid

GPU Multigrid

Figure 6.17: Pressure Poisson solve time speed up comparison for plain jet problem

To validate the solutions, we solve Navier-Stokes problem till steady state using our GPU AMG

solver to accelerate pressure Poisson solution. The axial velocity in axial and radial directions

32

Table 6.13: Pressure Poisson Solve Time Comparison for Plain Jet Problem

Grid Size CPU without MG CPU with MG GPU without MG GPU with MG

281328 5 hr 17 min 7 sec 5 hr 40 min 7 sec 7 min 33 sec 5 min

1547208 1 day 10 hr 8 in 39 sec 1 day 21 hr 24 min 4 sec 1 hr 6 min 42 sec 34 min 5 sec

1930968 1 day 15 hr 46 min 20 sec 2 days 15 hr 52 min 53 sec 1 hr 33 min 37 sec 41 min 7 sec

2698488 1 day 17 hr 53 min 41 sec 4 days 9 hr 23 min 53 sec 2 hr 46 min 53 sec 53 min 55 sec

along Y = 0.5 plane for grid of 0.2 million cells for RE 10 is shown in Fig 6.18. We also plot

axial distance against axial velocity (Fig 6.19) and validate the same against those generated by

commercial software ANSYS FLUENT.

X

Z

0 1 2 3 4 5
0

1

2

3

4

5

Velocity Magnitude

1

0.9375

0.875

0.8125

0.75

0.6875

0.625

0.5625

0.5

0.4375

0.375

0.3125

0.25

0.1875

0.125

0.0625

0

Figure 6.18: Axial velocity contour in axial and radial directions along Y = 0.5 plane for RE 10

6.4 Performance Gain Due to Improved Coarsening and Ac

Transformation

In this section, we present in detail the performance gain due to improved coarsening algorithm

and Ac transformation for faster GPU implementation. For doing so, we compare performance of

implementations with and without improved coarsening, Ac transformations for (a) Heat Transfer

Problem and (b) Accelerated pressure Poisson solving in Navier-Stokes problem.

Heat Transfer Problem

Tables 6.14, 6.15 gives the work unit and solve time comparison among implementations with and

without improved Coarsening and Ac transformation. The implementations that employ original

coarsening algorithm doesn’t retain adequate boundary nodes at each level and hence diverge for

most of the grids considered. Implementations with improved coarsening retain adequate number

33

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
x
ia

l
V

e
lo

c
it
y
 (

Z
 V

e
lo

c
it
y
)

Axial Disatance (Z)

AMG Solver vs Fluent Solver

Fluent Solver - Re 10
AMG Solver - Re 10

Figure 6.19: Axial Distance vs Axial Velocity for Plain Jet Problem

of boundary nodes per level and hence converge to produces results for all the grids. Tables 6.16,

6.17 compares the number of nodes and boundary nodes at each level for different implementations

on a grid of size 2.3 million. Though Ac transformation causes slight increase in work units, it is

compensated with reduced solve time due to smaller average degree per level. Figure 6.20 compares

the average degree per level for different implementations on a grid of size 2.3 million. Without

Ac transformation, the average degree in the coarsest level is as high as 900 where as with Ac

transformation, the average degree in the coarsest level is mere 37. On the whole, the implementation

that employs improved coarsening and Ac transformation outperforms other implementations.

Table 6.14: Work Unit Comparison for Steady State Heat Transfer Problem

Grid Size
Without Ac Transformation With Ac Transformation

Original Coarsening Improved Coarsening Original Coarsening Improved Coarsening
89126 21.2 18.58 28.11 25.88
200337 Diverging 20.72 Diverging 38.73
305334 62.63 19.79 52.84 23.63
510940 Diverging 17.4 92.73 25.44
701161 Diverging 18.43 Diverging 28.95
1699751 Diverging 33.37 Diverging 28.76
2345137 Diverging 18.39 Diverging 29.21

Accelerating Pressure Poisson Solving in Navier-StokesProblem

We consider plain jet problem to illustrate the performance gain due to improved coarsening and

Ac transformation. Tables 6.18, 6.19 give the work unit and solve time comparison among imple-

mentations with and without improved Coarsening, Ac transformation. The implementations that

employ original coarsening algorithm doesn’t retain adequate boundary nodes at each level and

34

Table 6.15: Solve Time Comparison for Steady State Heat Transfer Problem

Grid Size
Without Ac Transformation With Ac Transformation

Original Coarsening Improved Coarsening Original Coarsening Improved Coarsening
89126 1.97 sec 2 sec 0.11 sec 0.11 sec
200337 Diverging 1.47 sec Diverging 0.21 sec
305334 17.98 sec 10.04 sec 0.45 sec 0.22 sec
510940 Diverging 3.22 sec 1.05 sec 0.3 sec
701161 Diverging 3.6 sec Diverging 0.4 sec
1699751 Diverging 14.23 sec Diverging 0.92 sec
2345137 Diverging 38.26 sec Diverging 1.13 sec

Table 6.16: Nodes Per Level in 2.3 Million Grid for Steady State Heat Transfer Problem

Level
Number of Nodes per Level

Without Ac Transformation With Ac Transformation
Original Coarsening Improved Coarsening Original Coarsening Improved Coarsening

1 2345137 2345137 2345137 2345137
2 596299 613230 596299 613230
3 150016 167499 128159 167931
4 45110 56712 68207 81205
5 16721 23773 24091 27686
6 6819 10950 8566 9578

Table 6.17: Boundary Nodes Per Level in 2.3 Million Grid for Steady State Heat Transfer Problem

Level
Number of Boundary Nodes per Level

Without Ac Transformation With Ac Transformation
Original Coarsening Improved Coarsening Original Coarsening Improved Coarsening

1 62683 62683 62683 62683
2 13858 36194 13858 36194
3 5860 18154 4335 18106
4 2159 9796 1584 9726
5 824 5162 606 4805
6 316 2580 268 2314

hence diverge for most of the grids considered. Implementations with improved coarsening retain

adequate number of boundary nodes per level and hence converge to produces results for all the

grids. Tables 6.20, 6.21 compares the number of nodes and boundary nodes at each level for differ-

ent implementations on a grid of size 2.69 million. Though Ac transformation causes slight increase

in work units, it is compensated with reduced solve time due to smaller average degree per level.

Figure 6.21 compares the average degree per level for different implementations on a grid of size

2.69 million. Without Ac transformation, the average degree in the coarsest level is close to 300

where as with Ac transformation, the average degree in the coarsest level is only 85. On the whole,

the implementation that employs improved coarsening and Ac transformation outperforms other

implementations.

35

 10

 100

 1000

 10000

 1 2 3 4 5 6

L
o
g
 S

c
a
le

 o
f
A

v
e
ra

g
e
 D

e
g
re

e

Level

Average Degree per Level

Without Ac Transformation Original Coarsening

Without Ac Transformation Improved Coarsening

With Ac Transformation Original Coarsening

With Ac Transformation Improved Coarsening

Figure 6.20: Average Degree per Level in 2.3 Million Grid for Steady State Heat Transfer Problem

Table 6.18: Work Unit Comparison for Plain Jet Problem

Grid Size
Without Ac Transformation With Ac Transformation

Original Coarsening Improved Coarsening Original Coarsening Improved Coarsening
281328 75231.4 79789.3 74565.4 79350.9
1547208 Diverging 60800.4 Diverging 51743.5
1930968 Diverging 67581.5 Diverging 59595.8
2698488 Diverging 63386.8 Diverging 67704

Table 6.19: Solve Time Comparison for Plain Jet Problem

Grid Size
Without Ac Transformation With Ac Transformation

Original Coarsening Improved Coarsening Original Coarsening Improved Coarsening
281328 6 min 15 sec 8 min 15 sec 4 min 6 sec 5 min
1547208 Diverging 6 hr 57 min 47 sec Diverging 34 min 5 sec
1930968 Diverging 5 hr 57 min 15 sec Diverging 41 min 6 sec
2698488 Diverging 4 hr 51 min 14 sec Diverging 53 min 55 sec

Table 6.20: Nodes Per Level in 2.69 Million Grid for Plain Jet Problem

Level
Number of Nodes per Level

Without Ac Transformation With Ac Transformation
Original Coarsening Improved Coarsening Original Coarsening Improved Coarsening

1 2698488 2698488 2698488 2698488
2 1349244 1357528 1349244 1357528
3 429586 442860 437573 452008
4 141328 152495 142870 154367
5 40817 47930 40947 48170

36

Table 6.21: Boundary Nodes Per Level in 2.69 Million Grid for Plain Jet Problem

Level
Number of Boundary Nodes per Level

Without Ac Transformation With Ac Transformation
Original Coarsening Improved Coarsening Original Coarsening Improved Coarsening

1 143208 143208 143208 143208
2 71604 78000 71604 78000
3 8288 19456 10282 21547
4 2402 11810 2877 13081
5 678 6745 806 7269

 0

 50

 100

 150

 200

 250

 300

 350

 1 1.5 2 2.5 3 3.5 4 4.5 5

A
v
e
ra

g
e
 D

e
g
re

e

Level

Average Degree per Level

Without Ac Transformation Original Coarsening

Without Ac Transformation Improved Coarsening

With Ac Transformation Original Coarsening

With Ac Transformation Improved Coarsening

Figure 6.21: Average Degree per Level in 2.69 Million Grid for Plain Jet Problem

37

Chapter 7

Multi GPU Implementation and

Results

The size of problems that can be solved on a GPU are limited by its memory. Similarly, the amount

of speed up that can be achieved is also limited by the GPU hardware i.e., the number of GPU

cores available. Thus, it is natural to go for multi GPU implementation to further speed up the

computations and/or solve problems that do not fit into single GPU memory. In the following, we

discuss the multi GPU implementation of AMG Solver.

7.1 Domain Decomposition

The first step towards a multi GPU implementation is to partition the working set to different GPUs.

For AMG solver, the mesh graph corresponding to matrix A has be to partitioned among the GPUs.

If k is the number of GPUs available, k-way partitioning (as defined in Definition 2) of the mesh

graph is required.

Definition 2 (k-way graph partitioning [41]) Given a graph G = (V,E), partition V into k

non-empty and disjoint sets V1, V2, ..., Vk such that the number of edges connecting vertices of k

groups is minimized

k-way graph partitioning assigns to each vertex i ∈ V , a label P (i) ∈ {1...k} indicating the

partition to which the vertex belongs.

Definition 3 (Partition Boundary Node) Node that shares an edge with a node belonging to

different partition is called a partition boundary node. A node i ∈ V is partition boundary node iff

∃j∈N(i)P (i) �= P (j)

Graph partitioning is known to be NP-Complete [42] and hence many heuristic algorithms exist

to produce high quality partitioning. In our work, we use METIS [41] which is based on multi level

graph partitioning approach for domain decomposition.

38

7.2 Multi GPU Implementation

7.2.1 Non-Multigrid Solver

Along with the mesh graph, the vertex data should also be partitioned. As the partition boundary

nodes require the data from other partition boundary nodes, we store a copy of other partitions

boundary data also as part of current partition data. To summarize, each GPU has data pertaining

to its partition as well as other partitions boundary node data. We create as many CPU threads

as the number of GPUs. Each CPU thread initializes its GPU, copies the corresponding partition

data to global memory. The CPU threads simultaneously invokes Gauss Seidel smoothing kernel

following which each GPU communicates its partition boundary node updates to other GPUs.

7.2.2 Multigrid Solver

Along with mesh graph and vertex data, the prolongation and restriction matrices are also parti-

tioned. We use METIS only to partition the mesh graph corresponding to original grid (finest level).

We make use of the fact that the C-points are subset of points in the original grid and partition the

remaining grids in the hierarchy using Algorithm 2.

Algorithm 2 Partitioning Coarse Grids

Require: Partition label for all i ∈ V in mesh graph corresponding to matrix A

Require: n is the number of levels in the multigrid

1: for i = 0 to n do

2: nc ← no. of nodes in grid corresponding to level i

3: for j = 0 to nc do

4: Pi(j) ← P0(Vj) {partition label of vertex in finest grid which corresponds to vertex j in

level i is assigned to j}

5: end for

6: end for

We create as many CPU threads as the number of GPUs. Each CPU thread initializes its GPU,

copies the corresponding partition data to global memory. The CPU threads simultaneously start

the down cycle which involves the following: (a) calling Gauss Seidel kernel on corresponding GPU

(b) communicating the partition boundary node updates to other GPUs and (c) calling restriction

kernels on corresponding GPU. Once down cycle is completed, the CPU threads simultaneously

start the up cycle which involves the following: (a) calling prolongation kernels on corresponding

GPU (b) calling Gauss Seidel kernel on corresponding GPU and (c) communicating the partition

boundary node updates to other GPUs.

7.3 Experimental Setup

All the experiments were carried out on a machine with two Intel Xeon E5-2600 2.60 GHz processors,

each controlling 2 NVIDIA Kepler K20Xm GPUs with CUDA driver version 5.5. The operating

system used is 64-bit Ubuntu 12.04 LTS. Each GPU has 2668 cores and 6 GB device memory.

39

OpenMP [43] directives are used to create and manage CPU threads. The solver has been written

in C++ and is compiled using g++ 4.6.3, nvcc 5.5 compilers.

7.4 Results

For evaluation, we consider the same set of experiments that were described in chapter 6 and use

solve time as the metric for comparison.

Heat Transfer Problem

Table 7.1 compares the solve time for non-multigrid single GPU and multi GPU implementations.

Figure 7.1 shows the speed up achieved by the solver for grids of different size, when compared to

that of non-multigrid single GPU implementation. For grids of size greater than 0.7 million, the

multi GPU solver achieves a speed up of 3 times compared to single GPU solver.

Table 7.1: Non-Multigrid Multi GPU Solve Time Comparison for Steady State Heat Transfer Problem

Grid Size 1 GPU 2 GPUs 3 GPUs 4 GPUs
89126 1.2 sec 0.97 sec 1.04 sec 1.12 sec
200337 3.43 sec 2.48 sec 2.54 sec 2.15 sec
305334 5.4 sec 3.65 sec 3.44 sec 2.71 sec
510940 11.09 sec 6.94 sec 5.66 sec 4.84 sec
701161 17.62 sec 10.38 sec 8 sec 6.93 sec
859048 23.69 sec 13.91 sec 10.46 sec 8.69 sec
1577761 58.96 sec 33.55 sec 24.45 sec 20.25 sec
1699751 1 min 34.88 sec 25.45 sec 20.75 sec
2345137 1 min 38 sec 55.3 sec 39.77 sec 31.76 sec

 1

 1.5

 2

 2.5

 3

 3.5

 2 3 4

S
p
e
e
d
 u

p

No. of GPUs

No. of GPUs vs Speed up

0.1M
0.2M
0.3M
0.5M
0.7M

0.85M
1.5M

1.69M
2.3M

Figure 7.1: Non-Multigrid Multi GPU Solver Speed up for Heat Transfer Problem

40

Tables 7.2 compares the solve time for single GPU and multi GPU AMG solvers. Figure 7.2

shows the speed up achieved by the solver for grids of different size, when compared to that of single

GPU AMG solver. For smaller grids (whose size is less than 1.5 million) the multi GPU solver is

slower than single GPU solver due to the fact that the communication cost dominates computation

cost. For grids of size greater than 1.5 million, the multi GPU solver achieves a speed up of 1.5

times compared to single GPU solver.

Table 7.2: Multigrid Multi GPU Solve Time Comparison for Steady State Heat Transfer Problem

Grid Size 1 GPU 2 GPUs 3 GPUs 4 GPUs
89126 0.11 sec 0.15 sec 0.18 sec 0.23 sec
200337 0.21 sec 0.25 sec 0.28 sec 0.31 sec
305334 0.22 sec 0.24 sec 0.27 sec 0.29 sec
510940 0.3 sec 0.33 sec 0.36 sec 0.34 sec
701161 0.4 sec 0.41 sec 0.42 sec 0.44 sec
859048 0.46 sec 0.48 sec 0.44 sec 0.46 sec
1577761 1.08 sec 0.86 sec 1.02 sec 1.05 sec
1699751 0.92 sec 0.88 sec 0.61 sec 0.55 sec
2345137 1.13 sec 0.84 sec 0.76 sec 0.74 sec

 0

 0.5

 1

 1.5

 2

 2.5

 2 3 4

S
p
e
e
d
 u

p

No. of GPUs

No. of GPUs vs Speed up

0.1M
0.2M
0.3M
0.5M
0.7M

0.85M
1.5M

1.69M
2.3M

Figure 7.2: Multigrid Multi GPU Solver Speed up for Heat Transfer Problem

Accelerating Pressure Poisson Solving in Navier-StokesProblem

(a) Flow Over Lid Driven Cavity Problem

Table 7.3 compares the solve time for non-multigrid single GPU and multi GPU implementations.

Figure 7.3 shows the speed up achieved by the solver for grids of different size, when compared to

that of non-multigrid single GPU implementation. For grids of size greater than 2.6 million, the

multi GPU solver achieves a speed up of 2 times compared to single GPU solver.

41

Table 7.3: Non-Multigrid Multi GPU Solve Time Comparison for Flow Over Lid Driven Cavity Problem

.

Grid Size 1 GPU 2 GPUs 3 GPUs 4 GPUs
1060000 51 sec 55 sec 44 sec 40 sec
1580000 1 min 59 sec 1 min 25 sec 1 min 21 sec 1 min 12 sec
2100000 3 min 43 sec 3 min 3 sec 2 min 32 sec 2 min 2 sec
2620000 5 min 47 sec 4 min 55 sec 3 min 36 sec 3 min 5 sec
3140000 9 min 1 sec 7 min 32 sec 5 min 29 sec 4 min 35 sec
16000000 1 hr 17 min 20 sec 1 hr 2 min 38 sec 44 min 2 sec 34 min 32 sec

 0.5

 1

 1.5

 2

 2.5

 2 3 4

S
p
e
e
d
 u

p

No. of GPUs

No. of GPUs vs Speed up

1M
1.58M
2.1M
2.6M
3.1M
16M

Figure 7.3: Non-Multigrid Multi GPU Solver Speed up for Flow Over Lid Driven Cavity Problem

(b) Laminar Flow Past Square Cylinder Problem

Table 7.4 compares the solve time for non-multigrid single GPU and multi GPU implementations.

Figure 7.4 shows the speed up achieved by the solver for grids of different size, when compared to that

of non-multigrid single GPU implementation. For smaller grids (of size less than 1.7 million), multi

GPU implementation is slower than single GPU implementation due to fact that communication

cost dominates the computation cost. For grids of size greater than 1.7 million, the multi GPU

solver achieves a speed up of 1.6 times compared to single GPU solver.

Table 7.4: Non-Multigrid Multi GPU Solve Time Comparison for Laminar Flow Past Square Cylinder
Problem

.

Grid Size 1 GPU 2 GPUs 3 GPUs 4 GPUs
203748 1 min 20 sec 1 in 55 sec 1 min 58 sec 2 min 16 sec
302310 1 min 54 sec 2 min 20 sec 2 min 26 sec 2 min 33 sec
403510 4 min 10 sec 5 min 9 sec 4 min 45 sec 5 min 16 sec
1713160 39 min 10 sec 35 min 11 sec 27 min 27 sec 23 min 35 sec
2073800 1 hr 7 min 31 sec 1 hr 18 sec 45 min 13 sec 39 min 5 sec

42

 0.5

 1

 1.5

 2

 2 3 4

S
p
e
e
d
 u

p

No. of GPUs

No. of GPUs vs Speed up

0.2M
0.3M
0.4M
1.7M

2M

Figure 7.4: Non-Multigrid Multi GPU Solver Speed up for Laminar Flow Past Square Cylinder Problem

(b) Plain Jet Problem

Table 7.4 compares the solve time for non-multigrid single GPU and multi GPU implementations.

Figure 7.4 shows the speed up achieved by the solver for grids of different size, when compared to

that of non-multigrid single GPU implementation. For grid of size 2.7 million, the multi GPU solver

achieves a speed up of 1.9 times compared to single GPU solver.

Table 7.5: Non-Multigrid Multi GPU Solve Time Comparison for Plain Jet Problem

.
Grid Size 1 GPU 2 GPUs 3 GPUs 4 GPUs
281328 7 min 33 sec 9 min 48 sec 8 min 52 sec 8 min 41 sec
1547208 1 hr 6 min 41 sec 1 hr 51 sec 45 min 33 sec 40 min 8 sec
1930968 1 hr 33 min 37 sec 1 hr 23 min 7 sec 1 hr 1 min 40 sec 52 min 56 sec
2698488 2 hr 46 min 53 sec 2 hr 21 min 50 sec 1 hr 43 min 58 sec 1 hr 26 min 53 sec

For the various experiments carried out, the non-multigrid multi GPU solver achieves a speed up

of close to 3 times,compared to single GPU non-multigrid solver. For heat transfer problem, multi

GPU AMG achieves a speed up of 1.5 times, compared to single GPU solver. The performance

of multi GPU AMG solver depends on various factors like number of levels in the multigrid and

the size of coarsest grid in the hierarchy etc. The underlying GPU interconnect also has significant

impact on communication latency among the GPUs. To improve the efficiency of multi GPU AMG

solver, further study and analysis has to be carried out on effective overlapping of computation and

communication on GPUs which increases per GPU SM Utilization

43

 0.5

 1

 1.5

 2

 2 3 4

S
p
e
e
d
 u

p

No. of GPUs

No. of GPUs vs Speed up

0.2M
1.5M
1.9M
2.7M

Figure 7.5: Non-Multigrid Multi GPU Solver Speed up for Plain Jet Problem

44

Chapter 8

Conclusion and Future Work

In this work, we implemented a parallel AMG Solver for three dimensional unstructured grids on

GPU. The quality of coarsening and GPU acceleration is improved by retaining more boundary

nodes and by reducing high degree nodes in coarse grids. Our GPU implementation uses graph

representations that aid coalesced memory access. We also extend the implementation to multiple

GPUs using METIS for domain decomposition. Both the solvers (single GPU as well as Multi GPU)

are integrated with in-house developed CFD software to solve Navier-Stokesequations. To evaluate

the speed up given by our multigrid GPU implementation, we solve heat transfer problem on unit

cube and Navier-Stokes problems, with GPU accelerated pressure Poisson solving, on both convex

and concave grids of the order of 2 million cells. We also validate the solutions obtained by our

implementation against published or commercial software generated results.

The primary focus of the work is on improving solve time and not on pre-processing time as it

is considered to be a one time activity. However, pre-processing time can be improved using (a)

parallel coarsening techniques (b) parallel graph coloring and (c) parallel graph partitioning in case

of multi GPU implementation. Further changes have to be done to coarsening and interpolation to

deal with positive off-diagonal entries (due to cross diffusion terms) in matrix A. Different coarsening

techniques like aggressive coarsening, aggregate coarsening etc and different interpolation techniques

like direct and indirect interpolation etc. can also be tried out. As CPU and GPU executions are

asynchronous, it will be worthwhile to have an implementation which splits the work between CPU

and GPUs instead of completely offloading the work to GPUs. Further study and analysis has to be

done on different mechanism to effectively overlap computation and communication on the GPUs

so as to boost the speed up of multi GPU AMG solver.

45

References

[1] S. P. Vanka, A. F. Shinn, and K. C. Sahu. Computational fluid dynamics using graphics process-

ing units: challenges and opportunities. In ASME 2011 International Mechanical Engineering

Congress and Exposition. American Society of Mechanical Engineers, 2011 429–437.

[2] J. Krüger and R. Westermann. Linear algebra operators for GPU implementation of numerical

algorithms. In ACM Transactions on Graphics (TOG), volume 22. ACM, 2003 908–916.

[3] J. D. Owens, S. Sengupta, and D. Horn. Assessment of graphic processing units (gpus) for de-

partment of defense (dod) digital signal processing (dsp) applications. Department of Electrical

and Computer Engineering, University of California, Davis, Tech. Rep. ECE-CE-2005-3 .

[4] G. P. Williams. Numerical integration of the three-dimensional Navier-Stokes equations for

incompressible flow. Journal of Fluid Mechanics 37, (1969) 727–750.

[5] A. Brandt, S. McCoruick, and J. Huge. ALGEBRAIC MULTIGRID (AMG) FOR SPARSE

MATRIX EQUATIONS. Sparsity and its Applications 257.

[6] A. Brandt. Algebraic multigrid theory: The symmetric case. Applied Mathematics and Com-

putation 19, (1986) 23–56.

[7] G. Golubovici and C. Popa. Interpolation and related coarsening techniques for the algebraic

multigrid method. In Multigrid Methods IV, 201–213. Springer, 1994.

[8] A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F. McCormick,

G. N. Miranda, and J. W. Ruge. Robustness and scalability of algebraic multigrid. SIAM

Journal on Scientific Computing 21, (2000) 1886–1908.

[9] A. Corrigan, F. F. Camelli, R. Löhner, and J. Wallin. Running unstructured grid-based CFD

solvers on modern graphics hardware. International Journal for Numerical Methods in Fluids

66, (2011) 221–229.

[10] J. Waltz. Performance of a three-dimensional unstructured mesh compressible flow solver on

NVIDIA Fermi-class graphics processing unit hardware. International Journal for Numerical

Methods in Fluids .

[11] U. M. Yang. Parallel algebraic multigrid methodshigh performance preconditioners. Springer,

2006.

[12] R. D. Falgout and U. M. Yang. hypre: A library of high performance preconditioners. In

Computational ScienceICCS 2002, 632–641. Springer, 2002.

46

[13] Z. Li, Y. Saad, and M. Sosonkina. pARMS: a parallel version of the algebraic recursive multilevel

solver. Numerical linear algebra with applications 10, (2003) 485–509.

[14] R. Biswas. Parallel Computational Fluid Dynamics: Recent Advances and Future Directions.

DEStech Publications, Inc, 2010.

[15] E. H. Phillips, Y. Zhang, R. L. Davis, and J. D. Owens. Rapid aerodynamic performance

prediction on a cluster of graphics processing units. In Proceedings of the 47th AIAA Aerospace

Sciences Meeting. 2009 2009–565.

[16] J. Tölke and M. Krafczyk. TeraFLOP computing on a desktop PC with GPUs for 3D CFD.

International Journal of Computational Fluid Dynamics 22, (2008) 443–456.

[17] G. Haase, M. Liebmann, C. C. Douglas, and G. Plank. A parallel algebraic multigrid solver on

graphics processing units. In High performance computing and applications, 38–47. Springer,

2010.

[18] P. Harish, V. Vineet, and P. Narayanan. Large graph algorithms for massively multithreaded

architectures. Centre for Visual Information Technology, I. Institute of Information Technology,

Hyderabad, India, Tech. Rep. IIIT/TR/2009/74 .

[19] V. Vineet, P. Harish, S. Patidar, and P. Narayanan. Fast minimum spanning tree for large

graphs on the GPU. In Proceedings of the Conference on High Performance Graphics 2009.

ACM, 2009 167–171.

[20] W. Wang, Y. Huang, and S. Guo. Design and Implementation of GPU-Based Prim’s Algorithm.

International Journal of Modern Education and Computer Science (IJMECS) 3, (2011) 55.

[21] A. Rungsawang and B. Manaskasemsak. Fast PageRank Computation on a GPU Cluster. In

Parallel, Distributed and Network-Based Processing (PDP), 2012 20th Euromicro International

Conference on. IEEE, 2012 450–456.

[22] D. Merrill, M. Garland, and A. Grimshaw. Scalable GPU graph traversal. In ACM SIGPLAN

Notices, volume 47. ACM, 2012 117–128.

[23] A. Darte, Y. Robert, and F. Vivien. Scheduling and Automatic Parallelization. Birkhaüser,

2000.

[24] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A Practical Automatic Polyhe-

dral Program Optimization System. In ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI). 2008 http://pluto-compiler.sourceforge.net/.

[25] T. Grosser, A. Größlinger, and C. Lengauer. Polly — Performing Polyhedral Optimizations

on a Low-Level Intermediate Representation. Parallel Processing Letters 22. http://polly.

llvm.org/.

[26] General-Purpose Computation on Graphics Hardware. http://www.gpgpu.org.

[27] CUDA Programming Guide. Nvidia Corporation, April 2012.

47

[28] A. R. Brodtkorb, T. R. Hagen, and M. L. SæTra. GPU programming strategies and trends in

GPU computing. Journal of Parallel and Distributed Computing .

[29] CUDA C Best Practices Guide. Nvidia Corporation, May 2011.

[30] W. Briggs, V. Henson, and S. McCormick. A Multigrid Tutorial. Miscellaneous Bks. Society

for Industrial and Applied Mathematics, 2000.

[31] K. Stüben. Algebraic multigrid (AMG): an introduction with applications. GMD-

Forschungszentrum Informationstechnik, 1999.

[32] K. Stuben. A review of algebraic multigrid. Journal of Computational and Applied Mathematics

128, (2001) 281–309.

[33] R. D. Falgout. An introduction to algebraic multigrid. Computing in Science and Engineering

8, (2006) 24–33.

[34] H.-C. Hege and H. Stüben. Vectorization and parallelization of irregular problems via graph

coloring. In Proceedings of the 5th international conference on Supercomputing. ACM, 1991

47–56.

[35] J. Sebastian, N. Sivadasan, and R. Banerjee. GPU Accelerated Three Dimensional Unstructured

Geometric Multigrid Solver. Accepted in IEEE HPCS 2014 .

[36] R. H. Pletcher, J. C. Tannehill, and D. Anderson. Computational fluid mechanics and heat

transfer. CRC Press, 2012.

[37] S. V. Patankar. Numerical heat transfer and fluid flow. Taylor & Francis, 1980.

[38] A. Dalal, V. Eswaran, and G. Biswas. A finite-volume method for Navier-Stokes equations on

unstructured meshes. Numerical Heat Transfer, Part B: Fundamentals 54, (2008) 238–259.

[39] H. C. Ku, R. S. Hirsh, and T. D. Taylor. A pseudospectral method for solution of the three-

dimensional incompressible Navier-Stokes equations. Journal of Computational Physics 70,

(1987) 439–462.

[40] M. Breuer, J. Bernsdorf, T. Zeiser, and F. Durst. Accurate computations of the laminar flow

past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume.

International Journal of Heat and Fluid Flow 21, (2000) 186–196.

[41] D. LaSalle and G. Karypis. Multi-threaded graph partitioning. In Parallel & Distributed

Processing (IPDPS), 2013 IEEE 27th International Symposium on. IEEE, 2013 225–236.

[42] T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions is NP-hard.

Information Processing Letters 42, (1992) 153–159.

[43] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory programming.

Computational Science & Engineering, IEEE 5, (1998) 46–55.

48

