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Abstract

The scientific and analytical applications today are increasingly becoming data in-

tensive. Many such applications deal with data that is multidimensional in nature.

Traditionally, relational database systems have been used by many data intensive

application, and relational paradigm has proved to be both natural and efficient.

However, for multidimensional data, when the number of dimensions becomes large,

relational databases are inefficient both in terms of storage and query response time.

In this thesis, we explore linearised storage, and indexed and skiplist based retrieval

on persistent arrays. The application programs are provided with a logical view of

multidimensional array. The techniques have been implemented in a home-grown

database management system called MuBase.
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Chapter 1

Introduction

Most of today’s database management systems use the relational model [3]. Rela-

tional model is a set based mathematical model. Relational model considers data as

n-ary relation. An n-ary relation being a subset of cartesian product of n domains.

In relational model, relations are represented as table. A table comprises of multiple

columns and rows. Rows are called tuples and columns are called attributes. A rela-

tional database comprises of one or more relations(tables). Consider a bank database

that consists of three relations: Customer, Account and Depositor. Database schema

is used to describe structure of database. It is described in formal language. Schema

of these relations are given below (Schema-1).

Schema-1: Bank database schema

Customer(customer id, customer name, age, sex)

Account(account id, account type, branch id, balance)

Depositor(customer id, account id)

Branch(branch id, branch name)

The Customer relation contains four attributes: customer id, customer name,

age and sex. The Account relation has four attributes: account id, account type,

branch id and amount. The Depositor relation shows relation between Customer

table and Account table.

Operations on the relational model are described by relational algebra. Rela-

tional algebra defines a set of operators on relations. Five basic operations are present

in the relational algebra: selection(σ), projection(Π), union(∪), difference(−) and
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Figure 1.1: Example: Relations in bank database

cartesian product(×). All other operations needed to manipulate data in the re-

lational model can be expressed with these five basic operations. Some of these

operations are given below.

1. Show āccount id and amount of all customers

Πaccount id,amount(Account)

2. Find āccount id of all customers those who have amount greater than 1000

Πaccount id(σamount>1000(Account))

3. Find āll account id which is having saving-bank facility only

Πaccount id(σaccount type=′saving′(Account))−Πaccount id(σaccount type=′current′(Account))

4. Find d̄etails of all those customers who have saving-bank account

Πcustomer id,customer name,account id,amount(σ Customer.customer id=Depositor.customer id

∧Account.account id=Depositor.account id
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∧Account.account type=′saving′(Customer × Account×Depositor))

Most of the commercial relational systems use a language called Standard Query

Language(SQL). IBM introduced SQL in 1970s. Later in 1986, American National

Standard Institute(ANSI) accepted it as standard. After that they revised it many

times(SQL-89, SQL-92, SQL-99, SQL-2003, SQL2006, SQL-2008). Some of the com-

mands use in SQL are SELECT, UPDATE, INSERT, DELETE. SQL equivalent of

the above queries are given below. Even though SQL is not equivalent to relational

algebra, it is powerful to express all query in commercial database system.

SQL query:

1. SELECT account id, amount

FROM Account

2. SELECT account id

FROM Account

WHERE amount > 1000

3. SELECT account id

FROM Account

WHERE account type =′ saving′

EXCEPT

SELECT account id

FROM Account

WHERE account type =′ current′

4. SELECT customer id, customer name, account id, amount

FROM Customer, Account, Depositor

WHERE Customer.customer id=Depositor.customer id

AND Account.account id=Depositor.account id

AND Account.account type=’saving’
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Data used in scientific applications such as astronomy, oceanography is usu-

ally multidimensional. Let’s consider data obtained from the Sloan Digital Sky Sur-

vey(SDSS) project [4][5]. It is a celestial scan project to obtain multi-colour images

(2 dimensional data) of sky. SDSS uses a special telescope of 2.5m length. This 120

mega-pixel camera scans 1.5 square degree of sky at a time. In SDSS’s 8 years of

operation, it covered more than one quarter of the sky. Total data size up to seventh

major data release is around 40TB: 15TB of images and 26TB of other data products,

catalog, masks, JPEG images, etc. This data is available for scientific research and ed-

ucation purpose. Scientists make 3D model from those 2D images for detailed analysis

of the sky. As a second example, consider an analytical application that keeps sale of

all products over the year in all departments. Its schema is sale table(Dept Name,

Prod Name, Day of Year, Sale)(Figure 1.2). Most frequent query on this data is

”find sales of a product in a department over the year 2010 ”, i.e. aggregation of sales

of a product in a department over the year 2010.

Figure 1.2: Multidimensional array

This thesis presents various approaches for storage and querying of large multi-

dimensional array data.
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Chapter 2

Database Support for

Multidimensional Arrays

Scientific and analytical applications, such as the ones mentioned in the previous

chapter, require arrays to be supported as first-class objects in the database. Although

relational database systems do not provide direct support for multidimensional arrays,

several approaches can be used to store multidimensional arrays in relational database

management system(RDBMS). Some of these approaches are explained below.

2.1 Binary Large Object(BLOB)[1]

BLOBs were invented at DEC by Jim Starkey[1]. BLOB is a collection of unstructured

binary data. The database system treats it as a single entity or object. That cannot

be decomposed into relational schema. It is used to store multidimensional arrays. In

BLOB, array contents are considered as stream of bytes. Storage manager does not

have any idea about the individual elements; for them its only byte stream. Meaning

of these elements is up-to application. BLOB data type consists of BLOB locator and

BLOB value. Oracle 11g supports BLOB data type of size upto 128TB[6]. oracle 11g

support two types of BLOB: internal BLOB and external BLOB.

Internal BLOB: Internal BLOB stores data within the database, either in-line in

the table or in a separate table. If the data size smaller than 4KB the BLOB is stored

in-line. Once it grows bigger, it automatically moves out of table. Internal BLOB is

supported by BLOB data type in Oracle 11g[7].

External BLOB: External BLOB stores data outside the database, in operating

system files. It is supported by BFILE data type [7].

Advantage of this method is that there is no limit on the size of array.
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Figure 2.1: BLOB representation of multidimensional array

In BLOB, data can be accessed as entire BLOB-data only, i.e. for accessing of a

measurement in the array, database has to read entire BLOB-block. This increases

accessing time. This impaired the advantage of array ADT. End user can not use

BLOB locator in a SELECT or WHERE clause of the SQL query.

2.2 Array as a relation

Array also can be implemented on a relation by considering each dimension as a

column in a relational table. Then we store each measurement with its corresponding

dimension values on table explicitly. For storing an array of n dimension require a

relational table with n+1 columns. The following figure depict how an array stored

in relational table.

In relational representation of array, arrays are represented by storing

both array-index and measurement (array-value) together in relational table. This

increases the storage space needed for storing. In order to access data, the relational

database has to read ’array-index’ columns in the table. This slows down data access.

If arrays are considered as first-class object then no need of storing array-index, only

measurement is stored in database. All measurements in an array are of same data

type. So storage space needed can be reduced by encryption.
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Figure 2.2: Relational representation of multidimensional array

2.3 Arrays in object-relational database systems

Object relational database Oracle-11g support array. Keyword VARRAY uses to

create array data type. VARRAY is an ordered collection of elements. VARRAY is

normally stored inline, i.e. in the same tablespace. If array is too large, orcle stores

it in BLOB.

Array implementation in object relational database (ORDB) is against

normalisation. Updation of an array element is very inefficient in ORDB. For example,

commercial database system such as Oracle do not support piecewise updates on

VARRAY columns. VARRAY columns can be inserted into or updated as an atomic

unit. That is, if we want to update or delete individual element in the array, then

we have to take whole element from table, change it, and update the table to include

new array. This leads to inefficiency in array operations.

2.4 Native array support

One another way to represent multidimensional arrays in database is, treat array as

it is, i.e., consider array as first-class object. The database systems, RasDaMan and

RAM (discussed in Chapter 4) consider array as first class object. RasDaMan uses

specialised storage for multidimensional array. RAM embedded array object to the

existing relational model.
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Chapter 3

Operations on Multidimensional

Arrays

Let’s consider another example from oceanographic research.The sensors placed under

the sea are generating time series data, i.e. 3-dimensional data. Data from OLAP

applications also have large dimensionality. For example sales details of products in

departments have the schema: (Dept Name, Prod Name, Day of Year, Sale). One of

the most common operations performed on the above schema is the entire calculation

of sales over years or a particular year. For the better efficiency of this operation,

keep the data in a multidimensional array.

A workshop had been conducted on the year 2008 in Asilamor, for finding

out the common requirement of scientific applications. In this workshop, people

from different areas, scientific(Astronomy, Biology, Particle Physics, Geoscientific),

database, industrial, were present. They put forward requirements[8] from their field.

Some of the array operations identified in this workshop are given below. These

operation are mainly classified into 3 categories: Structural operations [9], Content-

based operations[9] and Meta-data operations[9].

3.1 Structural operations

• Indexed Retrieval

• Sub-sample

• Structural Join or SJoin [8, 10]

• Aggregation on dimensionality
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All the above operations perform on the dimension values of the database.

They are data-agnostic [11], i.e., it does not affect the array element. Each structural

operations are described below.

3.1.1 Indexed retrieval

Indexed retrieval(with array-index) is the basic operation, which performs on an array

database. In array database, the array name and the array index are given to retrieve

the information. Operation array(A, i,j) retrieve element from array A whose index

is i and j. Here i is the higher order dimension and j is the lower order dimension.

3.1.2 Subsampling

A large number of queries used in SDSS applications are for retrieving an image in

a certain area, that is sub-sampling of an image. Sub-sampling can not reduce array

dimensionality, i.e dimensionality of resultant array is same as that of input array.

Consider the query: array image[x:2-6][y:1-5]. Here the value of x is ranging from 2

to 6 and the value of y is ranging from 1 to 5. In traditional database, need to sort

the table primarily on (x, y) column then fetch the required columns. In an array,

the array indices are in sequential order so that the database can fetch the required

slice very easily.

Figure 3.1: Subsampling
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3.1.3 Structural Join or SJoin

Rakesh Agrawal, Ashish Gupta and Sunita Sarawagi introduced the structural join

for those kind of operations in their research paper, ”Modelling Multidimensional

Databases”[10]. Later, Michael Stonebraker et. al. [8] defined a join operator: SJoin,

that joins arrays over their dimensional values. Let’s consider two arrays: array A of

m dimensional and array B of n dimensional. SJoin(A,B, d1, d2, ...., dk) joins array

A and B over the dimensions d1, d2, ......, dk. The resultant array is of (m + n − k)

dimensions and values of each cells is either value of one of the arrays or output of an

expression ( arithmetic, logical, conditional or combination of these). The following

example illustrates the concept of this operation. Let us consider three 2D images of

a sea: one in x-y axis, one in y-z axis and third one in x-z axis (figure.3.2). Intensity

of each pixel in images in x-y axis, y-z axis and x-z axis are stored in arrays A, B

and C respectively. For detailed study of sea, the scientists wants to make it as 3D

image. They can combine images in the 3 axes by using SJoin operator. The query

for making 3D image is given below (Query-1). First SJoin joins array A and B and

maintains both intensity value. This result is stored to an temporary array T. Then

this temporary array SJoin with array C. ’IN’ condition given in the SJoin operator

gives the output if any of the right hand side value is equal to the left hand side

value. That is the resultant array R contains intensity values of array C which are

equivalent to any of the intensity values in the corresponding dimensions of T.

Query-1: Query to make 3D image from three 2D image.

T = SJoin(A,B, (A.intensity, B.intensity))

R = SJoin(T,R,R.intensity IN T.intensity

3.1.4 Aggregation

Aggregation is one of the fundamental operations in OLAP applications. Let us

consider a query on array given in Figure 1.2: Find total sales of a product in a

department over the year 2010. This is one of the aggregate operations over ar-

ray measurements. sum(array sales[Dept Name:department1] [Prod Name:product1]

[Day of Year:1-1-2010,31-12-2010]). Here department is department1, product is prod-

uct1 and value of Day of Year ranging from 1-1-2010 to 31-12-2010. To do this effi-

ciently in traditional database, the table to be sorted on (Dept Name, Prod Name)
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Figure 3.2: Images on 3 axes

Figure 3.3: Structural join on arrays A, B and C

columns. But if we maintain the same data in an array with a hierarchy ofDept Name→
Prod name→ Day of Y ear → Sale then the aggregation can be done fast.

3.2 Content-based operations

• Filter(constraints on element value)

• Content-based Join or CJoin [11]

12



3.2.1 Filter

Filter is an operation that separates a part of data from array for analysis. This

operation is equivalent to selection(σ) in relational model. For example filter(A,>

, 10) operation outputs an array which is of same size of array A. The resultant array

contains elements whose value is greater than 10.

3.2.2 Content-based join

CJoin is used for joining two arrays based on their measurement values. This opera-

tion is primarily introduced in the thesis ”Requirements for Science Data Bases and

SciDB”, CIDR 2009 Conference [8]. CJoin of an m dimensional and an n dimensional

array gives an array of m+n dimensions.

Figure 3.4: Cjoin

3.3 Meta-data operations

• add-dim/rem-dim (Add/Remove Dimensions)

• Reshape

3.3.1 Add/remove dimension

These operations are performing on the dimensional space of the array. The op-

eration add-dim adds one or more new dimension(s) to an array. The operation

add − dim(A, x[1 : 10], y[1 : 20], high/lower) adds 2 more dimensions to array A.

Here x and y having dimensional space of 1 to 10 and 1 to 20 respectively. Argument

high/lower indicates hierarchy of dimensions to be added. High adds dimensions in

13



the higher and lower adds in the lower hierarchy. The operation rem-dim reduces

the dimensionality of the array. rem − dim(A, p = 1, q = 25) operation reduces the

number of dimensions of array A by removing the dimensions of p and q other than

1 and 25 respectively, i.e. the resultant array contains value from the slice which has

value p = 1 and q = 25. This array can be accessed without specifying p and q.

3.3.2 Reshape

The operation reshape changes the number of dimension(s) of an array without

changes number of elements in the array. Let’s consider an array C of 3-dimensions,(4×
5× 2). Reshape(C,[i:20],[j:2]) operation change the array C to a 2-dimensions. i and

j are it’s dimensions. Dimensional value of i varies from 1 to 20, and of j are 1 and

2. Total number of cells, before and after reshape operation, are same.
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Chapter 4

Known Approaches for Native

Array Support

4.1 RasDamMan(Raster Data Management)

RasDaMan[2] is a research project sponsored by European Community to develop

multidimensional database. RasDaMan enables storage of multi-dimensional raster

(”array”) data of unlimited size in a standard database for retrieval through its declar-

ative, optimizing query language[12]. The RasDaMan array engine can be coupled

with many different database systems and offers highly effective hardware and soft-

ware optimizations[12]. This RasDaMan system is implemented in several projects.

The EarthServer project is one of these project. The EarthServer (European Scalable

Earth Science Service Environment) project aims at open access and ad-hoc analytics

on massive Earth Science data, based on the OGC geo service standards Web Cover-

age Service (WCS) and Web Coverage Processing Service (WCPS)[12]. RasDaMan

separates logical and physical schemas.

They presented RasQL(Raster Query Language) to interface with database.

RasQL comprises of RasDL(Raster Definition Language) and RasML(Raster Manipu-

lation Language). RasQL supports multidimensional operations like slicing, updation,

aggregations, etc. The operation set is based on RasDaMan Array Algebra[13] which

allows for declarative expression of operations up to the complexity of the Discrete

Fourier Transform[2]. Arrays are represented in Array Algebra as functions mapping

n-dimensional points (i.e., vectors) from discrete Euclidean space to values [13]. Ras-

DaMan allows set based operations over array. These operations have to be second

order which apply in cell wise manner. Array expressions are embedded into standard
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SQL-92 in the array query language RasQL. Essentially, the algebra in RasDaMan

consists of three operations: [13].

• Trimming (rectangular cutout) and section (extraction of a lower-dimensional

hyperplane)

• Induced operations which apply cell operations simultaneously to the whole

array

• generalized array aggregation

The RasDaMan uses a client/server architecture 4.1. Its API consists

of array-extended SQL-92, RasQL, ODMG conformant C++ API. The client side

sends queries to the server through communication layer. Server side contains four

main modules: server communication layer, query evaluator, metadata manager and

storage manager. The server side passes query from the client to query evaluator.

Then the query evaluator parses the query and builds parse tree. Query optimisation

and tiling (discussed later) takes place in next stage. Storage manager contains

information about physical storage.

Figure 4.1: Architecture of RasDaMan[2]

Storage manager in RasDaMan supports efficient paging methods for ac-

cessing data. RasDaMan uses three different storage strategies: linear subdivision,

aligned tiling, arbitrary subdivision. Pictorial representation of these strategies are

given in Figure 4.2. Large outer blocks represent array and small shaded blocks rep-

resent portion of array which is to be accessed by application. Let’s assume required
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page size is equivalent to one disk page. Each cell in the large blocks are subdivision

of array which are stored in the disk block. These storage strategies use different

subdivision method.

In linear subdivision, arrays are divided into small linear blocks. Even

though the required portion of array is equivalent to one disk block, database has to

access six pages from disk to get the required portion. Aligned tiling divides arrays

into small tiles, each of these tiles is stored as linearised array. Size of all these tiles

are same and it is equivalent to one disk page. To read the required portion, database

has to access four disk pages. Aligned tiling gives better performance than linearised

tiling. Third strategy, arbitrary rectangular tiles, divides the multidimensional arrays

into arbitrary multidimensional tiles. We can divide an array depending on frequent

queries. Arbitrary subdivision increases the locality reference, so we get better perfor-

mance in sub-sampling queries. This reduces the number of blocks needed to access

the data. In the above example, only three disk pages is needed to satisfy require-

ment. First two approaches are special case of arbitrary subdivision, i.e., database

can implement linear subdivision and aligned tiling with arbitrary subdivision. Query

performance can be optimized by arbitrary subdivision. But it requires information

about user querying.

Figure 4.2: Different storage strategies in RasDaMan

Efficient server based query evaluation is enabled by an intelligent opti-

mizer and a streamlined storage architecture based on flexible array tiling and com-

pression [2].
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4.2 RAM

The set based data model may no longer suffice for tasks like multimedia analysis.

Alex R.van Ballegooij has introduced a prototype system as part of his research:

RAM, a Multidimensional Array DBMS[14]. The main issue to be addressed in

the RAM is the actual storage and manipulation of array structures in a relational

database environment. The RAM adds array support to an existing database system.

It uses separate front-end for array specific queries. This front-end translates array

specific queries to an intermediate array-algebra before transforming to final relational

domain, i.e., it maps arrays to relational model. RAM compresses the multiple index

columns into single column by enumerating the array index into row major order

(Figure 4.3).

Figure 4.3: Representation of array in RAM

In RAM, arrays are defined as a many to one function over the array

index[14]. RAM embedded two more component to the existing database to support

array operations: methods to extract values from arrays and methods to construct

arrays. There is no update option in query language; i.e., once created, we can not

alter that array. The basic array operations implemented in RAM are given below:

• const(S, c)[14]: The const operator creates a new array of a given shape S filled

with a constant value c. const([3, 4], o) creates an array of dimensions 3×4 and

initialise array with zero.

• grid(S, j)[14]: The grid operator creates a new array of a given shape S filled

with values taken from its index values at jth position. grid([2,2], 1) creates
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an array of 2×2 and initialize with array index of each row, i.e., resultant array

is:

Table 4.1: Resultant array of operation grid([2, 2], 1)

1 2
1 0 0
2 1 1

• Aligned Array [14]: Aligned arrays are arrays with identical shape representing

related data: in these arrays elements with corresponding index-vectors are

related. Using aligned arrays, multiple arrays can be used to represent a single

array with tuple-elements.

• map(f, A1, ..., Ak)[14]: The map operator creates a new array of which each

element is the result of applying a given function to aligned elements in a set of

arrays. For example map(+, A,B) gives an array of which each element is the

sum of corresponding elements in array A and B.

• choice(C, A, B)[14]: The choice operator creates a new array of which each

element is choice(C,A,B) = [if (Ci) then Ai else Bi | i < SC ]

Table 4.2: Array C
0 1
0 1

Table 4.3: Array A
a b
c d

Table 4.4: Array B
e f
g h

Table 4.5: Resultant array
e b
g d
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• aggregate(g, j,A)[14]: The aggregate operator applies an aggregation function

over the first j axes of an array.

aggregate(f, j, a) = [f([Ai)|i0, i1, ....., ij−1 ] | ij, ij+1, ....., in−1]

The RAM database is under development. The complete set of operations

are unavailable. So we only considered the storage structure of the RAM. The above

operations are mentioned here to give a brief idea about some of the operations

possible over the array. Relational mapping of array index in RAM reduces the storage

space needed as compared to the relational representation in Section 2.2. Other

benefit of RAM approach is the time saved by not recreating functionality readily

available. RAM reused benefits of existing query optimizers, transaction control and

integrity. These areas in relational model are very efficient. In RAM, arrays are still

mapped to relations only. This causes some performance degradation.
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Chapter 5

Skiplist and Index Based Arrays

Before consider the design details, we can look into underlying disk storage structure.

The disk structure is the layout of Tracks, Cylinders and Sectors on a platter within a

hard drive. Tracks are concentric circular paths written on each side of a platter. The

tracks are identified by number, starting with track zero at the outer edge. Tracks

are divided into smaller areas or sectors, which are used to store a fixed amount of

data. Sectors are usually formatted to contain 512 bytes of data (there are 8 bits in a

byte). A cylinder is comprised of a set of tracks that lie at the same distance from the

spindle on all sides of all the platters. The factors that limit the time to access the

data on a hard disk drive (access time) are mostly related to the mechanical nature

of the rotating disks and moving heads. Read/write head takes some amount of time

to reach to the track of the disk that contains data. This time is called seek time.

Also some amount of time is taken to rotate the disk to bring the required disk sector

under the read-write head. This time is called rotational latency. Access time is the

summation of seek time and rotational latency. To reduce the rotational latency, disk

sectors are usually allocated as blocks. Blocks are logical division of hard disk. It

refers a group of sectors. Most of the file-system uses block size of 4KB.

The arrays in database are large in size, usually in giga bytes or tera bytes

range. It needs number of disk block to store entire array data. But it is very difficult

to get that many continuous blocks. Array data blocks are scattered around the disk.

These scattered blocks are linked together. So database cannot directly access across

these block, it requires traverse through the blocks. The Database uses extent based

allocation for efficient access. Extent is a contiguous disk blocks. Then these extents

are linked together as in blocks. Extent helps to maintain more number of array data

in contiguous fashion.

To access data from array, we have to traverse through extents. This
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traverse increases time needs to access array data. B+ tree indexing and skiplist are

fast searching techniques used to reduce the accessing time. They are described below

(Section 5.1 and 5.2).

5.1 Index based arrays

B+ tree is one kind of tree (Figure 5.1). It stores array-index in way that to make

array access fast. B+ tree stores array data-block address and array-index for efficient

retrieval. B+ tree has two kind of nodes: Leaf node and non-leaf node (Figure 5.2).

Leaf node contains n pairs of data-block address and array-index. The array-index is

the last array-index in the array data-block. Total number of entries in the leaf nodes

are equal to the number of extents. Non-leaf node contains n array-index value and

n+1 data-block addresses. Array-index in the non-leaf node is the last array-index in

the child node.

Figure 5.1: Index based array

5.2 Skiplist based arrays

Skiplist is a list of nodes which is linked together. Skiplist uses probabilistic balancing

rather than strictly enforced balancing as in B+ tree indexing. Each node in the
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Figure 5.2: Structure of tree node

skiplist contains last array-index in the each array-data block and array-block address,

and link field to the next node in the skiplist. These nodes are stored in sorted order

of array-index. Number of link fields vary from node to node. Pictorial representation

of skiplist is given in Figure.5.3.

Figure 5.3: Skiplist based arrays

In our database implementation, arrays are considered as first-class ob-

jects, i.e., database treats array as it is. The database architecture is given in figure

6.1. For fast retrieval of array measurement, this database uses two kinds of tech-

niques: B+ tree indexing and skip list. Details of index based access and skiplist

based access are given in the next chapter.
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Chapter 6

Implementation in MuBase

Before getting into the design details, we introduce MuBase, a database system on

the lines of MiniRel, which we are developing at IIT Hyderabad. It has three main

modules: Storage Manager, Buffer Manager and indexing layer. Details of each

module will be discussed in the following sections.

Applications

Storage Manager

Buffer Manager

Disk Manager

Array Manager

SkiplistB+ Tree
Relation Manager

Slotted Page

Disk

Figure 6.1: MuBase system Architecture

6.1 Storage Manager in MuBase

Storage Manager handles allocation and deallocation of disk blocks. It also main-

tains free list. Free-list is the list of free blocks in the database which are linked

together. Storage structure of the MuBase is given in Figure 6.2. First block in

the database(i.e., Block 0) contains three fields: free list, relational metadata table
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and column metadata table. Initially all disk blocks are linked one after other and

block Id of the first block is stored in free list field of block 0. Whenever a request

for n disk block comes, the storage manager search in the free list for n contiguous

block (or an extent of size n). If n contiguous blocks are available then allocate it

and return starting block address, otherwise return -1. Storage Manager also keeps

track of all allocated blocks. ’relational metadata table’ and ’column metadata table’

fields in the block 0 maintain first block address of RELATIONAL METADATA and

COLUMN METADATA tables respectively. Details of RELATIONAL METADATA

and COLUMN METADATA tables are given in Section 6.4

Figure 6.2: Storage structure of MuBase

6.2 Buffer Manager in MuBase

Buffer Manager handles buffering of pages needed for manipulation in the primary

memory. It uses LRU(Least Recently Used) replacement policy for page replacement.

LRU policy replaces the page which is least recently used with the newly coming

page, when there is no space for new page. LRU replacement is implemented with

FIFO(First In First Out) queue. Buffer Manager has two functions: pin-page and

unpin-page. Pin-page reads new page to the memory and tracks details about page

like it is loaded to which frame and number of process holding that page. Unpin-page

adds unused page to the head of queue. Then whenever the page replacement is

needed it replaces page from the tail of the queue.
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6.3 Indexing and skiplist layer in MuBase

In order to makes array access fast, the database uses either B+ tree indexing or

skiplist. So these modules are also incorporated into Array Manager(for details about

Array Manager refer to Section 6.4). Structure of B+ tree nodes are given in Figure

5.2. Theses nodes are stored in disk blocks. Address of the root node(block) is stored

in disk blocks. Address of the root node(block) is stored in the BPLUS METADATA

table. This table also contains other meta informations: array name, tree id and

tree name. Schema of BPLUS METADATA are given in Schema-2, Section6.4. The

second method used to access array fast is skiplist. This is not implemented in the

current implementation. We can easily incorporate this module to the existing system.

Schema of skiplist metadata table is given in Schema-2, Section6.4.

6.4 Supporting arrays in MuBase

Two layers on top of MuBase, Array Manager and Relation Manager, support array

related operations. Relation Manager maintains all metadata, i.e., data about arrays,

B+ tree index and skiplist. Relation Manager stores these metadata in system ta-

bles such as ARRAY METADATA, BPLUS METADATA, SKIPLIST METADATA

tables. Details of these system tables are stored in RELATIONAL METADATA and

COLUMN METADATA tables. RELATIONAL METADATA table contains details

of metadata tables such as object id, relation name, number of attributes( or columns)

in the metadata table and starting block address. COLUMN METADATA table con-

tains details of each attributes in metadata table such as attribute name, attribute

type and attribute size. RELATIONAL METADATA and COLUMN METADATA

tables are stored in fixed length slotted pages. Its structures are given in Figure 6.3

and Figure 6.4. System tables are stored in variable length slotted pages(Figure 6.5).

Figure 6.3: Slotted page organisation of RELATIONAL METADATA table
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Figure 6.4: Slotted page organisation of COLUMN METADATA table

Figure 6.5: Slotted page organisation of system tables tables

Array Manager supports basic operations on arrays such as create array,

read array, write array, populate array and update array. Create array operation in the

Array Manager module create an array of given dimensions. For example create(A,

10, 10) create an array A of dimensions 10 × 10. The Array Manager linearizes

this array, i.e., it map multidimensional array to single dimension space, and it calls

the Storage Manager to allocate the required space(i.e., required number of extents).

Then these linearised arrays are stored in array-blocks. Each array-block maintains

two more fields, last linear-index in that block and pointer to next array-block, to

make array operations easier. Metadata of arrays are stored in ARRAY METADATA

and ARRAY DIMENSION METADATA tables. ARRAY METADATA table con-

tains array id, array name, dimensionality, element type, starting block address.

ARRAY DIMENSION METADATA contains details of each dimensions such as di-

mension index(i.e. hierarchical order) and dimension size. These metadata are

stored in variable-sized slotted page. Schema of ARRAY METADATA and AR-

RAY DIMENSION METADATA are given below (Schema-2, Section6.4). Relation

Manager handles reading and writing of these metadata.

In case of read operation, Array Manager uses B+ tree index to speed

up the array element access. Array Manager converts the required element’s array

indices to linear space. Then Array Manager calls B+ tree module to find the extent
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to which required array element is stored. Address of starting block of B+ tree(i.e.,

root block address) is maintained in the BPLUS METADATA table. The database

performs the read, write and update operations in similar fashion.

verbatim

Schema-2: system tables

ARRAY METADATA(ARRAY ID, ARRAY NAME, DIMENSIONALITY, ELEMENT TYPE, START BLOCK)

ARRAY DIMENSION METADATA(ARRAY ID, DIMENSION INDEX, DIMENSION SIZE)

BPLUS METADATA(ARRAY NAME, TREE ID, TREE NAME, START BLOCK)

SKIPLIST METADATA(ARRAY NAME, SKIPLIST ID, SKIPLIST NAME, START BLOCK)

6.5 Implementation status

We represented array as a first-class object and implemented underlying storage for

array. Storage Manger linearises the multidimensional array and then store into

disk block. We implemented basic functionality such as create array, retrieval and

update of array data. Array Manager, top layer in the database system, supports

array related operations. Array of any number of dimensions can be created with

methods in the Array Manager. Retrieval and update of array can be done through

B+ tree indexing. This gives a fast access to the array data. This implementation

also supports linearised access. It gives better performance for queries which are

accessing range of elements from multidimensional array.

28



Chapter 7

Summary and Future Work

In this thesis we considered issues related to disk based storage of large multi-

dimensional arrays, which commonly arise in scientific and analytical applications.

Traditional approaches like storing them as binary-large-objects or as relations have

several limitations. In this thesis we presented approaches for supporting arrays as

first-class objects in a database management system. We presented indexing schemes

for fast retrieval of array elements when storage is allocated in blocks or extents. We

have partially implemented the techniques in MuBase, a database system which we

are developing at IIT Hyderabad.

Our current implementation of arrays in MuBase supports creation of

arrays with specified dimensions, index based storing and retrieval of values. B+

tree index support is provided for fast index based retrieval. Future work includes

completing the array support in MuBase with all the operations discussed in this

thesis, and comparing the performance of different alternatives like B+ tree indexing

and skiplists. Future work can also explore new requirements arising in areas like

image and video processing, which require to manage large arrays
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