
Program Transformations for Asynchronous Query

Submission

Mahendra Chavan #, Ravindra Guravannavar ∗, Karthik Ramachandra #, S. Sudarshan #

#Indian Institute of Technology, Bombay
{mahcha, karthiksr, sudarsha}@cse.iitb.ac.in

∗Indian Institute of Technology, Hyderabad
ravig@iith.ac.in

Abstract—Synchronous execution of queries or Web ser-
vice requests forces the calling application to block until the
query/request is satisfied. The performance of applications can
be significantly improved by asynchronous submission of queries,
which allows the application to perform other processing instead
of blocking while the query is executed, and to concurrently
issue multiple queries. Concurrent submission of multiple queries
can allow the query execution engine to better utilize multiple
processors and disks, and to reorder disk IO requests to minimize
seeks. Concurrent submission also reduces the impact of network
round-trip latency and delays at the database, when processing
multiple queries. However, manually writing applications to
exploit asynchronous query submission is tedious.

In this paper we address the issue of automatically trans-
forming a program written assuming synchronous query submis-
sion, to one that exploits asynchronous query submission. Our
program transformation method is based on dataflow analysis
and is framed as a set of transformation rules. Our rules can
handle query executions within loops, unlike some of the earlier
work in this area. We have built a tool that implements our
transformation techniques on Java code that uses JDBC calls; our
tool can be extended to handle Web service calls. We have carried
out a detailed experimental study on several real-life applications
rewritten using our transformation techniques. The experimental
study shows the effectiveness of the proposed rewrite techniques,
both in terms of their applicability and performance gains
achieved.

I. INTRODUCTION

In many applications calls made to execute database queries

or to invoke web services are often the main causes of latency.

Asynchronous or non-blocking calls allow applications to

reduce such latency by overlapping CPU operations with

network or disk IO requests, and by overlapping local and

remote computation. Consider the program fragment shown in

Example 1. In the example, it is easy to see that by making a

non-blocking call to the database we can overlap the execution

of method foo() with the execution of the query, and thereby

reduce latency.

Many applications are however not designed to exploit

the full potential of non-blocking calls. Manual rewrite of

such applications although possible, is time consuming and

error prone. Further, opportunities for asynchronous query

submission are often not very explicit in the code. For instance,

consider the program fragment shown in Example 2. In the

program, the result of the query, assigned to the variable part-

Count, is needed by the statement that immediately follows

Example 1 A simple opportunity for asynchronous query

submission

r = executeQuery(query1);

s = foo(); // Some computation not dependent on r

bar(r, s) // Computation dependent on r and s

Code with Asynchronous Query Submission

handle = submitQuery(query1); // Non-blocking query submit

s = foo();

r = fetchResult(handle); // Blocking call to fetch query result

bar(r, s)

Example 2 Hidden opportunity for asynchronous query sub-

mission

qt = dbCon.prepare(“select count(partkey) (s0)

from part where p category=?”);

while(!categoryList.isEmpty()) { (s1)

category = categoryList.removeFirst(); (s2)

qt.bind(1, category); (s3)

partCount = executeQuery(qt); (s4)

sum += partCount; (s5)

}

the statement executing the query. For the code in the given

form there would be no gain in replacing the blocking query

execution call by a non-blocking call, as the execution will

have to block on a fetchResult call immediately after making

the submitQuery call. It is however possible to transform

the given loop, as shown in Example 3, and thereby enable

asynchronous query submission.

The rewritten program in Example 3 contains two loops;

the first loop submits queries in a non-blocking mode and the

second loop uses a blocking call to fetch the results and then

executes the statements that depend on the query results.

Asynchronous calls have been long employed to make

concurrent use of different system components, like CPU and

disk. In contrast to earlier work on exploiting asynchronous

execution, described in Section II, our work focusses on

rewriting programs external to the database so as to submit

978-1-4244-8960-2/11/$26.00 © 2011 IEEE ICDE Conference 2011375

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Archive of Indian Institute of Technology Hyderabad

https://core.ac.uk/display/38678083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Example 3 Loop Transformation to Enable Asynchronous

Query Submission

qt = dbCon.prepare(“select count(partkey)

from part where p category=?”);

int handle[MAX SIZE], n=0;

while(!categoryList.isEmpty()) {
category = categoryList.removeFirst();

qt.bind(1, category);

handle[n++] = submitQuery(qt);

}
for(int i = 0; i < n; i++) {

partCount = fetchResult(handle[i]);

sum += partCount;

}

multiple queries asynchronously. In general, automatically

transforming a given loop so as to make asynchronous query

submissions is a non-trivial task, and we address the problem

in this paper.

Asynchronous execution enabled by the transformations

presented in this paper can improve application performance

significantly for several reasons: (a) the database server and

the application run on different machines, allowing query

execution to overlap with application program execution, (b)

the database server typically runs on a multi-core system

with large caches, and multiple disks, allowing better use

of resources and higher throughput if multiple queries are

submitted concurrently, (c) database query execution engines

today support techniques such as shared scans and RID

ordering prior to fetch which can allow queries to execute

faster if submitted concurrently than if they are submitted one

at a time.

The following are the key technical contributions we make

in this paper:

1) We show (in Section III) how a basic set of program

transformations, such as loop fission, enable complex

programs to be rewritten to make use of asynchronous

query submission. Although loop fission is a well known

transformation in compiler optimizations and batching, to

the best of our knowledge no prior work shows its use

for asynchronous submission of database queries.

2) In many cases the data dependencies between program

statements do not permit loop fission, which is a key

transformation to enable asynchronous calls. We show

(in Section IV) that in many cases it is possible to

reorder the program statements so as to enable loop

fission and give an algorithm to do so. The classical

works in static program analysis, which deal with loop

fission [1], [2], do not consider statement reordering as

a means to enable loop fission. The statement reordering

algorithm increases the opportunities for asynchronous

query submission significantly. We also prove a sufficient

condition on the data dependence graph for a query

execution statement to be made non-blocking.

3) Since programmers may need to debug a rewritten version

of their program, we present (in Section V) several

techniques to make the rewritten program more readable.

4) We present (in Section VI) a detailed experimental study

of the proposed transformations on several real world

applications. The experimental study shows significant

performance gains due to the program transformations.

Guravannavar et.al. [3] describe how to rewrite loops in

database applications and stored procedures, to transform iter-

ative execution of queries and updates into a single execution

of a set-oriented (batched) form of the query or update. Our

program transformation techniques for asynchronous query

submission are based on the techniques described in [3].

Both asynchronous query submission and batching are im-

portant techniques to improve the performance of database

applications. Although batching reduces round-trip delays and

allows efficient set-oriented execution of queries, it does not

overlap client computation with that of the server, as the client

completely blocks after submitting the batch. Also, batching

may not be applicable altogether when there is no efficient

set-oriented interface for the request invoked.

II. RELATED WORK AND BACKGROUND

Most operating systems today allow applications to issue

asynchronous IO requests [4]. Asynchronous calls are also

used for data prefetch and overlapping operator execution

inside query execution engines [5], [6], [7]. Asynchronous

calls have also been used to hide memory access latency by

issuing prefetch requests [8]. Yeung [9] proposes deferred

execution of remote procedure calls and code shipping as

a way of reducing latency, but the work does not consider

asynchronous calls.

While our transformation rules are based on [3], we make

the following novel contributions. First, we present a novel

statement reordering algorithm to enable loop fission. The

statement reordering algorithm greatly increases the appli-

cability of the other transformation rules as shown by our

experimental study involving several real-world applications.

The statement reordering algorithm presented in this paper

is useful not only for asynchronous query submission but

also for batching. Second, we show how the transformation

rules presented in [3] can be adapted for asynchronous query

submission. Third, we formally characterize the programs that

can be rewritten for asynchronous query submission, which

we believe is an important theoretical contribution.

More recently, Manjhi [10] considers prefetching of query

results by employing non-blocking database calls. Non-

blocking query execution requests are made eagerly, as soon

as the values for the query parameters are known. A blocking

call is subsequently issued when the results of the query are

needed, and this call is likely to take much less time as the

query results would be already computed and available in the

cache.

Similar to the work of Manjhi [10] our work considers

rewriting database application code for prefetching query

results. Manjhi [10] considers only straight-line code while

376

exploiting opportunities for prefetching. In many practical

applications, the results of a query are consumed by the very

next statement that follows the query execution statement

(see Example 2), which forces immediate blocking if one

considers only straight-line code. Such opportunities can only

be exploited by loop transformations, which is the main focus

of this paper.

Two models are prevalent for coordinating asynchronous

calls: the observer model and the callback model.

The Observer Model: In this model, the calling program

explicitly polls the status of the asynchronous call it has made.

When the results of the call are strictly necessary to make

any further computation, the calling program blocks until the

results are available. The observer model is suitable when

the results of the calls must be processed in the order in

which the calls are made. Example 1 of Section I shows a

program making use of the observer model to coordinate the

asynchronous query execution. We now formally define the

semantics of the methods we use.

• executeQuery: Submits a query to the database system for

execution, and returns the results. The call blocks until

the query execution completes.

• submitQuery: Submits a query to the database system for

execution, but the call returns immediately with a handle

(without waiting for the query execution to finish).

• fetchResult: Given a handle to an already issued query

execution request, this method returns the results of the

query. If the query execution is in progress, this call

blocks until the query execution completes.

The Callback Model: In this model, the calling program

registers a callback function as part of the non-blocking call.

When the request completes, the callback function is invoked

to process the results of the call. The event driven model is

suitable when the program logic to process the call results is

small and the order of processing the results is unimportant.

The program transformations presented in this paper make

use of the observer model for asynchronous query submission.

It is possible to extend the proposed approach to make use

of the callback model for programs in which the order of

processing the query result is unimportant. However, the

details of such extensions are not part of this paper.

III. BASIC TRANSFORMATIONS

Guravannavar et.al. [3] present a set of program transfor-

mation rules to rewrite program loops so as to enable batched

bindings for queries. In this section, we show how some of

these transformation rules can be extended for asynchronous

query submission. We then present a novel statement reorder-

ing algorithm, in the next section, which significantly improves

the applicability of the transformation rules.

The program transformation rules we present, like the

equivalence rules of relational algebra, allow us to repeatedly

refine a given program. Applying a rule to a program involves

substituting a program fragment that matches the antecedent

(LHS) of the rule with the program fragment instantiated by

the consequent (RHS) of the rule. Some rules facilitate the

application of other rules and together achieve the goal of

replacing a blocking query execution statement with a non-

blocking statement. Applying any rule results in an equivalent

program and hence the rule application process can be stopped

at any time. We omit a formal proof of correctness for our

transformation rules, and refer the interested reader to [11].

Each program transformation rule has not only a syntactic

pattern to match, but also certain pre-conditions to be satisfied.

The pre-conditions make use of the inter-statement data de-

pendencies obtained by static analysis of the program. Before

presenting the formal transformation rules, we briefly describe

the data dependence graph, which captures the various types

of inter-statement data dependencies.

A. Data Dependence Graph

Inter-statement dependencies are best represented in the

form of a data dependence graph [1] or its variant called

the program dependence graph [12]. The Data Dependence

Graph (DDG) of a program is a directed multi-graph in which

program statements are nodes, and the edges represent data

dependencies between the statements. The data dependence

graph for the program of Example 2 is shown in Figure 1.

The types of data dependence edges are explained below.

• A flow-dependence edge (
FD
−−→) exists from statement

(node) sa to statement sb if sa writes a location that sb

may read, and sb follows sa in the forward control-flow.

For example, in Figure 1, a flow-dependence edge exists

from node s2 to node s3 because statement s2 writes

category and statement s3 reads it.

• An anti-dependence edge (
AD
−−→) exists from statement

sa to statement sb if sa reads a location that sb may

write, and sb follows sa in the forward control flow.

For example, in Figure 1, an anti-dependence edge exists

from node s1 to node s2 because statement s1 reads

categoryList and statement s3 writes it.

• An output-dependence edge (
OD
−−→) exists from statement

sa to sb if both sa and sb may write to the same location,

and sb follows sa in the forward control flow.

• A loop-carried flow-dependence edge (
LFDL−−−−→) exists

from sa to sb if sa writes a value in some iteration of

a loop L and sb may read the value in a later iteration.

For example, in Figure 1, a loop-carried flow-dependence

edge exists from node s2 to node s1 because statement

s2 writes categoryList and statement s1 reads it in a

subsequent iteration. Similarly, there are loop carried

counter parts of anti and output dependencies, which are

denoted by (
LADL−−−−→) and (

LODL−−−−→) respectively.

• External data dependencies: Program statements may

have dependencies not only through program variables

but also through the database and other external resources

like files. For example, we have s1
FD
−−→ s2 if s1 writes

a value to the database, which s2 may read subse-

quently. Though standard dataflow analysis performed by

compilers considers only dependencies through program

377

variables, it is not hard to extend the techniques to

consider external dependencies, at least in a conservative

manner. For instance, we could model the entire database

(or file system) as a single program variable and thereby

assume every query/read operation on a database/file to

be conflicting with an update/write of the database/file. In

practice, it is possible to perform a more accurate analysis

on the external writes and reads.

LFD LODLAD

FD LAD

FD LAD

FD

FD

FD LAD

AD LFD

s2:category=categoryList.removeFirst()

s3:qt.bind(1,category)

s4:partCount=executeQuery(qt)

s5:sum += partCount

s1:while(!categoryList.isEmpty())

s0:qt=dbCon.prepare(...)

Fig. 1. Data Dependence Graph for Example 2

B. Basic Loop Fission Transformation

Consider the program fragment shown in Example 2 and its

rewritten form shown in Example 3. The key transformation,

to enable such a program rewriting is loop fission (or loop

distribution) [2]. Guravannavar et.al. [3] make use of loop

fission to replace iterative query executions with a batched (or

set-oriented) query execution. In this section, we show how

the program transformation rules proposed by Guravannavar

et.al. [3] can be extended for rewriting programs to make

use of asynchronous calls. A formal specification of the

transformation is given as Rule A, which is a variant of

the loop fission transformation presented in Guravannavar

et.al. [3]. The LHS of the rule is a generic while loop

containing a blocking query execution statement s. ss1 and

ss2 are sequences of statements, which respectively precede

and succeed the query execution statement in the loop body.

The LHS of the rule then lists two pre-conditions, which are

necessary for the rule to be applicable. The RHS of the rule

contains two loops, the first one making asynchronous query

submissions and the second one performing a blocking fetch

followed by execution of statements that process the query

results.

Note that any number of query execution statements within

a loop can be replaced by non-blocking calls by repeatedly

applying the loop fission transformation. Although we present

the loop fission transformation rule w.r.t. a while loop, variants

of the same transformation rule can be used to split set iteration

loops (such as the second loop in the RHS of the Rule A).

Rule A Basic Equivalence Rule for Loop Fission

while p loop
ss1; s: v = executeQuery(q); ss2;

end loop;

such that:

(a) No loop-carried flow dependencies (i.e., LCFD edges, external or
otherwise) cross the points before and after the query execution
statement s.

(b) No loop-carried external anti or output dependencies cross the
points before and after s.

m
Table(T) t;
int loopkey = 0;
while p loop

Record(T) r; ss′1;
r.handle = submitQuery(q); r.key=loopkey++;
t.addRecord(r);

end loop;
for each r in t order by t.key loop

ssr; v = fetchResult(r.handle); ss2;
end loop;
delete t;

where the schema T and statement sequences ss′1, ssr are constructed
as follows.
Let SV (split variables) be the set of variables for which either
an LCAD or LCOD edge crosses the split boundaries (the edge is
incident from ss2 to s or ss1, or from s to ss1).

1) Table t and record r have attributes corresponding to each
variable in SV and a key.

2) ss′1 is same as ss1 but with additional assignment statements
to attributes of r. Each write to a split variable v is followed by
an assignment statement r.v = v;. If the write is conditional,
then the newly added statement is also conditional on the same
guard variable.

3) ssr is a statement sequence assigning attributes of r to cor-
responding variables. Each assignment in ssr is conditional;
the assignment is made only if the attribute of r is non-null
(assigned).

Rule A makes an improvement of the fundamental nature

to the loop fission transformation proposed by Guravannavar

et.al. [3]. Rule A significantly relaxes the pre-conditions (see

Rule 2 in [3]). For instance, Rule A allows loop-carried output

dependencies to cross the split boundaries of the loop.

Applicability

The pre-condition that no loop-carried flow dependencies cross

the point of split can seriously limit the applicability of Rule

A. In the next section, we show examples to illustrate this

limitation, and then present a solution to address the issue.

Further, Rule A is also not directly applicable when the query

execution statement lies inside a compound statement. We now

present additional transformation rules which can be used to

address this restriction.

C. Control Dependencies

Consider the initial program shown in Example 4. The

query execution statement appears in a conditional block. This

prohibits direct application of Rule A to split the loop at

378

the program point immediately following the query execution

statement.

Conditional branching (if-then-else) and while loops lead

to control dependencies. If the predicate evaluated at a con-

ditional branching statement s1 determines whether or not

control reaches statement s2, then s2 is said to be control

dependent on s1. During loop split, it may be necessary to

convert the control dependencies into flow dependencies [2],

by introducing boolean variables and guard statements.

In Example 4, we apply Rule B and introduce a boolean

variable c to remember the result of the predicate evaluation,

and then convert the statements inside the conditional block

into guarded statements. We can then apply Rule A and split

the loop, as shown in the last part of Example 4. The formal

specification of the transformation is given as Rule B.

Rule B Converting control-dependencies to flow-dependencies

if (p) { ss1 } else { ss2 }
m

boolean cv = p;

ss

where ss[i] = (cv == true)?ss1[i], 1 ≤ i ≤ |ss1| and

ss[k + j] = (cv == false)?ss2[j], 1 ≤ j ≤ |ss2|, k = |ss1|

D. Nested Loops

A query execution statement may be present in an inner loop

that is nested within an outer loop. In such a case, it may be

possible to split both the inner and the outer loops, thereby

increasing the number of asynchronous query submissions

before a blocking fetch is issued. To achieve this, we first split

the inner loop and then the outer loop. Such a transformation

is illustrated in Example 5. Note that the temporary table

introduced during the inner loop’s fission becomes a nested

table for the temporary table introduced during the outer loop’s

fission. As the idea is straight-forward, we omit a formal

specification of this rule.

IV. STATEMENT REORDERING

For several practical cases, the loop fission transformation

given in Rule A may not be applicable directly, as the

preconditions for its applicability are too restrictive. Consider

the program in Example 6. We cannot directly split the

loop so as to make the query execution statement (s2) non-

blocking, because there are loop-carried flow-dependencies

from statement s4 to s1 and to the loop predicate, which violate

pre-condition (a) of Rule A. Statement s4, which appears after

s1, writes a value and statement s1 reads it in a subsequent

iteration. Such cases are very common in practice (e.g., in

most while loops the last statement affects the loop predicate,

introducing a loop-carried flow dependency).

Fortunately, in many cases it is be possible to reorder the

statements within a loop so as to make loop fission possible,

without affecting the correctness of the program. For example,

Example 4 Transforming Control-Dependencies to Flow-

Dependencies

Initial Program

for (i=0; i < n; i++) {
v = foo(i);

if (v == 0) {
v = executeQuery(q);

log(v);

}
print(v);

}

After applying Rule B

for (i = 0; i < n; i++) {
v = foo(i);

// Convert control deps to flow deps by

// making use of a guard variable.

boolean c = (v == 0);

c==true? v = executeQuery(q);

c==true? log(v);

print(v);

}

After applying Rule A

Table(key, v, c, handle) t;

for (i = 0; i < n; i++) {
Record r;

v = foo(i); r.v = v;

boolean c = (v == 0); r.c = c;

c==true? r.handle = submitQuery(q);

r.key = loopkey++;

t.addRecord(r);

}
for each r in t order by key loop

v = r.v; c = r.c; handle = r.handle;

c==true? v = fetchResult(handle);

c==true? log(v);

print(v);

}

the statements within the loop of Example 6, if reordered as

shown in Example 7, permit loop fission. Note that in the

transformed program of Example 7 there are no loop-carried

flow dependencies, which prohibit the application of Rule A

to split the loop at the query execution statement.

In general, reordering of statements to enable loop fission

is a non-trivial task as there can be arbitrary inter-statement

dependencies in the loop. In this section, we present an

algorithm for reordering statements within a loop so as to

enable splitting of the loop at the desired statement boundary.

Our reordering algorithm succeeds in enabling loop fission

at the boundaries of the query execution statement if the

statement does not lie on a cycle of flow (and loop-carried

flow) dependencies.

379

Example 5 Dealing with nested loops

while(pred1) {
while(pred2) {

x = executeQuery(q); process(x);

}
}

After Transformation

Table tp;

while(pred1){
Table tc; Record rp;

while(pred2){
Record rc;

rc.handle = submitQuery(q);

tc.addRecord(rc);

}
rp.tc = tc; tp.addRecord(rp);

}
for each rp in tp {

for each rc in rp.tc {
x = fetchResult(rc.handle); process(x);

}
}

Example 6 An example where loop fission is not directly

applicable due to loop-carried dependencies

qt = dbCon.prepare(“select count(partkey)

from part where p category=?”);

category = readInputCategory();

while(category != null) {
qt.bind(1, category); (s1)

partCount = executeQuery(qt); (s2)

sum += partCount; (s3)

category = getParentCategory(category); (s4)

}

The preliminary idea of reordering statements by introduc-

ing temporary variables is presented in [3]. The basic rules

that allow us to reorder statements are specified in Rule C,

which is a minor variant of Rule 5 in [3]. However, to be

able to split a loop at a desired point, multiple applications

of Rule C may be needed. It is important that Rule C be

applied in an appropriate sequence so as to achieve the desired

reordering. We now give a novel algorithm to do so. The goal

is to reorder the statements such that no loop-carried flow

dependencies cross the desired split boundary. We make use

of the following definition in the description to follow.

Definition 4.1: A true-dependence path (or cycle) in a data

dependence graph is a directed path (or cycle) where each edge

represents either a flow-dependence (FD) or a loop-carried

flow-dependence (LCFD).

Note that a true-dependence path excludes anti, output, loop-

carried anti and loop-carried output dependence edges. 2

Example 7 After reordering the statements in Example 6

qt = dbCon.prepare(“select count(partkey)

from part where p category=?”);

category = readInputCategory();

while(category != null) {
temp category = category;

category = getParentCategory(category);

qt.bind(1, temp category);

partCount = executeQuery(qt);

sum += partCount;

}

Rule C Basic Rules that Facilitate Reordering of Statements

Rule C1: Reordering Independent Statements

Two statements can be reordered if there exists no

dependence between them.

s1; s2; where indep(s1, s2) ⇐⇒ s2; s1;

Rule C2: Shifting an Anti-Dependence Edge

An anti-dependence edge between two statements can

be shifted by using an extra variable.

s1; s2;

where s1
ADv−−−→ s2

m
v′ = v; s′1; s2;

where s′1 is constructed from s1 by replacing all reads of

v by reads of v′.

Rule C3: Shifting an Output-Dependence Edge

s1; s2;

where s1
ODv−−−→ s2

m
s1; s

′

2; v = v′;

where s′2 is constructed from s2 by replacing all writes of

v by write to v′.

The algorithm reorder, shown in Figure 2, works as follows.

For each loop-carried flow dependence edge that crosses the

split boundary (the program point in the basic block that im-

mediately succeeds the blocking query execution statement),

the algorithm decides the statement to move, and its target

position. There are four cases to consider while deciding

the statement to move and its target position. The cases

are shown in Figure 3. The way in which we choose the

stmtToMove and targetStmt ensures the following. If sq, the

blocking query execution statement, does not lie on a true-

dependency cycle, then there exists no true-dependence path

from the stmtToMove to the targetStmt. We then compute

the set srcDeps, which comprises of all statements present

between stmtToMove and targetStmt, and which have a path of

flow-dependence edges from stmtToMove. Each statement in

380

procedure reorder(BasicBlock b, Stmt sq)
// Goal: Reorder the statements within b, such that no LCFD
// edges cross the program point immediately succeeding sq.
// Assumption: sq does not lie on a true-dependence cycle in
// the subgraph of the DDG induced by statements in b.
begin

while there exists an LCFD edge crossing the split
boundary for sq

Pick an LCFD edge (v1, v2) crossing the split boundary.

if there exists a true-dependence path from v1 to sq

/* Implies no true-dependence path from sq to v1 */
stmtToMove = sq;
targetStmt = v1;

else
/* No true-dependence path from v1 to sq, which implies

no true-dependence path from v2 to sq as there
exists an LCFD edge from v1 to v2 */
stmtToMove = v2;
targetStmt = sq;

// Move stmtToMove past the targetStmt
Compute srcDeps, the set of all statements between
stmtToMove and targetStmt, which have a
flow dependence path from stmtToMove.

while srcDeps is not empty
Let v be the statement in srcDeps closest to
targetStmt
moveAfter(v, targetStmt); // see Figure 4

moveAfter(stmtToMove, targetStmt);
end;

Fig. 2. Procedure reorder

v2

s

LCFD

FD+

v1

Case−1

LCFD

q

v1

s =v2

qMove s past v1

s

v2

v1

FD+

LCFD

Case−4

q

v2

Case−3

LCFD

qs =v1

Move v2 past sq

q

Case−2

Fig. 3. Cases for Reordering Statements

srcDeps is then moved past the targetStmt using the moveAfter

procedure. The procedure moveAfter (shown in Figure 4)

performs the required reordering by swapping pairs of adjacent

statements. While doing so, the procedure resolves any anti

and output dependencies by creating stub statements, which

make use of temporary variables.

Examples 8, 9 and 10 illustrate the working of the statement

reordering algorithm. Figure 5 shows the data dependence

graph for the original and reordered code of Example 10.

In Figure 5, for each flow-dependence (FD) edge from x to

y, there exists a corresponding loop-carried anti-dependence

(LCAD) edge from y to x, but these edges are not shown.

procedure moveAfter(Stmt s, Stmt t)
External variables used:

List srcDeps, Stmt sq // Variables assigned in reorder
begin

if s succeeds t in the basic block
return;

Stmt next = successor(s);
do {

if no flow/anti/output dependence edges between
s and next
/* Reorder the statements by applying Rule-C1 */
swap s and next;

else {
// Let ODv : denote output dependence on variable v
for each ODv edge from s to next {

/* Shift the OD edge by applying Rule-C3 */
Replace writes to v in next by writes to a new
variable v′;
Insert a new statement as′v that assigns v′ to
v immediately after next;
moveAfter(as′v , t);

}

// Let ADv denote anti-dependence on variable v
for each ADv edge from s to next {

/* Shift the AD edge by applying Rule-C2 */
if there exists an ADv edge from sq to next

// Use a reader stub
Insert a new statement as′v that assigns v to a
new temp variable v′ immediately before s;
Replace all read references to v in s by v′;

else // Use writer stub
Replace write of v in next by write to a new
temp var v′;
Insert a new statement asv that assigns v′ to
v immediately after next;
moveAfter(asv , t);

}
swap s and next;

}
lastStmt = next;
if (lastStmt ! = t)

next = successor(s);
}
while(lastStmt ! = t) ;

end

Fig. 4. Procedure moveAfter

Similarly, AD and OD edges have corresponding LCFD and

LCOD edges respectively, which are not shown. In this exam-

ple, s1 is the blocking query execution statement. The LCFD

edge from s4 to s1 crosses the split boundary and hence s1
must be moved past s4. As can be seen in Figure 5, after the

reordering, no LCFD edges cross the split boundary.

A. Applicability of Transformation Rules

Although our program transformation algorithm succeeds

in rewriting fairly complex programs for asynchronous query

submission, not every program can be rewritten this way. The

inter-statement data dependencies may prohibit a blocking

query execution statement from being converted to a non-

blocking statement. In this section, we formally identify the

condition for such a transformation to be possible.

381

Example 8 Illustration 1 of Statement Reordering

while(category != null) loop

(s1) icount = q(category);

(s2) sum = sum + icount;

(s3) category = getParent(category);

end loop;

After moving s1 past s3

while(category != null) loop

(ts1) category1 = category;

(s3) category = getParent(category);

(s1) icount = q(category1);

(s2) sum = sum + icount;

end loop;

Example 9 Illustration 2 of Statement Reordering

while(top > 0) loop

(s6) top = top-1;

(s7) curcat = stack[top];
(s8) catitems = q(curcat);

(s9) totalcount = totalcount + catitems;

(s10’) stack, top = block(curcat, top);

end loop;

After moving s8 past s10’

while(top > 0) loop

(s6) top = top-1;

(s7) curcat = stack[top];
(s10’) stack, top = block(curcat, top);

(s8) catitems = q(curcat);

(s9) totalcount = totalcount + catitems;

end loop;

As an example, consider the program shown in Example 11,

and its DDG shown in Figure 6 (this DDG is obtained after

transforming the control dependencies to flow dependencies

using Rule B). The query invocation in statement s2 can

be made non-blocking but not the one in statement s1. The

query invocation in statement s1 lies on the true-dependence

cycle s1
FD
−−→ s4

LFD
−−−→ s1, and hence we cannot reorder the

statements so as to satisfy the pre-conditions of Rule A.

Note that flow dependencies that result from control-

dependencies (Rule B) must be taken into account while

checking for the presence of a true-dependence cycle. In-

tuitively, a call cannot be converted to a non-blocking call if

its execution in any iteration depends on the value it returned

in a previous iteration.

Theorem 4.1: Given a basic block of code b and statement

sq in b such that sq does not lie on a true-dependence cycle

in the DDG, procedure reorder terminates, reordering the

statements of b such that:

Example 10 Illustration 3 of Statement Reordering

Original Program

while(pred(c)) loop

(s1) cv1? a = q(b);

(s2) cv2? a,c = f(x);

(s3) d = g(a, b);

(s4) cv3? a,b = h(c);

end loop;

After moving s1 past s4

while(pred(c)) loop

(s2) cv2? a3,c = f(x);

(n1) b2 = b;

(n2) b5 = b;

(s4) cv3? a1,b = h(c);

(s1) cv1? a = q(b5);

(n3) cv2? a = a3;

(s3) d = g(a, b2);

(n4) cv3? a = a1;

end loop;

FD c

FD a3

FD b5

FD a1
FD b2

ODa

ODa

FD a

ODa
FD a

s1

s1 s2 s3 s4
FDa

ODa

FDa

FDcADa

ODa ADa,b

Data dependencies after reordering

n1 n3 s3 n4s4n2s2
AD b

Data dependencies before reordering

Fig. 5. Data Dependence Graphs for Example 10

(a) No LCFD edges cross the program points that immediately

precede and succeed sq .

(b) Program correctness is preserved (i.e., the reordered block

is equivalent to the original)

The proof of Theorem 4.1 can be found in [11].

V. SYSTEM DESIGN

Our rewrite rules can conceptually be used with any lan-

guage. We chose Java as the target language and JDBC as the

interface for database access. To implement the rules we need

to perform dataflow analysis of the given program and build

the data dependence graph. We used the SOOT optimization

framework [13]. SOOT uses an intermediate code represen-

tation called Jimple and provides dependency information on

Jimple statements. Our implementation transforms the Jimple

code using the dependence information. Finally, the Jimple

code is translated back into a Java program.

The important phases in the program transformation process

are shown in Figure 7. The main task of our program trans-

formation tool appears in the Apply Async Trans Rules phase.

The program transformation rules are applied in an iterative

manner, updating the dataflow information each time the code

382

Example 11 Statement with Cyclic True-Dependencies

while(eid ! = NULL) loop (s0)

mgr =SELECT manager (s1)

FROM emp WHERE empid=eid;

idx = SELECT perfindex FROM rating (s2)

WHERE reviewer=mgr and reviewed=eid;

sumidx += idx; (s3)

eid = mgr; (s4)

end loop;

s1

s2

s0

s3

s4

FD

On flow−dep cycle

Not on flow−dep
cycle

LFD
FD

FD

FD

FD

FDLFD
LFD

FD

* Edges other than
FD and LFD are omitted

Fig. 6. DDG for Example 11

changes. The rule application process stops when all (or the

user chosen) query execution statements, which do not lie on

a true-dependence cycle, are converted to asynchronous calls.

There were several challenges in implementing our program

transformation tool, which has the following design goals.

1) Readability of the transformed code

2) Robustness for variations in intermediate code

3) Extensibility

Since our program transformations are source-to-source,

maintaining readability of the transformed code is important.

We achieve this goal through several measures. (a) The

transformed code mostly uses standard JDBC calls and very

few calls to our custom runtime library. This is achieved by

providing a set of JDBC wrapper classes. The JDBC wrapper

classes and our custom runtime library hide the complexity of

asynchronous calls. (b) When we apply Rule B followed by

Rule A to split a loop, the resulting code will have many

guarded statements. This leads to a very different control

structure as compared to the original program. We therefore

introduce a pass where such guarded statements are grouped

back in each of the two generated loops, so that the resulting

code resembles the original code.

The intermediate code has the advantage of being simple

and suitable for data-flow analysis, but it makes the task of

recognizing desired program patterns difficult. Each high-level

language construct translates to several instructions in the

intermediate representation. We have designed our program

transformation tool for robust matching of desired program

fragments. The tool can handle several variations in the

Code (Jimple)
Intermediate

Source Java
File

Dataflow
Analysis

Def−Use

Information

DDG

Construction

Dependence
Graph

Apply Async

Trans Rules

Modified
Jimple CodeDecompile

File

Target Java

Parsing and
Conversion to
Interm Rep

Fig. 7. Program Transformation Phases

intermediate (Jimple) code.

One of our design goals has been extensibility. Each of

the transformation rules has been coded as a separate class.

Application of any transformation rule independently must

preserve the correctness of the program. Such a design makes

it easy to add new program transformation rules.

VI. EXPERIMENTAL RESULTS

For evaluating the applicability and benefits of the proposed

transformations, we consider five Java applications: two pub-

licly available benchmarks (which were also considered by

Manjhi et.al. [14]) and three other real-world applications we

encountered. Our current implementation does not support all

the transformation rules presented in this paper, and does not

support exception handling code. Hence, in some cases part

of the rewriting was performed manually in accordance with

the transformation rules. We performed the experiments with

two widely used database systems - a commercial system we

call SYS1, and PostgreSQL. The SYS1 database server was

running on a 64 bit dual-core machine with 4 GB of RAM,

and PostgreSQL was running on a machine with two Xeon

3 GHz processors and 4 GB of RAM. Since disk IO is an

important parameter that affects the performance of applica-

tions, we report the results for both warm cache and cold

cache. The Java applications were run from a remote machine

connected to the database servers over a 100 Mbps LAN.

The applications used JDBC API for database connectivity.

The transformed programs use the Executor framework of

the java.util.concurrent package for thread scheduling and

management.

Experiment 1: Auction Application: We consider a bench-

mark application called RUBiS [15] that represents a real

world auction system modeled after ebay.com. The application

has a loop that iterates over a collection of comments, and

for each comment loads the information about the author of

the comment. The comments table had close to 600,000 rows,

and the users table had 1 million rows. First, we consider

the impact of our transformations as we vary the number of

loop iterations, fixing the number of threads at 10. Figure 8

shows the performance of this program before and after the

transformations with warm and cold caches in log scale. The y-

383

 0.01

 0.1

 1

 10

 100

 1000

4 40 400 4000 40000

T
im

e
 (

in
 s

e
c
;

lo
g
 s

c
a
le

)

Number of iterations

Database: SYS1
Threads: 10

46.4

5.9

50

9
5.1

0.8

6.7

0.9

Original Program (Cold Cache)
Transformed Program (Cold Cache)

Original Program (Warm Cache)
Transformed Program (Warm Cache)

Fig. 8. Experiment 1 with varying number of iterations

 0

 10

 20

 30

 40

 50

1 2 5 10 20 30 40 50

T
im

e
 (

in
 s

e
c
)

Number of threads

Database: SYS1
Cache: Warm
Iterations: 40K

Original Program
Transformed Program

Fig. 9. Experiment 1 with varying number of threads

axis denotes the end to end time taken for the loop to execute,

which includes the application time and the query execution

time.

For a small number of iterations, the transformed program

is slower than the original program. The overhead of thread

creation and scheduling overshoots the query execution time.

However, as the number of iterations increases, the benefits of

our transformations increase. For the case of 40,000 iterations,

we see an improvement of a factor of 8.

Next, we keep the number of iterations constant (at 40,000)

and vary the number of threads. The results of this experiment

are shown in Figure 9. The execution time (for both the warm

and cold cache) drops sharply as the number of threads is

increased, but gradually reaches a point where the addition of

threads does not improve the execution time.

The results of the above experiment on PostgreSQL are

shown in Figure 10, which follow the same pattern as in the

case of SYS1.

Experiment 2: Bulletin Board Application: RUBBoS [15]

is a benchmark bulletin board-like system inspired by slash-

dot.org. For our experiments we consider the scenario of

listing the top stories of the day, along with details of the

users who posted them. Figure 11 shows the results of our

transformations with different number of iterations. Although

the transformed program takes slightly longer time for small

number of iterations, the benefits increase with the number of

iterations (note the log scale of y-axis).

Experiment 3: Category Traversal: This program, taken

 0

 5

 10

 15

 20

1 2 5 10 20 30 40 50

T
im

e
 (

in
 s

e
c
)

Number of threads

Database: PostGreSQL
Cache: Warm
Iterations: 40K

Original Program
Transformed Program

Fig. 10. Experiment 1 with varying number of threads

 0.001

 0.01

 0.1

 1

 10

6 60 600 6000

T
im

e
 (

in
 s

e
c
;

lo
g
 s

c
a
le

)

Number of iterations

Database: PostGreSQL
Cache: Warm
Threads: 10

3.6

0.8
0.5

0.2

Original Program (Warm Cache)
Transformed Program (Warm Cache)

Fig. 11. Experiment 2 with varying number of iterations

from [3], finds the part with maximum size under a given

category (including all its sub-categories) by performing a DFS

of the category hierarchy. For each node (category) visited,

the program queries the item table. The TPC-H part table,

augmented with a new column category-id and populated with

10 million rows, was used as the item table. The category table

had 1000 rows - 900 leaf level, 90 middle level and 10 top level

categories (approximately). A clustering index was present on

the category-id column of the category table and a secondary

index was present on the category-id column of the item table.

Figure 12 shows the performance of this program before and

after applying our transformation rules. As in the earlier ex-

ample, we first fix the number of threads and vary the number

of iterations. We perform this experiment with ten threads, on

a warm cache on SYS1. The results are in accordance with our

earlier experiments. In addition, we observe that the number

of threads is an important parameter in such scenarios. This

parameter is influenced by several factors, such as the number

of processor cores available for the database server and the

client, the load on the database server, the amount of disk IO,

CPU utilization etc. The effect of varying number of threads

can be more clearly observed in Figure 13, where we keep the

number of iterations constant (at 100) and vary the number of

threads from 1 to 50.

The trends in Figure 13 are very similar for both the warm

and cold cache, though the actual numbers differ. When the

program is run with a cold cache, the amount of disk IO

involved in running the queries is substantially higher than

with a warm cache. But the bottleneck of disk IO can be

reduced by issuing overlapping requests. Such overlapping

384

 0.01

 0.1

 1

 10

 100

 1000

1 11 100

T
im

e
 (

in
 s

e
c
;

lo
g
 s

c
a
le

)

Number of iterations

Database: SYS1
Threads: 10

190

6.3

29.3

5.5

1.2
0.7

1.12 1.13

Original Program (Cold Cache)
Transformed Program (Cold Cache)

Original Program (Warm Cache)
Transformed Program (Warm Cache)

Fig. 12. Experiment 3 with varying iterations

 0

 50

 100

 150

 200

1 2 5 10 20 30 40 50

T
im

e
 (

in
 s

e
c
)

Number of threads

Database: SYS1
Cache: Cold
Iterations: 100

Original Program
Transformed Program

Fig. 13. Experiment 3 with varying number of threads

query submissions enable the database system to choose plan

strategies such as shared scan.

In transforming this program, the reordering algorithm was

first applied and then the loop was split using Rule A.

Experiment 4: Value Range Expansion: In this application,

taken from [3], data about forms issued to various agents

would arrive in the format (agent-id, start-form-number, end-

form-number). The program would iterate over all the form

issue records, expand the issue range and populate the forms-

master table with entries corresponding to each individual

form. The purpose was to be able to update and track the

status of each individual form subsequent to its issue. The

original program had an outer loop iterating over the form

issue records and an inner loop iterating over the range (start-

form-number, end-form-number). An INSERT operation was

performed inside the inner loop. The transformed program

could asynchronously submit the INSERT operations. The

running times of the original and transformed program are

shown in Figure 14 in log scale. Since this program performs

no reads, the results are independent of the cache state.

This program required the reordering algorithm to be first

applied for the loop to be split using Rule A.

Experiment 5: Web service invocation: Although we pre-

sented our program transformation techniques in the context

of database queries, the techniques are more general in their

applicability, and can be used with requests such as Web

service calls. In this experiment, we consider an application

that fetches data about directors and their movies from Free-

 0.01

 0.1

 1

 10

 100

10 100 1000 10000 100000

T
im

e
 (

in
 s

e
c
;

lo
g
 s

c
a
le

)

Number of iterations

Database: SYS1
Threads: 30

73

99.1

1.1

Original Program
Transformed Program

Fig. 14. Experiment 4 with varying number of iterations

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 5 10 15 20 25

T
im

e
 (

in
 s

e
c
)

Number of threads

Database: Freebase
Iterations: 240

Original Program
Transformed Program

Fig. 15. Experiment 5 with varying number of threads

base [16], a social database about entities, spanning millions

of topics in thousands of categories. It is an entity graph which

can be traversed using an API built using JSON over HTTP.

The client application, written in Java, retrieves the movie and

actor information for all actors associated with a director. Such

applications usually require the execution of a sequence of

queries from within a loop because (a) operations such as

joins are not possible directly, and (b) the Web service API

may not be supporting set oriented queries.

Since our current implementation supports only JDBC API,

we manually applied the transformations for the code which

fires the JSON queries. The results of this experiment are

shown in Figure 15. As we vary the number of threads,

overlapping HTTP requests are made by the client applica-

tion which saves on network round-trip delays. Since our

experiment used the publicly available Freebase sandbox over

the Internet, the actual time taken can vary with network

load. However, we expect the relative improvement of the

transformed program to remain the same. This experiment

demonstrates the applicability of our transformation rules

beyond database query submission.

Applicability of Transformation rules: In order to evaluate

the applicability of our transformation rules, we consider the

two publicly available benchmark applications used above, the

auction application and the bulletin board application. For each

of these, we have analyzed the source code to find out (a) how

many opportunities for asynchronous submission of queries

exist, and (b) how many of those opportunities are exploited

385

TABLE I

APPLICABILITY OF TRANSFORMATION RULES

Application # Opportunities # Transformed Applicability (%)

Auction 9 9 100

Bulletin Board 8 6 75

by our transformation rules. The results of the analysis is

presented in Table I. We consider all kinds of loop structures

which include a query execution statement in the loop body,

as potential opportunities (# Opportunities). Among such po-

tential opportunities, those which satisfy the preconditions for

our rules, are exploited (# Transformed). This would involve

reordering of statements in a lot of situations.

We see that all such opportunities present in the auction

system indeed satisfy the preconditions and can be trans-

formed. In the bulletin board application, few of the loops

performed recursive method invocations which prevent them

from being transformed. Out of the five programs seen earlier,

the remaining three were too small for this analysis, and hence

omitted.

Time Taken for Program Transformation: Although the

time taken for program transformation is usually not a concern

(as it is a one-time activity), we note that, in our experiments

the program transformation took very little time (less than a

second).

VII. DISCUSSION

We now discuss some future directions to our work.

Which calls to be transformed?: It may not be beneficial

to transform every blocking query submission call to a non-

blocking call. From our experimental study it is also evident

that given a query execution statement, the benefit to be

achieved by converting it to a non-blocking call depends on

the number of iterations and other system parameters. In our

current implementation we assume that user can specify which

query submission statements to be transformed. Making this

decision in a cost-based manner is a future work.

Minimizing memory overheads: If the number of loop iter-

ations is large, the transformed program incurs high memory

overhead, because we need to store the handle and the state

associated with each loop iteration in an in-memory table. This

problem can be addressed in two ways: (a) materialize part of

the in-memory table to the disk, or (b) limit the number of

loop iterations performed before the results are processed. It

is possible to extend our loop fission transformation to allow

the second loop (which consumes the query results) to begin

after a specific number of asynchronous query submissions.

This can be achieved by enclosing the two loops generated

after the fission into a parent loop. We omit the details of this

extension from this paper.

How many threads to use?: Our experiments show that

the optimal number of threads differs from case to case.

Identifying the optimal number of threads for a given case

is a challenging problem. Several factors, specific to both the

program and the system/deployment environment, influence

the decision on the number of threads to use. This is another

direction for our future work.

Updates and Transactions: In this paper, we have not ad-

dressed issues related to the interaction between asynchronous

queries and transaction semantics. Although this is a non-

issue for read-only queries, rewriting loops containing update

transactions needs more thought.

VIII. CONCLUSION

We propose a program analysis and transformation based

approach to automatically rewrite database applications to

exploit the benefits of asynchronous query submission. The

program transformation rules and algorithms presented in

this paper significantly increase the applicability of known

techniques to address this problem. We provide a sufficient

condition on the data dependence graph, which characterizes

the program statements that can be transformed with our

approach. Although our program transformations are presented

in the context of database queries, the techniques are general

in their applicability, and can be used in other contexts such

as calls to Web services, as shown by our experiments. We

presented a detailed experimental study, carried out on real-

world and publicly available benchmark applications. Our

experimental results show performance gains to the extent of

75% in several cases. Finally, we identify some interesting

directions along which this work can be extended.

REFERENCES

[1] S. S. Muchnick, Advanced Compiler Design and Implementation. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997.

[2] K. Kennedy and K. S. McKinley, “Loop Distribution with Arbitrary
Control Flow,” in Proceedings of Supercomputing, 1990. [Online].
Available: citeseer.ist.psu.edu/kennedy90loop.html

[3] R. Guravannavar and S. Sudarshan, “Rewriting Procedures for Batched
Bindings,” in Intl. Conf. on Very Large Databases, 2008.

[4] “Kernel Asynchronous I/O (AIO) Support for Linux
http://lse.sourceforge.net/io/aio.html.”

[5] G. Graefe, “Executing Nested Queries,” in 10th Conference on Database

Systems for Business, Technology and the Web, 2003.
[6] M. Elhemali, C. A. Galindo-Legaria, T. Grabs, and M. M. Joshi,

“Execution Strategies for SQL Subqueries,” in ACM SIGMOD, 2007.
[7] S. Iyengar, S. Sudarshan, S. Kumar, and R. Agrawal, “Exploiting

Asynchronous IO using the Asynchronous Iterator Model,” in Intl. Conf.

on Management of Data (COMAD), 2008.
[8] S. P. Vanderwiel and D. J. Lilja, “Data Prefetch Mechanisms,” ACM

Computing Surveys, vol. 32, no. 2, 2000.
[9] K. C. Yeung, “Dynamic Performance Optimisation of Distributed Java

Applications,” Ph.D. dissertation, Imperial College of Science, Technol-
ogy and Medicine, 2004.

[10] A. Manjhi, “Increasing the Scalability of Dynamic Web Applications,”
Ph.D. dissertation, Carnegie Mellon University, 2008.

[11] R. Guravannavar, “Optimization and evaluation of nested queries and
procedures,” Ph.D. Thesis, Indian Institute of Technology, Bombay,
2009.

[12] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The Program Depen-
dence Graph and Its Use in Optimization,” ACM Trans. Program. Lang.

Syst., vol. 9, no. 3, pp. 319–349, 1987.
[13] “Soot: A Java Optimization Framework

http://www.sable.mcgill.ca/soot.”
[14] A. Manjhi, C. Garrod, B. M. Maggs, T. C. Mowry, and A. Tomasic,

“Holistic Query Transformations for Dynamic Web Applications,” in
Intl. Conf. on Data Engineering, 2009.

[15] “ObjectWeb Consortium-JMOB (Java middleware open benchmarking).”
[Online]. Available: http://jmob.ow2.org/

[16] “The Freebase repository: http://www.freebase.com/.”

386

