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Abstract 

 

Structures are commonly founded on layered soil deposits. Many instances are there 

where the soil profile consisted of two-layer soil deposit, underlain by a rock 

stratum. So in this thesis, finite two-layered soil profile overlying a stiff soil deposit 

is considered. Top layer of the soil is loose sand and bottom layer of the soil is sandy 

gravel considered and vice versa. Elastic settlements due to a flexible and rigid 

circular load on a two-layer soil system without reinforcement and with 

incorporating reinforcement overlying a rock stratum or a stiff soil deposit are 

estimated by design charts and tables. As soil behavior is not elastic in nature, so 

approximating the soil behavior in general by elasto-plastic behavior, it is obtained 

by Mohr-Coulomb model in Plaxis 2D. Plastic settlements due to a flexible and rigid 

circular load on a two-layer soil system overlying a rock stratum or a stiff soil 

deposit are estimated by design charts and tables. 
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Nomenclature 

a Radius of the circular load 

B Diameter of the circular load 

C Cohesion of soil 

E Young’s modulus 

E’avg Drained average Young’s modulus 

E’ Drained Young’s modulus 

E2 Young’s modulus of bottom layer 

I Displacement influence factor 

h Depth of the homogenous finite layer 

H1 Top layer thickness 

H2 Bottom layer thickness 

Pav Average applied pressure 

q Uniformly distributed load 

z Settlement 

 Friction angle of soil 

 Dilatancy angle of soil 

 Poisson’s ratio 

σ Normal Stress 

Ɛ Normal strain 

/B Ratio of Displacement to the Diameter of the circular load 
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Chapter 1 

Introduction 

  

 

Many elastic solutions are available to estimate the settlement due to uniform circular load acting on 

the surface of a two-layer soil system. They include Burmister (1962), Thenn de Barros (1966), 

Ueshita and Meyerhof (1967), Steinbrenner (1934), Palmer and Barber (1940), Odemark (1949), 

Vesic (1963), Gerrard (1969), etc. In these methods, the top layer is of finite thickness overlies the 

bottom layer that extends semi-infinitely. Elastic solutions are also available to estimate the settlement 

of uniform circular load acting on a rigid footing resting on a semi-infinite mass [Sneddon (1946)] 

and on a finite mass [Poulous (1968a)]. However, soil deposition might occur in layers over a rock 

stratum and the available elastic solutions should be modified when the bottom layer is underlain by a 

rock stratum or a very stiff soil deposit. Two such instances where the soil profile consisted of two-

layer soil deposit, underlain by a rock stratum, are shown in Fig. 1.1. In the present study, charts are 

proposed to estimate settlements due to uniform circular surface load acting on both flexible and rigid 

footings resting on such soil profiles - finite two-layer system underlain by a rock stratum (stiff layer). 
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Figure 1.1: Soil profile showing a finite two-layer soil system at (a) Hong Kong [Zhang and Dasaka 

(2010)] and (b) southern part of Bangalore (Anbazghan and Sitharam [2004]) 

 

1.1 Difference in behavior of load acting on flexible and rigid footing 

If the footing is subjected to a uniformly distributed load, the contact pressure will be uniform and the 

settlement of the footing will experience a sagging profile as shown in Fig. 1.2. Boussinesq’s equation 

for vertical deflection on the surface of the elastic half-space with a radius a and a uniform pressure q 

at z = 0 is given by Eq. [1.1] 

 22 1
z

qa

E







                     [1.1] 

where, E= Deformation modulus of soil 

 = Poisson’s ratio 

Perfectly rigid foundation resting on the ground surface subjected to a uniformly distributed load, the 

footing will undergo a uniform settlement and the contact pressure will be non-uniform (Fig. 1.2). 

Boussinesq’s equation for vertical deflection on the surface of the elastic half-space with a radius a 

and average contact pressure q at z = 0 is given by 

 21

4
z

qB

E







                     [1.2] 
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  [a] Load on flexible footing    [b] Load on rigid footing 

Figure 1.2: Differences in behavior between flexible and rigid footings over clayey soil 

 

In this thesis, the displacement factors to calculate the displacement of the footing, both flexible and 

rigid, are proposed for various H1/a, H2/a, E1/E2,  and  values, where H1 is the top layer thickness, 

H2 is the bottom layer thickness, a is the radius of the circular loading, E1 and E2 are the deformation 

moduli of top and bottom layers, and 1 and  2 are the Poisson’s ratio of top and bottom layers, 

respectively. Linear stress-strain and linear elastic- perfectly plastic (Mohr-Coulomb) constitutive 

models were used for the soil deposits. In the analysis using Mohr-Coulomb model, displacement 

factors are proposed at various levels of settlement ratios of the footing. Modeling was performed 

using the commercially available finite element analysis software - PLAXIS 2D.  

 

1.2 Problem statement 

A uniform circular load on flexible footing and rigid footing of intensity q acts on an area with radius 

a and a rigid boundary underlies two-layer soil system is shown in Fig. 1.3. The thickness of the top 

soil layer is H1 with deformation modulus E1 and Poisson’s ratio ν1, and the bottom layer is of 

thickness H2with elasticity properties E2 and Poisson’s ratio ν2. Settlement factors are to be proposed 

to estimate the settlements at the center of circular load for cases where [1] a soft soil layer overlies a 

stiff layer (E1/E2< 1.0), and [2] a stiff soil layer overlies a soft layer (E1/E2> 1.0) for finite two-layered 

soil profiles. 
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Figure 1.3: Definition sketch 

 

1.3 Organization of the study 

Chapter 2 discusses the existing literature of elastic solutions for the calculation of settlements for 

semi-infinite homogenous elastic soil, finite soil layer underlain by a stiff layer, and multiple layer of 

soil profiles. 

 

Chapter 3 deals with the estimation of settlements for finite two-layer system using linear stress-strain 

behavior and it is compared with finite element solutions for loading on both rigid and flexible 

footings. 

 

Chapter 4 deals with the estimation of settlements for finite two-layer system using non-linear 

behavior of soil deposits based on finite element solutions for loading on both rigid and flexible 

footings. 

 

Summary and conclusions based on present study are given in Chapter 5. 

 



5 

 

 

 

 

Chapter 2 
 

Literature review 

  

 

2.1 Elastic solutions for Homogenous finite layer 

Poulous [1968a] provided the plot of displacement influence factor versus thickness ratios for 

Poisson’s ratio values of 0, 0.2, 0.4 and 0.5 for the circular load acting on the rigid footing resting on 

homogenous finite layer as shown in Fig. 2.1. Vertical displacement can be calculated by using Eq. 

[2.1]. 

 2
 

1
av

z

P a I

E


                        [2.1] 

where, pav= Average applied pressure 

 a= Radius of circular load 

 E= Deformation modulus of soil 

 = Poisson’s ratio 

 h= Depth of the homogenous finite layer 

 

Figure 2.1: Influence factors for the vertical displacement of rigid circle (Poulous [1968a]) 
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2.2 Elastic solutions for Homogenous semi-infinite soil 

Boussinesq proposed equations to calculate the stresses, strains and deflections beneath the center of a 

circular load when the load is applied on the homogenous semi-infinite soil. 

 

Foster and Ahlvin [1954] presented the plots to calculate vertical stresses, radial stresses, tangential 

stresses, shear stresses and vertical deflections at various points with in an elastic half space under 

circular load acting on flexible footing. The plot of deflection factor, I, versus depth in radii, z/a, for 

circular load acting on flexible footing for the Poisson’s ratio equal to 0.5 is shown in Fig. 2.2.Vertical 

deflections, z, can be calculated by using Eq. [2.2].  

z

qB
I

E
                        [2.2] 

Where, B=Diameter of the circular area 

q=Uniformly distributed load 

 

Figure 2.2: Vertical deflection due to circular loading for Poisson’s ratio equal to 0.5 (Foster and Ahlvin 

[1954]) 

 

Ahlvin and Ulery [1962] presented a series of equations and tables to estimate the stresses, strains and 

deflections due to circular load on flexible footing for a given Poisson’s ratio. 

 

Sneddon [1946] proposed an equation for vertical surface displacement of rigid circular load acting on 

semi-infinite mass is shown in Eq. [2.3]. 

av

z

p aI

E


                        [2.3] 
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2.3 Elastic solutions for two-layered soil system (top layer is finite and bottom layer is 

semi-infinite) 

Burmister [1962] provided the plots of displacement factors versus H1/a (ratio of top layer thickness 

to the radius of circular load) to calculate the deflection at the center of the circular load acting on 

flexible footing for Poisson’s ratios equal to 0.2, 0.4 and 0.5. Plots of displacement factors versus H1/a 

for Poisson’s ratio equal to 0.5 is shown in Fig. 2.3. Vertical deflections, z, can be calculated by 

using Eq. [2.4]. 

2

1.5
z

qaI

E


                        [2.4] 

where, E2= Deformation modulus of bottom layer 

 

Figure 2.3: Vertical surface deflections for two-layered systems for ν1=ν2= 0.5 (After Burmister [1943]) 

 

Ueshita and Meyerhof [1967] provided an equivalent value of deformation modulus (Ee) which may 

be used as a displacement influence factor for the center of the circular load acting on the flexible 

footing on two-layer system. The variation of Ee/E2 with H1/a and E1/E2 (ratio of deformation 

modulus of top and bottom layers) for Poisson’s ratio equal to 0.5 is shown in Fig. [2.4].Vertical 

displacements, z, can be calculated by using Eq. [2.5]. 

1.5
z

qa

Ee
                        [2.5] 

where, E1/E2 = Ratio of deformation modulus of top and bottom layers 

     Ee= Equivalent deformation modulus 
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Figure 2.4: Equivalent modulus Ee of two-layered systems for ν1=ν2= 0.5 (Ueshita and Meyerhof [1967]) 

 

2.4 Elastic solution for Multi-layer soil system 

Steinbrenner [1934] proposed a method to estimate the vertical surface displacement of a loaded area 

on assumption that the stress distribution within the layered system is identical with the Boussinesq’s 

stress distribution for a homogenous semi-infinite mass. It was originally applied to the problem of a 

single layer underlain by the rough rigid base, and for the case of rectangular load acting on the 

flexible footing. It can be extended to any number of layers. Steinbrenner’s approximation is most 

satisfactory for layered system in which the modulus increases rather than it decreases with depth. 

The settlement, z n
 , for the multilayer system is given by Eq. [2.6]. 

2

1

1

(1 )
( )

n
i

z i in
i i

qB I I
E

 


 



 
  

 
                    [2.6] 

Where, B= Shorter side of rectangle 

 

Palmer and Barber [1940] assumes that upper layer of the thickness H1, modulus E1 and ν=ν1 is 

replaced by an equivalent thickness (he) of lower layer material (E2 and ν=ν2). Equivalent thickness, 

he, can be obtained from Eq. [2.7]. Vertical displacement is then obtained by adding the vertical 

displacement, 1, at a depth he and the displacement with in the upper layer, 2, as given in Eq. [2.8]. 

Palmer and Barber’s method can be extended to multi-layer system by repeated replacement of 

overlying layers by an equivalent thickness of the lower most material. 

 

 

1/3
2

1 2

1 2

2 1

1

1
e

E
h h

E





 
  

  

                    [2.7] 

1 2z                          [2.8] 
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Vesic [1963] prepared charts for both uniform circular load and for circular load acting on a rigid 

circular footing. These charts are shown in Fig. 2.5. They are based on the Boussinesq’s stress 

distribution (like Steinbrenner’s method) for a uniform semi-infinite mass. Vesic’s approximation is 

most satisfactory for layered system in which the modulus increases rather than it decreases with the 

depth. The vertical displacements can be calculated from the displacement factors corresponding to 

depth in radii from Eq. [2.6]. 

 

Figure 2.5: Approximate displacement factors for layered systems for ν1=ν2= 0.5 (Vesic [1963]) 
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Chapter 3 
 

Settlement of Finite Two-layer System 

using Linear Stress-Strain Behavior 

  

 
For loads within the elastic range, settlements can be estimated using linear stress-strain model. In this 

chapter, settlement of footing (both flexible and rigid) resting on finite two-layer system is estimated 

using linear stress-strain response of the soil. The bottom layer is resting on a rock stratum or a very 

stiff layer. 

3.1 Load on Flexible Footing 

3.1.1 Elastic Solution 

Steinbrenner (1934) proposed a method to estimate the surface settlement at the center of a circular 

loaded area for a multi-layer system. For a multi-layered system of n layers, equation for the 

settlement at the center is given by 

2

1

1

(1 )
( )

n
i

z i in
i i

qB I I
E

 


 



 
  

 
                    [3.1]

 

Where, Ei and i are the elastic parameters of layer i, 

 
B is the diameter of loading area = 2a, 

Ii is the vertical displacement factor corresponding to a depth factor hi/B, hi is the depth 

below the ground surface of the top of layer i 

For a two-layer system, Eq. 3.1 becomes  

   
2 2

1 2
1 0 2 12

1 2

(1 ) (1 )
z qB I I I I

E E
   

 


  
    

 
                 [3.2] 

where, I0, I1and I2 represent the vertical displacement factors corresponding to depths z = 0, z = H1 

and z = (H1+H2). Vesic’s chart, shown in Fig. 3.1, can be used to obtain the vertical displacement 

influence factors. 
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Figure 3.1: Displacement factors for layered systems for load on flexible footing (modified after Vesic 

[1963]) 

 

The first term of Eq. 3.2 represents the settlement of top layer of finite thickness H1 and the second 

term corresponds to the settlement of bottom layer of finite thickness H2 assuming a homogenous soil 

deposit with moduli of elasticity E1 and E2 for the top and bottom layers, respectively. Steinbrenner’s 

method is based on the assumption that the stress distribution within the layered system is identical 

with that of the stress distribution for a homogenous semi-infinite layer. Hence, the applicability of 

Steinbrenner’s method for layered system will depend on the vertical stress distribution for the two-

layered system in comparison to that for a homogenous semi-infinite layer. The vertical distribution 

was obtained for a finite two-layer soil system and for a homogenous semi-infinite layer for two 

cases- (a) soft layer overlying stiff layer (E1/E2 <1.0), and (b) stiff layer overlying soft layer (E1/E2 

>1.0). The stress distribution was obtained using commercially available Finite Element software 

PLAXIS 2D Version 8.2 for an applied stress at the surface q = 500 kPa and radius of circular loaded 

area a =1.0m.  

 

Fig. 3.2 shows the vertical stress contours for a uniform elastic medium of constant E and for a two-

layer system with E1/E2 =0.1. It can be seen from the figure that the vertical stress distribution for the 

two-layer system is identical to that for a uniform elastic medium. Eq. 3.2 can, hence, give a 

reasonably good estimate of the settlement of the two-layer system with E1/E2<1.0 using 

Steinbrenner’s approach. 

 

Fig. 3.3 shows the vertical stress contours for a uniform elastic medium of constant E and for a two-

layer system with E1/E2 =10. The difference in the vertical stress distribution is significant for the two 

cases, the bottom layer experiences a vertical stress of only about 0.3q at the top of the bottom layer 
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(at z= H1) in a two-layer system, whereas a much higher value of 0.7q is transferred at the same level 

for a uniform elastic medium. Due to significant difference in the stress distribution, the settlement of 

a two-layer system with E1/E2 > 1.0 cannot be predicted correctly using Steinbrenner’s method (Eq. 

3.2). 

 

[a]
          

[b] 

Figure 3.2: Comparison of vertical stress contours for q=500 kPa and a=1m for [a] uniform elastic 

medium (constant E),  =0.5, and [b] two-layer system with H1=1m, E1=1MPa, 1=0.5; H2=5m, 

E2=10MPa, 2=0.5 

 

[a]
            

[b] 

Figure 3.3: Comparison of vertical stress contours for q= 500 kPa and a=1m for [a] uniform elastic 

medium (constant E),  =0.5, and [b] two-layer system with H1=1m, E1=10MPa, 1=0.5; H2=5m, 

E2=1MPa, 2=0.5 
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3.1.2 Finite Element Analysis 

The software PLAXIS 2D Version 8.2 was used to obtain settlements using Finite Element (FE) 

method. Due to axi-symmetry, only one-half of the model was considered. Convergence of settlement 

at the center of the loaded area was checked by varying the size of the mesh and the distance of lateral 

boundary from the axis of symmetry. Based on preliminary studies, the right boundary was fixed at a 

distance of 25a from the axis of symmetry, this distance is found to model the semi-infinite lateral 

extent of the deposit. Mesh coarseness was set to ‘very fine’ to discretize the domain. For example, 

Fig. 3.4 shows the FE model for the case with radius a=1.0m, H1/a=2.0 and H2/a=4.0. This geometry 

is divided into 1036 elements with an average element size of about 380mm. 15-noded triangular 

elements were chosen and the boundary conditions include restraining the displacements of nodes in 

r- direction (ur=0) along the axis of symmetry and the right boundary, and restraining the 

displacements of nodes in both r- and z- directions (ur=0 and uz=0) along the bottom rigid boundary. 

Line of 
Symmetry Rigid Boundary (ur=0, uz=0)

Load on circular 
area of radius ‘a’

25a

r

z

ur=0
ur=0

(a)

(b)

 

Figure 3.4: Finite element modeling: (a) meshing, and (b) 15-noded triangular element used for 

discretization 

 

3.1.3 Results 

The vertical displacement factor I for the two-layer system is proposed for various values of H1 =0.1-

to-6.0m, H2 =1.0-to-6.0m, E1/E2=0.01-to-100 and 1 =2 =0.2-to-0.5.  This factor I is obtained by 

equating the settlement of two-layer system 
2z to qBI/E2 

2
2

. ., z

qB
i e I

E
 
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                     [3.3]
 

For the two-layer system with E1/E2<1.0, both elastic and finite element solutions are presented, 

whereas for the case E1/E2>1.0, only finite element solution is given as the elastic solution based on 

Steinbrenner’s method is not applicable. 

 

3.1.3.1 Displacement Factors for the Case E1/E2 < 1.0  

Table 3.1 shows I values of H1/a from 0.2-6.0 corresponding to H2/a values 1, 2, 4 and 6 

respectively, for E1/E2=0.01-to-1.0 and 1=2=0.2, 0.35, 0.5 based on finite element solution. Figures 

3.5 and 3.6 show the variations of I with H1/a and H2/a, respectively, for E1/E2=0.01-to-0.5 

and1=2=0.5 based on Steinbrenner’s and finite element methods.  

 

Figure 3.5 shows that elastic and FE solutions show good agreement, except for H1/a < 0.6 and 

E1/E2=0.01 with FE solution giving a higher I compared to elastic solution. I increases nonlinearly 

with increase in the thickness of the top, softer layer. The rate of increase of I  with H1/a is higher for 

low H1/a (up to H1/a=1.0) compared to that at large H1/a. This rate of increase is higher at low E1/E2 

(for e.g., E1/E2 = 0.01, 0.05) than at relatively high E1/E2 (for e.g., E1/E2 = 0.2, 0.5). For instance, I 

value increases from 22.2 to 41.5 as H1/a increases from 1.0 to 2.0, whereas thereafter I only 

increases from 0.6 to 0.9 for the same H1/a for E1/E2 = 0.01 and E1/E2 = 0.5, respectively. 

 

Figure 3.6 show the variation of I with H2/a for H1/a= 0.5 and 2.0. Figure 3.6 shows that the effect of 

H2/a on settlement is not significant for a relatively thick top deposit (H1/a=2.0), whereas for the case 

of H1/a=0.5, the thickness of bottom layer affect the Ivalues for E1/E2 = 0.2 and 0.5. For a low 

thickness of soft top layer over stiff bottom layer (H1/a=0.5), displacement factor from FE solution is 

18-20 % and 10-16% higher than that of elastic solution for E1/E2= 0.01 and 0.05, respectively. 

However, for E1/E2=0.2 or 0.5, both elastic and FE solutions give similar results. For the case of thick 

soft layer over stiff bottom layer (H1/a=2.0), Ivalues obtained from elastic and FE solutions show 

good agreement. 
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(b) 

Figure 3.5: Variation of I with H1/a from elastic and finite element solutions for 1=2=0.35, E1/E2=0.01-

1.0 and corresponding to (a) H2/a=1.0 and (b) H2/a=4.0 
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(a)  
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(b) 

Figure 3.6: Variation of I with H1/a from elastic and finite element solutions for 1=2=0.35, E1/E2=0.01-

1.0 and corresponding to (a) H1/a=0.5 and (b) H1/a=2.0 

 

3.1.3.2 Displacement Factors for the Case E1/E2 > 1.0  

Table 3.2 shows I values of H1/a ranging from 0.2-to-6.0 corresponding to H2/a values 1, 2, 4, and 6 

respectively, for E1/E2=2-to-100 and 1=2=0.2, 0.35, 0 5 based on finite element solution. Figures 3.7 

and 3.8 show the variations of I with H1/a and H2/a, respectively, for E1/E2=2-to-100 and1=2=0.5 

based on finite element solution.  

 

Figure 3.7 show that as the thickness of the top stiff layer increases, the settlement of the two-layer 

system decreases. The rate of decrease of I with H1/a is higher for relatively low H1/a (till H1/a =3.0) 

than for higher H1/a values. This decrease increases with increase in E1/E2 values. For instnce, I 
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decreases by 81% as H1/a increases from 0.5-to-2.0 for E1/E2=100, whereas it is only decreases by 4% 

for the same increase in H1/a (0.5-to-2.0m) for E1/E2=5. 

 

For a given thickness of top stiff layer, I values increase with increase in thickness of bottom soft 

layer, as shown in Fig. 3.8. The rate of increase of I with H2/a is higher for larger E1/E2 ratios 

compared to that of lower E1/E2 ratios. For H2/a varying from 1.0-to-6.0, I increases by 137% and by 

40% for E1/E2=100 and E1/E2=2, respectively, for H1/a=2.0. 
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(a)  
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100

 

(b)  

Figure 3.7: Variation of I with H1/a from elastic and finite element solutions for 1=2=0.5, E1/E2=2-100 

and corresponding to (a) H2/a=1.0 and (b) H2/a=4.0 
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Figure 3.8: Variation of I with H1/a from elastic and finite element solutions for 1=2=0.5, E1/E2=2-100 

and corresponding to (a) H1/a=0.5 and (b) H1/a=2.0 
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Table 3.1: I values for E1/E2 > 1.0 using finite element solution  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E1/E2=0.05 H1/a =0.2 =0.35 =0.5 

H2/a=1 

0.2 1.899 

 

1.314 

 

0.547 

 
0.5 4.334 

 

3.265 

 

1.838 

 
1.0 7.952 

 

6.538 

 

4.588 

 
2.0 12.239 

 

10.660 

 

8.390 

 
4.0 15.440 

 

13.813 

 

11.397 

 
6.0 16.649 

 

15.013 

 

12.551 

 

H2/a=2 

0.2 2.088 

 

1.497 

 

0.716 

 
0.5 4.484 

 

3.411 

 

1.976 

 
1.0 8.058 

 

6.641 

 

4.687 

 
2.0 12.297 

 

10.718 

 

8.445 

 
4.0 15.465 

 

13.838 

 

11.421 

 
6.0 16.663 

 

15.027 

 

12.564 

 

H2/a=4 

0.2 2.232 

 

1.640 

 

0.853 

 
0.5 4.607 

 

3.532 

 

2.092 

 
1.0 8.152 

 

6.735 

 

4.777 

 
2.0 12.359 

 

10.778 

 

8.504 

 
4.0 15.496 

 

13.870 

 

11.451 

 
6.0 16.682 

 

15.046 

 

12.583 

 

H2/a=6 

0.2 2.289 

 

1.696 

 

0.907 

 
0.5 4.657 

 

3.583 

 

2.140 

 
1.0 8.195 

 

6.778 

 

4.818 

 
2.0 12.390 

 

10.810 

 

8.534 

 
4.0 15.515 

 

13.889 

 

11.469 

 
6.0 16.695 

 

15.059 

 

12.595 

 

E1/E2=0.5 H1/a =0.2 =0.35 =0.5 

H2/a=1 

0.2 0.522 

 

0.422 

 

0.284 

 
0.5 0.719 

 

0.590 

 

0.413 

 
1.0 0.993 

 

0.844 

 

0.634 

 
2.0 1.319 

 

1.159 

 

0.927 

 
4.0 1.577 

 

1.414 

 

1.171 

 
6.0 1.681 

 

1.517 

 

1.271 

 

H2/a=2 

0.2 2.088 

 

1.497 

 

0.716 

 
0.5 4.484 

 

3.411 

 

1.976 

 
1.0 8.058 

 

6.641 

 

4.687 

 
2.0 12.297 

 

10.718 

 

8.445 

 
4.0 15.465 

 

13.838 

 

11.421 

 
6.0 16.663 

 

15.027 

 

12.564 

 

H2/a=4 

0.2 2.232 

 

1.640 

 

0.853 

 
0.5 4.607 

 

3.532 

 

2.092 

 
1.0 8.152 

 

6.735 

 

4.777 

 
2.0 12.359 

 

10.778 

 

8.504 

 
4.0 15.496 

 

13.870 

 

11.451 

 
6.0 16.682 

 

15.046 

 

12.583 

 

H2/a=6 

0.2 0.912 

 

0.803 

 

0.645 

 
0.5 1.042 

 

0.908 

 

0.715 

 
1.0 1.236 

 

1.084 

 

0.864 

 
2.0 1.470 

 

1.309 

 

1.072 

 
4.0 1.653 

 

1.489 

 

1.243 

 
6.0 1.727 

 

1.563 

 

1.314 

 

E1/E2=0.

01 

H1/a =0.2 =0.35 =0.5 

H2/a=1 

0.2 8.021 5.282 

 

1.712 

 
0.5 20.40

2 

 

15.154 

 

8.173 

 
1.0 38.88

2 

 

31.844 

 

22.162 

 
2.0 60.77

4 

 

52.886 

 

41.557 

 
4.0 77.05

3 

 

68.922 

 

56.845 

 
6.0 83.17

5 

 

74.995 

 

62.687 

 

H2/a=2 

0.2 8.209 5.464 

 

1.881 

 
0.5 20.55

2 

 

15.300 

 

8.310 

 
1.0 38.98

7 

 

31.947 

 

22.260 

 
2.0 60.83

2 

 

52.944 

 

41.612 

 
4.0 77.07 

 

68.947 

 

56.868 

 
6.0 83.18

8 

 

75.009 

 

62.700 

 

H2/a=4 

0.2 8.353 5.608 

 

2.081 

 
0.5 20.67

5 

 

15.421 

 

8.426 

 
1.0 39.08

2 

 

32.041 

 

22.350 

 
2.0 60.89

4 

 

53.005 

 

41.671 

 
4.0 77.10

9 

 

68.978 

 

56.899 

 
6.0 83.20

7 

 

75.028 

 

62.719 

 

H2/a=6 

0.2 8.411 5.664 

 

2.072 

 
0.5 20.72

6 

 

15.472 

 

8.475 

 
1.0 39.12

5 

 

32.084 

 

22.391 

 
2.0 60.92

5 

 

53.036 

 

41.701 

 
4.0 77.12

8 

 

68.997 

 

56.917 

 
6.0 83.22

0 

 

75.040 

 

62.731 

 

E1/E2=0.2 H1/a =0.2 =0.35 =0.5 

H2/a=1 

0.2 0.752 0.570 

 

0.328 

 
0.5 1.322 

 

1.036 

 

0.651 

 
1.0 2.153 

 

1.793 

 

1.293 

 
2.0 3.139 

 

2.742 

 

2.171 

 
4.0 3.887 

 

3.481 

 

2.875 

 
6.0 4.176 

 

3.767 

 

3.151 

 

H2/a=2 

0.2 0.940 

 

0.753 

 

0.498 

 
0.5 1.471 

 

1.182 

 

0.788 

 
1.0 2.258 

 

1.896 

 

1.392 

 
2.0 3.197 

 

2.800 

 

2.226 

 
4.0 3.912 

 

3.505 

 

2.899 

 
6.0 4.189 

 

3.780 

 

3.164 

 

H2/a=4 

0.2 1.085 

 

0.896 

 

0.635 

 
0.5 1.594 

 

1.303 

 

0.904 

 
1.0 2.353 

 

1.990 

 

1.482 

 
2.0 3.258 

 

2.861 

 

2.285 

 
4.0 3.944 

 

3.537 

 

2.929 

 
6.0 4.209 

 

3.799 

 

3.182 

 

H2/a=6 

0.2 1.142 

 

0.952 

 

0.689 

 
0.5 1.645 

 

1.354 

 

0.953 

 
1.0 2.396 

 

2.033 

 

1.523 

 
2.0 3.290 

 

2.892 

 

2.315 

 
4.0 3.963 

 

3.556 

 

2.948 

 
6.0 4.221 

 

3.812 

 

3.195 
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Table 3.2: I values for E1/E2 > 1.0 using finite element solution  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E1/E2=5 H1/a =0.2 =0.35 =0.5 

H2/a=1 

0.2 0.423 0.372 0.244 

0.5 0.350 0.313 0.216 
1.0 0.259 0.229 0.158 

2.0 0.202 0.179 0.129 
4.0 0.184 0.163 0.124 

6.0 0.185 0.163 0.123 

H2/a=2 

0.2 0.585 0.545 0.438 
0.5 0.464 0.435 0.352 

1.0 0.327 0.299 0.232 
2.0 0.233 0.209 0.184 

4.0 0.198 0.174 0.128 
6.0 0.198 0.167 0.124 

H2/a=4 

0.2 0.695 0.665 0.570 

0.5 0.550 0.530 0.464 
1.0 0.387 0.362 0.304 

2.0 0.268 0.238 0.179 
4.0 0.224 0.192 0.129 

6.0 0.223 0.189 0.124 

H2/a=6 

0.2 0.735 0.700 0.600 
0.5 0.585 0.560 0.489 

1.0 0.417 0.387 0.319 
2.0 0.294 0.257 0.182 

4.0 0.249 0.209 0.130 
6.0 0.230 0.196 0.129 

E1/E2=10

0 

H1/a =0.2 =0.35 =0.5 

H2/a=1 

0.2 0.316 0.274 0.149 

0.5 0.139 0.118 0.055 
1.0 0.062 0.052 0.022 

2.0 0.028 0.022 0.010 
4.0 0.021 0.017 0.007 

6.0 0.021 0.016 0.006 

H2/a=2 

0.2 0.437 0.407 0.296 
0.5 0.195 0.174 0.109 

1.0 0.081 0.069 0.041 
2.0 0.040 0.031 0.030 

4.0 0.034 0.025 0.007 
6.0 0.033 0.025 0.006 

H2/a=4 

0.2 0.530 0.510 0.424 

0.5 0.249 0.229 0.172 
1.0 0.110 0.092 0.052 

2.0 0.066 0.049 0.013 
4.0 0.059 0.042 0.007 

6.0 0.058 0.042 0.007 

H2/a=6 

0.2 0.565 0.545 0.456 
0.5 0.279 0.254 0.186 

1.0 0.136 0.109 0.053 
2.0 0.091 0.066 0.013 

4.0 0.084 0.060 0.007 
6.0 0.064 0.046 0.007 

E1/E2=2 H1/a =0.2 =0.35 =0.5 

H2/a=1 

0.2 0.456 0.392 0.267 

0.5 0.451 0.397 0.290 
1.0 0.425 0.376 0.282 

2.0 0.417 0.371 0.288 
4.0 0.430 0.384 0.303 

6.0 0.442 0.393 0.307 

H2/a=2 

0.2 0.630 0.570 0.453 
0.5 0.580 0.530 0.430 

1.0 0.510 0.460 0.369 
2.0 0.459 0.412 0.350 

4.0 0.447 0.398 0.311 

6.0 0.455 0.402 0.308 

H2/a=4 

0.2 0.750 0.690 0.575 

0.5 0.675 0.625 0.535 
1.0 0.575 0.530 0.441 

2.0 0.500 0.450 0.356 
4.0 0.474 0.418 0.315 

6.0 0.480 0.420 0.308 

H2/a=6 

0.2 0.790 0.730 0.605 
0.5 0.710 0.660 0.560 

1.0 0.610 0.560 0.456 
2.0 0.530 0.471 0.361 

4.0 0.500 0.436 0.315 

6.0 0.489 0.429 0.319 

E1/E2=20 H1/a =0.2 =0.35 =0.5 

H2/a=1 

0.2 0.390 0.347 0.210 

0.5 0.242 0.213 0.124 

1.0 0.134 0.115 0.064 
2.0 0.075 0.057 0.039 

4.0 0.057 0.049 0.032 
6.0 0.056 0.048 0.031 

H2/a=2 

0.2 0.535 0.510 0.399 

0.5 0.331 0.308 0.226 
1.0 0.178 0.160 0.110 

2.0 0.093 0.080 0.072 
4.0 0.069 0.058 0.033 

6.0 0.069 0.056 0.031 

H2/a=4 

0.2 0.635 0.063 0.540 

0.5 0.404 0.391 0.327 

1.0 0.222 0.203 0.156 
2.0 0.120 0.099 0.057 

4.0 0.095 0.075 0.033 
6.0 0.094 0.074 0.032 

H2/a=6 

0.2 0.068 0.660 0.600 

0.5 0.438 0.420 0.351 
1.0 0.249 0.224 0.164 

2.0 0.145 0.117 0.058 
4.0 0.119 0.092 0.033 

6.0 0.099 0.077 0.032 



21 

 

3.1.4. Case Study and Validation 

1. Ueshita and Meyerhof (1967) proposed a plot to estimate settlements at the center of a circular area 

for the case of finite top layer overlying a semi-infinite bottom layer. To compare these results with 

the present study, the thickness of bottom layer and distance of lateral boundary from the axis of 

symmetry were taken as 40a in the Finite Element model. Table 3.3 provides the comparison of Iρ 

values from the present study and Ueshita and Meyerhof (1967) for H1/a =0.5-to-3.0 for E1/E2=0.2, 2, 

5, 20 and 100. In most cases, the proposed settlement factors presented in the study are within 10% of 

the values proposed by Ueshita and Meyerhof (1967). 
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Table 3.3: Comparison of Iρ values from Ueshita and Meyerhof (1967) and from the present study 

H1/a E1/E2=2 E1/E2=5 E1/E2=20 E1/E2=100 E1/E2=0.2 

Ueshita & 

Meyerhof 

FE solution Ueshita & 

Meyerhof 

FE 

solution 

Ueshita & 

Meyerhof 

FE 

solution 

Ueshita & 

Meyerhof 

FE 

solution 

Ueshita & 

Meyerhof 

Steinbrenner’s 

approach 

0.5 0.669 0.679 0.6 0.608 0.474 0.469 0.307 0.304 1.013 1.048 

1.0 0.619 0.570 0.451 0.435 0.281 0.279 0.171 0.157 1.682 1.613 

2.0 0.513 0.480 0.313 0.293 0.170 0.151 0.092 0.072 2.595 2.390 

3.0 0.465 0.430 0.255 0.236 0.128 0.106 0.065 0.044 3.086 2.784 
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2. Kay and Cavagnaro (1983) conducted site borings in Adelaide, South Australia, for soil 

identification and for performing down-hole plate load (DHPL) test to obtain drained 

Young’s modulus, E′. Figure 3.9 shows the soil profile and plot of E′ values with depth. 

This building rested on a raft of dimensions 33.5 m x 39.5 m placed at a depth of about 4m 

from the ground surface. Based on the variation of E′ with depth, the soil profile below the 

raft can be assumed to consist of two finite layers of thickness equal to 2 m and 8 m with E′ 

equal to 44 MPa and 60 MPa, respectively, and overlying a very stiff layer. Settlement 

measured at this site ranged between 16-18mm for applied load of 134 kPa.  The settlement 

of the building using the method proposed in this study was compared with the observed 

settlement at the site. 
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Figure 3.9: Soil profile with the variation of E’ with depth at Savings Bank Building in the City 

of Adelaide, South Australia (Kay and Cavagnaro, 1983) 

 

In order to use the charts proposed in this paper, an equivalent circular area of radius equal 

to 20 m corresponding to the raft area was obtained. Using the notation of Eq. [3.2], q=134 

kPa, H1=2m, H2 = 8m, a = 20m and H1/a = 0.1, H2/a = 0.4, E1 = 44 MPa, E2 = 60 MPa. For 

the stiff clays of the Adelaide area, v=0.2 is appropriate (Kay and Cavagnaro [1983]). The 

corresponding settlement from the proposed Steinbrenner’s method (Eq. [3.2]) gives 

settlement at the center of the raft equal to 19 mm which is in good agreement with the 

measured settlement values of 16-to18 mm. The slight difference might be due to [a] 

replacement of loading on raft with load on an equivalent circular area and [b] neglecting 

the top 4m overburden above the raft level. 
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3.2 Load on a Rigid footing 

3.2.1 Elastic solution 

Vesic’s chart can be used to obtain the vertical displacement influence factors due to load 

applied on the rigid footing as shown in Fig. 3.10. For a multi-layered system of n layers, 

equation for the settlement, ρz│n at the center is given by Eq. [3.1] & [3.2]. 

 

A model problem with rigid footing (simulated by providing uniform prescribed 

displacement below the footing) for a uniform elastic medium of H=4m, E=1000kPa and 

=0.33 was solved in finite element solution (Plaxis 2D 8.2 version). The displacement 

obtained was 1.03m for contact pressure of 1000 kPa from the elastic solution, whereas the 

displacement obtained from Vesic’s chart for the same problem is 1.01m, a difference of 

about 2.9% in comparison with the Finite element model. 
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Figure 3.10: Displacement factors for layered systems for load on rigid footing (modified after 

Vesic [1963]) 

 

3.2.2 Finite element solution 

Figure 3.11 show the variations of  I with H1/a, for E1/E2=2-to-100 and1=2=0.35 based on 

finite element solution. 

 

Figure 3.11a shows that as the thickness of the top stiff layer increases, the settlement of the 

two-layer system decreases from E1/E2= 2-100. For E1/E2=2, I value is almost constant for 

H1/a from 0.2-to-6.0. For the cases E1/E2= 5, 20, 100 the rate of decrease of I  with H1/a is 

higher for relatively low H1/a than for high H1/a values. This decrease increases with 
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increase in E1/E2 values. For instance, I decreases by 72.2% as H1/a increases from 0.5-to-

2.0 for E1/E2=100, whereas it is only decreases by 29.7% for the same increase in H1/a (0.5-

to-2.0m) for E1/E2=5.  

 

Similar trend is observed for the case of H2/a=4 as shown in Fig. 3.11b. The rate of 

decrease with H1/a is more for H2/a=4 than that of the H2/a=1. For instance, I decreases by 

about 72% for H2/a=1 and it is decreases by about 76% for H2/a=4 as H1/a increases from 

0.5-to-2.0 for E1/E2=100. 

 

Figure 3.12 shows the comparison of flexible footing and rigid footing with respect to the 

variation of Iρ with H1/a from Finite element solutions for ν1=ν2=0.35, E1/E2=2-100, H2/a=4. 

Iρ values for rigid footing are found to be less than that for flexible footing. The ratio of 

rigid footing Iρ to flexible footing Iρ are 0.685, 0.645, 0.587, and 0.573 for E1/E2=2, 5, 20 

and 100, respectively, at H1/a= 0.2. As H1/a increases from 0.2-6.0, the ratio of rigid footing 

Iρ to flexible footing Iρ increases gradually. For instance, the ratio of rigid footing Iρ to 

flexible footing Iρ are 0.747, 0.755, 0.811, 0.857 for E1/E2=2, 5, 20, and 100 respectively at 

H1/a=6.0. 
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Figure 3.11: Variation of Iρ with H1/a from Finite element solutions for ν1=ν2=0.35, E1/E2=2-100 
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Figure 3.12: Comparison of flexible footing and rigid footing for variation of Iρ with H1/a from 

finite element solutions for ν1=ν2=0.35, E1/E2=2-100, H2/a=4 
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Chapter 4 
 

Load-settlement response of finite two-layer 

system using Mohr-Coulomb model 

   

 

Linear stress-strain model can be used only when the loads are within elastic regime. In this Chapter, 

linear elastic-perfectly plastic model (Figure 4.1) is considered for the layered soil system to estimate 

the settlements due to circular load acting on both flexible and rigid footings resting on finite two-

layer system.  Mohr-Coulomb model is used as a first approximation of soil behavior. 

 

σ

Є

Linear stress strain

Perfectly plastic

 

Figure 4.1: Elastic perfectly plastic behavior of soil under external load 

 

Additional parameters - cohesion (c), friction angle (), dilatancy angle () are required other than 

elastic parameters for elasto-plastic behavior of soil. For the present case, cohesion of the soil is 

taken as 0˚ with no diltancy (=0˚). Angle of shearing resistance of the top layer is taken as 36˚ 

(considering a strong top layer of medium dense sand) and for bottom layer it is taken as 32˚ 

(considering a weak bottom layer of loose sand). Typical soil model parameters used in the study 
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using Mohr Coulomb model (elastic- perfectly plastic) for circular loading on finite two-layered soil 

profile is shown in Fig. [4.2]. 

B
q

E2,2=0.35, C2= 0,2= 32˚,2=0˚

E1,1=0.35, C1= 0,1= 36˚,1=0˚

H1

H2

 

Figure 4.2: Mohr-Coulomb model for load on finite two-layered soil profile. 

 

4.1 Load on a Flexible footing 

Analytical solutions are not available to calculate the settlements of finite two-layered soil profile 

considering non-linear analysis. These settlements are predicted using PLAXIS 2D. The displacement 

influence factor I is obtained by equating the settlement of two-layer system 
2z to qBI/E2 as shown 

in Eq. [4.1]. 

2
2

. ., z

qB
i e I

E
 

 

22z E
I

qB



 

                     [4.1] 

 

The vertical displacement factor I for the two-layer system is proposed for various values of H1/a 

=0.1-to-6.0, H2/a =1 and 4, E1=2000kPa, E2=1000kPa, ν1=ν2=0.35. 

 

Figure 4.3 shows the variations of I with H1/a, for E1=2000kPa, E2=1000 kPa, ν1=ν2=0.35, H21/a =1 

and 4, respectively, for /B values in the range 2%-15% based on finite element solution. Loading is 

applied on the footing till the respective /B values are attained. 

 

Figure 4.3a shows that for relatively thin bottom layer (H2/a=1.0), the effect of the thickness of the 

top stiff layer on the settlement of the two-layer system is insignificant. For some cases, the soil 
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system collapse before the prescribed /B values are reached. Hence, the data points corresponding to 

such /B values are not shown in the plot. 

 

Figure 4.3b shows that as the thickness of the top stiff layer increases, the settlement of the two-layer 

system decreases. The rate of decrease increases with increase in /B values. The rate of decrease of I 

with H1/a is higher for relatively low H1/a (till H1/a =3.0) than for high H1/a values. For instance, I 

decreases by 10% as H1/a increases from 0.2-to-0.5, whereas it decreases only by 4% for increase in 

H1/a from 4.0-to-6.0 for /B= 2%. For this case, soil body did not collapse before reaching /B value 

due to the large bottom layer thickness (H2/a=4). 
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Figure 4.3:Variation of Iρ with H1/a from Finite element solutions for ν1=ν2=0.35, E1=2000kPa, 

E2=1000kPa 

 



30 

 

4.2 Load on a Rigid footing 

q is taken as average contact pressure instead of uniform pressure from the Eq. [4.1] for calculating 

the displacement influence factors(I) for load on rigid footing. 

 

Figure 4.4 and Figure 4.5show the variations of I with H1/a, for E2=1000 kPa, E1=2000 kPa, 5000 

kPa, 20000 kPa and1=2=0.35, H2/a =1 and 4, respectively, for /B values in the range 2%-15% 

based on finite element solutions. 

 

Figure 4.4a shows that as the thickness of the top stiff layer increases, the settlement of the two-layer 

system is more or less constant, similar behavior as was noticed for flexible footing. Figure 4.4b 

shows that as the thickness of the top stiff layer increases, the settlement of the two-layer system 

decreases due to increase in top layer stiffness. The rate of decrease of I with H1/a is higher for 

relatively low H1/a than for high H1/a values. For instance, I decreases by 7% as H1/a increases from 

0.5-to-0.1, whereas it is only decreases by 5% for increase in H1/a from 4.0-to-6.0 for /B= 2%. 

Similar trend is observed for E1=20000 kPa as shown in Fig. 4.3c. But the rate of decrease of I with 

H1/a is more for E1=20000 kPa than that of E1=5000 kPa. For instance, I decreases by 7% for 

E1=5000 kPa, whereas it decreases by 15% for E1=20000 kPa as H1/a increases from 0.5-to-0.1. 
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(b) E1=5000 kPa 
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(c) E1=20000 kPa 

Figure 4.4: Variation of Iρ with H1/a from Finite element solutions for ν1=ν2=0.35, E2=1000 kPa, E1=2000 

kPa, 5000 kPa, 20000 kPa respectively corresponding to H2/a=1 

 

Figure 4.5a shows that as the thickness of the top stiff layer increases, the settlement of the two-layer 

system decreases. The rate of decrease of I with H1/a is higher for relatively low H1/a than for high 

H1/a values. For instance the rate of decrease I value is decreases by 5% with H1/a values from 0.2-to 

0.5 and it is decreases by 2% with H1/a values from 4.0-to 6.0  for /B=5%. Similar trend is observed 

forE1=5000 kPa and 20000 kPa as shown in Fig. 4.5b and Fig. 4.5c, respectively. But the rate of 

decrease of I with H1/a is more for larger top layer stiffness. For instance, I decreases by 5% for 

E1=2000 kPa, 9% for E1=5000 kPa and 13% forE1=20000 kPa as H1/a increases from 0.2-to-0.5. 
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Figure 4.5: Variation of Iρ with H1/a from Finite element solutions for ν1=ν2=0.35, E2=1000 kPa, E1=2000 

kPa, 5000 kPa, 20000 kPa respectively corresponding to H2/a=4.0 
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Figure 4.6 shows that Comparison of flexible footing (Ff) and rigid footing (Rf) for variation of Iρ 

with H1/a from Mohr-Coulomb model using finite element solutions for ν1=ν2=0.35, E1=2000kPa, 

E2=1000kPa and H2/a=4. Ratio of rigid footing I to flexible footing I are 0.931, 0.974 and 1.0 for 

/B=5%, /B=10% and /B=15%, respectively, at H1/a=0.2. With increase in /B values, this ratio 

increases and becomes 1.0 at H1/a=0.2 for /B=15%, indicating that the rigid footing I is equal to 

flexible footing I. 
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Figure 4.6: Comparison of flexible footing (Ff) and rigid footing (Rf) for variation of Iρ with H1/a from 

Mohr-Coulomb FE solutions for ν1=ν2=0.35, E1=2000kPa, E2=1000kPa H2/a=4 
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Chapter 5 
 

Conclusions 

   

 

5.1 Elastic analysis due to flexible load on finite two-layer system 

Displacement factors were proposed to estimate settlements due to uniform circular load acting 

flexible footing resting on a finite two-layer system for a soft layer overlying a stiff layer (E1/E2<1.0) 

and a stiff layer overlying a soft layer (E1/E2>1.0). For a soft layer overlying a stiff deposit 

(E1/E2<1.0), displacement factors obtained from Steinbrenner method are found to compare well with 

the results from the Finite element solution. Steinbrenner’s method provides a good approximation for 

the settlements for the two-layer system with E1/E2< 1.0. Settlement influence factors for the finite 

two-layer profile for E1/E2 are newly provided in this thesis. The displacement factors proposed in this 

study using Steinbrenner and Finite element methods are in good agreement with the factors proposed 

by Ueshita and Meyerhof. 

 

5.1.1 Bottom layer is stiffer than the top layer 

[1] As the thickness of the top layer increases, the settlement of the two-layer system increases for 

E1/E2= 0.5-0.01. The rate of increase of I with H1/a is higher for relatively low H1/a than for high 

H1/a values. This increase increases with increase in E1/E2 values. 

[2] As the thickness of the bottom layer increases, the settlement of the two-layer system increases for 

E1/E2= 0.1-0.01 for smaller top layer thickness, and it is almost constant for higher top layer 

thickness. 

 

5.1.2 Top layer is stiffer than the bottom layer 

[1] As the thickness of the top layer increases, the settlement of the two-layer system decreases for 

E1/E2= 2-100. The rate of decrease of I with H1/a is higher for relatively low H1/a than for high H1/a 

values. This decrease increases with increase in E1/E2 values. 
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[2] As the thickness of the bottom layer increases, the settlement of the two-layer system increases for 

E1/E2= 2-100. The rate of increase of Iwith H2/a is higher for larger E1/E2 ratios compared to that of 

lower E1/E2 ratios. 

 

5.2 Elastic analysis due to rigid load on finite two-layer system 

[1] As the thickness of the top layer increases, the settlement behavior is similar to that of the flexible 

loading for the case of E1/E2>1. 

[2] The ratio of rigid footing Iρ to flexible footing Iρ is initially less than /4 at lower H1/a value, and 

then increases gradually with H1/a and becomes /4 at higher H1/a value. 

 

5.3 Nonlinear analysis due to flexible load on finite two-layer system 

[1] For H2/a value equal to 1.0, effect of H1/a on I is insignificant for the top layer stiffness is greater 

than the bottom layer. 

[2] For H2/a value equal to 4.0, I values decrease with increase in H1/a. The rate of decrease of I 

with H1/a is higher for relatively low H1/a (till H1/a =3.0) than for high H1/a values. 

 

5.4 Nonlinear analysis due to rigid load on finite two-layer system 

[1] I values decrease with increase in H1/a. The rate of decrease of I with H1/a is higher for relatively 

low H1/a (till H1/a =3.0) than for high H1/a values when the top layer stiffness is greater than the 

bottom layer. 

[2] I values decrease with increase in the top layer stiffness for a given bottom layer stiffness. The 

rate of decrease of I with H1/a is higher for relatively higher E1 values than for lower E1 values for 

constant bottom layer stiffness. 

[3] The rate of decrease of I with H1/a is more for the H2/a equal to 4.0 than that of H2/a equal to 1.0. 

[4] The ratio of rigid footing I  to flexible footing I  is initially less than 1.0 for /B=5%, and it 

increases with /B and reaches 1.0 for /B=15%, (0.3m). The effect of H1/a on this ratio is 

insignificant. 
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