
Design of Feature Extraction Circuit for Speech
Recognition Applications
Saambhavi.V.B.∗, S.S.S.P.Rao† and P.Rajalakshmi‡

∗†‡Indian Institute of Technology Hyderabad
∗Email: ee10m09@iith.ac.in
†Email: sssp.rao@cmcltd.com

‡Email: raji@iith.ac.in

Abstract—This paper presents a hardware-software co-design
implementation of feature extraction circuit which can be used
for speech recognition applications. Mel-frequency cepstral co-
efficients are used to represent the features of the speech. A
comparison between a complete software implementation and
a co-design with both hardware and software components is
brought out for the same circuit. The advantage of the hardware-
software co-design is brought out by showing that the delay of
execution has decreased to 0.0184 seconds from 17.29 seconds for
the complete software implementation approach.The MicroBlaze
soft-core processor from Xilinx is used in the hardware-software
co-design. The processor frequency is chosen to be 66.67MHz.
The Xilinx EDK software is used to design the circuit. The entire
work is implemented on Atlys Spartan-6 development board.

I. INTRODUCTION

Feature extraction is the process of taking out linguistic
information from an uttered speech signal for utilizing in
recognition. Short sections of the speech signal are isolated
and given for processing. This processing is repeated for the
entire duration of the waveform. The result of this operation is
a new sequence of features along the time axis, representing
the speech signal [1]. Mel-scale frequency cepstral coefficients
(MFCC) are the most frequently used for speech recognition.
This is because MFCCs considers observation sensitivity of
human ear at different frequencies, and hence, is appropriate
for speech recognition.
Feature Extraction plays a major part in the speech recognition
algorithm. The proficient implementation of the design for
feature extraction leads to efficient calculation of the speech
features. Mostly its implementation is achieved as complete
software implementations in literature. In [9], MFCC computa-
tion is implemented fully in software and it amounts to 22.82%
(0.34 sec) of the whole decoding time required to recognize
2.515 seconds of speech at 120MHz. Similarly, [10] presents
a mid-sized vocabulary system implementing the MFCC fea-
tures extraction step in software. MFCC calculation takes 10%
of the total computation load in their implementation, which
is a significant percentage. Although the pure software based
approach is easier to implement and deploy, the time taken
by the software routines to do the complex digital speech
signal processing is high. Such high computation time makes
recognition of voice-command in real-time difficult, in case of
implementations on processors which are suitable for low cost
embedded devices.

There are also pure hardware implementations present. In [11],
an ASIC containing approximately 10,000 gates is designed
which calculates the MFCC features of dimension order 12
in hardware. The area is efficiently used by exploiting the
symmetric property of cosine function, minimizing the size of
the look-up table and decreasing the computational load. The
design works at 50 MHz and has an area of 3.2x3.3 sq.mm.
The design takes 3670 clock cycles to compute the MFCC
without considering the FFT operation. An ASIC design is
presented to calculate the MFC coefficients in [12]. A novel
design is presented to reduce the computations involved in
finding the Mel-filtered energy spectrum. The total number of
computation cycles reported is 260 without considering the
FFT operation. The design works at 100MHz. Implementing
the entire algorithm in hardware increases the response rate.
Even though this approach gives good timing performance,
there are certain disadvantages. They are

1) The resources needed for implementation of the algo-
rithm is high.

2) Separate hardware designs must be made for different
embedded applications as the vocabulary for every kind
of application varies.

3) If further additional capabilities are to be added, the
dedicated architecture cannot be modified to include
them as they are designed only for speech recognition
application.

An optimization between the pure hardware-based and pure
software-based approaches is to include both the hardware and
software components in the system and partition the tasks such
that the resources are optimized and the delay is not compro-
mised a lot. This hardware-software co-design approach has
the combined advantage of being adaptable and fast enough.
Also the area needed would be lesser than the pure hardware
implementation. This paper presents a hardware-software co-
design implementation of the feature extraction circuit and
brings out the comparison between the complete software-
based implementation and the co-design implementation.

II. MEL-FREQUENCY CEPSTRAL COEFFICIENT
EXTRACTION

The step-by-step calculation of MFCC is shown as a block
diagram in Fig 1 and is explained as follows.

• The speech signal is sampled and quantized.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Archive of Indian Institute of Technology Hyderabad

https://core.ac.uk/display/38678068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Feature Extraction - Block Diagram

• Pre-emphasis - The speech samples are sent through a
high-pass filter to amplify the frequencies above 1 KHz
in the spectrum because hearing is more perceptive in
this region [2]

• Frame blocking: The speech samples are blocked into
frames of N samples (amounting to a time period of 10-
30 ms) with an overlap of some samples between frames.

• Fast Fourier Transform (FFT): FFT is performed on each
of the frames to obtain the magnitude values of the
frequency response.

• Triangular Band-pass Filtering: The magnitude frequency
response is multiplied by a set of triangular band-pass
filters to get the log energy value of each filter. The
positions of these filters are evenly spaced along the Mel-
frequency scale.

• Discrete cosine transform or DCT: The DCT is applied on
the logarithm of the energy obtained from the triangular
band pass filters. The result gives the Mel-scale cepstral
coefficients or MFCCs.

III. HARDWARE-SOFTWARE CO-DESIGN OF FEATURE
EXTRACTION BLOCK

The prototyping is carried out on the Atlys development
board containing the Spartan-6 FPGA.

A. Acquisition

The speech is collected through the AC’97 codec with
the help of the controller circuit. These speech samples are
stored in the memory to be retrieved by the feature extraction
circuitry. The steps involved in acquisition are as follows.

• The AC’97 codec is initialized - the codec and the
controller are synchronized

• The microphone input is selected, and the volume and
gain of the input channels are set by giving appropriate
control information in the serial-data-out line going to the
codec.

• The sampling rate is set to 8000 Hz and the input coming
through the microphone is recorded for a particular
interval and stored in the DDR2 memory.

B. Implementation of Fast Fourier Transform and Magnitude
extractor

The fast Fourier transform is implemented with the help of
the LogiCORE IP core FFT v8.0. The FFT core is configured
to compute a 256-point forward DFT in pipelined streaming
I/O architecture for every frame of the input. The IP core is
interfaced with two first-in-first-out (FIFO) memory interfaces
on either sides for collecting the input and output. The input
frame is written into the FIFO named as the Write-FIFO by the
processor. The FIFO streams all the data in the frame into the

IP core if the core is ready. The IP core collects and processes
the data and after a latency of 862 clock cycles, streams its
output data. Also the IP is configured to output the samples in
natural order. This output data is collected into a FIFO named
as the Read-FIFO. The interface between the FIFOs and the
FFT core is implemented as asynchronous handshakes. The
FFT is made to be operating on fixed-point data. The output
samples are scaled by a value of 256. The processor retrieves
the FFT data from the Read-FIFO for further calculating the
magnitude of the output complex numbers.

C. Triangular Mel frequency filtering

1) Band-pass Filtering: Mel is a measuring unit of per-
ceived pitch of a sound. The Mel scale was developed based on
the hearing perception of human beings. On an approximation,
the scale is linear below 1 KHz and it is logarithmic after 1
KHz. This is because human ear can discern comparable pitch
increments only with bigger and bigger intervals of frequency
above 1 KHz [7]. There are several relations relating the Mel
frequency to the linear frequency obtained through varied trial
and analysis. The prevalently used relation is given by the
Eq.(1): [7]

Mel(f) = 1127 ∗ ln(1 + f/700) (1)

Only certain frequencies of the spectrum of the speech signal
is needed to characterize it effectively. Hence, the spectrum of
each speech frame is passed through many band-pass filters to
capture the important Mel-frequencies in the speech. This is
called Mel-bank filtering. The result produces magnitudes of
power at the frequencies that can be heard discretely by the
human ear. Hence, these values are called ear magnitudes.

2) Hardware Design: The calculation of the ear-
magnitudes is implemented in hardware. It is designed in such
a way that it can be called as an instruction by the processor.
Forty overlapping triangular band-pass filters centered on forty
critical frequencies are constructed. All the triangular filters
have unit area. Hence, the filters have decreasing magnitude
and have larger frequency bandwidths at larger frequencies.
The coefficients of the filters are calculated beforehand and
are stored in the memory. Each frame of the speech signal is
passed through the filters and the resulting power spectrum
values on Mel frequency axis are stored back in the memory.
This filtering operation can be represented by the means of
a multiplication between a matrix containing the filter coef-
ficients and another matrix containing the speech frame [8].
This can also be inferred as a matrix multiplication between a
sparse matrix and the speech matrix as shown in Eq.(2), where
fx,y , ax,y , emagx,y represent the filter coefficients, absolute
magnitude of the FFT values and ear-magnitudes respectively
in the xth row and yth column of the respective matrices.



f1,1 .. .. f1,256
. .. .. ..
. .. .. ..

f40,1 .. .. f40,256


 ∗




a1,1
.
.

a256,1


 =




emag1,1
.
.

emag40,1


 (2)



Fig. 2. Design of the Ear Magnitude Extractor

The hardware implementation designed is as shown in Fig. 2.
The input data RAM represents the memory where the

input speech frames are stored. There are 40 filter-coefficient
RAMs which store the coefficients of each filter. In the filter
coefficient matrix, there are 413 non-zero values out of the
total of 10240 elements in the matrix. Thus there are 413
numbers of multiplications and several additions to be done
per speech frame. After filtering, each frame produces 40
values, stored as a column in the emag matrix. Each element
of the emag matrix, say emagx,1 is produced by multiplying
each element of the xth row of filter-coefficient matrix with
corresponding elements in the column matrix of the speech
frame and accumulating the results of the same. An array of
5 MACs is reused for all the 40 MAC operations that go on
in parallel when two matrices are multiplied. Once the 1st
MAC operation is done, it is relieved and reset to be used for
the 6th MAC operation. It is again used for the 11th, 16th,
21st, 26th, 31st and 36th MAC operations. Similarly the 2nd

MAC is used for the 7th, then 12th and so on. A counter
circuit and additional control signals are designed in hardware
on FPGA. These control circuits reset the MACs at regular
intervals and are used for collecting the output values in order
from the MAC units. The implementation is done for fixed
point numbers with appropriate scaling. The filter weights are
scaled by a value of 10000 to include the first four numbers
after the radix point. This scaling is approximated later by
subtracting a value of 4 from the logarithm of these values.
A LUT for the logarithm implementation is used and the
hardware multiplier units are used for the data manipulation
purposes. The design uses only 5 MACs and some control
logic for sequencing and resetting purposes. Figure. 3 shows
the RTL schematic implemented by the Xilinx synthesizer. Part
of the figure is expanded and shown at the right of the main
RTL figure, which depicts the use of the five MAC units.

3) Logarithm circuit implementation: One of the ways
of designing the hardware unit for logarithm calculation is

Fig. 3. RTL Figure of Ear-magnitude Extractor

through the look-up table (LUT) implementation, which is
followed in this project. This method has been detailed in
[6]. Any number, a, can be written as shown in Eq. (3), where
p is an integer (called the power-value) and N is called the
normalized value which is between 0.5 and 1.0.

a = 2p ∗N (3)

Taking log on both the sides, Eq.(3) can be written as

log2a = p+ log2N (4)

Also, the relation between logarithm to the base 2 and natural
logarithm can be expressed as Eq.(5).

log2a = logea/loge2 (5)

Using Eq.(4) and Eq.(5),

logea = (p+ log2N) ∗ loge2 (6)

loge2 is a floating point constant. Once p and log2N are
calculated the final logarithm value can be calculated by
adding them and later multiplying with the loge2 value. p can



be found out by finding the position of the most-significant bit
in the binary representation of the number a that is of logic 1.
The value of log2N is found out from the look-up table. The
table contains 256 numbers of logarithms of values that are
equally spaced with an interval of 0.5/256 = 0.001953 from
0.5 to 1.0. Only the logarithms are stored in the LUT. The
indexing is accomplished by manipulating the input number.
That is, if x is the input, then the index is calculated as
(a−0.5)/0.001953. Finally the scaled values (by 10000) of the
Mel filter coefficients are corrected by subtracting the value 4.
All the values involved in the logarithm calculations and the
values stored in the LUT are scaled by 10000 for fixed-point
calculations. This scaling includes additional precision because
of including the first four numbers after the decimal point. A
hardware block including the LUT is created which can be
used as a tailored instruction by the processor. The LUT is
created as a single port ROM (using BRAMs). The index of
the LUT is given by the address of the ROM.

D. Implementation of the Discrete Cosine Transform

The logarithms of the Mel-scaled spectral coefficients are
stored in the memory and accessed by the processor for the
calculation of the final Mel frequency cepstral coefficients.
This is done by taking the discrete cosine transform of the
logarithm of the ear-magnitudes. It can be expressed by the
Eq.(7):

cepi =
2

40
∗

40�

1

(loge(magj))∗cos(π ∗2∗40∗(j−1)∗ i) (7)

where i = 0 to (C-1). C in the above equation is an integer
referring to the number of cepstral coefficients, chosen to be
13. The Eq.(7) can be rewritten as

cepi =
2

40
∗

40�

1

(loge(magj)) ∗mi,j (8)

where,
mi,j = cos(π ∗ 2 ∗ 40 ∗ (j − 1) ∗ i) (9)

where i = 0 to 12 and j= 1 to 40 . Eq.(9) can also be represented
as the matrix shown in Eq.(10).

mi,j =

�
cos(π∗2∗40∗0∗0) .. .. cos(π∗2∗40∗0∗39)

. .. .. ..

. .. .. ..
cos(π∗2∗40∗0∗12) .. .. cos(π∗2∗40∗39∗12)

�
(10)

Hence, the Eq.(8) can be represented as



cep1
cep2
cep3
.
.

cep13




=
2

40
∗
�
mi,j

�
(13X40)

∗




emag0,0
.
.

emag39,0




(40X1)

(11)

This is equivalent to a multiplication between two matrices.
The first matrix is a constant matrix and the second is the
frame matrix containing the logarithm of the ear-magnitudes.
The result gives a column matrix with 13 cepstral coefficients.
An array of 13 multiplier-accumulators is used to compute

Fig. 4. Design of the Cepstral Coefficient Extractor

each cepstral coefficient. This avoids the repeated memory
access times required for computing each dimension of the
MFCCs. The MACs are built using the LogiCORE IP of
Xilinx. The MAC design uses the DSP slices available in
Spartan-6 and hence, it offers good speed. The cosine values
in the equation are stored in memory. A control unit has
been built, which keeps track of the memory addresses needed
to access the cosine values and the input ear-magnitudes. In
this implementation, the ear-magnitudes are accessed from the
memory only once. This implementation of the module in
hardware is as shown in Fig. 4. The Input Data RAM contains
the ear-magnitudes. The Filter Coefficient RAMs contains the
cosine values. The result of the computation produces the Mel-
frequency cepstral coefficients or MFCC. The RTL schematic
generated by the software is shown in Fig. 5. The blocks
with the cross on top of it indicate the multiply-accumulate
units. The 13 cepstral coefficients are drawn from this block
as outputs simultaneously. These outputs are written in user
registers incorporated in the custom user logic of the IP
interface module. The processor is designed to read these
outputs after the validity flag are set by the hardware showing
that new output data has arrived. The processor keeps checking
on the flag after giving a frame of ear-magnitudes as the input.



Fig. 5. RTL of the Cepstral Coefficient Extractor

TABLE I
COMPARISON OF THE CO-DESIGN AGAINST SOFTWARE IMPLEMENTATION

Parameter Software Co-design
Execution time (s) 17.2987 0.0184
No of slices registers 0 1010
No of slice LUTs 0 1788
No of BRAMs 0 27
No of DSP slices 0 5
No of fully used LUT-FF pairs 0 998

IV. ANALYSIS OF THE IMPLEMENTATION

The area occupied by the designs (excluding the area
occupied by the processor) and the execution time for the
feature extractions from the speech are tabulated as shown
in Table I. As can be observed, the software implementation
uses the least amount of resources, however takes a lot of time
to finish the MFCC computation.

V. CONCLUSION

The paper presents a hardware-software co-design for the
implementation of the Mel-frequency cepstral coefficient ex-
traction from speech signal. This circuit is used in speech
recognition applications. The advantage of the hardware-
software co-design is brought out by comparing the design
with a complete software design implemented on the same
platform. The delay is found to have reduced compared to the
software implementation because of using exclusive hardware
resources, which increases the area.

REFERENCES

[1] Piero Cosi, Giovanni De Poli, and Giampaolo Lauzzana. Auditory
modelliing and self-organizing neural networks for timbre classification.
New Music Research

[2] Vergin, R, O’Shaughnessy, D, and Gupta, V.. Compensated mel frequency
cepstrum coefficients. International Conference on Acoustics, Speech, and
Signal Processing 1, (1996) 323–326.

[3] http://mirlab.org/jang/books/audiosignalprocessing
[4] L.R.Rabiner and R.W.Schafer. Digital Processing of Speech Signals,

Pearson Education. Pearson education, 2009.
[5] Hyunjin Lim, Kisun You and Wonyong Sung. Design and Implemen-

tation of Speech Recognition on a Softcore Based Fpga International
Conference on Acoustics, Speech and Signal Processing 3,III.2006.

[6] Rajesh Sharma. Log Approximation Fixed Point Arithmetic.
[7] Terri Kamm, Hynek Hermansky and Andreas Andreou. Learning the

Mel-scale and optimal VTN mapping.1998
[8] Developing an Isolated word recognition system in MATLAB. MATLAB

Digest 2010.
[9] Cheng. O, Abdulla. W and Salcic. Z. HardwareSoftware Codesign

of Automatic Speech Recognition System for Embedded Real-Time
Applications. Industrial Electronics, IEEE Transactions on 58, (March
2011) 850-859.

[10] Peng Li. Design of a Low-Power Coprocessor for Mid-Size Vocabulary
Speech Recognition Systems. Circuits and Systems I: Regular Papers,
IEEE Transactions on 58, (May 2011) 961-970.

[11] Jia-Ching Wang. Chip design of mel frequency cepstral coefficients
for speech recognition. Acoustics, Speech, and Signal Processing, 2000.
ICASSP ’00. Proceedings. 2000 IEEE International Conference on 6,
(2000) 3658-3661.

[12] Hyunjin Lim. Design and Implementation of Speech Recognition on a
Softcore Based Fpga . Acoustics, Speech and Signal Processing, 2006.
ICASSP 2006 Proceedings. 2006 IEEE International Conference on 3,
(May 2006) III.


