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ABSTRACT 
A new paradigm for computing fluid flows is the use of 
Graphics Processing Units (GPU), which have recently become 
very powerful and convenient to use. In the past three years, we 
have implemented five different fluid flow algorithms on GPUs 
and have obtained significant speed-ups over a single CPU. 
Typically, it is possible to achieve a factor of 50-100 over a 
single CPU. In this review paper, we describe our experiences 
on the various algorithms developed and the speeds achieved. 
 
INTRODUCTION 

This paper describes some of our recent experiences of 
using Graphics Processing Units as a paradigm for performing 
large-scale scientific computations. In particular we are 
interested in computational fluid dynamics (CFD), which is 
important to a large number of mechanical, aerospace, chemical 
and biomedical industries. Beginning with essentially no 
background in using GPUs for CFD, we have, over the years, 
implemented several methodologies of CFD on a GPU, and 
studied a number of flow problems. The objective of this paper 
is to provide our assessment of learning, implementing, and 
applying the codes to problems of our interest. The currently 
observed performances are sufficiently impressive and 
attractive to pursue this new paradigm as a tool for CFD. 
Further code optimizations and tuning of the data structures 
may permit further speed-ups. It is also necessary to mention 

here that the technology is continually improving, and new 
hardware platforms as well as software are being developed. 
Hence many of the experiences reported here are being quickly 
superseded with new products and compilers being released by 
GPU vendors such as NVIDIA. Our current experiences relate 
to NVIDIA GPUs (specifically the Tesla C1060 and C2070) 
and programming them using CUDA (Compute Unified Device 
Architecture).  
 
DESCRIPTION OF GPU ARCHITECTURE 

The GPU can be thought essentially as a massively 
parallel computer, capable of simultaneously executing 
instructions on a large number of arithmetic units. However, 
because of the special architecture of the GPU, it is necessary 
to devise the numerical algorithm as well as the program 
structure such that the communication and computation as well 
as data access are executed optimally. The architecture of a 
GPU is quite different than that of a CPU. A GPU is designed 
with more transistors dedicated to computation and less 
resource dedicated to data caching and flow control compared 
with a CPU, resulting in significant computational speed-up 
[1]. The GPU is designed to be a parallel processor by using 
massive multithreading, where a single thread can be thought of 
as the smallest unit of execution that executes instructions in a 
program. Instructions for the GPU are written in a “kernel" 
which is similar to a function in the C programming language. 
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When a kernel is executed on a GPU, each thread executes the 
statements in that kernel, where each thread maps to a different 
element of data. Thus, the GPU architecture can be classified as 
SIMD (single-instruction, multiple-data) or SIMT (single-
instruction, multiple-thread [1]). The number of threads needed 
for a particular kernel depends on the data size to be processed, 
since the threads map to the data element indices. Threads are 
organized into “blocks," and all blocks belong to a “grid" as 
shown in Fig. 1. Before a kernel is executed on a GPU, the 
dimensions of the blocks and grid must be set explicitly by the 
programmer, as these are not automatically set by the GPU. It 
should be noted that the GPU is used as a co-processor in 
conjunction with the CPU. 

Typically, the “main" program executes on a CPU, 
and the GPU is utilized by launching kernels from the main 
program. Thus, usage of the CPU is not eliminated but rather is 
minimized. A GPU contains multiprocessors, where each 
contains streaming processors or “cores." For example, the 
Tesla C1060 has 30 multiprocessors, each with 8 streaming 
processors, and thus has a total of 240 streaming processors. 
The streaming processors are responsible for processing the 
thread blocks. When a block is processed, the threads in the 
block are divided into groups of threads (called warps), and the 
streaming processor launches the threads in a warp in parallel 
[1]. The blocks are independent of each other and there is no 
synchronization among blocks, so the only way to ensure all 
blocks have executed is to wait until the kernel has finished and 
control has been returned to the main program.  

In addition to the architectural differences between 
CPUs and GPUs, the memory bandwidth is another important 
difference. Modern GPUs have memory bandwidths an order of 
magnitude greater than CPUs; this is due to CPUs having to 
satisfy constraints of legacy applications and operating systems, 
which makes increasing memory bandwidth difficult, whereas 
GPUs have less legacy constraints resulting in more memory 
bandwidth [2]. This increase in memory bandwidth is another 
factor contributing to the favorable performance of GPUs.  
 

 
FIGURE 1. THREAD HIERARCHY OF THE GPU [1]. 

 
The memory spaces (RAM) of the CPU and GPU are separate, 
and explicit copy operations must be performed to move data 
to/from the GPU. Global memory is the largest memory space 

on the GPU (4 GB for Tesla C1060, 6 GB for Tesla C2070) but 
it is not cached, and thus has long access times. Each thread has 
its own registers and local memory, which are used for storing 
local variables declared within the kernel. All threads on a 
given block have access to the block's shared memory. 
However, a thread on a given block cannot access another 
block's shared memory. 

Shared memory is cached, and can be accessed much 
faster than global memory, but it is limited in size. In order to 
use shared memory, data must first be transferred from global 
memory to shared memory; computations are then performed 
using shared memory and the results are written back to global 
memory. This introduces extra computational complexity in the 
algorithm, but this can be offset by the potential gains of using 
a cached memory space. This benefit is realized if the data 
loaded into shared memory are reused many times during 
kernel execution. Texture memory is a read-only cached 
memory space that can be accessed by all threads, which offers 
avenues for performance optimization. For example, data 
structures in global memory can be read through texture 
memory via texture fetching, which decreases the access time. 
The Tesla C2070 (Fermi architecture) also has L1 and L2 
caches. While limited in size, these caches provide another 
avenue for rapid memory access. 
 
BRIEF OVERVIEW OF SELECTED PREVIOUS WORKS 

The use of GPUs for CFD applications is rapidly 
getting popular, and a number of researchers have found this 
paradigm to be beneficial. With the availability of small 
clusters of GPUs, performances of several tens of teraflops are 
possible on low footprint and low energy consuming 
“supercomputers”. A variety of scientific applications have 
been programmed on GPUs by a number of researchers, and 
their references can be found on several websites, especially at 
the NVIDIA website. Here we present some earlier works, and 
some recent works concerning CFD applications on GPUs. This 
list is by no means meant to be complete. In addition, note that 
comparisons to single-core CPU simulations can exaggerate the 
GPU speedup. Comparisons to multi-core CPU 
implementations would be better (although the present authors 
admit that we did not adhere to this practice since a multi-core 
CPU version of our codes was not developed).  

Before the advent of CUDA, programmers had to cast 
their applications in terms of graphics processing operations. 
Early work of this type was done by Scheidegger et al. [3], 
where they presented a GPU implementation of the SMAC 
method (Simplified Marker And Cell) to solve the 2D 
incompressible Navier-Stokes equations on structured grids. 
Central differences and a hybrid donor cell scheme were used 
in their approach. Texture memory was used to store the data 
structures; for example, floating-point textures called pixel 
buffers (or “pbuffers") were used to store the velocity fields. 
The Jacobi iteration scheme was used as a fragment program 
for the solution of the pressure-Poisson equation. In their study, 
two GPUs were tested: a GeForce FX 5900 (NV35) and a 
GeForce 6800 Ultra (NV40). The CPU used was a 2 GHz 
Pentium IV. The CPU performed better than the GPU only 
when a very small mesh was used, and this occurred when 
using the NV35. They explain that convergence is rapid in this 
case and that the pbuffer switches “probably overshadowed” 
the GPU parallelism. Their approach was, on average, 
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approximately 16 times faster than the CPU version. They 
studied a variety of flows, such as a lid-driven cavity, rising 
smoke at high Reynolds number, and flow past the outline of a 
car at low Reynolds number.  

Elsen et al. [4] used a GPU to simulate the inviscid 
flow in simple and complex geometries by numerically solving 
the compressible Euler equations. Compared to the CPU, they 
achieved GPU speed-ups of over 40 times for simple 
geometries and 20 times for complex geometries. The complex 
geometries consisted of a NACA 0012 airfoil and a hypersonic 
vehicle at Mach 5. Their comparisons were based on a 2.4 GHz 
Intel Core 2 Duo (single core used) and NVIDIA 8800GTX. 
They used the Navier-Stokes Stanford University Solver 
(NSSUS), which is capable of solving the 3D Unsteady 
Reynolds Averaged Navier-Stokes (URANS) equations. This 
code uses the finite-difference method with a vertex-centered 
solution on multi-block meshes. Temporal evolution of the 
solution toward a steady-state was accomplished using an 
explicit five-stage Runge-Kutta scheme. The code also 
incorporated a geometric multigrid scheme to accelerate 
convergence. For their study, only the steady solution of the 
compressible Euler equations was sought. They used the 
BrookGPU language to implement NSSUS (which was 
originally in Fortran) on a GPU.  

Brandvik and Pullan [5] presented results for 2D and 
3D Euler solvers implemented on the GPU. Their original 
implementation on the CPU of the Euler solvers was written in 
Fortran. They used the Euler solvers to simulate turbine flows: 
the 2D solver was used to simulate the flow through a transonic 
turbine cascade and the 3D code was used to simulate 
secondary flow development in a low speed linear turbine 
cascade. The 2D solver was programmed for the GPU using the 
BrookGPU language, and performed 29 times faster than the 
CPU version. They also used BrookGPU for the 3D solver, 
which performed only 3 times faster than the CPU version. A 
CUDA implementation of the 3D solver yielded better 
performance with a speed-up of 16 over the CPU. A 2.33 GHz 
Intel Core 2 Duo processor was used for the CPU solvers, 
where only a single core was utilized. The 3D CUDA solver 
used an NVIDIA 8800 GTX graphics card and the 2D and 3D 
BrookGPU solvers used an ATI 1950XT graphics card. Their 
2D and 3D codes solved the compressible Euler equations 
using the finite volume method with structured grids, where the 
variables were stored at the cell vertices. The spatial derivatives 
were discretized via second-order central differences and the 
temporal derivatives were discretized to first-order accuracy. 
There was no multigrid method employed in their approach.  

In another work by Brandvik and Pullan [6], they 
present a three-dimensional Navier-Stokes solver implemented 
on multiple GPUs using MPI. Instead of implementing in a 
particular language targeted at a particular hardware, they 
instead generalized their solver by expressing the subroutines in 
the Python scripting language. They developed a source-to-
source compiler used to convert these subroutines into source 
code to be compiled for a given target architecture (multi-core 
CPUs, NVIDIA GPUs, etc.). This novel approach clearly has 
the advantage of making the code more flexible and it provides 
longevity to the code since it will be easier to adapt to future 
architectures. 

Cohen and Molemaker [7] present a GPU 
implementation using CUDA for solving the incompressible 

Navier-Stokes equations with the Boussinesq approximation. 
They present results for the simulation of the Rayleigh-Benard 
convection problem and compare their GPU implementation to 
a multithreaded Fortran solver running on an eight-core CPU. 
Using double precision, the GPU-based solver was 
approximately eight times faster.  Shinn and Vanka [8] were the 
first to implement the SIMPLE algorithm on a GPU. Using 
CUDA, they wrote a 2D solver with multigrid Full 
Approximation Scheme (FAS) used to accelerate convergence 
of all flow variables (u, v, and p). The code was tested for the 
benchmark 2D driven cavity problem and compared to a CPU 
version of the code written in Fortran. It was found that the 
speedup scales with the problem size. For a problem size of 512 
x 512 grid cells, the GPU was an order-of-magnitude faster 
than the CPU for a range of Reynolds numbers. Steady-state 
calculations of driven cavity flow with 4096 x 4096 could be 
performed in a minute of GPU time.  

Shinn et al. [9] performed one of the first Direct 
Numerical Simulations using GPU hardware. The fractional-
step method with finite volume spatial discretization was used 
to solve the incompressible Navier-Stokes equations, and was 
implemented on a GPU using CUDA. A geometric multigrid 
method was used to accelerate the pressure-Poisson solution. 
They simulated turbulent flow in a square duct at a bulk 
Reynolds number of 5480 using a mesh resolution of 26.2 
million cells. This problem was selected not only to validate the 
GPU-based solver but also to test the capability of the GPU, as 
this was the largest problem that could fit on a single Tesla 
C1060. The salient features of this canonical flow were 
captured and compared well with previous data. The GPU-
based solver was over an order of-magnitude faster compared 
with the CPU-based version. Chaudhary et al. [10] extended 
this solver to include magneto-hydrodynamics and used it to 
study the magnetic field effects on turbulent flow in a square 
duct. Direct Numerical Simulations were performed at a bulk 
Reynolds number of 5500 at different Hartmann numbers to 
vary the magnetic field.  

Thibault and Senocak [11] presented the first 
implementation of a 3D incompressible Navier-Stokes solver 
on multiple GPUs. Using CUDA, a fractional-step procedure 
was used to solve the equations and the pressure-Poisson 
equation was solved using Jacobi iteration with no multigrid 
scheme. The spatial terms were discretized with second-order 
accurate central differences and an explicit, first-order accurate 
Euler scheme was used for temporal advancement. They 
validated their GPU implementation and assessed speedup via 
the problem of laminar flow in a lid-driven cavity.  

Griebel and Zaspel [12] were the first to implement a 
two-phase Navier-Stokes solver on a GPU, where they used a 
level set technique for the two-phases and a fractional step 
method to solve the Navier-Stokes equations. They 
implemented the solver on multiple GPUs and communicated 
GPU data between CPUs using Message Passing Interface 
(MPI). They ported a solver for the pressure-Poisson equation 
(a Jacobi-preconditioned conjugate gradient solver) and the 
level set reinitialization to the GPU using CUDA. In order to 
minimize the overhead from data communication, they 
exploited the asynchronous communication feature of CUDA, 
where data can be copied while computations are being 
performed. This can effectively hide the communication time. 
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This was done using “streams” where one stream managed 
communication while the other managed computation.  

Other than finite-difference and finite-volume 
methods, there has been progress in implementing the Lattice-
Boltzmann Method (LBM) for simulating fluid flows on GPUs. 
Early work by Li et al. [13] provided an implementation of the 
LBM on a GPU. Their implementation was capable of dealing 
with complex boundaries (both moving and deformable), which 
were managed using a voxelization algorithm. All calculations 
were performed on a GPU in real time and their simulations 
were second-order accurate in time and space. Their LBM code 
was programmed in Cg and OpenGL and used an NVIDIA 
GeForce FX 5900 Ultra GPU. The CPU used was a 2.53 GHz 
Pentium IV. They simulated a number of complex geometries 
on the GPU, such as a vase, a sphere, and a swimming jellyfish. 
It was found that their GPU implementation was 8 to 15 times 
faster than the CPU counterpart.  

Tolke [14] used the 2D Lattice Boltzmann Method on 
a GPU by programming in CUDA. The implementation was 
tested by simulating the fluid flow through a porous medium, 
which consisted of a grid of 324 circular cylinders, equally 
spaced in the horizontal and vertical directions. The GPU 
implementation was over 10 times faster relative to the CPU.  
Peng et al. [15] developed a 3D Lattice Boltzmann Method 
algorithm for a GPU using CUDA. They compared an NVIDIA 
GPU (GeForce 8800 GTS) with an AMD CPU (Sempron 
3500+) and found that the GPU performed 8.76 times faster 
than the CPU. As an example of a complex geometry, they used 
their LBM implementation for the simulation of fluid flow 
through fractured glass. 

Recently, Marsh [16] used CUDA to implement a 
hybrid molecular dynamics/Lattice Boltzmann Method on 
GPUs. Flow through a nano-scale straight channel and a 
nanoscale bellow channel were investigated. In the hybrid 
method, a molecular dynamics solver was used in the near-wall 
region and a Lattice Boltzmann solver was used away from the 
wall. The GPU provided a speed-up factor of 5-10 for the 
molecular dynamics solver and 50-75 for the Lattice Boltzmann 
solver compared to a CPU. The large speed-up for the Lattice 
Boltzmann method is indicative of the fact that this method is 
easier to parallelize (or, strictly speaking, multithread) 
compared to molecular dynamics. As an extension of this work, 
Sahu and Vanka [17] implemented a two-phase LBM on a GPU 
and observed a speed-up factor of 25 over a CPU. 
 
IMPLICATIONS OF GPU FOR CFD 

As mentioned above, several researchers have 
ported/developed numerical algorithms on GPUs. In order to 
take full advantage of the speeds offered by GPUs, a number of 
modifications have to be made to any existing CFD legacy 
code. In many situations, the algorithm/code may have to be 
rewritten specifically suited to GPUs, otherwise the maximum 
possible speed is not achieved. Here we describe some of our 
experiences. First, explicit time-marching algorithms are the 
most convenient ones to be ported on to the GPU. This is 
because there is no iteration, and the new value of a variable 
depends only on the old time values. Hence, the update of a 
given variable can be done independent of variables being 
updated on other threads. There is no recursive relation 
between the variables on the threads, since they are all known 
at the old time step. However, even for explicit algorithms, a 

few changes may be needed for efficiently implementing on the 
GPU. These relate to the use of shared memory and the layout 
of data structures. Memory coalescing and block size influence 
the speed achieved. Memory coalescing is guaranteed if the 
data is accessed such that sequential threads access sequential 
nodal data. With the Fermi architecture, the requirements to 
achieve coalescing are more relaxed [18]. In addition, data 
should be, where possible, copied to shared memory and re-
used as much as possible. Threads belonging to the same block 
can make use of the shared memory for that block which can 
sometimes be used to enhance the algorithm efficiency by 
reducing the number of global memory accesses.  

Even explicit algorithm based CFD codes need to be 
reorganized to take advantage of the GPU architecture. When 
an implicit algorithm is used, the efficiency as well as the 
convergence is impacted. Implicit algorithms directly ported to 
a GPU will not work because of the mixed implicit and explicit 
updates. It is necessary to remove any recursive updates, so the 
algorithm can be run on parallel threads. As an example, 
consider the Gauss-Seidel algorithm. Because of the recursive 
relation, it is necessary to “color” the nodes such that values of 
one color are not related within themselves. For a five point 
stencil of a 2D Poisson equation, two colors will generate sets 
in which each variable is not connected to its own members. 
Each color is then processed sequentially. However, one should 
not use the modulo operator to skip nodes of a different color. 
That would waste the threads, and also the data are not 
consecutively placed. Instead, one must reorganize the data to 
obtain the best and most use of the threads and memory. For 
higher-order stencils, more colors will be needed, and that may 
complicate the code structure. For line inversions, which are 
also recursive, it is necessary to have a second dimension along 
which the lines can be organized in colors. Two colors for a 
second-order stencil can be generated in which lines of cells are 
not connected with each other. Thus, each line, though 
recursive within itself, can be solved on one thread.  

Lattice Boltzmann algorithms are the easiest ones to 
develop on the GPU because of their inherent data parallel 
nature. A Lattice Boltzmann algorithm consists of three steps: 
collision, streaming, and calculation of flow variables. The 
collision step and calculation of flow variables are very much 
local operations. They can be performed independently on all 
threads. However, it is necessary to select the number of lattice 
points, and the layout such that the block size is optimal, and 
also the threads access adjacent data. This can be done by “un-
rolling” the density function vector, and writing one array for 
each of the components. This will increase the program length, 
but can bring efficiency. The streaming step, where the density 
function is advected to the neighbor lattice points, is the 
“tricky” part. Here, there is no computation, and the step 
requires pure data replacement. Use of shared memory is 
advantageous here, in which chunks of data are simultaneously 
copied from and to the global memory. Lattice Boltzmann 
algorithms have also been extended to two-phase flows, but 
require calculation of derivatives of some functions. These 
derivative calculations require values at neighbor locations, and 
can degrade performance. Our recent observation has been that 
single phase algorithms with combined collision and 
equilibrium calculations can achieve a speed-up of 50-75 over a 
CPU, whereas two-phase algorithms run slower (only about 25 
times faster than a CPU). These speed differences are however 
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a function of other variables such as CPU compiler, hardware, 
and also multiple or single core CPU.   
 
OUR RECENT RESEARCH 
Recently, we have implemented five different algorithms on the 
GPU, and compared their performance with those of a CPU. In 
most cases, the speed-ups have been very attractive. Large-
scale CFD calculations with up to 25 million nodes could be 
performed on a single Tesla GPU and in real compute times 
that are fairly competitive with a supercomputer facility. In this 
section, we describe these efforts and present both the 
computational performance and the computed flow problems. 
  
Fractional Step Method for DNS/LES of Turbulent 
Flows 
Our first code developed on a GPU was for conducting direct 
and large eddy simulations of turbulent flows. Such DNS/LES 
are very computationally intensive, requiring massive amounts 
of storage and CPU time. We have considered only 
incompressible flows, for which a fractional step algorithm has 
been used. In this algorithm, the momentum and energy 
equations are solved by an explicit algorithm with second-order 
temporal and spatial accuracy. The finite volume method with a 
staggered grid is used. As the momentum equations are updated 
explicitly, no iterations are required, and there are no recursive 
steps. However, if an implicit formulation is used either for all 
convective and diffusive fluxes, or just for diffusive fluxes, a 
special algorithm is needed. The most time consuming step is 
the pressure-Poisson equation, which is fully implicit. The 
pressure-Poisson equation requires convergence to a high 
degree (mass error), and consumes nearly 80% of the total time. 
In our serial method, we have used Successive Over-Relaxation 
(SOR) which has a better convergence rate than a pure explicit 
Jacobi scheme. However, since the grids used are very fine, we 
have accelerated this using geometric multigrid on a structured 
grid. Several levels of finite volume grids nested within a fine 
grid are used. The traditional SOR is not parallelizable; hence 
we have used a red-black coloring scheme [19] to separate the 
unknowns in two independent subsets. The mesh is “colored” 
like a checkerboard and the red cells are updated, then the black 
cells (or vice-versa). The multigrid is implemented with a V-
cycle, and consists of restriction, relaxation and prolongation.  

The solution of the pressure-Poisson equation is done 
to a high accuracy, typically three or four orders of magnitude 
reduction in error at every time step. Our current 
implementation, uses a modulo operator, where the threads that 
are red are skipped when the black colored cells are solved and 
vice-versa. In an effort to decrease memory access times in the 
SOR implementation, textures were used to fetch the pressure 
data from global memory, which decreased overall code 
execution time by approximately 10 percent. Also, we explored 
using shared memory in the SOR algorithm but did not see 
much benefit, either due to low data reuse or a sub-optimal 
implementation. Global memory was used for all other array 
accesses in the other kernels. 
 To understand how GPU threads map to computational 
cells, consider Fig. 2, which shows a mesh of the internal cells 
with dimensions of nx[level] x ny[level] x nz[level]. The arrays 
nx[level], ny[level], and nz[level] contain the number of mesh 
cells in each direction for the given mesh level in the multigrid 
V-cycle. The indices of the internal cells range from (i, j, k) = 

(2, 2, 2) to (i, j, k) = (nx[level]+1, ny[level]+1, nz[level]+1). 
The boundary cells (which are not shown in Fig. 2) lie along 
the planes i = 1, j = 1, k = 1 and planes i = nx[level] + 2, j = 
ny[level] + 2, k = nz[level] + 2. The GPU grid dimensions are 
(gx, gy, gz) and each block has dimensions (bx, by, bz). The 
GPU grid dimensions gx and gy were calculated by dividing 
the dimensions of the computational mesh on the current mesh 
level by the block size. Thus, while performing multigrid, the 
GPU grid dimensions are changed to accommodate the size of 
the current computational mesh level. This idea is shown in the 
example code of Fig. 3, where the execution configuration in 
the main program (on the CPU) is changed as a function of the 
mesh level when calling a kernel for the GPU. This example is 
for the “down-leg” of a V-cycle, where the grid levels start at 
the finest level (n=1) and descend to the coarsest level 
(n=ngrid). 
 

 
FIGURE 2. CORRESPONDANCE BETWEEN GPU GRID AND 

COMPUTATIONAL MESH. 
 

The GPU grid and computational mesh have the same 
dimensions in the x- and y-directions, so that the threads map 
one-to-one with the cells. However, due to the fact that the 
GPU grid can only have a z-dimension equal to one (gz=1) 
requires the threads to be reused for other cells in that direction. 
This is done by operating on slices of the computational mesh, 
where a thread for an (i, j) location updates one cell in each 
slice. Thus a single thread operates on multiple cells, moving in 
the k direction in a column for fixed (i, j). No threads are 
assigned to the boundary cells, since no updating is performed 
there.  
 The mapping concept shown in Fig. 2 is implemented in 
the kernel code shown in Fig. 3. The thread indices (tx, ty, tz) 
are computed from the built-in GPU variables threadIdx, 
blockIdx, blockDim, which are the thread index in a given 
block, block index of a given block, and block dimension of a 
given block, respectively. The thread indices always start at 
zero, so they are incremented by two in order to map them to 
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the computational mesh indices. In order to update all the cells 
in the mesh, a loop that goes over all slices was used inside the 
kernel to allow a thread for an (i, j) location to update one cell 
in each slice. As the slice index varies in the loop, so does the k 
index for the cells that the thread operates on. Also, note that 
the (i,j,k) indices are mapped to a single cell number “m”. This 
is used to access the data stored in 1D arrays. The array “begin” 
contains the beginning cell number for each grid level for 
multigrid, and is used as an offset in the mapping to access a 
given grid level.  
 
 
  int main(void)  
 {  
   ...  
   for(n = 1; n<=ngrid; n++)  
  {  
   dim3 block(bx,by,bz);  
   dim3 grid(nx[n]/bx,ny[n]/by);  
   kernel<<<grid, block>>>(...);  
  }  
  ...  
 } // end main  
 
  __global__ void kernel(...)  
 {  
  // global thread indices  
  tx = threadIdx.x + blockIdx.x *  blockDim.x;  
  ty = threadIdx.y + blockIdx.y *  blockDim.y;  
  tz = threadIdx.z;  
  // convert thread indices to mesh indices  
  i = tx + 2;  
  j = ty + 2;  
  for(slice=0; slice<=nz[n]/blockDim.z-1;   
      slice++)  
  {  
   k = tz + slice * blockDim.z + 2;  
   m = i + (j-1)*(nx[n]+2) +  
    (k-1)*(nx[n]+2)*(ny[n]+2) + begin[n] - 1;   
   ...  
   computations 
   ...  
  } // end slice  
 } // end kernel 

FIGURE 3. EXAMPLE OF KERNEL CODE USED IN SOLVER. 

 
Performance is very sensitive to block size, so this is 

another area of code optimization. Block sizes must evenly 
divide into the mesh dimensions for each mesh level for 
multigrid. A block size that can accommodate the coarsest level 
could be selected, which would accommodate all finer mesh 
levels. However, this may not yield optimal GPU performance 
since the block size is small (smaller than the warp size). A 
compromise between accommodating each mesh level and 
performance was found by using two block sizes: a block size 
for the finer meshes and a block size for the coarser meshes. 
Most of the computation occurs on the finer meshes (first one 
or two mesh levels in the V-cycle), and thus the block sizes for 
these levels were tuned for optimal performance. It was found 
that for most problems a good block size is (bx, by, bz) = (32, 
1, 8). This can change from problem to problem, so it is best to 
experiment to determine the optimal sizes. For the coarser 
meshes, a smaller block size was used so that the mesh 
resolution would be evenly divisible by the block size. The 

smaller block size delivers poor performance, but this only 
occurs on the coarse levels, which do not have appreciable 
computing times, so the effect is small. 

The performance of the solver on a CPU (written in 
Fortran) versus on a GPU (written in CUDA) is compared for 
two different problems in Tables 1 and 2. The CPU was a 2.6 
GHz AMD Phenom quad-core processor (single core used) and 
the GPU was a Tesla C2070 (Fermi architecture). The CUDA 
3.2 compiler was used for the GPU executables and the gfortran 
compiler with the -02 optimization was used for the CPU 
executables. Table 1 shows the simulation performance of 
laminar flow in a lid-driven cavity at a Reynolds number of 
1000 based on the lid speed and cavity edge length. Table 2 
shows the simulation performance of DNS of turbulent flow in 
a square duct at a Reynolds number of 360 based on the friction 
velocity and hydraulic diameter. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lattice Boltzmann Method for Two-Phase Flows 
A second example we show here is the implementation of a 
two-fluid LBM. In a single phase LBM, only one set of 
equations for the density function is collided and streamed, then 
the flow variables are evaluated from this density function and 
its moments. In the two-fluid LBM, two density functions are 
collided and streamed, then are used to compute the flow 
variables. One of the density functions is used to compute an 
interface variable, which gives the fluid density. The second 
function gives the velocity and pressure field. This method is 
based on the method of He et al. [20]. We had applied this 

TABLE 1. PERFORMANCE FOR SIMULATION OF 
LAMINAR FLOW IN LID-DRIVEN CAVITY. TIMINGS 

TAKEN FOR FIRST 100 TIME-STEPS OF SIMULATION. 
 
      mesh CPU time 

(seconds) 
GPU time 
(seconds) 

speedup 
(CPU/GPU) 

16x16x16 0.46 0.34 1.35 

32x32x32 4.49 0.82 5.48 

64x64x64 46.15 2.84 16.25 

128x128x128 420.20 17.38 24.18 

 

TABLE 2. PERFORMANCE FOR DNS OF TURBULENT 
FLOW IN A SQUARE DUCT. TIMINGS TAKEN FOR FIRST 

100 TIME-STEPS OF SIMULATION. 
     mesh CPU time 

(seconds) 
GPU time 
(seconds) 

speedup 
(CPU/GPU) 

128x32x32 27.63 2.03 13.61 

256x64x64 275.96 12.76 21.63 

512x64x64 569.04 24.53 23.20 

512x128x128 1997.05 97.26 20.53 

 



 7 Copyright © 2011 by ASME 

method earlier, implemented on a CPU, to study buoyancy-
driven flow in a tilted channel. It is now implemented on a 
GPU, with a speed-up factor of 25 over a 3.2 GHz single core 
CPU. A further increase in speed is possible by unrolling the 
density function array in nine (or 27) individual arrays, as 
shown recently by Kuznik et al. [21]. 
 
Multigrid Acceleration of the SIMPLE Algorithm 
The SIMPLE algorithm solves the two- (and three-) 
dimensional fluid flow equations using an implicit relaxation 
procedure. In contrast with a time-marching procedure such as 
the fractional step method, the SIMPLE algorithm solves 
directly for the steady state (or quasi-steady) flow fields by 
iteratively updating the velocities and pressure fields. The 
coupled equations are solved sequentially by updating the 
velocities using the momentum equations and the pressure field 
using a pressure correction equation derived from the 
continuity and truncated momentum equations. The SIMPLE 
algorithm solves the discrete equations over the complete flow 
domain in a decoupled manner using single (or multigrid) 
iterative procedures. Both staggered and collocated 
arrangements of the flow variables have been used, the latter 
arrangement utilizing a momentum-interpolation procedure to 
avoid checkerboard pressure splitting. The computational steps 
in the SIMPLE algorithm are as follows: 
Begin iterations 

a) Solve x-momentum equation over entire flow domain 
b) Solve y-momentum equation over entire flow domain 
c) Compute mass residuals in the momentum velocities 
d) Solve pressure-correction equation to annihilate the 

mass residuals 
e) Update the velocities and pressures based on pressure 

corrections computed in step (d) 
f) Solve other scalar transport equations, if any 

Repeat steps (a) to (f) until convergence of all equations is 
acheived. Steps (a), (b), (d) and (f) involve the solution of a set 
of linear equations with coefficients linking a local value with 
its neighbors. The set of linear equations can be solved 
iteratively with single or multigrid versions of standard iterative 
solvers such as the Gauss-Seidel or Thomas algorithm. The 
system of equations is usually diagonally dominant and positive 
definite if appropriate discretizations are employed. 

The multigrid method has been included inside 
SIMPLE at two levels in the algorithm. First, the linear solver 
used to solve the set of discrete linear equations with a given 
set of coefficients can be accelerated by using the multigrid 
method. This resolves the low frequencies in the linear 
equations, providing good feedback between the momentum 
and continuity equations. However, it does not resolve 
efficiently the low frequency errors in the coupling between the 
momentum and continuity equations.  A second stage of 
multigrid acceleration that provides the most benefit and 
resolves the low frequency errors in the inter-equation coupling 
is over the entire iterative sequence. Here we have incorporated 
the MG method for the entire sequence of equations using the 
Full Approximation Scheme (FAS), which is suited to 
nonlinear equations. 

Table 3 presents timings for the multigrid procedure 
implemented on the CPU. We present results for different 
Reynolds numbers and different mesh sizes. Here we have used 

the traditional Gauss-Seidel iterative scheme with a fixed 
number of sweeps and fixed number of V-cycles. The computer 
times are presented together with the convergence levels 
achieved. 

Before timing tests are performed on the GPU, an 
optimization study was conducted to determine the best block 
size to use when calling a GPU kernel. GPU performance is 
sensitive to the block size, and thus is important to tune for 
maximum performance. To achieve a good convergence rate, 
the grid must be sufficiently coarsened in the V-cycle, and here 
we take the coarsest grid to be 4x4. To accommodate the 4x4 
mesh we take a block size of 4x4 and a GPU grid size of 1x1 
(the grid has only one block).  However, this block size is by no 
means optimal, as will be shown. Thus for finer meshes we use 
a better block size to achieve better performance, and on 
coarser meshes we default to using the 4x4 block size. Here we 
take “fine mesh” to mean a mesh that is evenly divisible by the 
better block size, and any mesh that is not is considered a 
“coarse mesh” and uses the 4x4 block size. A performance 
study was conducted using a variety of block sizes for the “fine 
mesh”; the “coarse mesh” block size was held fixed at 4x4. The 
result of this study is presented in Table 4, where a 1024x1024 
mesh with 9 grid levels at Re=100 was used as the test case. It 
was found that the 32x1 block size performs best, which is not 
too surprising since there are 32 threads in a “warp” which is 
the maximum number of threads that can be launched in 
parallel in a given block at one time.  

Finally, in Table 5, we present the performance of the 
multigrid procedure on the GPU. The optimal block size of 
32x1 was used. Since the convergence rate can be different on 
the GPU and on the CPU, we have performed a fixed number 
of V-cycles on both CPU and the GPU. The levels of 
convergence achieved are given for different Reynolds numbers 
and mesh sizes. In addition, we have performed calculations 
with the biggest grids possible on the GPU. Our present code 
requires 24 arrays on the GPU, and for a 4 GB Tesla C1060 
processor we have been able to perform calculations on a 4096 
x 4096 grid (with 11 levels). The computer times required for 
such a large problem are indeed small and very attractive even 
for more complex practical flows.  

  
CONCLUSIONS 
Graphics Processing Units have recently evolved as a new 
paradigm for scientific computations. They are essentially 
multi-core machines with a large number of compute units 
sharing a common memory. They can be viewed as single 
instruction multiple data computers. Their cost/performance 
ratio, and low power consumption makes them attractive for 
high-resolution fluid flow computations. However, in order to 
exploit the inherent architecture of the device, the numerical 
algorithm, as well as data structures must be carefully tailored 
to minimize the memory access and any recursive relations in 
the algorithm. In the past three years, we have developed five 
different CFD algorithms, and have found speed-ups over a 
CPU of factors between 10-25, with a possibility of another 
factor of four gain through optimization. This makes GPUs 
very attractive for computing industrial fluid flows. However, 
porting legacy codes automatically is not easy.  
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TABLE 3. MULTIGRID CPU TIMES FOR ERROR < 10-3. 
 

  Re=100 Re=400 Re=1000 Re=2000 

mesh levels time (s) ncyc error time (s) ncyc error time (s) ncyc error time (s) ncyc error 

64x64 5 2.60E-2 6 3.31E-4 5.50E-2 12 6.59E-4 9.30E-2 20 7.84E-4 0.12 25 7.43E-4 

128x128 6 0.14 7 4.66E-4 0.22 11 7.01E-4 0.49 25 7.88E-4 0.71 
 

36 8.19E-4 

256x256 7 0.71 8 9.93E-4 0.97 11  5.85E-4 2.03 23 7.92E-4 3.53 40 8.65E-4 

512x512 8 5.19 11 5.31E-4 5.66 12 5.46E-4 9.90 21 7.30E-4 17.46 37 7.51E-4 

 

 TABLE 5.  MULTIGRID GPU TIMES FOR ERROR < 10-3. 
 

  Re=100 Re=400 Re=1000 Re=2000 

mesh levels time (s) ncyc error time (s) ncyc error time (s) ncyc error time (s) ncyc error 

64x64 5 2.23E-2 6 5.11E-4 4.66E-02 12 7.92E-4 7.65E-2 20 9.47E-4 9.63E-2 25 9.65E-4 

128x128 6 4.11E-2 7 5.73E-4 6.44E-02 11 8.90E-4 0.15 25 9.06E-4 0.21 
 

36 9.60E-4 

256x256 7 0.11 8 8.05E-4 0.15 11 7.69E-4 0.32 23 9.18E-4 0.55 40 9.94E-4 

512x512 8 0.48 11 3.69E-4 0.52 12 8.06E-4 0.91 21 9.48E-4 1.61 37 9.79E-4 

1024x1024 9 1.91 12 9.13E-4 2.07 13 7.54E-4 3.67 23 9.42E-4 5.57 20 9.40E-4 

4096x4096 11 55.75 18 9.45E-4 52.66 17 7.69E-4 99.15 32 9.88E-4 139.42 45 9.98E-4 

 
 

TABLE 4.  EFFECT OF BLOCK SIZE ON GPU PERFORMANCE FOR 1024x1024 
MESH WITH 9 GRID LEVELS AT Re=100. 

 
 fine mesh coarse mesh 

GPU time (s) bx by bx by 
22.93 1 4 4 4 
9.13 4 1 4 4 
5.26 4 4 4 4 

22.66 1 8 4 4 
5.27 8 1 4 4 
4.13 8 8 4 4 
3.27 16 1 4 4 
3.40 16 16 4 4 
3.19 32 1 4 4 
3.29 64 1 4 4 
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A significant rewrite of the algorithm and the code may be 
necessary. While this may be a hurdle to cross, the time 
investment may be worthwhile because multi-core architectures 
of one form or the other are going to be the necessary trend for 
high resolution / high performance computing.  
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