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Abstract. In this work we solve an open problem of U.Höhle [Problem
11, Fuzzy Sets and Systems 145 (2004) 471-479]. We show that the solu-
tion gives a characterization of all conditionally cancellative t-subnorms.
Further, we give an equivalence condition for a conditionally cancella-
tivite t-subnorm to be a t-norm and hence show that conditionally can-
cellativite t-subnorms whose natural negations are strong are, in fact,
t-norms.

1 Introduction

The paper by Klement et al. [6] is a collection of open problems posed during
the 24th Linz Seminar on fuzzy set theory. They deal with unsolved problems
(as of then) related to fuzzy aggregation operations, especially t-norms and t-
subnorms. Since the publication of [6], some problems mentioned therein have
been solved - for instance, Problem 1 was solved by Ouyang et al. [8], Problem 5
was solved by Ouyang and Li [8] while for some other problems partial solutions
have been given, see for instance, the papers of Viceńık [9], [10], [11] relating to
Problem 4(i).

One of the open problems listed therein was posed by Prof. U. Höhle (Problem
11) which reads as follows:

Problem 1 (U.Höhle, [6], Problem 11). Characterize all left-continuous t-norms
T which satisfy

I(x, T (x, y)) = max(n(x), y), x, y ∈ [0, 1] . (1)

where I is the residual operator linked to T , i.e.,

I(x, y) = sup{t ∈ [0, 1]|T (x, t) ≤ y}, x, y ∈ [0, 1] , (2)
n(x) = nT (x) = I(x, 0) for all x ∈ [0, 1]. (3)

Further, Prof. U.Höhle goes on to remark the following:

Remark 1. ”In the class of continuous t-norms, only nilpotent t-norms fulfill the
above property.”
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In this work we deal with two problems. Firstly, we solve the above open
problem of U.Höhle and show that the solution gives a characterization of all
conditionally cancellative t-subnorms. From the proven result it does follow that
the remark of Prof. U.Höhle - Remark 1 - is not always true and give an equiv-
alence condition for it to be true, viz., that the natural negation obtained from
the t-norm is strong.

Secondly, this quite naturally leads us to consider conditionally cancellative
t-subnorms whose natural negations are involutive. Once again, by proving an
equivalence condition for a conditionally cancellative t-subnorm to be a t-norm,
we show that conditionally cancellative t-subnorms whose natural negations are
involutive, in fact, become t-norms.

2 Preliminaries

Definition 1. A function N : [0, 1] → [0, 1] is called a fuzzy negation if N is
decreasing and N(0) = 1 , N(1) = 0 .

Definition 2 ([5], Definition 1.7). A t-subnorm is a function M : [0, 1]2 →
[0, 1] such that it is monotonic non-decreasing, associative, commutative and
M(x, y) ≤ min(x, y) for all x, y ∈ [0, 1].

Note that for a t-subnorm 1 need not be the neutral element, unlike in the
case of a t-norm.

Definition 3 (cf. [5], Definition 2.9 (iii)). A t-subnorm M satisfies the Con-
ditional Cancellation Law if, for any x, y, z ∈ (0, 1],

M(x, y) = M(x, z) > 0 implies y = z . (CCL)

Alternately, (CCL) implies that on the positive domain of M , i.e., on the set
{(x, y) ∈ (0, 1]2 | M(x, y) > 0}, M is strictly increasing.

Definition 4 (cf. [1], Definition 2.3.1). Let M be any t-subnorm. Its natural
negation nM is given by

nM (x) = sup{t ∈ [0, 1] | M(x, t) = 0}, x ∈ [0, 1] . (4)

Note that though nM (0) = 1, it need not be a fuzzy negation, since nM (1)
can be greater than 0. However, we have the following result.

Lemma 1 (cf. [1], Proposition 2.3.4). Let M be any t-subnorm and nM its
natural negation. Then we have the following:

(i) M(x, y) = 0 =⇒ y ≤ nM (x) .
(ii) y < nM (x) =⇒M(x, y) = 0.

(iii) If M is left-continuous then y = nM (x) =⇒ M(x, y) = 0, i.e., the reverse
implication of (i) also holds.



3 Solution to the Open Problem of U. Höhle

It should be noted that in the case T is left-continuous - as stated in Problem 1
- the sup in (2) actually becomes max. It is worth mentioning that the residual
can be determined for more generalised conjunctions and the conditions under-
which this residual becomes a fuzzy implication can be found in, for instance, [2],
[4]. Hence we further generalise the statement of Problem 1 by considering a
t-subnorm instead of a t-norm and also dropping the condition of left-continuity.
As we show below the solution characterizes the set of all conditionally cancella-
tive t-subnorms.

Theorem 1. Let M be any t-subnorm and I the residual operation linked to M
by (2). Then the following are equivalent:

(i) The pair (I, M) satisfies (1).
(ii) M is a Conditionally Cancellative t-subnorm.

Proof. Let M be any t-subnorm, not necessarily left-continuous. Note that we
denote nM simply by n.

(i) =⇒ (ii): Let the adjoint pair (I, M) satisfy (1). On the contrary, let us
assume that there exist x, y, z ∈ (0, 1) such that M(x, y) = M(x, z) > 0 but
y < z. Then we have that

LHS (1) = I(x, M(x, y)) = sup{t ∈ [0, 1] |M(x, t) ≤M(x, y)} ≥ z > y .

However, note that, from Lemma 1 (i) we have that y ≥ n(x), since M(x, y) >
0. Thus

RHS (1) = max(n(x), y) = y < LHS (1) ,

a contradiction to the fact that the adjoint pair (I,M) satisfies (1). Hence
M satisfies (CCL).

(ii) =⇒ (i): Now, let M satisfy (CCL). Consider any arbitrary x, y ∈ [0, 1]. Then
either n(x) > y or n(x) ≤ y.
If n(x) > y, then by Lemma 1 (ii) we see that M(x, y) = 0 and hence

LHS (1) = I(x, M(x, y)) = I(x, 0) = n(x) = max(n(x), y) = RHS (1).

If n(x) ≤ y and M(x, y) = 0 then by Lemma 1(i) we have that n(x) ≥ y
and hence n(x) = y and it reduces to the above case. Hence let M(x, y) > 0.
Then

RHS (1) = max(n(x), y) = y .

We claim now that LHS (1) = I(x, M(x, y)) = y . If this were not true, then
there exists 1 ≥ z > y (z 6< y by the monotonicity of M) such that

I(x, M(x, y)) = sup{t ∈ [0, 1] |M(x, t) ≤M(x, y)} = z.



This implies that there exists a w ∈ (0, 1) such that z > w > y and
M(x, w) ≤ M(x, y), which by the monotonicity of t-subnorm implies that
M(x, w) = M(x, y) with w  y, a contradiction to the fact that M satisfies
(CCL). Thus the adjoint pair (I, M) satisfies (1). ut

Example 1. Consider the product t-norm TP(x, y) = xy, which is a strict t-
norm and hence continuous and Archimedean, whose residual is the Goguen
implication given by

IGG(x, y) =

{
1, if x ≤ y,
y

x
, if x > y.

It can be easily verified that the pair (TP, IGG) does indeed satisfy (1) whereas
the natural negation of TP is the Gödel negation

nTP
(x) = IGG(x, 0) =

{
1, if x = 0,

0, if x > 0.

This example clearly shows that the remark of U.Höhle, Remark 1, is not always
true. In the following we give an equivalence condition under which it is true.

Theorem 2. Let T be a continuous t-norm that satisfies (1) along with its resid-
ual. Then the following are equivalent:

(i) T is nilpotent.
(ii) nT is strong.

Proof. (i) =⇒ (ii): Obvious.
(ii) =⇒ (ii): If T is continuous and satisfies (1) along with its residual then, from

Theorem 1, T is conditionally cancellative and hence necessarily Archimedean
by [5], Proposition 2.15 (ii). Thus T is either nilpotent or strict. If T is con-
tinuous with a strong natural negation, clearly, T has zero-divisors and hence
T is nilpotent. ut

4 Conditional Cancellativity and Unit element

From the above remarks we note that when the natural negation of the under-
lying conjunction (a continuous t-norm, in the above case) is strong the class
of conjunctions that satisfy (1) along with its residual gets restricted. Hence we
study the class of t-subnorms M that satisfy (1) along with its residual and
whose natural negations are strong. In other words, we seek the characteriza-
tion of the class of conditionally cancellative t-subnorms with strong natural
negations.

Let us recall from the remark following Definition 4 that the natural negation
of a t-subnorm nM need not be a fuzzy negation. If a t-subnorm has 1 as its
neutral element, i.e., if it is a t-norm, then we have

M(1, y) = 0⇐⇒ y = 0,

i.e., y = sup{t|M(1, t) = 0} = nM (1) = 0.



Equivalently, by the monotonicity of M we have that nM is a fuzzy negation.
However, this is only a necessary and not a sufficient condition.

Note that, so far, no general result giving equivalence conditions under which
a t-subnorm becomes a t-norm is available. It was Jenei [3] who proposed some
suficiency conditions and showed that left-continuous t-subnorms with strong
natural negations are t-norms, i.e., 1 does become a neutral element.

In the following we give an equivalence condition for a conditionally cancella-
tive t-subnorm to be a t-norm and show that in the case nM is a strong negation
then M always is a t-norm.

Lemma 2. Let M be a conditionally cancellative t-subnorm. Let M(1, y0) = y0,
for some y0 ∈ (0, 1].

(i) Then M(1, y) = y for all y ∈ [y0, 1].
(ii) Let y∗ = sup{t|M(1, t) = 0} = nM (1). Then M(1, y) = y for all y ∈ (y∗, y0].

Proof. Let M(1, y0) = y0, for some y0 ∈ (0, 1].

(i) Let y0 < y ≤ 1. Clearly, y0 = M(1, y0) < M(1, y) ≤ y. If M(1, y) = y′ < y,
then by associativity and conditional cancellativity we have

M(M(1, y0), y) = M(y0, y)

M(M(1, y), y0) = M(y′, y0)

 =⇒M(y0, y) = M(y0, y
′) =⇒ y = y′ ,

i.e., M(1, y) = y for all y ≥ y0.
(ii) Let y∗ < y ≤ y0. Clearly, y0 = M(1, y0) > y ≥ M(1, y) = y′. If M(1, y) =

y′ < y, then, once again, by associativity and conditional cancellativity we
have

M(M(1, y0), y) = M(y0, y)

M(M(1, y), y0) = M(y′, y0)

 =⇒M(y0, y) = M(y0, y
′) =⇒ y = y′ ,

i.e., M(1, y) = y for all y ∈ (y∗, y0]. ut

Based on the above result, we now have the following equivalence condition
for a conditionally cancellative t-subnorm to be a t-norm:

Theorem 3. Let M be any conditionally cancellative t-subnorm. Then the fol-
lowing are equivalent:

(i) M is a t-norm.
(ii) nM is a negation and M(1, y0) = y0, for some y0 ∈ (0, 1].

Proof. Sufficiency is obvious. Necessity follows from the fact that if nM is a
negation then y∗ = 0 in Lemma 2 above. ut

The final result of this work shows that in the case nM is a strong negation
then M always is a t-norm.



Theorem 4. Let M be any conditionally cancellative t-subnorm. If nM is a
strong natural negation then M is a t-norm.

Proof. Our approach will be to show that M(1, 1) = 1 and then the result
follows easily from Theorem 3. Note also that since nM is a strong negation,
we have that nM (x) = 1 ⇐⇒ x = 0 and nM (x) = 0 ⇐⇒ x = 1. Equivalently,
M(1, x) = 0⇐⇒ x = 0.

On the contrary, let us assume that M(1, y) < y for all y ∈ (0, 1]. In par-
ticular, M(1, 1) = z such that 0 < z < 1. Since nM is strong, there exists a
z′ ∈ (0, 1) such that z = nM (z′). We claim that z′ = 0 and hence z = 1.

If not, then there exists 0 < z′′ < z′ and by the definition of nM we have
that M(z, z′′) = 0. Also, by our assumption 0 < M(1, z′′) = z∗ < z′′. Now, by
associativity and conditional cancellativity we have

M(M(1, 1), z′′) = M(z, z′′)
M(M(1, z′′), 1) = M(z∗, 1)

}
=⇒M(z, z′′) = 0 = M(z∗, 1)

=⇒ z∗ = 0 ,

a contradiction. Thus z = 1 and hence we have the result. ut

5 Concluding Remarks

In this work we have solved a more generalised version of an open problem of
U.Höhle and shown that the solution gives a characterization of all condition-
ally cancellative t-subnorms. Further, by proving an equivalence condition for a
conditionally cancellative t-subnorm to be a t-norm, we have shown that condi-
tionally cancellative t-subnorms with involutive natural negations are t-norms.
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