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ABSTRACT

The electronic band structure and transport properties of SrAgFCh (Ch = S, Se, Te) are studiedusing the
first  principle  density  functional  theory  and  solving  the  Boltzmann  transport  equationwithin  the
constant relaxation time approximation. The complete structural optimisation is carried out to get the
ground state properties of all the compounds. The calculated ground stateproperties agree quite well
with available experiments. The electronic band structures are calculated by means of the full-potential
linear augmented plane wave method, using the Tran-Blahamodified Becke-Johnson potential and the
calculated band gaps are found to be in good agreement with the experiments aswell as with other
theoretical reports. The spin-orbit coupling shows a significant change in lifting the band degeneracy.
Assuming constant relaxation time approximation, the transport coefficients related to thermoelectric
effect are calculated by solving Boltzmann equation as implemented in BoltzTraP code. The calculated
thermoelectric  properties  such  as  thermopower  andelectrical  conductivity  as  functions  of  hole  and
electron concentrations  shows these  compoundsto  be  promising candidate  for  better  thermoelectric
applications.  The thermopower is found todecrease as we move from S to Te, whereas the electrical
conductivity  is  found  to  be  increaseand  we  also  found  that  the  investigated  compounds  are  good
candidate for p-type doping along the a-axis direction. 
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Introduction

Thermoelectric materials convert waste heat into a useful electric power and hence play a vital role in
meeting the present condition of energy crisis and environment pollution [1-4]. The performance of the

thermoelectric materials depends on the dimensionless figure-of-meritZT=
S2σT

λ , where T ,σ ,S , λ

are  absolute  temperature  (T),  electrical  conductivity  ( σ ),  seeback  coefficient  (S)  and  thermal

conductivity  ( λ )  which  include  mainly  two  components:  an  electronic  contribution  due  to  the

movement of carriers ( λe ),  and a lattice contribution via the phonons

λ
¿
¿
¿

) i.e ( λ=λe+λl ). From

these expression, it is evident that finding materials with high ZT is a challenge, as it appears that such a
material  should satisfy the conflicting requirements of  high thermopower, which is found in doped
insulators and should behave as a good electrical conductor like metals with low thermal conductivity.
In  search  for  better  thermoelectric  materials,  we  are  interested  to  study  the  newly  synthesised
quaternary strontium based silver fluoro-chalcogenides which belongs to the ZrCuSiAs-type structures.
Compound with ZrCuSiAs type structure, often called as 1111 phases are increasing rapidly after it first
discovery.  More  than  260  intermetallic  compound  with  these  structure  are  reported  based  on  the
possible  combinations  of  the  components  and  dopants  [5-9].  These  quaternary  compounds,  which
belong to a much larger family of quaternary systems with the ZrCuSiAs typetetragonal structure (space
group P4/nmm) possess broadly varying properties depending on their chemical composition—such as
magnetic  ordering,  optical  and  opto-electronic  characteristics  and  have  diverse  application  in
electronics  [10],  high  temperature  superconductors  [11]  thermoelectrics  [12],  optoelectronics  [13],
photovoltaics  [14].  Presently,  research  have  been  focused  to  explore  superconductivity  and
thermoelectric properties in ZrCuSiAs type structure.

In the past, oxygen-basedZrCuSiAs type of materials have been given much importance, which
futher is extended to fluorides and hydrides [15]. Extensive studies have beenreported experimentally
on these type of compounds, at the same time very less theoretical calculations are reported. The Fe-
based 1111-phase compounds are reported to be the compounds with high superconducting transition

temperature ( T c ) so far [16-17]. The magnetic properties of the compounds includes dia-magnetism

[15], itinerant ferromagnetic and semi-conducting anti-ferromagnetic nature [18-19]. The 1111-type of

fluoro-pnictides  has  shown  a  wide  range  of  thermopower  of  10  to  620  
μV
K  [20-22].  Recently

synthesis of LaOAsS-type copper and silver based fluorides chalcogenides has given new insight to
these class of materials [23]. On the other hand first principle calculations has reported the electric and
optical properties on the same materials [24]. The presence flat band in the high symmetry k-direction
of the electronic band structure has motivated us to study the thermoelectric properties of these class of
materials as one could expect a good thermopower due to the flat-heavy bands at the fermi-level. The
experimental  band gaps are in the order of  2.23-3.0 eV, which can be classified as wide-band gap
semiconductors, as semiconductors are the optimum materials to work for the better thermoelectric
materials.  Among  these  compounds  we  are  interested  to  study  the  Sr-based  silver  fluorides
chalcogenides i.e. SrFAgCh (Ch=S,Se,Te).

The present thesis is organized as follows: chapter 2 describes the theoretical background, and
chapter 3 explains computational aspects of the present study. In chapter 4 we have presented the results
and discussions, and finally chapter 5 gives the conclusions and future work.
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Chapter 2

Theoretical Background 

The fundamental postulates of  quantum mechanics assert  that  microscopic system are described by
wave function that completely characterize all the physical properties of the system called observables
of various operators defined in quantum mechanics.

Considered a many body system having, P nucleons of charge Z I  at position RI  for n= 1,2,………

P and N electrons at position r i  for i=1,2,…N. The main interest is to find approximate solution of

non-relativistic time independent Schrodinger equation.   

H�=E�

Many body wave function is of form �= � ( R1 ,R2 … .. RP ;r1 ,r 2……rN ) and E is the total energy of the

system. The Hamiltonian H consists of following.

   H ¿∑
I=1

P ℏ2∇ I
2

2 M I

−∑
i=1

N ℏ2∇i
2

2m❑

+
e2

2
∑
I=1

P

∑
J ≠1

P Z I ZJ

R I−R J

+
e2

2
∑
i=1

N

∑
j ≠1

N
1

ri−r j

−e2∑
I=1

P

∑
i=1

N Z I

RI−ri

where R = { RI }, I=1……..P, is a set of P nuclear coordinates, r= { ri }, i=1……N, is a set of N

electronic  coordinates.  Z I∧M I are the  nuclear  charges  and masses,  respectively  and e  and m are

electron charge and mass respectively. It includes kinetic energy (K.E) of all nucleus and electron, the
inter nuclei repulsion energy, electron-electron repulsion energy and nuclei-electron attraction energy.
In operator form we can write

                                          H = Tn +Te + Vnn + Ven + Vee

Electrons are fermions, and the total electronic wave function must be anti-symmetric with respect to
exchange of two electrons. Nuclei can be fermions, bosons or distinguishable particles according to the
particular problem under consideration. All the ingredients are perfectly known and in principle, all the
properties can be derived by solving the many body Schrodinger equation:

                                              H Ψ i  (r,R)= Ei Ψ i  (r,R)

Although the equation is exact within the non-relativistic regime, it is not possible, except for trivially
simple case to solve it.  Consequently the many-body wave function is a complicated mathematical
object that incorporates the effects of correlation, preventing the separation of the electronic degrees of
freedom  into  single-body  problems.  Thus  we  must  search  for  approximations  that  render  the
Schrodinger equation tractable to numerical solution, while retaining as much of the key physics as is
possible.

2.1 Approximation to solve Many-Body Problem:

2.1.1 Born-Oppenheimer Approximation:
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Since the electrons are much lighter than the nuclei by three orders of magnitude, makes nucleus almost
immobile with reference to electrons. This can be exploited by treating the wave function in separable
form, as

Ψ i  (r,R)= (r,R)χ(R)ϕ

where χ(R)  is  a  nuclear  wave  function  and  (r,R)  is  an  electronic  wave  function  that  dependsϕ
parametrically  on  the  nuclear  positions.  Besides  this,  we  can  neglect  the  term K.E  of  nuclei  and
consider the term nuclear-nuclear interaction as constant, so our Hamiltonian H reduces to

  H ¿∑
i=1

N ℏ2∇i
2

2m❑

+
e2

2
∑
i=1

N

∑
j ≠ 1

N
1

r i−r j

−e2∑
I=1

P

∑
i=1

N Z I

R I−r i

2.1.2 Hartree-Fock Approximation:

Electrons are independent, and interact only via the mean-field coulomb potential. 

Hartree took a different approach to consider the interacting electron via their own e-e electrostatic
interaction and electron-nucleus electrostatic interaction. He thought that whole system can be assume
as ‘independent particle/electron’ and interacting only through mean field coulomb potential. This lead

to  Φ❑ (r1 , r2, r3 ………rN )=Φ1(r1)Φ2(r2)Φ3(r3) …….. ΦN(rN )

i.e. electron are independent. This yield one electron Schrodinger eq.

                                                  {-
ℏ2∇r

2

2me

+V ❑ (r ) }Φ i (r )=ϵΦ i(r )

where  V(r)  is  the  potential  in  which  electron  move,  this  include  both  the  nuclear  and  electron
interaction.

V nucleus (r )=−e2 Z∑
1
R

And the mean field arises from the other N-1 electrons. We smear the other electrons out into a smooth
negative charge density ρ(r’) leading to a potential of the form

V electron (r )=−e2∫
ρ j (r ' )

Ι r−r ' Ι
d r '

where ρi(r ) = ∑
i

│ϕ❑(r )│2

Although these Hartree equations are numerically manipulable via the self-consistent field method, it is
not surprising that such a crude approximation fails to capture elements of the essential physics. Since
Pauli Exclusion Principle demands that the many-body wave function be anti-symmetric with respect to
interchange of any two electron coordinates, e.g.

Φ❑ (r1 , r2 , r3 ………r N )=−Φ❑ (r 2, r1 ………rN )

This cannot be satisfied by a non-trivial wave function of the independent electron wave function form.
This exchange condition can be satisfied by forming a slater determinant of single-particle orbitals
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Φ❑ (r1 , r2 , r3 ………r N )=
1

√N
AǀΦ1(r 1)Φ2(r2)Φ3(r3) …….. ΦN (r N ) ǀ

where  A is  anti-symmetric  operator,  i.e.  it  ensure  that  all  possible  anti-symmetric  combinations  of
orbitals  are  taken.  Again,  this  decouples  the  electrons,  leading  to  the  single-particle  Hartree-Fock
equations of the form

ℏ2∇❑
2

2m❑

ϕi (r )+V electron (r )ϕi (r )+V nucleus(r)ϕi (r )∑∫ dr 'ϕ j (r ' )❑
¿ 1

r❑−r '
ϕi (r ' )❑

¿ ϕ j (r )=ϵiϕi (r )

The last term on the left hand side is the exchange term, this looks similar to the direct coulomb term,
but for exchanged indices. It is a manifestation of the Pauli Exclusion Principle, and acts to separate
electrons of the same spin. The exchange term adds considerably to the completely of these equations.

The Hartree-Fock equations  deals  with the exchange exactly,  however,  the equations  neglect  more
detailed  correlations  due  to  many-body  interactions.  The  effects  of  electronic  correlations  are  not
negligible; indeed the failure of Hartree-Fock theory to successfully incorporate correlation leads to one
of  its  most  celebrated  failures.  The  requirement  for  a  computationally  practicable  scheme  that
successfully incorporates the effects of  both exchange and correlation and leads us to consider the
conceptually simple and elegant Density Functional Theory.

2.2 Density Functional Theory:

Density Functional Theory (DFT), is a powerful formulation of many body quantum mechanics, which
states that the ground state properties of a quantum many particle system depends only on density. In
particular,  the  ground state  density  is  found by  minimizing  the  energy functional,  whose  value  at
minimum also gives the ground state energy. The electron density is defined as

ρ (r )=N∫………∫|Ψ (r1r2 … .. rN )|
2
dr1 dr2 …….. dr N

ρ(r) determine the probability of finding any of the N electrons within the volume element  dr1 but

with arbitrary spin, while other N-1 electrons spin and position in the state represented by Ψ . ρ(r) is a

non-negative function of only the three spatial variables which vanishes at infinity and integrate to total
number of electrons

                                    ρ(r       ∞)= 0 and ∫ ρ (r ) dr=N

2.3 Thomas Fermi Model:

The original density functional theory of quantum mechanics is the idea drawn from Thomas and Fermi
proposed in  1927.  Although their  approximation is  not  accurate  enough for  present  day electronic
structure  calculations,  the  approach  illustrate  the  way  to  density  functional  theory.  In  the  original
Thomas-Fermi  method,  the  K.E.  of  electrons  is  approximated  as  an  explicit  functional  of  density,
idealised as non-interacting electrons in the homogenous gas with the density equal to the local density
at  any  given  point.   Both  Thomas  and  Fermi  neglected  the  exchange  and  correlation  among  the
electrons; however this was extended by Dirac in 1930, who formulated the local approximation for
exchange still in use today. This lead to the energy functional for the electrons in an external potential

V ext (r ) .
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ETF [n ]=C1∫ d3 n(r )
5
3+∫ d3r V ext (r ) n(r)+ C2∫ d3 n(r )

4
3   +

1
2∫ d3r d3

r’ n(r) 
1

r❑−r '  n(r’)

Extension to account for the effect of inhomogeneity have been proposed by many people, known as the

Weizsacker  correction,  
(∇ nρ

(r))2

4 nρ
(r)  but  more  recent  work  has  found  the  correction  to  reduce  to

(∇ nρ
(r))2

36nρ
(r ) .

The attraction to DFT theory is evident by the fact that one equation for density is remarkably simpler
than the full many body Schrodinger equation that involves 3N degree of freedom for N electrons. The
Thomas Fermi approach starts with approximation that are too crude, missing the basic physics, such as
shell  structure  and binding of  molecules,  thus  it  falls  short  of  the  goal  of  a  useful  description  of
electrons in matter.

2.4 Hohenberg-Kohn Equations:

Hohenberg, Kohn and Sham established a theoretical basis for justifying the replacement of the many
body wave function by one-electron orbitals [25-27]. They used two fundamental theorems which leads
to  modern  density  functional  theory,  an  alternative  approach  to  deal  with  many  body  problem in
electronic structural theory.

The charge density is a distribution of probability, i.e. ρ(r1)d
3 r1  represents, in a probabilistic way, the

number of electrons in the infinitesimal volume ( d3 r1¿ .  This applies to any system of interacting

particles in an external potential V ext (r ) , including any problem of electrons and fixed nuclei, where

the Hamiltonian can be written as H=T+V+U

T ≡
1
2∫∇Ψ ¿ (r )∇Ψ❑ (r ) dr ,V ≡∫V (r )Ψ ¿ (r )Ψ❑ (r ) dr , U

r
¿ drdr '

¿

≡
1
2
∫Ψ ¿ (r )

1
r❑−r ' Ψ

¿ ( r ' )Ψ (r '
)Ψ ¿

Where T is K.E., U is interaction energy.

2.4.1 Hohenberg Theorems:

First theorems: “For any system of interacting particles in an external potential  V ext (r ) ,  the total

energy, is a unique functional of the electron density ρ(r)”.

Second theorem: “A universal functional for the energy E[n] can be defined in terms of density. The
density that minimizes the total energy is the exact ground state density”.

2.5. Kohn-Sham equations:

Latter Kohn and Sham provided [25] a workable computational method based on the following result.
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For each interacting electron system, there is a local potential V KS ,  which result in a density ρ equal

to that of interesting system. A lot of work was done to find T[n],  V ee [n] [Thomas, Fermi, Slater,

Dirac etc], however the most successful approach come back to an ‘exact expression’ for the kinetic
energy ‘T’, by re-introduce one body orbitals. To do that, Kohn-Sham introduced a fictitious equivalent

system of non-interacting electrons under the action of an effective potential V eff  generating the same

density ρ(r) of the real system.

ρ(r ) ∑
j=1…. N

|ϕ(r )|
2

…… (1)

and an orbital dependent exchange charge density ρi
HF

 for ith
 orbital

ρi
HF (r , r ' )= ∑

j=1…N

ϕ j
¿
(r ' )ϕi

¿
(r ')ϕi

¿
(r)ϕi

❑
(r )

ϕi
¿
(r )ϕi

❑
(r )

δ si , sj

This density involves a ‘spin’ dependent factor which couples only (i,j) with the same spin coordinate (
si , s j ). With these defined charge densities, it is possible to define corresponding potentials, the

coulomb or Hartree potential ( V H ¿ , and is defined as

V HF (r )=e2∫
1

r−r '
ρ (r ) ………..(2)

And an exchange potential can be defined as

V X
i (r )=−e2∫ d3r ' 1

r−r '
ρHF

i
(r , r ' )

This combination results in the following Hartree-Fock equation

{-
ℏ2∇i

2

2me

+V N (r )+V X
i (r )}Φi (r )=ϵΦi(r)

Once the Hartree-Fock orbitals have been obtained, the total Hartree-Fock electronic energy of System,
EHF  can be obtained from

EHF=∑
i=1

N

E i−
1
2
∫ ρ (r )V H d3r−

1
2
∑ Ei∫Φ i

¿
(r)Φ i(r)V i

X
(r)d3 r

Thus the Kohn-Sham energy functional is formally written as

HKS = 
ℏ2∇❑

2

2 m❑

+V eff ………… ..(3)
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Where the effective potential is define as for an one-electron potential, i.e.

V eff =V N ( ρ )+V H ( ρ )+V XC ( ρ)

EHF  is not a sum of the Hartree-Fock orbitals energy Ei . The factor of one half in the e-e terms

arises since the e-e interactions have been double counted in the coulomb and exchange potentials. The
Hartree-Fock Schrodinger equation is slightly more complex than the Hartree equation.

Note that in contrast with equation

HKS = Σ
−ℏ2∇ i

2

2m❑

+V N

V XC is now without an index, as it is only for one electron. Also note the dependence of each potential

term on the charge density 
ρ
¿ ), which is implicitly defined from the set of occupied energies Ψ i ,

i=1…N of the equation (3) eqby (1). The energy term associated with the nuclei-electron interaction is
¿V N I ρ>¿ , while that of e-e interaction is ¿V H I ρ>¿ , where V H  is Hartree potential.

V H (r )=∫
1

r−r '
ρ(r ' )dr '

The Kohn-Sham energy Functional is of the following form

E ( ρ )=
ℏ2

2m❑

∑∫ϕi
r∇❑

2 ϕi dr+∫ ρ (r ) V ion(r )dr+
1
2
∫ 1

r−r ' ρ (r ' )drdr '  + EXC( ρ(r ))

And the Kohn-Sham equation for electronic structure of matter is given as

{-
ℏ2∇i

2

2me

+V N (r )+V H (r )+V XC ( ρ(r ))}Φi (r )=EiΦ i(r )

This equation is usually solved ‘self-consistently’. An approximate charge is assumed to estimate the
exchange-correlation potential, and this charge is used to determine the Hartree potential from eq-(2).
These  approximate  potentials  are  inserted  in  Kohn-Sham equation  and  the  total  charge  density  is
determined as in eq-(1). The output charge density is used to construct new exchange correlation and
Hartree potentials. The process is repeated until the input and output charge density or potentials are
identical within some tolerable limit. Once self-consistency is achieved, a solution of the kohn-Sham
equation is obtained, and the total energy can be written as

EKS=∑
i=1

N

Ei−
1
2
∫ ρ (r ) V H d3r−∫ ρ (r ) EXC ( ρ (r ) )  −V XC( ρ(r ))d3r

The algorithm of this self-consistent algorithm is shown in fig-2.1
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2.5.1 Local Density Approximation (LDA)

LDA approximation is  a key contribution by Kohn-Sham, which for  computations of  the quantum
ground state of many-particle systems proved to be superior to both Thomas-Fermi and Hartree-Fock
theories, the basis of the local density approximation for the exchange and correlation energy functional
is the theory of the homogeneous electron liquid. This is a most important model system, which of
course does not exist in nature, but which can nowadays theoretically be treated with extremely high
precision. So that Exc depends only on the local electron density around each volume element dr in the
system. 

Exchange Correlation Functional can be represented as

where εxc[n(r)] is the energy density in homogeneous electron gas. 

It provides us with much successful results than expected, especially for solid, who’s structural and
vibrational properties are in general well described. LDA yields results that compare well to HF results
even for molecules and atoms. LDA is computationally much simpler than HF with the true exchange
potential. It gives the correct crystal structure which is usually found to have the lowest energy, bond
lengths, bulk moduli, phonon frequencies which are accurate within a few percent.

LDA provides a good description of the spherical term of the so-called “exchange-correlation hole”.

2.5.2 Generalised Gradient Approximation (GGA)

As the LDA approximate the energy of the true density by the energy of a local constant density, it fails
in the situations where the density undergoes rapid change such as in molecules. An improvement to
this situation can be made by considering the gradient of the electron density, so called Generalised
Gradient Approximation, symbolically it can be written as

This can lead to large improvement over LDA result.

Some of these are semi-empirical, in that experimental data e.g atomization energy is useful in their
derivation. A commonly used functional are PBE, PW91 functional, due to Predew-Burke-Ernzerhof
parameterization, Perdew and Yan respectively.

Algorithm of Self-Consistent Calculation
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                                                                                          Fig-2.1: Algorithm for self-consistent

2.6. Introduction to Thermoelectric Materials

The quest for better, cost effective, high temperature thermoelectric materials has resulted in intensive
research, due to the development of new materials and fabrication technologies, since it is an ideal
solution  for  sustainable  energy,  to  meet  the  current  energy  demand.  Though  the  efficiency  of
thermoelectric materials are low they are now seen as new green energy source because of its ability to
generate electricity from waste heat. Therefore, looking at possibilities to improve the thermoelectric
efficiency becomes the key issue in the research field [28].

In  solids  electrons  not  only  conduct  electricity  but  also  conduct  heat.  These  two phenomenon are
coupled, since electrical conductivity transport energy and thermal conductivity transport charge from
hot junction to cold junction. Thus this coupling between electrical and thermal transport give rise to
thermoelectric phenomenon [29-31]. Thermoelectric materials show thermoelectric effect i.e either a
temperature difference can create an electric potential or a potential difference can create a temperature
difference and their major application lies in (micro) cooling or electricity generation from heat sources.
There are three types of thermoelectric effect. 

1. Seebeck Effect
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If  two  wires  of  dissimilar  metal  joined  end  to  end  and  two junctions  are  maintained  at  different
temperature i.e connected electrically in series and thermally in parallel, then a current flows through
the circuit. This is known as Seebeck Effect. Such a current is known as thermoelectric current and emf
producing it is called thermo-emf, was first reported by Thomas Seebeck in 1821. The circuit formed by
the two wires of dissimilar metals is called thermocouple. The direction and magnitude of the Seebeck
voltage (V), depends on the temperature difference between the two junctions of the thermocouple and
on the materials making up the thermocouple i.e on the Seebeck coefficient (S) [32].

                                 ΔV=SΔT, where S is Seebeck coefficient (also known as thermo power,
thermoelectric  power,  thermoelectric  sensitivity)  of  the  material,  measure  the  magnitude  of  the
thermoelectric voltage (ΔV) in response to the temperature difference (ΔT) across the material. It is also
defined as  the  entropy transported  with  a  charge  carrier  divided  by the  carrier’s  charge  [33].  The
materials A and B of the thermocouple must be p-type or n-type, for an exchange between electrons and

holes or vice versa at the junctions T1  and T2  (see Fig-2.1), completing the circuit and allowing for

either  power  generation  or  refrigeration.The  sign  of  the  Seebeck  coefficient  is  determined  by  the

direction of current flow. If  T2  is greater than  T1 and the current is flowing clockwise than the

Seebeck coefficient is positive meaning the material is n-type, and if the current is counter-clockwise it
is negative [34] meaning the material is p-type.

2. Peltier Effect 

If a current is made to flow through the circuit of two dissimilar metals by using an external source then
one junction gets heated whereas other gets cooled, depending on the direction of current flow, this
phenomenon is known as Peltier Effect [29], the heat evolved or absorbed as Peltier heat. The rate of
heating or cooling at a junction is found to be proportional to the strength of the current and changes it’s
sign on reversing the direction of current. Thus Peltier effect is reversible. The effect is just the reverse
of the Seebeck Effect. Thus materials exhibiting a large Seebeck effect also show a large Peltier effect.

The effect can be quantitatively described by the Peltier coefficient ( π ¿ , (see Fig-2.3). The Peltier

coefficient (π) is determined by the ratio of the rate of heating (Q) to the current (I) i.e ( π=
Q
I ). The

Peltier heat generated at the junction per unit time, Q is equal to 
π a−πb

Q=¿ ) I, where,  and  is the

Peltier coefficient of conductor A and B, and measure the amount of heat evolved or absorbed, when
unit current pass through the thermocouple junction, and I is the electric current (from A to B). The sign

of π is determined by junction getting heated or is cooled. In Fig-2, if T1  is cooled and T2 is heated,
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Fig-2.2: Measuring the Seebeck Effect of two dissimilar
metal A, B when kept at different temperature   (wikipedia image)



then the Peltier coefficient is positive, and negative in the reverse situation when the current flows the
opposite direction.

3. Thomson Effect

In order to connect the thermoelectric effects as observed by Seebeck and Peltier, William Thomson
described the third thermoelectric effect, Thomson effect which describes the resulting electric current
that  develops  in  a  single  conductor  when  a  small  temperature  gradient  is  applied  [29-31].  This
relationship is described by the equationQ=βIΔT, where Q is the rate of heating, I is electric current, ΔT
is change in temperature, and β is the Thomson coefficient. This relationship holds if the temperature
difference, ΔT, is small.

Lord Kelvin, connected all three of the thermoelectric coefficients together in the Kelvin relationships.
These equations describe how the Seebeck, Peltier, and the Thomson coefficients are interrelated. These
are as follows:

Sab=
πab

T
, (relates  Seebeck coefficient to Peltier coefficient)

dSab

dT
=

βa−βb

T
, (relates Seebeck coefficient with Thomson coefficient)

β ¿
dπ
dt  – S,( relates Seebeck coefficient and Peltier coefficient with Thomson coefficient)

The  Thomson  effect  and  the  Kelvin  relationships  complete  the  theory  encompassed  by  the
thermoelectric phenomena [29,30,35,36].

Although  the  Seebeck,  Peltier,  and  Thomson  coefficients  can  describe  a  material’s  thermoelectric
properties,  but  they do not  contain the information that  enables  comparison between two different
materials. The thermoelectric coefficients do not include thermal and electrical conductance, which are
intrinsic characteristics specific to a particular material.  Seebeck and Peltier are bulk phenomena, i.e.
they depends on bulk  rather  than  surface  properties  of  the  materials.  Finally,  we are  interested  in
calculating the magic number of dimensionless figure-of-merit  

ZT=
S2σT

λ
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Fig-2.3: Measuring the Peltier Effect of two dissimilar metal A, B when
current flow through the junction in clockwise direction, causing heating or

cooling of one junction   (wikipedia image)



where T,  σ ,S , λ are absolute temperature (T), electrical conductivity ( σ ), seeback coefficient (S)

and thermal conductivity ( λ ) include mainly two components: an electronic contribution due to the

movement of carriers ( λe ), and a lattice contribution via the phonons

λ
¿
¿
¿

) i.e ( λ=λe+λl ), S2 σ  is

commonly referred to as thermopower. Z has the units of inverse temperature, so it is generally quoted
as ZT, with T the absolute  temperature.   The present  challenge is to find material  with higher ZT
performance, since in most of the materials thermo electric effect is too small to be useful. Moreover

any modification to any one of the three ( σ ,S , λ ) parameter would adversely affect the other transport

coefficients so that the resulting ZT does not vary significantly. 

Chapter 3

Computational Details 

3.1 The LAPW method:

For performing electronic  structure calculations for  crystals,  most  popular  and one of  the accurate
method’s among different methods is the linearized augmented plane wave (LAPW) method. LAPW
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was  described  by  Schwarz  et  al,  and  it  is  an  improvement  over  Augmented  Plane  Wave  (APW)
developed by Slater.  It is based on the density functional theory for the treatment of exchange and
correlation  and  uses  e.g.  the  local  spin  density  approximation  (LSDA),  which  is  an  efficient  and
accurate scheme for solving the many-electron problem of a crystal with a fixed nuclei. The LAPW
method is a procedure for solving many-electron system by introducing a basis set. It solve the Kohn-
Sham equations for the ground state density, total energy, and eigenvalues (energy bands) [37].

Basis set are especially adapted to the problem and this is achieved by dividing the unit cell into two
regions

(I) non-overlapping atomic spheres (centred at the atomic sites) and
(II)  an interstitial region

 In the two types of  regions different  basis  sets  are used,  “Basis”  Consists  of  Plane waves in the
Interstitial and Radial Functions in the Spheres.

Fig. 3.1: Partitioning of the unit cell into atomic spheres (I) and an interstitial region (II)

(i)  Inside atomic sphere t, of radius  Rt  ,  a linear combination of radial functions times spherical

harmonics Y lm  (r) is used

A lmul (r , El)

kn=∑
lm

[¿+Blmůl (r , El )]Y lm

φ¿

Where ul (r ,E l)  is the radial solution of Schrodinger’s equation at the energy of interest (i.e. the band

energy) and spherical part of the potential inside the sphere, ů(r) = 
∂ul

∂E l
 is the energy derivative of

ul  taken  at  the  same energy El ,  ůl (r , El)  is  introduce  for  additional  freedom,  to  overcome the

problem with the APW method i.e the energy dependence of the secular equation and also to extends
variations in the potential. A linear combination of these two functions constitute the linearization of the
radial 

function,  coefficient A lm  and  B lm are  function  of  kn  determined  by  matching  the  value  and

derivative of the basis functions at the sphere boundary, ul (r ,E l) and ůl (r , El)  are obtained by numerical

integration of the radial Schrodinger equation on a radial mesh inside the sphere.

(i) In the interstitial region a plane wave expansions in free space is used
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φkn
=

1
√ω

e i knt

where kn = k + Kn , K n  are the reciprocal lattice vectors and k is the wave vector inside the first

Brillouin zone. Each plane wave is augmented by an atomic-like function in every atomic sphere.

The  solutions  to  the  Kohn-Sham  equations  are  expanded  in  this  combined  basis  set  of  LAPW’s
according to the linear variation method

Ψ k=∑ cnΦkn

and the coefficients cn  are determined by the Rayleigh-Ritz variational principle.

In plane  wave the  accuracy of  the basis  set  was  determine by  Kmax ,  where  as  in  the  linearized

augmented plane wave (LAPW) method the convergenceof this basis set is controlled by a cut off

parameter  Rmt Kmax = 6 - 9, where Rmt is the smallest muffin tin sphere radius in the unit cell and
Kmax  is the magnitude of the largest K vector.

3.2 Methods of Calculation:

The electronic band structures were calculated by means of the full-potential linear augmented plane
wave (FP-LAPW) method based on first-principles density functional theory as implemented in the
WIEN2k  suite  of  program  [37].  The  standard  exchange-correlation  potential  of  Local-Density
approximation (LDA) and  Generalized Gradient Approximation (GGA)  schemes for the exchange-
correlation underestimate the band gaps of semiconductors, we used modified GGA known as the Tran-
Blaha modified Becke-Johnson potential (TB-mBJ)[38-39]. The muffin-tin spheres radii of the structure

are taken to be 2.5 Å  for A= Sr, 1.6 Å  for F, 2.0 Å  for M=Ag and 2.2 Å  for Ch = S,Se,Te.

The plane-wave expansion with radius of muffin-tin sphere ( RMT ) and( KMAX ) i.e  RMT * KMAX

equal  to  7.  The  crystal  structure  of  SrFAgCh  (Ch=S,Se,Te)is  tetragonal  with  space  group
P4/nmm(No.129).  The  complete  structural  optimization  has  carried  out  using  the  experimental

parameters [24] to get the theoretical lattice parameters with an energy convergence criterion of 10−6

Ry per  formula  unit.  For  k-space  integrations  12*12*5  k-mesh  was  used  for  the  Monkhorst-Pack
scheme. The self-consistent calculations included spin-orbit coupling. The carrier concentration (p for
holes and n for electrons)and temperature (T) dependent thermoelectric properties like thermopower

(S), electrical conductivity scaled by relaxation time  
σ
τ  were calculated using BOLTZTRAP [40]

code,  within  Rigid  Band  Approximation  (RBA)  [41-42]  and  the  constant  scattering  time  (τ)
approximation (CSTA). In RBA the band structure is assumed unaffected by doping, which only leads
to a shift of the chemical potential. For semiconductors it is a good approximation for the calculation of
the transport properties, when the doping level is not too high [30,43,44]. In the CSTA, the scattering
time  of  electrons  is  assumed  independent  of  the  electron  energy,  while  it  may  depend  on  carrier
concentration  and  temperature.  A detailed  discussion  of  the  CSTA is  given  in  [45-47].  The  only
situation where the CSTA can fail is when bipolar conduction is significant, which happen in narrow-
gap materials.
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Chapter 4

Results and Discussions

4.1.Structural Properties:

Initially experimental lattice parameters were used to generate tetragonal crystal structure of SrAgFCh 
(Ch = S,Se,Te). The crystal structure of SrAgFS is shown in Fig-4.1.

Fig-4.1: The crystal structure of SrAgFS

The complete structural optimisation has been carried out using the experimental parameters [24]. The
obtained lattice parametersare in reasonable agreement with the experimental reported values as well as
with the other theoretical calculations see Table 1. As mentioned earlier the theoretical GGA-band gaps
will underestimate compared to the experiment, our band gap results with GGA are also shown the
same, which is consistent with the other calculations. On the other hand, the calculated band gaps with
the TB-mBJ potential are in good agreement with the experimental reports. This shows the success of
the TB-mBJ potential in predicting the accurate band gaps closed to experiment. We also calculated the
bulk modulus (B) for all the compounds and are given in the table. From these we found that the bulk
modulus SrAgFS is high compared to the other compounds and it is found to decrease down the group
(BS > BSe> BTe).
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4.2.Band Structure and Density of States
The electronic structure calculations are carried out with the optimised lattice parameters. As mentioned
above,  the  standard  methods  of  the  LDA/GGA calculations  underestimate  the  band  gaps  of  the
semiconductors or insulators. We have calculated the electronic properties using TB-mBJ functional,
which is quite successful in predicting the band gaps of the materials very close to the experiments. The
calculated band structures of SrFAgCh along the high symmetry directions of the tetragonal Brillouin
zone are shown in Fig.4.2. The over all profile of all the bands remain same in each case. The effect of
spin-orbit coupling on the present compounds has shown a significant changes at the Γ point which
compare very well with the work of Bannikov et. al[23]. The SOC splitting energy of the degenerate
bands is found to be 31meV for S, 129 meV for Se and 330 meV for Te, which is found to be little
higher in comparison with the other 1111 family of compounds BaCuChF [49], which may due to the
usage of different exchange correlation functional. The SOC energy is found to increase as the mass of
the chalcogen increases. As we mentioned earlier that the above mentioned compounds crystallise in the
tetragonal structure, Γ-X direction in the Brillouin zone indicate the crystallographic ab- plane and Γ-Z
direction indicate the c- axis of the tetragonal crystal structure. Important feature to note is that the
valence band maximum (VBM) and conduction band minimum (CBM) are both located at the centre of
the Brillouin zone i.e at the Γ-point, thus making these compounds direct-band-gap semiconductor with

Γ - Γ inter-band transitions. Band gap 
E

(¿¿ g)
¿

 values are found to vary non-monotonously from S to

Te, in the group.From the band structure we can also see clearly that the high-symmetry directions of Γ-
Z, R-X, M-A shows a complete flat-band, which might indicated a good thermopower. The flat band
along Γ-Z near Fermi level will contribute to the thermopower whereas the less dispersive band along
Γ-X direction will contribute to the electrical conductivity. We moved to further analysis the character
of this flat band region. The top of the valance band is the combination of the both Ag-d and chalcogen-
p bands which suggest a strong hybridisation between these two bands which is also confirmed from the
density of states as mentioned below. A similar situation is seen for the other two compounds also, they
have almost similar band structure. From this we can conclude that the contribution to the flat bands are
due to the amalgamation of Ag-d and chalchogen-p bands. The CBM contribution is derived from the
Sr-d orbitals and there is no contribution from any of the other elements present in the compounds. 

The calculated density of states (DOS) along with the partial density of states of each of the elements
for all the three compounds are shown in Fig.4.3. The DOS shows that the maximum contribution to the
total DOS is due to the Ag-d and chalcogen-p states at the VBM as seen from band structure for all the
three compounds. The extent of the peak at the VBM is found to decrease as we move from S to Te,
which may be due to the increase in the splitting energy of SOC from S to Te. The CBM is mainly due
to  the  Sr-d  states  for  all  the  investigated  compounds.  The  electronic  structure  properties  shows
hybridisation of the Ag-Ch combination at the VBM which is a combination of heavy and light bands at
the Fermi level and in general one can except good thermoelectric properties from these compounds.
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Table 1:Ground state properties of SrAgFCh (Ch=S,Se,Te) with GGA functional along with the 
available experimental and other calculated results.

SrAgFS Present Experimenta Other Calculationsb

a (Å) 4.2024 4.0593 4.114
c (Å) 8.7528 9.1521 9.148
V (Å3) 154.576(+2.5%) 150.81 154.830(+2.6%)
z (Sr) 0.15654 0.1534
z (S) 0.69213 0.6945
B (GPa) 64.28
Band gap (eV) 1.185(GGA)

2.53(TB-mBJ)
1.251(GGA)

SrAgFSe Present Experiment Other Calculations
a (Å) 4.3086 4.1652 4.205
c (Å) 8.8956 9.2552 9.367
V (Å3) 165.138(+2.8%) 160.57 165.627(+3.1%)
z (Sr) 0.15060 0.1500
z (Se) 0.69755 0.6959
B (GPa) 59.01
Band gap (eV) 1.032(GGA)

2.27(TB-mBJ)
1.088(GGA)

SrAgFTe Present Experiment Other Calculations
a (Å) 4.4218 4.3397 4.368
c (Å) 9.4880 9.5947 9.758
V (Å3) 185.512(+2.7%) 180.70 186.177(+3.0%)
z (Sr) 0.13738 0.1358
z (Te) 0.69911 0.6976
B (GPa) 51.87
Band gap (eV) 1.319(GGA)

2.334(TB-mBJ)
1.333(GGA)

a: Ref. 23; b: Ref. 24;
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(a)

(b)(c)                                                               

Fig -4.2:Calculated band structure of SrAgFCh (a) S (b) Se and (c) Te
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(a)                                                                                 (b)

(c)

Fig -4.3:Calculated Density of states of SrAgFCh (a) S (b) Se and (c) Te

4.3. Thermoelectric properties

4.3.1 Thermopower:

The  carrier  concentration  and  temperature  dependent  thermoelectric  properties  of  SrAgFCh are
obtained by solving the Boltzmann transport equation as implemented in the BOLTZTRAP code [40].
All the properties are calculated using Rigid Band Approximation (RBA) [41,42] and the relaxation
time τ is assumed to be independent of energy [45-47]. The calculated propertiessuch as thermopower

and  electrical  conductivity  scaled  by  the  scattering  time  (  i.e.(
σ
τ )  ),  as  functions  of  carrier

concentration both electron and hole, at various temperature along the crystallograpic axis of a(xx) and
c(yy)- axes are shown in Fig. 4.4, 4.5. As there are only few studies available on these compounds we
could not find the melting point of these compounds. The thermoelectric properties of the prototype
compounds of BiCuOCh [48] are well studied upto 1000 K, so we have studied the present compounds
upto  900 K.  All  the  properties  are  given in  the optimum working region of  the concentration  i.e.
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1× 1018
 to 1× 1021

cm-3for both electrons and holes. The trend of the thermopower for both electron

and  hole  concentration  is  similar  to  what  has  been  found  for  other  thermoelectric  materials  with
tetragonal structure. It is also seen that the thermopower increases with decreasing carrier concentration.
The Pisarenko behaviour, i.e. logarithmic variation of the thermopower with carrier concentration, is

found  in  the  range  of 1018
−1021 cm−3 ,  which  is  optimumworking  region  for  good  thermoelectric

materials. From Fig. 4.4, we found that the thermopower value are found to vary from 670-870
μV
K

for the hole concentration in the temperature range of 300 to 900 K at a hole concentration of 1× 1018
,

whereas  for  electron it  is  found to  be  in  the  range of  420-670
μV
K .  We find  a  non-monotonous

variation in the low temperature region (at 300 K), so for better applications one could look at the
thermopower above 300 K, which shows a regular trend of the thermoelectric behaviour. As we can
notice very clearly, that the difference along the a- and c- axis for the hole concentration is very high,
which is due to the dispersion of the bands being different in this direction. From the band structure the
band along Γ-Z is less dispersive and one could expect a high thermopower in this direction as seen
from Fig-4.4(b), whereas a light dispersion along the   Γ-X direction will have a low thermopower value
compared to the Γ-Z direction. In contrast, the thermopower values of the electron doping is found to be

varying in between -420 to-670
μV
K  in the same range of temperature and for a similar concentration

as mentioned above for holes. The electron concentration is found to vary in similar trend as holes and
is found to increase as temperature increase, but very low as compared to the hole concentration which
is mainly dependent on dispersion of the bands in the conduction band. The anisotropy is found to be
lowin the case of electrons doping compared to hole doping. The thermopower is found to decrease as
we move from S to Te in the group for both the carrier concentrations. As a whole we find a good
thermopower in the hole concentration region for all the compounds.

                                               (a)                                                                                   (b)                                       
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                                               (c)                                                                                                     (d)                                     

(e)(f)

Fig.4.4. Thermopower of SrAgFS (a) electrons (b) holes, SrAgFSe (c) electrons and (d) holes and SrAgFTe (e) electrons
and (f) holesalong X- and Z-axis
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4.3.2 Electrical Conductivity

 The  electrical  conductivity  of  SrAgFCh  is  shown  in  fig  4.5  for  both  the  electron  and  hole
concentration, respectively. Similar scenario is found for both electron and hole doping with in the
optimum working range of the concentration and we find a decrease in the electrical conductivity at the

high  concentration  region,  so  we  stick  to  the  lower  concentration  region  (< 1021
)  for  better

applications.  As  we  expected  from  the  band  structure  the  electrical  conductivity  in  the  hole
concentration is high along the a-axis compared to the c-axis, because the dispersion along the Γ-X is
more compared to the Γ-Z which shows an isotropy along a,b,c axis. As there is no great difference in
the conduction band we could expect less anisotropy in the case of electron concentration. We also
found the electrical conductivity to be  high in case of the electron doping compared to the hole doping
approximately of two order’s. Similar to sulphur we found the other two chalcogen elements also to
behave same which are shown in Fig. 4.5 (c,d,e,f). The electrical conductivity is found to be increase as
we move down the group from S to Te, which is regular trend in the periodic table.

The thermopower value is found to be highin the c-axis and the electrical conductivity is low in the
same direction, whereas the high electrical conductivity in the a- axis will increasethe power-factor i.e.

S2σ
τ in these direction compared to the a- axis even with low thermopower. We found optimum values

for  hole  concentration  of  8.27  ×  1020cm−3 with  a  thermopowervalue  of  177µV/K  and  electrical
conductivity of 1.14 × 1019(Ωms)-1. The thermopower and the electrical conductivity are found to be of
the same orderas that of Zuo et. al.[48]. As BiCuChO compounds exhibit a low thermal conductivity,
we may except that ifthermal conductivity of SrAgChF (as they are similar type of compounds) could
also be low thenit would allow us to predict that these materials will also have a goodthermoelectric
properties of the same order of BiCuChO for better applications.

(a)      (b)
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(c)                                                                                              (d)

                                               (e)                                                                                              (f)

Fig-4.5.The calculated electrical conductivity scaled by relaxation time of SrAgFS (a) electrons (b) holes, SrAgFSe (c)
electrons and (d) holes and SrAgFTe (e) electrons and (f) holesalong X- and Z-axis
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Chapter 5

Conclusions and Future directions

The electronic transport properties of SrAgChF were calculated using density functional theory. The
calculated spin-orbit splitting of degeneracy is found to be quite significant and is well within the order
of the other BaCuFChcompounds. All the investigated compounds were found to be direct wide-band
gap semiconductors which is in good agreement with the experiment. The top of the valence band is
found to be the combination of the both transition metal-d and chalcogen-p bands, which shows the
strong hybridisation among these two bands. We have calculated the thermoelectric properties using
BoltzTraPcode. The thermopower is found to decrease as we move from S to Te, incontrast to these the
electrical conductivity is found to be increase with increasing concentration. The hole concentration
shows a high thermopower compared to the electron concentration, which shows that the investigated
compounds are found to be more favourable for hole doping.We found a optimum values for a hole
concentrations of 8.27 × 1020 cm−3 with a thermopower value of 177 µV/K and electrical conductivity of
1.14 × 1019 (Ωms)-1which is found to be in good agreement with BiCuOCh.As BiCuChO compounds
exhibit a low thermal conductivity, we may except that ifthermal conductivity of SrAgChF (as they are
similar  type of  compounds)  is  also low then we may predict  that  these materials  will  also have a
goodthermoelectric properties of the same order of BiCuChO for better applications. Doping other atom
on site Sr might enhance the thermoelectric propeties of the present investigated compounds, which
may show better thermoelectric applications which might be taken as future work.
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