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Abstract

Our Project aim is to develop a real time chip to process the sensor signals and

separating the source signals, which is used in Health care like Autism. Autism is a

disease which affects the child mental behavior. So If we analyze the signals form the

brain so we can observe the how effectively the disease is cured. So to analyze the

Autism we need EEG signals from almost 128 Leads from the scalp of child, which is

difficult to do so. Thus we have to reduce the number of Leads used and at the same

time we should get the all information as in the case of 128-Leads. Thus solving our

problem is to solve Underdetermined Blind Source Separation (UBSS).

And in some other cases we may have only one mixture signal (M=1), which is

extreme case of UBSS, from which we have to extract the unknown sources, which is

called Single channel Independent Component Analysis also called SCICA. In SCICA

if we have N source signals then it is called ND-SCICA.

In real time UBSS or SCICA problem we require a Digital chip which will separate

the sources in real time case. So we require a chip which is High speed so that it will

be suitable for real time applications and also it should be Reconfigurable so that it

can work for different type of applications where the frame length of signals vary.

So first we investigated the architectural issues of Reconfigurable Discrete Hilbert

Transform for UBSS where M is greater than one. Thus we proposed a high-speed and

reconfigurable Discrete Hilbert Transform architecture design methodology targeting

the real-time applications including Cyber-Physical systems, Internet of Things or

Remote Health-Monitoring where the same chip-set needs to be used for various pur-

poses under real-time scenario. By using this architecture we are able to get Discrete

Hilbert Transform for any given M-point by re-using N-point Discrete Hilbert Trans-

form as a kernel. Here N and M are multiple of 4 and N respectively. Subsequently we

provide the architecture design details and compare the proposed architecture with

the conventional state-of-the-art architecture. Thorough theoretical analysis and ex-
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perimental comparison results show that the proposed design is twice as fast and

reconfigurability is also achieved simultaneously.

After DHT, we proposed a new algorithm for ND-FastICA which is used for ex-

treme case of UBSS where the number of mixture/sensor signals are only one. In this

algorithm we used CORDIC based ND-FastICA which is reconfigurable so that the

same chip can be used for different dimensioned FastICA.
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Chapter 1

Introduction

Now a days in communication engineering and Biomedical Engineering we are facing

problems in collecting information from a mixture of data. In other words we want

to separate the Unknown sources (N) from the known mixture signals(M). Thus the

problem is called Blind Source Separation Problem. But in real life scenario we have

very less no of mixture/sensor signals from which we have to separate the unknown

sources. This type of problem is called Underdetermined Blind Source Separation

Problem also called UBSS.

In UBSS algorithm we have to use Discrete Hilbert Transform(DHT) to get an-

alytical Signal. In addition that the DHT should be recongfigurable and high speed

so that it will suitable for real time problems.

Discrete Hilbert Transform (DHT) has significant applications in Signal processing

and Digital Communications especially where Analytical signals have to be derived

from the input signals as follows,

a(n) = x(n) + jH{x(n)}

where x(n), H{x(n)}, a(n) are Input signal, Hilbert transform of x(n) and Analytical

signal respectively. For example to compute Wigner Ville Distribution [1] for solv-
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ing Underdetermined Blind Source Separation (UBSS) [3] problem, firstly, Analytical

Signals has to be derived using DHT on the input signals. Similarly in Healthcare

Systems for example Ultrasound image extraction uses Hilbert Transform for envelop

detection [4]. In the field of Geophysics Hilbert transform plays a major role in the

direct detection of hydrocarbons (oil/gas) [5]. Even in the field of Engineering Struc-

tures, Hilbert transform is used to find the Envelop detection for the detection of

Damages in Building Structures [6]. In [12] DHT is used as the Minimum phase type

filter for the forecasting and characterization of wind speed. In addition that in the

emerging fields including cyber physical systems, internet of things, remote health

monitoring applications, there is a need of separation of signals from the composite

in such a way that it meets real time requirements without putting significant burden

on available resources. Therefore it is important to design high speed DHT under

the real-time scenario. At the same time these applications demand the multipurpose

operations of the same chip set there by creating a need of Reconfigurable architec-

ture design. There exists various DHT architectures in the transformation domain

based on DFT [9] and FHT [10] which require more resources to convert from fre-

quency domain to time domain. In time domain also there exists FIR filter [11] based

DHT however it is based on causality of input signals which will have less accuracy.

However these methodologies are not suitable for on-chip reconfigurable applications.

Recently a systolic array based reconfigurable architecture was proposed in [8] ,but

it is achieved at the cost of high processing time there by making it unsuitable for

real time applications. This motivates us to propose a high-speed and reconfigurable

DHT architecture design methodology targeted mainly at the real-time applications

where the same chip-set can be used for various purposes depending upon different

applications. Hence in this thesis we are proposing a methodology for high speed and

Reconfigurable M-point DHT Architecture.

In extreme case of UBSS where the number of sources are only one which is called
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SCICA problem. So we used CORDIC to solve the SCICA problem. The SCICA is

algorithm can be used in Biomedical applications like Protein analysis [14]. In ND-

SCICA we need to use reconfigurable FastICA so that for different case we may need

to use different dimensioned FastICA. In our literature study we found the algorithm

for SCICA which is proposed by C.J. James in [13]. And recently an architecture

was proposed for 3D-SCICA [15] in 2013. But the 3D-SCICA is not not useful for

ND-SCICA which is useful in real time application. And also the static (N is fixed for

a chip) ND-FastICA is proposed in [18], but it is not suitable for ND-SCIA where we

need to use reconfigurable (N can be varied) FastICA.So we proposes the ND-SCICA

in which we proposed an architecture for Reconfigurable ND-FastICA which is used

for different number of signals for different cases.
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Chapter 2

UBSS

Underdetermined Blind Source Separation is one of the case in the Blind Source

Separation Problem where the number of sensors/mixture signals (M) are less than

the number of source signals(N). To solve the UBSS problem, two algorithms were

proposed in 2012 [3].

The typical UBSS architecture is shown in 2.1.

Figure 2.1: Typical UBSS Architecture

As shown in 2.1 we will give Mixture signals(M) as inputs and we will get the

source signals (N M). To solve UBSS Boualem Boashash proposed some algorithms
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in the text book ”Time Frequency Signal Analysis and Processing” [2].

The basic equation for inputs and outputs is shown as,

X(n) = A× S(n) (2.1)

Where X(n) is a Mixture matrix of order [M × L] i.e. each row represents one

mixture signal of frame length L . Similarly S(n) is a Source matrix of order [N ×L]

where each row represents one source signal. And A is Mixing matrix of order [M×N ].

For UBSS M is always less than N .

As shown in 2.1, after getting M mixture signals we have to find find the analytical

signal of each mixture signal so that we will get WVD of those signals as all real valued.

The equation for analytical signal is shown as follows,

Z(n) = X(n) + jH{X(n)} (2.2)

Here H{X(n)} represents Discrete Hilbert Transform of X(n). After getting

Analytical signal we can solve the UBSS as shown in 2.1.

But the main challenge here is to design an architecture for DHT which should be

Reconfigurable for different frame lengths and also should be high speed so that it can

be useful for real time applications like biomedical signal processing. So we proposed

an architecture of High speed DHT [16] which is explained in the next chapter.
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Chapter 3

DHT

3.1 Theoretical Background

As we know, there are several different definitions for Hilbert transform in continuous

case, which relate to different space of functions(signals), The most popular one is

defined on the real line with singular kernel(relating to the theory of Hardy space on

the upper half plane). In some sense, it can be proved they are equivalent. But in

discrete case, the equivalence is not obvious, However as mentioned in Section-I the

targeted application is on-chip real time signal processing. Therefore our focus is on

discrete case.

The formulas for Discrete Analytical Signal having M (M is even) samples were

given in [7] as follows, For n is even,

a(n) = x(n) + j
2

M

M/2−1∑
p=0

x(2p+ 1)cot(π(n− (2p+ 1))/M) (3.1)

For n is odd,

a(n) = x(n) + j
2

M

M/2−1∑
p=0

x(2p)cot(π(n− 2p)/M) (3.2)

By observing Discrete Analytical Signal for various M points like 4,6,8... by using
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(3.1) and (3.2) we can formulate the generalized formula for M-point (even number

of samples/points) as follows,

a(n) =x(n) + j
2

M

floor(M
4
)−1∑

p=0

{x (mod(n+M − 2p− 1,M))

− x (mod(n+ 1 + 2p,M))}cot
[ π
M

(2p+ 1)
]

(3.3)

Where M = 4, 6, 8, 10, . . . , etc and n = 0, 1, 2, . . . ,M − 1.

3.2 Proposed Methodology

In this thesis we propose a Reconfigurable DHT for M points which are multiples of

N (But in systolic based Reconfigurable DHT [8] N=4 ). Since M is multiple of N

and N is multiple of 4, without any loss of generality (3.3) can be written for DHT

as follows,

h(n) =
2

M

M
4
−1∑

p=0

{x (mod(n+M − 2p− 1,M))

− x (mod(n+ 1 + 2p,M))}cot
[ π
M

(2p+ 1)
]

(3.4)

Where M = 4, 8, 12, . . . , etc and n = 0, 1, 2, . . . ,M − 1. The above equation can be

written in matrix form as follows,



h(0)

h(1)

...

h(M − 1)


= K ×



x(0)

x(1)

...

x(M − 1)


(3.5)
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Where

K =

 0 −k1 0 −k2 ... −kM/4 0 kM/4 ... 0 k2 0 k1
k1 0 −k1 0 ... −kM/4−1 −kM/4 0 ... k3 0 k2 0

...
...

...
...

...
...

...
...

...
...

...
...

...
−k1 0 −k2 0 ... 0 kM/4 0 ... k2 0 k1 0


Which is essentially a diagonal-constant matrix(Toeplitz Matrix).

ki =
2

M
× cot

[ π
M

(2i− 1)
]
, i = 1, 2, . . . ,M/4

Reconfigurable DHT is defined as, getting DHT for given any M-point by reusing N-

point kernel for multiple times. Since in our proposed methodology, (3.4) is considered

as the kernel, N is multiple of 4 and M is multiple of N. In other words,the physical

interpretation would be, N (which is multiple of 4 as shown in (3.4) and will be

discussed in detail in Section-IV) is chip parameter known as kernel, which designer

can set while designing the chip. On the other hand, M can vary depending upon

different applications but can be realized using the same chip with fixed N achieving

reconfigurability and high speed as per our proposed methodology. For example

considering N=8-point kernel (multiple of 4), which is fixed on a chip, that can be

used to implement M=512 points UBSS system for Speech Processing application,

can also be used for M=4096-point UBSS for medical applications using the same

chip.

From (3.5) it is apparent that every row(except the first one), in matrix K, is one-

element circular right shift of previous row. So (3.5) can be written as sub-matrices
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form as follows,



H1

H2

...

HM/N


=



K1 K2 . . . KM/N

KM/N K1 . . . KM/N−1

...
...

...
...

K2 K3 . . . K1


×



X1

X2

...

XM/N



=



K1 ·X1 +K2 ·X2 + ·+KM/N ·XM/N

KM/N ·X1 +K1 ·X2 + ·+KM/N−1 ·XM/N

...

K2 ·X1 +K3 ·X2 + · · ·+K1 ·XM/N


(3.6)

Here Hi, Ki and Xi are sub-matrices of orders N × 1, N ×N and N × 1 respectively

drawn from (3.5). Where i = 1, 2, . . . ,M/N We can generalize (3.6) as,

Hi =

M/N∑
j=1

Kmod(M
N

−i+j+1,M
N

) ×Xi

=

M/N∑
j=1

kernel(i, j) (3.7)

Where kernel(i, j) = Kmod(M
N

−i+j+1,M
N

) ×Xi and i = 1, 2, . . . ,M/N. It can be noted

that the kernel is multiplication of two matrices of order N × N and N × 1 which

gives matrix of order N × 1 . So from (3.7) we can conclude that, to calculate DHT

for given M samples by using a fixed kernel which does multiplication of two matrices

of order N×N and N×1 and gives a matrix of order N×1 for
(
M
N

)2
times. It means

for any given M samples we can re-use same kernel for
(
M
N

)2
times which brings the

reconfigurability property in the proposed DHT architecture. In reconfigurable DHT

we will have random samples for DHT i.e, M=N,2N,3N,4N,. . . ,etc which are multiples

of N. So for given M-samples we have to re-use our only resource N-sampled kernel

accordingly. So we have to select kernel inputs for given M-samples. From (3.7) we
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have to define all elements for sub-matrices from (3.5) i.e, for Hi, Ki and Xi. where

i = 1, 2, . . . ,M/N . The Sub-Matrices of Hi and Xi can be written, from (3.5), as,

Hi =



h(N × (i− 1) + 0)

h(N × (i− 1) + 1)

...

h(N × (i− 1) +N − 1)


Xi =



x(N × (i− 1) + 0)

x(N × (i− 1) + 1)

...

x(N × (i− 1) +N − 1)


(3.8)

Where i = 1, 2, . . . ,M/N .

Now to generate the elements for Ki we have to observe the K matrix in (3.5). In

the K matrix, in (3.5),because of the every row(except the first one) is one element

right-circular shift of previous row, as shown in Fig.1, all the elements along axes

which are parallel to the principal diagonal are same and alternative axes elements

along the diagonal axis are zeros. Hence the full K matrix in (3.5) can be formed

Figure 3.1: Order of elements in K-Matrix for M=8

with the M elements which are first elements of the axes (except zeros as elements of

alternate axes) which are parallel to principal diagonal, instead of using all M ×M

elements. So we can write all the M elements starting form top right side of matrix
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K to the bottom left side as shown in Fig.1 , as a set,

Kset = {k1, k2, . . . , kM/4,−kM/4,−kM/4−1, . . . ,−k1,

k1, k2, . . . , kM/4,−kM/4,−kM/4−1, . . . ,−k1} (3.9)

The set contains total of (M/4) × 4 = M elements which are all first elements of

alternate axes which are parallel to principal diagonal, starting from the top right

side of matrix K to the bottom left side. Similarly we can generate elements for

sub matrices in (3.6) , which will have N elements in each sub-matrix Ki of (M/N)

matrices. So for M-sample DHT by using N-sample kernel we have to generate all

elements for sub-matrices Ki in (3.6) from M/4 constants, as

Kseti = Kset

(
M −N × i+ 2

2
:
M −N × i+ 2×N

2

)
(3.10)

Where i = 1, 2, . . . ,M/N . We can generate the matrices Ki by using Kseti, as

Kseti is set of elements which are the first elements of all axes parallel to principal

diagonal except alternative axes having zeros as the elements.

For example, to generate parameters for M=16 and N=8. Then, matrix K in (3.5)

can be written as follows,

K =



0 −k1 0 . . . −k4 0 k4 0 . . . k1

k1 0 −k1 . . . 0 −k4 0 k4 . . . 0

0 k1 0 . . . −k3 0 −k4 0 . . . k2

k2 0 k1 . . . 0 −k3 0 −k4 . . . 0

...
...

...
...

...
...

...
...

...
...

−k1 0 −k2 . . . 0 k4 0 k3 . . . 0


(3.11)
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From (3.6) the sub-matrix can be written for M=16 and N=8 as,

H1

H2

 =

K1 K2

K2 K1


X1

X2

 (3.12)

Here H1, H2, X1 and X2 can be written by using (3.8). Now for K1 and K2 we have

to find the set of elements, Kset as in (11), which are first elements of alternative

axes which are parallel to principal diagonal in matrix K in (3.11). So Kset can be

written as,

Kset = {k1, k2, k3, k4,−k4,−k3,−k2,−k1,

k1, k2, k3, k4,−k4,−k3,−k2,−k1} (3.13)

Now as in (3.10) Kseti can be written from above equation as,

Kset1 = Kset(5 : 12) = {−k4,−k3,−k2,−k1, k1, k2, k3, k4}

Kset2 = Kset(1 : 8) = {k1, k2, k3, k4,−k4,−k3,−k2,−k1} (3.14)

Now from above sets, the sub-matrices K1 and K2 in (3.12) can be written as,
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K1 =



0 −k1 0 −k2 0 −k3 0 −k4

k1 0 −k1 0 −k2 0 −k3 0

0 k1 0 −k1 0 −k2 0 −k3

k2 0 k1 0 −k1 0 −k2 0

0 k2 0 k1 0 −k1 0 −k2

k3 0 k2 0 k1 0 −k1 0

0 k3 0 k2 0 k1 0 −k1

k4 0 k3 0 k2 0 k1 0

0 k4 0 k3 0 k2 0 k1



(3.15)

and

K2 =



0 k4 0 k3 0 k2 0 k1

−k4 0 k4 0 k3 0 k2 0

0 −k4 0 k4 0 k3 0 k2

−k3 0 −k4 0 k4 0 k3 0

0 −k3 0 −k4 0 k4 0 k3

−k2 0 −k3 0 −k4 0 k4 0

0 −k2 0 −k3 0 −k4 0 k4

−k1 0 −k2 0 −k3 0 −k4 0

0 −k1 0 −k2 0 −k3 0 −k4



(3.16)

We can observe Kset1, Kset2 in (3.14) as the set of elements which are first elements of

the alternative axes parallel to principal diagonal axis, form top right side to bottom

left side, of the matrices K1, K2 as in (3.15) and (3.16). It is to be noted that in

this thesis our thrust is on the On-chip Reconfigurable High-speed DHT Architecture

Design Methodology for Real time Signal Processing, therefore the computations

related to the inverse DHT and the corresponding inverse k matrix are out of the
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scope of this thesis.

3.3 Results and Discussions

To design the digital circuit which has N-sample kernel and can be used for any

number(M) of samples/points DHT upto a maximum value Mmax without changing

the hardware of the design. The Digital Architecture for above methodology is shown

in the Fig.2 as block diagram. The controller, in Fig.2(a), controls all the blocks

Figure 3.2: (a)proposed Architecture, (b) comparison of the conventional algorithm
(black) and proposed architecture’s outputs (gray).

so that they act as the reconfigurable DHT as shown in (3.7). First we have to

give the input value M, so that the block works for M-point DHT. Then X Memory

block temporarily stores the M input samples/points. But in the the K Memory,

all the constants ki which will be used for all M points (which are multiples of 4)

upto Mmaxpermanently. Now we have to design controller so that for each usage of

kernel, kernel should get all the inputs from X Memory block and K Memory block

as given in (3.8) and (3.10). In this way kernel should get inputs for
(
M
N

)2
times.

The proposed architecture is also compared with the conventional(MATLAB) DHT’s
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output as shown in Fig. 2(b).

We synthesized the proposed architecture for N=4 and Mmax = 1024, using Ca-

dence RTL compiler UMC 90nm technology at 1MHz frequency for illustration pur-

pose. However it can be noted that the same architecture can be synthesized under

different technology libraries with different frequencies on any hardware or embed-

ded platform. The power values, for various points M, computed using Synopsys’

PrimeTime, are plotted in Fig.3(b). Here the power consumption increases as M

increases, because the number operations,
(
M
N

)2
, increases with M. Please note that

the proposed architecture as shown in Fig.2(a) is not a systolic architecture.

Figure 3.3: (a)Comparison of processing speed of the proposed architecture with the
state-of-the art architecture [8]. (b) Power Report for Various Points DHT.

We also compared the speed in terms of the number of clocks with [8] and we are

attaining double the speed of the state-of-the-art systolic array based architecture

which is better than or comparable to its contemporary techniques as mentioned in

Section-I, requiring kernel for 2 ×
(
M
N

)2
times as shown in the Fig.3(a). Please note

that the number of clocks shown in Fig.3(a) denotes the time taken to complete the
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M-point DHT computation, where M varies from 4 to 1024 points. Since different

architectures may have different numbers of computations per clock cycle, we therefore

considered the number of clocks to compute M-point DHT computation instead of

an individual computation needed in the DHT process.

3.4 Conclusion for DHT

Here a high-speed and reconfigurable DHT architecture design methodology is pro-

posed using N-point kernel. This architecture is capable of calculating DHT for any

number of points M. In the proposed architecture N and M are considered to be the

multiple of 4 and N respectively. Our proposed architecture has been shown to have

double the speed of the state-of-the art systolic array based DHT [8], thereby making

it suitable for the real-time applications targeted for emerging cyber-physical sys-

tems, internet-of-things and remote healthcare applications where the same chip-set

are planned to be used for various purposes.
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Chapter 4

ND-SCICA

ND-SCICA is extreme case of UBSS where the number of mixture signals are only

one to separate or find the N number of sources. In the real time applications like

Protein spectral analysis we need a digital chip which works in real time scenario. So

we proposed an architecture based on the algorithm proposed in [13].

In our proposed architecture of ND-SCICA we require ND-FastICA block which

can work for different dimensioned FastICA i.e dynamically ND-FastICA can be re-

configurable accordingly for different number of signals.

4.1 Algorithm for ND-SCICA

The typical algorithm based on [13] and [14] is shown in 4.1. In the architectural

design of the ND-SCICA problem the main challenge we face in the design of fpica

block. Because in the process of ND-SCICA we will get different number of signals as

input to the fastica block. So FastICA block should be able to reconfigure according

to the number of input signals.

So we are proposing the Reconfigurable ND-FastICA block based on COrdinate

Rotation DIgital Computer (CORDIC) using the idea of static ND-FastICA proposed

by Amit Acharyya et. al. [18].
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X 
Mixture Signal 

[1×L1]

XM
Mixture Matrix 

[m×L2]

XC
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[m×L2]
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After Covariance 

[m×m] 

Eo and Do
after EVD

[m×m] and [m×m]

E and D 
after removing zeroed 

eigenvalues [m×n] and [n×n]

WM=inv(sqrtm(D))*ET

Whitening Matrix [n×m]

XW =WM* XM

Whitened Matrix [n×L2]

B=fpica(XW )
[n×n]

A=DWM*B
Mixing Matrix 

[m×n]

DWM=E*sqrtm(D)) 

DeWhitening Matrix [m×n]

W=B*WM
Unmixing Matrix [n×m]

A_f=abs(fft(A))

Index=Kmeans(A_fT ,N)
[n×1] 

f(i,:)=
1

𝑚
 𝑖𝑛𝑑𝑒𝑥 𝐶𝑜𝑛𝑣(𝐴 : , 𝑖 ,𝑊 𝑖, : )

N-Filters are created for accordingly 
kmeans index
[1 × (2m-1)] 

S(i,:)=conv(f(i),X)  
for all i=1 to N  

[1 × (2m+L1-2) ]

S_f(i,:)=fft(S(i,:))
To find the peaks 

S1
S2
S3
:
:
SN

X

All are 
Spectral 
density 
of N 
Sources

Figure 4.1: Flowchart to solve ND-SCICA

4.2 ND-FastICA

The main objective of FastICA is to find the N-Estimator vectors of length N by

processing N signals. The algorithm to find the estimator vectors is proposed by

Aapo Hyvrinen in [20].

The estimator vector ’w’ can be calculated from Xw by using the following equa-

tion based on [20],

w(:, i)p+1 =
(
Xw ×

((
XT
w × w(:, i)p

)
.ˆ3
))

/L− 3× w(:, i)p (4.1)

w(:, i) = w(:, i)/norm (w(:, i)) (4.2)

Where w is Estimator matrix of order [N × N ] and Xw is Whitened Matrix of

order [n× L] i.e. Whitening matrix has N- Whitened signals of each frame length is
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L. And i = 1, 2, . . . , N .

We can write the 4.1 as follows,



wp+1
1,i

wp+1
2,i

...

wp+1
N,i


=



E[z1,j{z1,jwp1,i + z2,jw
p
2,i + . . .+ zN,jw

p
N,i}3]

E[z2,j{z1,jwp1,i + z2,jw
p
2,i + . . .+ zN,jw

p
N,i}3]

...

E[zN,j{z1,jwp1,i + z2,jw
p
2,i + . . .+ zN,jw

p
N,i}3]


− 3×



wp1,i

wp2,i
...

wpN,i


(4.3)

Where j = 1, 2, . . . , L.

Now we can write 4.3 as follows,



wp+1
1,i

wp+1
2,i

...

wp+1
N,i


=



E[z1,j{GND}3]

E[z2,j{GND}3]
...

E[zN,j{GND}3]


− 3×



wp1,i

wp2,i
...

wpN,i


(4.4)

Where GND is column vector of length L. So

GND(j) = z1,jw
p
1,i + z2,jw

p
2,i + . . .+ zN,jw

p
N,i (4.5)

For j = 1, 2, . . . , L. And from the 4.2 we can write it as,

wi,k =
wi,k√

w2
1,k + w2

2,k + . . .+ w2
N,k

(4.6)

For k = 1, 2, . . . , N . So our challenge is to design an architecture which is recon-

figurable so that for different values of N and L it can solve the equations 4.5 and

4.6. But in [18] Amit Acharyya et. al had proposed a static architecture based on

CORDIC which is fixed for a chip, So we can not use it for reconfigurable applications.

Hence we are proposing ND-FastICA based on CORDIC which is reconfigurable so
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that we can use it in our ND-SCICA problem. So from [18] we can write the equations

4.5 using CORDIC as follows,

GND(j) = RotN−1
x (zN,j, Rot

N−2
x (zN−1,j, . . . , Rot

1
x(z2,j, z1,j, θ1, ) . . . , θN−2), θN−1)

(4.7)

Here j = 1, 2, . . . , L where

θ1 = V ec1θ(w2,i, w1,i)

θr = V ecrθ(wr+1,i, V ec
r−1
x (wr,i, V ec

r−2
x (wr−1,i, . . . , V ec

1
x(w2,i, w1,i)))) (4.8)

Here r = 2, 3, . . . , N − 1 and For i = 1, 2, . . . , N .

Similarly we can calculate 4.6 using cordic as follows,

w1,k = RotN−1
x (0, RotN−2

x (0, . . . , Rot1x(0, 1, θN−1), . . . , θ2), θ1)

wm,k = RotN−m+1
y (0, RotN−m

x (0, . . . , Rot1x(0, 1, θN−1), . . . , θ2), θ1) (4.9)

Here m = 2, 3, . . . , N . And for θ terms we can get from 4.8.

From 4.7, 4.8 and 4.9 we can observe that to get the ith estimate vector w{:, i}

we have to follow these steps:

Step-1. Take N random values for the vector w(:, i).

Step-2. Find the N − 1 θ terms for the vector taken in step-1 (for first iteration) or

from the step-6 (for second iteration onwards). i.e. we have to use VectorMode

Cordic for N − 1 times.

Step-3. Find the Normalized vector w(:, i) by using θ terms from step-2. i.e we have

to use RotationMode Cordic for N − 1 times.
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Step-4. Find the vector GND by using whitened matrix Xw of order [N ×L] and the

θ terms from step-2. i.e we have to use RotationMode for N − 1× L.

Step-5. We have to use equation 4.4 using GND vector from step-4 and w(:, i) from

step-3. Thus we will get maximum Kurtosis stimator vector w(:, i).

Step-6. We have to check the estimator vector w(:, i) in step-6 with the vector used

in previous iteration. If both are in same direction, i.e. angle between them is

zero, otherwise goto step-2.

So from above steps, we can conclude that, for a single iteration we have to use

total (N − 1)× (L+ 1) times RotationMode and (N − 1) times Vectormode Cordic.

The Matlab files for the same are available in the chapter Appendix.
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Chapter 5

Conclusion

Thus I have investigated two low-complex Architectural issues under UBSS problem.

First one is High Speed Reconfigurable Discrete Hilbert Transform which is used

in UBSS problem where number of sensors are less than number of sources. And

the other one is Reconfigurable CORDIC based FastICA algorithm which is used

in UBSS problem where number of sensor signals are only one which is also called

SCICA problem.
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Chapter 6

Appendix

6.1 Matlab for Normalization using CORDIC

Figure 6.1: Matlab for Normalization using CORDIC
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6.2 Matlab for Iteration using CORDIC

Figure 6.2: Matlab for Iteration using CORDIC
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