
Engineering Enterprise Networks with SDN

Nitin Agarwal

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Computer Science and Engineering

June 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Archive of Indian Institute of Technology Hyderabad

https://core.ac.uk/display/38677836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I declare that this written submission represents my ideas in my own words, and where ideas or

words of others have been included, I have adequately cited and referenced the original sources. I

also declare that I have adhered to all principles of academic honesty and integrity and have not

misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I understand

that any violation of the above will be a cause for disciplinary action by the Institute and can also

evoke penal action from the sources that have thus not been properly cited, or from whom proper

permission has not been taken when needed.

————————–

(Signature)

—————————

(Nitin Agarwal)

—————————–

(Roll No.)

Acknowledgements

Foremost, I would like to express my sincere gratitude to my adviser Dr. Kotaro Kataoka for

his valuable guidance, constant encouragement, motivation, enthusiasm, and immense knowledge.

Without his patience and support, this dissertation would not have been possible. Many individuals

contributed in many different ways to the completion of this thesis. I am deeply grateful for their

support, feedback and constant encouragement. Finally, I thank my family for supporting me

throughout my studies at the institute.

I would like to make a special mention of the excellent facilities provided by my institute, IIT

Hyderabad.

iv

Abstract

Today’s networks are growing in terms of bandwidth, number of devices, variety of applications,

and various front-end and back-end technologies. Current network architecture is not sufficient for

scaling, managing and monitoring them. In this thesis, we explore SDN to address scalability and

monitoring issue in growing networks such as IITH campus network. SDN architecture separates

the control plane and data plane of a networking device. SDN provides a single control plane (or

centralized way) to configure, manage and monitor them more effectively.

Scalability of Ethernet is a known issue where communication is disturbed by a large number

of nodes in a single broadcast domain. This thesis proposes Extensible Transparent Filter (ETF)

for Ethernet using SDN. ETF suppresses broadcast traffic in a broadcast domain by forwarding the

broadcast packet to only selected port of a switch through which the target host of that packet is

reachable. ETF maintains both consistent functionality and backward compatibility with existing

protocols that work with broadcast of a packet.

Nowadays, flow-level details of network traffic are the major requirements of many network

monitoring applications such as anomaly detection, traffic accounting etc. Packet sampling based

solutions (such as NetFlow) provide flow-level details of network traffic. However, they are inad-

equate for several monitoring applications. This thesis proposes Network Monitor (NetMon) for

OpenFlow networks, which includes the implementation of a few flow-based metrics to determine

the state of the network and a Device Logger. NetMon uses a push-based approach to achieve its

goals with complete flow-level details. NetMon determines the fraction of useful flows for each host

in the network. It calculates out-degree and in-degree based on the IP address, for each hosts in the

network. NetMon classifies the host as a client, server or peer-to-peer node, based on the number of

source ports and active flows. Device Logger records the device (MAC address and IP address) and

its location (Switch DPID and Port No). Device Logger helps to identify owners (devices) of an IP

address within a particular time period.

This thesis also discusses the practical deployment and operation of SDN. A small SDN network

has been deployed in IIT Hyderabad campus. Both, ETF and NetMon are functional in the SDN

network. ETF and NetMon were developed using Floodlight which is an open source SDN controller.

ETF and NetMon improve scalability and monitoring of enterprise networks as an enhancement to

existing networks using SDN.

v

Contents

Declaration . ii

Approval Sheet . iii

Acknowledgements . iv

Abstract . v

Nomenclature vii

1 Introduction 1

1.1 Scaling a Broadcast Domain of Ethernet . 1

1.2 Network Flow Monitoring . 2

1.3 Overview of the Work . 3

1.4 Thesis Outline . 3

2 SDN and OpenFlow 5

2.1 Software Defined Networking . 5

2.2 OpenFlow Protocol . 6

3 Scaling a Broadcast Domain of Ethernet 8

3.1 Handling a Large-scale Network . 9

3.2 Related Work . 10

3.3 System Design . 11

3.4 System Implementation . 12

3.4.1 Data Structures . 13

3.4.2 Discovering DHCP Servers . 13

3.4.3 Operating DHCP in Suppress Mode . 14

3.4.4 Operating ARP Request in Suppress Mode 14

3.4.5 Flooding for ARP . 15

3.4.6 Proactive Flow Rules . 15

3.4.7 Mobility . 16

3.4.8 Garbage Collection . 16

3.4.9 Rate Limiter . 16

3.4.10 IP Conflict Detection . 16

3.5 Evaluation . 17

3.5.1 Proof of Concept in Virtualized Environment 17

3.5.2 Estimated Scalability of ETF and Broadcast Domain 17

vi

3.5.3 ETF Performance under Actual Deployment 18

3.6 Discussion . 20

3.6.1 Improving the Performance . 20

3.6.2 Scaling IPv6 Mechanisms . 20

3.6.3 Avoiding ARP Poisoning . 21

4 Network Flow Monitoring 22

4.1 Network Flow Metrics . 23

4.2 Related Work . 24

4.3 System Design . 24

4.4 System Implementation . 25

4.4.1 Data Store . 25

4.4.2 SDN Controller . 26

4.4.3 Data Collector . 26

4.4.4 Device Logger . 27

4.4.5 Fraction of Useful Flows . 28

4.4.6 Out-degree, In-degree, Port-degree and Flow-count 30

4.4.7 Web Interface . 31

4.5 Evaluation . 31

4.6 Discussion . 33

5 SDN in IITH Campus 36

6 Conclusions and Future Work 38

6.1 Conclusions . 38

6.2 Future Work . 38

References 40

vii

Chapter 1

Introduction

Network engineering consists of planning, designing and implementing computer networks. It also

includes addressing and routing, performance tuning, resource management, traffic engineering and

network monitoring. Today’s networks are growing in terms of bandwidth, number of devices sup-

ported, various network access technologies and services used. Enterprise networks also have similar

characteristics and they have thousands of users across a company’s diverse geographical locations.

They are complex as different sites are connected to each other and tight control policies are ap-

plied. They are diverse in network access technologies, such as LAN, Wi-Fi and VPN etc. Enterprise

networks run various services such as video streaming, voice communication and sensor data etc.

Current network architecture is not sufficient for scaling, managing and monitoring them. So it is

natural to look for a new technology for managing, operating and engineering them. Software defined

networking (SDN) is a networking architecture which has been gaining momentum in past few years.

SDN provides a way for more flexible, programmable, vendor-neutral, cost-effective and innovative

network architecture. It promises to simplify network management, monitoring and control.

1.1 Scaling a Broadcast Domain of Ethernet

Ethernet, a layer 2 networking technology, has been broadly used for interconnecting networks and

end-systems. Emergence of Wi-Fi enabled devices, like laptops, tablets and smart phones has been

pushing the growth of a layer 2 segment using Ethernet. In an IPv6 network, the size of each segment

will be naturally much larger because of a /64 prefix length.

Current IP network architecture is based on protocols that actively use broadcast packets. Ac-

cording to Cisco, the maximum number of hosts in a broadcast domain should be between 200 and

500 [1]. This number depends on the broadcast based services which hosts run. For scalability of

Ethernet, the impact of broadcast packets sent by a large number of end-systems is one of the major

issues. In layer 2 segment of Ethernet, a broadcast domain is formed where a broadcast packet

can reach. In a broadcast domain, broadcast packets will be flooded through all the connected

ports of layer 2 switches and wireless interfaces of Wi-Fi access points connected to the domain.

In CSMA/CA, the mechanism of RTS/CTS is not applied for transmitting a broadcast packet.

Therefore, in the case when a large number of end-systems are connected to a single broadcast

domain, there is a high possibility of collisions, resulting in performance reduction and unnecessary

1

consumption of bandwidth in the wireless network. This thesis considers a broadcast domain where

a large number of hosts are connected directly using wires or through Wi-Fi access points as shown

in Fig.1.1.

!"#$! !"#$! !"#$!

"""!
$%&'%(

)*!

$%&'%(

)*!

$%&'%(

)*!
"""!

"""!

"""! """!

$%&'%(

)*!

$%&'%(

)*!
"""!

"""! """!

Figure 1.1: A large-scale broadcast domain where wired and wireless end-systems connect. A broad-
cast packet will reach all end-systems.

This thesis proposes Extensible Transparent Filer (ETF) for Ethernet using SDN to address the

scalability issue of a single broadcast domain of Ethernet. ETF learns the existence of hosts in the

network. Based on the information gathered and the contents of the broadcast packet, it determines

the output port through which the target host of the broadcast packet can be reached. So instead

of flooding the broadcast packet to all the active ports except incoming port, ETF forwards such a

packet only through the selected port.

1.2 Network Flow Monitoring

Network monitoring is fundamental to examine the state of enterprise networks. Network monitoring

is used for daily network management operations like traffic engineering, troubleshooting, anomaly

detection, QoS support and accounting etc. Today’s networks are large and complex. Distributed

environment and resource constraints make network management rather difficult. In addition, imple-

menting monitoring and diagnostic techniques causes significant overhead. Network flow monitoring

provides a fine grained view of network traffic. There are many applications like anomaly detection,

accounting and end user profiling etc., which require flow-level granularity of network traffic.

Ping, traceroute and Simple Network Management Protocol (SNMP) [2] are used for collecting

the information to monitor the state of the network. Ping and traceroute are used to get the state

of links, delay in the network or finding loops in routing etc. SNMP requires running an SNMP

agent on each and every networking device and an SNMP-manager at the monitoring server. SNMP

is based on pull based (request and response) architecture. It was developed to simplify network

management. But it does not give flow-level granularity of network traffic.

In current network architecture, passive approaches (such as port mirroring and packet-sampling)

are used to achieve this. Port mirroring requires devices to support SPAN ports. One copy of network

traffic is sent to these ports which are connected to the monitoring server. Monitoring server receives

atleast one copy of network traffic. It runs a tool similar to ntop [3] for analyzing the traffic. But

2

due to high bandwidth usage in the core network and limited number of SPAN ports supported per

device, it is difficult to use in today’s networks. NetFlow [4] and sFlow [5] are commonly used packet-

sampling tools for network flow monitoring. NetFlow or sFlow capable devices capture each packet

with some probability and selected packets are aggregated into flows. Flow reports are then sent to

the monitoring server for analysis. These sampling based approaches are sufficient for applications

which require coarse view of network traffic. But for fine granularity of network traffic, they are not

good as they can miss several small flows. NetFlow was also designed to process each and every

packet, but it causes high CPU overhead on networking devices, especially in the core network.

OpenFlow allows to control the traffic on per-flow basis. It maintains statistics corresponding to

each flow. This thesis proposes a Network Monitor (NetMon), which calculates a few flow metrics

to determine the state of the network, considering OpenFlow’s flow-based architecture. NetMon

determines the fraction of useful flows for each host in the network. It calculates the out-degree and

in-degree for each host based on the IP address. NetMon classifies the host as a client, server, or

peer-to-peer node, based on the number of source ports and active flows.

In traditional network monitoring, the focus was on the core network. But in an SDN network,

each and every switch (including access layer switches) can be controlled through a single controller.

NetMon implements a Device Logger to record the device (MAC address and IP address) and its

location (Switch DPID and Port No). Device Logger helps to identify owners (devices) of an IP

address within a particular time period.

NetMon is a distributed network monitoring system. Each switch supports OpenFlow protocol

and sends OpenFlow messages to the controller. It uses a push-based approach to achieve its goals.

NetMon provides a Web-GUI to visualize the state of the network.

1.3 Overview of the Work

This work includes the study of SDN and OpenFlow for engineering the enterprise network. ETF

and NetMon are proposed for addressing the scalability and monitoring of the enterprise network.

OpenFlow is used for implementing ETF and NetMon. ETF is proposed to scale a broadcast domain

of Ethernet. ETF suppresses broadcast traffic in a broadcast domain by selecting an appropriate

outgoing port of the switch through which the target host of a broadcast packet is reachable. NetMon

is implemented for monitoring the enterprise network. As OpenFlow provides flow-based switching

on Ethernet, NetMon focuses on calculating a few flow-based metrics to determine the state of the

network. NetMon includes a Device Logger to track the location of hosts in the network. NetMon

also provides a Web-GUI to query and visualize the state of the network. This work also discusses

the deployment of SDN network in IIT Hyderabad campus. Both systems, ETF and NetMon are

deployed and evaluated in the SDN network of IIT Hyderabad. The number of users connected to

our SDN network is within a range of 20 to 50.

1.4 Thesis Outline

The thesis is structured as follows. Chapter 2 briefly explains about the SDN and OpenFlow.

Extensible Transparent Filter (ETF) is proposed for scaling a broadcast domain in Chapter 3.

Chapter 4 focuses on the implementation of Network Monitor (NetMon) for flow-based monitoring in

3

the enterprise network. Deployment of SDN in IITH campus is discussed in Chapter 5. Conclusions

and future work are presented in Chapter 6.

4

Chapter 2

SDN and OpenFlow

Computer networks are large, complex and difficult to manage. Traditional networks are ossified

considering their non-programmable, vertically integrated, closed and vendor specific architecture.

It is difficult to control and manage the network as there is no centralized way to do so. Networking

devices run complex and distributed control software that is typically closed and proprietary, and

each device needs to be configured individually.

Software Defined Networking (SDN) paradigm promises to simplify the control and management

of the network. SDN aims to make networks more simple, dynamic, open and programmable.

OpenFlow [6] was the first open standard interface for implementing the SDN.

2.1 Software Defined Networking

A traditional networking device consists of data plane and control plane as shown in Figure 2.1.

Data plane is used to forward a packet and control plane is used to determine where to forward the

packet. For instance, in a learning switch, data plane is responsible for packet forwarding and control

plane keeps a MAC table to determine the output port for the incoming packet. SDN architecture

separates out the control plane and data plane of a networking device. In SDN architecture, control

plane is programmable and logically centralized (known as the controller) which allows network

administrators to control all the data-plane elements by writing a single control program. Network

intelligence is centralized in the SDN controller which maintains a global view of the network.

Switches communicate with a centralized controller through an open standard (such as OpenFlow).

SDN facilitates the deployment of new services and protocols in the network, due to its vendor

independence architecture and network virtualization. It also reduces the capital and operational

costs for deploying and managing the network. Common SDN applications are network virtualization

[7], network monitoring [8,9], load balancing [10], user authentication [11] and cloud or data center

network [12] etc.

Figure 2.2 shows a logical view of SDN architecture. With a global view of the network at the

controller, applications and policy-engines which are built on top of the controller, view networking

devices as a single logical switch. Controller communicates with all the devices through an open-

standard. Networking devices are simple and implement only basic packet forwarding mechanism.

SDN is not a new idea but has gained traction in recent times [14, 15]. Many vendors (such

5

Control plane (Forwarding Table)

Data plane (Packet Forwarding) Data Plane

Control Plane

OpenFlow Controller

OpenFlow

Protocol

OpenFlow SwitchTraditional Switch

TLS/SSL
TCP

Figure 2.1: Traditional Switch vs OpenFlow Switch

as Cisco) have their proprietary implementations of the concept of SDN. OpenFlow is a widely

accepted implementation of SDN across the industry and academic research communities. The

OpenFlow protocol is open source and aims at making network programmable, innovative and

vendor agnostic. One of the advantages of OpenFlow and its vendor independence is the rise of

the concept of virtual switches. These are software level switches which are implemented usually as

user-space or kernel-space software. One such example is Open vSwitch [16, 17] which implements

the OpenFlow protocol. This enables any regular computer to be used as networking hardware and

reduces the need to purchase expensive hardware from proprietary vendors.

2.2 OpenFlow Protocol

OpenFlow [6] is a protocol designed by the Open Networking Foundation(ONF) which promotes and

adopts SDN through open standards development. OpenFlow was the first SDN standard to realize

the concept of Software Defined Networking. The OpenFlow protocol is spoken between OpenFlow

enabled switch (SDN switch) and OpenFlow Controller as shown in Figure 2.1. OpenFlow allows to

control the network on per-flow basis in a fine-grained manner.

Table 2.1: A flow entry
Match Fields Counters Actions

Table 2.2: Match fields used to match packets against flow entries

Ingress Ether Ether Ether VLAN VLAN IP IP IP TCP/UDP TCP/UDP
Port src dst Type Id Priority src dst ToS bits src port dst port

In OpenFlow protocol [6, 18], switches only consist of a forwarding plane that is equipped with

6

Network Device Network Device

Network Device

Network Device

Business Applications

INFRASTRUCTURE LAYER

CONTROL

LAYER
SDN

Control

Software Network Services

API API API

Control−Data Plane Interface

(e.g., OpenFlow)

APPLICATION LAYER

Figure 2.2: Software-Defined Network Architecture (Source: [13])

flow tables. A switch can have multiple flow tables. Each flow table contains several flow rules. Flow

rules are similar to forwarding or routing rules in traditional switches and routers. Each packet is

matched with flows rules in the flow tables. A flow rule includes a match, actions and counters as

shown in Table 2.1. The OpenFlow protocol defines the fields which are included in the flow rules

for matching. It currently supports matching up to the transport layer as shown in Table 2.2.

When the OpenFlow switch receives a packet and it has no matching flow rule for the packet,

it forwards the packet to the controller through the packet in message. The logic implemented in

the controller then determines the actions for such packets. Depending on the logic, an OpenFlow

switch can work as a router, switch, firewall, or network address translator etc. Controller either

installs a flow rule on the switch by sending a flow mod message or sends a packet out message. If

a flow rule is installed on a switch, then the packet in message will not be sent for packets which

match to that flow rule unless it is mentioned in the action explicitly. Once a flow rule is matched

to a packet then counters corresponding to that flow are updated and corresponding actions are

executed on that packet of the flow. The flow rules also have two timeout values: Idle timeout and

Hard timeout, which control when the flow should be removed from the flow table of the switch

automatically. Flows can also be removed by the controller explicitly. The OpenFlow protocol works

on top of TCP and has support for TLS/SSL encryption.

Currently a few hardware vendors like Big Switch Networks, HP, and Pronto support OpenFlow

in their hardware switches. Some of the available OpenFlow controllers are Floodlight [19], Ryu [20],

Trema [21], NOX/POX [22] etc.

7

Chapter 3

Scaling a Broadcast Domain of

Ethernet

Ethernet is a widely used technology for interconnecting networks and end-systems. Due to its

simplicity in routing, ease of configuration and plug-and-play architecture, Ethernet is used as an

elementary building block for a large network. An enterprise network using Ethernet will be simple

and cost-effective. But a single Ethernet network can not scale to form a large enterprise network.

The main reason for this is the broadcast traffic which consumes significant portion of network

bandwidth.

This thesis proposes Extensible Transparent Filter (ETF) for Ethernet using SDN, that sup-

presses the broadcast traffic in a broadcast domain by selecting an appropriate outgoing port of

the switch through which the target host of a broadcast packet is reachable. ETF maintains both

consistent functionality and backward compatibility with existing networking protocols such as Ad-

dress Resolution Protocol (ARP) [23], Dynamic Host Configuration Protocol (DHCP) [24] and other

possible protocols that run on top of Ethernet and work with the broadcast of a packet.

ETF is a collection of SDN switches and a controller with a set of mechanisms to handle broadcast

packets. Each of the SDN switch captures a broadcast packet and forwards it only to an appropriate

outgoing port through which the target end-system is reachable. SDN controller learns about exis-

tence of hosts and determines the output port to reach the target host which needs to receive the

broadcast packet without making other hosts receive it unnecessarily. ETF significantly suppresses

the broadcast traffic in a broadcast domain and improves the scalability of Ethernet aiming the

following achievements.

1) Scale the size of broadcast domain up to the maximum available capacity of MAC tables that

routers, layer 2 switches and layer 3 switches can maintain for a particular domain. For example,

achieving 4000 hosts (/20 subnet) and 8000 hosts (/19 subnet) in a single broadcast domain will

be a very practical milestone for an enterprise network like a university campus.

2) Facilitate Wi-Fi hosts as a partial or even majority of the large-scale broadcast domain. ETF

can localize the impact of broadcast packets within a collision domain formed by each Wi-Fi AP,

even though many other APs are serving in the same broadcast domain.

8

3.1 Handling a Large-scale Network

Operational Disadvantage of Network Segmentation

If we aggressively fragment a large-scale network into small layer 2 segments, the impact of broadcast

packets in each broadcast domain will be less than maintaining it as large to serve the same number

of users. In the case that a layer 2 segment provides Wi-Fi connectivity, its size tends to be even

smaller to isolate the collision domain from the many other hosts in the same broadcast domain.

However, the routers or layer 3 switches need to handle more layer 3 subnets, the number of required

VLANs will be more, and the utilization of address space will be less.

Flooding in a Broadcast Domain

Some important protocols in the Internet architecture use broadcast, that introduces flooding in

a broadcast domain. DHCP is important to coordinate the network configuration dynamically.

According to the observation in the campus network in Indian Institute of Technology Hyderabad

(IITH), the major types of broadcast messages are ARP and NetBIOS Name Service (NBNS) [25] as

shown in Figure 3.1. ARP and NBNS contribute by 31% and 57% respectively to the total broadcast

traffic.

DHCP, 13083

NBNS, 1342079

ARP, 741744

Others, 9844
STUN, 85154

DB-LSP-DISC, 74227

UDP, 63006
BROWSER, 37381

Broadcast traffic distribution

Figure 3.1: Distribution of broadcast traffic observed through 24-hours packet capture in IITH.
The number of DHCP packet is significantly small because most of the end-systems have static IP
configuration.

For example, Figure 3.2 shows that ARP generates significant number of broadcast packets in

a single broadcast domain. If we deploy multiple Wi-Fi access points for serving a large number of

clients in a single layer 2 segment, ARP broadcast packets would cause frequent interrupts which

decrease the communication performance. NBNS is also expected to have a similar impact as ARP.

9

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000 1200 1400

N
um

be
r

of
 A

R
P

 R
eq

ue
st

 P
ac

ke
t p

er
 M

in
ut

e

Time in Minute

ARP Traffic Distribution

Figure 3.2: 24-hours (from 12:00 pm) observation result of ARP Requests, which are broadcasted in
a subnet in IITH. The number of ARP Requests was 515 packets per minute on average and 2074
packets per minute were sent at its peak from 595 unique IP addresses in total. The top 3 popular
targets in this subnet were WEB Proxy, default gateway of the subnet and DNS server.

SDN for a Large-scale Network

Due to vendor independence architecture of SDN, it facilitates the deployment of a large-scale

network in an incremental manner. The behaviour of networking devices can be described in a

uniform manner, irrespective of their vendors.

On scaling a broadcast domain, the benefit of SDN is its deeper inspection of packets than the

traditional intelligent switches and flexibility of on-switch packet processing that can be enabled on

production level switches. Snooping technologies are suboptimal in terms of scalability. For example,

as we discuss in Section 3.6.2, filtering the control messages for IPv6 Address Auto Configuration

with Multicast Listener Discovery (MLD) Snooping still has a potential for repeated near-floodings

in the same domain [26]. SDN enables the fine-tuning of Ethernet with the minimised impact of

flooding that the existing snooping technologies do not achieve.

3.2 Related Work

Scalability of Ethernet is a known issue and various approaches have been suggested in recent years

to improve it.

Myers et al. [27] propose to eliminate the flooding in Ethernet by replacing broadcast-based

protocols such as ARP and DHCP, with directory service integrated in switches called “local bridge”.

Because their system requires end hosts to support the directory service, backward compatibility

to the existing bootstrapping protocol is not maintained. Therefore, the seamless deployment is an

issue.

EtherProxy [28] studies the impact of broadcast traffic and proposes the installation of dedi-

cated devices to suppress the broadcast traffic. It caches protocol information carried by protocol

10

messages passing through it. For an ARP request, it responds with an ARP reply message. For

a DHCP broadcast messages, it changes the destination MAC to a unicast address. If Etherproxy

has any information in its cache then it passes the broadcast packet as is. Etherproxy considers the

backward compatibility and it does not require any change to both clients and LAN equipments

forming a broadcast domain. But Etherproxy breaks the end-to-end communication architecture

and it requires modification of broadcast packets. Etherproxy is an additional device for connect-

ing Ethernet bridges, and thus we need to install more devices as the number of Ethernet bridges

increases.

SEATTLE [29] proposes floodless Ethernet architecture. In SEATTLE, ARP and DHCP are

converted into unicast-based directory services. ARP is modified to return MAC address of a host

and its “location”, which indicates the switch to which host is connected. DHCP relay is implemented

on SEATTLE switch to avoid flooding of DHCP broadcast messages. Link-state algorithm was

introduced to accelerate a packet delivery across SEATTLE switches. The major drawback of

SEATTLE is its lack of interoperability with traditional Ethernet switches that do not understand

the SEATTLE architecture.

MOOSE [30] introduces a hierarchical MAC address that contains 24 bits of switch identifier

and 24 bits of host identifier. Location of a particular host is identified as the switch identifier

in the hierarchical MAC address, and MOOSE runs inter-switch routing protocols in layer 2 so

that a frame goes through the shortest path rather than the path determined by a spanning tree

algorithm. The directory service of MOOSE called Enhances Lookup (ELK) suppresses DHCP and

ARP broadcast messages similar to SEATTLE architecture. While MOOSE tries to provide high-

performance switching architecture with very rich control mechanism in its back-end system, both

the complexity of system and the operational cost of such dynamic features will be considerably

high.

Zhao et al [31] introduce FSDM which can be adapted to complement MOOSE. FSDM caches

the information of hosts in the SDN controller by maintaining two hash tables IP-MAC (IP address,

Entry (MAC Address, hard-timeout, Flag)) and MAC- Map (MAC address, Location). The func-

tionality of DHCP is integrated with SDN controller. In FSDM, the controller responds to ARP and

DHCP messages. The FSDM expects that controller holds a global view of network and it discards

ARP Request to a host that does not appear in its IP-MAC table. In this scenario, handling of

static hosts still needs to be considered.

3.3 System Design

ETF is a collection of SDN switches and a controller that suppresses broadcast packets being flooded

in a broadcast domain. Each switch has flow rules to match broadcast packets and to forward them

to an appropriate outgoing port without flooding. Such flow rules are defined by the ETF running

on the controller, either based on the expected destination written in packets or learned by looking

into the specific fields of packets.

ETF maintains the end-to-end feature of communication by delivering broadcast packets from one

end to another without any modification in it. ETF is transparent in layer 2 and maintains backward

compatibility so that end-systems in the broadcast domain can operate the existing networking

protocols such as ARP and DHCP.

11

!"#$%&' %(#)$%&' (*+,$%&' "-)$%&' *,(.-$%&'

/012''

3*%45.'

672''

3*%45.'

89,(.-'

2-*,*#*5+:'

;/<'1*=,-*55.-'

>5*?'745.@'2"#A.,'94,'

B=#*!C=D'2"#A.,'

/E'6##.++'

)"#A.,$C='

("=%5.-'

Figure 3.3: ETF System Design

Fig.3.3 shows the system design of ETF. The input to ETF is an incoming packet which is

captured and forwarded by an SDN switch. The packet is passed to a corresponding protocol

module to determine the action that the SDN switch should take. Each protocol module outputs

the flow rule and injects it into the SDN switch through the secure channel. If ETF does not

have any information about the target host, ETF will instruct the switch to flood the packet using

packet out message. All supported protocols access the same information base in order to reduce

the frequency of broadcast, and to avoid the overhead of maintaining independent information bases

for each protocol. For example, in the case of ARP and DHCP, most of the hosts, that connect to a

broadcast domain for the first time, first perform DHCP and then ARP. By utilizing the MAC/IP

address mapping learned through processing DHCP messages, the probability of broadcasting an

ARP Request will be much less.

3.4 System Implementation

ETF is implemented as an OpenFlow controller module/application using OpenFlow 1.0 [18] proto-

col. According to the OpenFlow protocol, an OpenFlow switch forwards a packet to the controller

if it has no matching flow rule for that packet, or if it has a flow rule explicitly stating to forward it

to the controller. Such a packet is processed in the ETF module/application by using the packet in

handler. ETF then installs flow rules for broadcast packets, so that they are delivered in a unicast

manner to the destination host whenever possible.

12

3.4.1 Data Structures

ETF maintains following data structures to efficiently store and retrieve the information about hosts

and the network topology. It examines the packet header, and determines match and action primitive

for any flow rule and installs it on the appropriate SDN switch(es).

• dhcp db is a list of DHCP servers and information related to them such as IP address, Switch

DPID and Port number.

• host db is a hash table where MAC Address is used as a hash key to look up IP Address,

Port No, Switch DPID and Last Access of a host.

• mac db is a hash table maintained for every switch in the network, similar to how traditional

switches maintain. The table takes MAC Address as the key to lookup the output port.

• path db is a hash table where a pair (source Switch DPID and destination Switch DPID) is

used as a hash key to get Port No on the source switch to reach the destination switch.

• arp db is a hash table where IP Address is used as a hash key to lookup MAC address.

It is important to note that either path db or mac db is used to determine the output port to

forward a packet. path db requires the topology information of the network but it can reduce the

flooding that takes place to build the mac db. In current implementation of ETF, mac db is used

for forwarding packets.

3.4.2 Discovering DHCP Servers

Assume that the broadcast domain is in startup phase where

1) HC1, connected to switch SX via port a, broadcasts DHCP Discover to configure its network

interface as shown in Figure 3.4, and

2) ETF does not have information about DHCPS .

Once SX receives DHCP Discover message from HC1, it forwards the packet to ETF running

on the SDN controller. ETF creates an entry for HC1 in the MAC table of SX . ETF then looks

up dhcp db to find the available DHCP servers. SY and SZ also go through the same process. If

there are no active servers known by ETF, then ETF will let SX , SY and SZ flood the packet from

all active ports except the port on which DHCP Discover was received. This flooding procedure

happens only if no DHCP server is known to ETF.

When DHCPS receives DHCP Discover from HC1, the DHCPS sends DHCP Offer. SY captures

the packet and forwards it to ETF. ETF updates dhcp db, host db and arp db to store the information

that DHCPS is connected to SY through port a. If there are multiple DHCP servers in the same

network, ETF puts an entry for each DHCP server in the databases.

The DHCP server in the network has been discovered. As the ETF has already learned the MAC

address of HC1 for switch SX , SY and SZ in their respective mac db, it will give SY a flow rule to

forward the DHCP Offer to port b. Similarly, it gives a flow rule to SX to forward the packet to

port a.

ETF also inserts a proactive flow rule on each switch to forward the DHCP broadcast packet to

an appropriate port through which DHCPS can be reached as discussed in Section 3.4.6.

13

SYSX
SZ

DHCPSHC1 HC2

ETF

c b

aa

b b

a

Figure 3.4: Example network diagram for processing DHCP packets between a DHCP client HC1

and a DHCP Server DHCPS . SX , SY and Sz are the SDN switches interconnected with each other.
ETF maintains the information of DHCP servers dynamically.

3.4.3 Operating DHCP in Suppress Mode

Once HC1 receives DHCP Offer, it broadcasts DHCP Request to inform all DHCP servers that

the client takes IP address offered by a specific DHCP server. Switches SX and SY will forward

the packet to the port through which DHCP server is reachable, since the controller has already

discovered the DHCP server in the network.

After DHCPS receives DHCP Request, it sends DHCP Ack to confirm the assignment of IP

address to HC1. SY and SX forward the DHCP Ack using the same flow rules that were added

during DHCP Offer, ETF will insert/update host db and arp db with the new IP address for HC1.

These entries are deleted if the host sends a DHCP DECLINE message.

Now a new host HC2 connected to SZ asks for network configuration using DHCP. Although

HC2 broadcasts DHCP Discover, it is sent via the port b on SZ without flooding to any other ports.

ETF learns about HC2 using the same process as HC1. If a DHCP server and a client is connected to

the same switch, the broadcast packet will be locally forwarded without being sent to the adjacent

switches.

3.4.4 Operating ARP Request in Suppress Mode

Assume that HC1 conducts ARP to start communication with HC2 after the DHCP operation in

both end-systems. HC1 broadcasts an ARP Request to look up the MAC address of HC2. SX

receives the ARP Request and forwards it to ETF. ETF looks up HC1 and HC2, that are the source

and the target of ARP Request respectively, in arp db. If there is already an entry of HC1 and HC2,

it updates Last Access in the database. ETF gets the MAC Address of target host and looks up

mac db of SX to obtain the port to reach HC2. ETF gives SX a flow rule to forward such a packet

14

Table 3.1: Proactive Flow Rules given to forward DHCP broadcast packets to DHCPS

Switch DPID in port dl type dl src dl dst nw proto tp src tp dst action

SX any IP any ff:ff UDP 68 67 output:b,ETF:1500
SY any IP any ff:ff UDP 68 67 output:a,ETF:1500
SZ any IP any ff:ff UDP 68 67 output:b,ETF:1500

Table 3.2: Proactive Flow Rules given to forward ARP Reply back to HC1

Switch DPID in port dl type dl src dl dst nw proto action

SX any ARP any HC1 Reply output:a,ETF:1500
SY any ARP any HC1 Reply output:b,ETF:1500
SZ any ARP any HC1 Reply output:b,ETF:1500

via port b and to ETF itself. SY and SZ also go through the same process as SX and ARP Request

reaches HC2.

ARP Reply is a unicast packet from HC2 to HC1. Once SZ receives ARP Reply from HC2, the

switch forwards the packet to ETF. ETF looks up HC2 in host db and arp db and update the Last

Access. ETF will also give SZ a flow rule to forward the packet via port b. SY and SX will also go

through the same process as SZ .

3.4.5 Flooding for ARP

While ARP works in Suppress Mode for the end-systems which get IP configuration using DHCP,

ETF does not have information about end-systems that use a static IP address. Therefore, when

such an end-system is the target of ARP Request, the packet will be flooded to all ports of the

switches except the port on which ARP Request was received. Having such a host issuing ARP

Request does not result in a big overhead, because the switch connected to it forwards the ARP

Request to ETF. ETF learns the source host and creates its entry in arp db and host db.

3.4.6 Proactive Flow Rules

Proactive flow rules allow each switch to know how to process a particular packet before the packet

actually reaches it. Proactive flow rules avoid instances where each of the intermediate switches

on the end-to-end path accesses the controller in order to process the same packet repeatedly, for

obtaining the flow rule for the corresponding packet. ETF uses proactive flow rules to avoid the

delay that an end-system will experience while ETF processes a packet.

Once ETF knows the outgoing port to reach DHCP server, ETF inserts a proactive flow rule

to each of the switches as shown in Table 3.1. Each switch forwards DHCP broadcast messages to

ETF and the outgoing port through which DHCPS is reachable. This approach can also be used

for sending a DHCP message back from the DHCP server to a client. Because ETF learns that, for

example, the client HC1 is connected to SX via port a, using DHCP Discover message, ETF can

give all switches a flow rule to reach back to HC1 immediately after SX forwards a DHCP broadcast

message from HC1 to ETF.

15

Once ETF captures an ARP Request, it can insert a proactive flow rule for the ARP Reply on

each switch setting the outgoing port to reach back to the source of the request as shown in Table

3.2. As ETF receives each and every ARP message, it learns the source host of the ARP Reply and

updates the databases accordingly.

3.4.7 Mobility

If a host moves within the same broadcast domain like, eg. a laptop computer moves from one Wi-Fi

AP to another, the outgoing port to the host must be updated. The existing flow rules will not

match to a packet sent by such a host. It will be forwarded to ETF which learns that the host has

moved and updates the database to reflect the changes.

3.4.8 Garbage Collection

ETF specifies the Idle timeout as 300 seconds for all flows other than ARP and DHCP. The

Idle timeout for ARP and DHCP flows depends on the DHCP lease time specified in the DHCP

servers. If the Idle timeout of the flow is smaller than the lease time, then the flow will be removed

before the host renews its lease. This will lead to unnecessary processing at the controller.

ETF has a configurable parameter which determines the Max Age of an entry of a host in

host db. If an entry in host db is not referred within theMax Age, i.e Current T ime−Last Access >

Max Age, then the entry is given a second chance before the entry is deleted. When a second chance

is given, ETF sends a unicast ARP probe, to the last known location of the host in the network. If

ETF doesn’t receive a ARP Reply before it performs the next garbage collection iteration, the entry

will be deleted, and the corresponding entry for the host in arp db is also deleted.

3.4.9 Rate Limiter

In case, when ETF doesn’t have an entry for the target host of ARP Request in its arp db, it applies

a rate limiting policy on such ARP Requests. The policy is to allow only one such request within a

Rate Limit Interval which is configurable. This is done to reduce the flooding of such packets in

the network.

3.4.10 IP Conflict Detection

IP conflict module is implemented to improve the performance of ETF. First-come first-serve policy

is applied for the use of an IP address. Users are never allowed to configure IP addresses which are

reserved for a few important servers like DHCP server, DNS server and default gateway. IP conflict

detection module maintains an ARP table for hosts in the network. Whenever an IP conflict is

detected, it sends three ARP probe messages to the host, which has held the IP address currently, in

a unicast manner. It puts this ARP probe along with time-stamp in an ARP probe message queue.

If the host replies to ARP probe then newer hosts will not be allowed to use the same IP address.

Controller installs flow rules to deny access to the conflicting hosts in the network.

16

3.5 Evaluation

3.5.1 Proof of Concept in Virtualized Environment

As a proof of concept, ETF was implemented in the lab setup using Trema 0.4.6 as SDN controller

and Open vSwitch 1.4.3 as SDN Switch on two workstations. Basically this implementation enables

all of the features that we have discussed in the previous section.

!"#$!
%&'(!

%&'()$(! %&'()$$!

*+,$!

+-$! +-.! +-/!

!"#.!
%&'(!

%&'()$(! %&'()$$!

*+,.!

+-0! +-1! +-2!
+-23

456"!73

89:;<3=>93+?@A3$(3B;C3$$!

">;&)3

D3E8F!

5B&B3!GB;%H3+?@A3$(H3$I.)$2J)$()(D.0!

">;&9>G3!GB;%H3+?@A3$$!

$!

Figure 3.5: Test setup for proof of concept

As shown in Figure 3.5, two separate VLANs were used for the data plane and the control plane

respectively. All VMs connected to VLAN 10, and VM6 served as a DHCP server. After all other

VMs got the network configuration using DHCP, each of them conducts ping to every other VM.

In this process, flooding was observed to occur only once for the first DHCP Discover packet to

find the DHCP server. The rest of the experiment operated in Suppress Mode successfully, even

though all VMs transmitted broadcast packets for performing DHCP and ARP. These protocols

were successfully completed without any flooding.

3.5.2 Estimated Scalability of ETF and Broadcast Domain

In Suppress Mode of ARP and DHCP, broadcast packets will be delivered only through the port on

the end-to-end path to its destination. Therefore, the number of outgoing port for such packets on

each switch is one less than or equal to the number of DHCP servers respectively.

Assume that ETF operates in the broadcast domain which has N hosts and M switches, and

path db is used for forwarding the packet. arp db and host db will take O(N) space, while path db

will take O(M2) space. ETF will suppress the number of broadcast messages from O(N) without

ETF to O(1) for DHCP, and from O(N2) without ETF to O(1) for ARP given that N hosts operates

DHCP and communicate with each other on the same link.

17

3.5.3 ETF Performance under Actual Deployment

To evaluate the suppression performance of ETF, we observed the number of broadcast packets in

the ETF-enabled broadcast domain.

Suppressing DHCP Packets

The following Figure 3.6 shows the 16 hours packet capture result of laptop computers connected to

Wi-Fi AP1 and AP2, wired desktop computers and the DHCP server. In the observation period, we

had as total of 97 unique hosts in the same broadcast domain where 60 were connecting to Wi-Fi

AP1, 20 to Wi-Fi AP2, and the others directly to the SDN switches.

400 600 800 1000 1200 1400
Time in Minutes

0

5

10

15

20

25

Nu
m
be

r o
f D

HC
P
Br

oa
dc

as
ts
 p
er
 1
0
M
in
ut
es

Total DHCP Broadcast
Wired Host
Wifi AP-1
Wifi AP-2

Figure 3.6: Number of DHCP broadcast packets per 10 minutes for wired, wireless clients and DHCP
server.

The total number of DHCP broadcast packets which were observed at the DHCP server was 740

including 351 DISCOVERs, 141 OFFERs, 179 INFORMs, and 69 REQUESTs. The following Table

3.3 summarizes and gives the overall performance for suppressing DHCP.

Table 3.3: Overall Performance for Suppressing DHCP

Capture Point
Total Avg. Max. Suppress

Number PPM PPM Rate
DHCP Server 740 0.76 8 N/A
Wired Host 143 0.147 2 80.6%
Wi-Fi Host-1 577 0.59 10 22.0%
Wi-Fi Host-2 457 0.47 13 38.0%

18

While the wired host exhibited good efficiency to suppress the broadcast packets, we observed

reasonably less suppress rate at each of the Wi-Fi hosts. In our deployment, the majority of end hosts

were Wi-Fi users and the total number of users were not very large. Therefore in these particular

conditions, the suppress rates at Wi-Fi hosts were not very high and subject to the size of collision

domain. If we have more end hosts connecting to more Wi-Fi APs. the suppress rate will naturally

be improved. This is because a broadcast packet that is filtered by ETF and destined only for a

host under Wi-Fi AP1 will not reach AP2.

The packet capture at Wi-Fi hosts exhibited more number of broadcast packets than that we

intended and some times the number was even more than that were observed at the DHCP server.

One observation is that this happened most probably because several hosts faced packet loss at

the SDN switch and such hosts repeatedly broadcast the packets. In current hardware switch, the

location of flow rules depends on the match fields, so all the flows were stored in software only. We

had a limit of 1000 pps (packet per second) for processing in software chain of switch. If switch

receives more packets than it can process, it will drop the packets. By enabling the SDN switches

to store flow rules in the hardware, then the switch will exhibit much better performance and such

packet loss will not be caused.

Suppressing ARP Packets

The following Figure 3.7 and Table 3.4 show the 16 hours of packet capture result in the same

time period with DHCP observation. The count for total number of ARP broadcast packets was

maintained at the SDN controller.

400 600 800 1000 1200 1400
Time in Minutes

0

50

100

150

200

250

300

Nu
m

be
r o

f A
RP

 R
eq

ue
st

s
pe

r 1
0

M
in

ut
es

Total Number ARP Requests
Wired Host
Wifi AP-1
Wifi AP-2

Figure 3.7: Number of ARP broadcast packets per 10 minutes for wired, wireless clients and SDN
controller.

19

Table 3.4: Overall Performance for Suppressing ARP

Capture Point
Total Avg. Max. Suppress

Number PPM PPM Rate
SDN Controller 7502 7.72 147 N/A
Wired Host 873 0.90 21 88.3 %
Wi-Fi Host-1 3605 3.71 55 51.9 %
Wi-Fi Host-2 1467 1.51 19 80.4 %

ARP suppression performed well for the wired host while Wi-Fi hosts observed more broadcast

packet again due to the size of collision domain. We observed that 2.1% of ARP Requests were

Gratuitous ARP, which is not filtered under the current deployment. By checking the complete

matching of IP/MAC including non-DHCP hosts, Gratuitous ARP can also be filtered more ef-

fectively. Another observation is that several hosts queried a host that didn’t exist in the same

domain. The fraction of such packets was 8.5%. In this case, such ARP requests will be flooded in

the network, because of the possible non-DHCP host that has not sent any packet. The rate limit of

1 packet per two seconds is applied to ARP Requests to a non-existent host to avoid possible DoS

attacks.

3.6 Discussion

3.6.1 Improving the Performance

As far as we observed, Windows and Mac OSX hosts tend to conduct Gratuitous ARP using broad-

cast more frequently than Linux hosts. Integrating “IP Conflict Detection” with ETF is one approach

to filter Gratuitous ARP because ETF can maintain MAC/IP matching of each host. One possibility

is that a DHCP host and a non-DHCP host may conflict for their IP address. We have discussed

our approach for this in Section 3.4.10.

We are also examining interoperability of Proactive Flow Rule injection into the currently avail-

able SDN switches. This feature will contribute to the reduction of the frequency of packet in, and

reduce the response time for ARP.

3.6.2 Scaling IPv6 Mechanisms

Another scalability issue that a large scale broadcast domain will encounter is IPv6 operation.

An IPv6 host joins a solicited-node multicast address to perform Duplicate Address Detection

(DAD) and Neighbor Discovery (ND). A solicited-node multicast address is determined using the

last 24 bits of a node’s unicast and anycast addresses [32] 1. Given that the first 24 bits of MAC

address is used in the link-local IPv6 address, potentially 224 hosts may join the same solicited-node

multicast address using different IPv6 address on the same broadcast domain. In this case, even if

MLD Snooping is enabled on each layer 2 switch, Neighbor Solicitation (NS) packets multicasted

from one IPv6 node for DAD or ND can be transmitted from all possible ports that the switches

have learned and, as a result, introduce near-flooding situations.

1Note that DAD must not be performed for anycast addresses [33].

20

ETF will exhibit better performance on handing this IPv6 scalability than MLD snooping. NS

packet for DAD and ND will be sent only through the ports toward the host of direct interest. In

addition to MAC/IP address mapping that ETF maintains, ETF can deep inspect the upper layer

information of the incoming NS packet. Therefore, ETF can detect a duplicate address and a target

of ND without near-flooding packets.

3.6.3 Avoiding ARP Poisoning

As ETF maintains the information about all the hosts and switches that are present in network, we

can configure static entry in the databases for certain important hosts like Default Gateway, WEB

Proxy and DNS Server. These static entries will never be updated. This approach will make the

ARP Poisoning attack difficult.

21

Chapter 4

Network Flow Monitoring

Network monitoring observes and analyzes the status and behavior of the end-systems. It is required

to ensure that network is up and running as planned. The network flow information is very important

to understand the network behavior, identify security threat and ensure QoS. For instance, flow level

details give the information about the end-system such as who is sending, who is receiving, who is

using what applications etc. Network flow monitoring supports several network management tasks

such as anomaly detection, accounting, application identification, traffic engineering and detecting

scans, worms, and bot-net activities.

Traditional approaches such as packet-sampling and mirroring the traffic, do not work best in

today’s network. The reasons are the followings:

• They are not scalable with the size of the network. Whenever the network is expanded, network

administrators have to redesign the network monitoring plan. With the growth of the network,

additional monitoring appliances will be required.

• They lack in term of coordination among networking devices. As there is no uniform architec-

ture, it is also cumbersome and error-prone to configure each and every device manually.

• In traditional network monitoring, the focus was on the core layer of the network which makes

difficult to monitor the behavior of end-hosts.

The challenges in designing a network monitoring system are as follows:

• How to define monitoring information.

• How to get the information from resource to the manager.

• How to process or get the meaningful information from the monitored data.

• How to present the information.

This thesis proposes NetMon, a network monitoring tool for OpenFlow networks. NetMon takes

advantage of features provided by the OpenFlow protocol. NetMon implements a few flow based

metrics such as fraction of useful flows, out-degree, in-degree, port-degree and flow-count. It also

records the devices and their locations in the network.

22

NetMon is a distributed monitoring system. Each access layer switch to which hosts are connected

either directly through wired connection or Wi-Fi APs, has a subset of flow rules in the network.

Controller can also partition the flow rules equally on all the switches across the network as discussed

in Section 4.6. These switches inform the controller about every new flow in a push-based manner.

packet in and flow removed messages are used to indicate arrival and removal of a flow respectively,

to the controller. NetMon calculates the flow statistics and records the devices and their locations in

the database based on certain triggers. It provides a Web-GUI to visualize and query these statistics.

4.1 Network Flow Metrics

A network flow is a sequence of packets from a sending application to a receiving application. It is

represented through an IP 5-tuple 〈srcIP, dstIP, srcPort, dstPort, protocol〉. For instance,

• Flow A: 〈192.168.252.220, 192.168.36.22, 31234, 3128, TCP 〉

• Flow B: 〈192.168.36.22, 192.168.252.220, 3128, 31234, TCP 〉

Flow B is called reverse-flow of flow A. NetMon considers the following flow metrics for the moni-

toring:

A. Fraction of Useful Flows : Guha et al. [34] examines the health of the network via a new flow-

based metric based on the fraction of useful flows generated by end-hosts. They consider a flow

which explicitly fails or does not get a response from the intended destination, as non-useful. A

TCP flow, which completes a 3-way handshake successfully, is marked as a useful flow. A UDP

flow, which sees packets in both direction, is considered as a useful flow. The cause of non-useful

flows can be misconfiguration, lack of awareness about services in the network, unnecessary

broadcast traffic etc.

B. IP Out-degree and In-degree: The IP out-degree of a host reveals the number of hosts to which

the host is sending packets. The IP in-degree of a host reveals the number of hosts which are

sending packets to the host. The IP out-degree and in-degree have many network applications

such as detecting stealthy spreaders.

C. Port-Degree and Flow-Count : The port-degree of a host shows the number of network processes

that are running on the host. A graph between the port-degree and number of active flows can

be used to classify a host as a client, server or peer-to-peer node.

D. Response Time: Response time is defined as a time interval between a flow and its reverse-flow.

It includes network latency and application level latency at the server. Response time shows the

congestion in network and the load on server. In OpenFlow networks, controller is responsible

for installing flow rules on SDN switches. Controller can maintain a time-stamp corresponding

to each flow. It can determine the response time by subtracting the time-stamp of a flow from

the time-stamp of its reverse-flow. Current implementation of NetMon does not calculate the

response time of a flow.

23

4.2 Related Work

In the past, a lot of work has been done in the field of flow-based network monitoring. Anemone [35]

uses the network topology information and the end-systems as real time ‘traffic sensors’ to support

the flow-based network management. Karagiannis et al. [36] present an approach to profile the

activity and behavior of end-hosts using the transport layer information of flows. Joumblatt et

al. [37] discuss about the importance and challenges of packet capture at the end-host. Most of

these approaches were not implemented as real-time monitoring system.

Sekar et al. [38] present a minimalist approach for network flow monitoring. They use flow

sampling and sample-and-hold as sampling primitives and configure these primitives on routers using

cSamp [39] in a coordinated fashion across the network. NetFlow [4] and sFlow [5] are commonly

used technologies for implementing network flow monitoring. As they rely on sampling of packets,

they can miss the several small flows and are not well suited for some applications such as [34] which

require some specific packets involving connection setup phase of a TCP flow.

Network monitoring using OpenFlow has also been explored in recent years. OpenSAFE [9] routes

the traffic for network analysis and requires separate monitoring appliances. OpenNetMon [40] uses

adaptive polling for determining throughput, latency and packet loss. OpenSketch [41] is an SDN

based measurement architecture similar to OpenFlow. A three stage pipeline (hashing, filtering,

and counting) is implemented in the commodity switches. It provides a measurement library to use

these sketches. Upgrade or replacement of SDN switches is required to support this. Our approach

is similar to FlowSense [42]. FlowSense uses push based approach to determine the link utilization

in the network. It uses only packet in and flow mod messages to gather the required information.

4.3 System Design

Fig.4.1 shows the system design of NetMon. In SDN network, the controller maintains the state

of the network. Controller maintains the log for devices and calculates flow metrics. It stores

the record for devices in a persistent database and prints flow statistics its output stream. Data

Collector communicates with the controller using inter process communication mechanism and reads

the statistics from the output stream of the controller. Data Collector parses them and stores them in

appropriate data structures. It provides APIs to the NetMon for accessing these statistics. NetMon

provides a Web-GUI to network administrator for visualizing the state of the network. Based on the

request of user, NetMon system either accesses Device Logger database or Round Robin Database

(RRD) [43] files. A few flow statistics are maintained in memory only, NetMon calls an appropriate

method of Data Collector to access them.

Fig.4.2 shows the flow of messages in SDN controller. Controller receives the information about a

new flow through packet inmessage. Device Logger and Learning Switch receive packet inmessages.

Device Logger reads the content of packet header and if required, generates a trigger to record the

device in the device logger database. A trigger is caused when a device is not registered, or changes

its IP address or location, or in some other cases. Learning Switch receives such messages to

determine the action that the SDN switch should take. It forwards the message to the Flow Parser

module. Flow Parser stores all the active flows in its flow db and responds to Learning Switch

with a boolean flag, which indicates whether a flow rule should be installed on the switch or not. If

24

NetMon Web Interface

NetMon System

RRD API

 RRD for each

Device

SDN

Controller

SDN Network

Data Collector

Device Logger

Database

Figure 4.1: NetMon System Design

Flow Parser returns true then Learning Switch determines the output port for the flow and installs

the flow rule on the switch. Learning Switch either sends a flow mod or a packet out message

to the SDN switch. Whenever a a flow removed message is received, Flow Parser removes the

corresponding flow from its flow db.

4.4 System Implementation

NetMon is implemented as an application of OpenFlow. NetMon receives the information about

every new TCP/UDP flow using packet in messages. It determines whether a flow is useful or non-

useful. It calculates out-degree and in-degree based on the IP address, for each hosts in the network.

NetMon classifies the host as a client, server or peer-to-peer node, based on the number of source

ports and active flows. NetMon uses RRD [43] to store the statistics for each host in the network.

NetMon provides a basic Web-GUI to present the state of the network.

4.4.1 Data Store

NetMon uses Postgres [44] to keep record for devices in the network. SDN controller writes a record

for a device whenever a trigger is generated. NetMon keeps flow statistics for each device in its

own separate RRD [43] file. While maintaining a constant file size, RRD file is well-suited to store

the time-series data and it also presents history of data. In the current implementation of NetMon,

only the fraction of useful flows is stored in the RRD file. Other flow statistics are not stored in the

persistent database and kept in memory only.

25

Device Logger

Module

Learning Switch

Module Module

Flow Parser

Packet In Flow Removed
HandlerHandler

SDN Controller

DB Access

Packet In and Flow Remove messages

Flow Rule and Packet Out messages

device_logger

db

mac db other db flow db

Figure 4.2: Flow of messages in SDN controller

4.4.2 SDN Controller

SDN controller receives control messages like packet in and flow removed. Packet in messages

are forwarded to Device Logger, Learning Switch and Flow Parser modules. Device Logger records

the devices and their location in the network. Learning Switch is responsible for installing flows on

switches based on the global network information. Learning Switch forwards the packet in message

to the Flow Parser. Flow parser keeps all the active flows in its flow db table. It sends a boolean

flag to Learning Switch, for deciding whether to install a flow rule on a switch or not. Whenever it

receives flow removed message, it removes the corresponding flow from its flow db. Flow Parser

calculates each flow-metric in a separate thread and periodically prints the flow-statistics on output

stream of the controller.

4.4.3 Data Collector

Data Collector communicates with SDN controller through interprocess communication mechanism

and reads the statistics messages from its output stream. It parses these statistics messages and

stores them in appropriate data structures. If it receives a reset message from SDN controller, it

clears data structures. Data collector also provides API for accessing these data structures.

26

4.4.4 Device Logger

Most of the servers like Web server, Proxy server etc. use IP address to keep the log about the user’s

request. IP addresses are dynamic and same IP address can be used by multiple users over time.

So it is difficult to track the user based on the IP address. NetMon suggests an approach, Device

Logger, to trace back the user.

Algorithm 1 Device Logger

Require: Device Logger Table dl table(T imeStamp,MACAddress, IPAddress, SwitchDPID,PortNo)

Require: Packet In Message pi

Require: Switch DPID sw

Require: Input Port in port

1: mac addr ← Source MAC address from pi

2: ip addr ← Source IP address from pi

3: r1← Record(current time,mac addr, ip addr, sw, in port)

4: r2← Get the latest record and its time stamp from dl table which has IP Address ip addr

5: r3← Get the latest record and its time stamp from dl table which has IP Address ip addr and

MAC Address mac addr

6: if r2 = null or r3 == null then {A new device joins the network or it uses an IP address first

time}

7: Insert record r1 in dl table

8: return

9: end if

10: if r2.T imeStamp = r3.T imeStamp then

11: if r3.PortNo = in port AND r3.SwitchDPID = sw then {Check the location of device}

12: return

13: else

14: Insert record r1 in dl table

15: end if

16: else

17: Insert record r1 in dl table

18: end if

With SDN, controller has a global view of the network. Controller can track the hosts when

they are connected to, or disconnected from access switches. Switch sends port up and port down

messages to the controller when a port goes up and down respectively. These messages are not

sufficient to track users who are connected through Wi-Fi APs. Device Logger receives packet in

message when a packet does not match to any flow rule. Controller keeps 5-tuple information

〈T imeStamp, IPAddress,MACAddress, SwitchDPID,PortNo〉 to record the device in the net-

work. Device Logger stores the record in its persistent database whenever a trigger is generated.

NetMon provides a Web-GUI to query about the devices and their locations for a given IP Address

within a time range.

Device Logger implements Algorithm 1 to process packet in messages. In Algorithm 1 line

number 4 and 5 are used to determine whether a device has newly joined the network or the owner

27

of an IP address has changed since its last used. If a new device joins the network then record r3

will be null and Device Logger will put record for the device in the device logger database. In line

number 11, Device Logger checks whether the device has changed its location from the previous one.

If the device changes its location, it will record for the device in its device logger db.

4.4.5 Fraction of Useful Flows

NetMon adopts distributed and push-based approach to determine whether a flow is useful or not.

Access layer switches keep 5-tuple 〈srcIP, dstIP, srcPort, dstPort, protocol〉 flow rules while other

switches have flow rules with lesser granularity. Whenever a new flow arrives at the access layer

switch, it sends first packet of that flow to the controller via packet in message. Flow parser

keeps that flow in its flow db and marks it as useful or non-useful, based on available information.

Algorithms 2 and 3 are used to determine whether a TCP or UDP flow is useful or not.

Flow parser keeps all active flows in its flow db hash table. flow db is a hash table where 5-tuple

IP flow is used as key and flowStats is used as value. FlowStats keeps statistics corresponding to

each flow.

Flow Parser sends a boolean flag to Learning Switch for decision regarding the installation of

flow. For a TCP flow, when Flow Parser receives a SYN packet, it sends false value to the Learning

Switch asking it not to install flow rule for this packet. This is done to ensure that controller receives

all three packets of TCP handshake mechanism.

Algorithm 2 Determining whether a TCP flow is useful or not

Require: Flow Map flow db < Flow, F lowStats >

Require: Packet pkt

1: flow ← Extract flow from pkt

2: rflow ← Reverse flow of flow

3: flags← Extract TCP flags from pkt

4: if flags == SY N and flags != ACK then

5: flowStats.useful = false

6: flowStats.state = SY N

7: flow db.put(flow,flowStats)

8: return

9: end if

10: if flags == SY N and flags == ACK then

11: flowStats.useful = false

12: flowStats.state = SY NACK

13: flow db.put(flow,flowStats)

14: return

15: end if

16: if flags == RST and flags == ACK then

17: flowStats.useful = false

18: flowStats.state = RST

19: flow db.put(flow,flowStats)

28

20: return

21: end if

22: if flags == ACK then

23: if flow db.containsKey(rflow) == true and flow db.containsKey(flow) == true then

24: flowStats1 = flow db.get(flow)
25: flowStats2 = flow db.get(rflow)
26: if flowStats1.state == SY N and flowStats2.state = SY NACK then

27: flowStats1.useful = true

28: flowStats1.state = ACK

29: flowStats2.useful = true

30: flowStats2.state = ACK

31: return

32: end if

33: end if

34: end if

35: if flow db.containsKey(rflow) == false and flow db.containsKey(flow) == false then

36: flowStats.useful = true

37: flowStats.state = TSR

38: flow db.put(flow,flowStats)
39: return

40: end if

41: if flow db.containsKey(rflow) == true and flow db.containsKey(flow) == false then

42: flowStats.useful = true

43: flowStats.state = TRS

44: flow db.put(flow,flowStats)
45: return

46: end if

Algorithm 3 Determining whether a UDP flow is useful or not

Require: Flow Map flow db < Flow, F lowStats >

Require: Packet pkt
1: flow ← Extract flow from pkt

2: rflow ← Reverse flow of flow
3: if flow db.containsKey(rflow) == false and flow db.containsKey(flow) == false then

4: flowStats.useful = false

5: flowStats.state = USR

6: flow db.put(flow,flowStats)
7: return

8: end if

9: if flow db.containsKey(rflow) == true and flow db.containsKey(flow) == false then

10: flowStats.useful = true

11: flowStats.state = URS

12: flow db.put(flow,flowStats)
13: flowStats← flow db.get(rflow)
14: flowStats.useful = true

15: return

16: end if

29

In our implementation, flow and flowStats are represented as follows:

• flow is 〈SourceIP,DestinationIP, SourcePort,DestinationPort,NetworkProtocol〉.

• flowStats is 〈Useful, F lowState, LastAccessT ime〉 where

– Useful is a boolean flag which is true if flow is useful, otherwise false.

– Flow State represents the state of flow.

– Last Access Time keeps the time in milliseconds, when the flow was received at the

controller.

Flow parser maintains one of the following states for a TCP flow:

1. SYN: When a TCP SYN packet arrives of a new flow, the flow is stored in the flow db and

its flow state is marked as SYN.

2. RST: When a TCP RST packet arrives of a new flow, the flow is added to flow db and its

flow state will be RST (Note that the reverse flow is already stored in the flow db with state

as SYN).

3. SYNACK: If a TCP SYNACK packet is received of a new flow and its reverse flow is already

there in flow db with flow state as SYN then this flow is stored in flow db with flow state as

SYNACK.

4. ACK: When a TCP ACK packet arrives, if the flow and its reverse flow are present in flow db

with flow states SYN and SYNACK respectively then both flows are put in ACK state.

5. TSR: A flow is kept in TSR state if the TCP packet matches neither of the above mentioned

scenario. It is possible in the case when the flow and its reverse flow were removed by the

switch due to idle timeout.

6. TRS: It is same as TSR, just that if the reverse flow exists, then the state of flow will be TRS.

A useful TCP flow will have either ACK, TSR or TRS state. If a TCP flow is marked as failed

after seeing RST packet, NetMon keeps such flow in flow db but does not install any flow rule for

such flow in OpenFlow switch. These flows are then later removed from flow db explicitly. TSR

and TRS states represent that the flow was removed due to idle timeout in OpenFlow switch.

It maintains one of the following states for a UDP flow:

1. USR: A new UDP flow is registered in flow db and its reverse flow is not stored in flow db.

2. URS: Reverse flow is already stored in flow db.

4.4.6 Out-degree, In-degree, Port-degree and Flow-count

Algorithm 4 is used to calculate the out-degree, port-degree and flow-count for each IP address.

While loop in line number 1 is used to get the flow list corresponding to each IP address. In line

number 9, While loop is used to iterate over all flows corresponding to an IP address. NetMon runs

this algorithm to print these statistics once in a minute. Similar approach is used to get in-degree

of each host in the network.

30

Algorithm 4 Calculating out-degree, in-degree, port-degree and flow-count

Require: Source IP stats hash table srcHostStatsMap < IP, IPStats >

Require: Set to keep destination IP otherHostSet < IP >

Require: Set to keep source port srcPortSet < PortNo >

1: while srcHostStatsMap has items do
2: i← srcHostStatsMap.item()
3: ip← i.key()
4: ipStats← i.value()
5: flowList← ipStats.getFlowList()
6: otherHostSet.clear() {Clears sets}
7: srcPortSet.clear()
8: flowCount← 0 {Resets flowCount}
9: while flowList has items do

10: flow ← flowList.item()
11: srcPort← flow.getSourcePort()
12: destIP ← flow.getDestinationIP()
13: flowCount← flowCount+ 1
14: srcPortSet.add(srcPort)
15: otherHostSet.add(destIP)
16: end while

17: Output ip, srcPortSet.size(), otherHostSet.size() and flowCount

18: end while

4.4.7 Web Interface

NetMon provides a web-GUI for visualizing the state of the network. Figure 4.3 shows form for

tracing a device in the network. It expects start time, end time and an IP address, and displays the

list of devices which have used that IP address in a given time range.

List of all the active hosts is shown in Figure 4.4. It displays IP address, MAC address, switch

DPID and port number for each active host in the network. Figure 4.5 displays out-degree, in-degree,

port-degree and flow count for each device in the network in a tabular form. NetMon allows to sort

records based on any column (such as out-degree) of the table. These statistics are updated in every

minute. NetMon also presents the graphs, between in-degree and out-degree, as well as between

port-degree and active flows of all the hosts in the network.

NetMon presents the fraction of useful flows for each device in the network as shown in Figure

4.6. NetMon provides a historical view of these statistics. NetMon displays graphs for each device

showing the fraction of useful flow in a time period of last day, week, month and year.

4.5 Evaluation

Device Logger

Device Logger is scalable and well-suited to track devices which have used an IP address in a given

time range. NetMon puts record for a device only when a trigger is generated. This is done to

minimize the number of entries in the database. In most of the cases, a device gets the same IP

address whenever it joins the network. In such cases, NetMon does not put record for the device.

For 20000 users who have 5 devices each in the network, NetMon will take approximately 3.4

TB space for storing the records about devices in one year. We consider that each record takes 20

31

Figure 4.3: Form for tracing the device

bytes for storage and a device changes its location or IP address 5 times in a day. This number will

further decrease, if the network has wired hosts with static IP addresses.

Fraction of Useful Flow

Table 4.1 shows the fraction of useful-flows generated by the end-systems in our SDN network.

The total number of hosts which were connected to the SDN network, was 83. We found that

in our network, use of proxy servers is the main cause for generating non-useful flows. Devices

failed to update or install security patches due to hosts’ inability to configure proxy settings. Other

causes of non-useful flows are attempts to discover services, misconfiguration (such as incorrect

DNS or proxy settings) and excessive connection retries. We also observe that default features of

an application (such as LAN sync in Dropbox), which are not being used by a user, unnecessarily

consumes bandwidth in the network.

Fraction of useful Number of
flows (in %) hosts (in %)
≥ 95% 44.58 %

≥ 80% and < 95% 27.41 %
≥ 65% and < 80% 16.87 %
≥ 65% and < 50% 3.61 %

≤ 50% 7.23 %

Table 4.1: Health of hosts in IITH SDN network

32

Figure 4.4: Table for active hosts in the network

Out-degree and In-degree

High difference between out-degree and in-degree is an indication for error or malicious things

happening in the network. In our network, proxy servers which are sitting outside the SDN network,

have the highest out-degree and in-degree.

Port-degree and Flow count

Port-degree and flow count can be used to classify hosts as server, client or peer node. Servers have

very low port-degree and high flow count while clients have high port-degree and low flow count.

Peer nodes have high port-degree and moderate flow count.

4.6 Discussion

NetMon is designed for OpenFlow networks. In OpenFlow networks, switches trigger control mes-

sages like packet in and flow removed whenever a new flow arrives or a flow entry expires. NetMon

requires flow rules to match source IP, destination IP, source port, destination port, and protocol

fields with the incoming packet. For calculating a few flow metrics, it is required that controller

should receive the first packet of every new TCP/UDP flow. So these fields can not be chosen for

wildcard and OpenFlow switches will have a large number of flow rules in their flow tables. Flow

tables of switches will be exhausted as switches have a limited high speed memory (such as TCAMs).

Large number of distinct flows will also trigger many control packets. It will make the controller

busy and it might not be able to process them in a timely fashion. In practice, the need for scala-

bility pushes operators to increasingly adopt alternative approaches like distributed SDN controller

or partition the flow rules among all switches across the network.

33

Figure 4.5: Table for out-degree, in-degree, port-degree and flow count

A. Distributed SDN Controller : We can partition a large network into many smaller networks each

having its own controller. We can also use a physically distributed but logically centralized

controller. Some of the work has already done in this area such as [45].

B. Partitioning the Flow Rules : NetMon requires that every new flow should reach the controller.

If there are N switches along the path between source and destination IP pair then it will cause

switches to send N control messages for a flow. In the implementation of NetMon, all other

switches except the ingress switch have wildcard flow rule. So the controller gets the information

about every new flow through only the ingress switch. Other switches have the flow rules in

which only source IP and destination IP are matched. So they will not forward the same flow

to the controller. In our approach, flow tables of ingress switches can exhaust. Instead of this,

for every pair of hosts who communicate with each other, any one of the switches that fall in

their path, can be marked as an authority switch. We can develop an algorithm, which takes

the number of flows on each switch and source and destination IP as input and determines the

authority switch for that IP pair. A similar approach is suggested in [46] for scalable flow-based

networking. In current implementation of NetMon, an ingress switch is always assigned as an

authority switch. Controller receives the information about the arrival or expiration of a flow

through only the assigned authority switch.

34

Figure 4.6: Table for fraction of useful flows

Figure 4.7: Graph for health of a host

35

Chapter 5

SDN in IITH Campus

In SDN, the network architecture is vendor neutral because the behavior of each switch is defined in

a uniform manner (such as OpenFlow protocol). Vendor-agnostic architecture gives a big advantage

in the deployment of an enterprise network, which is setup in an incremental fashion based on the

expected number of users. As IIT Hyderabad (IITH) is a newly established university and the size

of its network has been increasing every year, we also adopt an incremental approach for deploying

the campus network.

The transition of existing networks to SDN will not be instantaneous considering the cost and

risk factor etc. Panopticon [47] takes the topology of the network and cost for deploying SDN

as input, and gives location of switches that need to be replaced with SDN switches. It tries to

maximize the benefit of SDN while minimizing the cost, in a partial SDN deployment. Currently

there are three categories of switches, viz., traditional switches, pure OpenFlow switch and hybrid

switches. We use hybrid switches for deployment of SDN in IITH campus. Hybrid switches can

work as, both, traditional switches and OpenFlow switches. In hybrid switches, a single VLAN can

be run in OpenFlow while other VLANs in traditional mode using traditional protocols. Hybrid

switches support fail-stand-alone mode, if OpenFlow controller is not working then they can switch

back to traditional mode.

!"#$

%&'(!

")%*$
+'(,-',(!

./$

!0!

./$

!0!

.1$

!0!

!"#$

!02!

.1$

!0!

)&3(!)&3(!)&3(!)&3(!)&3(!)&3(!)&3(!)&3(!)&3(!)&3(!

!"#$

!01!

!"#$

!0/!

04564$

7*2!

04564$

7*1!

%&88434&'$"&9:4'!

;-&:<=:3($"&9:4'!

>.7#3$?&-$!,=@-,$*:(A$$

:'<$":(:$*:(A!

Figure 5.1: SDN Deployment Overlaying IIT Hyderabad Campus Network

In IITH, the SDN deployment is done in overlay mode where traditional LAN remains as is and

36

SDN traffic goes across the network through a particular VLAN. Currently, three SDN switches are

installed as described in Figure 5.1 and two Wi-Fi APs in bridge mode are connected to them. The

SDN network forms a single broadcast domain. The following TABLEs 5.1 and 5.2 describe the

hardware and software specifications of SDN switches and the controller that are introduced in the

campus network.

Table 5.1: SDN Controller Specification for Deployment
Model Lenovo ThinkPad X201s
Operating System Ubuntu 12.04 LTS
CPU Intel Core i7 L620 2.0 GHz
RAM 8GB
NIC Intel 82577LM Gigabit Ethernet Network Connection
SDN Controller Floodlight 0.90
OpenFlow Version 1.0

Table 5.2: SDN Controller Specification for Deployment
Switch Model HP J9573A 3800-24G-Poe+-2SFP+
Firmware version KA.15.13.0005

Both ETF and NetMon are deployed in the SDN network of IITH. The number of users connected

to SDN network is within a range of 20 to 50. In future, we will deploy a few more SDN switches

and more Wi-Fi APs connected to them.

37

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Large scale broadcast domains using Ethernet indeed simplify network design. However, while

broadcast is actively used to operate various networking protocols, the increase of broadcast traffic

will result in the reduction of communication quality. To overcome such a trade-off, this thesis pro-

posed Extensible Transparent Filter (ETF) that suppresses broadcast traffic in a broadcast domain

using SDN. SDN enabled on-switch filtering of broadcast packets that will reach only the intended

destination without disturbing other end-systems. ETF supports the suppression of DHCP and

ARP packets and its deployment has been done using production SDN switches. In both DHCP

and ARP, even though the SDN switches receive large number of broadcast packets, ETF exhibited

good performance to wired hosts up to 88%, and also localized the impact of broadcast packet within

the collision domain of each of Wi-Fi APs.

Network monitoring is required to ensure that network is up and running as planned. Many

network management applications require flow-based network monitoring. Traditional approaches

are not scalable with the network growth. This thesis implements a tool NetMon for flow-based

network monitoring. In NetMon, flow rules are distributed among all the switches which send the

statistics to the controller in a push-based manner. It utilizes the features of the OpenFlow protocol

and does not require any additional hardware for monitoring purpose. NetMon records the devices

and their locations in the network. This helps the network administrator to trace the device and its

location, based on an IP address and a given time range. NetMon calculates the fraction of useful

flows, out-degree, in-degree, port-degree, and flow-count for each host in the network. NetMon has

also been deployed in ITTH SDN network. We observed that only 44.58 % of the total end-systems

generate 95 % or more useful-flow.

6.2 Future Work

As future work, performance tuning of ETF and NetMon will be done by carefully examining the

configuration parameters on both applications, SDN controller and SDN switches. Many of the

available hybrid hardware switches do not have clean implementation of OpenFlow, so it is also

important to examine the impact of this on performance and functions of systems. We will test

38

ETF in a much larger network comprising of 10 Wi-Fi APs for a longer period. With OpenFlow

1.3, we would like to filter the broadcast traffic of DAD and ND in IPv6 and some other broadcast

based protocols.

We will develop a partitioning algorithm for distributing flow rules almost equally on all SDN

switches as discussed in Section 4.6. Currently NetMon presents raw data about the out-degree,

in-degree, port-degree and flow-count. We would like to develop a network monitoring application

which uses these raw data. In future, we will calculate a few more flow-based metrics (such as

response time) for determining the state of the network.

39

References

[1] P. Oppenheimer. Top-down network design. Cisco Press, 2004.

[2] J. Case, M. Fedor, M. Schoffstall, and J. Davin. RFC 1157: Simple network management

protocol (SNMP). IETF, April .

[3] L. Deri and S. Suin. Effective traffic measurement using ntop. Communications Magazine,

IEEE 38, (2000) 138–143.

[4] B. Claise. Cisco systems NetFlow services export version 9 .

[5] P. Phaal and M. Lavine. sflow version 5 2004.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner. OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Computer

Communication Review 38, (2008) 69–74.

[7] S. Dabkiewicz, R. van der Pol, and G. van Malenstein. OpenFlow network virtualization with

FlowVisor .

[8] L. Jose, M. Yu, and J. Rexford. Online measurement of large traffic aggregates on commodity

switches. In Proc. of the USENIX HotICE workshop. 2011 .

[9] J. R. Ballard, I. Rae, and A. Akella. Extensible and scalable network monitoring using opensafe.

Proc. INM/WREN .

[10] R. Wang, D. Butnariu, J. Rexford et al. OpenFlow-based server load balancing gone wild 2011.

[11] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark. Resonance: dynamic access control

for enterprise networks. In Proceedings of the 1st ACM workshop on Research on enterprise

networking. ACM, 2009 11–18.

[12] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and G. Wang. Meridian: an sdn platform

for cloud network services. Communications Magazine, IEEE 51, (2013) 120–127.

[13] O. M. E. Committee et al. Software-Defined Networking: The New Norm for Networks. ONF

White Paper. Palo Alto, US: Open Networking Foundation .

[14] N. Feamster, J. Rexford, and E. Zegura. The Road to SDN. Queue 11, (2013) 20.

40

[15] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti. A Survey of

Software-Defined Networking: Past, Present, and Future of Programmable Networks. IEEE

Communications Surveys and Tutorials (Under Review) .

[16] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker. Extending Networking

into the Virtualization Layer. In Hotnets. 2009 .

[17] Open vSwitch. http://openvswitch.org/ 2014.

[18] ONF Specifications OpenFlow Switch Specification Version 1.0.0. http://archive.openflow.

org/documents/openflow-spec-v1.0.0.pdf 2009.

[19] Floodlight Java based OpenFlow Controller. http://www.projectfloodlight.org/

floodlight/.

[20] Ryu. http://osrg.github.io/ryu/.

[21] Trema. an open source modular framework for developing openflow controllers in ruby/c. https:

//github.com/trema/trema 2013.

[22] POX. http://www.noxrepo.org/pox/about-pox/.

[23] D. Plummer et al. An Ethernet address resolution protocol (RFC 826). Network Working

Group .

[24] R. Droms. RFC 2131 dynamic host configuration protocol, March 1997. Obsoletes RFC1541.

Status: DRAFT STANDARD 3.

[25] N. W. Group et al. RFC 1001 Protocol Standard for a NetBIOS Service on a TCP/UDP

Transport: Concepts and Methods. Technical Report 1987.

[26] M. Christensen, K. Kimball, and F. Solensky. RFC 4541 Considerations for Internet Group

Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches.

Status: Informational, May .

[27] A. Myers, E. Ng, and H. Zhang. Rethinking the service model: Scaling Ethernet to a million

nodes. In Proc. ACM SIGCOMM Workshop on Hot Topics in Networking. Citeseer, 2004 .

[28] K. Elmeleegy and A. L. Cox. Etherproxy: Scaling ethernet by suppressing broadcast traffic. In

INFOCOM 2009, IEEE. IEEE, 2009 1584–1592.

[29] C. Kim, M. Caesar, and J. Rexford. Floodless in seattle: a scalable ethernet architecture for

large enterprises. In ACM SIGCOMM Computer Communication Review, volume 38. ACM,

2008 3–14.

[30] M. Scott, A. Moore, and J. Crowcroft. Addressing the Scalability of Ethernet with MOOSE.

In Proc. DC CAVES Workshop. 2009 .

[31] J. Wang, W. Zhao, S. Yang, J. Liu, T. Huang, and Y. Liu. FSDM: Floodless service discovery

model based on Software-Defined Network. In Communications Workshops (ICC), 2013 IEEE

International Conference on. IEEE, 2013 230–234.

41

[32] R. M. Hinden and S. E. Deering. IP version 6 addressing architecture .

[33] S. Thomson and T. Narten. RFC 2462 IPv6 Stateless Address Autoconfiguration, 1998 .

[34] S. Guha, J. Chandrashekar, N. Taft, and K. Papagiannaki. How healthy are today’s enterprise

networks? In Proceedings of the 8th ACM SIGCOMM conference on Internet measurement.

ACM, 2008 145–150.

[35] R. Mortier, R. Isaacs, and P. Barham. Anemone: using end-systems as a rich network man-

agement platform. In Proceedings of the 2005 ACM SIGCOMM workshop on Mining network

data. ACM, 2005 203–204.

[36] T. Karagiannis, K. Papagiannaki, N. Taft, and M. Faloutsos. Profiling the end host. In Passive

and Active Network Measurement, 186–196. Springer, 2007.

[37] D. Joumblatt, R. Teixeira, J. Chandrashekar, and N. Taft. Perspectives on tracing end-hosts:

a survey summary. ACM SIGCOMM Computer Communication Review 40, (2010) 51–55.

[38] V. Sekar, M. K. Reiter, and H. Zhang. Revisiting the case for a minimalist approach for

network flow monitoring. In Proceedings of the 10th ACM SIGCOMM conference on Internet

measurement. ACM, 2010 328–341.

[39] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and D. G. Andersen. cSamp:

A System for Network-Wide Flow Monitoring. In NSDI, volume 8. 2008 233–246.

[40] N. L. van Adrichem, C. Doerr, and F. A. Kuipers. OpenNetMon: Network Monitoring in

OpenFlow Software-Defined Networks .

[41] M. Yu, L. Jose, and R. Miao. Software defined traffic measurement with opensketch. In

Proceedings 10th USENIX Symposium on Networked Systems Design and Implementation,

NSDI, volume 13. 2013 .

[42] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Madhyastha. Flowsense: Mon-

itoring network utilization with zero measurement cost. In Passive and Active Measurement.

Springer, 2013 31–41.

[43] T. Oetiker. RRDtool 2005.

[44] M. Stonebraker and G. Kemnitz. The POSTGRES next generation database management

system. Communications of the ACM 34, (1991) 78–92.

[45] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella. Towards an elastic distributed

sdn controller. In Proceedings of the second ACM SIGCOMM workshop on Hot topics in

software defined networking. ACM, 2013 7–12.

[46] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable flow-based networking with DIFANE.

ACM SIGCOMM Computer Communication Review 40, (2010) 351–362.

[47] D. Levin, M. Canini, S. Schmid, and A. Feldmann. Toward Transitional SDN Deployment in

Enterprise Networks .

42

