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Abstract

This project is aimed to generate a 2D model of head to study biomechanics of head injuries 

due to external forces acting in different direction. The purpose of this work is the 

development of a 2D finite element model (FEM), using equations of elasticity and 

viscoelasticity to model the stress-strain distribution in the head due to external impacts. A 

variational constitutive model for soft biological tissues such as brain is utilized to 

reproduce axonal damage and cavitation injury through inelastic deformation and with the 

constitutive model for hard tissues such as brain possessing elastic properties. A constitutive 

model for these biological tissues is formulated with a finite strain regime. Most of the 

physiological damage to living tissues are caused by relative motions within the tissues (e.g. 

in head injury, due to relative motion between brain and skull), due to tensile and shearing 

structural failures. The Model includes skull, brain and CSF as major components so 

material response is split into elastic and viscoelastic components, including rate effects, 

shear and porous plasticity and finite viscoelasticity. To describe biological soft tissues such 

as brain tissue a viscoelastic material model is employed and to describe skull and 

cerebrospinal fluid we are an elastic model is employed. Skull is considered to be transverse 

isotropic. The present FEM simulation focuses on brain injuries from static and dynamic 

loading resulting from frontal, top, back and oblique head impacts and prediction of 

localization, extension, and intensity of tissue damage. In the present work, brain 2D 

geometry is generated from MRI of adult head. We intend to obtain insight into the severity 

of brain injury by modeling by analyzing the stress-strain pattern under static and dynamic 

loading.



vii

Nomenclature

TBI – Traumatic Brain Injury

DAI – Diffuse Axonal Injury

EDH - Epidural Hematoma

SDH – Subdural Hematoma

MRI – Magnetic Resonance Imaging

CT – Computed Tomography

SCI – Spinal Cord Injury

FEM – Finite Element Modeling
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Chapter 1

Introduction

The head is known as the body part which injures frequently during various accidents and 

may cause severe life threatening injuries. The head region is considered to be the most 

critical body region in crash situations because of the injuries to the central nervous system

which are irreversible. It is not yet completely understood in which way an external 

mechanical load, applied on the human head, leads to head and brain injury. For finding the 

reason behind this, we must understand the key phenomena occur during these impacts to 

the brain. The key-problem here is that, one cannot record in-vivo brain response during 

injury and therefore, numerical models of the human head under impact conditions are 

developed. For developing a numerical model one requires knowledge of the constitutive 

behavior of human brain tissue and information on relevant dynamical phenomena during 

impact situations like shear stress, shear strain, pressure and wave propagation. Mimicking 

the constitutive behavior of brain tissue can be realized by the use of model materials. On 

the other hand, a model material can be applied in an experimental validation of a numerical 

model. A finite element model of human head can be established to be able to determine the 

cause of the head trauma during various impacts with sufficient accuracy. A model of the 

head can be constructed from the patient specific Magnetic Resonance Imaging (MRI) 

images and used to simulate the head trauma. By simulating head trauma, one may be able 

to obtain the fracture propagation of the skull. Biomechanical studies of this kind can also 

help to determine the injury mechanism of skull bones from different impact scenarios.

1.1 Thesis Overview

The thesis covers the whole process of simulating human head trauma from various 

accidents. MRI image (sagittal) data of an adult head is employed to generate a 2D model of 

the head. The image data is processed to obtain the complex geometry of skull, 

cerebrospinal fluid and brain and further processed to construct a triangular and 

quadrilateral mesh in ANSYS, resulting in a model suitable for FE simulation. The meshed 

model is solved using ANSYS to compute the stress-strain distribution in skull, 

cerebrospinal fluid (CSF) and brain due to the impact of static and dynamic type. Results 
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from an impact to the frontal, top and back of the head are analyzed. Comparison of the 

model can be done with injury pattern from the various impacts against published injury 

patterns of post mortem human subject (PMHS) studies1.

The thesis material is organized as follows. Chapter 1.2 covers previous studies found in 

literature relevant for the background of this study. Chapter 1.3 goes through the aim of the 

project and chapter 1.4 covers the anatomy of the human skull, CSF, Meninges and central 

nervous system. Chapter 2 covers the Model construction from the MRI image. 2.1 goes 

through the introduction of MRI. 2.2 explain how the 2D geometry is constructed and how 

the mesh optimization is obtained to increase accuracy of the model. Chapter 3 depicts

results from impact simulations; Chapter 4 includes conclusion and future work of the 

model.

1.2 Literature Review

A major part of the reported literature is concerned with two dimensional models 

representing a sagittal section of the human or animal head. A Finite element idealization of 

the mid sagittal section of a human brain was constructed from a photograph by Melvin 

et.al2. Using this model, consisting of a rigid skull and a homogeneous brain, Hybrid III sled 

tests were simulated using experimental acceleration-time histories of the centre of gravity 

of the dummy head as input. The relative severity of the tests as judged by the HIC appeared 

to be opposite to that judged on the basis of either calculated maximum pressures or 

calculated maximum shear stresses. This model was also employed in Rhesus monkey based 

study to illustrate the application of a scaling law. Employing the same model serving as a 

starting point, Trosseille3 carried out a parametric study to compare trends in simulation 

results with those of human cadaver experiments. They extended the original model with an 

‘extremely rigid’ beam representing the tentorium cerebella. Furthermore the influence of 

the no-slip condition at the skull-brain interface was observed to be diminished by 

incorporating a layer with a low shear modulus to model the cerebrospinal fluid (CSF) 

surrounding the brain. A model of a para-sagittal section of an average human head was

developed by Chu and Lee4 to study mechanism of cerebral contusions with spectral 

attention for coup - contre-coup phenomena. Validation against Nahum1 experiments 

showed the calculated pressures to be roughly consistent with, but lower than, the 

experimental data. For frontal and occipital impacts almost identical tensile stresses were 

found in the contre-coup regions. Ruan et.al5 conducted a study of the side impact response 

using coronal-plane models of a 50th percentile human head. They concluded that it is 
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improper to validate FE models based on pressure calculations and then use them for injury 

prediction. This is apparent since tissue level models6 have shown that diffuse axonal injury 

(DAI) is a function of strain and not pressure. The more relevant parameter for validation of 

a FE model of the human head should therefore be strain. Such strain data do not exist, 

however, relative displacement data between the brain and skull are available, and therefore 

provide a means of model validation of localized brain motion that is more comprehensive 

than pressure data. The first relative motion recorded during human cadaver head impacts in 

anatomical coordinate components was provided by Al-Bsharat et.al7.The first relative 

motion recorded during human cadaver head impacts in anatomical coordinate components 

was provided.

In the present model of human head, mechanical properties of skull, CSF and brain tissue 

are obtained from literature8. It has been shown that brain tissue behaves like a nonlinear 

visco-elastic material. It is described in detail in Chapter 2.

      

1.3 Aim of Project

This study primarily focuses on the development of a 2D FE model of the Human Head. 

The present thesis includes:

 The development of a 2D Finite Element (FE) model of the human head.

 Parametric studies of the influences of static and dynamic loading on the head.

 Evaluation of the shear stress and strain to a variation of impact direction to the 

human head, and its consequences for injury prediction.

 Coup and contre-coup injuries prediction with respect to sinusoidal loading with 

different frequencies.

1.4 Anatomy of Human Head

Different tissue layers such as the scalp, skull bone, Dural, arachnoidal and pial membranes 

as well as cerebrospinal fluid (CSF) cover the brain see Fig 1.1. The skull bone can be 

viewed as a three-layered sandwich structure with an inner and outer table of compact bone 

and a diploe of spongy bone sandwiched between them as a core9. The lower separating 

membrane, the tentorium cerebelli, resides on the inferior wall of the skull, and separates the 

cerebrum from the cerebellum and brain stem. The brain, with its covering membranes and 
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CSF, is connected to the spinal cord through the foramen magnum. The inferior part of the 

skull base is attached to the neck by articulation through ligaments and muscles.

                           Figure 1-1: MRI of sagittal section of human head10[MRI Image source]

                                                                                    

1.4.1 Skull

The thickness of the skull varies between 4 and 7 mm11. The base of the braincase is an 

irregular plate of bone containing depressions and ridges plus small holes (foramen) for 

arteries, veins, and nerves, as well as the large hole (the foramen magnum) that is the 

transition area between the spinal cord and the brainstem. The bones of the cranium are 

connected at lines called sutures. The skull, or cranium, protects the brain and the organs of 

special sensation, allows the passage of air and food, and supports the teeth. It consists of a 

series of bones, mostly united at immovable joints. The mandible, however, can move freely 

at a synovial articulation. Some bones of the skull are paired, whereas others are not. Each 

consists of external and internal tables of compact bone and a middle spongy layer, the 

diploe. The inner and outer layer of compact bone in the skull can (unlike the long bones) be 

considered to be isotropic in the tangential direction of the skull bone (transversely 

isotropic). The skull is covered by periosteum and lined by Dura (endocranium).

1.4.2 Cerebrospinal fluid

The brain and spinal cord are surrounded by CSF. Average CSF thickness ranges from 0.25-

5mm. It is thought to have a mechanical protective function for the brain. In case of a 

mechanical load applied to the head, it allows the brain to move independently to the 

cranium to some extent. Furthermore, it provides a stable internal environment, which is 



5

necessary for normal brain functioning. Its total volume is approximately 150 ml, of which 

25 ml is situated within four communicating ventricles inside the brain. The remaining part 

is located inside the subarachnoid space. It is composed of 99% water and is similar in 

composition to blood plasma, from which it originates. Fluid fills the entire subarachnoid 

space and surrounds the brain with a protective cushion that absorbs shock waves to the 

head12. As a further means of protection, there are fibrous filaments known as arachnoid 

trabeculations, which extend from the arachnoid to the pia and help “anchor” the brain to 

prevent it from excessive movement in cases of sudden acceleration or deceleration.

1.4.3 Meninges

The meninges consist primarily of connective tissue, and they also form part of the walls of 

blood vessels and the sheaths of nerves as they enter the brain and as they emerge from the 

skull. The meninges consist of three layers: the dura mater, the arachnoid, and the pia mater. 

Brain tissue, having the consistency of a heavy pudding, is the most delicate of all body 

tissues. For protection, this vital organ is located in a sealed bony chamber, the skull. To 

protect it further from the rough bone and from blows and shocks to the head, the brain is 

enveloped by the meninges. The outermost dura mater is adherent or close to the inner 

surface of the bone. Beneath the dura mater is the middle covering, the thin and fibrous 

arachnoid. The third and innermost layer is the very thin, delicate, and capillary-rich pia-

mater, which is intimately attached to the brain and dips down into the sulci and fissures.

The dura mater is the strongest meninx with thickness in the range of 0.3-0.8mm and it is 

attached to the inside of the cranium. 

                    

Figure 1-2: Layers in coronal section of human head13
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The arachnoid is a thin meningeal layer lying intermediate between the other two meninges. 

Its function is to insulate the central nervous system (CNS) from the rest of the body. It is 

attached to the dura Mater. The pia mater also is a thin meningeal layer and it is attached to 

the surface of the CNS, which means that it follows the irregularities of the surface of the 

CNS14.

1.4.4 Central Nervous System (CNS)

The nervous system of vertebrates is divided into the central nervous system (CNS) and the 

peripheral nervous system. The CNS consists of the brain and the spinal cord. It is covered 

by the meninges to provide protection. Further protection is given by the cranium, i.e. the 

part of the skull holding the brain, and by the vertebrae. The brain consists of the Cerebrum, 

the cerebellum, and the brain stem. The latter is connected to the spinal cord. The cerebrum 

accounts for about 83% of the total brain mass and it consists of the two cerebral 

hemispheres. The exterior of the cerebrum consists of the cerebral cortex. It contains gray 

matter and is 2 to 5 mm in thickness. Inferior to the cerebral cortex lies the cerebral white 

matter. Gray matter is composed primarily of nerve-cell bodies concentrated in locations on 

the surface of the brain and deep within the brain. White matter is composed of myelinated 

(myelin is a soft, white somewhat fatty material) axons that largely form tracts to connect 

parts of the CNS to each other. At a microscopic level, CNS is primarily a network of 

neurons and supportive tissue functionally arranged into areas that are gray or white in 

color. Brain tissue can be likened to a soft gel because of the high water content (about 80 

%), and it can be considered nearly incompressible. This observation is confirmed by 

reported values of the bulk modulus for brain tissue of about K=2.1 GPa, which is roughly 

105 times larger than the shear modulus. Therefore, the deformation of brain tissue can be 

assumed to depend on the shear modulus only. Most of the testing of brain tissue has 

therefore been performed in shear or torsion15.

1.5 Traumatic Brain Injury

Traumatic brain injury (TBI) is damage to the brain caused by a blow to the head. The 

severity of the injury may range from minor, with few or no lasting consequences, to major, 

resulting in profound disability or death. Although any injury to the brain is serious, 

and severe damage can be fatal, medical and surgical advances have improved the odds for 

surviving a TBI. TBIs are classified according to the severity and mechanism of injury as 

depicted in Table 1.1:
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Table 1-1: Classification of TBI based on severity17

Injury

Severity

Loss of 

Consciousness 

(LOC)/Coma 

duration

Signs Symptoms

Mild LOC for less than 

30 minutes or no 

LOC may cause.

Loss of memory may 

occur for less than 24 hrs,

with temporary or 

permanent mental state.

Symptoms after concussion can 

be seen.

Moderate Patient may go to 

coma for more than 

20-30 minutes but 

less than 24 hrs

Bruising and bleeding in 

the brain, which can be 

observed in CT and MRI

scans.

Some long term problem in one 

or more areas of life.

Severe Coma for more than 

a day or a week.

Skull fractures / bruising 

and bleeding, which can 

be observed in CT and 

MRI scans

Long term impairments in one or 

more areas of life

Clinically brain injuries can be classified in two broad categories: focal injuries and diffuse 

injuries16. The focal brain injury is a lesion causing local damage which can be seen by the 

naked eye. The diffuse brain injury is associated with global disruption of brain tissue 

usually and is invisible. The focal injuries consist of epidural hematomas (EDH), subdural 

hematomas (SDH), intracerebral hematomas (ICH), and contusions (coup and contre-coup). 

The diffuse injuries consist of brain swelling, concussion, and diffuse axonal injury (DAI)17.

1.5.1 Focal Injury

Focal injuries result from direct loading and can often occur without widespread, or diffuse, 

damage. Focal injuries are typically induced when an object penetrates the skull or vertebral 

column as a result of a motor vehicle accident, gunshot wound, or a blow18. As a result, 

macroscopically visible damage is typically visible at the site of impact, and the clinical 

symptoms are often very specific to the area that is directly injured. Focal injuries to the 

brain include epidural hematomas and skull fracture (with or without brain damage). When 

there is dural compromise, this is often termed open head injury in the clinical setting. 



Contact loading can also result in coup (at the site of impact) and contra

the site of impact) contusions to the brain, involving both cellular and vascular componen

Focal injuries account for one-

this group.

Spinal cord injury (SCI) is another severe type of injury and

fracture and dislocation of the spinal column, resulting in a focal injury. The me

impact can cause displacement of 

discs, or ligaments, resulting in transient compr

Spinal cord is compressed at the site of impact that causes the surrounding tissue to lengthen 

in the longitudinal direction. Tissue near the center of the spinal cord is most vulnerable

damage, suggesting that the mechanical loads are highest in this anatomical region

TBI, the nature (whether the impact is stationary/transient)

biomechanical insult can dictate the injury response and may affect functional outcome. 

Slow stretching of the spinal cord results in very little tissue damage. In fact, increasing the 

length of the spinal cord up to twice the original length results in very little damage if t

elongation is applied slowly. However, 

durations (more than 20–30 min) may surpass tissue thresholds and 

damage.

1.5.1.1. Subdural Hematoma(SDH

The most common mechanism of subdural hematoma is tearing of veins that bridge the 

subdural space as they go from the brain surface to the various dural sinuses

Figure 1-3
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Contact loading can also result in coup (at the site of impact) and contra-coup (away from 

the site of impact) contusions to the brain, involving both cellular and vascular componen

-half of all severe head injuries, but two-third of all deaths in 

Spinal cord injury (SCI) is another severe type of injury and is most commonly caused by 

fracture and dislocation of the spinal column, resulting in a focal injury. The me

displacement of key components such as bone fragments; inter

discs, or ligaments, resulting in transient compression or contusion of spinal cord tissue. 

Spinal cord is compressed at the site of impact that causes the surrounding tissue to lengthen 

in the longitudinal direction. Tissue near the center of the spinal cord is most vulnerable

the mechanical loads are highest in this anatomical region

nature (whether the impact is stationary/transient), magnitude, and duration of the 

can dictate the injury response and may affect functional outcome. 

etching of the spinal cord results in very little tissue damage. In fact, increasing the 

length of the spinal cord up to twice the original length results in very little damage if t

However, rapid application of biomechanical inputs for longer

30 min) may surpass tissue thresholds and can result in irreversible 

Subdural Hematoma(SDH)

The most common mechanism of subdural hematoma is tearing of veins that bridge the 

from the brain surface to the various dural sinuses19.

3: Biomechanics of Subdural hematoma20

                

coup (away from 

the site of impact) contusions to the brain, involving both cellular and vascular components. 

of all deaths in 

is most commonly caused by 

fracture and dislocation of the spinal column, resulting in a focal injury. The mechanical 

bone fragments; inter-vertebral 

ession or contusion of spinal cord tissue. 

Spinal cord is compressed at the site of impact that causes the surrounding tissue to lengthen 

in the longitudinal direction. Tissue near the center of the spinal cord is most vulnerable to 

the mechanical loads are highest in this anatomical region. As in 

tion of the 

can dictate the injury response and may affect functional outcome. 

etching of the spinal cord results in very little tissue damage. In fact, increasing the 

length of the spinal cord up to twice the original length results in very little damage if the 

l inputs for longer

result in irreversible 

The most common mechanism of subdural hematoma is tearing of veins that bridge the 
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1.5.1.2. Epidural Hematoma(EDH)

Epidural hematoma is a relatively infrequently occurring sequel to head trauma. It occurs as 

a result of trauma to the skull and the under laying meningeal vessels and is not due to brain 

injury21.

Figure 1-4: CT of Epidural Hematoma22

1.5.1.3. Intracerebral Hematoma (ICH)

Intracerebral hematomas are well defined, homogeneous collections of blood within the 

cerebral parenchyma. They are most commonly resulted from sudden acceleration and 

deceleration of head. Other causes are penetrating wounds and blows to the head.

1.5.1.4. Contusion

Cerebral contusion is the most frequently found lesion resulting from head injury. It consists 

of heterogeneous areas of necrosis, pulping, infarction, hemorrhage and edema. 

Figure 1-5: Biomechanics of Contusion23
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Contusions generally occur at the site of impact (defined as coup contusions) and at remote 

sites from the impact (defined as contre-coup contusions). The contre-coup lesions are more 

significant than coup-lesions.

1.5.2 Diffuse Injury

Diffuse injuries are most often caused by inertial loading, which describes the motion of 

objects. The acceleration (rate of change of velocity) is a key parameter in determining 

tissue response under diffuse injury. Higher accelerations correspond to higher forces (Force 

equals mass times acceleration, Newton’s second law). Because of the complex nature of 

head-neck dynamics, the brain can be subjected to acceleration when subjected to an 

external load and therefore TBI often manifests as a diffuse injury. When the acceleration is 

translational, injuries tend to be localized to a smaller area. However, in the case of 

rotational acceleration, on the other hand, large magnitude of strains deep within the brain is

possible, resulting in diffuse axonal injury (DAI). Most injuries that are observed clinically 

are a combination of translational and rotational accelerations (referred to as angular 

acceleration). Diffuse injuries are thought to occur as a result of combination of acceleration 

and deceleration portions of loading, creating very fast moving, uneven load distributions. 

Diffuse strains can lead to differential movement of the skull relative to the brain, causing 

para-sagittal bridging vein injury, as well as intracerebral hemorrhage.

1.5.2.1. Concussion

The classical cerebral concussion is the most common head injury diagnosis, and it involves 

immediate loss of consciousness following injury. In general, 95 % of the patients have 

good recovery at the end of 1 month. More than 99% of the patients are discharged from

hospital within 14 days24.



Figure 1

1.5.2.2. Diffuse Axonal Injury

Diffuse axonal injury (DAI) is linked

cerebral hemispheres and sub cortical white matter. Microscopic ex

reveals axonal tearing that occurs

hemispheres. In addition, it also involves 

into the brain stem. High-resolution CT scans may show small hemorrhages and axonal 

swelling occurred during injury

days to weeks. Severe memory and motor deficits 

DAI and post traumatic amnesia can

role in the resulting state after the injury

immediately after the injury and either remain comatose or go into a persistent vegetative 

state. In severe TBI, DAI is compounded due to the presence of 

and traumatic lesions which cause cerebral edema

Diffuse injury to brain can result in

the most prevalent cause of persistent neurological disability. Clinical

often observed in closed head injury and arises most often from motor vehicle acci

The brain is coupled to the skull viscously via the surrounding cerebral spinal fluid (CSF). 

During normal activity, the CSF protects the brain by viscous dampening of the brain 

motion, so that impact with skull is prevented

11

Figure 1-6: Biomechanics of Concussion25

Diffuse Axonal Injury

is linked with mechanical disruption of many axons in the 

cerebral hemispheres and sub cortical white matter. Microscopic examination of the brain 

that occurs throughout the white matter of right and left c

dition, it also involves degeneration of long white matter tracts extending 

resolution CT scans may show small hemorrhages and axonal 

occurred during injury. DAI involves immediate loss of consciousness lasting for 

evere memory and motor deficits is observed to be present in patients with 

and post traumatic amnesia can last for weeks. The extent of DAI injury plays a key 

after the injury. Patients with severe DAI become uncon

immediately after the injury and either remain comatose or go into a persistent vegetative 

evere TBI, DAI is compounded due to the presence of widespread vascular injury 

and traumatic lesions which cause cerebral edema26 27. 

can result in widespread dysfunction, therefore making these injuries 

the most prevalent cause of persistent neurological disability. Clinically, diffuse injury is 

in closed head injury and arises most often from motor vehicle acci

The brain is coupled to the skull viscously via the surrounding cerebral spinal fluid (CSF). 

the CSF protects the brain by viscous dampening of the brain 

motion, so that impact with skull is prevented. However, this dampening is insufficient for 
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widespread vascular injury 

making these injuries 

ly, diffuse injury is 

in closed head injury and arises most often from motor vehicle accidents. 

The brain is coupled to the skull viscously via the surrounding cerebral spinal fluid (CSF). 

the CSF protects the brain by viscous dampening of the brain 

is insufficient for a 
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sufficiently large external force associated with a rapid deceleration, and the brain will crash 

against the skull wall, resulting in brain deformation. Different manifestations of TBI result 

from this brain deformation. Because there is a much lower threshold force required to 

injure the brain compared to the skull, skull fracture need not always accompany physical 

brain damage and the resulting head injury is termed “closed”28 29.
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Chapter 2

Model Development

The MRI data for generation of the human head was obtained from the Siemens healthcare 

of USA, based on their website. The MATLAB image processing software was used for 

image segmentation. The ANSYS finite element analysis software was used to construct the 

solid model using B-splines, which read all the coordinates obtained. The models were 

analyzed, considering various boundary conditions at the neck part. Static analysis and 

dynamic analysis, using automatic time integration technique, were carried out on these 

models, for different time steps and for different material properties.

2.1 Introduction to MRI

Magnetic resonance imaging (MRI) of the brain is a safe and painless test that uses a 

magnetic field and radio waves to produce detailed images of the brain and the brain stem. 

An MRI differs from a CAT scan (also called a CT scan or a computed axial tomography 

scan) because it does not use radiation30 31. During the exam, radio waves manipulate the 

magnetic position of the atoms of the body, which are picked up by a powerful antenna and 

sent to a computer. The computer performs millions of calculations, resulting in clear, cross-

sectional black and white images of the body. The images are then processed into 3D 

pictures of the scanned area. This method avoids pinpoint problems in the brain and the 

brain stem when the scan focuses on those areas. MRI is useful in detecting a variety of 

vulnerable conditions of the brain such as cysts, tumors, bleeding, swelling, developmental 

and structural abnormalities, infections, inflammatory conditions, or vascular problems. In 

addition, MRI of the brain can be useful in detecting certain chronic diseases of the nervous

system, such as multiple sclerosis. In some cases, MRI can provide clear images of parts of 

the brain that can't be obtained as well with an X-ray, CAT scan, or ultrasound. This makes

it particularly useful for diagnosing problems with the pituitary gland and brain stem32.

MRIs are safe and relatively easy. No health risks are associated with the magnetic field or 

radio waves, since the low-energy radio waves use no radiation. The procedure can be 

repeated without side effects33.



2.2 Image Processing in MATLAB

Edge detection of MRI image is carried out using MATLAB

detection is an image processing technique for finding the boundaries of objects within 

images. It works by detecting discontinuities in brightness.

significantly reduces the amount of data and filters out useless information, while preserving 

the important structural properties in an image.  Canny filter is used to detect edges from the 

human head MRI34.

Canny edge detectors:

1. Filter image with derivative of Gaussian 

2. Find magnitude and orientation of gradient

4. Linking and threshold (hysteresis):

• Define two thresholds: low and high

• Use the high threshold to start edge curves and

MATLAB: edge

Figure 2-1: MRI

Detected edge coordinates were plotted in ANSYS and joined by B

the 2-D geometry of human head consisting of 3 main parts: Skull, Cerebrospinal fluid and 

central nervous system. CNS includes cerebrum (including white and gray matter
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Image Processing in MATLAB

mage is carried out using MATLAB image processing. 

is an image processing technique for finding the boundaries of objects within 

y detecting discontinuities in brightness. Image Edge detection 

significantly reduces the amount of data and filters out useless information, while preserving 

the important structural properties in an image.  Canny filter is used to detect edges from the 

1. Filter image with derivative of Gaussian 

2. Find magnitude and orientation of gradient

(hysteresis):

• Define two thresholds: low and high

• Use the high threshold to start edge curves and the low threshold to continue them.

MATLAB: edge (image, ‘canny’, threshold);

  

: MRI10 and Edge detected signal using MATLAB

Detected edge coordinates were plotted in ANSYS and joined by B-spline method to create 

D geometry of human head consisting of 3 main parts: Skull, Cerebrospinal fluid and 

central nervous system. CNS includes cerebrum (including white and gray matter

image processing. Edge

is an image processing technique for finding the boundaries of objects within 

Image Edge detection 

significantly reduces the amount of data and filters out useless information, while preserving 

the important structural properties in an image.  Canny filter is used to detect edges from the 

hem.

spline method to create 

D geometry of human head consisting of 3 main parts: Skull, Cerebrospinal fluid and 

central nervous system. CNS includes cerebrum (including white and gray matter), 
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cerebellum, brain stem and spinal cord. Figure 2-2 represents the line model drawn in 

ANSYS using B-spline and the arrow indicates the different point of loading analysis. 

Figure 2-2: Line Model drawn using B-spline with loading directions

2.3 Finite Element Model Generation 

The biomechanics of the human head can be seen as a brain movement within an externally 

loaded skull and this gives a complex two and three dimensional dynamic boundary value 

problem. The internal biomechanical responses of the brain cannot be completely measured 

by experimental techniques. Analytical models are limited to problems with regular 

geometry, simple boundary conditions and homogeneous material properties. Numerical 

approaches, on the other hand, give approximate the analytical solution with a numerical 

procedure. In Finite element method (FEM), the geometrically complex material domains of 

the problem can be represented by a collection of geometrically simple sub domains called 

Finite Elements. The approximation functions are then derived over each finite element, 

since any continuous function can be represented by a linear combination of algebraic 

polynomials. In other words, this method can be perceived as a piece wise application of the 

variational methods, in which the approximation functions are algebraic polynomials35. 
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             Figure 2-3: Flow Chart of Finite Element Modeling36

Head injuries are related to tissue material failure, characterized in some form of stress, 

strain or deformation. Finite element analysis can provide stress, strain or deformation 

distributions across, and within the different tissues for a given biomechanical input, such as 

a head motion or head impact. Finite element models are repeatable and reproducible, and 

simulations can be seen as surrogate experiments without biological variability. In addition, 

they can also include irregular geometry, inhomogeneous and nonlinear material properties 

and complex boundary and loading conditions. FEM has been in use for the last 30 years as 

an engineering tool in various mechanical design processes. In biomechanical field, 

numerical techniques were first employed to complement experimental car crash 

simulations. Today, the numerical technique has reached such a level that complex 

structures like the human being can be modeled with good accuracy. However, significant

research remains to be performed before a complete model of the human being can be 

presented.

2.3.1 Mesh Generation and Optimization

Model generation usually takes on the narrower meaning of generating the nodes and 

elements that represents the spatial coordinates and connectivity of the actual system. This 

means that, the model generation is the process of defining the geometric configuration of 

the model’s nodes and elements. Accurate geometrical reconstruction is dictated by the 
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mathematical solution, especially in 2D or 3D problems, solved by computer simulations. 

There are two ways of describing geometrical description of the model – parametric and 

triangular. First approach operates with the 3D parametric spline curves, surfaces and 

volumes which approximates required real object. This is known as Solid Modeling (SM) 

approach. In contrast, the second method operates with the points, straight lines, and 

triangular surfaces. It is called the Direct Mesh Generation (DMG) method. With using 

DMG it is not possible to change the model during the solution without recreating full 

model from the very beginning. Parametric approach is much more preferable as the model, 

reconstructed in this form, is more accurate, contains more information about the object, and 

could be easily used in any field of analysis. 

Plane 183 is used in the present work. Plane 183 is a higher order 2-D, 8-node or 6-node 

element depicted in Figure 2-4. Plane183 has quadratic displacement behavior and is well 

suited for modeling irregular meshes. This element is defined by 8 nodes or 6-nodes, having 

two degrees of freedom at each node: translations in the nodal X and Y directions. The 

element may be used as a plane element (plane stress, plane strain and generalized plane 

strain) or as an axisymmetric element. This element can be used for simulating problems 

involving viscoelasticity, creep, stress stiffening, large deflection and large strain. 

Furthermore, the above-mentioned element also has mixed formulation capability for 

simulating deformations of nearly incompressible elasto-plastic materials and fully 

incompressible hyper elastic materials. 

Figure 2-4: Plane 183 node element37

The selection of element type in the present simulation depended upon the geometry of the 

component parts in the 2D model. Using quadrilateral mesh made the simulation faster and 
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precise. Mesh optimization was performed by simulating the problem using different mesh 

density, so that the results are insensitive to mesh size and number. No change in results was

observed while choosing the elements more than 106160. Figures 2-5, 2-6, 2-7 and 2-8

shows how the mesh density affects results:

  

Figure 2-5: Displacement with No. of elements 3642

  

Figure 2-6: Displacement with No. of elements 33272

  

Figure 2-7: Displacement with No. of elements 106169
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Figure 2-8: Displacement with No. of elements 205411

From the above figures one can observe that while increasing the elements no. to more than 

nearly 100000 displacement results obtained were independent of mesh size and number. 

Thus, we used mesh density of 205411 for simulations in the present study. 

2.4 Material Properties

In practical, most biological tissues have long been recognized as inhomogeneous, 

anisotropic and nonlinear; however, the complete material characterization of biological 

tissues is still a daunting task. Hence, meaningful assumptions of material behavior need to 

be made for the sake of FE model development. The material data for different component 

parts of the model used in this study are obtained from the literature38.

2.4.1 Skull

The human skull consists of a combination of high density (cortical) and low density 

(cancellous) structures. Bones in general are considered to be anisotropic with many of them 

having a mineral orientation in the direction of maximum load. Each bone has therefore 

directional properties according to its unique function. In this study, the three layer cranial 

bone is modeled as a single-layer structure exhibiting transverse isotropic properties. Skull 

bone has anisotropic material properties with fiber patterns radially oriented from the center 

of ossification. This means that the bone stiffness varies in response to force applied from 

different directions as opposed to isotropic material where the stiffness is the same for all 

directions39.
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Transverse isotropic property of skull:

The representation of bone stiffness matrix contains nine components as it has three 

perpendicular symmetry planes with the principal axis directions going axial, radial, and 

tangential (circumferential). Bone can be modeled as being orthotropic, but can be often 

simplified even further by assuming that it has a symmetry plane perpendicular to the fiber 

direction, making skull to be considered as transversely isotropic. This reduces the 

parameters required from nine, for orthotropic material, to five. For skull bone, it has been 

established that the elastic modulus parallel and perpendicular to the fiber direction is not 

the same. It is also known that the fiber direction is radially directed from the center of 

ossification. This effectively means that the plane of the axial axis, representing the bone 

thickness, and the tangential axis is the plane of isotropy. Some parameters of the skull 

bones cannot be obtained from literature and need to be estimated. The Elastic modulus 

parameters E1, E2 and Poisson ratio v12 are obtained from literature. The Poisson’s ratio v21

is calculated using equation (2.1)9. Shear modulus for an in-plane orthotropic material could 

be predicted by equation (2.2)9.
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where, iE is the directional Elastic modulus and 
ij represents the corresponding Poisson 

ratios. In a patient specific model, it is important to have accurate parameters in order to 

obtain reliable results. Obtaining correct parameters can be a hard task and much estimation 

needs to be done when there is limited data available either from material testing or from 

literature. Parameters needed for FEM simulation, to study the skulls biomechanical effects 

during an impact are obtained from literature and estimations. The biomechanical 

properties, elastic modulus, Poisson’s ratio and shear modulus are needed for the skull. The 

elastic modulus is a measure of the elastic deformation of the material when load is applied 

to it. It can be obtained from the slope of a stress-strain curve for each material. The shear 

modulus measures the resistance of a material to shear deformation. Higher value means 

that the material is more rigid to shear. The shear modulus is defined as the ratio of shear 

stress versus shear strain. The Poisson’s ratio is the ratio of lateral versus longitudinal strain 

in uniaxial tension. The value is dimensionless and ranges from -1 to 0.5 for stable materials 

and is equal to 0.5 for incompressible one. In Figure 2-9, principal axis directions showing 

radial direction parallel to the fiber direction in infant skull bones, tangential direction

perpendicular to the fiber direction and axial direction in the bone thickness.

Figure 2-9: Skull bone representation9

Table 2-1: Parameters for constitutive model of skull bone9

Parameters Values Nomenclature

E1 1929MPa Elastic modulus parallel 

estimated from linear relation of 

parallel and perpendicular data.

E2 1092MPa Elastic modulus perpendicular. 
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12 0.19 Poisson’s ratio. 

21 0.11 Equation (2.1)

G12 634.9MPa Shear modulus in plane of 

symmetry is estimated using 

equation (2.2)

Density 2090kg/m3 Density

K 656.8MPa Bulk modulus Estimated

2.4.2 CSF

The CSF layer representing the entire subarachnoid space is modeled by a homogenized 

solid material with bulk modulus of 21.9MPa and shear modulus of 50KPa. 

The matrix form of elastic modulus for an isotropic elastic material is given as40 (adapted 

and re-expressed);

                                                                                           ………………… (2.4)

where E is the constant Elastic modulus and  represents the Poisson’s ratio.
ij and

ij

represent the normal and shear stress, respectively. The normal and shear strain are 

represented by 
ij and

ij . The above equation represents the stress-strain model for 3D. In 

the present study, this matrix was scaled down to 2D for computation. 

Table 2-2:  Material Properties of CSF 41
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2.4.3 Brain

During severe impact conditions, brain tissue experiences a rapid and complex deformation, 

which can be seen as a mixture of compression, tension and shear. More importantly, the 

deformation can be time dependent too. Diffuse axonal injury (DAI) occurs when both the 

strains and strain rates exceed 10% and 10/s, respectively42. Brain tissue can be considered 

to behave like a soft gel. Because of the high water content (about 80 %), it is nearly 

incompressible. Knowing the mechanical properties of brain tissue in shear at these strains 

and strain rates is thus of particular importance, as they can be used in finite element 

simulations to predict the occurrence of brain injuries under different impact conditions. 

Thus, the deformation of brain tissue can be assumed to depend on the shear modulus only.

The simplest way to determine the viscoelastic properties of soft biological tissues is to 

subject the material to periodic oscillations, due to the consistency and problems with load 

introduction43.

Prony series parameters are used to represent the viscoelastic brain properties. In a one 

dimensional relaxation test, the material is subjected to a sudden strain that is kept constant 

over the duration of the test, and the stress is measured over time. The initial stress is due to 

the elastic response of the material. Then the stress relaxes over time due to viscous effect in 

the material. Typically either a tensile, compressive, Bulk compression, or shear strain is 

applied. The resulting stress vs. time data can be fitted with no. of equations, called models. 

Therefore, Prony series for shear relaxation is given as44: 
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where,  G  = Long term shear modulus.
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G0 = Short term shear modulus.               
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Therefore, 
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where, ig = relaxation coefficient; i
 = characteristic relaxation time

The viscoelastic properties for brain are given as:

Table 2-3: Material properties for CNS 39

Parameter Density(kg/m3) Bulk 

Modulus(GPa)

Short term 

shear 

modulus(kPa)

Long term 

shear 

modulus(kPa)

Decay 

constant(s-1)

Brain 1040 2.19 34 6.4 400

Same viscoelastic properties are used for cerebellum, brain stem and spinal cord in this 

model. Prony series parameters estimated by using above values of long term shear 

modulus, short term shear modulus and decay constant are:

1g = 0.5837, 1
 = 0.02571s; 2g = 0.2387; 2

 = 0.0257s

2.5 Boundary Conditions

As for the boundary condition at the head-neck junction, two extreme assumptions i.e., free 

and fixed boundary conditions can be considered. Most 2D finite element head models in 

the literature consider the free boundary condition only with the supporting argument being 

that the neck constraint has negligible influence on the dynamic response of the head model 

in a short time interval45. However, the head model subjected to frontal impact without any 

constraint at the neck will undergo predominantly rectilinear motion which is not always the 

case. Therefore, for the case of static loading, we consider a fixed boundary condition, in 

which the nodes around an area of the spinal cord/brain stem are fully constrained. For 

dynamic impact simulations, we considered different boundary conditions for different 

loading directions. For the case of frontal and back impact loading, perpendicular 

displacement (Y direction) and rotational displacement of nodes around spinal cord/brain 

stem region were assumed to be zero. Similarly for the case of top loading, X directional 

displacement and rotational displacement of nodes around spinal cord/brain stem were 

assumed to be zero. This is illustrated in Figure 3-6 in Chapter 3.
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Chapter 3

Results and Discussion

Two broad categories of impacts can be defined as static and dynamic loading, with 

dynamic loading being the most common. The mechanical response to impact is the tissue 

deformation or strain and will initiate the ensuing pathological events. The impact 

parameters and the mechanical response will dictate the types of injury (focal and/or 

diffuse). In the present study, we focus on two categories of impacts, the mechanical 

response to traumatic impact, and the types of injuries produced. Loads are described as 

direct (e.g., physical contact between the head and another object) or indirect (e.g., as the 

result of motion of the head). We simulated the model with direct loading. The type of force 

and the direction, or plane, of loading, will also affect the resulting mechanical response in 

the tissue. Impact loading can be either focal or diffuse, depending on the magnitude of the 

force and area of impact. A traumatic insult to brain or spinal cord will lead to a mechanical 

response of the tissue that is dependent on the mode (type of impact), severity (correlated 

with amplitude of static/dynamic force), and anatomical location of the impact as well as the 

mechanical properties of the tissue. The mechanical properties of a tissue vary from 

individual to individual, as well as with age and previous injuries or disease. Because of the 

properties of soft tissues such as brain and spinal cord/brain stem, both the rate and the 

duration of the impact will also influence the response. The rate of application of loads 

strongly affects tissue damage due to the viscoelastic material properties of CNS tissue. The 

tissue deformation is time dependent and is affected by duration and nature (pattern of load 

cycle in the case of transient loading) of the impact. When loads are applied at a high rate, 

the tissue cannot absorb (or reduce) the force fast enough and this results in both structural 

and functional tissue failure. In contrast, slowly applied loads give the tissue ‘‘time’’ to 

reduce the force and generally result in less damage.

Simulation of an impact to the frontal, top and back region of the head was carried out in 

ANSYS with goal to compute the shear stress/strain distribution, strain-time history, max 
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shear stress with respect to frequency and loading criteria for various injuries during 

dynamic loading condition.

3.1 Static Loading

Static loading is a case of very slowly applied direct load. Usually there are no deficits until 

there is substantial tissue deformation. These loading conditions are relatively rare and often 

occur in human entrapment situations (e.g., earthquakes).

3.1.1 Frontal Loading

Figure 3-1 depicts the region where frontal loading is applied in the brain model We 

considered zero displacement at spinal cord of the model in either direction shown in Figure 

3-2.

Figure 3-1: Frontal Loading Point

                                          

                         Figure 3-2: Boundary condition for static load
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Point Load = 20N

Figure 3-3: Shear strain contour for point load

Distributed Load = 20 Pa

Figure 3-4: Shear strain contour for distributed load

From the above simulation, it can be observed that the strain distribution in the case of point 

loading is confined to the portion of brain stem and spinal cord and rarely extends into areas 

of cerebrum. However, in the case of distributed loading, the strain is distributed all along 

the cerebrum and brain stem areas, which even extends to the rear areas of cerebrum. This 

indicates the significance of distributed loading as compared to point loading. This 

concludes that the distributed force can damage brain to a large extent than point loading.

However, it must also be stated that the magnitude of strain in the areas of brain are 

significantly smaller compared to strain in brain stem/spinal cord areas. This effectively 

means, that the magnitude of distributed load is very significant, in order to result in a 

significant difference in injury compared to point load.
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On the other hand, simulations for the case of top loading (Figures 3-6 and 3-7) shows areas 

of significant strain distribution in localized areas of brain.

3.1.2 Top Loading

                

Figure 3-5: Top Loading Point

Point load: 20N

                             
Figure 3-6: Shear strain contour for top point load

Distributed load: 20 Pa

                                  
Figure 3-7: Shear strain contour for top distributed load
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3.2 Dynamic Loading

Dynamic loading can occur quite rapidly (under 1 s, often 50 ms) and is the most common 

cause of TBI and SCI (spinal cord injury). The present section illustrates three different 

head injury simulations concerning a frontal, top and back head injury resulting from a time 

dependent load. In the frontal case, validation is established with available experimental 

results. Attention is focused on shear stress-time history, maximum shear stress with respect 

to frequency and related brain tissue damage. We simulated the model with a sinusoidal 

impact condition of different frequencies. Figure 3-7 depicts boundary conditions used for 

dynamic simulation. The colored symbols denote the corresponding translational and 

rotational displacement to be zero, which is applied on the nodes at the lower boundary line 

of brain stem/spinal cord region.

   

(a)                                                  (b)

Figure 3-8: Boundary condition for Dynamic (a) Frontal and Back loading (Displacement and 
rotation along Y direction is zero) (b) Top loading (Displacement and rotation along X   
direction is zero)

3.2.1 Frontal Loading

The model is simulated by applying a frontal impact described by sinusoidal wave of 

magnitude of 7kN and frequency of 100Hz. 

F= 7000 * sin (2*pi*f*t)

Figure 3-9 shows the predicted shear stress contour changes with time. Contour plot 

presented are at 2.5ms i.e. at peak of input force wave, at 5ms i.e. the end of first half cycle, 

at 10ms i.e. at the end of the first cycle, and randomly at 15ms, 30ms, 32.5ms and 50ms. 

When the head was subjected to the sinusoidal impact resulting in a forward rotation, high 
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shear stresses on the sagittal plane were concentrated at the occipital area.  Maximum shear 

stress with a magnitude of 1980 kPa first developed at the frontal lobe at 1 ms then 

exceeded up to 3810 kPa at 2.5 ms. From the shear stress-time history we can see that for 

the above pulse max shear stress of compressive type occurs at 2.5 ms at frontal region in

first cycle. In the third cycle it occurs at 32.5 ms i.e. at the third peak of the input force. At 

the same time contre-coup pressure of tensile type can also be observed i.e. negative 

pressure. After 2.5 ms stress at the frontal region starts dropping while at posterior region it 

starts increasing towards positive values in first cycle. When stress wave reflects back from 

posterior region it spreads towards parietal lobe that can be observed in the contour plot 

after 10 ms. Negative pressure (tensile stress) can cause the development of brain cavitation

bubbles. After 10ms, coup pressure becomes negative and both negative coup and contre 

coup pressure can generate severe shock waves which may cause contusion and DAI. At the 

end of every pulse i.e. at 10ms, for first pulse and 30ms for third pulse maximum shear 

stress value become very small.

t= 1ms

t=2.5ms                                               t=5ms
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t=10ms                                                t=15ms

     

t= 25ms                                                t=30ms

      

t= 32.5ms                                         t=50ms

Figure 3-9: Dynamic frontal loading - Shear stress contours

This very high shear stress of value 3810 kPa is observed may be because of such high input

force of 7000N.  As represented in Figures 3-10 and 3-11, plot pattern in coup and contre-



coup site depicts the variations in stress amplitude and c

a time period. In addition, the amplitude of

At the end of first cycle (at 10ms) coup pressure becomes negative

coup stress is already negative 

site due tensile pressure in both coup and contre coup regions. The traveling stress wave 

reflects against the skull at the contre

This is then followed by a tensile wave (negative pressure wave), which produces 

irreversible cavitations damage in different brain regions, especially within the contre

region, which is also indicated in literature

Figure 

                                       Figure 3-
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depicts the variations in stress amplitude and coup stress reverse in amplitude

. In addition, the amplitude of coup pressure is more than contre-coup pressure. 

the end of first cycle (at 10ms) coup pressure becomes negative, means tensile. 

is already negative and this causes severe cavitations in coup and contre coup 

site due tensile pressure in both coup and contre coup regions. The traveling stress wave 

reflects against the skull at the contre-coup site and then moves back towards interior side. 

followed by a tensile wave (negative pressure wave), which produces 

irreversible cavitations damage in different brain regions, especially within the contre

indicated in literature46.

Figure 3-10: Shear stress at coup site vs. time

-11: Shear stress at contre-coup site vs. time

se in amplitude after 

coup pressure. 

means tensile. Contre-

and this causes severe cavitations in coup and contre coup 

site due tensile pressure in both coup and contre coup regions. The traveling stress wave 

s back towards interior side. 

followed by a tensile wave (negative pressure wave), which produces 

irreversible cavitations damage in different brain regions, especially within the contre-coup 
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t=2.5ms                                   t=5ms

       

t= 10ms                                           t=15ms

Figure 3-12: Dynamic Frontal loading- shear strain vs. time contours

Figure 3-11 represents the shear strain contour profile for the case of frontal loading. In the 

first half cycle maximum strain can be observed at the vertex of brain stem. After first 5 ms,

strain distribution is observed in the complete brain. At 10 ms, negative strain is distributed 

in the brain which represents the severe axonal damage and cavitations may cause.

3.2.2 Top Loading

A predictive top impact event was simulated by applying sinusoidal force (as indicated in 

section 3.2). The simulation resulted in the shear stress and strain profiles depicted in 

Figures 3-12 and 3-13 respectively. One can observe markedly higher positive and negative 

stress developed in the coup and contre-coup regions, as compared to the case of frontal 

impact. Such high shear stresses induce intense and diffused cavitations damage. Again in 

first cycle at peak of the input force, 2.5 ms maximum shear stress can be observed, which 

is distributed to the complete brain. After 2.5 ms, stress values decrease and distribution

across the brain becomes weaker.
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t=2.5ms                                               t=5ms

      

t=10ms                                           t=15ms

Figure 3-13: Dynamic top loading - shear stress vs. time contours

      

t=2.5ms                                                 t=5ms
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t=10ms                                                  t=15ms

Figure 3-14: Dynamic top loading - shear strain vs. time contours

3.2.3 Back Loading

For, the prediction of the back impact similar loading condition as described for frontal and 

top loading is applied at the back key point as in the case of frontal impact. The figure 3-14 

and 3-15 represents the shear stress and strain contours variation with time respectively. 

One can observe that the maximum shear stress is obtained at the peak input force value i.e. 

at 2.5 ms. Maximum stress obtained in back loading case is much higher than in case of 

frontal loading. This means back loading may cause more severe injury compared to frontal 

and top with same impact. The stress distributed to parietal lobe and to the complete brain, 

in the case of back impact.

  

                            t=2.5ms                                            t=5ms
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     t=10ms                                             t=15ms

Figure 3-15: Dynamic back loading - Shear stress vs. time contours

            

t=2.5ms                                     t=5ms

   

t=10ms                                                  t=15ms
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t=25ms

Figure 3-16: Dynamic back loading - Shear strain vs. time contours

Mechanically induced brain deformation at a particular region or site as a consequence of 

applied loading may determine a particular type of brain injury. We observed that a high 

shear strain was generated at the brain stem when a sagittal section of the human skull, was 

subjected to a point impact. Brain stem is one region to experience high concentration of 

shear strain. The structure of brain stem itself resembles a narrow bridge. Therefore, it is 

highly likely that a high stress/strain concentration can develop in this area of head. For the 

different cases simulated, areas of high shear strains were initially confined in the cortical 

region of the brain. Thereafter, the strain distribution propagated to the central core areas of 

brain, after the impact reached its peak. Moreover, the stress distribution was sensitive to the 

point of impact, indicating back impact to produce more damage. The development of a 

highly localized shear strain can probably be explained in the light of structural and 

anatomic features of midbrain. Midbrain regions act as neural relay stations and are 

responsible for several vital functions of human body. Hence, higher magnitudes of shear

stress in these areas can be responsible for brain dysfunction if the level is sufficiently high

to surpass tissue thresholds. The severity of such brain dysfunction could be as extreme as 

DAI when shear stress/strain experienced by brain tissues exceeds the tissue injury 

threshold, or as minor as a mild concussion. However, the there are multiple factors that 

limit the present study. Firstly, the exact location and direction of impact is not ascertained, 

instead key point based loading was performed. In addition, comprehensive knowledge of in 

vivo material properties of brain tissue is still lacking and research is still required in this 

direction. The results from the 2D model could still be improved with more accurate 

representation of brain tissue properties.
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Chapter 4

Conclusion and Future Work 

4.1 Conclusion

We have illustrated that clinically relevant injuries, such as DAI and brain cavitation, can be 

resulted from transient impact on head. Following are the key conclusions from the present 

study.

1. We simulated the result for static and dynamic load. From that we conclude that 

dynamic load may cause severe injuries like cavitation and diffuse axonal injury.

2. It is observed that contre - coup injuries can cause serious problems in brain 

compared to coup injuries. 

3. We concluded that, distributed static load causes high strain in brain than point load. 

4. In the case of dynamic loading, back impact is more risky than frontal impact in 

general. 

5. The stress waves spreads in the complete brain with time and causes cavitations and 

axons shearing which can result in diffuse axonal injury.

6. Spinal cord experiences maximum strain in different loading conditions and is the 

most vulnerable part in static loading.

4.2 Future Work

The present work focuses on the 2D representation of injury mechanics of head. Modeling 

of skull-brain complex and its interface design requires a lot of study of human anatomy as 

well as mechanical parameters relevant to biological injury in brain. Following are the 

future works that can be performed following the present model:

1. Failure criteria like von-Misses stress and strain for study of brain injury mechanics

can be developed.
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2. CSF can be considered as a viscous fluid (to simulate case of CSF leakage upon 

impact) and skull as completely anisotropic can be simulated.

3. Extraction of meningeal layer from MRI or CT alone is difficult. One can design 3D 

model with meningeal layers by using the CT and MRI overlapped image.

4. 3D modeling can be performed based on surface generation from MRI images of 

different section of head region. 

5. The effect of medium surrounding head is very important in simulating conditions 

such as blast loading. Compressible fluid flow simulations will be needed to 

calculate the impact on head, prior to brain injury modeling.

6. Brain is considered as viscoelastic and these material properties vary with respect to 

frequency of applied load in transient analysis. Therefore, models could be 

simulated for different viscoelastic material properties with respect to frequency of 

applied load in transient analysis.
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