ONE-DAY WORKSHOP 2020

QUEEN MARY UNIVERSITY OF LONDON TUE 15 DECEMBER 2020

Joint Piano-roll and Score Transcription for Polyphonic Piano Music

Lele Liu*, Veronica Morfi, and Emmanouil Benetos

Centre for Digital Music, Queen Mary University of London, UK, lele.liu@qmul.ac.uk

Abstract— We propose a method of joint multi-pitch detection and score transcription for polyphonic piano music. The outputs of our system include both a piano-roll representation (a descriptive transcription) and a symbolic musical notation (a prescriptive transcription). Instead of further converting MIDI transcriptions to scores, we use a multitask model combined with Convolutional Recurrent Neural Networks and Sequence-to-sequence models with attention mechanisms. We propose a reshaped score representation that outperforms a LilyPond representation both in prediction accuracy and time/memory resources, and compare different input audio spectrograms. The joint model outperforms a single task model in score transcription.

I. INTRODUCTION

A large part of work in Automatic Music Transcription (AMT) falls under the tasks of multi-pitch detection and onset/offset detection. In this work, we discuss the problem of music audio-to-score transcription (A2S). Unlike in [1] which obtains a MIDI output in the beginning and transcribes music audio step by step, we use an end-to-end method that directly converts an audio input to a score format (see some early stage works in [2]).

In this work, we intend to extend the use of end-to-end A2S to a more general application scenario of polyphonic piano music with varying polyphony levels, as well as to support the estimation of music performance characteristics in a piano-roll format. We propose a multitask end-to-end model composed of convolutional layers, recurrent layers and sequence-to-sequence models with an attention mechanism for A2S, which is, to our knowledge, the first holistic model that transcribes polyphonic piano music into both a piano-roll format (corresponding to a descriptive notation of the music audio) and a score in Western staff notation (corresponding to a prescriptive notation of the musical audio). Additionally, we propose a new score representation for modelling polyphonic music that learns and predicts 7 times faster, uses less memory, and performs better than the LilyPond format score representation on this model. We also test the effect of using different input time-frequency representations, and the effect of combining multi-pitch detection and score transcription with a multitask model.

II. EXPERIMENTS

We carry out three experiments: 1) *comparison of time-frequency representations*, including Short-Time Fourier Transform (STFT), Mel Spectrogram, Constant-Q Transform (CQT), Harmonic Constant-Q Transform (HCQT), and Variable-Q Transform (VQT); 2) *comparison of score representations*, including a LilyPond format score representation and a Reshaped score representation (see in Figure 1); 3) *combination of piano-roll and symbolic score* in a multitask model. We use a joint model with shared convolutional layers, and separate recurrent layers/sequence-to-sequence networks for multi-pitch detection and score prediction.

Figure 1. Example music score and corresponding LilyPond and Reshaped representation

We train and evaluate our system in a dataset with scores collected from the MusicScore website and audio recordings synthesized from the scores. Experimental results are shown in Tables 1 and 2. Among the five spectrogram types, VQT shows the best performance. The Reshaped representation runs around 7 times faster, uses around half the memory, and is slightly better than the LilyPond representation in terms of prediction accuracy. Overall, the joint model predicts better scores than a single task model.

 Table 1.
 Benchmark F-measure of piano-roll prediction on different input representations and models.

Input representations/Models	F_{f}	F_{on}	F_{onoff}
STFT	89.5	81.0	61.7
Mel Spectrogram	89.0	82.1	63.0
CQT	91.9	85.4	67.4
HCQT	91.0	84.1	65.3
VQT	91.9	85.7	68.5
Piano-roll only	86.4	67.6	52.0
Joint	88.0	66.7	53.6

Table 2. Word error rates and MV2H [3] results in percentage for different models. LilyPond: Score-only model with LilyPond representation; Reshaped: Score-only model with Reshaped representation; Joint: Joint model with Reshaped representation.

WER	wer_{right}		wer_{left}		wer
LilyPond	38.0		39.0		38.5
Reshaped	37.8		34.5		36.2
Joint	37.6		35.3		36.5
MV2H	F_p	F_{voi}	F_{met}	F_{val}	F_{MV2H}
LilyPond	66.7	90.3	94.8	93.2	86.3
Reshaped	69.6	89.7	94.8	93.7	86.9
Joint	71.1	90.8	94.9	94.4	87.8

III. REFERENCES

- K. Shibata et al., "Non-local musical statistics as guides for audio-toscore piano transcription," arXiv preprint arXiv:2008.12710, 2020.
- [2] M. A. Román et al., "Data representations for autio-to-score monophonic music transcription," Expert Systems with Applications, vol. 162, pp.113769, 2020.
- [3] A. Mcleod and M. Steedman, "Evaluating automatic polyphonic music transcription," in ISMIR, 2018, pp. 42-49.

DMRN+15: DIGITAL MUSIC RESEARCH NETWORK ONE-DAY WORKSHOP 2020, QUEEN MARY UNIVERSITY OF LONDON, TUE 15 DECEMBER 2020

^{*}L. Liu is a research student at the UKRI Centre for Doctoral Training in Artificial Intelligence and Music, supported jointly by the China Scholarship Council and Queen Mary University of London.