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Abstract— We propose a method of joint multi-pitch detection and
score transcription for polyphonic piano music. The outputs of our
system include both a piano-roll representation (a descriptive
transcription) and a symbolic musical notation (a prescriptive
transcription). Instead of further converting MIDI transcriptions to
scores, we use a multitask model combined with Convolutional
Recurrent Neural Networks and Sequence-to-sequence models with
attention mechanisms. We propose a reshaped score representation that
outperforms a LilyPond representation both in prediction accuracy and
time/memory resources, and compare different input audio
spectrograms. The joint model outperforms a single task model in score
transcription.

I. INTRODUCTION
A large part of work in Automatic Music Transcription (AMT)

falls under the tasks of multi-pitch detection and onset/offset
detection. In this work, we discuss the problem of music
audio-to-score transcription (A2S). Unlike in [1] which obtains a
MIDI output in the beginning and transcribes music audio step by
step, we use an end-to-end method that directly converts an audio
input to a score format (see some early stage works in [2]).

In this work, we intend to extend the use of end-to-end A2S to a
more general application scenario of polyphonic piano music with
varying polyphony levels, as well as to support the estimation of
music performance characteristics in a piano-roll format. We propose
a multitask end-to-end model composed of convolutional layers,
recurrent layers and sequence-to-sequence models with an attention
mechanism for A2S, which is, to our knowledge, the first holistic
model that transcribes polyphonic piano music into both a piano-roll
format (corresponding to a descriptive notation of the music audio)
and a score in Western staff notation (corresponding to a prescriptive
notation of the musical audio). Additionally, we propose a new score
representation for modelling polyphonic music that learns and
predicts 7 times faster, uses less memory, and performs better than the
LilyPond format score representation on this model. We also test the
effect of using different input time-frequency representations, and the
effect of combining multi-pitch detection and score transcription with
a multitask model.

II. EXPERIMENTS

We carry out three experiments: 1) comparison of time-frequency
representations, including Short-Time Fourier Transform (STFT),
Mel Spectrogram, Constant-Q Transform (CQT), Harmonic
Constant-Q Transform (HCQT), and Variable-Q Transform (VQT); 2)
comparison of score representations, including a LilyPond format
score representation and a Reshaped score representation (see in
Figure 1); 3) combination of piano-roll and symbolic score in a
multitask model. We use a joint model with shared convolutional
layers, and separate recurrent layers/sequence-to-sequence networks
for multi-pitch detection and score prediction.
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Figure 1. Example music score and corresponding LilyPond and Reshaped
representation

We train and evaluate our system in a dataset with scores
collected from the MusicScore website and audio recordings
synthesized from the scores. Experimental results are shown in
Tables 1 and 2. Among the five spectrogram types, VQT shows the
best performance. The Reshaped representation runs around 7 times
faster, uses around half the memory, and is slightly better than the
LilyPond representation in terms of prediction accuracy. Overall,
the joint model predicts better scores than a single task model.
Table 1. Benchmark F-measure of piano-roll prediction on different input

representations and models.

Table 2. Word error rates and MV2H [3] results in percentage for different
models. LilyPond: Score-only model with LilyPond representation;
Reshaped: Score-only model with Reshaped representation; Joint:

Joint model with Reshaped representation.
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