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Abstract

Emotion states recognition using wireless signals is an emerging area of research that has

an impact on neuroscientific studies of human behaviour and well-being monitoring. Cur-

rently, standoff emotion detection is mostly reliant on the analysis of facial expressions and/

or eye movements acquired from optical or video cameras. Meanwhile, although they have

been widely accepted for recognizing human emotions from the multimodal data, machine

learning approaches have been mostly restricted to subject dependent analyses which lack

of generality. In this paper, we report an experimental study which collects heartbeat and

breathing signals of 15 participants from radio frequency (RF) reflections off the body fol-

lowed by novel noise filtering techniques. We propose a novel deep neural network (DNN)

architecture based on the fusion of raw RF data and the processed RF signal for classifying

and visualising various emotion states. The proposed model achieves high classification

accuracy of 71.67% for independent subjects with 0.71, 0.72 and 0.71 precision, recall and

F1-score values respectively. We have compared our results with those obtained from five

different classical ML algorithms and it is established that deep learning offers a superior

performance even with limited amount of raw RF and post processed time-sequence data.

The deep learning model has also been validated by comparing our results with those from

ECG signals. Our results indicate that using wireless signals for stand-by emotion state

detection is a better alternative to other technologies with high accuracy and have much

wider applications in future studies of behavioural sciences.

Introduction

With the advancements in body-centric wireless systems, physiological monitoring has been

revolutionized for improving healthcare and wellbeing of people [1–6]. These systems pre-

dominantly rely on wireless intelligent sensors that are capable of retrieving clinical informa-

tion from physiological signals to interpret the progression of various ailments. A traditional

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0242946 February 3, 2021 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Khan AN, Ihalage AA, Ma Y, Liu B, Liu Y,

Hao Y (2021) Deep learning framework for subject-

independent emotion detection using wireless

signals. PLoS ONE 16(2): e0242946. https://doi.

org/10.1371/journal.pone.0242946

Editor: Tao Song, Polytechnical Universidad de

Madrid, SPAIN

Received: June 17, 2020

Accepted: November 12, 2020

Published: February 3, 2021

Copyright: © 2021 Khan et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and Supporting information files.

Funding: This work was supported by IET AF

Harvey Research Prize.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0003-0234-2410
https://orcid.org/0000-0002-9949-7226
https://doi.org/10.1371/journal.pone.0242946
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242946&domain=pdf&date_stamp=2021-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242946&domain=pdf&date_stamp=2021-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242946&domain=pdf&date_stamp=2021-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242946&domain=pdf&date_stamp=2021-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242946&domain=pdf&date_stamp=2021-02-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242946&domain=pdf&date_stamp=2021-02-03
https://doi.org/10.1371/journal.pone.0242946
https://doi.org/10.1371/journal.pone.0242946
http://creativecommons.org/licenses/by/4.0/


sensing system can amass and process a wide range of biological signals, including electrophys-

iological (electroencephalogram (EEG), electrocardiogram (ECG)) [7, 8] and physiological

information [9, 10], that are incessantly emanating from the human body. Apart from diag-

nostic and therapeutic aspects, wireless sensors have demonstrated their applications for

recognizing emotions that can be extracted from a measured physiological data [11–13]. Emo-

tions are indispensable facet of humans and can affect their physiological status during office

work, travelling, decision making, entertainment and many others activities [14, 15]. The

human health and work productivity are highly reliant on the intensity of emotions that can

be either positive or negative. The positive emotions can help to achieve optimal well being

and mental strength, whereas long term negative emotions may result in predisposing cause of

chronic mental health problems, such as depression and anxiety. Furthermore, people who are

experiencing frequent negative emotional states have a weaker immune response as compared

to people with positive affective style [16]. The above mentioned aspects of emotions have led

to further investigations in real life scenarios.

Due to the impact of aforementioned applications in our daily course of life, extensive

amount of strategies have been exploited for emotion detection that primarily focus on audio

[17], visual [17–19], facial [20], speech [21] and body gestures [22]. Notably, emotion recogni-

tion by statistical analysis of physiological signals (ECG, EEG, wearable sensors, etc.) has been

the emerging research topic in the recent years [15, 23, 24].

While conventional machine learning (ML) algorithms have already performed optimally

for emotion classification, especially under the constraint of subject dependency [25, 26], latest

research is heading further to explor applications of deep learning [27, 28]. One key advantage

of deep learning models over ML algorithms is the elimination of tedious extraction of hand-

crafted features which is taken care by the neural network itself. In literature, a deep neural

network consisting of long short-term memory (LSTM) and convolutional layers is proposed

to detect emotion states from physiological, environmental and location sensor data with

excellent performance in subject dependent regime [29].

A similar architecture is deployed in [30] for end-to-end learning of emotions with consis-

tent accuracy. Unsupervised deep belief networks have also been used to extract in-depth fea-

tures of physiological signals from three different sensors and classified with Fine Gaussian

Support Vector Machine (FGSVM) [31]. The WiFi based emotion sensing platform, such as

EmoSense has been developed to capture physical body gestures and expressions by analysing

the signal shadowing and multi-path effects with traditional machine learning algorithms.

However, a maximum classification accuracy of only 40% for subject independent case [22]

was achieved. Moreover, in contrary to a detection scheme that relies directly on heart-beat or

brain signals, the WiFi based emotion sensing can be misguided by intentional false acting of

body gestures or non-expressive behaviour. Several novel deep learning architectures have

been proposed for the time series data processing such as gene expression classification and

clustering [32].

These approaches vary from simple multi-layer feed forward neural networks [33, 34] to

more complex frameworks, such as LSTM based deepMirGene [35], recurrent neural network

(RNN), autoencoder based DeepTarget [36] and fDNN. These approaches incorporate a ran-

dom forest model as a feature learner from raw gene inputs and a fully-connected neural net-

work as a classification learner [37]. Whereas, deep belief network coupled with autoencoder

are employed for learning low dimensional representations of gene expressions, enabling

unsupervised clustering [38]. Thus, there is an ample opportunity to reliably address the chal-

lenging task of subject independent emotion detection based on wireless signals with a care-

fully tapped deep learning architecture.

PLOS ONE Wireless emotion detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0242946 February 3, 2021 2 / 16

https://doi.org/10.1371/journal.pone.0242946


The recent progress in wearable electronic sensors have enabled collection of physiological

data, such as heart rate, respiration rate and electroencephalography (EEG) for several physical

manifestations of emotions. However, wearable sensors and devices are cumbersome during

routine activities and can lead to false judgement in recognizing people’s true emotions. In

[11], a wireless system is demonstrated that can measure minute variations of a person’s heart-

beat and breathing rate in response to the individually prepared stimuli (memories, photos,

music and videos) that evoke a certain emotion during experiment. Most of the participants in

the study were actors and experienced in evoking emotions. The RF reflections off the body

are preprocessed and fed to machine learning (ML) algorithms to classify four basic emotions

types, such as anger, sadness, joy and pleasure. The proposed system excludes the require-

ments of carrying on-body sensors for emotion detection. Nevertheless, emotions were classi-

fied only using conventional ML algorithms and the quest to investigate the competence of

deep learning for wireless signals classification has become an exciting research area.

This paper focuses on exploring deep neural networks for affective emotion detection in

comparison to traditional ML algorithms. A framework is developed for recognizing human

emotions using a wireless system without bulky wearable sensors, making it truly non-intru-

sive, and directly applicable in future smart home/building environments. An experimental

database containing the heartbeat and breathing signals of 15 subjects was created by extract-

ing the radio frequency (RF) reflections off the body followed by noise filtering techniques.

The RF based emotion sensing systems (Fig 1) can overcome the limitations of traditional

body worn devices that can encounter limited range of sensing and also cause inconvenience

to people. For eliciting particular emotion in the participant, four videos have been selected

from an on-line video platform. Videos were not shown to the participants before the start of

experiment. Thus, our approach of evoking emotions in the participants is distinguishable

from [11], in which each participant has to prepare their own stimuli (after watching photos,

reminding personal memories, music, videos) before the start of the experiment and act the

intended emotion during the experiment. A novel convolutional neural network (CNN) archi-

tecture integrated with long short-term memory (LSTM) sequence learning cells that lever-

age’s both the processed RF signal and raw RF reflection is utilized for the classification.

The proposed network achieves state-of-the-art classification accuracy in comparison to

five different traditional ML algorithms. On the other hand, a similar architecture is used for

emotion recognition using the ECG signals. Our results indicate that deep learning is capable

Fig 1. Emotion detection process in which each participant is asked to watch emotion evoking videos on the

monitor while being exposed with radio waves. The Tx antenna is used to transmit RF signals towards the

participant, whereas Rx antenna is used to receive RF reflections off the body. The ECG monitor is also connected to a

participant’s chest for recording heart beats. The data received from ECG is used to correlate heart beats variations

with emotion evoking videos.

https://doi.org/10.1371/journal.pone.0242946.g001
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of utilizing a range of building blocks to learn from the RF reflections off the body for precise

emotion detection and excludes manual feature extraction techniques. Furthermore, we pro-

pose that RF reflections can be an exceptional alternative to ECG or bulky wearables for sub-

ject-independent human emotion detection with high and comparable accuracy.

Results

Detection of emotional states

Deep learning analysis. Feature extraction is an integral part of a signal (electromagntic,

acoustic, etc.) classification that can be performed manually or by using a neural network.

Deploying traditional machine learning algorithms for signal classification necessitates pon-

derous extraction of statistical parameters from the raw data input. However, this manual

approach can be tedious and may result in omission of some useful features. In contrary, deep

neural networks can extract enormous amount of features from the raw data itself, whether

they are significant or of minute details [39]. Therefore, we employ an appropriate DNN archi-

tecture to process the time domain wireless signal (RF reflections off the body) and the corre-

sponding frequency domain version obtained by continuous wavelet (CW) transformation.

Here, the RF reflection signal is one-dimensional (1D) and the CW transformation is an image

of three dimensions (3D), represented in the format of (width, height and channels). The

parameters in wavelet image can be regarded as time (x-axis), frequency(y-axis), and the

amplitude. The proposed DL architecture that is shown in Fig 2 could be identified as a ‘Y’

shaped neural network that accepts inputs in two distinct forms and fuses the processed inputs

at the end to produce classification probabilities related to four emotions. The neural network

consists of two sets of convolutional 1D and maxpooling 1D layers, followed by a long short-

term memory (LSTM) cell to capture the features and time dependency of the time domain RF

signal. Another two sets of convolutional 2D and maxpooling 2D layers are used to process

CW transformed image.

The convolutional layers are exceptional feature extractors and often outperform humans

in this regard. A convolutional layer may have many kernels in the form of matrices (e.g. 3 × 3

and 5 × 5) that embed numerical values to capture variety of different features (e.g. brightness,

darkness, blurring, edges, etc., of an image) from raw data. A kernel runs through the input

data as a sliding window, and at every distinct location, it performs element-wise multiplica-

tion with the overlapping input data and takes the summation to obtain the value of that par-

ticular location of the generated feature map. Maxpooling layers do not involve in feature

extraction. However, they reduce the dimensions of the outputs of convolutional layers, hence

reducing the computational complexity. A typical convolutional layer has 32, 64 or even 128

kernels and thus results in the same number of feature maps. As observed in Fig 2, the feature

maps carry even the diminutive information available in the input image, whereas a human

eye is unable to capture this level of information, making them ordinary feature extractors.

The accuracy of classification is evaluated with leave-one-out cross validation (LOOCV)

[40]. Although, cross validation is immensely used with ML models to observe the generaliz-

ability of the model, it is somewhat unconventional to perform cross validation with deep

learning due to; (1) extreme computational complexity and (2) difficulty in tracking overfit-

ting/underfitting conditions with a fixed number of iterations while training the model. How-

ever, in order to make a fair judgement on our DL predictions, we first used the full database

and performed LOOCV, despite being the most computational intensive form of K-fold cross

validation. In K-fold cross validation, the database is split into k subsets, out of which, one is

kept as the test set and the other k − 1 are put together to form the training set. This process is

repeated k times such that every data point gets to be in the test set exactly once, eliminating
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the effect of biased data division into train and test sets. LOOCV is achieved by making the

value of k equal to N, number of data points in the database.

The proposed DL model yielded in 71.67% LOOCV accuracy. This is quite a high percent-

age, considering the fact that human emotions are highly dependent on the level of stimulation

generated in their brains by the same audio-video stimuli, capable of inducing emotions inten-

sity differently from one person to another. It is tempting to conclude that the performance of

model is solely based on the classification accuracy. However, a model with a high classifica-

tion accuracy can still perform suboptimally, especially when the database is unbalanced as

some classes contain a high number of data points and the others do not. In order to have a

better description of the model, we often adopt other performance metrics such as precision,

recall and F1-score. Precision indicates how many selected instances are relevant (a measure of

quality), whereas recall indicates how many relevant instances are selected (a measure of quan-

tity). F1-score reveals the trade-off between precision and recall, and can be correlated with

effective resistance of the two parallel resistors (precision and recall) in a closed loop circuit.

F1-score becomes low if either of these figures is low in comparison to the other, thus illustrat-

ing the reliability of the model across all classes. Although, these parameters are defined for

binary classification, they can be extended to multi-class problems by calculating inter-class

Fig 2. Proposed deep neural network architecture for emotion classification. Time domain RF signal is processed through two convolutional-1D layers

and an additional LSTM cell that captures the time dependency (section 1 in S1 File). The CW transformation is processed by two convolutional-2D layers

(section 2.1 in S1 File). Each feature map in convolutional layers represents a unique extracted feature from the layer input. The features extracted from two

distinct inputs of the model are then concatenated, leading to a broad learning capability. The detailed visualization of 32 and 64 features maps is presented

in section 2.2 of S1 File.

https://doi.org/10.1371/journal.pone.0242946.g002
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mean and standard deviation. The calculated values of precision, recall and F1-score after

LOOCV are 0.713, 0.716 and 0.714 respectively, implying that the model has achieved good

generalizability.

Machine Learning (ML) analysis. We have employed traditional ML algorithms process

by means of data pre-processing, feature extraction, model training and classifications (section

3, S5 Fig in S1 File). In our experiment, the RF reflected signals off the body encompass

human body movements and random noise that is mostly contributed from the environment,

equipments (VNA, cables, etc,. . .) and other moving objects. For this reason, it is essential to

filter the noise from received RF signals for further processing. Moreover, we have also imple-

mented data normalization technique to circumvent the influence of intensity variations on

body movement for each participant.

Feature extraction process can be regarded as a core step of ML algorithms to analyse data.

Considering the importance of ML for feature extraction, an efficient algorithm can signifi-

cantly improve the classification accuracy while reducing the impact of interfering redundant

RF signals and random noise. In the literature, a variety of feature extraction parameters are

studied that are mostly in the field of affective recognition and biological engineering [41–43].

Permutation entropy is a widely used nonlinear parameter to evaluate the complexity of

sequence that is a prevalent approach to estimate the pattern of biological signals, such as Elec-

trocardiogram (ECG) and electroencephalogram (EEG). It is also capable of detecting real-

time dynamic characteristics, and also has strong robustness.

Apart from the entropy value, it is well documented that the power spectral density (PSD)

and statistical (variance, skewness, kurtosis) parameters are also related to the affective state of

participants [44]. In our analysis, the permutation entropy, PSD in the range of 0.15–2 Hz, 2–4

Hz and 4–8 Hz, and the variance, skewness and kurtosis values are extracted from the pre-pro-

cessed signals. Therefore, overall seven parameters are tapped in the feature extraction process

(section 3, S5 Fig in S1 File).

Analysis of deep learning and machine learning results. The confusion matrices

obtained using LOOCV for CNN+LSTM model and five classical ML algorithms are depicted

in Fig 3. As tabulated in Table 1, deep learning outperforms conventional machine learning

algorithms in all performance metrics. We identify two main reasons that explain why deep

learning is superior in the current learning problem. First, having both the time domain wire-

less signal and CW transformed image as an input is a rich source of learning for the CNN

+LSTM model whereas the ML algorithms are trained with extracted features as inputs, that

are sensitive to the level of human judgement on selecting features as well as the obvious loss

of information from the original data. Second, CNNs are self learners that learn even the

diminutive information, hidden in raw data that aids to reconstruct its target values, given the

correct hyper-parameters. ML algorithms are somewhat reliant on human to figure out mean-

ingful statistical parameters (or a combination of parameters) from raw data to be fed to the

model. Nevertheless, these ML models still report an acceptable performance that can be used

as a criterion for measuring how well the implemented DL model can perform.

Data visualization

Data visualization is pivotal for basic identification of patterns and trends in data that helps to

understand and elaborate the results obtained from the machine learning models. However,

high dimensional data as obtained by feature extraction, needs to be compressed into a lower

dimension for visualization. T-distributed stochastic neighbour embedding (t-SNE) is a non-

linear dimensionality reduction machine learning algorithm often used for visualising high

dimensional data by projecting it onto a 2D or 3D space (section 4 in S1 File). Fig 4 shows the
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t-SNE plots of RF and ECG databases, representing all 15 subjects. Fig 4a supports ML classifi-

cation results for RF signals as the emotions ‘Relax’ and ‘Disgust’ are rather easily separable

from the rest of emotions. The self assessment scaling acquired from the subjects after partici-

pating in the experiment also complement our findings as most of them stated that the video

stimuli of ‘Relax’ and ‘Disgust’ really evoked the calmness and disgust emotions respectively

(section 5, S6 Fig in S1 File).

Discussion

It is understood that the emotions evoked by the audio-visual stimuli are highly subject depen-

dent and therefore difficult to classify on a common ground. Due to this reason, it is essential

to assess the capability of models to distinguish between classes. A receiver operating charac-

teristic (ROC) curve is a probability curve obtained by plotting sensitivity against (1-specific-

ity). Area under the curve (AUC) represents the degree of separability. ROC is defined for a

binary classifier system, however, can be extended for a multiclass classification by building a

single classifier per class, known as one-vs.-rest or one-against-all strategy. ROC curve and

AUC for each class obtained using the SVM model are illustrated in Fig 5. AUCs indicate that

the emotions ‘Disgust’ and ‘Relax’ have a higher degree of separability, complying well with

the DL and ML classification results. It should be noted that four video stimuli of respective

emotions were displayed to the subjects with minimum delay between the videos and hence it

is possible for evoked emotions in the preceding video to persist in the initial part of the fol-

lowing video before it completely vanishes.

Fig 3. Confusion matrices obtained by LOOCV for DL and ML models.

https://doi.org/10.1371/journal.pone.0242946.g003

Table 1. ML vs DL results comparison based on average performance metrics. The metric ‘Accuracy’ refers to LOOCV accuracy.

Accuracy (%) Precision Recall F1-score

CNN + LSTM 71.67 0.713 (±0.08) 0.716 (±0.12) 0.714 (±0.10)

Random forest 63.33 0.646 (±0.27) 0.633 (±0.29) 0.634 (±0.18)

SVM 63.33 0.645 (±0.17) 0.63 (±0.04) 0.637 (±0.08)

KNN 61.7 0.64 (±0.21) 0.616 (±0.18) 0.615 (±0.19)

Decision tree 55.0 0.554 (±0.30) 0.549 (±0.23) 0.55 (±0.14)

LDA 51.7 0.544 (±0.36) 0.516 (±0.27) 0.526 (±0.28)

https://doi.org/10.1371/journal.pone.0242946.t001
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Fig 4. t-SNE plots representing the full RF and ECG databases. The plots were obtained by reducing the dimensions

of the continuous wavelet images of each signal. It can be observed that the wavelet images of RF signals (panel (a))

demonstrate a better separability between emotions than that of ECG signals (panel (b)).

https://doi.org/10.1371/journal.pone.0242946.g004
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We have used CNN+LSTM model to predict the variations of emotion probabilities across

all the videos for a randomly selected subject from the test set. Fig 6 depicts the probability var-

iation of emotions over the time and mean probabilities.

RF vs ECG performance comparison

Human clinical conditions, either physical or mental, cause subtle variations in heart rate that

is also reflected in the ECG signal. Therefore, the existing health condition monitoring systems

predominantly depend on ECG data for discovering the underlying reasons and categorizing

the conditions. In order to make a comparison with RF results, we utilize simultaneously

extracted the ECG signal data to train a similar DNN architecture as shown in Fig 2. Likewise,

the Wavelet Transformation is applied to ECG data (Fig 7a). As observed in the Fig 4b, CW

transformation alone is not enough to distinguish between emotions. Therefore, we calculated

81 features from the ECG signal, known as inter beat interval (IBI) features and further applied

minimum redundancy maximum relevance (mRmR) feature selection [45] method to reduce

the dimensions, resulting in 30 features. Since the features do not form a time sequence, we

have omitted the LSTM cell from the DL architecture. The extracted features and the CW

transformations are used to train the CNN model for emotion recognition. To identify the

threshold performance, we have trained a SVM model with the extracted 30 features. Table 2

demonstrates the performance metrics in ECG classification. The confusion matrices of CNN

and SVM models are shown in Fig 7b and 7c respectively. In general, the deep learning

Fig 5. ROC-AUC representing the degree of separability between classes. The emotions ‘Disgust’ and ‘Relax’ are highly

separable from the rest. Micro-average aggregates the contribution from all classes to compute the average ROC curve. Macro-

average computes the ROC metric for each class independently and takes the average, hence treating all classes equally.

https://doi.org/10.1371/journal.pone.0242946.g005
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classification performances of RF and ECG (Fig 7) are high and very similar (both having

71.67% LOOCV accuracy), indicating that RF signals can describe the underlying emotion of a

person as good as an ECG signal with added benefits of being wireless and more practical. Fur-

thermore, we tested the performance of the proposed deep learning architecture on the well

established DREAMER ECG database [41] for emotion recognition. The model achieved

68.48% subject independent LOOCV classification accuracy with 0.678, 0.685, 0.680 precision,

recall and F1-score values respectively (section 6 in S1 File). Thus, it is evident that the pro-

posed novel DL architecture can be employed across different databases generated under

diverse conditions.

Experimental study and data processing

Ethical approval

All experimental study was approved by Queen Mary Ethics of Research Committee of Queen

Mary University of London under QMERC2019/25. All research was performed in accordance

with guidelines/regulations approved by Ethics of Research Committee. Written informed

consent was obtained from the participants involved in the study.

Participants

The experiment was performed on 15 participants. All participants were English speaking,

aged between 22—35 years. The participants were briefly explained about the measurement

Fig 6. Variations of probability of different emotions over time, predicted for a randomly selected subject from the test set. Smooth probability curves

are generated by interpolating the discrete probability values.

https://doi.org/10.1371/journal.pone.0242946.g006
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details before the start of the experiment. They were provided with comfortable environment

so that they can only focus on watching videos with minimum distractions.

Stimuli: Emotions evoking videos

For inducing emotions in the participants, individual videos were selected that can induce

four emotional states (relax, scary, disgust, and joy) in the participants (section 7, S8 Fig in S1

File). The duration of each video clip was from 3—4 minutes. A survey was prepared and pro-

vided to the participants, where the emotions can be mapped and graded according to the

intensity of emotions felt during the experiment [46]. Participants were asked to record the

intensity of emotions in the survey after watching each video. Self assessment results indicated

that videos are capable of inducing a particular emotion in the participant during the experi-

ment (section 5, S6 Fig in S1 File). However, it is also observed that some participants have

experienced multiple emotions while watching a single video. For instance, while watching

video corresponding to the happy emotions, participants indicated on the survey that they

Fig 7. CW transformed ECG inputs fed to the CNN model and the confusion matrices representing the ECG

classification performances of CNN and SVM ML models.

https://doi.org/10.1371/journal.pone.0242946.g007

Table 2. ML vs DL results comparison for ECG classification. The metric ‘Accuracy’ refers to LOOCV accuracy.

Accuracy (%) Precision Recall F1-score

CNN 71.67 0.720 (±0.03) 0.716 (±0.09) 0.714 (±0.03)

SVM 68.33 0.692 (±0.07) 0.68 (±0.05) 0.681 (±0.02)

https://doi.org/10.1371/journal.pone.0242946.t002
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didn’t find the video content happy enough and they remained relax while watching the video.

This implies that emotion detection require complex procedure to distinguish emotions of a

participant.

Emotion detection experiment

Measurement set-up. Measurements were performed in the anechoic chamber to reduce

any interfering noise emanating from external environment that might alter the emotions of a

participant during experiment (section 8, S11 Fig in S1 File). A pair of Vivaldi type antennas is

used to form the radar, operating at 5.8 GHz (section 8, S10 Fig in S1 File). One antenna is

used for RF signal transmission towards the body (Green Signal, Fig 1), while the second

antenna was used for receiving RF reflections off the body (Red Signal, Fig 1). A pair of coaxial

cables were used to connect both antennas to the programmable vector network analyzer

(Rohde & Schwarz, N5230 C) through coaxial cables. A laptop was used to play videos and the

participants were asked to wear headphones so that they can effectively focus on the audio.

The distance between the antennas and the participants was 30 cm as illustrated in the mea-

surement set-up (S2 Fig in S1 File).

Detection of RF reflections from the participants. The videos were shown one at a time

to the participant who was sitting on the chair in-front of the displaying monitor at a distance

of approximately 1 meter. The participants were exposed with RF power level of 0 dBm. After

the end of each video, the participant was asked to relax before the start of next video. While

each video was playing, RF reflections from the participant’s body were detected through the

receiving Vivaldi antenna, that was connected the VNA. In our experiment, the phase differ-

ence of RF reflections is captured using radar techniques. We have employed the procedure

that can calculate the phase difference between the transmitted and RF reflections off the body.

For instance, the transmitted signal is given as:

xðtÞ ¼ sin ðo0t þ φ
0
Þ ð1Þ

where ω0 is the frequency of transmitted signal(operating frequency of 5.8 GHz), whereas φ0 is

initial phase of the transmitted signal. Distance between the participant and Tx antenna is:

dðt0Þ ¼ d � f ðt0Þ ð2Þ

where d is the static distance between the participant and Tx antenna and f(t0) corresponds to

the movement of participant’s body. The received signal can be expressed as:

xreðt þ4tÞ ¼ G � sin ðo0t þ o0 4 t þ φ
0
Þ ð3Þ

where Dt ¼ 2dðt0Þ
c is the time duration that the transmitting RF signal takes to reach the partici-

pant’s body and G ¼ jG0jejφ0 is the reflection coefficient from the participant. By considering

the participant’s body movement can be regarded as quasi-periodic signals, the expression,

f(t0) can be transformed as f ðt0Þ ¼
PN

i¼0
Ai sin ðoit þ φiÞ. The extended expression of the

received signal is given below:

xre t þ4tð Þ ¼ G � sin o0t þ
2d
c
o0 �

2

c
o0

XN

i¼1

Ai sin oit
0 þ �ið Þ þ φ

0

 !

ð4Þ

The phase difference between transmitted signal and received signal is:

F t0ð Þ ¼ C0 �
2

c
o0

XN

i¼0

Ai sin oit
0 þ �ið Þ ð5Þ
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Where C0 is a constant. The amplitude of F(t0) is proportional to the frequency of VNA ω0

and body movements Ai. We can infer from above mentioned equation that the variations of

phase difference corresponds to the participant’s body movement. We have analysed the emo-

tions on the last 120 seconds of each video. This is to make sure that the intensity of emotions

will be high by the end of video as compared to the start of every video.

Data acquisition using ECG. The ECG signals have been extensively explored in litera-

ture for emotion detection, particularly in the field of affective computing. The emotional

states of a person are effectively associated with psychological activities and cognition of

humans. In our experiment, we have used an ECG monitor (PC-80B) to extract the heartbeat

variations of a participant during experiment. The ECG monitor is convenient to use and has

three electrodes that can be mated to the participant’s chest conveniently.

Signal processing analysis. ECG signals, We have employed signal processing techniques

on ECG signals to extract the information about heartbeat variation, owning to the elicited

emotions in the participants. Generally, the ECG signals occupy bandwidth in the range of 0.5

—45 Hz. For this reason, to remove the baseline drift in the ECG signal, re-sampling is applied

at the frequency of 154 Hz and a bandpass Butterworth filter is used to perform filtering from

0.5—45 Hz. In the next step, we have used Augsburg Biosignal Toolbox (AuBT) of Matlab to

extract statistical features from ECG signals for different emotional states (section 9 in S1 File).

The extracted features are essential for further classification of emotions. The classification

results indicate audio-visual stimulus successfully evoke discrete emotional states and can be

recognized in terms of psychological activities.

RF signals, After pre-processing the raw data (section 3, S5 Fig in S1 File), the next step is to

extract feature and transform from processed data. The extracted parameters for ML have

been discussed in the previous section, and the transformation based on continuous wavelet

transform (CWT) is introduced.

For further classifications, we have used continuous wavelet transform (CWT) to modify

1-D RF signals into 2-D scaleogram. In the field of mathematics, CWT is a formal (i.e., non-

numerical) tool that provides a complete representation of a signal and provides the capability

to continuously alter the scale parameters of wavelets. Based on CWT, the 1-D RF signals can

be transformed into 2-D scaleogram that represents an image format. Although a scaleogram

is beneficial for in-depth understanding of the dynamic behaviour of body movements, indi-

vidual body movements of participants while watching videos can also be distinguished indi-

vidually. The normalized time series and its Fourier transform sequence are extracted as the

1-D features. The 2-D scaleogram that is stored as an image format can be considered as the

2-D features. In the classification section, the combination between 1-D features and 2-D fea-

tures is used to classify different emotional states of participants.

Conclusions

Emotion detection has emerged as a paramount area of research in neuroscientific studies as

well as in many other strands of well-being, especially for mentally ill elderly people that are

susceptible to physiological fatigue and undergo interactive therapy for the treatment. In this

study, we have proposed a novel deep learning architecture that fuses time-domain wirelessly

received raw data with those from the frequency domain can achieve state-of-the-art emotion

detection performance. We have experimentally demonstrated that four different human emo-

tions can be recognized in a subject independent manner with over 71% accuracy, even in a

data limited regime. Moreover, our results indicate that deep learning offers superior perfor-

mance in the present classification task in comparison to five different machine learning algo-

rithms. We further tested the performance of proposed DL architecture on simultaneously
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extracted ECG data. It was established that wireless RF measurements could be a better alter-

native to other invasive methods such as ECG and EEG for human emotion detection. We fur-

ther evaluated the generalizability of our DL model across other databases by validating it on a

well established ECG database. We believe the framework proposed in the present study is a

low-cost, hassle-free solution for carrying emotion related research and it offers high detection

accuracy in comparison with other alternative approaches.
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