
TIME-DEPENDENT WAVE EQUATIONS ON GRADED GROUPS

MICHAEL RUZHANSKY AND CHIARA TARANTO

Abstract. In this paper we consider the wave equations for hypoelliptic homo-
geneous left-invariant operators on graded Lie groups with time-dependent Hölder
(or more regular) non-negative propagation speeds. The examples are the time-
dependent wave equation for the sub-Laplacian on the Heisenberg group or on
general stratified Lie groups, or p-evolution equations for higher order operators
on Rn or on groups, already in all these cases our results being new. We establish
sharp well-posedness results in the spirit of the classical result by Colombini, De
Giorgi and Spagnolo. In particular, we describe an interesting local loss of regular-
ity phenomenon depending on the step of the group (for stratified groups) and on
the order of the considered operator.

1. Introduction

In this paper we are interested in the well-posedness of the following Cauchy prob-
lem: 

∂2t u(t, x) + a(t)Ru(t, x) = 0, (t, x) ∈ [0, T ]×G,
u(0, x) = u0(x), x ∈ G,
∂tu(0, x) = u1(x), x ∈ G,

(1.1)

for the time-dependent propagation speed a = a(t) ≥ 0, where R is a Rockland
operator (that is, a hypoelliptic homogeneous differential operator on a graded group
G).

In the case of G = Rn and R = −∆, the equation (1.1) is the usual wave equation
with the time-dependent propagation speed and its well-posedness results for Hölder
regular functions a have been obtained by Colombini, De Giorgi and Spagnolo in
their seminal paper [7]. Moreover, it has been shown by Colombini and Spagnolo in
[13] and by Colombini, Jannelli and Spagnolo in [8] that even in the case of G = R
and R = − d2

dx2
the Cauchy problem (1.1) does not have to be well-posed in C∞ if

a ∈ C∞ is not strictly positive or if it is in the Hölder class a ∈ Cα for 0 < α < 1.
In this paper we obtain new results for the following situations:

(i) G = Hn is the Heisenberg group and R is the positive Kohn-Laplacian on G.
(ii) G is a stratified Lie group and R is a (positive) sub-Laplacian on G.
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(iii) G is a graded Lie group in the sense of Folland and Stein [24] and R is any
positive Rockland operator on G, i.e. any positive left-invariant homogeneous
hypoelliptic differential operator on G.

In fact, our results are for the latter case (iii), the former two cases (i) and (ii) being
its special cases. In particular, already in the cases of G being the Euclidean space
Rn, the Heisenberg group Hn, or any stratified Lie group, the case (iii) above allows
one to consider R to be an operator of any order, as long as it is a positive left-
(or right-) invariant homogeneous hypoelliptic differential operator. In the case of
Rn these cases of so-called p-evolution equations have been studied in e.g. [4, 5, 6],
however, for more restrictive conditions on a(t) than those considered in this paper.

For a(t) ≡ 1 and G being the Heisenberg group Hn with R being the positive sub-
Laplacian, the wave equation (1.1) was studied by Müller and Stein [36] and Nachman
[37]. Other noncommutative settings with a(t) ≡ 1 have been analysed as well, see
e.g. Helgason [30]. For G being a compact Lie group and −R any Hörmander’s sum
of squares on G the problem (1.1) was studied in [27], and so the results of the present
paper provide a nilpotent counterpart of the results there.

Apart from an independent interest of the subelliptic setting of stratified or graded
Lie groups, these settings are the model cases for many corresponding problems for
general partial differential operators on manifolds in view of the celebrated lifting
theorem of Rothschild and Stein [41].

From the point of view of the time-dependent coefficient a(t), we aim at carrying
out the comprehensive analysis, thus distinguishing between the following four cases:

Case 1: a ∈ Lip([0, T ]), with a(t) ≥ a0 > 0;
Case 2: a ∈ Cα([0, T ]), with 0 < α < 1, a(t) ≥ a0 > 0;
Case 3: a ∈ Cl([0, T ]), with l ≥ 2, a(t) ≥ 0;
Case 4: a ∈ Cα([0, T ]), with 0 < α < 2, a(t) ≥ 0.

The first case is the simplest situation while in the forth case we have an irregular
coefficient that is allowed to be zero at some points. The second and third situations
are ‘intermediate’ cases, in the sense that we have either the regularity or the strict
positivity. We distinguish between these cases because the results and methods of
proofs are rather different.

We note that if the operator R is not elliptic, the local approach to the Cauchy
problem (1.1) is problematic since the equation is only weakly hyperbolic already in
Case 1 above. Consequently, since the equation (1.1) in local coordinates is the
space-dependent variable multiplicities problem, very little is known about its well-
posedness. In this direction, only very special results for some second order operators
are available, see e.g. Nishitani [38] or Melrose [34]. Non-Lipschitz coefficients have
been also much analysed, see e.g. Colombini and Métivier [11] or Colombini and
Lerner [10]. In addition to already mentioned restrictions for the well-posedness, see
also Colombini and Métivier [12] for a recent overview from the point of view of
systems.

In the case of Rn and −R being the Laplacian, the regularity of a less than Hölder
such as discontinuous or measure-valued a have been considered in [28]. However,
such low regularity requires very different methods, and this problem for the general
Cauchy problem (1.1) will be considered elsewhere.
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Wave equations with time dependent coefficients for general densely defined oper-
ators with discrete spectrum acting in Hilbert spaces have been considered in [42].
However, that setting is different from the present one since the spectrum in our
situation is continuous.

To formulate our results, let us briefly introduce some necessary notations fol-
lowing, for example, Folland and Stein [24]. Let G be a graded Lie group, i.e. a
connected simply connected Lie group such that its Lie algebra g has a vector space
decomposition

g = ⊕∞j=1Vj, (1.2)

such that all but finitely many of the Vj’s are {0} and [Vi, Vj] ⊂ Vi+j. A special case
analysed in detail by Folland [21] is of stratified Lie groups when the first stratum
V1 generates g as an algebra, see also Folland and Stein [23]. A typical example of
such Lie group is the Heisenberg group. In general, graded Lie groups are necessarily
homogeneous and nilpotent. Moreover, any graded Lie group can be viewed as some
Rn with a polynomial group law. We can also refer to [19, Section 3.1] for a detailed
discussion of graded Lie groups and their properties.

Let R be a positive Rockland operator on G, that is, a positive (in the operator
sense) left-invariant differential operator which is homogeneous of degree ν > 0 and
which satisfies the so-called Rockland condition. This means that for each represen-

tation π ∈ Ĝ, except for the trivial one, the operator π(R) is injective on the space
of smooth vectors H∞π , i.e.

∀v ∈ H∞π π(R)v = 0 =⇒ v = 0. (1.3)

Alternative characterisations of such operators have been considered by Rockland
[40] and Beals [1], until the definitive result of Helffer and Nourrigat [29] saying that
Rockland operators are precisely the left-invariant homogeneous hypoelliptic differen-
tial operators on G. The existence of Rockland operators on general nilpotent Lie
groups characterises precisely the class of graded Lie groups [35, 46]. An example of
a positive Rockland operator is the positive sub-Laplacian on a stratified Lie group:
if G is a stratified Lie group and {X1, . . . , Xk} is a basis for the first stratum of its
Lie algebra, then the positive sub-Laplacian

L = −
k∑
j=1

X2
j

is a positive Rockland operator. Moreover, for any m ∈ N, the operator

R = (−1)m
k∑
j=1

X2m
j

is a positive Rockland operator on the stratified Lie group G. More generally, for any
graded Lie group G ∼ Rn, if X1, . . . , Xn is the basis of its Lie algebra g with dilation
weights ν1, . . . , νn, i.e. with

DrXj = rνjXj, j = 1, . . . , n, r > 0, (1.4)
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where Dr are dilations on g, then the operator

R =
n∑
j=1

(−1)
ν0
νj ajX

2
ν0
νj

j , aj > 0,

is a Rockland operator of homogeneous degree 2ν0, if ν0 is any common multiple
of ν1, . . . , νn. We refer to [19, Section 4.1.2] for other examples and a detailed dis-
cussion of Rockland operators and graded Lie groups. In the case of Rn, all elliptic
homogeneous differential operators with constant coefficients are Rockland operators.

To formulate our results we will need two scales of spaces, namely, Sobolev and
Gevrey spaces, adapted to the setting of graded Lie groups. Thus, let G be a graded
Lie group and let R be a positive Rockland operator of homogeneous degree ν. For
any real number s ∈ R, the Sobolev space Hs

R(G) is the subspace of S ′(G) obtained
as the completion of the Schwartz space S(G) with respect to the Sobolev norm

‖f‖Hs
R(G) := ‖(I +R)

s
ν f‖L2(G). (1.5)

For stratified Lie groups such spaces and their properties have been extensively anal-
ysed by Folland in [21] and on general graded Lie groups they have been investigated
in [18, 19]. In particular, these spaces do not depend on a particular choice of the
Rockland operartor R used in the definition (1.5), see [19, Theorem 4.4.20]). These
spaces perfectly suit Case 1 described above but already in the Euclidian case, with
the elliptic Laplace operator instead of the hypoelliptic Rockland operator in the
wave equation (1.1), if the coefficient a(t) is not Lipschitz regular or may become
zero, the Gevrey spaces appear naturally (see e.g. Bronshtein [3]) since we can not
expect anymore the well-posedness in C∞(G) or D′(G). Indeed, Colombini and Spag-
nolo exhibited a concrete example in [13] of a Cauchy problem for the time-dependent
wave equation on R with smooth a ≥ 0 which is not well-posed in C∞(R) or D′(R).

Thus, given s ≥ 1, we define the Gevrey type space

γsR(G) := {f ∈ C∞(G) | ∃A > 0 : ‖eAR
1
2s f‖L2(G) <∞}. (1.6)

These spaces provide a subelliptic version of the usual Gevrey spaces. For example,
forG = Hn being the Heisenberg group with the basisX1, . . . , X2n of the first stratum,
it was shown in [20] that f ∈ γsR(Hn) if and only if there exist two constants B,C > 0
such that for every α ∈ N2n

0 the following inequality holds

‖∂αf‖L2(Hn) ≤ CB|α|(α!)s, (1.7)

where ∂α = Y1 . . . Y|α|, with Yj ∈ {X1, . . . , X2n} for every j = 1, . . . , |α| and
∑

Yj=Xk
1 =

αk for every k = 1, . . . , 2n.
Gevrey spaces (1.6) and the corresponding spaces of ultradistributions have been

considered on compact Lie groups and on compact manifolds in [16] and in [17],
respectively.

By an argument similar to that in [20] for the sub-Laplacian or in [16, Theorem
2.4] for elliptic operators, it can be shown that if R is a positive Rockland operator of
homogeneous degree ν, then f ∈ γsR(G) if and only if there exist constants B,C > 0
such that for every k ∈ N ∪ {0} we have

‖Rkf‖L2(G) ≤ CBνk((νk)!)s. (1.8)



TIME-DEPENDENT WAVE EQUATIONS ON GRADED GROUPS 5

Since Sobolev spaces do not depend on a particular choice of the Rockland operator
used in their definition, the characterisation (1.8) of the Gevrey spaces implies that
the same is true for γsR(G).

Thus, we may drop the subscript R in Hs
R and γsR but we may also keep using it

to refer to the norms that we may be using.

Let us now formulate the main theorem of our paper, where we consider the fol-
lowing four cases:

Case 1: a ∈ Lip([0, T ]), a(t) ≥ a0 > 0;
Case 2: a ∈ Cα([0, T ]), 0 < α < 1, a(t) ≥ a0 > 0;
Case 3: a ∈ Cl([0, T ]), l ≥ 2, a(t) ≥ 0;
Case 4: a ∈ Cα([0, T ]), with 0 < α < 2, a(t) ≥ 0.

These are the four cases to which we refer repeatedly throughout this paper.

Theorem 1.1. Let G be a graded Lie group and let R be a positive Rockland operator
of homogeneous degree ν. Let T > 0. Then the following holds, referring respectively
to Cases 1-4 above:

Case 1: Given s ∈ R, if the initial Cauchy data (u0, u1) are in H
s+ ν

2
R (G) × Hs

R(G),

then there exists a unique solution of (1.1) in the space C([0, T ], H
s+ ν

2
R (G))∩

C1([0, T ], Hs
R(G)), satisfying the following inequality for all values of t ∈

[0, T ]:

‖u(t, ·)‖2
H
s+ ν2
R

+ ‖∂tu(t, ·)‖2Hs
R
≤ C(‖u0‖2

H
s+ ν2
R

+ ‖u1‖2Hs
R

); (1.9)

Case 2: If the initial Cauchy data (u0, u1) are in γsR(G)× γsR(G), then there exists a
unique solution of (1.1) in C2([0, T ], γsR(G)), provided that

1 ≤ s < 1 +
α

1− α
;

Case 3: If the initial Cauchy data (u0, u1) are in γsR(G)× γsR(G), then there exists a
unique solution of (1.1) in C2([0, T ], γsR(G)), provided that

1 ≤ s < 1 +
l

2
;

Case 4: If the initial Cauchy data (u0, u1) are in γsR(G)× γsR(G) then there exists a
unique solution of (1.1) in C2([0, T ], γsR(G)), provided that

1 ≤ s < 1 +
α

2
.

As it will follow from the proof, in Cases 2 and 4, one can take the equalities
s = 1 + α

1−α and s = 1 + α
2
, respectively, provided that T > 0 is small enough. We

refer to [25, 26] concerning the sharpness of the above Gevrey indices in the case of
G = Rn and R = −∆, and for further relevant references for that case.

Let us formulate a corollary from Theorem 1.1 showing the local loss of regularity
for the Cauchy problem (1.1). We recall that any graded Lie groupG can be identified,
for example through the exponential mapping, with the Euclidean space Rn where n
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is the topological dimension of G. Then, if ν1, . . . , νn are the dilation weights on G
as in (1.4), for any s ∈ R we have the local Sobolev embedding theorems:

H
s/ν1
loc (Rn) ⊂ Hs

R,loc(G) ⊂ H
s/νn
loc (Rn), (1.10)

see [19, Theorem 4.4.24]. If G is a stratified Lie group, we have ν1 = 1 and νn is the
step of G, i.e. the number of steps in the stratification of its Lie algebra. In other
words, if G is a stratified Lie group of step r and Hs(G) is the Sobolev space defined
using (any) sub-Laplacian on G, then the embeddings (1.10) are reduced to

Hs
loc(Rn) ⊂ Hs

loc(G) ⊂ H
s/r
loc (Rn). (1.11)

These embeddings are sharp, see Folland [21]. Consequently, using the characterisa-
tion (1.8) of γsR(G), we also obtain the embeddings

γν1sloc (Rn) ⊂ γsR,loc(G) ⊂ γsνnloc (Rn), (1.12)

where the space γσloc(Rn) is the usual Euclidean Gevrey space, namely, the space of
all smooth functions f ∈ C∞(Rn) such that for every compact set K ⊂ Rn there exist
two constants B,C > 0 such that for every α we have

|∂αf(x)| ≤ CB|α|(α!)σ for all x ∈ K. (1.13)

Hence, if G is a stratified Lie group of step r we have the embeddings

γsloc(Rn) ⊂ γsR,loc(G) ⊂ γsrloc(Rn). (1.14)

Consequently, using these embeddings, we obtain the following local in space well-
posedness result using the usual Euclidean Gevrey spaces. Here we may also assume
that the Cauchy data are compactly supported due to the finite propagation speed
of singularities. To emphasise the appearing phenomenon of local loss of Euclidean
regularity we formulate it in the simplified setting of stratified Lie groups, with topo-
logical identification G ∼ Rn. The spaces γs(Rn) below denote the usual Gevrey
spaces on Rn.

Corollary 1.2. Let G ∼ Rn be a stratified Lie group of step r and let R be a positive
Rockland operator of homogeneous degree ν (for example, R can be a positive sub-
Laplacian in which case we have ν = 2). Assume that the Cauchy data (u0, u1) are
compactly supported. Then the following holds, referring respectively to Cases 1-4
above:

Case 1: Given s ∈ R, if (u0, u1) are in Hs+ ν
2 (Rn)×Hs(Rn), then there exists a unique

solution of (1.1) in C([0, T ], H(s+ ν
2
)/r(Rn)) ∩ C1([0, T ], Hs/r(Rn)), satisfying

the following inequality for all values of t ∈ [0, T ]:

‖u(t, ·)‖2
H(s+ ν2 )/r + ‖∂tu(t, ·)‖2Hs/r ≤ C(‖u0‖2Hs+ ν2

+ ‖u1‖2Hs); (1.15)

Case 2: If (u0, u1) are in γs(Rn)×γs(Rn), then there exists a unique solution of (1.1)
in C2([0, T ], γsr(Rn)), provided that

1 < s < 1 +
α

1− α
;
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Case 3: If (u0, u1) are in γs(Rn)×γs(Rn), then there exists a unique solution of (1.1)
in C2([0, T ], γsr(Rn)), provided that

1 < s < 1 +
l

2
;

Case 4: If (u0, u1) are in γs(Rn)× γs(Rn) then there exists a unique solution of (1.1)
in C2([0, T ], γsr(Rn)), provided that

1 < s < 1 +
α

2
.

The statements in Cases 2-4 for s = 1 are not so interesting, with the analytic
well-posedness known in these case anyway, see Bony and Shapira [2].

For G = Rn and R being the Laplacian, we have r = 1 and there is no loss of
regularity in any of the Cases 1-4, when the results are known from [7, 9, 25, 26, 33].

We remark that in the meantime, also models with more singular coefficients have
been treated in the context of very weak solutions, see [44].

However, already on the Heisenberg group with step r = 2, we observe the local
loss of regularity in Euclidean Sobolev and Gevrey spaces in all statements of Cases
1-4 in Corollary 1.2.

We also note that using local Sobolev and Gevrey embeddings (1.10) and (1.12),
it is easy to formulate an extension of Corollary 1.2 to general graded Lie groups.

2. Preliminaries on graded Lie groups and Rockland operators

In this section we recall some preliminaries and fix the notation concerning the
Fourier analysis on graded Lie groups. We refer to [24] and to [19, Chapter 5] for
further details.

Thus, a connected and simply connected Lie group G is called graded when its Lie
algebra is graded in the sense of the decomposition (1.2).

A Lie algebra g is stratified if it is graded and if its first stratum V1 generates g as
an algebra. Thus, in this case every element of the Lie algebra can be written as a
linear combination of elements in V1 and their iterated commutators. A Lie group is
stratified when it is connected, simply connected and its Lie algebra is stratified.

Furthermore, if there are r non zero Vj’s in the vector space decomposition (1.2),
then the group (respectively the algebra) is said to be stratified of step r.

From the definition of a stratified Lie algebra, it follows that, assuming that V1 has
dimension k, any basis {X1, . . . , Xk} for V1 forms a Hörmander system, see [31], and
we can consider its associated sub-Laplacian operator that is also a positive Rockland
operator:

L := −
(
X2

1 + · · ·+X2
k

)
. (2.1)

Example 2.1 (The Heisenberg group). A classical example of a graded (stratified)
Lie group is the Heisenberg group Hn that might be seen as the manifold R2n+1

endowed with the group law

(x, y, t)(x′, y′, t′) := (x+ x′, y + y′, t+ t′ +
1

2
(x · y′ − x′ · y)),

where (x, y, t), (x′, y′, t′) ∈ Rn × Rn × R ∼ Hn. The Heisenberg Lie algebra hn

associated with the Heisenberg group is the space of all the left-invariant vector fields
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of Hn and it admits the following canonical basis:

Xj = ∂xj −
yj
2
∂t,

Yj = ∂yj +
xj
2
∂t,

T = ∂t.

The former vector fields satisfy the canonical commutation relations

[Xj, Yj] = T, ∀ j = 1, . . . , n,

and all the other possible commutators are zero. Therefore, the Heisenberg group is
a graded (stratified) Lie group of step 2, whose Lie algebra admits the vector space
decomposition

hn = V1 ⊕ V2,

where

V1 =
n∑
j=1

RXj ⊕ RYj and V2 = RT.

Hypoellipticity and other questions on the Heisenberg group have a long history, see
e.g. Taylor [45], Folland [22], or Thangavelu [47], and many references therein.

From now on, we consider G to be a graded Lie group, even if some of the following
definitions and remarks hold in a more general setting.

Let π be a representation of G on the separable Hilbert space Hπ. A vector v ∈ Hπ

is said to be smooth or of type C∞ if the function

G 3 x 7→ π(x)v ∈ Hπ

is of class C∞. The space of all smooth vectors of a representation π is denoted by
H∞π . Let g be the Lie algebra of G and let π be a strongly continuous representation
of G on a Hilbert space Hπ. For every X ∈ g and v ∈ H∞π we define

dπ(X)v := lim
t→0

1

t

(
π
(

expG(tX)
)
v − v

)
.

Then dπ is a representation of g on H∞π (see e.g. [19, Proposition 1.7.3]) called the
infinitesimal representation associated to π. By abuse of notation, we will often still
denote it by π, therefore, for any X ∈ g, we write π(X) meaning dπ(X).

Any left-invariant differential operator T on G, according to the Poincaré-Birkhoff-
Witt theorem, can be written in a unique way as a finite sum

T =
∑
|α|≤M

cαX
α, (2.2)

where all but finitely many of the coefficients cα ∈ C are zero and Xα = X1 . . . X|α|,
with Xj ∈ g. This allows one to look at any left-invariant differential operator T
on G as an element of the universal enveloping algebra U(g) of the Lie algebra of G.

Therefore, the family of infinitesimal representations
{
π(T ), π ∈ Ĝ

}
yields a field of

operators that turns to be the symbol associated with the operator T .
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Let π ∈ Ĝ and letR be a positive Rockland operator of homogeneous degree ν > 0,
then using formula (2.2), the infinitesimal representation of R associated to π is

π(R) =
∑
[α]=ν

cαπ(X)α,

where π(X)α = π(Xα) = π(Xα1
1 · · ·Xαn

n ) and [α] = ν1α1 + · · ·+ νnαn is the homoge-
neous degree of the multiindex α, with Xj being homogeneous of degree νj.

The operator R and its infinitesimal representations π(R) are densely defined on
D(G) ⊂ L2(G) and H∞π ⊂ Hπ, respectively, see e.g. [19, Proposition 4.1.15]. We
denote by R2 the self-adjoint extension of R on L2(G) and we keep the same nota-
tion π(R) for the self-adjoint extensions on Hπ of the infinitesimal representations.
Recalling the spectral theorem for unbounded operators [39, Theorem VIII.6], we can
consider the spectral measures E and Eπ corresponding to R2 and π(R), so that we
have

R2 =

∫
R
λdE(λ) and π(R) =

∫
R
λdEπ(λ).

Furthermore, for any f ∈ L2(G) we have

F
(
φ
(
R
)
f
)

(π) = φ
(
π(R)

)
f̂(π), (2.3)

for any measurable bounded function φ on R, see e.g. [19, Corollary 4.1.16]. The
infinitesimal representations π(R) of a positive Rockland operator are also positive,
due to the relations between their spectral measures. In particular, Hulanicki, Jenkins

and Ludwig showed in [32] that the spectrum of π(R), with π ∈ Ĝ \ {1}, is discrete
and lies in (0,∞). This implies that we can choose an orthonormal basis for Hπ such
that the infinite matrix associated to the self-adjoint operator π(R) has the form

π(R) =


π2
1 0 . . . . . .

0 π2
2 0 . . .

... 0
. . .

...
...

. . .

 , (2.4)

where πj are strictly positive real numbers and π ∈ Ĝ \ {1}.

3. Parameter dependent energy estimates

In this section we prove certain energy estimates for second order ordinary differ-
ential equations with explicit dependence on parameters. This will be crucial in the
proof of Theorem 1.1 where the parameters will correspond to the spectral decompo-
sition (2.4) of the infinitesimal representations of the Rockland operators.

Results of the following type have been of use in different estimates related to
weakly hyperbolic partial differential equations, such as [9] and [27]. However, in those
papers the conclusions rely on more general results, see [25]. We partly follow the
argument in [27] based on a standard reduction to a first order system. Consequently,
we carry out different types of arguments depending on assumptions in each of the
cases, altogether allowing us to formulate the precise dependence on parameters for
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ordinary differential equations corresponding to the propagation coefficient a(t) as in
Cases 1-4 of Theorem 1.1, to which we refer in the following statement.

Proposition 3.1. Let β > 0 be a positive constant and let a(t) be a function that
behaves according to Cases 1, 2, 3 and 4 in Theorem 1.1. Let T > 0. Consider the
following Cauchy problem:

v′′(t) + β2a(t)v(t) = 0 with t ∈ (0, T ],

v(0) = v0 ∈ C,
v′(0) = v1 ∈ C.

(3.1)

Then the following holds:

Case 1: There exists a positive constant C > 0 such that for all t ∈ [0, T ] we have

β2|v(t)|2 + |v′(t)|2 ≤ C(β2|v0|2 + |v1|2).
Case 2: There exist two positive constants C,K > 0 such that for all t ∈ [0, T ] we

have

β2|v(t)|2 + |v′(t)|2 ≤ CeKtβ
1
s (β2|v0|2 + |v1|2), (3.2)

for any 1 ≤ s < 1 + α
1−α . Moreover, there exists a constant k > 0 such that

for any β0 ≥ 1 the estimate (3.2) holds for K = kβ
1−α− 1

s
0 for all β ≥ β0.

Case 3: There exist two positive constants C,K > 0 such that for all t ∈ [0, T ] we
have

β2|v(t)|2 + |v′(t)|2 ≤ C(1 + β
l
σ )eKβ

1
σ
(
β2|v0|2 + |v1|2

)
,

with σ = 1 + l
2
.

Case 4: There exist two positive constants C,K > 0 such that

β2|v(t)|2 + |v′(t)|2 ≤ C(1 + β
α/2
α/2+1 )eKtβ

1
s (β2|v0|2 + |v1|2), (3.3)

for any 1 ≤ s < 1 + α
2

. Moreover, there exists a constant k > 0 such that for

any β0 ≥ 1 the estimate (3.3) holds for K = kβ
1

1+α/2
− 1
s

0 for all β ≥ β0.

The constants C in the above inequalities may depend on T but not on β.

Proof. First we reduce the problem (3.1) to a first order system. In order to do this
we rewrite it in a standard way as a matrix-valued equation. Thus we define the
column vectors

V (t) :=

(
iβv(t)
∂tv(t)

)
, V0 :=

(
iβv0
v1

)
,

and the matrix

A(t) :=

(
0 1
a(t) 0

)
,

that allow us to reformulate the second order system (3.1) as the first order system{
Vt(t) = iβA(t)V (t),

V (0) = V0.
(3.4)

We will now treat each case separately.
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3.1. Case 1: a ∈ Lip([0,T]), a(t) ≥ a0 > 0. This is the simplest case that can be
treated by a classical argument. We observe that the eigenvalues of our matrix A(t)

are given by ±
√
a(t). The symmetriser S of A, i.e. the matrix such that

SA− A∗S = 0,

is given by

S(t) =

(
2a(t) 0

0 2

)
.

Thus we define the energy as

E(t) :=
(
S(t)V (t), V (t)

)
,

and we want to estimate its variations in time. A straightforward calculation yields
the following inequality that will help us to get such estimate:

2|V |2 min
t∈[0,T ]

{a(t), 1} ≤ E(t) ≤ 2|V |2 max
t∈[0,T ]

{a(t), 1}. (3.5)

In particular, in this case the continuity of a(t) ensures the existence of two strictly
positive constants a0 and a1 such that

a0 = min
t∈[0,T ]

a(t) and a1 = max
t∈[0,T ]

a(t).

Thus setting c0 := 2 min{a0, 1} and c1 := 2 max{a1, 1}, the inequality (3.5) becomes

c0|V (t)|2 ≤ E(t) ≤ c1|V (t)|2. (3.6)

A straightforward calculation, together with (3.6), gives the following estimate:

Et(t) =
(
St(t)V (t), V (t)

)
+
(
S(t)Vt(t), V (t)

)
+
(
S(t)V (t), Vt(t)

)
=

=
(
St(t)V (t), V (t)

)
+ iβ

(
S(t)A(t)V (t), V (t)

)
− iβ

(
S(t)V (t), A(t)V (t)

)
=

=
(
St(t)V (t), V (t)

)
+ iβ

((
S(t)A(t)− A∗(t)S(t)

)
V (t), V (t)

)
=

=
(
St(t)V (t), V (t)

)
≤ ‖St(t)‖|V (t)|2, (3.7)

thus setting c′ := c−10 supt∈[0,T ] ‖St(t)‖, we get from (3.7) using (3.6) that

Et(t) ≤ c′E(t). (3.8)

Applying the Gronwall lemma to (3.8), we deduce that there exists a constant c > 0
independent of t ∈ [0, T ] such that

E(t) ≤ cE(0). (3.9)

Therefore, putting together (3.9) and (3.6) we obtain

c0|V (t)|2 ≤ E(t) ≤ cE(0) ≤ cc1|V (0)|2.
We can then rephrase this, asserting that there exists a constant C > 0 independent
of t such that |V (t)|2 ≤ C|V (0)|2. Then we write this inequality going back to the
definition of V (t), yielding

β2|v(t)|2 + |∂tv(t)|2 ≤ C
(
β2|v0|2 + |v1|2

)
,

as required.
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3.2. Case 2: a ∈ Cα([0,T]), with 0 < α < 1, a(t) ≥ a0 > 0. Here we follow the
method developed by Colombini and Kinoshita [9] for n = 1 and subsequently ex-
tended [25] for any n ∈ N. We look for solutions of the form

V (t) = e−ρ(t)β
1
s (detH(t))−1H(t)W (t), (3.10)

where

• s ∈ R depends on α as will be determined in the argument;
• the function ρ = ρ(t) ∈ C1([0, T ]) is real-valued and will be chosen later;
• W (t) is the energy;
• H(t) is the matrix defined by

H(t) :=

(
1 1

λε1(t) λε2(t)

)
,

where for all ε > 0, λε1(t) and λε2(t) are regularisations of the eigenvalues of
the matrix A(t) of the form

λε1(t) := (−
√
a ∗ ϕε)(t),

λε2(t) := (+
√
a ∗ ϕε)(t),

with {ϕε(t)}ε>0 being a family of cut-off functions defined starting from a
non-negative function ϕ ∈ C∞c (R), with

∫
R ϕ = 1, by setting ϕε(t) := 1

ε
ϕ
(
t
ε

)
.

By construction, it follows that λε1, λ
ε
2 ∈ C∞([0, T ]).

Furthermore, we can easily check, using the Hölder regularity of a(t) of order α and,

therefore, of
√
a(t) of the same order α, the following inequalities:

detH(t) = λε2(t)− λε1(t) ≥ 2
√
a0, (3.11)

and for all t ∈ [0, T ] and ε > 0 there exist two constants c1, c2 > 0 such that

|λε1(t) +
√
a(t)| ≤ c1ε

α,

|λε2(t)−
√
a(t)| ≤ c2ε

α, (3.12)

uniformly in t and ε. Now we substitute our suggested solution (3.10) in (3.4) yielding

− ρ′(t)β
1
s e−ρ(t)β

1
s H(t)W (t)

detH(t)
+ e−ρ(t)β

1
s Ht(t)W (t)

detH(t)
+ e−ρ(t)β

1
s H(t)Wt(t)

detH(t)
+

− e−ρ(t)β
1
s (detH)t(t)

H(t)W (t)(
detH(t)

)2 = iβA(t)e−ρ(t)β
1
s H(t)W (t)

detH(t)
.

Multiplying both sides of this equality by eρ(t)β
1
s detH(t)H−1(t) we get

Wt(t) = ρ′(t)β
1
sW (t)−H−1(t)Ht(t)W (t) + (detH)t(t)

(
detH(t)

)−1
W (t)+

+ iβH−1(t)A(t)H(t)W (t). (3.13)
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This leads to the estimate

d

dt
|W (t)|2 =

(
Wt(t),W (t)

)
+
(
W (t),Wt(t)

)
= 2Re

(
Wt(t),W (t)

)
=

= 2
(
ρ′(t)β

1
s |W (t)|2 − Re

(
H−1(t)Ht(t)W (t),W (t)

)
+

+
(

detH(t)
)−1

(detH)t(t)|W (t)|2 + βIm
(
H−1(t)A(t)H(t)W (t),W (t)

))
.

We observe that

2Im
(
H−1AHW,W

)
=
(
H−1AHW,W

)
−
(
H−1AHW,W

)
=

=
(
H−1AHW,W

)
−
(
W,H−1AHW

)
=
(
H−1AHW,W

)
−
(
(H−1AH)∗W,W

)
=

=
((
H−1AH − (H−1AH)∗

)
W,W

)
≤ ‖H−1AH − (H−1AH)∗‖|W |2.

Thus we obtain

d

dt
|W (t)|2 ≤

(
2ρ′(t)β

1
s + 2‖H−1(t)Ht(t)‖+ 2

∣∣( detH(t)
)−1

(detH)t(t)
∣∣+

+β‖H−1AH − (H−1AH)∗‖
)
|W (t)|2. (3.14)

To proceed we need to estimate the following quantities:

I) ‖H−1(t)Ht(t)‖;
II)
∣∣( detH(t)

)−1
(detH)t(t)

∣∣;
III) ‖H−1AH − (H−1AH)∗‖.

In [25] and [9], the authors determined estimates for similar functions in a more
general setting, i.e. starting from an equation of arbitrary order m. In this particular
case, we can proceed by straightforward calculations without relying on the mentioned
works.

We deal with these three terms as follows:

I) Since H−1(t) = 1
λε2−λε1

(
λε2 −1
−λε1 1

)
and Ht(t) =

(
0 0

∂tλ
ε
1 ∂tλ

ε
2

)
, it follows that

the entries of the matrix H−1Ht are given by the functions
∂tλεj
λε2−λε1

. We have, for

example for λ2,

∂tλ
ε
2(t) =

√
a ∗ ∂tϕε(t) =

1

ε2
√
a ∗ ϕ′

( t
ε

)
=

1

ε

∫ √
a(t− ρε)ϕ′(ρ)dρ =

=
1

ε

∫ (√
a(t− ρε)−

√
a(t)

)
ϕ′(ρ)dρ+

1

ε

√
a(t)

∫
ϕ′(ρ)dρ ≤ kεα−1, (3.15)

where we are using the Hölder continuity of
√
a for the first term and the fact

that the second term is zero, since
∫
ϕ′ = 0. Combining the inequalities (3.11)

and (3.15), we get for a suitable positive constant k1 that

‖H−1(t)Ht(t)‖ ≤ k1ε
α−1.

II) First we can estimate∣∣( detH(t)
)−1

(detH)t(t)
∣∣ =

∂tλ
ε
2 − ∂tλε1
λε2 − λε1

=
2∂tλ

ε
2

λε2 − λε1
≤ 2kεα−1

2
√
a0

,
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therefore, ∣∣( detH(t)
)−1

(detH)t(t)
∣∣ ≤ k2ε

α−1,

for a constant k2 > 0.
III) Also in this case, we write explicitly the matrix we are interested in, that is

H−1AH −
(
H−1AH

)∗
=

 0
−2a(t)+(λε1)

2+(λε2)
2

λε1−λε2
2a(t)−

(
(λε1)

2+(λε2)
2
)

λε1−λε2
0

 .

Observing that, by definition, (λε1)
2 = (λε2)

2, and recalling inequality (3.11), to
get the desired norm estimate, it is enough to consider the function |a(t)−(λε2)

2|.
A straightforward calculation, using inequality (3.12), shows that

|a(t)− (λε2)
2| = |

(√
a(t)− λε2

)(√
a(t) + λε2

)
| ≤

≤ c2ε
α
(√

a(t) +

∫ √
a(t− s)ϕε(s)ds

)
=

= c2ε
α

∫ (√
a(t) +

√
a(t− sε)

)
ϕ(s)ds ≤ 2c2‖

√
a‖L∞εα.

It follows that

‖H−1AH − (H−1AH)∗‖ ≤ k3ε
α.

Going back to (3.14), combining it with estimates I), II) and III), we get an estimate
for the derivative of the energy, that is

d

dt
|W (t)|2 ≤

(
2ρ′(t)β

1
s + 2k1ε

α−1 + 2k2ε
α−1 + k3βε

α
)
|W (t)|2. (3.16)

At this point we choose ε = 1
β
, observing that we can always consider β large enough,

say β > 1, in order to have a small ε ∈ (0, 1]. Indeed, for β ≤ β0 for some fixed
β0 > 0, a modification of the argument below gives estimate (3.2) with constants
depending only on β0 and T . So we may assume that β > β0 for β0 to be specified.
We define also ρ(t) := ρ(0)−Kt for some K > 0 to be specified. Substituting this in
(3.16) we get for a suitable constant k > 0 that

d

dt
|W (t)|2 ≤

(
2ρ′(t)β

1
s + 2kβ1−α

)
|W (t)|2 =

(
− 2K + 2kβ1−α− 1

s

)
β

1
s |W (t)|2.

If we have
1

s
> 1− α ⇐⇒ s < 1 +

α

1− α
,

and then also

K := kβ
1−α− 1

s
0 ≥ kβ1−α− 1

s , (3.17)

then for all t ∈ [0, T ] we have

d

dt
|W (t)|2 ≤ 0.
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This monotonicity of the energy W (t) yields the following boundedness for the solu-
tion vector V (t):

|V (t)| = e−ρ(t)β
1
s
(

detH(t)
)−1‖H(t)‖|W (t)| ≤

≤ e−ρ(t)β
1
s
(

detH(t)
)−1‖H(t)‖|W (0)| = eKtβ

1
s detH(0)

detH(t)

‖H(t)‖
‖H(0)‖

|V (0)|. (3.18)

Note that, according to property (3.11), the function
(

detH
)−1

(t) is bounded. Fur-
thermore, the behaviour of the convolution and the definition of H(t) guarantee the
existence of suitable constants c, c′ > 0 such that ‖H(t)‖ ≤ c and ‖H−1(0)‖ ≤ c′.
Therefore, there exists a constant C > 0 such that

|V (t)| ≤ CeKtβ
1
s |V (0)|,

that means, by definition of V (t), that

β2|v(t)|2 + |vt(t)| ≤ CeKtβ
1
s
(
β2|v0|2 + |v1|2

)
,

proving the statement of Case 2.

3.3. Case 3: a ∈ Cl([0,T]), with l ≥ 2, a(t) ≥ 0. In this case we extend the tech-
nique developed for Case 1. First we perturb the symmetriser of the matrix A(t).
This is done considering the so-called quasi-symmetriser of A(t), the idea introduced
for such problems by D’Ancona and Spagnolo in [15].

Consider the quasi-symmetriser of A(t), that is, a family of coercive, Hermitian
matrices of the form

Q(2)
ε (t) := S(t) + 2ε2

(
1 0
0 0

)
=

(
2a(t) 0

0 2

)
+ 2ε2

(
1 0
0 0

)
,

for all ε ∈ (0, 1], and such that
(
Q

(2)
ε A− A∗Q(2)

ε

)
goes to zero as ε goes to zero. The

associated perturbed energy is given by

Eε(t) :=
(
Q(2)
ε V (t), V (t)

)
.

We proceed estimating the energy, calculating its derivatives in time, so that

d

dt
Eε(t) =

( d
dt
Q(2)
ε (t)V (t), V (t)

)
+ (Q(2)

ε Vt(t), V (t)) + (Q(2)
ε V (t), Vt(t)) =

=
( d
dt
Q(2)
ε (t)V (t), V (t)

)
+ iβ

((
Q(2)
ε A(t)− A∗(t)Q(2)

ε

)
V (t), V (t)

)
. (3.19)

To estimate the second term in the right hand side, we set

V (t) =

(
iβv(t)
∂tv

)
=:

(
v1
v2

)
.

Algebraic calculations give

Q(2)
ε (t)A(t)− A∗(t)Q(2)

ε (t) = 2ε2
(

0 1
−1 0

)
,
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therefore

i
((
Q(2)
ε (t)A(t)− A∗(t)Q(2)

ε (t)
)
V (t), V (t)

)
≤ 2ε2

∫
2|Im(v2v1)|dt ≤ 2ε

∫
2|εv1||v2|dt ≤

≤ 2ε

∫
(ε2|v1|2 + |v2|2)dt ≤ 2ε

∫ (
ε2 + a(t)

)
|v1|2 + |v2|2dt = ε

(
Q(2)
ε (t)V (t), V (t)

)
.

Using this estimate in (3.19), we get

d

dt
Eε(t) =

( d
dt
Q(2)
ε (t)V (t), V (t)

)
+ iβ

((
Q(2)
ε A(t)− A∗(t)Q(2)

ε

)
V (t), V (t)

)
≤

≤
( d
dt
Q(2)
ε (t)V (t), V (t)

)
+ βεEε(t)

=

[( d
dt
Q

(2)
ε (t)V (t), V (t)

)
(
Q

(2)
ε (t)V (t), V (t)

) + βε

]
Eε(t). (3.20)

In order to apply the Gronwall lemma, we first estimate the integral∫ T

0

(
d
dt
Q

(2)
ε (t)V (t), V (t)

)(
Q

(2)
ε (t)V (t), V (t)

) dt. (3.21)

Let us recall that from the definition of the quasi-symmetriser, it follows that(
Q(2)
ε V, V

)
= 2

∫ ((
a(t) + ε2

)
β2|v|2 + |∂tv|2

)
dt. (3.22)

Thus, setting c1 := max
(
1, 2(‖a‖L∞ + ε2)

)
, we obtain a bound from above for (3.22),

that is (
Q(2)
ε V, V

)
≤ c1|V |2.

Observing that ε2c−11 ≤ 1 and ε2c−11 ≤ c1 for small enough ε, we can also deduce an
inequality from below of the form

ε2c−11 |V |2 ≤
(
Q(2)
ε V, V

)
.

Hence, there exists a constant c1 ≥ 1 such that for t ∈ [0, T ] we have

c−11 ε2|V (t)|2 ≤
(
Q(2)
ε (t)V (t), V (t)

)
≤ c1|V (t)|2. (3.23)

The lower bound, together with [26, Lemma 2] (see [33, Lemma 2] for a detailed
proof), allows us to estimate the integral (3.21) as follows∫ T

0

(
d
dt
Q

(2)
ε (t)V (t), V (t)

)(
Q

(2)
ε (t)V (t), V (t)

) dt ≤ ∫ T

0

(
d
dt
Q

(2)
ε (t)V (t), V (t)

)(
Q

(2)
ε (t)V (t), V (t)

)1− 1
l (Q

(2)
ε (t)V (t), V (t)

) 1
l

dt ≤

≤ c
1
l
1 ε
− 2
l

∫ T

0

(
d
dt
Q

(2)
ε (t)V (t), V (t)

)(
Q

(2)
ε (t)V (t), V (t)

)1− 1
l |V (t)| 2l

dt ≤ c
1
l
1 ε
− 2
l cT‖Q(2)

ε ‖
1
l

Cl([0,T ]) ≤ c3ε
− 2
l .

Thus, by the Gronwall lemma and the estimates for the quasi-symmetriser just de-
rived, we obtain

Eε(t) ≤ Eε(0)ec3ε
− 2
l +βεT .
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Combining the latter inequality with (3.23) we obtain

c−11 ε2|V (t)|2 ≤ Eε(t) ≤ Eε(0)ecT (ε
− 2
l +βε) ≤ c1|V (0)|2ecT (ε

− 2
l +βε).

We choose ε such that ε−
2
l = βε, thus ε = β−

l
2+l and εβ = β

2
2+l . We can assume β is

large enough with a remark for small β similar to Case 2. Setting σ = 1 + l
2
, for a

suitable constant K ∈ C it follows that

|V (t)|2 ≤ Cβ
l
σ eKβ

1
σ |V (0)|2.

This means that

β2|v(t)|2 + |v′(t)|2 ≤ Cβ
l
σ eKβ

1
σ
(
β2|v0|2 + |v1|2

)
,

as required.

3.4. Case 4: a ∈ Cα([0,T]), with 0 < α < 2, a(t) ≥ 0. In this last case we extend
the proof of Case 2. However, under these assumptions the roots of the matrix A(t),

that are, ±
√
a(t) might coincide, and hence they are Hölder of order α

2
instead of α.

We can refer for the background discussions of this to [25]. In order to adapt this proof
to the one for Case 2 we will assume without loss of generality that a ∈ C2α([0, T ])
with 0 < α < 1, so that

√
a ∈ Cα([0, T ]). At the end, to formulate the final result,

we will change α into α
2
.

Following the argument developed for Case 2, we look again for solutions of the
form

V (t) = e−ρ(t)β
1
s
(

detH(t)
)−1

H(t)W (t),

with the real-valued function ρ(t), the exponent s and the energy W (t) to be chosen
later, while H(t) is the matrix given by

H(t) =

(
1 1

λε1,α(t) λε2,α(t)

)
,

where the regularised eigenvalues of A(t), λε1,α(t) and λε2,α(t) differ from the ones
defined in the previous case in the following way

λε1,α(t) := (−
√
a ∗ ϕε)(t) + εα,

λε2,α(t) := (+
√
a ∗ ϕε)(t) + 2εα.

Arguing as in Case 2, we can easily see that the smooth functions λε1(t) and λε2(t)
satisfy, uniformly in t and ε (and trivially in x), the following inequalities

• detH(t) = λε2,α(t)− λε1,α(t) ≥ c1ε
α;

• |λε1,α(t) +
√
a(t)| ≤ c2ε

α;

• |λε2,α(t)−
√
a(t)| ≤ c3ε

α.

We now look for the energy estimates. In order to do this, recalling the calculations
done before (3.13) and (3.14), we obtain

d

dt

∣∣W (t)
∣∣2 = 2Re

(
Wt(t),W (t)

)
≤
(

2ρ′(t)β
1
s + 2‖H−1(t)Ht(t)‖+

+ 2
∣∣( detH(t)

)−1
detHt(t)

∣∣+ β‖H−1AH − (H−1AH)∗‖
)
|W (t)|2. (3.24)

The same arguments as in Case 2 allow us to get the following bounds
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I) ‖H−1(t)Ht(t)‖ ≤ k1ε
−1;

II)
∣∣( detH(t)

)−1
detHt(t)

∣∣ ≤ k2ε
−1;

III) ‖H−1AH − (H−1AH)∗‖ ≤ k3ε
α.

Combining (3.24) with I), II) and III) we obtain

d

dt
|W (t)|2 ≤

(
2ρ′(t)β

1
s + 2k1ε

−1 + 2k2ε
−1 + k3βε

α
)
|W (t)|2.

We choose ε−1 = βεα which yields ε = β−
1

α+1 . Thus, setting γ := 1
α+1

, we obtain for
a constant c > 0 the estimate

d

dt
|W (t)|2 ≤

(
2ρ′(t)β

1
s + 2cβγ

)
|W (t)|2.

We take ρ(t) := ρ(0)−Kt with K > 0 to be chosen later. Considering

1

s
> γ ⇐⇒ s < 1 + α,

we get
d

dt
|W (t)|2 ≤ (−2K + 2cβγ−

1
s )β

1
s |W (t)|2 ≤ 0,

provided that β is large enough. Similarly to Case 2, we then get

|V (t)| ≤ eKtβ
1
s
(

detH(t)
)−1

detH(0)‖H(t)‖
(
‖H(0)‖

)−1|V (0)|. (3.25)

Since (
detH(t)

)−1
detH(0)‖H(t)‖

(
‖H(0)‖

)−1 ≤ cε−α = cβ
α
α+1 ,

the inequality (3.25) becomes

|V (t)| ≤ cβ
α
α+1 eKtβ

1
s |V (0)|,

which means

β2|v(t)|2 + |v′(t)|2 ≤ cβ
α
α+1 eKtβ

1
s
(
β2|v0|2 + |v1|2

)
.

Combining this with a remark for small β similar to Case 2 yields the result. Thus
Proposition 3.1 is proved. �

4. Proof of Theorem 1.1

In this section we combine the things from Section 2 and Section 3 to prove Theorem
1.1. However, we will need one more ingredient, the Fourier transform on G, that we
now briefly describe.

Let f ∈ L1(G) and let π ∈ Ĝ. By a usual abuse of notation we will identify
irreducible unitary representations with their equivalence classes. The group Fourier
transform of f at π is defined by

FGf(π) ≡ f̂(π) ≡ π(f) :=

∫
G

f(x)π(x)∗dx,

with integration against the biinvariant Haar measure on G. This gives a linear

mapping f̂(π) : Hπ → Hπ that can be represented by an infinite matrix once we
choose a basis for the Hilbert space Hπ. Consequently, we can write

FG
(
Rf
)
(π) = π(R)f̂(π).
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By Kirillov’s orbit method (see e.g. [14]), one can explicitly construct the Plancherel

measure µ on the dual Ĝ. Therefore we can have the Fourier inversion formula. In

addition, the operator π(f) = f̂(π) is Hilbert-Schmidt:

‖π(f)‖2HS = Tr
(
π(f)π(f)∗

)
<∞,

and the function Ĝ 3 π 7→ ‖π(f)‖2HS in integrable with respect to µ. Furthermore,
the Plancherel formula holds:∫

G

|f(x)|2dx =

∫
Ĝ

‖π(f)‖2HSdµ(π), (4.1)

see e.g. [14] or [19].

Proof of Theorem 1.1. Our aim is to reduce the Cauchy problem (1.1) to a form
allowing us to apply Proposition 3.1. In order to do this, we take the group Fourier

transform of (1.1) with respect to x ∈ G for all π ∈ Ĝ, that is,

∂2t û(t, π) + a(t)π(R)û(t, π) = 0. (4.2)

Keeping in mind the form (2.4) of the infinitesimal representation π(R) the equation
(4.2) can be seen componentwise as an infinite system of equations of the form

∂2t û(t, π)m,k + a(t)π2
mû(t, π)m,k = 0, (4.3)

where we are considering any π ∈ Ĝ, and any m, k ∈ N. The key point of the
following argument is to decouple the system given by the matrix equation (4.2). In
order to do this, we fix an arbitrary representation π, and a general entry (m, k) and
we treat each equation given by (4.3) individually. Note that eventually û(t, π)m,k
is a function only of t. Formally, recalling the notation used in Proposition 3.1, we
write

v(t) := û(t, π)m,k, β2 := π2
m,

and

v0 := û0(π)m,k, v1 := û1(π)m,k.

Therefore, equation (4.3) becomes

v′′(t) + a(t)β2v(t) = 0.

We proceed discussing implications of Proposition 3.1 separately in each case.

Case 1: a ∈ Lip([0,T]), a(t) ≥ a0 > 0.
Applying Proposition 3.1, we get that there exists a positive constant C > 0 such

that

β2|v(t)|2 + |v′(t)|2 ≤ C(β2|v0|2 + |v1|2),
which is equivalent to

|πmû(t, π)m,k|2 + |û′(t, π)m,k|2 ≤ C
(
|πmû0(π)m,k|2 + |û1(π)m,k|2

)
. (4.4)

This holds uniformly in π ∈ Ĝ and m, k ∈ N. We multiply the inequality (4.4) by

π
4s/ν
m yielding

|π1+ 2s
ν

m û(t, π)m,k|2 + |π
2s
ν
m û

′(t, π)m,k|2 ≤ C
(
|π1+ 2s

ν
m û0(π)m,k|2 + |π

2s
ν
m û1(π)m,k|2

)
. (4.5)
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Thus, recalling that for any Hilbert-Schmidt operator A we have

‖A‖2HS =
∑
m,k

|(Aϕm, ϕk)|2

for any orthonormal basis {ϕ1, ϕ2, . . . }, we can consider the infinite sum over m, k of
the inequalities provided by (4.5), to get

‖π(R)
1
2
+ s
ν û(t, π)‖2HS + ‖π(R)

s
ν ∂tû(t, π)‖2HS ≤ (4.6)

≤ C
(
‖π(R)

1
2
+ s
ν û0(π)‖2HS + ‖π(R)

s
ν û1(π)‖2HS

)
.

We can now integrate both sides of (4.6) against the Plancherel measure µ on Ĝ, so
that the Plancherel identity yields estimate (1.9).

Case 2: a ∈ Cα([0,T]), with 0 < α < 1, a(t) ≥ a0 > 0.
The application of Proposition 3.1 implies the existence of two positive constants

C,K > 0 such that for all m, k ∈ N and for every representation π ∈ Ĝ we have

|πmû(t, π)m,k|2 + |û′(t, π)m,k|2 ≤ CeKtπ
1
s
m(|πmû0(π)m,k|2 + |û1(π)m,k|2), (4.7)

where
s < 1 +

α

1− α
.

If the Cauchy data (u0, u1) are in γsR(G)× γsR(G) then there exist two positive con-
stants A0 and A1 such that

‖eA0R
1
2s u0‖L2 <∞ and ‖eA1R

1
2s u1‖L2 <∞.

We note that we can restrict to consider πm large enough since the cut-off to bounded
πm produces functions in any Gevrey spaces. Indeed, if a cut-off χ : R → C has a
compact support, then by the same energy estimate, since χ(R) and R commute,
the problem is reduced to the solution χ(R)u(t, x) to the Cauchy problem

∂2t (χ(R)u(t, x)) + a(t)R(χ(R)u(t, x)) = 0, (t, x) ∈ [0, T ]×G,
χ(R)u(0, x) = χ(R)u0(x), x ∈ G,
∂t(χ(R)u(0, x)) = χ(R)u1(x), x ∈ G,

(4.8)

with data χ(R)u0 and χ(R)u1, so it is in any Gevrey class.
Take now A = min{A0, A1}, then we can always assume K in Case 2 of Proposition

3.1 is small enough, so that we have some B > 0 such that KT = A−B. Therefore,
we can rewrite inequality (4.7) as

eBπ
1
s
m
(
|πmû(t, π)m,k|2 + |û′(t, π)m,k|2

)
≤ CeAπ

1
s
m(|πmû0(t)m,k|2 + |û1(t)m,k|2). (4.9)

Summing over m, k, integrating against the Plancherel measure of Ĝ and applying
the Plancherel identity, inequality (4.9) becomes

‖eBR
1
2s u‖L2(G) + ‖eBR

1
2s ∂tu‖L2(G) ≤ ‖eBR

1
2sR

1
2u‖L2(G) + ‖eBR

1
2s ∂tu‖L2(G) ≤

≤ ‖eAR
1
2sR

1
2u0‖L2(G) + ‖eAR

1
2s u1‖L2(G). (4.10)

If a function f belongs to γsR(G), then also R 1
2f is in γsR(G). Therefore, from (4.10)

we get the desired well-posedness result.
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Case 3 : a ∈ Cl([0,T]), with l ≥ 2, a(t) ≥ 0.
Similarly to the previous cases, the application of Proposition 3.1 yields the exis-

tence of two positive constants C,K > 0 such that

|πmû(t, π)m,k|2 + |û′(t, π)m,k|2 ≤ Cπ
l
σ
+2

m eKTπ
1
σ
m |û0(π)m,k|2 + Cπ

l
σ
me

KTπ
1
σ
m |û1(π)m,k|2 ≤

≤ CeK
′π

1
s
m|û0(π)m,k|2 + CeK

′π
1
s
m|û1(π)m,k|2,

with 1 ≤ s < σ = 1 + l
2
, for some K ′ > 0 small enough. Proceeding as in Case 2, we

obtain the desired inequality, and hence also the well-posedness result.

Case 4: a ∈ Cα([0,T]), with 0 < α < 2, a(t) ≥ 0.
In this last case, applying Proposition 3.1 we have that there exist two positive

constants C,K > 0 such that

π2
m|û(t, π)m,k|2 + |û′(t, π)m,k|2 ≤ Cπ

α/2
α/2+1
m eKTπ

1
s
m(π2

m|û0(π)m,k|2 + |û1(π)m,k|2),
with 1 ≤ s < 1 + α

2
. Arguing as above, the result follows. �
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