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Abstract

Earth system models show a wide variation of possible futures under climate change.
To develop appropriate policy for curbing global warming and adapting to unavoidable
change, better understanding of the climate system is crucial. One of the approaches
to reduce uncertainty in climate models is the identification of emergent constraints.
These are physically plausible empirical relationships between a particular simulated
characteristic of the current climate versus future climate change from an ensemble of
climate models, which can be exploited to reduce uncertainty using current observa-
tions.

This thesis discusses various interpretations of this technique and includes a com-
parison with other methods that combine models and observations in climate. A math-
ematical theory based on linear response theory is developed for an important subset
of constraints showing how nonlinear relationships appear from an interplay of system
and forcing time scales. Several statistical issues are examined, such as the best way
to deal with internal variability.

This theory is applied to three emergent relationships. Decadal climate variability
and climate sensitivity are found to be related in both conceptual climate models and
in CMIP5 climate model ensemble. This results in compound risk: significant temper-
ature surges on top of the long-term trend are more likely if climate sensitivity is high.
Two additional emergent relationships are used to find a constraint on transient warm-
ing and climate sensitivity from observed warming. They exploit the fact that uncertain
aerosol cooling is increasingly overshadowed by greenhouse gas warming. Many of
the CMIP6 climate models show a warming inconsistent with observed trends. The
thesis concludes with suggestions for future work.
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Chapter 1

Introduction

The climate crisis is one of the defining problems of our time. Global warming
has surpassed 1 °C (World Meteorological Organization, 2020), with the Intergovern-
mental Panel on Climate Change (IPCC) indicating that warming of more than 1.5 °C
has far-reaching consequences including the risk of passing irreversible thresholds
in the climate system (Masson-Delmotte et al., 2018). Many climate impacts scale
with global quantities such as temperature, for instance the chance of heat waves or
reaching certain tipping points (see Figure 1.1).

The main driver of global warming since the preindustrial period has been the an-
thropogenic emissions of greenhouse gases (Hegerl et al., 2007; Allen et al., 2018).
Humans emit greenhouse gases from the burning of fossil fuels, cement production
and agriculture (Friedlingstein et al., 2019; Saunois et al., 2020). These emissions are
disproportionally caused by rich people, whereas the impacts of climate change are
disproportionally felt by the poor (Chancel and Piketty, 2015). To curb future warm-
ing emissions need to be reduced, reaching net-zero, in particular carbon dioxide and
methane emissions (Rogelj et al., 2018).

In the Paris agreement, it was agreed by nearly all countries worldwide that global
warming should not exceed 2.0 °C, and efforts should be made so that temperatures
not surpass 1.5 °C (Fuglestvedt et al., 2018). Reaching that latter goal requires soci-
etal changes unprecedented in scale and speed (Masson-Delmotte et al., 2018). The
mitigation challenge depends on the social economic pathway the world chooses: it
is easier to transform society towards sustainability when countries work together and
more difficult when countries opt for fossil-fuel driven development (Riahi et al., 2017).

How much countries can still emit to stay below these two targets is not precisely
known. This carbon budget is the outcome of two scientific questions (Mengis et al.,
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Figure 1.1: Key impacts and risks are summarised in five Reasons for Concern, based on
expert assessment. Impacts scale with global mean temperatures. At low degrees of warming
unique and threatened systems are already at risk and extreme weather is set to increase.
Women and poor people have been impacted disproportionately, and this is expected to be-
come more pronounced when global warming surpasses 1.5 °C. Simultaneously the risk of
global aggregate impacts (f.i. economic downturn) and threshold behaviour rises. Reproduced
from IPCC (2018), Figure SPM.2.

2018):

1. How much of our greenhouse gas emissions stay in the atmosphere rather than
being absorbed by ocean and land or broken down chemically?

2. How much warming occurs when atmospheric greenhouse gas concentrations
increase?

The first question requires a good understanding of the biochemical cycles in the cli-
mate system. The second question can be answered studying various physical pro-
cesses on Earth. These questions are not easy to answer, because the initial response
of the climate system is enhanced or balanced by climate change feedbacks. Green-
house gases induce an initial warming by trapping heat, and this gets amplified by
various processes. One self-reinforcing feedback involves snow melt: a warming Arc-
tic will lose snow and ice cover, exposing darker surfaces which do not reflect as much
sunlight as the lighter surfaces did before, spurring further temperature rises (Roe,
2009). The next section gives an overview of important feedback processes.

12



1.1 An (im)balance of feedbacks

Future warming depends not only on greenhouse gas emissions, but also on the bal-
ance of positive (self-reinforcing) and negative (balancing) feedbacks.

In terms of greenhouse gas concentration, most atmospheric carbon will eventually
end up in the ocean drawing down temperatures, but causing ocean acidification that
is nearly unprecedented in geological history (Caldeira and Wickett, 2003). Currently
the land and the ocean absorb about a quarter each of yearly emissions, but this share
is set to decrease in warmer climate (Walsh et al., 2017). A positive self-reinforcing
feedback on land carbon involves wildfires. In a drying and warming climate, wildfires
become more likely, releasing carbon into the atmosphere, further raising tempera-
tures (Liu et al., 2014). Carbon dioxide is not the only greenhouse gas interacting with
the climate system: methane for instance, is released from permafrost when it melts
(Burke et al., 2018).

In addition to these biochemical feedbacks, which affect greenhouse gases, there
are physical feedbacks that directly impact temperatures. For example, the water
vapour content of the atmosphere increases with rising temperatures. As water vapour
is itself a greenhouse gas, this acts as a positive feedback, approximately doubling the
warming of well-mixed greenhouse gases such as CO2. The darker ocean surface that
replaces sea ice absorbs more heat, so that Arctic temperatures rise further. The net
effect of a diverse set of changes in clouds probably also amplifies warming, but the
strength of this feedback remains largely unknown. Increased infrared radiation by a
warmer Earth surface (sometimes called the Planck “feedback”1) acts as the primary
balancing mechanism (Fahey et al., 2017).

Figure 1.2 shows the strength of various feedbacks in two generations of climate
models: the CMIP3 generation which informed the 2007 IPCC report, and the CMIP5
generation informing the 2013 IPCC report. The abbreviation CMIP stands for Cou-
pled Model Intercomparison Project: an internationally coordinated program to evalu-
ate climate models. In both generations, cloud feedbacks were the biggest source of
disagreement. The same is true for the newest generation of climate models: CMIP6,
where low clouds in the extra-tropics were identified as the culprits of model disagree-
ment (Zelinka et al., 2020).

Uncertainty in these feedbacks explains why temperature projections under a sin-
gle greenhouse gas concentration scenario show a wide envelope. Figure 1.3 demon-

1A feedback is defined as something that enhances or suppresses an initial signal. As the initial
temperature signal is determined by the balance of increased greenhouse gas forcing, and inceased
infrared radiation, the latter cannot also be a feedback in mathematical terms. (Roe, 2009)
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strates the temperature response to different sets of greenhouse gas concentration
pathways of models in the CMIP5 archive. The scenario with the highest concentra-
tions (the representative concentration pathway 8.5) has rising global mean surface
temperatures ranging between 3.0 and 5.0 °C. In the CMIP6 archive, temperature rise
in response to higher concentrations of greenhouse gases is more pronounced: 84%
of these models indicate global warming surpasses 1.5 °C if we keep concentrations
at the 2019 levels (Huntingford et al., 2020). These same physical feedbacks are also
responsible for the uncertainty in climate sensitivity, which is the amount of warming to
be expected for a doubling of CO2.

Figure 1.2: The strength of individual feedback the CMIP3 and CMIP5 ensemble. The P
stands for the Planck “feedback”, WV stands for water vapour, LR stands for the lapse rate
feedback (changes in how fast the temperature falls with height), C is the net cloud feedback
and finally A represents the albedo feedback. The spread in cloud feedbacks is largest. Re-
produced from Flato et al. (2013, p. 819), Figure 9.43.

1.2 Estimating climate sensitivity

The amount of warming under a doubling of CO2 is called climate sensitivity and is
a sum of the physical feedbacks described above. Specifically, equilibrium climate
sensitivity (ECS) is the temperature rise thousands of years after CO2 has doubled,

14



Figure 1.3: (a) Time series of global surface air temperature (relative to 1986-2005) from
CMIP5 model simulations driven by concentration pathways. The thick line is the model mean
and the shading represents the variation in models, specifically the 5–95 % confidence interval.
(b) The sea ice extent at the end of the melt season on the Northern Hemisphere under different
concentration pathways. Reproduced from IPCC (2013c), Figure SPM.7.

when the immense mass of the ocean has also finished warming to reach a new
steady state. When talking about climate sensitivity, scientists often referred to the fast
feedback sensitivity, sometimes called the Charney sensitivity (Previdi et al., 2013).
This measure of climate sensitivity includes fast feedbacks such as water vapour and
cloud feedbacks, but excludes slow acting feedback such as the albedo change from
melting ice sheets in Antarctica and Greenland. In this thesis, we use this measure
and compute it using the Gregory method unless specified differently. With only the
first 140 years of a climate simulation used, this method slightly underestimates true
equilibrium temperatures if self-reinforcing feedbacks increase over time (Rugenstein
et al., 2020).

The IPCC assessed that (the fast feedback) equilibrium climate sensitivity is likely
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between 1.5 °C and 4.5 °C (IPCC, 2013c). Tanaka and O’Neill (2018) estimated that
if climate sensitivity is above 3.4 °C, it would be unfeasible to decarbonise sufficiently
fast to keep global warming under 2 °C for the entire 21st century, and temperatures
may overshoot 2 °C at least temporarily. In 2012, the Earth reached its halfway point
to a doubling of forcing from atmospheric CO2 with respect to the levels before the
Industrial Revolution (Myhre et al., 2017).

Without any feedbacks, climate sensitivity would be 1.2–1.3 °C, determined by a
balance between the increased radiative forcing of carbon dioxide and the Stefan-
Boltzmann relation, the tendency of warmer bodies to emit more heat into space (i.e.
the Planck ”feedback”). With feedbacks in play, estimating climate sensitivity becomes
more difficult (Roe, 2009). There are broadly speaking three strategies to constrain
possible values of climate sensitivity: improving the process understanding of the var-
ious feedbacks, investigating the historical climate record and studying evidence from
climate change in Earth’s more distant past.

To understand individual feedback processes better, scientists study observations
of the climate system, for instance from satellites. They also make physical models:
Global Climate Models (GCMs, details in Figure 1.4), or the more extensive Earth Sys-
tem Models (ESMs), which represent the carbon cycle and other biochemical cycles in
more detail. These models try to give a complete representation of the climate system
by approximating physical laws. Approximations have to be made because computers,
even supercomputers, do not have enough power to explicitly resolve processes at a
small scale. These processes at small scales are instead replaced by parametriza-
tions: simplified representations. Modelling centres use distinctive but often equally
defensible parameterisations, leading to different projections of future climate. A dif-
ferent type of model, Process Resolving Models, have significantly higher resolutions
and therefore do not need to make as many approximations and parametrisations for
unresolved processes. They are used to assess processes in high detail in small re-
gions (Sherwood et al., 2020).

A second line of evidence to constrain estimates of climate sensitivity comes from
observed historical warming. This is combined with estimates of how much forcing
(the energy imbalance at the top of the atmosphere) sunlight-reflecting aerosols and
greenhouse gases have exerted. Using the fact that climate sensitivity is the amount
of warming per forcing, these two numbers can be used to estimate sensitivity. Lastly,
the distant past: two periods in Earth’s past are particularly informative about climate
sensitivity. The Last Glacial Maximum was 3 °C − 7 °C colder than pre-industrial tem-
peratures (often defined as a mean temperature between 1850 and 1900), whereas
the mid-Pliocene warm period 3 million years ago was 1 °C− 5 °C above pre-industrial
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Figure 1.4: Climate models divide the Earth system into different grids: a high resolution
model now has a typical resolution of 0.1° in latitude and longitude, and a typical model’s grids
are 10 times as big at 1° in latitude and longitude (Newsom et al., 2016). In each grid, physical
laws are computed: the movement of air and water, the distribution of energy, and precipitation.
Because many of these processes take place in a smaller scale than a grid, each climate model
needs to find approximations on the sub-grid scale. Image source: NOAA

temperatures. In combination with estimates of the drivers behind these past changes,
information about Earth’s sensitivity to greenhouse gases can be obtained (Sherwood
et al., 2020).

Improving the accuracy of climate projections is one of the most important chal-
lenges in climate modelling. Uncertainty might be reduced by the development of
more sophisticated global climate models, capturing new processes and scales. This
is a long process and many decisions on climate change adaptation and mitigation
have to be made on the short term. Alternative approaches to better predictions are
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therefore valuable. Emergent constraints introduced in the next chapter are one of
these alternatives.

1.3 Thesis structure

The thesis is structured as followed. In Chapter 2, we give an overview of the tech-
nique of emergent constraints and how they fit within the broader suite of strategies
to combine observations and models. Chapter 3 continues with a discussion of emer-
gent constraints from a general system dynamics perspective. In Chapter 4, we detail
several statistical considerations, some of which are illustrated with the emergent con-
straint in Cox et al. (2018a). Chapter 5 uses an emergent relationship not to constrain
a future variable, but to show the present and future impact of the joint probability of
sensitivity and variability. From the emergent relationship between decadal tempera-
ture variability and climate sensitivity, it is shown that a period without an increase in
surface temperature may actually be more likely in high-sensitive models. Chapter 6
describes two emergent constraints on ECS and TCR and how to understand them
using conceptual models. The final chapter includes a conclusion and discussion of
possible future avenues for research: the impact of tuning, the opportunities of using
emergent constraints in paleo-contexts, and which conceptual climate models can be
revisited for use in emergent constraints research.
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Chapter 2

Emergent constraints

Figure 2.1: Schematic of an emergent constraint. Each dot represents a climate model. An
emergent constraint combines uncertainty from observations with the uncertainty in the emer-
gent relationship found in a set of climate models.

One of the proposed methods to accomplish reduced uncertainty in climate projec-
tions has been the use of so-called emergent constraints, where current observations
are used to constrain model projections of the future (Klein and Hall, 2015). In mul-
timodel ensembles of climate models, it is frequently possible to find a relationship
between two variables, the first one observable in the current climate (e.g., seasonal
variation in sea ice), the second one a future prediction (e.g. 21st century sea ice
retreat). More credibility is attached to models that match the observed mean state,
variability or trend well over the recent period. In this way, current observations provide
a constraint to long term trends. The observable variable is called the predictor, and
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the future variable the predictand (Klein and Hall, 2015). Figure 2.1 shows a schematic
of an emergent constraint: each of the dots represent a (hypothetical) climate model.

To construct a regression line between a predictor X and a predictand Y , not only
good models (consistent with observations), but curiously also the “bad models” (in-
consistent with observations) are used (Brient and Schneider, 2016). It is a subjective
assessment to what extent these bad models are similarly able to inform the relation-
ship between predictor and predictand.

In recent years many emergent constraints have been found. Caldwell et al. (2018),
for instance, evaluated 19 separate emergent constraints on climate sensitivity only.
Further constraints have been found for for Arctic temperature change (Bracegirdle
and Stephenson, 2013), snow albedo feedback (Hall and Qu, 2006), tropical carbon
(Wenzel et al., 2014), and Antarctic ozone (Karpechko et al., 2013) amongst other
variables.

In Section 2.1, we will discuss the difference between the qualitative and quanti-
tative interpretation of emergent constraints. Section 2.2 discusses conditions under
which emergent constraints are convincing. In Section 2.3, the technique of emer-
gent constraints will be put in a broader perspective, comparing it to techniques from
numerical weather prediction and general statistical modelling.

2.1 Interpretation: qualitative or quantitative

There are broadly two ways to interpret the relationships found in emergent con-
straints. The ‘strong or quantitative’ interpretation quantifies a probability distribution
of the predictand using the (linear) regression between predictor and predictand. The
first emergent constraint (Allen and Ingram, 2002) and many that followed use this
interpretation (Hargreaves et al., 2012; Cox et al., 2013; Winkler et al., 2019, e.g.). An-
other proposed quantitative interpretation uses joint Gaussian distributions (Bretherton
and Caldwell, 2020), as further discussed in Section 4.7. The weak interpretation, for
instance by Hall and Qu (2006), simply states that models with a high or low predictand
are more or less likely to be close to the truth given the observations.

A related point of contention is the value of models that lie far outside of the ob-
servations. In linear least squares regression, outliers influence the regression param-
eters markedly. To what extent can we trust a model that performs badly in terms of
the observable of interest to show the correct correspondence between predictors and
predictands?

In the theory of emergent constraints it is often a priori assumed that the relation-
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ship between predictand and predictor is linear. This does not have to be the case.
Effects of nonlinearities are discussed in Chapter 4 of this thesis (Section 4.4). The
regression choice can partially be based on an analytically-derived relationship using
reduced-form modelling, exemplified in Chapters 5 and 6. Scaling up to ESMs may al-
ter alter this relationship. Particular care should be taken when the observed predictor
is on the low or high end of the model range, as bias there is highest.

2.2 Why and when to trust emergent constraints?

Not all emergent constraints are equally well-supported. Klein and Hall (2015) propose
to categorise emergent constraints in three groups: potential, promising and confirmed
emergent constraints, depending on how reliable one judges the emergent constraint
to be. They discussed three different reliability criteria: a strong physical basis, robust-
ness to choice of model ensemble and no obvious multiple influences. Similarly, Hall
et al. (2019) distinguish proposed (no physical intuition or mechanism) and confirmed
emergent constraints.

Strong physical basis

To ensure emergent constraints are not simply found by data mining, every emergent
constraint should have a strong physical basis. Searching for emergent constraints
using blind data mining my lead to spurious and misleading correlations, as there
always a pletora of correlations in a highly dimensional dataset by chance alone, some
of which may seem physical. (Caldwell et al., 2014).

Klein and Hall (2015) argue that, ideally, the physical mechanism should point to
specific parametrisations or physical parameters. They further state that with this phys-
ical explanation in hand, researchers should show that this mechanism is in fact the
reason behind the emergent constraint. Unfortunately, model diagnostics are often not
available to perform this check (ibid.).

Klein and Hall (2015) identify this as the most important reliability criterion. If it is
only partially satisfied, two other criteria should be taken into account.

Robustness to choice of model ensemble

If the physical relation between predictor and predictand is robust, it should appear
when testing out of sample (Hall et al., 2019), for instance in different CMIP model
ensembles (CMIP3, CMIP5, CMIP6), different model versions or perturbed physics
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Figure 2.2: Schematic of compensating errors. When the effect of process A and B are both
related to variable X it is possible to find an emergent relationship between A and X, but
also between B and X. If this second relationship is ignored, one might end up with a worse
estimate of X compared to the model mean.

ensembles. Failing this criterion does not automatically disqualify an emergent con-
straint. There are a small set of conditions under which a valid emergent constraint is
only present in some ensembles. First of all, the identification of a certain emergent
constraint or bias might have led some modelling groups to improve that process so
that variation in the ensemble disappears. If an emergent constraint materialises due
to newly added processes, older generations cannot show it. Lastly, a model ensem-
ble may have improved or converged on the representation of a separate process that
clouded the presence of an emergent constraint in a previous ensemble.

No obvious multiple influences

Establishing the reliability of an emergent constraint that is subject to many indepen-
dent or dependent processes is difficult. One of the major problems in these types of
emergent constraints is that these processes possibly have compensating errors as
shown in Figure 2.2. If two compensating processes together determine the predic-
tand, where one is overestimated and the other underestimated, an emergent con-
straint using but one process will make the prediction worse than taking the model
mean.

2.2.1 Categorisation by dynamics

In Chapter 3, we will propose a different classification for emergent constraint, based
on their dynamical characteristics. A distinction is made between dynamical and static
emergent constraints. The first category consists of those emergent constraints that
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use the system response to a periodic or random forcing of the system. The second
category, static constraints, are those emergent constraints that find relationships be-
tween the background state or mean state of the climate system, and sensitivity on
long time scales to forcing.

Both categories are further divided into direct and indirect emergent constraints.
Direct constraints use the same observable for predictor and predictand, while indirect
constraints are relationships between two different observables.

This framework complements the frameworks based on reliability in the sense that
it helps formulating and showing a physical basis for the emergent constraint of inter-
est. Direct and dynamical emergent constraints are considered more physically con-
vincing as there are fewer possibilities for compensating errors and systematic errors
respectively.

2.3 Comparing emergent constraints to other

methods of combining models and observations

Many methods exist that combine models and observational data to help predict some
future quantity. Emergent constraints are a simple technique that can be seen as
“post-processing” climate model ensembles. In contrast, other techniques sometimes
delve into the model code. In this section, we give an overview of techniques used in
weather and climate prediction and contrast them with emergent constraints.

2.3.1 Data assimilation

Data assimilation combines information from measurements and dynamical (geophys-
ical) models to obtain an optimal estimate of a variable field (Reichle, 2008).

In data assimilation, the state of a weather model is updated every n time steps
using observations and taking into account the relative uncertainty of the model com-
pared to the observations. The updates can be done using a Kalman filter, which is
in essence a Bayesian update with the model output as a prior and the observations
as a likelihood function (Kalman, 1960). The original Kalman filter assumed a linear
model, but since, more complicated Kalman filters have been developed that work for
nonlinear models and use an ensemble of models (Lei and Hacker, 2015).

In addition to these ‘objective data assimilation techniques’ there are empirical data
assimilation techniques, such as nudging, also known as Newtonian relaxation. Here
a weather or climate model is nudged towards an observational field. In contrast to
Kalman filters the dynamical code of the model is directly changed by inserting an
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additional feedback term proportional to the observation-model misfit, which makes
the technique continuous. It is computationally less expensive than the objective data
assimilation (Lei and Hacker, 2015).

Data assimilation is a technique designed to solve a different problem than emer-
gent constraints, namely the initial value problem of numerical weather prediction.
Data assimilation has also been applied to climate models for decadal predictions
(Chikamoto et al., 2019, e.g.). In emergent constraints and climate projections more
generally, we are instead interested in the average properties of the climate system:
the transient state after decades to centuries or, more often, an equilibrium state, such
as the carbon budget and climate sensitivity.

2.3.2 Calibration and history matching

Climate model developers use observations to calibrate or tune their models. The ob-
servations are used to find optimal parameters in uncertain parameterisations (Steele
and Werndl, 2013).

In history matching, computationally cheap models (either physical models or sta-
tistical models of those models called emulators) are run with a large set of parameter
values. The parameter space is usually quite high-dimensional (say 20 different pa-
rameters) and therefore sampled randomly using priors for all parameters. Combina-
tions of parameters are accepted if they are able to produce the observed history with
a certain degree of error (Goodwin et al., 2018).

History matching is often contrasted with full Bayesian calibration. The former is
computationally more efficient, since it can rule out physically very unrealistic param-
eter values first by only using those model outputs for which it is easy to construct
an emulator. In the next iterator of history matching the emulator uses a smaller pa-
rameter space, which makes it easier to emulate complex phenomena. Full Bayesian
calibration immediately takes into account all sources of observations so that a lot of
attention has to be focused on constructing a emulator which performs well in very
nonphysical circumstances. An advantage of the latter technique is that there is a
formal quantification of uncertainty for model uncertainty (Williamson et al., 2013).

History matching defines some implausibility measure that compares the emulator
output (plus its uncertainty) to the observations. In the standard application of history
matching, this implausibility measure does not take into account autocorrelation, which
was identified in Cox et al. (2018a) to be an independent source of information inform-
ing plausibility of models. A more important difference with emergent constraints is
that information from different model formulations is lost.
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2.3.3 Post-processing

The output of weather models is usually post-processed. These statistical post-processing
techniques compensate for known biases in the models. It also compensates for
under- or overconfidence of the initial value ensemble, which may vary in space and
time. The testing and development of post-processing relies heavily on hindcasts: us-
ing current models to predict old weather patterns (Van Schaeybroeck and Vannitsem,
2012). Again, one big difference between weather prediction and climate projections
is that we are usually not interested in the temporal evolution just after an initial state,
but longer-term trends, for which few hindcasts are available.

Because every model is imperfect, post-processing is sometimes also done using
a multi-model ensemble. The set of techniques that are used in (hydro)-meteorology
includes simple model average, multimodel superensemble, and Bayesian model av-
eraging (BMA) (Li et al., 2017, and references therein).

In climate modelling, as with weather models, a common post-processing tech-
nique is using the multimodel mean as best estimate with the multi-model variance as
a measure of uncertainty. This approach is called model democracy as all models are
considered equally likely to be “true” and used with equal weight for the final prediction
(Knutti, 2010).

Stott and Kettleborough (2002) developed a method to estimate future warming
combining model with temperature observations. They assumed that the fractional er-
ror between model and observations would remain constant, which was consistent with
historical model-observation discrepancy. Uncertainty was computed from estimated
natural forcing and control-simulation derived internal variability. As the technique is
applied to one model, information from other models is lost. Uncertainty may be un-
derestimated, as to models showing the same historical warming can show different
future warming for other reasons than internal variability.

Sanderson et al. (2015) propose a different method that takes into account model
interdependency. Using observational data of surface temperature, precipitation, out-
going top-of-the-atmosphere (TOA) shortwave radiation, outgoing longwave radiation,
sea level pressure, atmospheric temperature, and relative humidity, they define a dis-
tance function between models and between model and observations. This distance
function allows interpolation between models with the idea of preventing very similar
models having a large impact on the predictands.

Although sophisticated, this method judges the models on their overall perfor-
mance, and not on the performance on those metrics that are of interest for certain
predictands. If only those observations are used that have a high predictive power for,
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say, climate sensitivity, one might compromise on the power of the method to account
for model interdependency as a result.

Model weighting based on one relevant observation, as performed in Brient and
Schneider (2016), circumvents this issue. They perform model weighting using the
Kullback-Leibler divergence, which is the relative entropy between model and observa-
tion. Consequently no information is used from models inconsistent with observations.
They argue that regression in emergent constraints can lead to an overly constrained
estimate of Y if one of the models consistent with observations lies too far outside of
the regression prediction interval. But conversely, models consistent with observations
may show too little spread, and the spread around the emergent relationship outside
of the observationally consistent region may provide useful information about this.
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Chapter 3

A mathematical approach

This chapter is adapted from Nijsse and Dijkstra (2018), and its basis was developed
as part of my Master thesis. See Associated papers for the PhD contributions.

3.1 Introduction

For individual emergent constraints physical processes have been identified explaining
the relationship. An example is the relationship between the seasonal variation in the
snow-albedo feedback (SAF) and the feedback under global warming (Hall and Qu,
2006). Hall and Qu (2006) elucidated the key physical process behind the emergent
constraint. Models where the maximum albedo of snow is highest have the largest
SAF on both time scales because the contrast between snow-covered and snow-free
areas is highestf (Qu and Hall, 2007).

However, a more general dynamical picture on how emergent constraints occur in
multi-model ensembles or even in a perturbed parameter ensemble of a single model
has been lacking. Under which circumstances are these constraints expected to arise?
Some emergent constraints may be spurious and could arise because of shared errors
in a particular multimodel ensemble (Bracegirdle and Stephenson, 2013). A mathe-
matical framework is desired to identify spurious constraints and to give an indication
as to where new emergent constraints might arise.

In this chapter, we investigate how and under what conditions emergent constraints
appear and what can be learned about the physics of the climate system from their
existence. We will use linear response theory (LRT) to address the problem of forcing-
response relations on different time-scales (Risken and Frank, 1996). Ruelle (1998)
demonstrated that LRT can be extended to study the response of non-equilibrium sys-
tems to external forcing. As with the fluctuation-dissipation theory, Ruelle’s LRT uses
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the statistical properties of the unforced (equilibrium) state only, but it does not as-
sume (quasi)-equilibrium. Recently, LRT has been proposed as a rigorous framework
for computing the response of the climate system and its applicability has been tested
on the Lorenz-96 model and on the idealised global climate model PlaSim (Lucarini
and Sarno, 2011; Ragone et al., 2016).

The chapter is organised as follows. To obtain an understanding of emergent con-
straints we start by formulating a mathematical framework in terms of susceptibilities
by making use of LRT (Section 3.2). This results in explicit expressions for the ap-
pearance of emergent constraints in terms of susceptibility functions. In Section 3.3, a
classification scheme for emergent constraints is proposed which may provide insight
into the question of reliability posed in the introduction. Then, in Section 3.4, ap-
plications are presented for conceptual climate models, such as Ornstein-Uhlenbeck
processes in one and two dimensions, an energy balance model and a climate model
of intermediate complexity (PlaSim). The results are summarised and discussed in
Section 3.5.

3.2 Response functions

In this section explicit expressions are given for response functions of the state of a
dynamical system which depends on a single parameter and which is subjected to
a non-stationary forcing. Such response functions are used in the following section
to classify the different emergent constraints. Rigorous results for linear response
properties of large class of general stochastic systems were obtained by Hairer and
Majda (2010). Linear response theory for nonequilibrium systems was developed by
Ruelle (1998, 2009).

We illustrate the approach using the general one-dimensional forced stochastic
differential equation (SDE)

dXt = (−V ′(Xt) + F (t))dt+
√
σdWt. (3.1)

Here V (x) is a smooth confining potential, meaning that an equilibrium solution exists
for the unforced system (Pavliotis, 2014), and F (t) is a prescribed forcing. Further-
more, σ is the noise amplitude and the associated Wiener process is indicated by Wt.

The probability density function of the unforced (F (t) = 0) system, say p̄, satisfies
the Fokker-Planck equation

∂p̄

∂t
=
∂(V ′(x)p̄)

∂x
+
σ

2

∂2p̄

∂x2
= L ∗(p̄), (3.2)
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which defines the Fokker-Planck operator L ∗. The equilibrium distribution of the un-
forced system, here indicated by p̄e , is given as:

p̄e(x) =
1

Z
e

−2V (x)
σ ; Z =

∫ ∞
−∞

e
−2V (x)

σ dx. (3.3)

Linear response theory (Ragone et al., 2016) provides an expression for the change
in the expected value of an observable O (e.g. the temperature, ice extent or the
standard deviation of either), say ∆O(t) when the system is forced, compared to the
unforced case, i.e.

∆O(t) = E[O(Xt)]− E[Oe(Xt)], (3.4)

where again the subscript e indicates the equilibrium of the unforced system. It follows
that

∆O(t) =

∫ t

0

RO(t− s)F (s)ds; RO(t) = H(t)

∫ ∞
−∞

O(x) eL ∗t(−∂p̄e
∂x

)dx, (3.5)

where RO(t) is the response function, which is extended to be zero for t < 0 with a
Heaviside functionH(t) to ensure causality. When Equation 3.5 is Fourier transformed
we find, using the convolution theorem,

F(∆O(t))(ω) = χ(ω)F̂ (ω), (3.6)

where the Fourier transform χ(ω) of the response function RO(t) is the susceptibility. If
we take a cosine forcing, i.e. F (t) = F0 cosω0t then F̂ (ω) = F0π(δ(ω − ω0) + δ(ω + ω0))

so once we know χ(ω), we can determine the response ∆O(t).
When we take the identity operator O = x as the observable, thus taking the mean

value of this variable, we obtain a response function and corresponding susceptibility:

RO(t) =
2

σ

∞∑
l=1

βle
−λlt, χ(ω) =

2

σ

∞∑
l=1

βl
λl + iω

, (3.7)

For A = x, we find from Equation 3.5 that

RA(t) =

∫ ∞
−∞

x eL ∗t(−∂p̄e
∂x

) dx. (3.8)

Using the expression for the equilibrium solution p̄e from Equation 3.3, we find

− ∂p̄e
∂x

=
2

σ
V ′(x)p̄e (3.9)
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and hence Equation 3.8 becomes

RA(t) =

∫ ∞
−∞

x eL ∗t

(
2

σ
V ′(x)p̄e

)
dx. (3.10)

With the standard L2-inner product, the adjoint of L determined as 〈L ∗g, h〉 =

〈g,L h〉, where L is the generator of the OU process, is given by

L u = V ′(x)
∂u

∂x
+
σ

2

∂2u

∂x2
. (3.11)

Using this property in Equation 3.10, we find

〈x, eL ∗t(V ′(x)p̄e)〉 = 〈eL tx, V ′(x)p̄e〉 (3.12)

and hence

RA(t) =
2

σ

∫ ∞
−∞

eL t(x) V ′(x)p̄e dx. (3.13)

Next an inner product 〈g, h〉p̄e is defined as

〈g, h〉p̄e =

∫ ∞
−∞

ghp̄e dx. (3.14)

As a next step, let λl and φl be the eigenvalues of the generator, i.e. solutions v of

L φ = −λφ. (3.15)

For reversible processes, these eigenvalues are real, positive and discrete under
the inner product 〈 , 〉p̄e. The eigenfunctions form a complete orthonormal basis, such
that 〈φn, φm〉p̄e = δnm (Pavliotis, 2014). Now eL t(x) represents solutions u(x, t) of the
problem

∂u

∂t
= L u (3.16)

with initial condition u(x, 0) = x. We can expand u into eigenfunctions as

u(x, t) =
∞∑
l=1

αlφl(x)e−λlt. (3.17)

From the initial condition, we find

∞∑
l=1

αlφl(x) = x (3.18)
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and using the orthogonality of the φl under the inner product 〈, 〉p̄e, we find

αl = 〈x, φl〉p̄e . (3.19)

On the other hand, substituting the expression for u into Equation 3.13 gives∫ ∞
−∞

∞∑
l=1

αlφl(x)e−λltV ′(x)p̄e dx =
∞∑
l=1

βle
−λlt, (3.20)

where
βl = αl〈V ′(x), φl〉p̄e = 〈x, φl〉p̄e〈V ′(x), φl〉p̄e . (3.21)

Repeating the derivation above with a general observable A = f(x) gives βl =

〈f(x), φl〉p̄e〈V ′(x), φl〉p̄e. The first factor in βl denotes the projection of the observable
on the eigenfunctions and could intuitively be interpreted (for l > 0) as the amenability
of the observable to change. The second projection term in βl can be understood to be
the amenability of the whole system to change under the influence of the forcing field.
In Equation 3.24 those observables are Y1 and Y2, so that gl = 〈Y1, φl〉p̄e〈V ′(x), φl〉p̄e
and hl = 〈Y2, φl〉p̄e〈V ′(x), φl〉p̄e.

The amplitude A of the response to a periodic forcing F (t) = F0 cosω0t is deter-
mined by the absolute value of the susceptibility

A(∆X(t))(ω0) =
2F0

σ

∞∑
l=1

βl√
λ2
l + ω2

0

. (3.22)

When the predictor is a response to a uniform frequency forcing, it can be expressed
as in Equation 3.22. The predictand will generally also have this form, as a forcing
with a long time scale can be approximated by a low-frequency forcing. The previous
analysis can be generalised to more dimensions. In two dimensions, for example, with
a state vector Yt = (Y1t, Y2t)

T , the SDE becomes

dYt = (−∇V (Yt) + F (t)ı̂)dt+
√
σI2dWt, (3.23)

where the term F (t)ı̂ denotes a forcing in the direction of the first variable and I2 the
identity matrix. As shown in Pavliotis (2014), the derivation of the response function
follows the one-dimensional case closely, resulting in:

RY1(t) =
2

σ

∞∑
l=1

gle
−λlt; RY2(t) =

2

σ

∞∑
l=1

hle
−λlt, (3.24)
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where gl and hl are again projection coefficients, gl and hl containing a factor describ-
ing strength of the response in Y1 and Y2 respectively. The derivation of the exact terms
is given above. Calculating the response is analogous to the one-dimensional case,
so that the Fourier transforms of the response functions are given by

A (∆Y1t)(ω0) =
2

σ

∞∑
l=1

gl√
λ2
l + ω2

0

; (3.25)

A(∆Y2t)(ω0) =
2

σ

∞∑
l=1

hl√
λ2
l + ω2

0

. (3.26)

In uncoupled multidimensional systems, the eigenfunctions are found to be the
tensor products of the eigenfunctions in the one-dimensional case, while the corre-
sponding eigenvalues are the sum of the eigenvalues in the one-dimensional case.

3.3 Classification of emergent constraints

Although a wide set of different emergent constraints have been found, no attempts
have been made to classify them so far using dynamical criteria. Here, a classification
is proposed based on the time-characteristics of the predictor and on the relationship
between the predictor and the predictand. Using this classification, assessment of
their applicability becomes easier. Furthermore, a classification is a prerequisite for a
dynamical description of emergent constraints.

Firstly, an emergent constraint can be either direct or indirect. In the direct case,
the predictor and predictand are the same observable, while in the indirect case they
are not. In the latter case, the predictor variable and predictand variable have to be
closely linked, for instance via a physical process. We make a further distinction be-
tween static and dynamic emergent constraints. In a dynamic emergent constraint a
response to a known, or sometimes even unknown, forcing in the (present-day) pre-
dictor is linked to the response of the (future) predictand under the same (or a similar)
forcing. For example: the forcing can be the annual cycle of solar radiation, but can
also be caused by ENSO or historical climate change. In a static emergent constraint
a relationship between the time-independent quantity of the unforced system in the
present-day (predictor) is linked to the response in a quantity under climate change.

As an illustration, we apply our classification to examples of emergent constraints
found in the literature in Table 3.1. Although this is not a complete overview, exam-
ples are found of the four types of emergent constraints. There are many examples
of direct dynamical constraints, such as the one involving the snow-albedo feedback
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Reference Climate predictor Climate predictand

1 Knutti et al. (2006) Seasonal cycle land temperature am-
plitude

ECS

2 Hall and Qu (2006); Qu and
Hall (2014)

Springtime SAF SAF

3 Boe et al. (2009) Arctic sea ice extent trend Arctic sea ice extent
4 Clement et al. (2009) Sensitivity LLC to Pacific decadal

variability
Sign LLC feedback

5 Trenberth and Fasullo
(2010)

SH net radiation TOA ECS

6 Fasullo and Trenberth
(2012)

Mid-tropospheric RH over ocean in
subsidence region

ECS

7 Bracegirdle and Stephen-
son (2013)

Arctic SAT Arctic SAT

8 Gordon and Klein (2014) Sensitivity of extra-tropical LLC opti-
cal depth to temperature

Extra-tropical LLC opti-
cal depth.

9 Qu et al. (2014) Sensitivity of LLC cover to SST LLC cover
10 Sherwood et al. (2014) Cloud-scale and large-scale lower

tropospheric mixing over oceans
ECS

11 Su et al. (2014) RH & cloud fraction tropics ECS
12 Wenzel et al. (2014) Short-term sensitivity of atmospheric

CO2

Tropical land carbon
storage

13 Tian (2015) Precipitation and mid-tropospheric
RH asymmetry bias (for ITCZ)

ECS

14 Kwiatkowski et al. (2017) Tropical primary production under
ENSO-driven SST variations

Tropical primary pro-
duction

15 Cox et al. (2018a) Function of autocorrelation of GMST ECS
16 Donat et al. (2018) Seasonal land-atmosphere feedback Frequency heat ex-

tremes
17 Terhaar et al. (2020) Present-day Arctic sea surface den-

sity
Future Arctic Ocean
acidification

Table 3.1: Selection of emergent constraints from the literature to demonstrate the classifica-
tion system. The classification is showcased in Figure 3.1
Abbreviations stand for RH: relative humidity, ITCZ: inter-tropical convergence zone, TOA: top
of atmosphere, SH: southern hemisphere, ECS: equilibrium climate sensitivity, LLC: low-level
cloud, SAF: snow-albedo feedback. SAT: surface air temperature. The emergent constraint
found by Trenberth and Fasullo (2010) seems to be spurious: no physical mechanism was
proposed and it did not appear in different ensembles, such as CMIP5 (Grise et al., 2015).
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Figure 3.1: Classification of emergent constraints in four categories. Most ECs fall either in
the category of dynamical direct constraints or static indirect constraints. Numbers correspond
to Table 3.1.

shown in Figure 3.7 (Hall and Qu, 2006). Dynamic direct emergent constraints are the
most intuitive. As long as the variations in the predictor are of a sufficient amplitude
compared to those of the predictand, a correlation between the predictor and predic-
tand automatically points towards a common physical basis, for example a common
dynamical response to an external forcing. The direct static emergent constraint found
by Bracegirdle and Stephenson (2013) makes use of spatial patterns. All of the in-
direct constraints involve equilibrium climate sensitivity as the predictand. Often the
mean of some variable with a known bias in the model ensemble is linked to ECS. For
instance, in Tian (2015) the asymmetry bias in ITCZ is linked to climate sensitivity. An
example of a dynamical indirect emergent constraint is provided by Cox et al. (2018a),
who relate a function of autocorrelation of global surface temperature to ECS. In this
case the short-time forcing is assumed to be caused by internal variability.

Based on the response function theory in Section 3.2, we further elaborate on the
classification and also discuss conditions for each type of constraint for a dynamical
system with varying parameters (which defines the ensemble of models).
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For a direct dynamical emergent constraint, in the standard case of a linear rela-
tionship, the relation has the following form: Predictand = Cst Predictor, where Cst is
a constant independent of the parameter used to generate the ensemble of models.
Rewriting this, the ratio of the responses to forcing of frequencies ω1 and ω2 should
be constant over the (parameter) ensemble members ei. For the simple case of two
forcings that only differ in frequency, we find the condition from the ratio of the suscep-
tibilities SR as

SR(e) =
A(∆O(t))(ω2)

A(∆O(t))(ω1)
=

∑∞
l=1

βl√
λ2l+ω

2
2∑∞

l=1
βl√
λ2l+ω

2
1

= Cst, (3.27)

One variable (B) can act as forcing to a second variable (O), while being itself
forced externally (F ). The predictor and predictand are then given by the quotient of
the response functions of O and B. A further complication is that often the forcing
patterns are not exactly the same for the short (F2) and long (F1) periodic forcing. In
this case Equation 3.27 has to be adjusted to:

SR(e) =
A(∆O(t)|F2)(ω2)

A(∆O(t)|F1)(ω1)

A(∆B(t)|F1)(ω1)

A(∆B(t)|F2)(ω2)
= Cst, (3.28)

This is further discussed in the example of the idealised energy balance model.
Physically, we expect that the same mechanisms to be responsible for the response

at a short and long time scale to obtain this type of emergent constraint. The system
should have response times smaller than the time scale of the forcing or equivalently:
the generator should have eigenvalues λ larger than the frequency of the forcing. Nat-
urally, the response times 1

λ
of the dominant processes are expected to be at least

smaller than the time scale of the slow forcing 1
ω1

.
Mathematically, the ratio in Equation 3.27 becomes one in the case that all eigen-

values λl are much larger than the forcing frequencies. Interestingly, the linear relation
breaks down in the case that the fast forcing has the same order of magnitude as the
eigenvalues of the dominant terms in the susceptibility. Under the assumption of a
single dominant term in the susceptibility and a slow forcing with frequency ω2 → 0

the first correction term to the slope-one linear relation between predictand Y and
predictor X, is cubic in X.

For a direct dynamical emergent constraint, a linear relationship with slope one
is reached when the forcing frequencies are significantly lower than the eigenvalues
of the system. This is a weak assumption for future forcing, which can often be ap-
proached by saying ωslow → 0. We then only have to be worried about the fast forcing.
If this fast forcing and the system response are approximately equally fast; the relation
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that is found might seem linear, but it in fact not linear.
Take a system in which the susceptibility is dominated by only one term in its sum

and for which ωslow → 0. The amplitude of the response Y will be βl
λ

. The fast variable
X will have amplitude of the form:

β1√
λ2 + ω2

2

=
β1

λ

1√
1 + (ω

λ
)2

(3.29)

To simplify, we first divide X and Y by β1. Then we invert the second equation by
substituting y = 1

λ
.

1

λ

1√
1 + (ω

λ
)2

= x

y
1√

1 + (ωy)2
= x

y2(1− x2ω2) = x2

y = x

√
1

1− x2ω2

y ≈ x

(
1 +

1

2
ω2x2

)
.

(3.30)

From this we can conclude that a correction term is added to the linear relationship
proportional to ω

λ
, so that in the case the response is not sufficiently fast, there will only

be an apparent linear relationship. Normally, the sum determining the amplitude of the
response will consist of multiple terms. The higher eigenvalues are larger, so that the
assumption ω < λ is more easily met, resulting in smaller deviation from linearity.

An underestimate or overestimate of uncertainty can be made if a linear least
square fitting is performed in combination with observational data if the functional re-
lation is in fact non-linear (see Section 4.4).

In the case of indirect dynamical emergent constraints, a relationship between a
predictor Y1 and a predictand Y2 is found. Assuming the predictor Y1 is again a re-
sponse to some forcing, we can repeat the analysis above for direct constraints for a
system of two dimensions, where a forcing is added in one direction. Mutatis mutandis,
a condition very similar to Equation 3.27 is found, as

A(∆Y1(t))(ω2)

A(∆Y2(t))(ω1)
=

∑∞
l=1

gl√
λ2l+ω

2
2∑∞

l=1
hl√
λ2l+ω

2
1

= Cst, (3.31)

where gl and hl are defined as in Equation 3.24. For an emergent constraints to exist,
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the projection terms of the different observables should thus change in a similar fashion
under the change in parameter.

Static direct constraints link the mean of an observable (predictor) to a change
in the system under a specific forcing (predictand). Note that the susceptibility only
contains information about the response to such forcing. Even in the limit of ω → 0, it
denotes the linear response of the system, without any information on the mean state
(Lucarini and Sarno, 2011). So, to derive the condition for a linear relationship the
mean E[Oe(Xt)] =

∫∞
−∞ p̄eO(x) dx and the susceptibility at frequency ω1 are used.

For static emergent constraints, the linear relationship between the predictand and
the predictor is not expected to pass through the origin, since the predictor will in
general be nonzero. Therefore, an additional term I is added to the ratio, denoting the
intercept of the line between the predictor’s mean state and the predictand. Instead,
the susceptibility is compared to the mean state and the following condition is derived,
where Cst should again be a constant independent of parameter(s) that is used to
generate the ensemble:

E[O1t]− I
A(∆O2(t))(ω1)

=

∫∞
−∞ p̄eO1(x) dx− I∑∞

l=1
2
σ

hl√
λ2l+ω

2
1

= Cst. (3.32)

Again Cst can either be positive or negative, depending on the physics under consid-
eration. This equation is both valid for direct and indirect static emergent relationships;
in the case of a direct constraint O1 = O2 and the term hl contains information about
the response of O1 to a forcing, while in the indirect case O1 6= O2 and hl contains
information about O2. As evident from Equation 3.32, our framework provides little
insight on these types of constraints.

As an illustration of the theory from Section 3.2 and a direct dynamical emergent
constraint, we take the Ornstein-Uhlenbeck process (OU process). Here V ′(x) = γx,
where γ is a parameter that indicates the steepness of the potential. The eigenvalues
and eigenfunctions of the generator are given by Pavliotis (2014)

λl = γl ; φl(x) =
1√
l!
Hn

(√
2γ

σ
x

)
, (3.33)

where Hn are the Hermite polynomials. For the Ornstein-Uhlenbeck case, the ratio of
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response amplitudes reduces to

SR(γ) =
β1/
√
λ2

1 + ω2
2

β1/
√
λ2

1 + ω2
1

=

√
1 + (ω1/γ)2√
1 + (ω2/γ)2

, (3.34)

since both the observable and the derivative of the potential are orthogonal to all eigen-
functions other than φ1. This ratio is dependent on γ. In the case γ � ωi for i ∈ {1, 2}
this ratio is nearly one and an emergent relationship is present for a model ensemble
generated by varying γ.

3.4 Application to idealised climate models

From the previous sections, it appears that the computation of the eigensolutions of
the generator of the dynamical system are central to determine whether an emergent
constraint will appear or not. In this section, we will provide examples using idealised
climate models.

The eigenvalues and eigenfunctions of the generator were numerically determined
using the fact that the eigenvalues of the Fokker-Planck operator L ∗ are equal to those
of the generator and that the eigenfunctions can be computed from the transformation:
φl = φ∗l /p̄e. The Fokker-Planck operator was discretised using the Chang-Cooper al-
gorithm (Chang and Cooper, 1970). Eigenvalues and eigenvectors were determined
using an Implicitly Restarted Arnoldi Method (Lehoucq et al., 1998). Explicit simula-
tions of the SDEs were performed using a stochastic Runge-Kutta method (Kloeden
and Platen, 1992).

3.4.1 Ornstein-Uhlenbeck cases

First, the one-dimensional Ornstein-Uhlenbeck process is considered with SDE

dXt = (−γXt + Fi(t))dt+
√
σdWt, (3.35)

forcing Fi(t) = sin 2πtωi and frequencies ω1 = 0.001 and ω2 = 0.1. A parameter ensem-
ble is created by varying γ. In this case, analytic solutions exist for the eigenvalues and
eigenvectors of the generator. Eigenvectors and eigenvalues were determined using
the Chang-Cooper scheme on a domain [−25, 25] with ∆x = 0.25. The numerically
computed susceptibilities, as shown in Figure 3.2b, are in agreement with the analytic
ones and capture the response (Figure 3.2a) well, as expected in this linear case.
In the two-dimensional Ornstein-Uhlenbeck case, the same forcing Fi(t) is added but
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Figure 3.2: (a) Response to forcings at two different frequencies of the one-dimensional
Ornstein-Uhlenbeck process. Shown is the average of a 500-member simulation of trajec-
tories (b) The susceptibility at these frequencies, whose ratio is given in the inset figure. This
is an example of a direct dynamical emergent relationship.

only in the first dimension. The governing SDE is given by

dXt =

[(
−γ1 δ

δ −γ2

)
Xt +

(
Fi(t)

0

)]
dt+

√
σ

(
1 0

0 1

)
dWt, (3.36)

and a parameter ensemble is generated by changing the damping rate γ1. Two en-
sembles are compared with δ = 0.2 in the first ensemble and δ = 0.5 in the second.
The damping term γ2 is held constant at γ2 = 0.6.

In Figure 3.3, the eigenvalues and susceptibility ratios are plotted. In the case of a
relatively weak coupling (δ = 0.2) all nonzero eigenvalues are larger than the fast forc-
ing frequency ω2, so the system response time is smaller than the forcing time scales.
On the other hand, the strong coupling (δ = 0.5) leads to a slow down of the system,
so that some eigenvalues now become smaller than ω2. In these cases (γ1 < 0.5) the
system does not have time to portray the full response to a forcing, while for others
(γ1 > 0.5) it does. Consequently, the strength of the response actually decreases for
γ1 < 0.5. Directly calculating the expected value as the mean of 500 stochastic trajec-
tories confirms this result (not shown). The results in Figure 3.4 show a large variation
over the ensemble in the projection term of the predictor on the eigenfunctions (gl). In
contrast, the product of the two projection terms in the predictand (hl) changes rela-
tively little over the ensemble for both coupling strengths. Even though the projection
terms now play a significant role in determining the response, the eigenvalues still
determine whether the relation is linear (fast compared to forcing) or nonlinear (sim-
ilar size to forcing frequency). In the weak-coupling system, the susceptibility ratio
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Figure 3.3: Eigenvalue spectrum for (a) δ = 0.2 and (b) δ = 0.5. The dashed line corresponds
to the frequency ω2 of the fast forcing. (c,d) Corresponding susceptibilities, with their ratio in
the inset figures. This is an example of an indirect dynamical emergent relationship. Note that
for reasons of numerical stability, the range of γ1 is different than that of γ in Figure 3.2.

is almost constant and an emergent linear relationship is found. The strong-coupling
system does only portray an emergent relationship for certain regimes (low or high γ1).
A case can be made though that the highly coupled system is the system for which
finding an emergent constraint is more likely, because the strength of the response is
substantially higher and a better signal-to-noise ratio can be obtained.

3.4.2 Energy balance model

In this section the snow-albedo feedback (SAF) first described by Hall and Qu (2006)
is examined in more detail. They found a correlation between SAF on a seasonal scale
and SAF under global warming. In models with a high snow albedo, the contrast be-
tween snow-covered and bare surfaces was largest and consequently the sensitivity
to changes in temperature was largest (Qu and Hall, 2007). To study this emergent
constraint we modify a simple energy balance model based on the seminal work by
Budyko (1969) and Sellers (1969). The albedo is made temperature-dependent, fol-
lowing Fraedrich (1979) and a stochastic term is added following Sutera (1981). A
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Figure 3.4: (a,b) Projections gl (of predictor variable) and hl (of predictand variable) for a
weakly coupled two-dimensional OU system with δ = 0.2, (c,d) same for δ = 0.5.

parameter in the albedo function will be used to define a parameter ensemble.
With constant albedo, the energy balance model reads:

dT =
1

cT

(
Q(1− α) + A ln

C

Cref
+G− εσBT 4

)
dt+

√
σT dWt, (3.37)

where dT is the temperature change, cT the atmospheric heat capacity, Q the solar
insolation, α the albedo, C the concentration of greenhouse gases, Cref a reference
concentration, G represents the radiative forcing due to the reference greenhouse gas
concentration, σB the Stefan-Boltzmann constant and ε the emissivity of the Earth. The
standard parameter settings for this model can be found in Table 3.2. The parameters
of the albedo function are chosen to ensure that no bistability is present in the model,
in which case LRT would break down.

Before examining the snow-albedo feedback, note that for some variables, notably
the climate sensitivity, a simple EBM can react differently to forcing from solar insola-
tion or greenhouse gases. This can be determined from, with H = G + A ln C

Cref
and
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Constant Value

cT 5.0× 108 J/m2/K
A 20.5 W/m2

Q0 342 W/m2

Qs 115 W/m2

G 150 W/m2

Cref 280 ppmv
τs 4.0× 106 s
σα 1.0× 10−5 s−1

Constant Value

ε 1.0
σB 5.67× 10−8 W/m2/K4

αmin 0.2
αamp 0.05–0.5
k 0.5
Th 284 K
σT 2.0× 10−7 K2/s

Table 3.2: Constants for the energy balance model and the insolation function.

for a value of ε = 1,

∂

∂α

∂T

∂Q
=

σ1/4

4 (Q(1− α) +H)3/4

(
3Q(1− α)

Q(1− α) +H
− 1

)
< 0;

∂

∂α

∂T

∂H
=

3Qσ1/4

16 (Q(1− α) +H))7/4
> 0

(3.38)

Sensitivity to greenhouse forcing decreases when albedo increases, while sensi-
tivity to solar insolation (seasonal sensitivity) increases for an increasing albedo, using
typical values for Q and H.

To mimic the physical mechanism behind the emergent constraint, the albedo is
taken to be temperature dependent, i.e., for low (high) temperatures, the albedo is
high (low). A logistic function is used to model this effect,

α(T ) = αmin +
αamp

1 + exp (k(T − Th))
(3.39)

where αmin is the minimum albedo, αamp is the amplitude, k is a steepness factor and
Th is the temperature at which half of the amplitude is reached. The amplitude αamp is
the parameter that is varied over the ensemble.

In the first case, the insolation forcing is given by Q = Q0(1 + Qs sin 2πt/τ) where
τ is one year and Qs a seasonal modulation amplitude, with parameter values as
shown in Table 3.2. The snow-albedo feedback term is then computed by dividing the
amplitude of the albedo cycle by the amplitude of the temperature cycle. A second
case is considered in which the greenhouse gas concentration C is increased 0.3%
per year from 295 ppmv over a period of 300 year. Here the snow-albedo feedback
is computed by dividing the total albedo response by the total temperature response.
In each case, the variance of the noise σT in Equation 3.37 was chosen as 10−7 K2/s.
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Changing this parameter does not influence the eigenvalues as expected from the
theory (Pavliotis, 2014). While the projections of the eigenvalues and eigenfunctions
did change slightly, the susceptibility ratio was not influenced significantly by a variation
of σT (halving and doubling of σ, not shown). In the computation of the solution of the
Fokker-Planck equation using the Chang-Cooper scheme, we used a resolution of 1 K
which is sufficient to accurately determine the eigenvalues and eigenfunctions of the
generator.

As mentioned above, application of Equation 3.27 is not self-evident. Considering
temperature to be a forcing ignores the fact that temperature responds differently to
seasonal and greenhouse gas forcing, as shown in Equation 3.38. Secondly, using
dα/dT as the observable directly does not work either. Linear response theory does
not give the expected value of the observable, but the expected value of the deviation
due to the forcing, while we are interested in the change due to a parameter change.

Instead, the SAF can be described by two variables: SAF is determined by tak-
ing the ratio of the susceptibilities of albedo to temperature. Therefore, we use the
modified Equation 3.28:

RFS(αamp) =
A(∆α(t)|Q)(ω2)

A(∆α(t)|C)(ω1)

A(∆T (t)|C)(ω1)

A(∆T (t)|Q)(ω2)

=

∑∞
l=1

αl√
λ2l+ω

2
2∑∞

l=1
γl√
λ2l+ω

2
1

∑∞
l=1

δl√
λ2l+ω

2
1∑∞

l=1
βl√
λ2l+ω

2
2

= Cst,

(3.40)

where

αl = 〈α, φl〉p̄e〈(1− α(T ))V ′(T ), φl〉p̄e , γl = 〈α, φl〉p̄e〈V ′(T ), φl〉p̄e
βl = 〈T, φl〉p̄e〈(1− α(T ))V ′(T ), φl〉p̄e , δl = 〈T, φl〉p̄e〈V ′(T ), φl〉p̄e .

(3.41)

In the case the susceptibilities are all dominated by one term with index l, this reduces
to Cst = (αlδl)/(βlγl) = 1

In Figure 3.5 the sensitivity of temperature to varying amplitude of the albedo func-
tion is shown, as well as the sensitivity of the snow-albedo feedback and condition
for the existence of an emergent constraint. As shown in Figure 3.5a, no emergent
relationship is found for climate sensitivity, a feature that was analytically found in the
case of constant albedo. In Figure 3.5b the emergent constraint on SAF is shown.
In the warm regime (low albedo, lower line in the figure), the SAF becomes larger for
larger αamp. The larger the maximum albedo, the steeper the logistic albedo function.
A second effect also takes place: the higher the maximum albedo, the warmer it gets.
Consequently, sensitivity of the albedo function is smaller. This decrease in sensitivity
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Figure 3.5: (a) The relation between temperature response to the seasonal cycle and the tem-
perature response to greenhouse gas forcing. (b) The strength of the snow-albedo feedback to
solar and greenhouse gas forcing on different time scales. In the inset: their ratio as a function
of αmax. For clarity, (a,b) are shown without noise. (c) The susceptibilities for temperature as
the observable (d) The ratio of albedo and temperature susceptibilities and their ratio (RFS).

also takes place in the cold regime; the colder it gets, the less sensitive the albedo
gets. In the cold regime it is clear that this second mechanism dominates. The results
can be reproduced by use of LRT, as shown in Figure 3.5c and 3.5d. The discrepan-
cies disappear when forcing is small; the climate change forcing in particular is causing
most of the differences.

One can extend the energy balance model by representing the response of snow
and ice explicitly as a relaxation towards the logistic reference albedo function α(T )

given in Equation 3.39. This gives the extended model

dT =
1

cT

(
Q(1− ᾱ) +H − εσT 4

)
dt+

√
σT dWt

dᾱ =− 1

τs
(ᾱ− α(T )) dt+

√
σᾱ dWt,

(3.42)

where τs = 4× 106 s is the response time of the albedo. The drift term in the Fokker-
Planck equation corresponding to Equation 3.42 is not the gradient of a potential but
the eigensolutions of the generator can still be computed numerically.

Extending the model with an explicit albedo function does not change the dynamics
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Figure 3.6: (a) Eigenvalues of the EBM depending on the amplitude of the albedo function for
the simple EBM. The zero eigenvalues correspond to the invariant measure. (b) The extended
EBM. (c) Albedo projection terms for solar forcing (αl) as defined in Equation 3.41 where the
markers denote l (d) Same for temperature βl (e,f) projections terms for GHG forcing γl and δl
respectively.

of the system significantly, nor the eigenvalues and eigenvectors. Figure 3.6b shows
the eigenvalues of the extended EBM to be almost exactly equal to the eigenvalues
of the original model, the imaginary parts continuing to be zero. The projection coeffi-
cients are very similar as well (not shown). Thus, the inclusion of a smaller time scale
does not improve the response.
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3.4.3 A model of intermediate complexity: PlaSim

To bridge the gap between perturbed parameter ensembles in simple dynamical sys-
tems and Earth System Models, the SAF emergent constraint is further examined in
PlaSim. PlaSim is a numerical model of intermediate complexity, developed at the
University of Hamburg to provide a fairly realistic present climate which can still be
simulated on a personal computer (Fraedrich et al., 2005). The atmospheric dynamics
are modelled using the primitive equations formulated for temperature, vorticity, diver-
gence and surface pressure. Moisture is included by transport of water vapour. The
equations are solved using the spectral method. A full set of parameterizations is used
for unresolved processed such as long and shortwave radiation with interactive clouds,
boundary layer fluxes of latent and sensible heat and diffusion.

In this climate model snow albedo is a function of surface temperature Ts, snow
depth and vegetation cover. The bare soil snow albedo in PlaSim is described by:

Asnow =


Amax, if Ts ≤ 10 °C.

Amin, if Ts > 0 °C.

Amin − (Amax − Amin)Ts
10

otherwise.

(3.43)

This equation is modified in the presence of vegetation and in the case of shallow snow
depth. See Lunkeit et al. (2011) for more details. A set of simulations was performed
with Amax varying between 0.650 and 0.900. The historical forcing in PlaSim was
approximated by a CO2 increase from 295 ppm at a rate of 0.3% per year in the 20th
century and 1% per year in the 21st century before it stabilised at 720 ppm; a 50-year
spin-up corresponding to the period 1850–1900 was used.

In the right panel of Figure 3.7 the PlaSim results are shown which can be com-
pared to the results from Hall and Qu (2006) in the left panel. Note that the variation
in CMIP3 is significantly larger than the variation found in PlaSim, but that the PlaSim
results fit on the relation found by Hall and Qu (2006). Variations in other parame-
terizations, such as the maximum snow albedo over forested regions, increase the
spread in PlaSim SAF further (not shown). This simulation shows that the constraint
that emerges in a multi-model ensemble with structurally different formulations of the
snow response can to some extent also be reproduced using variations in one param-
eter. This provides the justification for simplifying further to energy balance models to
examine the SAF emergent constraint.
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Figure 3.7: Left panel) The emergent constraint on snow-albedo feedback ∆αs
∆Ts

(from Hall and
Qu (2006), αs given in units of %). This is an example of a direct emergent constraint (it links
the SAF in both past and future time) and a dynamical emergent constraint (it uses a response
to a seasonal forcing as its predictor). Right panel) Same as left, but now results from PlaSim

3.5 Summary, discussion and conclusions

In this chapter, we have presented a dynamical framework behind the occurrence of
emergent constraints in parameter dependent stochastic dynamical systems. In these
systems, emergent constraints are related to ratios of response functions which can
be determined using linear response theory. It was shown that for a large class of
systems, these ratios could be expressed in terms of eigenvalues and projections on
eigenvectors of the generator of the system.

A classification of emergent constraints was given and several types could be dis-
tinguished depending on whether similar (direct) or different (indirect) variables are
considered and whether a response in present-day climate (dynamical) or the time-
independent part of present-day climate (static) is linked to a response of the future
climate system. For a linear dynamical emergent constraint, the ratio of susceptibili-
ties at the two frequencies under consideration should be a positive constant over the
ensemble. When the response is computed with respect to an internal variable (in
contrast to an external forcing), a condition is posed on the susceptibilities of the two
variables in the system. Static constraints are encountered when a linear relationship
is found between the expected value of the observable and the susceptibility at the
frequency of the forcing.

Examples were given using several idealised climate models. In particular the
emergent constraints involving the snow-albedo feedback was considered in detail.
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We found that linear dynamical emergent relationships can occur when the time scale
of the system, indicated by the eigenvalues, changes with the parameter and is smaller
than the forcing time scales. This is of particular interest because differences in re-
sponse size between climate models is often determined by feedbacks strength in
climate systems. Larger feedbacks give rise to larger timescales (Roe, 2009), which
is reflected in the eigenvalues of the generator. For an emergent constraint on a feed-
back quantity there is a more complicated constraint mechanism, where one has to
take into account the response to two different variables, which typically have different
time scales. When the condition of the predictor’s time scale being smaller than the
forcing time scale is not met, deviations from linearity occur. If linearity of the relation
is exploited in further analysis, such as in the quantitative interpretation of emergent
constraints by Wenzel et al. (2014), this might lead to a bias in the estimate of the
predictand.

Modelling emergent constraints with conceptual models is justified when different
ESMs are closely related and structural differences can be parametrized. This can for
instance be tested using an intermediate complexity model with full parametrization of
the process under consideration.

The classification of emergent constraints provided gives a hint to which kind of
emergent constraints one can look out for in an ensemble of high-dimensional Global
Climate Models (GCMs). Searching for emergent constraints using blind data mining
my lead to spurious and misleading correlations (Caldwell et al., 2014). Using the sus-
ceptibilities to find new emergent constraints does not seem to have a direct advantage
above directly looking for plausible correlations, but susceptibilities might provide addi-
tional information. For example, when a susceptibility shows a resonance at a certain
frequency over the ensemble of models, this could suggest that the same feedback is
present in all simulations.

In a high-dimensional dynamical system eigenfunctions and eigenvalues can be
accessed with the help of transfer operators, associated with the propagation of prob-
ability densities associated with the Fokker-Planck operator. The eigenfunctions that
lie on the invariant measure are then computed by making use of the ergodic proper-
ties of the climate system. To overcome the burden of high-dimensionality, a reduced
transfer operator can be computed from a very long simulation, from which the eigen-
functions on the attractor are approximated (Tantet, 2016). However, a forcing on the
system does not generally lie only on the attractor and should be split into a part paral-
lel and perpendicular to the attractor. Consequently, the eigenvectors off the attractor
cannot a priori be ignored (Lucarini and Sarno, 2011). Gritsun and Lucarini (2017)
showed that indeed for some geophysical systems, specifically quasi-geostrophic flow
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with orographic forcing, the response to the forcing may have no resemblance to the
unforced variability in the same range of spatial and temporal scales. Lembo et al.
(2020) successfully derived a response function for the global near-surface temper-
ature the Atlantic Meridional Overturning Circulation the Atlantic Circumpolar current
and the global heat uptake. They noted however that more than their available twenty
initial value members are needed to reliably estimate the susceptibility.

In conclusion, while the current theoretical framework provides an understanding
on how emergent constraints may arise in low-dimensional stochastic dynamical sys-
tems, its application to output from GCMs, in particular in finding novel and useful
emergent constraints, is a challenging issue for future work.

In the next chapter we will discuss the second part of the theoretical underpinning
of emergent constraints: the statistical foundations.

49



Chapter 4

Statistics of emergent constraints

A summary of Section 4.3 is included in Cox et al. (2018b). Adaptations of
Section 4.4 and 4.7 are included in the Williamson et al. review paper, which I

co-authored (item 5 of Associated papers)

This chapter details statistical considerations for emergent constraints. In essence,
there are two “ingredients” in the statistical analysis: an estimate of the observational
uncertainty and the prediction interval of the emergent relationship. In the following
sections, the emergent relationship is denoted as Y = f(X) + ε, with X the predictor,
Y the predictand (future quantity), f the functional form (typically linear) and ε an
error term. Emergent constraints on CMIP ensembles are necessarily done using a
small sample of models. It is therefore of vital importance to use the proper statistical
techniques, to prevent putting too much confidence in the results and to exploit all
available information.

The chapter starts with a simple analytical derivation of the confidence interval of
a linear emergent constraint with normally distributed uncertainty around the obser-
vation. The second section expands on this by introducing a hierarchical statistical
model, which can include multiple simulations per model. The next section details
why an intercept term may appear in an emergent constraint even if not physically
expected. The chapter continues with notes on nonlinear constraints and on non-
normality of the confidence interval of the observations. The chapter ends on a review
about a potential discrepancy between models and reality, and a review and discus-
sion of methods to combine multiple constraints. The statistics are exemplified using
the emergent relationships found in Cox et al. (2018a) and Nijsse et al. (2019a), as
well as generated synthetic data.
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4.1 Propagation uncertainty

Both the observation and the emergent relationship itself carry uncertainty. This sec-
tion describes the derivation of the combined confidence interval, subject to a weak
approximation on the uncertainty in the emergent relationship. We start with an emer-
gent relationship between a predictor X and predictand Y : Y = a + bX, with a the
intercept and b the slope.

We take an observation with normally distributed uncertainty: p(x) = N (x | Xobs, σobs),
which is equivalent to:

p(x) = bN (bx | bXobs, bσobs). (4.1)

In the quantitative interpretation, emergent relationships are assumed to represent a
conditional probability of Y , given X:

p(y | x) =
1√

2πσ2
y

exp

{
−(y − a− bx)2

2σ2
y

}
(4.2)

with the prediction error σy given by σy(x) = s
√

1 + 1
N

+ x−x̄
Nσ2

x
, with σ2

x the sample vari-

ance of X. The root mean square error s is computed as: s2 = 1
N−2

∑N
n=1(yn − f(xn))2

(Cox et al., 2018a). Rewriting the conditional probability:

p(y | x) = N (y − bx | a, σy). (4.3)

The convolution of two normal distributions f(x) = N (x | µf , σf ) and
g(x) = N (x | µg, σg) is given by:∫

f(x)g(y − x)dx = h(y), (4.4)

where h(y) = N
(
y | µf + µg,

√
σ2
f + σ2

g

)
. This can be verified with a Fourier transform,

as the convolution theorem states that the Fourier transform of the convolution of two
functions is equal to the product of their Fourier transforms.

The probability distribution around the predictand is found by marginalising out X.
If we approximate σy as constant, reasonable for moderate to large values of N , this
amounts to a convolution over bX with solution:
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p(y) =

∫ ∞
−∞

p(y | x)p(x)dx

=

∫ ∞
−∞

bN (bx | bXobs, bσobs)N (y − bx | a, σy)
1

b
dbx

= N
(
y | bXobs + a,

√
σ2
y + (bσobs)2

)
.

(4.5)

4.2 Incorporating initial value members

Climate models have internal variability. Part of that variability can be explained by
their chaotic nature: whenever you run the same model twice with small differences in
initial condition there can be significant differences in the state of the climate system
after decades to centuries (Ghil and Lucarini, 2020). To quantify the effects, many
modelling groups choose to perform multiple simulations of their models with the same
forcing, but a different initial (pre-industrial) climate state (Deser et al., 2020). Here we
explore whether we can exploit this by developing a method using the information from
all initial value simulations.

We chose a Bayesian modelling framework because of flexibility and transparency:
assumptions are naturally made transparent. Including the initial value ensemble
members as separate models would be incorrect, as they are strongly dependent.
Instead, to include the initial value ensemble, we assume that each model has an un-
known true XT as its predictor. We further assume that every simulation of a model
gives a value of X that drawn from a normal distribution with mean XT and a standard
deviation σx that is the same across all models. Every simulation of a model gives us
more insight into XT . Our Bayesian model then becomes:

Xm,j | Xm, σx ∼ normal(Xm, σx) // modelling XT using N simulations

Ym | α, β, σy ∼ normal(α + βXm, σy) // modelling Y using XT from Ng models

The second layer corresponds to normal linear regression with prediction error σy,
while the first layer makes an estimate of the true X for each model. Note that for
models with only one initial value member, this trueX does not necessarily correspond
with that the value of this single ensemble member.
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Figure 4.1: Linear regression as described above using all ensemble members. The prediction
interval is relatively small, because it denotes the likely area of the ΨT , not each individual Ψ.
The gradient is 14.5 K K−1, while the intercept is reduced to 0.86 K.

Ypred = normal
(
α + β normal

(
Xobs,

√
σ2
x + σ2

obs

)
, σy

)
As an example, we apply this statistical model to the data of Cox et al. (2018a). As

priors we choose the following distributions:

α ∼ normal(0, 5) // prior intercept

β ∼ normal(12, 10) // prior gradient

σy ∼ half-normal(0.2, 10) // prior uncertainty regression

σx ∼ half-normal(0.02, 0.1) // prior uncertainty independent variables

The priors on α and β are weakly informed and stem from theoretical considerations
(Cox et al., 2018a). The other priors carry very little information. We fit this model via
MCMC using Stan (Carpenter et al., 2017). The method gives a slightly lower estimate
of climate sensitivity compared to Cox et al. (2018a), with a likely range of 2.1–3.3 K
of warming. The results of the regression are shown in Figure 4.1.

Ideally we would use a less computationally intensive method to do emergent con-
straints. Therefore, we have performed a set of experiments to investigate under which
circumstances, if any, this method is superior to ordinary least squares using a sin-
gle simulation per model or the mean value of multiple simulations. We also com-
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pare it to a errors-in-variables technique called orthogonal distance regression (ODR)
(Schennach, 2016). Orthogonal distance regression minimizes the error orthogonal
to the regression line. We implement it like Jiménez-de-la Cuesta and Mauritsen
(2019): first taking the average of all ensemble members per model, then performing
ODR. For OLS and ODR, the uncertainty in X includes both a measuring uncertainty
σobs and a model sample uncertainty corresponding to internal variability σvar, so that
σtot =

√
σ2

obs + σ2
var.

We answer the following questions:

1. Which method predicts (median) Y with least error?

2. Which method has the best estimate of the prediction interval of Y ?

3. Which method produces the best estimates of the slope and the intercept and
under which conditions?

These questions are answered with synthetic data generated to resemble the dis-
tribution of data common in different ensembles used for emergent constraints. The
synthetic data is generated as follows. First, for each model a true predictor Xm is
drawn from N (0, 1). Then, the predictand Y is computed as Ym = Xm + N (0, 0.4)

for each model m. As Xm are not known due to measurement error and internal
variability, in the next step we specify Xm,j = Xm + N (0, 0.4) for each initial value
ensemble member j. Pseudo-observations are drawn from the same relationship:
Yobs = Xm,obs + N (0, 0.4). The observed X is then measured with error from internal
variability and measurement: Xobs = Xm,obs +N (0, 0.4) +N (0, 0.04).

First we investigate the effect of varying the number of initial value members per
model. In both CMIP5 and CMIP6 there is a very skewed distribution of initial value
members: many models only have one member while others have up to 50. For the
test, we define four categories of increasing ensemble size. In category I, models have
either one or two members with equal chance. Category II mimics CMIP5 by assigning
each pseudo-model as many members as a random CMIP5 model (corresponding to
Table A.1). Similarly for category III, each pseudo-model is assigned as many mem-
bers as a random CMIP6 model (Table 6.1). In category IV each model has twenty
ensemble members.

Figure 4.2 shows that ODR is typically best at getting the intercept (in this case the
intercept with the line x = −2) and slope correct. However, ordinary least squares,
which is optimized to reduce the error in Y , scores better in the predictand Y and
also gives a significantly better confidence interval. ODR overestimates certainty in
its prediction. The Bayesian hierarchical method typically scores comparably to linear
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Figure 4.2: Comparison of accuracy linear regression with measurement error. a) The bias of
estimating Y at x = −2, b) estimation of the slope, which should be 1. c) Fraction of Yobs that
lies in the 5–95% confidence interval (for linear regression and ODR) or credible interval (for
Bayesian regression), d) The root mean square error of the median estimate of Y , compared
to Yobs.

regressions using the mean values, and is therefore useful if extensions are needed
on the model, f.i., it can be easily extended to be non-Gaussian around the regression
line. Normality around the regression line is a condition of OLS that some emergent
constraints do not seem to meet perfectly (Bretherton and Caldwell, 2020). ECs on
biochemical quantities often have fewer models available. Figure 4.3 shows the com-
parison in the case there are only eight models available. While the root mean square
error is clearly larger in this case, the various biases are not significantly larger with
fewer models. A small difference in performance between OLS (using mean values)
and the hierarchical Bayesian method does become apparent, with the former per-
forming better.

4.3 Presence of an intercept

In Cox et al. (2018a), an emergent constraint was found between equilibrium climate
sensitivity (ECS) and a variable Ψ. The predictor Ψ includes information about tem-
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Figure 4.3: Comparison of accuracy linear regression with measurement error in an ensemble
with eight models. Panels a)–d) are similar to Figure 4.2.

perature variability and autocorrelation: Ψ = σT/
√
− lnα1T . The relationship ECS =

F2×
σQ

σT√
− lnα1T

was derived analytically using the Hasselmann model: a zero-order con-
ceptual model of climate (Hasselmann, 1976):

C
dT

dt
= −λT +Q, (4.6)

with C the heat capacity, λ the climate feedback parameter, which is inversely related
to equilibrium climate sensitivity, T surface temperature, and Q forcing (external and
also representing internal forcing as white noise). Written as a stochastic differential
equation, and without external forcing:

CdT = −λTdt+ σQdW, (4.7)

where σQ is the variance of the forcing noise and dW is the derivative of the Wiener
process, representing white noise. The factor F2×

σQ
was found to be independent of

ECS. It was excluded from the predictor as observational data was not available.
Importantly, as noted by Rypdal et al. (2018), there is no intercept in the analytically

derived relationship between Ψ and ECS, whereas an intercept of 1.23 K was found in
Cox et al. (2018a). The example described above is not an exception: the emergent
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constraint between observed warming and transient climate response also features an
intercept where the analytical solution showed none (see Section 6.2.6).

Five phenomena that give rise to this intercept term were identified, two of which
are of a statistical nature. The magnitudes of each of these phenomena are estimated
by using a large set of simulations of the Hasselmann model and a two-layer model,
that will be introduced later. The results of this are shown in Table 4.1. Three of
the contributions give rise to a positive intercept, while the others produce a negative
intercept.

1. Regression dilution When there is variance in the independent variable, rather
than only in the dependent variable, regression dilution takes place: the estimate of the
slope is biased towards zero. Due to finite time effects, Ψ has substantial uncertainty,
as is shown in Figure 4.1b.

In order to make predictions using regression (so not to determine the true physical
relation between the variables), it is not necessary in general to correct the dilution
bias unless the error in the observational constraint is unequal to the errors in the
independent variable (Frost and Thompson, 2000).

Using an initial value ensemble, a first order correction for regression dilution can be
performed. Using the hierarchical Bayesian regression model described in Section 4.2,
we perform the regression with all the members of the initial value ensemble (N=49).
The intercept is reduced from 1.23 K to 0.89 K.

2. Additional variance The theoretical relationship between Ψ and ECS has a factor
F2×CO2/σQ. Similarly to classical regression dilution, this also leads to a dilution of the
slope, as the extra variance is multiplicative, instead of an extra additional noise term
on Y .

3. Finite time effects. Due to finite time effects the autocorrelation has a biased
estimate (Foster et al., 2008), specifically an underestimation of time scales and the
autocorrelation. The larger the timescale of the model system, the larger this under-
estimation is. This asymmetry in bias leads to a negative intercept in the linear fit.

4. Deep ocean heat uptake The one-layer Hasselmann model does not include a
representation of deep ocean heat uptake. A second conceptual model of the climate
system, a two-layer model, is used to study whether this simplification has an impact
on the intercept.

57



Simulation length Ψ– 1
λ

Ψ–ECS

1. Regression dilution 138 year 0.51 K W−1 m2 2.18 K
2. Additional variance 5000 year – 0.71 K
3. Finite time effects 138 year −0.21 K W−1 m2 0.57 K
4. Use of two-layer model 5000 year −0.92 K W−1 m2 −0.03 K
5. Whiteness assumption 5000 year 0.07 K W−1 m2 0.98 K
Combined first four 138 year 0.40 K W−1 m2 1.87 K

Table 4.1: Magnitude of intercept terms. All simulations use values of ECS, λ and γ corre-
sponding to the 16 models used in Cox et al. (2018a). The detrending window was 55 year.
Regression dilution is computed using the average of 200 simulations. Finite time effects and
the effects of the two-layer model were computed by first accounting for regression dilution:
for each value of λ, we used the average Ψ over 500 simulations before performing linear
regression.

CdT = (−λT − γ(T − T0))dt+ σQdW ;

C0dT0 = γ(T − T0)dt.
(4.8)

The zero subscript denotes the deep ocean layer and γ is a heat exchange param-
eter.

Analysis of the two-layer model shows that Ψ may be better related to 1
λ+γ

, with the
deep ocean heat uptake parameter γ playing a similar role as the feedback parameter
λ (Williamson et al., 2018). By using 1

λ
and a finite time series in the two-layer model,

the intercept term turns strongly negative. For 1
λ+γ

this becomes close to zero.
The effects of the additional variance term and the one-box simplification almost

completely compensate. The regression does almost go through zero when Ψ is plot-
ted against 1

λ+γ
. To get similar values of Ψ, we have increased the value of the noise

σQ from 0.2 to 0.4 in the two-layer model compared to the single-layer model.

5: Reddening of the noise spectrum In the analytic derivation of Ψ– 1
λ
, it was as-

sumed that the noise is white. Violation of this assumption leads to a small intercept
term. Analysis of σN , the variation of the TOA net radiation, which can be considered
a proxy for σQ, shows a positive autocorrelation. For Table 4.1, noise is generated with
an autocorrelation time scale of one year.

Adding up the first four factors leads to a positive intercept. Using the two-layer
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model, the last intercept cannot be ignored and is of similar order as the first three
terms. All results are produced by using the λ, F2×CO2 and γ values of the 16 models
used in Cox et al. (2018a), with the latter values from Geoffroy et al. (2013b).

Overall, for the Ψ– 1
λ

relationship, regression dilution and use of two-layer model
contribute most to the intercept. In the case of the Ψ–ECS relationship, the additional
variance caused by the radiative forcing parameters further contributes to a positive
intercept. Again, regression dilution has a major impact. The finite time effects not
related to internal variability, and the assumption of whiteness on the radiative forcing
have smaller effects. The combination of the different factors over-explains the inter-
cept of 1.23 K. There is a very large variation in the intercept, and the 1.23 K falls in
the 5–95% confidence interval.

4.4 Nonlinear emergent constraints

As illustrated in Figure 4.4, an incorrect assumption of linearity can lead to incorrect
estimates of the probability density function of the predictand. If in reality, the relation-
ship were quadratic, the estimate of the confidence interval can be highly biased. For
low (high) values of the independent variable, the true slope of the quadratic relation-
ship is less steep (steeper) than the linear relationship. Consequently, there will be
both a bias in the median prediction and a possible underestimate or an overestimate
of uncertainty in the prediction. This well-known feature is illustrated in Figure 4.4. It is
therefore important that a good statistical model is chosen. Reduced-form modelling of
the emergent constraint under consideration can give clues what the proper statistical
model is, but is not conclusive.

In Chapter 5 an example of an emergent constraint is shown that whose analytical
reduced-form equations show a small nonlinearity. The emergent constraint details
the relationship between the variation of temperature trends and climate sensitivity. It
is examined in two different reduced-form models: the Hasselman model and the two-
layer model. Both models show an emergent relationship, but the relationship in the
two-layer model is slightly more nonlinear. The choice whether to include a nonlinear
term in the statistical model can be made using information criteria. In Chapter 5, we
use the Akaike information criterion (AIC) (Myung et al., 2009), which is a criterion for
the trade-off between goodness of fit and the simplicity of model. The criterion is:

AIC = 2k − 2 ln(L̂), (4.9)

where k is the number of fitted parameters and L̂ the maximum of the likelihood func-
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tion. The model with the smallest AIC is considered best. The inclusion of an addi-
tional term will improve a model, but each additional parameter increases the risk of
overfitting.

4.5 Normality assumption on observation

In the previous sections, the distribution of the observational uncertainty due to inter-
nal variability was assumed to be normal. However, Ψ values computed from simu-
lated T in the Hasselmann model portray a heavy-tailed distribution. To find a better
distribution, we compare five distributions: the normal distribution, the lognormal dis-
tribution, the gamma distribution, the generalized extreme value distribution, and the
inverse gamma distribution. For each of these distributions the parameters were com-
puted using 2000 simulations of the Hasselmann model spanning the λ values of the
CMIP5 ensemble. The best distribution was chosen using the Kolmogorov–Smirnov
test (Massey Jr., 1951). The skewness of the distribution depends on the value of λ: for
large λ, the distribution is closer to normal. There was no single best distribution, but
the lognormal distribution scored high for most λ. The fitted shape parameter Ψshape

of the lognormal for the smallest λ (i.e. 0.6 K W−1 m2) is 0.20. The influence of this is
tested in the model below:

Figure 4.4: Schematic comparing a linear fit to a quadratic fit to compute a probability density
distribution for Y consistent with observations. Synthetic data is created using a quadratic rela-
tionship between X and Y . (a) Using a linear fit results in an overestimation of the uncertainty
when the observations line up with the shallow part of the quadratic. (b) This effect is less
pronounced at the steep part of the graph. Note also that in the quadratic case, the probability
density distribution is asymmetric and has skew.
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Ψobs ∼ lognormal(Ψµ,Ψshape) // model for observed Ψ

ECS ∼ normal(α + βΨ, σ) // model for observed ECS

ECSpred = normal(α

+ β lognormal(Ψµ,Ψshape), σ) // prediction ECS

The priors are chosen similar to Section 4.2, with a very weak prior on the obser-
vational Ψ.

α ∼ normal(0, 10) // prior intercept

β ∼ normal(12, 10) // prior gradient

σ ∼ half-normal(0, 10) // prior uncertainty regression

Ψµ ∼ normal(0, 100) // prior true observational Ψ

As expected, this mostly influences the upper bound of the emergent constraint.
Using an upper estimate for the skewness of the observational constraint, the new
likely range is 2.1 to 3.6 K, compared to the range of 2.2 to 3.4 K when taking the
observational uncertainty of Cox et al. (2018a).

4.6 Model discrepancy

A further assumption often employed in the use of emergent constraints, is that the real
world is just a ‘random sample’ from the distribution of possible models, or in Bayesian
terminology, that the real world is interchangeable with any single model and follows
the linear regression found from analysing model output. Williamson and Sansom
(2020) add two terms to their Bayesian linear regressing denoting the discrepancy
between reality and the emergent relationship, one for the intercept and one for the
slope. The priors for these values are chosen based on physical argumentation. For
instance, one could argue that physical understanding of the emergent constraint is
better if it does not change much between generations of climate models and that
informative priors are justified.
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Figure 4.5: Standard, ordinary least squares linear regression p(y | x) compared with the
reverse regression p(x | y). If the latter were to be used as the relationship on which the
emergent constraint is founded, the final constraint would have a bias.

4.7 Combining multiple constraints

A very simple method to combine multiple constraints was used in Brient (2020). He
used a Gaussian kernel density estimation (kde) on a histogram of the mean values
of the posteriors of previous constraints. The variance of the posteriors were inform-
ing the weights of the Gaussian kernel density estimation. This method suffers from
multiple drawbacks. Most prominently it does not capture increasing confidence from
having multiple independent constraints. Imagine you add an identical EC with the
same mean and variance, the posterior kde estimate would not change. Instead it is
determined by the kernel bandwidth, which is subjectively chosen. It further does not
take into account to what extent the different emergent constraints are related to each
other.

In Bretherton and Caldwell (2020) multiple emergent constraints were combined
using a multivariate Gaussian PDF, which can be viewed as a form of multilinear re-
gression. Their ’method C’ (for Correlated) includes information about correlations
between different emergent relationships. As there is strong collinearity in the eleven
emergent constraints on climate sensitivity they evaluate, regularization was needed.
A second ’method U’ (for Uncorrelated) used a smaller subset of ECs, that were re-
garded as confirmed constraints. As collinearity was less important with fewer X this
method simplifies C by dropping the covariance ECs. Both variants were extended to
account for overconfidence in the EC: they scale the ratio of the explained to unex-
plained variance with a factor α2 ≤ 1, reducing all correlation coefficients.

Renoult et al. (2020) proposed a further simple method to combine independent
ECs to create a tighter estimate for Y . Where the regression is normally given as
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p(y | x), they propose to instead formulate the statistical model as p(x | y), allowing for
a prior π(y) on Y to be integrated into the emergent constraint as

p(y) =

∫ ∞
−∞

p(x | y)π(y)p(x)dx. (4.10)

π(y) here can be the posterior distribution of a previous EC. To make sure the two
ECs are independent, the authors state that observations need to be independent,
and that insofar possible, the errors in models should also stem from different sources.
Their example involved a warm and cold climate state for which temperature change
was reconstructed. Temperature change is dominated by different processes in this
case, so that model error can be considered independent to first order. This method is
not consistent with other methods described above. Linear regression is typically not
symmetric; regression where X predicts Y , p(y | x), describes a different function than
regression where Y predicts X, p(x | y) (Smith, 2009), as illustrated in Figure 4.5.

The basic statistical model used in emergent constraints is simple, and an analyt-
ical solution was derived in the chapter. Additional information from initial value en-
semble members can improve estimates of the slope and intercept without sacrificing
accuracy compared to ordinary least squares regression. A Bayesian framework can
easily be adjusted to relax key assumptions on linearity and normality, which impact
tail probabilities significantly. Further adjustments include explicitly modelling model
discrepancy and including multiple constraints.
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Chapter 5

Emergent relationships informing
compound risk: a case of temperature
variability and sensitivity

This chapter is adapted from the Nature Climate Change letter Nijsse et al. (2019a):
“Decadal global temperature variability increases strongly with climate sensitivity”,

written in collaboration with Peter Cox, Mark Williamson and Chris Huntingford

5.1 Compound risks

Figure 5.1: Two examples of emergent relationships that cannot be used as emergent con-
straints, but who can be used to assess compound risk. On the left, a case where the ob-
servational uncertainty is too large to effectively constrain the predictand. On the right, a
case where quantitative interpretation of the emergent relationship is hampered by missing
processes common to the models, leading to an unknown intercept.
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The emergent constraint technique requires good observations for the predictor
variable. These are not always available. There might not be a long enough record
(Lutsko and Takahashi, 2018), it might be difficult to disentangle the record from a
forced response (Brown et al., 2018; Cox et al., 2018b), or the observations might not
be of sufficiently high quality (as in Figure 5.1a).

Alternatively, there might be no a good physical reason to constraint the intercept of
the emergent constraint. Possibly, only the slope will have some strong physical basis,
and no prior knowledge for the intercept is available. For instance, it may be known
that certain long-term processes are not included in the model ensemble, which would
only impact the predictand. In that case, the emergent constraint does not preclude
any bias in the intercept and the predictand might be too high or too low (exemplified
in Figure 5.1b).

In both cases, a quantitative use as an emergent constraint is not possible, but
the relationship does contain information about the compound risk of the predictor
and predictand: variability and sensitivity both contribute to risk. This chapter details
an example of using an emergent relationship not to find a constraint, but instead
to investigate such compound risk. It is shown that having a joint distribution of the
variability and the final warming rate gives additional information important for climate
risks.

5.2 Decadal global temperature variability increases

strongly with climate sensitivity

Climate-related risks are not only dependent on the warming trend from greenhouse
gases, but also on the variability about the trend. However, assessment of the impacts
of climate change tend to focus on the ultimate level of global warming (United Nations
General Assembly, 1992), only occasionally on the rate of global warming, and rarely
on variability about the trend. In this chapter, it is shown that models which are more
sensitive to greenhouse gas emissions (i.e. have higher equilibrium climate sensitivity
(ECS)) also have higher temperature variability on time scales of several years to
several decades.

Counterintuitively, high sensitivity climates, as well as having a higher chance
of rapid decadal warming, are also more likely to have had historical “hiatus” peri-
ods than lower sensitivity climates. In this chapter, we show that cooling or “hiatus”
decades over the historical period, which have been relatively uncommon, are more
than twice as likely in a high ECS world (ECS = 4.5K) compared to a low ECS world
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(ECS = 1.5K). As ECS also affects the background warming rate under future scenar-
ios with unmitigated anthropogenic forcing, the probability of a hyper-warming decade
— over ten times the mean rate of global warming for the 20th century — is even more
sensitive to ECS.

Figure 5.2: Decadal variability in global temperature. a. Global mean surface anomaly over
a modelled 500-year period with no external forcing, for two control simulations in the CMIP5
database. HadGEM2-ES (brown line) is an example of a model with high climate sensitivity,
while GISS-E2-R (purple line) has a low climate sensitivity. Heavy lines are 10-year running
means. b. Multi-model histograms of decadal variability for low (purple) and high (brown) cli-
mate sensitivities in 500 year control simulations. Normal curves are fitted to histograms. The
individual models are listed in Table 5.1 with their climate feedback parameter λ and equilibrium
climate sensitivity ECS.

We look specifically at the combined effects of climate sensitivity and climate vari-
ability, which could stretch the ability of human and natural systems to adapt (Taylor
et al., 2012; Stocker et al., 2013; Otto et al., 2013). Our approach is to study how
decadal trends in global annual mean surface temperature vary with climate sensitivity
across the CMIP5 multi-model ensemble (Taylor et al., 2012). The latter is partially
motivated by the 2000-2012 slowdown of surface temperature increase, sometimes
incorrectly dubbed the ‘warming hiatus’. This slowdown has led some to suggest es-
timates of ECS below 1.5K (Stocker et al., 2013; Otto et al., 2013). However, rather
than making periods of no warming more likely for low climate sensitivities, we show
the converse — that warming slowdowns can be expected more in high sensitivity
climates.

The background to our claim is the well-known property that a more sensitive dy-
namical system responds to a perturbation more strongly and is slower to recover than
a less sensitive one (Roe, 2009; Strogatz, 2000). Forcing from fast random, weather-
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like perturbations, additional to slow anthropogenic forcing, can push the climate’s
temperature trend in both warm and cool directions. For more sensitive systems these
excursions will be both larger and longer-lived, giving larger and longer-lived tempera-
ture trends.

We formalise this intuition by calculating the temperature trend b (K yr−1) over a
window of time W (yrs), usually a decade. How much the temperature trend varies
(quantified as the standard deviation of b) with climate sensitivity is the main focus of
study in this chapter. We follow the approach of using conceptual analytically solvable
stochastic climate models to understand the climate system pioneered by Hasselmann
and others (Hasselmann, 1976; Wigley and Raper, 1990). In particular, we solve for
b and its standard deviation σb, using the Hasselmann model which describes the
response of the annual global mean surface temperature anomaly ∆T (K) to forcing
Q (W m−2):

C
d∆T

dt
+ ∆T = Q (5.1)

where Q parameterises fast, internally generated perturbations as a random variable.
External driving factors such as anthropogenic forcing due to increases in greenhouse
gases may also be included in this term.

The temperature response to the noise Q depends on the effective heat capacity
C (W yr−1 m−2 K−1) and the climate feedback parameter λ (W m−2 K−1), the latter de-
scribing the net effect of all the individual negative and positive feedbacks within the
climate. Climates with larger values of λ have a stronger overall negative (restoring)
feedback on temperature anomalies and lower equilibrium climate sensitivity ECS.
ECS is defined as the steady-state warming in response to the forcing from a doubling
of atmospheric CO2 and is inversely proportional to λ: ECS = Q2×CO2/λ. Although
the simple Hasselmann model is an imperfect representation of the climate system,
it serves here to formulate a hypothesised relationship between variability and ECS,
that we subsequently evaluate against the results from state-of-the-art Earth System
Models.

Taking Q to be given only by stochastic forcing of magnitude σQ, analogous to an
unforced, control climate model simulation, the Hasselmann model can be solved. To
first approximation (the full expression is given in Section 5.3), this gives a relation for
the standard deviation of b as a function of the trend length W and climate sensitivity:

σb =
2
√

3σQ
W 2/3λ

= ECS
2
√

3σQ
W 2/3Q2×CO2

(5.2)

As expected, this equation predicts higher variability in warming trends (larger
σb) for more sensitive climates (higher ECS). Although the single-layer Hasselmann
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model is a poor representation of warming climates on long time-scales (Caldeira and
Myhrvold, 2013), the two-layer model (Geoffroy et al., 2013b), which better describes
oceanic heat storage, produces the same qualitative relationship (Equation 5.16).
Wigley and Raper (1990) also noted the relation between long term temperature trends
and climate sensitivity in numerical simulations of a stochastically forced upwelling dif-
fusion model. Relating temperature variability to climate sensitivity can be thought of
as a heuristic application of the Fluctuation-Dissipation theorem (Leith, 1975; Gottwald
et al., 2016), a tool used in many fields of physics (Kubo, 1966). This way of mod-
elling the response to a radiative forcing is complementary to methods that estimate
λ as the sum of individual feedbacks. Metrics of variability derived from whole-system
approaches can in principle be linked back to individual feedbacks (Lutsko and Taka-
hashi, 2018; Caldwell et al., 2018).

5.3 Analytical relationship between ECS and the

variability of trends.

A trend b of a W -yr time series is computed using an ordinary least squares fit of
the timeseries. To obtain an analytical solution for the typical size of a trend b in the
absence of external forcing, the standard deviation σb, we write the Hasselmann model
as a stochastic differential equation (SDE) where Q is parametrized as a white noise
process (the derivative of a Wiener process W ) with standard deviation σQ.

CdT = −λTdt+ σQdW (5.3)

Using the Green’s function associated with this Stochastic Differential Equation,
namely GHasselmann = 1

C
e−t/τ , where τ is defined as τ = C/λ, we write down the

solution of temperature as a stochastic integral i.e.

Tt = σQ

∫ t

0

GHasselmann(t− s)dWs. (5.4)

Using this solution we find b and its standard deviation for a trend of W years. Multiple
steps of algebraic manipulation, then lead to

Var[b] =
12σ2

Q

W 3λ2
(1− f(τ,W )). (5.5)

To first order, σb is linearly proportional to 1/λ, which is in turn proportional to equi-
librium climate sensitivity, defined as ECS = Q2×CO2/λ. The smaller W , however, the
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larger the deviation towards nonlinearity. A similar result can be obtained when a deep
ocean layer is added to give a two-layer model (Geoffroy et al., 2013b).

CdT = (−λT − γ(T − T0))dt+ σQdW,

C0dT0 = γ(T − T0)dt.
(5.6)

Here the zero subscript denotes the deep ocean layer and γ is a heat exchange
parameter. The Green’s function for the top layer is (Geoffroy et al., 2013b):

GT =
1

λ

(
af
τf
e−t/τf +

as
τs
e−t/τs

)
, (5.7)

with τf and τs denoting the fast and slow time scales and af and as the partial con-
tribution of the fast and the slow mode to the response. Similarly to the Hasselmann
model, σb is proportional to 1/λ to first order.

Var[b] =
12σ2

Q

λ2W 3
(1− g(C,C0, λ, γ,W )) . (5.8)

Proof

In mathematical terms, a trend is a simple linear regression between the variable of
interest (here T ) and time.

T = α + bt+ ε, (5.9)

with α the intercept, b the slope and ε an error term. The slope b (corresponding to the
best estimate using ordinary least squares regression) is computed as:

b =
Cov(t, T )

Var(t)
. (5.10)

Of interest is how the variance of b is linked to the variables: the feedback factor λ, the
time scale τ (C/λ), the radiative forcing strength σQ and the window length W .

The covariance between t and T in a finite window is computed as:

Cov[t, T ] = E[tT ]− E[t]E[T ], (5.11)

where E denotes the expected value. To simplify the equation we estimate the pa-
rameter b in the time interval [−W

2
, W

2
], so that the second term multiplying the means

drops out.
The covariance of t and T for an unforced Hasselmnan model estimated over a
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time window W is computed using the Green’s function:

Cov[t, T ] = E

[
1

W

∫ W
2

−W
2

tTtdt

]
; (5.12)

= E

[
1

W

∫ W
2

−W
2

t

[
σQ
C

∫ t

−∞
e−(t−s)/τdWs

]
dt

]
. (5.13)

The variance of the time is given by:

Var[t] =
1

W

∫ W
2

−W
2

t2dt =
W 2

12
(5.14)

Hasselmann model

Now computing the variance in the estimate of b over a period of W year:

Var[b] = E

[(
Cov[tTt]

Var[t]

)2
]

= E


 1

W

∫ W
2

−W
2

t
[
σQ
C

∫ t
−∞ e

−(t−s)/τdWs

]
dt

W 2

12


2

=

(
12σQ
W 3C

)2

E

(∫ W
2

−W
2

t

[∫ t

−∞
e−(t−s)/τdWs

]
dt

)2
 .

To be able to make use of Itô’s isometry, which states

E

[(∫ T

0

XtdW

)2
]

= E

[∫ T

0

X2
t dt

]
, (5.15)

the order of integration has to be changed. The inner integral goes over s, so the factor
t in the outer integral can be moved into the inner integral. The integration domain is
split in two parts. The expectation value of the cross-product of these two parts equals
zero because it is the product of two independent stochastic integrals whose individual
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expectation value is zero.

Var[b]

=

(
12σQ
W 3C

)2

E

(∫ −W/2
−∞

∫ W/2

−W/2
te−(t−s)/τdtdWs +

∫ W
2

−W
2

∫ W/2

s

te−(t−s)/τdtdWs

)2


=

(
12σQ
W 3C

)2
E

(∫ −W/2
−∞

∫ W/2

−W/2
te−(t−s)/τdtdWs

)2


+ E

(∫ W
2

−W
2

∫ W/2

s

te−(t−s)/τdtdWs

)2


=

(
12σQ
W 3C

)2
∫ W/2

−∞

(∫ W
2

−W
2

te−(t−s)/τdt

)2

ds+

∫ W
2

−W
2

(∫ W/2

s

te−(t−s)/τdt

)2

ds


=

12σ2
Q

C2

(
τ 2

W 3
− 3

τ 3

W 4
+ 12

τ 5

W 6
− 3

τ 3

W 6
(W + 2τ)2e−W/τ

)
.

(5.16)

Writing as a function of τ/W as much as possible.

Var[b]

=
12σ2

Q

τ 3λ2

(
(
τ

W
)3 − 3(

τ

W
)4 + 12(

τ

W
)6 − e−W/τ

(
3(
τ

W
)4 + 12(

τ

W
)5 + 12(

τ

W
)6
))

.

Getting (τ/W )3 in front of the expression:

12σ2
Q

W 3λ2

(
1− 3(

τ

W
) + 12(

τ

W
)3 − e−W/τ

(
3(
τ

W
) + 12(

τ

W
)2 + 12(

τ

W
)3
))

.

Writing the equation as a explicit function of λ and C:

12σ2
Q

λ2

(
(

1

W
)3 − 3(

C

λW 4
) + 12(

C3

λ3W 6
)− e−Wλ/C

(
3(

C

λW 4
) + 12(

C2

λ2W 5
) + 12(

C3

λ3W 6
)

))
.

Figure 5.3 shows the relationship between σb and 1/λ. For increasing values of W ,
the relationship becomes more linear. The relative range also improves for higher W .

Two-layer model

The analysis is repeated for the two-layer model of Equation 5.6. The Green’s function
for the upper layer temperature T can be derived by taking the time derivative of the
the step-forcing response of the surface layer, which is given in Geoffroy et al. (2013b).
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Figure 5.3: Assuming constant radiative forcing σ, variability σβ for a. W = 5, b. W = 10 and
c. W = 50. Heat capacity C is constant and set to C = 7.5, so that the time scale τ changes
only for changing λ.

0.14 0.16 0.18
b (K dec 1)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1/
 (K

 W
1  m

2 )

a) 
W=5 yr

= 0.1
= 0.7

0.08 0.10
b (K dec 1)

b) 
W=10 yr

= 0.1
= 0.7

0.01 0.02 0.03
b (K dec 1)

c) 
W=50 yr

= 0.1
= 0.7

Figure 5.4: The relationship between decadal variability and 1/λ for a two-layer model as
described in Section 5.3 under varying lengths of the trend (W ). Assuming constant σ, decadal
variability σb for a. W = 5, b. W = 10 and c. W = 50. C, C0 and γ are constant at C = 7.5,
C0 = 100, and γ ∈ {0.1, 0.7}.

The step function response is, equivalently:

T (t) = Teq − afTeqe−t/τf − asTeqe−t/τs ; (5.17)

T (t) =
F

λ

[
af (1− e−t/τf ) + as(1− e−t/τs)

]
. (5.18)
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So that the Green’s function is given by:

GT (t) =
af
τf
Teqe

−t/τf +
as
τs
Teqe

−t/τs ; (5.19)

GT (t) =
1

λ

[
af
τf
e−t/τf +

as
τs
e−t/τs

]
. (5.20)

Using Mathematica and the techniques developed in the previous section, we de-
rive the following equation for the variance of the trends in the two-layer model.

Var[b] =
12σ2

Q

λ2W 6(τf + τs)
e
−W ( 1

τf
+ 1
τs

)

(
a2
fe
W/τs(−3τf (W + 2τf )

2 + eW/τf (W 3 − 3W 2τf + 2τ 3
f ))(τf + τs)

+ a2
se
W/τf (τf + τs)(−3τs(W + 2τs)

2 + eW/τs(W 3 − 3W 2τs + 12τ 3
s ))

+ 2afas

[
−3eW/τsτ 2

f (W + 2τf )
2 − 3eW/τf τ 2

s (W + 2τs)
2

+ e
W ( 1

τf
+ 1
τs

)
(W 3(τf + τs)− 3W 2(τ 2

f + τ 2
s ) + 12(τ 4

f + τ 4
s ))

])
.

(5.21)

Var[b] =
12σ2

Q

λ2W 6(
a2
fe
−W/τf (−3τf (W + 2τf )

2 + (W 3 − 3W 2τf + 12τ 3
f ))

+ a2
se
−W/τs(−3τs(W + 2τs)

2 + (W 3 − 3W 2τs + 12τ 3
s ))

+ 2
afas

(τf + τs)

[
−3e−W/τf τ 2

f (W + 2τf )
2 − 3e−W/τsτ 2

s (W + 2τs)
2

+W 3(τf + τs)− 3W 2(τ 2
f + τ 2

s ) + 12(τ 4
f + τ 4

s )

])
.

(5.22)
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Dividing by a factor of W 3 and writing out the brackets,

Var[b] =
12σ2

Q

λ2W 3(
a2
f

{
−e−W/τf

(
3
τf
W

+ 12(
τf
W

)2 + 12(
τf
W

)3
)

+ 1− 3
τf
W

+ 12(
τf
W

)3
}

a2
s

{
−e−W/τs

(
3
τs
W

+ 12(
τs
W

)2 + 12(
τs
W

)3
)

+ 1− 3
τs
W

+ 12(
τs
W

)3)
}

+ 2
afas

(τf + τs)

[
−e−W/τf τf

(
3
τf
W

+ 12(
τf
W

)2 + 12(
τf
W

)3
)

− e−W/τsτs
(
3
τs
W

+ 12(
τs
W

)2 + 12(
τs
W

)3
)

+ (τf + τs)− 3
(τ 2
f + τ 2

s )

W
+ 12

(τ 4
f + τ 4

s )

W 3

])
.

(5.23)

Figure 5.4 shows the relationship between σb and 1/λ. In contrast to the one-box
model, the dependence is not linear to first approximation. The sensitivity also seems
lower, especially in the 5 year case, where σb increases a mere 15% over the full range
of 1/λ.

5.4 Methods

Observations have been used in combination with simple stochastic climate models to
constrain long term variability (Wigley and Raper, 1990) and ECS (Schwartz, 2007).
In contrast, we use an ensemble of state-of-the-art climate models (CMIP5 model
ensemble (Taylor et al., 2012)) to first look for evidence of this relation in control sim-
ulations, before studying its implications in a climate perturbed by fossil fuel burning.
Using the control, rather than historical or future simulations, allows for a cleaner test
of the hypothesised link between internal variability and sensitivity. This is because
historical simulations have additional external forcing and generally simulate shorter
periods.

Models were included in our analysis if they had a control run spanning at least 500
years. Figure 5.2a shows the timeseries of annual global mean temperature of a high
ECS model (HadGEM2-ES, brown line) and a low ECS model (GISS-E2-R, purple
line). The thick line shows the 10-year running mean. The low sensitivity model shows
shorter and smaller variation on the decadal timescale, in contrast to the longer and
larger temperature trends in the high sensitivity model. Figure 5.2b shows composite
distributions of decadal temperature trends for higher sensitivity (ECS > 3.0K, brown)
and lower sensitivity models (ECS < 3.0K, purple). There is a clear distinction be-

74



tween high and low ECS models, the former having wider histograms indicating more
variability in global temperature trends. Previous studies have noted a relationship be-
tween tropical decadal temperature variability and sensitivity in the CMIP5 ensemble
(Colman and Power, 2018).

5.4.1 Data selection

We selected models based on a set of three criteria.

1. Maximum of one model per modelling group to avoid bias towards certain mod-
elling centres.

2. Top of the atmosphere fluxes and forcing at 4×CO2 should be available so that it
can be tested that ECS is independent of internal forcing strength.

3. There must be at least 500 years of control data available.

For all models with more than 500 years, the last 500 years were chosen. Note that
drift, if linear, does not affect the metric σb. Selected models are shown in Table 5.1.

5.4.2 Calculation of probabilities

The background warming for the historical period and future projections were com-
puted using OLS linear regression between the temperature change and ECS. The
temperature change itself was also computed using OLS linear regression between
annual temperatures and time. Temperature time-series in models with multiple initial
value members were averaged before a warming rate was computed.

In the second step, the emergent relationship between ECS and σb from the con-
trol simulations was used. Using a normal distribution for the decadal trend with the
standard deviation dependent on ECS, probabilities are computed for either a period
of cooling or a period of warming. In the case of an ECS-dependent background rate,
the mean of the distribution is adjusted. This procedure is used for Figure 5.10.
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Model λ ECS Initial value runs (rxi1p1)

RCP4.5 RCP8.5 Control

a ACCESS1-0 0.79 3.83 1 1 1
b CanESM2 1.04 3.69 1, 2, 3, 4, 5 1, 2, 3, 5, 1
c CCSM4 1.23 2.89 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5 1
d CNRM-CM5 1.14 3.25 1 1, 2, 4, 6, 10 1
e CSIRO-Mk3-6-0 0.63 4.08 1 – 10 1 – 10 1
f GFDL-ESM2M 1.38 2.44 1 1 1
g HadGEM2-ES 0.64 4.59 1, 2, 3, 4 1, 2, 3, 4 1
h inmcm4 1.43 2.08 1 1 1
i IPSL-CM5A-LR 0.75 4.13 1, 2, 3, 4 1 1
j MIROC-ESM 0.91 4.67 1 1 1
k MPI-ESM-LR 1.13 3.63 1, 2, 3 1, 2, 3 1
l MRI-CGCM3 1.25 2.60 1 1 1

m NorESM1-M 1.11 2.80 1 1 1
n bcc-csm1-1 1.14 2.82 1 1 1
o GISS-E2-R 1.79 2.11 1, 2, 3, 4, 5, 6 1 1
p BNU-ESM 1.0 4.1 1 1 1
q FGOALS-g2 0.84 3.45 1
r CESM1-WACCM 1.18 2.73 1

ax ACCESS1-3 0.86 3.45 1
fx GFDL-ESM2G 1.29 2.39 1
fy GFDL-CM3 0.75 3.97 1
ix IPSL-CM5B-LR 1.02 2.61 1
jx MIROC5 1.52 2.72 1
kx MPI-ESM-MR 1.20 3.44 1
ox GISS-E2-H 1.65 2.31 1
oy GISS-E2-H-CC 1.65 2.31 1
oz GISS-E2-R-CC 1.79 2.11 1
nx bcc-csm1-1-m 1.24 2.87 1
rx CESM1-CAM5 0.90 4.10 1

Table 5.1: List of CMIP5 climate models used. Values of ECS and λ are taken from Stocker
et al. (2013) and Forster et al. (2013), except for CESM1-WACCM (Marsh et al., 2016) and
CESM1(CAM5) (Meehl et al., 2013). ECS values for models with an added carbon cycle are
from models with the carbon cycle turned off.
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Finally, for the comparison of probabilities, i.e. the comparison of probability to
have a decade of decreasing temperatures in a high ECS world, versus a low ECS
world, a Bayesian linear regression was used for the emergent relationship using the
STAN software. Weakly informative priors were used (Stan Development Team, 2018).
This allowed us to get a collection of linear fits between σb and ECS. Note that in this
collection, there are fits with a shallower and steeper slope compared to OLS linear
regression. This translates into a having both high σb for low ECS and a low σb for
high ECS in the shallow fits and visa versa for the steeper fits. From these pairs,
pairs of probabilities of cooling decades are computed (as described in the previous
paragraph), and these are divided to compute how much more likely a period of cooling
is in a high ECS world compared to a low ECS world. Using pairs of regression lines
leads to a larger estimate of uncertainty than a naive approach with OLS regression
would have.

5.4.3 Analysis effect ENSO

The effect of ENSO was studied by regressing out the NINO3.4 index (Roberts et al.,
2015). A linear regression between GMST and NINO3.4 was first performed, and then
decadal trends were computed using the GMST residuals. For each trend length W ,
the correlation strength of emergent relationships was computed with GMST, and with
GMST minus ENSO.

5.5 Results

In Figure 5.5a we plot decadal (W = 10 years) values of σb against ECS for each
CMIP5 model control simulation. In Figure 5.5b standard deviations of decadal trends
are plotted for the historical against the control simulations. Decadal trends in the his-
torical simulations are larger due to a non-constant background trend. This causes
differing means for the 1880–1950 period compared to the 1950–2012 one. Combin-
ing these two periods leads to a larger standard deviation of decadal trends, which
explains the larger historical σb in Figure 5.5b. Using all 31 models and model variants
in the CMIP5 archive, we find a similar but slightly weaker relationship (see Figure 5.6).
While our theory predicts a weakly nonlinear relationship between the standard devia-
tion of trends and ECS, we chose a linear regression between σb and ECS to prevent
overfitting, based on the Akaike information criterion (Myung et al., 2009). Nonlinear-
ities like this may be expected when the dominant time-scale of the climate system
and the time-scale of the variability metric are of the same order of magnitude (see
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Chapter 3).

Figure 5.5: Emergent relationship between ECS and warming trends. a) Standard deviation of
10-year temperature trends in an ensemble of 500-yr control runs versus ECS. The dotted line
is a linear ordinary least square fit with Pearson r=0.86. b) Ten-year variability in the control
runs versus the 10-year variability in the historical period (1881 – 2017).

Figure 5.7a shows the variability of temperature trends of duration 3–50 years.
Variability in trends of duration 5–25 years separate the low sensitivity (blue lines, lower
variability) and high sensitivity models (orange lines, higher variability). The correlation
between ECS and σb shown in Figure 5.7b is particularly strong for temperature trends
of length 7 to 15 years (r > 0.8).

We have explored the possible impact of the El Niño-Southern Oscillation (ENSO)
on our ECS versus σb correlation, and its dependence on trend length. To charac-
terise ENSO, we use the NINO3.4 index which is based-on temperatures in the region
between 120°W – 170°W and 5°S –5°N (Roberts et al., 2015). ENSO explains up
to 40% of the variance in temperature trends (Figure 5.8b). By removing the ENSO
signal, based on this index, it is shown that ENSO is not the dominant factor in our
relationship (Figure 5.8a). It is notable however that the peak correlation at around 10
years disappears once the ENSO influence is removed, suggesting that the peak is
mainly a consequence of ENSO variability. There may also be a smaller contribution
to the peak correlation due to longer timescales in the climate response: When explic-
itly modelling the Hasselmann system with parameters corresponding to this CMIP5
ensemble, some simulations show a similar peak. (Figure 5.9). Excluding ENSO dete-
riorates the relationship between σb and ECS for all window lengths (Figure 5.8a). This
is consistent with ENSO providing a useful additional stochastic forcing of the climate
system, which helps to reveal ECS.
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Figure 5.6: The emergent relationship for W = 10 with the inclusion of additional models. The
last 200 years of each model were used to estimate the standard deviation of trends. The
labels are explained in Table 5.1.

Figure 5.7: Varying window lengths. a. log-log plot of trend length versus standard deviation
of the trend using the control simulations, differentiated in colour (as marked) between ECS
value. b. Correlation (Pearson r) of the emergent relationship in a, between ECS and σb as a
function of trend length.

Figure 5.10a plots equal probability contours for anomalies in the decadal temper-
ature change as a function of ECS over the historical period. The probabilities are
computed by combining the relationship between the decadal variability and ECS as
derived from the control run, with the background warming from the historical runs
(Figure 5.11). Over the historical period (1960–2012) there is a small correlation be-
tween the background warming and ECS. Figure 5.10a is asymmetric, in contrast to
Figure 5.11, because the probability of warming episodes is increased by the ECS-
dependent background warming. Figure 5.9 shows that trends and variability are sep-
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Figure 5.8: Effect of ENSO. The left figure shows the correlation as function of window length
for the global temperature, and the global temperature with the NINO3.4 index regressed out.
The right figure indicates the variance explained by ENSO as a function of window length.

Figure 5.9: Correlation using two-layer model. Using the set of parameters that fits the two-
layer model (Geoffroy et al., 2013b) corresponding to 16 of the models used in our study,
this figure reconstructs possibilities of the correlation between ECS and σb. The left panel
contains the mean fractional error, while the right panel contains the median (dark blue), the
area between the 16th and 84th percentile (shaded). The dotted lines are individual simulations
showing 5% most extreme behaviour in maximum peak (blue) and minimum correlation for at
50 years (grey).

arable: removing the forced trend by subtracting the mean of initial value ensembles
(for those models with a sufficient amount of initial value runs), successfully retrieves
the variability found in the control simulations.

Cooling or warming decadal episodes that occur only 5% of the time, show a large
sensitivity to ECS. In Figure 5.10b, corresponding to the grey line in Figure 5.11a, we
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Figure 5.10: Probability of warming and cooling. a. Percentage of decades with a larger or
equal warming (red) or cooling (blue) rate over the historical period, as computed from the nor-
mal distribution using the emergent relationship to estimate standard deviation. b.,The grey line
indicates the probability of having a cooling event over the historical period. The background
warming trend for each model was assumed linear in ECS, with the parameters estimated from
linear regression between ECS and the modelled 1960–2012 warming rate. The probability of
the individual models is computed separately, and marked as letters (key in Table 5.1). c.
Dashed blue: chance of a period of cooling in RCP8.5 simulations, colour scheme the same
as a. d Probability that a decade in RCP8.5 simulations shows hyperwarming: 0.7 K/decade or
more (see also vertical gray line in c). Colours are the same as b. The calculations per model
are again perfomed using a normal distribution with a standard deviation estimated from the
control runs.

plot the probability of a cooling decade assuming a background warming rate consis-
tent with the historical simulations for each model. This includes the weak increase in
the warming trend with ECS, as well as the stronger increase in variability with increas-
ing ECS. Even with these two opposing effects, the sensitivity of decadal variability to
ECS implies that a ‘hiatus’ period was 2.2 [90% CrI 0.68 – 11] times as likely in a high
ECS world (ECS = 4.5K) compared to a low ECS world (ECS = 1.5K). While some
studies indicate that the recent slowdown can partially be explained by a decrease in
forcing (Smith et al., 2016; Medhaug et al., 2017), our results show that even in the
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Figure 5.11: Similar to Figure 5.10a and b, but assuming a model-independent historical back-
ground warming rate of 0.2 K decade−1

case forcing remained constant, a temporarily reduced trend does not imply ECS to
be lower.

For a given future scenario of increasing anthropogenic forcing, ECS affects both
the mean and the variability in the rate of global warming. Figure 5.10c plots prob-
ability contours for different absolute decadal warming rates as a function of ECS,
under the RCP8.5 scenario. Figure 5.10d shows how ECS affects the probability of a
‘hyper-warming decade’ — which we define here as one with a warming-rate exceed-
ing 0.7 K/decade (i.e. ten times faster than the mean rate of global warming over the
20th century). Whereas a hyperwarming decade very rarely occurs for ECS < 2.5K, it
occurs 8% of the time for ECS > 3.5K.

To improve comparability between a global emergent constraint and various local
emergent constraints, it is possibly useful to derive a spatial variant of our emergent
constraint. Figure 5.12 shows the spatial pattern of the correlation. The average
correlation above land is slightly lower than above sea. This is not surprising, as
our theoretical derivation assumes the overall time scale is of a couple of years, an
assumption not valid above land, which adjust to doubling of CO2 or SST patterns is
less than a month’s time (Dong et al., 2009).

5.6 The last millennium

The PAGES 2k consortium has produced an analysis of the global mean surface tem-
perature over the last two millennia (Neukom et al., 2019a). This subsection explores
the emergent relationship in a paleo-context: are reconstructions and climate simula-
tions sufficiently good to constrain ECS?
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Figure 5.12: The spatial pattern of the Pearson r correlation between local decadal variability
σb,loc and ECS. Note that some regions have more internal variability and therefore weigh
stronger in the global metric.

Figure 5.13: Emergent relationship between decadal variability and climate sensitivity for mod-
els simulating the last millennium. The left panels includes one simulation per model, whereas
the right panel includes all available simulations, including those without volcanic forcing.
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The emergent relationship between σb and ECS is found in CMIP5 data in the last
millennium as well, see Figure 5.13. Only nine models were available covering this
period, some of which are not in the ensemble described in Section 5.1. Otherwise,
letters denote the same models (Table 5.2).

Years with large volcanoes are excluded from the analysis. Large volcanoes were
selected by examining the outgoing longwave radiation. If this radiation is above a
certain threshold (here, one standard deviation) above the average for that model, that
year and n subsequent years (here ten years) are removed from the simulation. The
inclusion of volcanoes significantly deteriorates the emergent relationship.

Removing large volcanoes from the analysis did not mean there was not any effect
of eruptions. Two different reconstructions of radiative forcing from volcanoes were
used by modelling groups: the Gao et al. (2008) and the Crowley et al. (2008) recon-
struction. One model uses an older version the the Crowley reconstruction. The GISS
model performed simulations using both reconstructions and simulation where volca-
noes are turned off completely. From this analysis, it becomes clear that volcanoes
introduce higher decadal variability and that the Crowley simulation introduces higher
decadal variability compared to the Gao simulation.

Figure 5.14 shows a composition of temperature reconstructions of the last two mil-
lennia. Temperature reconstructions vary depending on the selection of proxies, geo-
logical or biological indirect indicators of past climates, and on the statistical method-
ology to interpret those proxies (Neukom et al., 2019c). The figure is based on the
PAGES2k proxy dataset (Emile-Geay et al., 2017). Seven different reconstruction
methods were used. For each of the methods, a thousand samples were taken incor-
porating uncertainty, so that in total 7000 individual reconstructions of the temperature
of the last 2000 years were included. For each of these 7000 reconstructions, decadal
variability was calculated. As for the models, years after major volcanic eruptions were
excluded. The method employed for observations was slightly different: we used the
Gao reconstruction of aerosol optical depth to select years to exclude, with a threshold
of a 10 Tg sulphate aerosol injection.

The one standard deviation observational range encompasses the entire model
range. Furthermore, choices with respect to the implementation of volcanic forcing play
an almost equally important role explaining decadal variability as climate sensitivity. In
conclusion, we cannot yet exploit the emergent relationship between decadal variability
and climate sensitivity over the last millennium because of outstanding uncertainties
in paleoclimate reconstructions.
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Model Run ECS (K) Start year Volcanic reconstruction

c CCSM4 2.89 850 Gao
i IPSL-CM5A-LR 4.13 850 Gao
g2 HadCM3 3.3 850 Cro
j MIROC-ESM 4.67 850 Cro
n bcc-csm1-1 2.82 850 Gao
o GISS-E2-R r1i1p121 2.11 850 Cro
z1 FGOALS-gl 1.2 1000 Cro2003
z2 FGOALS-s2 3.36 850 Gao
k2 MPI-ESM-P 3.55 850 Cro
o2 GISS-E2-R r1i1p1221 2.11 850 Gao
o3 GISS-E2-R r1i1p123 2.11 850 None
o4 GISS-E2-R r1i1p124 2.11 850 Cro
o5 GISS-E2-R r1i1p125 2.11 850 Gao
o6 GISS-E2-R r1i1p126 2.11 850 None
o7 GISS-E2-R r1i1p127 2.11 850 Cro
o8 GISS-E2-R r1i1p128 2.11 850 Gao

Table 5.2: Decadal variability in the last millennium. The ECS values are from Forster et al.
(2013), except for FGOALS-gl, which is from Zhang et al. (2013) and HadCM3 from Hunter
et al. (2019). The Gao volcanic data set is from Gao et al. (2008), while the Cro data set is
from Crowley et al. (2008) or in one case Crowley et al. (2003) denoting its previous version.
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Figure 5.14: Temperature reconstruction over the past 2000 years, merging seven different
reconstruction methods. Code was adapted from Neukom et al. (2019b).

5.7 Conclusion

Our findings indicate that the concept of equilibrium climate sensitivity (ECS) is rele-
vant not only to the mean global warming at a given level of atmospheric CO2, but also
to temperature variability on decadal timescales. Counter-intuitively, this suggests that
the slowdown in global warming from 2002–2012 was more likely in a high ECS world.
It also means that decades of very rapid warming, which would stretch the adaptive ca-
pacity of ecosystems and society, are also much more likely if ECS is high. A previous
constraint based on global temperature variability found a most likely value for ECS at
2.8 K (Cox et al., 2018a), which is lower than suggested by some other recent studies
(Caldwell et al., 2018; Brown and Caldeira, 2017; Sherwood et al., 2014). Achieving a
better consensus on the risk that we live in a high ECS climate is therefore of critical
importance to both the climate mitigation challenge and also to inform efforts to build
resilience to climate variability.

The associated code for this chapter is available at Code Ocean (Nijsse et al., 2019b).
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Figure 5.15: Warming blocks: a visualisation of the emergent relationship between 1880 and
2100. Each row denotes a climate model, each column a decade. Blue squares denote cooling
decades, whereas red squares denotes warming decades. The rows are sorted from low to
high decadal variability.
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Chapter 6

Estimating TCR and ECS from
observed warming

This chapter is adapted from the Earth System Dynamics paper Nijsse et al. (2020b):
“Emergent constraints on TCR and ECS from historical warming in CMIP5 and

CMIP6 models”, co-authored by Peter Cox and Mark Williamson

Transient climate response (TCR) is the metric of temperature sensitivity that is
most relevant to warming in the next few decades, and contributes the biggest uncer-
tainty to estimates of the carbon budgets consistent with the Paris targets (Arora et al.,
2020). Equilibrium climate sensitivity (ECS) is vital for understanding longer-term cli-
mate change and stabilization targets. In the IPCC 5th Assessment Report (AR5), the
stated ‘likely’ ranges (17–83% confidence) of TCR (1.0–2.5 K) and ECS (1.5–4.5 K)
were broadly consistent with the ensemble of CMIP5 Earth System Models available
at the time. However, many of the latest CMIP6 ESMs have larger climate sensitivities,
with 5 of 34 models having TCR values above 2.5 K, and an ensemble mean TCR
of 2.0 ± 0.4 K. Even starker, 12 of 34 models have an ECS value above 4.5 K. On
the face of it, these latest ESM results suggest that the IPCC likely ranges may need
revising upwards, which would cast further doubt on the feasibility of the Paris targets.

In this chapter it is shown that, rather than increasing the uncertainty in climate
sensitivity, the CMIP6 models help to constrain the likely range of TCR to 1.3–2.1 K,
with a central estimate of 1.68 K. We reach this conclusion through an emergent con-
straint approach which relates the value of TCR linearly to the global warming from
1975 onwards. This is a period when the signal-to-noise ratio of the net radiative forc-
ing increases strongly, so that uncertainties in aerosol forcing become progressively
less problematic. We find a consistent emergent constraint on TCR when we apply
the same method to CMIP5 models. Our constraints on TCR are in good agreement
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with other recent studies which analysed CMIP ensembles. The relationship between
ECS and the post-1975 warming trend is less direct and also non-linear. However,
we are able to derive a likely range of ECS of 1.9–3.4 K from the CMIP6 models by
assuming an underlying emergent relationship based on a two-layer energy balance
model. Despite some methodological differences, this is consistent with a previously-
published ECS constraint derived from warming trends in CMIP5 models to 2005. Our
results seem to be part of a growing consensus amongst studies that have applied the
emergent constraint approach to different model ensembles and to different aspects
of the record of global warming.

6.1 Introduction

The key uncertainty in projections of future climate change continues to be the sen-
sitivity of global mean temperature to ‘radiative forcing’, the change in Earth’s energy
budget induced by greenhouse gases and other atmospheric particles. This sensitivity
is usually characterised in terms of the global mean temperature that would occur if the
atmospheric carbon dioxide concentration was doubled, for which the radiative forcing
is reasonably well-known.

Two related quantities are used to characterise the climate sensitivity of Earth Sys-
tem Models (ESMs). Equilibrium climate sensitivity (ECS) is an estimate of the even-
tual steady-state global warming at double CO2. Transient climate response (TCR) is
the mean global warming predicted to occur around the time of doubling CO2 in ESM
runs for which atmospheric CO2 concentration is prescribed to increase at 1% per
year. Across an ensemble of ESMs, TCR values are less than ECS values because
of deep ocean heat uptake, which leads to a lag in the response of global tempera-
ture to the increasing CO2 concentration (Hansen et al., 1985). The ratio of TCR over
ECS tends to decrease with increasing ECS, and depends on spatial pattern effects
(Armour, 2017).

Despite decades of advances in climate science, the Earth’s ECS and TCR remain
uncertain. The ‘likely’ range of ECS (66% confidence limit) has been quoted as 1.5 K
to 4.5 K in all of the five Assessment Reports (ARs) of the Intergovernmental Panel on
Climate Change (IPCC) starting in 1990, aside from the fourth AR which moved the
likely lower range temporarily to 2 K. Similarly the likely range of TCR is given as 1 K
to 2.5 K in the IPCC AR5, based on multiple lines of evidence.

There have been numerous attempts to constrain ECS using the record of historical
warming or palaeoclimate data (Knutti et al., 2017), and more recently using emergent
constraints which relate observed climate trends, variations or other variables to ECS
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using an ensemble of models (Caldwell et al., 2018; Cox et al., 2018a). However,
debate still rages about the likely range of ECS (Brown et al., 2018; Bretherton and
Caldwell, 2020; Cox et al., 2018b; Gregory et al., 2019), in part because observed
global warming is a rather indirect measure of global warming at equilibrium. On the
other hand, TCR is more closely related to the rate of warming, and therefore ought
to be more amenable to constraint by the record of global warming (Bengtsson and
Schwartz, 2013; Gregory and Forster, 2008; Jiménez-de-la Cuesta and Mauritsen,
2019; Tokarska et al., 2020). Nevertheless, the accepted likely range of TCR has also
resisted change (Knutti et al., 2017), for reasons we will discuss in this chapter. At the
time of the AR5, the CMIP5 ESMs produced central estimates (mean ± standard de-
viation) of ECS (3.3 ± 0.7 K) and TCR (1.8 ± 0.3 K), that were broadly consistent with
these IPCC likely ranges. However, there has been a general drift upwards towards
higher climate sensitivities in the new CMIP6 ESMs, such that more than one third of
the new CMIP6 models now have ECS values over 4.5 K (Forster et al., 2020), and five
have TCR values over 2.5 K (Table 1). If the real climate system is similarly sensitive,
the Paris climate targets will be much harder to achieve (Tanaka and O’Neill, 2018).

Therefore some key science- and policy-relevant questions arise:

(a) Are such high climate sensitivities consistent with the observational record?

(b) If so, do the CMIP6 models demand an upward revision to the IPCC likely ranges
for climate sensitivity?

We address these questions in this chapter by evaluating the historical simulations
of global warming from the CMIP6 models. In particular, we explore an emergent con-
straint on TCR based on global warming from 1975 onwards (Jiménez-de-la Cuesta
and Mauritsen, 2019; Tokarska et al., 2020), but using the CMIP6 models and obser-
vational data up to 2019.

Emergent constraints are increasingly used to assess future change by exploiting
statistical relationships in multimodel ensembles between an observable and a variable
describing future climate (Cox et al., 2018a; Hall et al., 2019). In the work presented
here, we use the latest CMIP6 multimodel ensemble to define an emergent relationship
between historical warming (expressed in terms of GMST, the observable) and TCR
(the variable related to future climate). In line with published recommendations (Hall
et al., 2019; Klein and Hall, 2015), we check the robustness of the resulting emergent
constraint against the CMIP5 ensemble, using exactly the same methodology as for
CMIP6. We also follow the suggestion of Hall et al. (2019) in striving to base the
emergent constraint on sound physical reasoning.
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From physical principles, we expect values of TCR to be very well-correlated with
simulated global warming across a model ensemble. By definition, TCR is a mea-
sure of warming from a simulation that is driven by an exponential 1.0% per year
increase in CO2. Historical global warming has been driven by a qualitative similar
forcing, albeit somewhat less rapid. Instead of 1.0%, the atmospheric CO2 concentra-
tion has increased at about 0.5% per year since 2000 (Dlugokenchy and Tans, 2019)),
augmented by additional positive radiative forcing from other well-mixed greenhouse
gases, and partially offset by the cooling effects of anthropogenic aerosols.

The radiative effects of the rise in greenhouse gas concentrations are relatively
well-known (Myhre et al., 2013), and are broadly similar in different ESMs. By contrast,
the radiative forcing due to changes in anthropogenic aerosols, especially indirect ef-
fects via changes in cloud brightness and lifetime, are poorly constrained (Myhre et al.,
2013; Bellouin et al., 2020).

These uncertainties in aerosol forcing have hindered attempts to constrain TCR or
ECS from the rate of warming, especially during the pre-1980 period when the burning
of sulphurous coal led to increases in CO2 concentrations and sulphate aerosols levels,
that went up almost together (Andreae et al., 2005). As a result it has been difficult
to distinguish, based purely on the observational record of global warming, between a
model with high climate sensitivity and strong aerosol cooling, and a model with low
climate sensitivity and weak aerosol cooling (Kiehl, 2007).

In order to minimise the effects of uncertainties in aerosol forcing, we need periods
in which aerosol radiative forcing changes relatively little compared to the change in
radiative forcing due to CO2 and other well-mixed greenhouse gases. Fortunately, this
applies to the decades after 1975 when total aerosol load from global SO2 and NH3

emissions were similar to values over the last decade (Stevens et al., 2017). For this
reason, we focus on global warming since 1975. However, we also test the robustness
of our conclusions to different start dates (see Figure 6.8(c)), including the start year
of 1970 as used by Jiménez-de-la Cuesta and Mauritsen (2019) (hereafter JM19).

To establish an emergent constraint on ECS, we investigate the appropriate func-
tional form between observed warming and climate sensitivity. Due to the slow re-
sponse of the ocean, this is not expected to be linear, and using a set of assumptions,
JM19 proposed an analytical form based on a two-layer box model. By computing
the model parameters directly per model, we investigate the appropriateness of this
analytical function, and use it to derive an emergent constraint.

The remainder of this chapter is organised as follows: in Section 6.2 we describe
our methodological choices and more technical details concerning the regression meth-
ods; Section 6.3 contains the emergent constraints on TCR and ECS and Section 6.4
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Figure 6.1: Effective radiative forcing F and the top-of-the-atmosphere energy imbalance N

over the historical period, calculated from 22 CMIP6 models as F = ∆N + λ∆T . A maximum
of five simulations per model are shown.

contains the discussion and conclusions.

6.2 Methodology

6.2.1 Choice of period over which to calculate warming trends

To constrain climate sensitivity using observed warming, we seek a period for which
the forcing is relatively similar across models. In order to identify such a period we
compute the effective radiative forcing F (ERF) for each model run using

F = ∆N + λ∆T (6.1)

following Forster et al. (2013). Here ∆N is the difference in net top of the atmosphere
radiative flux and ∆T is the difference in near-surface temperature, both computed as
global annual-mean anomalies relative to the initial state. We calculate the signal-to-
noise ratio of F at each time as the model mean F divided by the standard deviation
of F across the model ensemble.

Figure 6.2 shows how the signal to noise ratio of the ERF varies from 1880 to
2010. It is notable that the signal-to-noise ratio increases rapidly from around 1975, as
relatively well-known greenhouse gas forcing continues to increase but the uncertain
aerosol forcing begins to saturate. We have therefore focused our analysis on the
post-1975 warming, but we also performed a sensitivity analysis by varying the start
year between 1960 and 2005.
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Figure 6.2: Effective radiative forcing over the historical period, calculated from 22 CMIP6
models as F = ∆N + λ∆T : (a) ensemble mean; (b) ensemble standard deviation; (c) signal-
to-noise ratio. Model means are calculated first, and then the ensemble mean is calculated.
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6.2.2 Selection of model simulations

We use all currently available CMIP6 models that have control (piControl), historical, a
Shared Socioeconomic Pathway simulation (SSP1-2.6, SSP2-4.5, SSP3-7.0 or SSP5-
8.5) and one percent CO2 increase per year (1pctCO2) experiments. We extend the
historical simulations from 2014 to 2019 using the Shared Socioeconomic Pathways
(SSPs) scenario runs. Additional warming over this 5 year period varies very little
across the SSPs, so we use SSP2-4.5 as this has the largest number of participating
models at the time of writing. Selection of CMIP5 models was similar, where instead of
shared Socio-Economic Pathways, the RCP8.5 was chosen, which corresponds best
with observational greenhouse gas concentrations (Schwalm et al., 2020).

6.2.3 Model sensitivity

From the 1pctCO2 experiment TCR is determined as the average temperature differ-
ence from the corresponding piControl run between 60 to 80 years after the start of
the simulation (IPCC, 2013a). ECS is computed using the Gregory method (Gregory,
2004) on the first 150 year of the abrupt-4xCO2 simulations. The values of ECS and
TCR that we derived are given in Table 6.1.

Centre Model F2× λ ECS TCR n ∆T SD

BCC BCC-CSM2-MR 3.01 0.98 3.07 1.59 1 0.64
CAMS CAMS-CSM1-0 3.95 1.71 2.31 1.72 1 0.44
CAS FGOALS-f3-L 3.95 1.31 3.03 2.01 1 0.70
CCCma CanESM5 3.63 0.64 5.66 2.66 50 1.27 0.10
CNRM CNRM-CM6-1 3.54 0.72 4.94 2.08 10 0.73 0.11
CNRM CNRM-ESM2-1 3.09 0.66 4.66 1.92 5 0.65 0.15
CSIRO ACCESS-CM2 3.21 0.67 4.81 2.00 1 0.77
CSIRO ACCESS-ESM1-5 2.71 0.68 3.97 1.91 3 0.84 0.10
EC-Earth-C. EC-Earth3-Veg 3.32 0.77 4.34 2.57 2 0.97 0.23
EC-Earth-C. EC-Earth3 3.30 0.78 4.22 2.38 10 0.72 0.16
INM INM-CM4-8 2.61 1.42 1.84 1.32 1 0.61
INM INM-CM5-0 2.88 1.49 1.93 1.40 1 0.55
IPSL IPSL-CM6A-LR 3.32 0.72 4.63 2.32 6 0.85 0.10
MIROC MIROC-ES2L 1.55 1 0.62
MIROC MIROC6 3.76 1.47 2.56 1.52 3 0.50 0.04
MOHC HadGEM3-GC31-LL 3.38 0.60 5.62 2.45 4 1.07 0.19
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MOHC UKESM1-0-LL 3.56 0.66 5.41 2.72 5 1.13 0.13
MPI-M MPI-ESM1-2-HR 3.58 1.20 2.99 1.64 2 0.65 0.07
MRI MRI-ESM2-0 3.36 1.07 3.14 1.56 5 0.73 0.06
NCAR CESM2-WACCM 3.08 0.63 4.90 1.92 3 0.97 0.15
NCAR CESM2 3.13 0.59 5.30 2.04 3 0.82 0.01
NCC NorESM2-LM 3.06 1.13 2.69 1.46 3 0.63 0.18
NOAA-GFDL GFDL-CM4 2.91 0.71 4.09 1.97 1 0.86
NOAA-GFDL GFDL-ESM4 3.51 1.31 2.68 1.53 2 0.79 0.15
NUIST NESM3 3.73 0.78 4.76 2.73 2 0.93 0.17
UA MCM-UA-1-0 1.94 1 0.81

Mean 3.69 0.95 3.90 1.96 4.9 0.78 0.12
Standard deviation 0.40 0.34 1.18 0.42 9.4 0.19 0.06

AS-RCEC TaiESM1 2.34
BCC BCC-ESM1 3.03 0.89 3.39 1.74
E3SM-Project E3SM-1-0 3.23 0.60 5.38 2.99
NASA-GISS GISS-E2-1-G 3.89 1.43 2.71 1.68
NASA-GISS GISS-E2-1-H 3.55 1.14 3.12 1.89
MOHC HadGEM3-GC31-MM 3.36 0.61 5.52 2.37
MPI-M MPI-ESM1-2-HR 3.58 1.20 2.99 1.64
SNU SAM0-UNICON 3.83 1.02 3.76 2.25
Mean CMIP6 3.70 0.95 3.91 2.01
Standard deviation CMIP6 0.39 0.33 1.17 0.42
Mean CMIP5 3.58 1.06 3.31 1.79
Standard deviation CMIP5 0.22 0.29 0.76 0.34

Table 6.1: List of CMIP6 models used in this chapter and their effective radiative forcing at
CO2 doubling F2×, the climate feedback parameter λ, equilibrium climate sensitivity (ECS) and
transient climate response (TCR). Mean values are reported for models with multiple realisa-
tions. The values of F2×, ECS and λ are computed using the Gregory method (Gregory, 2004).
Models above the horizontal line were used in the extended simulations to 2019. Models below
the line did not have SSP simulations available at time of writing. Consistently derived values
for CMIP5 are displayed in the Table A.1

6.2.4 Warming trend

Historical warming (our observable) is found from the historical and SSP simulations
using the global annual mean surface air temperature (GMSAT) smoothed with a
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equally weighted running mean. Some of these models have multiple runs starting
from different initial conditions, forcing time series or parameter settings. We use all
available runs.

We use smoothed GMSAT to calculate warming. This is to limit the random effect
of internal variability on the forced change we wish to constrain. We smooth using a
centred 11-year running mean to remove shorter interannual and mid-term variability
from sources such as ENSO, as well as reducing the effect of longer period modes
of natural variability. We have tested the robustness of the constraint on TCR to the
length of the running mean. It remains relatively invariant past a length of 8 years,
suggesting most of the internal variability in GMSAT resides in shorter periods.

Warming ∆T is calculated as the difference in GMSAT between two periods, typi-
cally the years 1975–1985 and 2009–2019 (or equivalently, the difference in smoothed
temperature between 2014 and 1980). We have chosen the end year to be 2019 to
maximise the chances of discrimination between high and low sensitivity models. As
the forcing from CO2 increases with time, the warming in more sensitive models is
more likely to diverge from less sensitive ones as we extend the period over which
we calculate the trend. Extending to 2019 also allows us to include the most recent
observational data and to eliminate possible effects from the warming slowdown be-
tween 2000 and 2012. This slowdown has been attributed to a combination of internal
variability and decreased forcing, amongst other things (Medhaug et al., 2017). We
assess the impact of the slow down by comparing emergent constraints derived from
time series truncated to have different end years.

6.2.5 Regression

When only one realisation per model is used for ordinary least square regression,
regression dilution takes place in which the slope is underestimated (Cox et al., 2018b).
This has the potential to lead to a slight overestimation of TCR (Figure 6.8d), as the
observed warming is on the lower end of the model range. JM19 used the average
warming for models with multiple simulations. As not all models provide a sufficient
amount of simulations, they state that this leads to a minor inflation of the estimation
of uncertainty.

To systematically include the information from all model realisations, we use a hier-
archical Bayesian model (Sansom, 2014). This model includes two layers: the normal
linear regression (process layer) and a layer that computes the expected warming per
model from all its initial value realisations (data layer). To include the initial value en-
semble members, we assume that each model m has a ”true” or ”best” value for warm-

96



Figure 6.3: Schematic of the hierarchical Bayesian model. The data layer models a best
estimate of historical warming for each model. With this estimate, a regression is performed
between historical warming and TCR in the process layer. Using information from both layers
and observed warming, a probability density function is estimated for TCR is the final step.
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ing over the last decades denoted by ∆TT . We further assume that every realisation
j of a model gives a value of ∆T that is drawn from a normal distribution with mean
∆TT and a standard deviation σx that is the same across all models. Our hierarchical
model consists of two steps: for each model the best estimate of historical warming is
computed and with this value a simple linear regression is performed:

∆Tm,j | ∆Tm, σx ∼ normal(∆Tm, σx)

TCRm | α, β, σy ∼ normal(α + β∆Tm, σy)

The second layer corresponds to normal linear regression, while the first level
makes an estimate of the true ∆Tm. Note that especially for models with only few
initial value member, the “best” ∆Tm does not necessarily correspond with the mean
value of these ensemble members, but will instead lie closer to the regression line.

The probability density function for TCR is then sampled from the observed warm-
ing between 1975–1985 and 2009–2019 ∆Tobs using the emergent constraint. The
observational uncertainty σobs is taken as the sample standard deviation of the four
observational datasets.

TCRpred =

normal
(
α + β normal

(
∆Tobs,

√
σ2
x + σ2

obs

)
, σy

)
As no warming is expected if climate sensitivity were zero, we expect the regression

to pass through the intercept and chose a prior for the intercept α of normal(0, 1).
Weakly informative priors are chosen for the slope β, the uncertainty of the regression
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σy and the internal variability σx:

α ∼ normal(0, 1)

β ∼ normal(2, 10)

σy ∼ half-normal(0.5, 10)

σx ∼ half-normal(0.2, 0.5)

6.2.6 Theoretical basis

Transient Climate Response (TCR)

Once choices of length of running mean, start and end years for calculation of ∆T are
fixed (our observable), we can fit an emergent relationship between the observable
and values of TCR via linear regression. Linear regression is performed using the
hierarchical Bayesian model described in the previous section, which can take into
account all the different simulations per model: models with more simulations have a
better-constrained post-1975 warming. This results in a set of 127 simulations from 26
different models. The choice of linear regression is justified by considering a two-layer
energy balance model (Winton et al., 2010; Geoffroy et al., 2013b):

C
dT

dt
= F − λT − εγ(T − T0)

C0
dT0

dt
= γ(T − T0).

(6.2)

Here T is the top layer temperature anomaly, T0 the deep ocean temperature anomaly,
λ is the climate feedback parameter, ε is the ocean heat uptake efficacy (reflecting
a pattern effect), and γ is the ocean heat uptake parameter (Winton et al., 2010).
The parameters C and C0 are the heat capacity of the upper ocean and deep ocean,
respectively. We will refer to this model as EBM-ε, or EBM-1 if ε is set to 1. We follow
the approximations in Williamson et al. (2018) and JM19 in assuming no change in
deep ocean temperature (T0 = 0), and assuming the upper ocean to be in equilibrium
(dT/dt = 0). These assumptions are reasonable for timescales larger than a decade,
but smaller than a century (see JM19), and lead to the following relationship:

TCR = s∆T (6.3)

Here s is a forcing parameter, defined as F2×/F , and ∆T is the difference in temper-
ature between two periods. For fitting, we include an offset η, so that TCR = s∆T + η,
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Figure 6.4: Scatter plot of TCR values plotted against ECS values for all CMIP6 models with
both available at the time of submission. Models from the same modelling group are plotted
with the same colour. Plot markers differentiate models from the same modelling centre. Black
line uses the average ocean heat uptake parameters as fitted from the Geoffroy et al. (2013a)
procedure, listed in Table A.3 and related ECS and TCR via: ECS = TCR/(1 − e′TCR), with
e′ = 0.24, the model mean.

allowing for a possible model mis-specification and regression dilution (Hahn, 1977). A
hierarchical linear regression was adopted which includes both uncertainty in ∆T and
TCR. The choice of 1975 for the starting period minimises the uncertainty in our esti-
mate of TCR. However, uncertainty is relatively flat for starting periods between 1975
and 1990. We also investigated the sensitivity of our TCR constraint to the final year,
the length of the running mean, the model selection, and the method of regression.

Equilibrium climate sensitivity (ECS)

As with TCR, we use the warming between 1975–1985 and 2009–2019 to find an
emergent constraint on ECS. The relationship between climate sensitivity and ob-
served warming or TCR is not expected to be linear, as a smaller fraction of equi-
librium warming is typically realised in models with high climate sensitive within the
first decades of warming (Hansen et al., 1985; Rugenstein et al., 2020). Using Equa-
tion 6.2, ECS = F2×/λ, and again assuming the upper ocean to be in equilibrium and
the deep ocean temperature to not change, TCR and ECS are related via:

ECS = TCR/(1− e′TCR). (6.4)
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Figure 6.5: Variation of parameters of the function of ECS versus historical temperature rise.
The left figure shows the variation caused by the forcing parameter, whereas the right picture
shows the ocean parameter.

Figure 6.4 plots model TCR versus ECS, related via Equation 6.4, using the ensemble
mean of fitted ocean parameters e′ of the CMIP6 models. We fit the ocean heat up-
take and forcing parameters, following the two algorithms described in Geoffroy et al.
(2013b,a), with slight modifications to ensure solutions exist for all models, described
in Appendix A.

From Equation 6.4, the relationship between ECS and ∆T ends up as:

ECS =
∆T

s′ − e′∆T
. (6.5)

The forcing parameter is denoted by s′, defined as ∆F/F2× and e′ is the ocean heat
uptake parameter defined as εγ/F2×. The function has an asymptote at s′− e′∆T = 0,
and turns negative for larger ∆T values. As negative ECS values are unphysical,
we modify the equation by keeping ECS at infinity for ∆T > s′/e′. The appearance
of negative ECS for high ∆T is an artefact of the no-deep-ocean-temperature-rise
assumption: it corresponds to an equilibrium between the heating effect of F − λ∆T ,
balanced by −εγ∆T . In reality, this last term cancels completely when ∆T0 reaches
equilibrium and ocean heat uptake stops. Similarly, the negative ECS branch for ∆T <

0 is also taken to be unphysical and therefore all negative ECS values are rejected
during sampling.

This two-layer model, first proposed by Held et al. (2010), has a parsimonious
description of the ocean pattern effects, with the extra term (ε− 1)γ(T − T0) compared
to a standard two-layer model, which changes over time as the deep ocean heats
up, acting as a modification of the feedback parameter. Figure 6.5 shows how the
function of ECS from ∆T changes depending on its parameters. The ocean parameter
e′ does not impact the function much for low values of ∆T . This means that it is more
influenced by models with high ECS, which typically have a stronger pattern effect.
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To test the validity of the function, we perform two checks. Firstly, using the fitted
model parameters, we investigate the physical basis of Equation 6.5 with the EBM-
ε and EBM-1 models. If this function derived from the two-layer model is a faithful
representation, ∆T/(s′ − e′∆T ) should be better related to ECS with individual model
parameters than with the bulk fitted parameter.

Secondly, by explicitly simulating the two-layer model, we investigate to what extent
the analytical functional form deviates from the true functional form. We are especially
interested in the upper region of this functional form, which, if too steep, could lead to
an upper estimate of ECS biased high.

The parameters in Equation 6.5 are fitted with Orthogonal Distance Regression
(ODR) using the Python implementation of the ODRPACK Fortran package (Boggs et al.,
1989). We use Monte Carlo sampling to compute the confidence interval, generating a
joint distribution of the model parameters and the error in the estimation. We draw from
this joint distribution to generate a prediction interval. ECS is estimated by generating
a second joint distribution, which also includes the observational uncertainty. As with
TCR, internal variability is included in the observational uncertainty as estimated from
model internal variability. Given the fact that not all models have multiple ensemble
members, there is still some internal variability influencing the fit. This leads to a small
overestimation of uncertainty.

6.3 Results

6.3.1 Transient climate response

Figure 6.6a shows the temperature anomaly over the period 1880 to 2019 simulated by
26 different CMIP6 models running a total of 127 simulations smoothed with a 11-year
running mean. The reference period in this case is 1880–1910. Model runs have been
colour coded by their TCR value, with darker red indicating models with higher TCR,
and darker blue indicating lower TCR. Black lines are observational global warming
datasets over the same period (Morice et al., 2012; Rohde et al., 2013; Lenssen et al.,
2019; Zhang et al., 2019). Models with higher TCR either show large warming at the
end of the period, or portray a strong aerosol cooling over the 20th century, partic-
ularly visible as a dip around 1960–1970 (notably CNRM-ESM1, UKESM1-0-LL and
EC-Earth-Veg). Figure 6.6b shows the same information for the end of the historical
period although the reference period is now chosen to be 1975–1985, after the temper-
ature dip. The positive correlation intuitively expected between TCR and temperature
increase ∆T is much clearer for this time interval.
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Figure 6.6: Global mean surface temperature of the 26 CMIP6 models named in Table 6.1.
To avoid visual over-representation, a maximum of ten realisations per model are plotted. An
11-year running mean was used. (a) Temperature anomaly ∆T using 1880–1910 as reference
period. (b) Temperature anomaly ∆T relative to the 1975–1985 mean.
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The ∆T for each model simulation in Figure 6.6b is used for the emergent constraint
on TCR in Figure 6.7a. Observational warming (black vertical dashed line) is the mean
of HadCRUT4 (Morice et al., 2012), Berkeley Earth (Rohde et al., 2013), GISSTEMP4
(Lenssen et al., 2019) and NOAA v5 (Zhang et al., 2019). The 90% observational
confidence interval (grey shaded vertical area) is a combination of the observational
uncertainty (conservatively estimated as the sample variance of the four data sets)
and the internal variability.

To avoid double-counting observational uncertainty, the 90% regression confidence
interval details the uncertainty of the “best” estimate of ∆Tm versus TCR. The mod-
els from the previous CMIP5 generation generally fall within the prediction interval of
the CMIP6 emergent constraint: the emergent constraint is robust across generations
(Klein and Hall, 2015). The best estimate (1.68 K) from this emergent constraint is
higher than the best estimate using the larger set of models that have historical simula-
tions up to 2014, but no future scenarios (median: 1.54 K, 5–95% range: 0.76–2.30 K).
This can mostly be explained by the fact that 2004–2014 overlaps with the slow-down
in surface temperature increase over the 2000–2012 period, but the larger selection of
models over the historical period also impacts the regression.

Figure 6.7b shows the probability density functions (pdf) of TCR derived from the
emergent constraint for both CMIP6 and the earlier CMIP5 model ensembles. For
comparison, the raw model range in each CMIP is plotted as a histogram, as well as
the reported IPCC AR5 likely range (assuming a normal distribution). Both CMIP5
and CMIP6 pdfs are very similar (central estimates differ by 0.1 K) even though CMIP6
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Figure 6.7: (a) Emergent constraint on TCR against historical warming. The predictor ∆T

is calculated from the difference between 1975–1985 and 2009–2019 of a timeseries of GM-
SAT. Linear regression is performed with all CMIP5 and CMIP6 simulations. Shaded areas
indicate a 90% model prediction interval (so not including internal variability). The vertical dot-
ted line is the mean value of the observations and y-axis shows the probability distribution of
both generations of ensembles. (b) Comparison of probability distributions for the transient
climate response using post-1975 warming using CMIP5 and CMIP6 simulations. The prob-
ability distribution in the fifth IPCC assessment is not fully specified, so the figure shows a
normal distribution with the same likely range as IPCC.
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contains many more high TCR models. As a continuation of the historical CMIP5 sim-
ulation, RCP8.5 is chosen. The tighter constraint in CMIP5 is mostly a consequence
of differences in internal variability, which is 42% larger in CMIP6 than in CMIP5, in
line with the findings of Parsons et al. (2020).

Period selection

Estimates of TCR depend on the final year chosen for the emergent constraint. Uncer-
tainty in the estimate of TCR reduces as time increases and the central estimate con-
verges as shown in Figure 6.8a. Later end years are favoured as the signal-to-noise
ratio of the net radiative forcing increases monotonically after 1975 (see Figure 6.2).
In the 21st century, the climate impact of volcanoes has been dominated by smaller
eruptions (Stocker et al., 2019). The scenarioMIP simulations used for 2015–2019
include a small background forcing from volcanoes (O’Neill et al., 2016). We estimate
errors from a potential mismatch between model and real forcing to be relatively small.

To mitigate the effect of internal variability, we use a running mean of GMSAT. Fig-
ure 6.8b shows the likely range of TCR as a function of the length of the running mean.
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Since we use all available simulations including multiple realisations of the same model
in the emergent constraint, the effect of internal variability is already reduced and the
length of the running mean on the estimate of TCR is small — the central estimate and
the likely range remain relatively invariant past a window length of 8 years.

Figure 6.8c shows the effect of the start year on the emergent constraint. Uncer-
tainty in the estimated value of TCR is relatively flat between start years of 1975 and
1990. Uncertainty for start years from 1990 onwards increases until the estimate and
the uncertainty revert towards the raw CMIP6 ensemble statistics (no predictive power)
at later years.

Regression method

In addition to hierarchical Bayesian regression, we have investigated three other re-
gression methods used in the emergent constraint literature: ordinary least squares
(OLS) with only one realisation per model, OLS on the mean warming per model and
orthogonal distance regression (Figure 6.8d). While the first three give very similar
results, orthogonal distance regression gives a somewhat lower estimate of TCR, con-
sistent with the results found in Section 4.2. Orthogonal distance regression assumes
that there are both errors in the predictor and in the predictand, which leads to a
steeper slope. As our observation lies under the average, a steeper slope results in a
smaller predicted TCR value. Orthogonal distance regression is known to sometimes
overcompensate for errors in the independent variable, for instance in the case the
statistical model is not perfectly known; if the model deviates from being a perfectly
straight line (Carroll and Ruppert, 1996).

Model selection

Model selection can prevent double counting of very similar models (Sanderson et al.,
2015; Cox et al., 2018a). As models from the same centre can have very dissimilar
climate sensitivities (Chen et al., 2014; Jiménez-de-la Cuesta and Mauritsen, 2019)
and sensitivity can change drastically with only small adjustments to parameters (Zhao
et al., 2016), we initially use all available models in the CMIP5 and CMIP6 ensemble.
Figure 6.8e shows that this choice does not significantly change the best estimate
of the transient response, and that using one model per modelling centre only very
slightly increases the variance, even as models from one modelling centre are relative
similar (Figure 6.4).
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Figure 6.8: Robustness of the result to various parameter choices and the choice of regres-
sion method. Unless stated differently, start year is 1975, all years up to 2018 are used, and
the length of the running mean is 11 years. For comparison, the 5–95% model range range
and IPCC range are shown, both assuming normal distributions. (a) 5–95% TCR range as a
function of the final year (blue line central estimate). (b): 5–95% TCR range as a function of
length of running mean. (c) 5–95% TCR range as a function of start year. (d) Pdf of TCR
from different regression methods: the hierarchical Bayesian model is compared to three other
linear regression methods used in the emergent constraint literature: ordinary least squares
(OLS) with only one realisation per model and OLS on the mean warming per model and or-
thogonal distance regression (ODR). (e) Resulting pdfs on TCR from stricter model selection
(one model per modelling centre) compared to regression using all models and the IPCC AR5
range.

Study CMIP Period Percentile

Median 5–95% 16–84%

JM19 CMIP5 1970 - 2005 1.7 K 1.2 – 2.2 K
Nijsse et al. (2020) CMIP5 1970 - 2005 1.7 K 1.1 – 2.3 K 1.4 – 2.1 K

Tokarska et al. (2020) CMIP6 1981 - 2017 1.6 K 1.2 – 2.0 K
Nijsse et al. (2020) CMIP6 1975 - 2019 1.7 K 1.0 – 2.3 K 1.3 – 2.1 K

Table 6.2: Emergent constraint on TCR depending on choices of ensemble and time period.
Results from JM19 and Tokarska et al. (2020) are also shown for comparison.
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Figure 6.9: a) Emergent constraint on ECS, using the functional form of Equation 6.5. The
shaded area includes the 5–95% confidence interval. b) Comparison of emergent constraint
fitted parameters, with using model values for s′ and e′. The coloured lines are OLS fits for the
three cases, and the black line indicates the 1:1-line. Three values for the EBM-ε model are
not shown as their ∆T/(s′ − e′∆T ) are between 75 K and 90 K.

Ensemble Median 5–95% range

CMIP5 1970–2005 2.3 K 0.7 – 8.4 K
CMIP5 hist + RCP8.5 2.2 K 1.0 – 4.1 K
CMIP6 1970–2005 2.5 K 1.0 – 8.6 K
CMIP6 historical 1.9 K 1.0 – 3.3 K
CMIP6 hist + SSP2-4.5 2.6 K 1.5 – 4.0 K

Table 6.3: Emergent constraint on ECS depending on the choice of ensemble and time period.

6.3.2 Equilibrium climate sensitivity

Figure 6.9a shows the emergent constraint on ECS. For CMIP5, the 5–95% confidence
interval lies between 0.96–4.09 K. The constraint is stronger for CMIP6, with the 5–
95% confidence interval spanning 1.52–4.03 K. Further results are shown in Table 6.3.

The results are highly dependent on the time interval chosen. For shorter intervals,
the theoretical functional form shows an increased steepness for higher values of ∆T ,
making it more difficult to constrain. For instance, taking the time period in line with
JM19, i.e. 1970–1989 versus 1994–2005, we obtain a 5–95% interval of 0.70–8.41 K
for CMIP5, significantly wider than found in JM19, which reported a 5–95% confidence
interval of 1.72-–4.12 K. The major differences lie in the definition of the theoretical
function, where we have cut off the unphysical branch, and a correction of a coding
error in the computation of the prediction interval.
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Figure 6.10: Comparison of two functions describing the relationship between observed warm-
ing and climate sensitivity. The analytical function (black) corresponding to Equation 14 in Ge-
offroy et al. (2013b), not only depends on γ and the forcing, but also on the heat capacity of
the two layers, for which typical values were chosen of C = 8 and C0 = 100. The linear forcing
was 1/140F2×, and the function was evaluated between year 20 and 70, to cancel transient
effects. The parameter s′ was chosen to be 5/14, and e′ is 0.18. The blue and orange lines are
both drawn using ECS = ∆T/(s′− e′∆T ), where in the latter case, the parameters are chosen
to approximate the full equation as closely as possible (see legend).

In Figure 6.9b the dark green dots represent expected ECS from observed warming
(using Equation 6.5) and true ECS, using the fitted parameters from Figure 6.9a. The
light green dots denote the same, but now every model uses its own ocean parame-
ters, F2× and model forcing computed using Equation 6.1. The yellow data shows the
expected ECS computed from the EBM-1 model. Full parameter fits for both models
are found in Tables A.2 and A.3.

The EBM-εmodel performs poorly for large values of the ocean heat uptake efficacy
parameter ε. Models with ε around 1.8 in particular show an expected ECS far above
a realistic range, with one expected ECS reaching a value of 89 K. Equation 6.5 is
nonlinear and small errors in parameter estimation quickly lead to large errors in ECS.
For the EBM-ε model in particular, high internal variability may skew the parameter
estimate upwards.

The EBM-1 fit leads to an improved estimation of ECS compared to the Equa-
tion 6.5 fit in 53% of the cases, whereas the EBM-ε model leads to an improvement in
34% of cases. This pattern in similar in the case only historical models are used, with
66% and 42% improved respectively.
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Functional form

Explicitly simulating the relationship between ∆T and ECS using the two-layer model
shows that the steepness of the function used for the emergent constraint (Equa-
tion 6.5) is overestimated for high ∆T : assuming no deep ocean temperature rise
(T0 = 0) dampens the temperature response of the upper ocean. Geoffroy et al.
(2013b) derived an analytical solution to the two-layer model of Equation 6.2 under the
weaker assumption of a linearly increasing forcing (so, allowing the deep ocean to take
up heat), which also showed a less steep increase of ECS with ∆T for high values of
∆T .

This leads the question whether the upper range of ECS is overestimated. In Fig-
ure 6.10, we show this is not the case: by using a decreased ocean heat uptake
parameter e′ and forcing, the two analytical solutions do overlap, which demonstrates
that using the approximated Equation 6.5 in the regression should not lead to biased
results in the emergent constraint, but simply that the fitted parameters will be slightly
different from the model parameters. This also explains why the regression using
model parameters in Figure 6.9b is not significantly better than using the overall fitted
parameters of Figure 6.9a.

6.4 Discussion and conclusion

The emergent constraint found on TCR in this chapter is very similar to the one found
in JM19 and Tokarska et al. (2020). The most important determinant of the constraint
is the periods taken. We have slightly expanded on the amount of models compared to
a Tokarska et al. (2020), taking a different period, and we compared further regression
choices.

Major unknowns in determining climate sensitivity relate to aerosol forcing and,
for equilibrium sensitivity, the possibility of feedback increasing over time. We have
moderated the impact of aerosol forcing by our choice of time period. We assume that
the remaining uncertainty is captured by model diversity, and therefore included in our
confidence interval. Time-varying feedbacks are modelled via the inclusion of ocean
pattern effects in our functional form for the emergent relationship, where the diversity
in model efficacy again informs the confidence interval.

Our best estimate for TCR from the CMIP6 models is 1.68 K, which remains close
to the centre of the likely range (1–2.5K) given in the IPCC AR5 (IPCC, 2013b). The
emergent constraint on TCR from the CMIP6 models is however strong enough to
indicate a much tighter likely range of TCR (16–84%, 1.29–2.05 K).

108



We find a consistent emergent constraint from the CMIP5 models against ob-
served global warming from 1975 to 2019 (16–84%, 1.27–1.88 K). Furthermore, both
of these likely ranges overlap strongly with the emergent constraint on TCR derived
by Jiménez-de-la Cuesta and Mauritsen (2019) using a similar method, but only con-
sidering global warming from 1970 to 2005 (5–95%, 1.17–2.16 K). In terms of the
classification proposed by Hall et al. (2019), we therefore now have a confirmed emer-
gent constraint on TCR, with consistency across generations and a sound theoretical
framework.

Equilibrium climate sensitivity is found to be likely between 1.9 K and 3.4 K (16–
84% percentile). This finding strengthens previous evidence that ECS very unlikely
above 4.5 K (Cox et al., 2018a; Jiménez-de-la Cuesta and Mauritsen, 2019; Goodwin
et al., 2018). For instance, Goodwin et al. (2018) used history matching, a simple
emulator, and observations of surface temperature, ocean heat uptake, and carbon
fluxes to estimate climate sensitivity and concluded upon a 5–95% range of 2.0 K to
4.3 K. Renoult et al. (2020) used a combined emergent constraint of the last glacial
maximum and mid-Pliocene Warm Period to constrain ECS to 1.1–3.9 K, with the same
best estimate of 2.6 K.

Does the presence of many models with ECS over 4.5 K mean that the CMIP5
generation was better or more useful for understanding climate sensitivity than CMIP6?
From the point of view of emergent constraints the answer is clearly no, as model
spread helps capture the shape of the emergent relationship.

In the future, we hope that this TCR constraint will become the basis for constraints
also on TCRE (transient climate response to emissions), but this will require the inclu-
sion of additional constraints on land and ocean carbon uptake.

However, we are now in a position to answer the questions that we posed in Sec-
tion 6.1:

(a) Are such high climate sensitivities consistent with the observational record?

No, models with high ECS (> 4.5K) and high TCR (< 2.5K) do not appear to be
consistent with observed global warming since 1975 (Figure 6.6b).

(b) If so, do the CMIP6 models demand an upward revision to the IPCC likely ranges
for climate sensitivity?

No, instead emergent constraints on TCR (Figure 6.7) and ECS (Figure 6.9)
suggest narrower likely ranges for TCR (1.3–2.1 K) and ECS (1.9–3.4 K).

The associated code is available at Code Ocean (Nijsse et al., 2020a).
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Chapter 7

Conclusion and outlook

7.1 Conclusion and discussion

Emergent constraints have proven to be a simple technique that can shed light on key
questions in climate science, such as the strength of important feedbacks and how
much warming will occur under a doubling of CO2. In this thesis, we have sought to
improve theoretical understanding of emergent constraints in general and showcase
several examples of theory-led emergent constraints.

Not all emergent constraints have the same general mechanism. We have pro-
posed classifying emergent constraints into four classes, according to their mathemat-
ical underpinning. Direct dynamical constraints correlate variability in a variable to its
response under a warming climate. On the other side, static indirect emergent con-
straints relate a climatological bias in one variable to response in a different variable.
The former can be well understood from linear response theory, and so confidence in
this type of constraint is more easily established.

Conceptual simple models form the basis of theory-led emergent constraints. Their
use was explored for the analysis of the snow-albedo feedback using a modification of
the energy balance model by Fraedrich (1979), and we used the Hasselmann model
(Hasselmann, 1976) and generalisations for the relationship between decadal variabil-
ity and climate sensitivity. The same models were the basis for an emergent constraint
between the trend in observed warming and climate sensitivity. This type of analysis
suggests that the term “emergent constraints” may in fact be a misnomer. If done
correctly, hypotheses should come first based on physical reasoning and multimodel
relationships should be expected, instead of catching the researcher by surprise by
emerging.

A good physical understanding also helps us choose the proper statistical model.
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Often, ordinary linear regression between the predictor and the predictand is chosen
without good justification. The model data itself is often insufficient to decide on the
functional form. Other statistical models with few free parameters may be equally valid
and better fit our physical understanding. Regression can also be improved by using
all the available data. Specifically, initial value members can be exploited to improve
the prediction confidence interval.

Three specific emergent relationships were studied in this thesis. The first one con-
cerned the relationship between decadal temperature trends and climate sensitivity. It
was found that within the CMIP5 model ensemble, these two quantities were strongly
correlated. As a consequence, counter-intuitively, models with high climate sensitivity
are more likely to display a period without any warming under current greenhouse gas
concentration trends. Furthermore, the compound risk of a decade of high warming
and background global warming was found to be significant: decades with as much
warming as the entire 20th century can not be excluded under high climate sensitivity.

A second set of emergent constraints were found linking surface temperature rise
to transient warming and climate sensitivity. The newest generation of climate models,
CMIP6, contains more models showing very high sensitivity to greenhouse gases.
These models are typically not consistent with warming trends observed since the
1970s, a period with comparable aerosol-induced cooling as the current day, revealing
greenhouse gas heating. These results indicate that the Paris goal of limiting global
warming to well below 2°C is still within reach.

7.2 Future research

7.2.1 Tuning and its influence on emergent constraints

A possible complication in the interpretation of emergent constraints is to what ex-
tent the observational data has been used in the formulation of the model. In short;
all models have been implicitly and sometimes explicitly tuned to the observational
record (Jebeile and Crucifix, 2020). Climate scientists have in the past expressed
concern about data being used both for calibration and confirmation of climate mod-
els. In response, Steele and Werndl (2013) have shown that it is often defensible to
use observational data for tuning (which version of models A and B is best) and rel-
ative confirmation (whether model A is better than model B). It could be argued that
emergent constraints are akin to model confirmation, but the mathematical treatment
is different and it is not yet known to what extent calibration has an impact on the
conclusions of emergent constraints.
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(a) (b)

Figure 7.1: The effect of tuning on a hypothetical emergent constraint. In both panels, each
colour corresponds to one climate model. ‘Tuning’ is performed by choosing the model variant
which is closest to the observations, and the chosen variant is denoted by a circle instead of a
small cross. (a) each model deviates from the 1:1-emergent relationship in X and Y , but cali-
bration happens on a perfect slope-1 line. (b) Models lie on the 1:1-emergent relationship and
each version has an independent random offset in both the independent and the dependent
variable.

Possibly, some emergent relationships only appear because the state space has
been reduced sufficiently with calibration to display a simple relationship. In other
cases, the tuning might actually give a biased estimate of the gradient of the linear
regression. It is vital to try and identify the consequence of calibration on emergent
constraints. An example of when this can pose a problem is when the observations of
the predictor are already used in the tuning process. In Figure 7.1, two quick examples
of this type of tuning are presented, showing two potential ways that a climate model
may change as a function of its parameters. Each model has a range over which it can
be calibrated: even with an optimal parameter, models with an inadequate structure
will not be able to reproduce observations (cf. Figure 3.7, which shows the snow
albedo feedback range in the PlaSim climate model over a range of parameter values.
The range was smaller than in the multi-model ensemble). These two examples mainly
impact the gradient, and do not give a (large) bias in the expected predicted value, but
many more examples might exist.

7.2.2 Targeted model development

An underused aspect of emergent constraints is targeted model development. If an
EC has a strong physical foundation, we can expect that taking steps to reduce bias in
X will result in a corresponding convergence in Y . First, model developers and users
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should work together to assess how the structural and parametric design of the climate
model affects the differences in the predictor. With this collaborative analysis the best
parameterizations or parameters for simulating X may be revealed, thereby providing
guidance for modelling centres on how they can improve their model if they have a bias
in X. If the error is parametric, calibration with the identified predictor may be used
to find a new optimal parameter value. If the error is caused by the parametrizations,
more significant change in the ESM may be necessary.

As far as we are aware, this type of analysis has only been performed for emergent
constraints on the sensitivity of extra-tropical cloud optical depth to temperature (Gor-
don and Klein, 2014), hydrological cycle intensification (DeAngelis et al., 2015), and
snow-albedo feedback (Thackeray et al., 2018).

7.2.3 Paleo-climate

Paleo-records have often been used constrain climate sensitivity (Knutti et al., 2017).
Hargreaves et al. (2012) and Schmidt et al. (2014) use the emergent constraints tech-
nique on this data to better understand temperature. Paleo-records also contain a
treasure of information about other uncertain future quantities, such as sea-level rise
and precipitation.

Conversely, emergent constraints may be used to “predict” past climate where
paleo-data is insufficient. This application offers the possibility of testing the tech-
nique of emergent constraints in an independent manner: in contrast to future climate
change which may be centuries away, paleo-climate has already happened and, for
many quantities of interest, better proxies are only years or decades away.

7.2.4 Multiple constraints and nonlinearity

Most of the work to date has assumed linear emergent relationships, exceptions be-
ing the constraints on climate sensitivity using global surface temperature rise in the
current work and Jiménez-de-la Cuesta and Mauritsen (2019). Improved theoretical
support of emergent constraints, for instance using a hierarchy of models, can show
when nonlinear emergent constraints are more appropriate.

A majority of the work on emergent constraints has further used two linearly related
scalar variables, a predictor X, and a response Y . This has been extended to two or
more predictors (Renoult et al., 2020; Bretherton and Caldwell, 2020, e.g.). When
using multiple predictors, a logical extension to simple linear regression is multilinear
linear regression, considering possible collinearity.
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When combining these two generalizations of emergent constraints (multiple inputs
and physical relationships), the technique may produce statistical models of the global
climate. With more of the information being derived from observations as predictors,
the impact of the climate models may even be reduced significantly, for instance to
confirming the theoretical relationship instead of informing the fitting parameters.

Equivalent to the use of multiple predictors, the scalar X can be replaced by a
multidimensional field X and even Y , rather than scalars. This could for example be
the spatial field of a climate variable (Brown and Caldeira, 2017), or spatial normal
modes of variance, referred to as empirical orthogonal functions (EOFs) in meteorol-
ogy (Hannachi et al., 2007). With stronger statistical pre-processing, it may however
be more difficult to find a theory. Curiously, without theory, emergent constraints may
do more right by their name: emerging from model data instead of being sought based
on physical intuition and understanding.

7.2.5 Use of conceptual models for establishing a physical basis

One way to form hypotheses of new mechanisms for emergent relationships is using
conceptual models that are (often) analytically solvable. Conceptual models require
(sometimes strong) assumptions about the real world. These assumptions are ideally
testable against the real world and model data (Williamson et al., 2018, e.g.). If the
assumptions are adequately met, the solution to the conceptual model can form the
physical basis of the emergent relationship. This testing of simplified theory also helps
our understanding and intuition of complex climate models.

Using transparent hypotheses helps us guard against two potential dangers in the
application of emergent constraints. (i) p-hacking, which might occur when too many
hypotheses are tested and (ii) overestimation of correlation by fudging potential free
parameters (see Section 4.7).

Model spatial and temporal resolution is continually increasing, and more physical
and biochemical processes have been incorporated, resulting in more comprehensive
representations of the climate system. They have become the primary theoretical
tool in climatology. However, as a result of their growing complexity, it has become
increasingly difficult to get a good understanding of their behaviour.

In the past, numerical climate modelling was more limited by computer resources,
forcing scientists to think methodically about which parts of the climate system were
essential to include to answer specific questions. This led to wider use of conceptual
models geared to each question, analytical techniques and a better process intuition
(Budyko, 1969; Hasselmann, 1976; Wigley and Raper, 1990; Saltzman, 2002; Raper
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and Braithwaite, 2009).
There is an opportunity for the top-down insights of specific conceptual models

to complement the comprehensive, bottom-up approach of the latest generation of
ESMs; there are many satellite observations (Yang et al., 2013), oceanic profiling
floats (Roemmich et al., 2019), and longer surface records. The collection of past
and present climate model simulations has grown at the same time. With all the new
data, it may be fruitful to revisit these simple intuitive models in the context of emergent
constraints.

In conclusion, emergent constraints have already been used to gain a better under-
standing of many processes in the climate system including the snow-albedo feedback,
climate sensitivity, precipitation and changes in the carbon cycle. With the suggestions
above, a wider range of aspects of climate change can be explored using emergent
constraints.
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Appendix A

Additional tables

Parameters in Table A.2 were determined following the algorithm described in Geof-
froy et al. (2013b), and parameters in Table A.3 following Geoffroy et al. (2013a). For
models that come close to equilibrium within the first 150 years, we made two slight
adjustments to the algorithm, allowing parameters to be estimated even in the case
where the temperature in a certain year exceeded 2×ECS. The long time scales (nor-
mally estimated from log (1− T

Teq
) ≈ log as − 1

τs
t, the second estimation step described

in Geoffroy et al. (2013b)), were estimated dropping the years after the temperature
first exceeds 2×ECS to avoid taking the logarithm of negative values. Similar problems
occurred for a limited number of models when estimating the fast time scale (normally
estimated as τf = t/ log af − log (1− T

Teq
− ase−t/τs)). Here instead, we used direct

least-squares curve-fitting (using the scipy package curve fit function) over the first
ten years of Equation 5.17 to estimate the parameter when taking a logarithm was not
possible.
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Table A.1: CMIP5 models included in analysis Chapter 6. Values were determined using the
Gregory method, consistent with the CMIP6 values.

Centre Model F2× λ ECS TCR n ∆T SD

BCC bcc-csm1-1-m 3.36 1.15 2.91 2.07 1 0.97
BCC bcc-csm1-1 3.70 1.27 2.91 1.76 1 0.92
BNU BNU-ESM 3.77 0.93 4.07 2.54 1 0.99
CCCma CanESM2 3.76 1.01 3.71 2.30 5 1.16 0.05
CMCC CMCC-CM 1.01 1.98 1 0.75
CNRM CNRM-CM5 3.32 1.01 3.28 1.97 5 0.74 0.12
CSIRO-BOM ACCESS1-0 4.26 1.09 3.90 1.77 1 0.70
CSIRO-BOM ACCESS1-3 3.97 1.09 3.63 1.60 1 0.79
CSIRO CSIRO-Mk3-6-0 4.76 1.09 4.36 1.69 10 0.68 0.08
INM inmcm4 1.48 0.72 2.05 1.29 1 0.42
IPSL IPSL-CM5A-LR 3.13 0.77 4.05 1.97 4 0.98 0.08
IPSL IPSL-CM5A-MR 0.54 1.98 1 0.93
IPSL IPSL-CM5B-LR 1.43 0.54 2.64 1.44 1 0.58
MIROC MIROC-ESM 2.58 0.54 4.75 2.01 1 0.70
MIROC MIROC5 1.47 0.54 2.70 1.47 3 0.73 0.08
MOHC HadGEM2-ES 2.52 0.54 4.64 2.43 4 0.95 0.14
MPI-M MPI-ESM-LR 5.48 1.49 3.66 2.01 3 0.77 0.04
MPI-M MPI-ESM-MR 2.74 0.78 3.51 2.03 1 0.84
MRI MRI-CGCM3 2.04 0.78 2.61 1.52 1 0.30
NASA-GISS GISS-E2-H 1.89 0.78 2.43 1.78 5 0.78 0.08
NASA-GISS GISS-E2-R 2.18 0.96 2.28 1.48 5 0.64 0.11
NCC NorESM1-ME 1.56 1.54 1 0.66
NCC NorESM1-M 4.57 1.56 2.93 1.39 1 0.66
NOAA-GFDL GFDL-CM3 2.45 0.61 4.03 1.76 1 1.08
NOAA-GFDL GFDL-ESM2G 1.42 0.61 2.34 1.21 1 0.71
NOAA-GFDL GFDL-ESM2M 1.49 0.61 2.46 1.37 1 0.63
NSF-DOE-NCAR CESM1-BGC 0.61 1.71 1 0.86
NSF-DOE-NCAR CESM1-CAM5 1.09 2.29 3 0.78 0.07

Mean 2.98 0.90 3.30 1.80 2.3 0.78 0.08
SD 0.24 0.31 0.79 0.34 2.1 0.18 0.03
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Table A.2: Fitted parameters two-layer model for 34 CMIP6 models. Equilibrium climate sen-
sitivity (ECS), climate feedback parameter λ, radiative forcing at doubling of CO2 F2×, upper
ocean/land/atmosphere heat capacity C, deep ocean heat capacity C0, the heat exchange
parameter γ, the fast time scale τf , and the slow time scale τs.

Model ECS λ F2× C C0 γ τf τs

AWI-CM-1-1-MR 3.13 1.21 3.80 6.34 51.4 0.55 3.56 138.1
BCC-CSM2-MR 3.02 1.03 3.11 7.16 74.1 0.78 3.88 169.7
BCC-ESM1 3.34 0.94 3.12 6.84 96.2 0.66 4.22 250.6
CAMS-CSM1-0 2.30 1.76 4.05 7.79 52.9 0.64 3.21 114.1
FGOALS-f3-L 3.00 1.35 4.04 7.16 71.0 0.71 3.44 154.3
CanESM5 5.66 0.64 3.61 6.69 73.9 0.55 5.54 255.9
CNRM-CM6-1 4.90 0.73 3.59 6.20 111.1 0.58 4.69 348.7
CNRM-ESM2-1 4.75 0.64 3.03 6.39 114.3 0.56 5.28 388.7
ACCESS-CM2 4.70 0.71 3.34 6.98 86.9 0.60 5.23 271.5
ACCESS-ESM1-5 3.86 0.74 2.85 6.31 84.2 0.72 4.24 234.9
E3SM-1-0 5.31 0.63 3.34 6.83 39.7 0.43 6.29 160.6
EC-Earth3-Veg 4.29 0.80 3.42 6.12 38.4 0.52 4.51 124.5
EC-Earth3 4.18 0.81 3.40 6.58 39.8 0.50 4.90 132.4
INM-CM4-8 1.83 1.48 2.71 4.39 27.9 0.80 1.89 54.8
INM-CM5-0 1.91 1.55 2.97 6.85 45.2 0.57 3.19 109.6
IPSL-CM6A-LR 4.53 0.77 3.49 6.37 58.9 0.47 5.06 205.5
MIROC6 2.56 1.46 3.75 7.48 171.6 0.66 3.51 378.7
HadGEM3-GC31-LL 5.55 0.62 3.45 6.77 72.4 0.55 5.64 252.6
HadGEM3-GC31-MM 5.44 0.63 3.44 7.10 70.4 0.65 5.40 225.7
UKESM1-0-LL 5.37 0.67 3.61 6.27 75.0 0.54 5.08 257.4
MPI-ESM1-2-HR 2.95 1.25 3.70 6.46 81.1 0.72 3.23 178.7
MRI-ESM2-0 3.15 1.07 3.36 5.72 89.7 1.08 2.62 169.5
GISS-E2-1-G 2.71 1.44 3.91 5.44 142.3 0.88 2.33 261.5
GISS-E2-1-H 3.08 1.18 3.62 7.23 82.5 0.66 3.89 197.4
GISS-E2-2-G 2.40 1.58 3.79 7.78 908.6 0.51 3.71 2340.9
CESM2-WACCM 4.71 0.69 3.26 5.88 79.4 0.85 3.73 212.9
CESM2 5.22 0.64 3.34 5.93 72.2 0.84 3.91 204.3
NorESM2-LM 2.56 1.33 3.42 2.94 100.6 1.09 1.21 168.5
GFDL-CM4 3.91 0.80 3.15 4.87 80.3 0.72 3.15 214.4
GFDL-ESM4 2.66 1.35 3.58 7.17 125.8 0.62 3.63 298.7
NESM3 4.69 0.82 3.85 4.93 98.4 0.48 3.77 328.6
SAM0-UNICON 2.83 1.06 3.01 3.26 21.5 0.75 1.75 50.4
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Table A.3: Fitted parameters two-layer model with ocean efficacy for 34 CMIP6 models. Values
were determined following the algorithm described in Geoffroy et al. (2013a).

Model ECS λ F2× C C0 γ τf τs ε

AWI-CM-1-1-MR 3.28 1.27 4.17 7.03 51.35 0.55 3.65 177.07 1.33
BCC-CSM2-MR 3.19 1.07 3.42 7.95 74.09 0.78 3.97 205.55 1.26
BCC-ESM1 3.63 0.93 3.39 7.46 96.15 0.66 4.27 323.42 1.29
CAMS-CSM1-0 2.38 1.86 4.43 8.67 52.86 0.64 3.32 146.40 1.33
FGOALS-f3-L 3.29 1.42 4.68 8.46 70.97 0.71 3.57 230.34 1.56
CanESM5 5.77 0.66 3.80 6.83 75.11 0.55 5.40 274.38 1.08
CNRM-CM6-1 5.08 0.73 3.69 6.39 111.14 0.58 4.70 385.93 1.10
CNRM-ESM2-1 4.40 0.65 2.87 6.04 114.27 0.56 5.26 315.70 0.82
ACCESS-CM2 5.56 0.68 3.79 7.95 86.93 0.60 5.29 410.60 1.48
ACCESS-ESM1-5 4.76 0.73 3.46 7.77 84.18 0.72 4.38 391.60 1.66
E3SM-1-0 5.83 0.63 3.68 7.57 39.65 0.43 6.44 222.54 1.41
EC-Earth3-Veg 4.57 0.85 3.89 7.04 38.38 0.52 4.67 162.52 1.41
EC-Earth3 4.41 0.85 3.76 7.34 39.84 0.50 5.03 167.79 1.34
INM-CM4-8 1.85 1.67 3.10 5.35 27.89 0.80 2.08 61.91 1.28
INM-CM5-0 1.98 1.63 3.22 7.58 45.23 0.57 3.31 140.28 1.31
IPSL-CM6A-LR 4.91 0.77 3.79 6.95 58.95 0.47 5.12 271.14 1.33
MIROC6 2.70 1.44 3.87 7.73 171.58 0.66 3.51 458.47 1.18
HadGEM3-GC31-LL 6.00 0.62 3.71 7.29 72.38 0.55 5.69 310.24 1.23
HadGEM3-GC31-MM 5.64 0.64 3.59 7.45 70.44 0.65 5.44 249.61 1.12
UKESM1-0-LL 5.65 0.67 3.80 6.61 75.96 0.54 5.11 297.04 1.16
MPI-ESM1-2-HR 3.21 1.33 4.26 7.55 81.08 0.72 3.32 247.80 1.47
MRI-ESM2-0 3.33 1.18 3.94 6.95 89.72 1.08 2.76 202.70 1.32
GISS-E2-1-G 2.76 1.46 4.02 5.64 142.31 0.88 2.35 278.99 1.07
GISS-E2-1-H 3.19 1.19 3.80 7.62 82.46 0.66 3.93 225.62 1.16
GISS-E2-2-G 2.08 1.79 3.72 7.65 908.63 0.51 3.71 969.30 0.50
CESM2-WACCM 5.61 0.73 4.08 7.54 79.42 0.85 3.92 321.55 1.60
CESM2 6.44 0.67 4.30 7.86 72.19 0.84 4.15 331.02 1.71
NorESM2-LM 2.95 1.69 4.98 4.47 100.55 1.09 1.29 261.79 1.93
GFDL-CM4 4.84 0.85 4.10 6.50 80.33 0.72 3.31 372.34 1.84
GFDL-ESM4 2.73 1.35 3.67 7.36 125.75 0.62 3.63 332.29 1.11
NESM3 4.69 0.82 3.85 4.93 98.38 0.48 3.77 329.87 1.00
SAM0-UNICON 2.84 1.12 3.19 3.31 21.53 0.75 1.63 49.86 1.09
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H.-O., Roberts, D., Skea, J., Shukla, P., Pirani, A., Moufouma-Okia, W., Péan, C.,
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Matthews, J., Chen, Y., Zhou, X., Gomis, M., Lonnoy, E., Maycock, T., Tignor, M.,
, and Waterfield, T., editors, Global Warming of 1.5°C. An IPCC Special Report on
the impacts of global warming of 1.5°C above pre-industrial levels and related global
greenhouse gas emission pathways and in the context of strengthening the global
response to the threat of climate change, sustainable development, and efforts to
eradicate poverty.

Rohde, R., Muller, R., Jacobsen, R., Perlmutter, S., and Mosher, S. (2013). Berke-
ley Earth Temperature Averaging Process. Geoinformatics & Geostatistics: An
Overview, 1(2).

Ruelle, D. (1998). General linear response formula in statistical mechanics, and
the fluctuation-dissipation theorem far from equilibrium. Physics Letters A, 245(3-
4):220–224.

Ruelle, D. (2009). A review of linear response theory for general differentiable dynam-
ical systems. Nonlinearity, 22(4):855–870.

Rugenstein, M., Bloch-Johnson, J., Gregory, J., Mauritsen, T., Li, C., Frölicher, T.,
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