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Abstract. Ensembles of predictors have been generally found to have
better performance than single predictors. Although diversity is widely
thought to be an important factor in building successful ensembles, there
have been contradictory results in the literature regarding the influence of
diversity on the generalisation error. Fundamental to this may be the way
diversity itself is defined. We present two new diversity measures, based
on the idea of ambiguity, obtained from the bias-variance decomposition
by using the cross-entropy error or the hinge-loss. If random sampling
is used to select patterns on which ensemble members are trained, we
find that generalisation error is negatively correlated with diversity at
high sampling rates; conversely generalisation error is positively corre-
lated with diversity when the sampling rate is low and the diversity high.
We use evolutionary optimisers to select the subsets of patterns for pre-
dictor training by maximising these diversity measures on training data.
Evaluation of their generalisation performance on a range of classifica-
tion datasets from the literature shows that the ensembles obtained by
maximising the cross-entropy diversity measure generalise well, enhanc-
ing the performance of small ensembles. Contrary to expectation, we find
that there is no correlation between whether a pattern is selected and its
proximity to the decision boundary.
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1 Introduction

A principal concern of supervised machine learning is to ensure a predictor
demonstrates good generalisation. A predictor is considered to have the ability
to generalise, if it has a good performance in predicting on unseen data drawn
from the same process that it was trained on [1,2]. Ensembles are collections of
predictors, each of which is trained on a different subset of patterns or features.
Some ensemble methods such as bagging [3] or boosting [4] have been seen to
be very successful in pattern classification tasks [5], and ensembles have been
proven in general to predict better than a single predictor [6, 7].

In this paper we consider classification of patterns xn, n = 1, . . . , N into
two classes, the positive and the negative class. Each of the M members of the
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ensemble yields a score yin ≡ yi(xn), i = 1, . . . ,M indicating how likely it is that
xn belongs to the positive class, and the ensemble score Yn ≡ Y (xn), which may
be converted to a decision by thresholding is, in general, the weighted average
of the constituent predictor scores [8]:

Yn ≡ Y (xn) =

M∑
i=1

ciyin (1)

where ci are the non-negative weights assigned to the constituent ensemble mem-
bers,

∑M
i ci = 1. Here we assume throughout that the ensemble members carry

equal weight so that ci = 1/M for all i. When the constituent classifiers pro-
duce a hard decision and the weights are equal this amounts to the often used
majority voting.

Various methods for assigning the classifier weights have been developed
in [9–12]. Linear combinations have been mathematically investigated in [13,
14], together with nonlinear methods utilising rank-based information in [15],
belief-based methods in [16–18] and voting schemes in [19, 20]. Here, however,
we assume that the predictors are equally weighted and focus on the choice of
patterns on which the ensemble members are trained.

Clearly, an accurate ensemble requires accurate members. However, Krogh
and Vedelsby [21] have proven that an ensemble with good generalisation perfor-
mance consists of members which disagree in their predictions [22]. As a result,
diversity and accuracy are key factors in building successful ensembles.

Although the role of diversity has long been recognised, many ways of quanti-
fying the diversity of an ensemble have been proposed. Kuncheva and Whitaker
[23] empirically compared different diversity measures in order to assess the im-
pact that diversity has on an ensemble’s generalisation performance. However,
their results could not support the influence of diversity on the overall per-
formance of the ensembles. This aspect was partially explained in [24], which
showed that different diversity measures have different degrees of correlation
with generalisation error. It was also shown that there tends only to be high
(negative) correlation between diversity and generalisation error when diversity
is low and generalisation error is high; as diversity increases the correlation with
generalisation error decreases [24]. We explore this aspect in more detail below.

In [21] Krogh and Vedelsby introduced a new diversity measure based on the
ambiguity decomposition of regression ensembles and the bias-variance decom-
position. The ambiguity term is obtained by subtracting the ensemble error from
the average error of the predictors. Since the ambiguity is necessarily positive,
this property shows the usefulness of the ensembles, since the ensemble error is
lower than the average error of the classifiers. The ambiguity measures how much
the predictions of the ensemble members differ from the ensemble prediction and
as a result can be considered a type of diversity . Chen [24] defined another am-
biguity measure in a similar fashion as to [21], but for classifiers and using the
0-1 loss. In his work, Chen demonstrated that out of all the diversity measures
tested (Q-statistics, Kappa statistics, Correlation coefficient, Disagreement, En-
tropy, Kohavi-Wolpert variance, the measure of difficulty, generalised diversity,
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coincident failure diversity), the ambiguity measure had the highest correlation
with the generalisation error [24]. In this paper we use the term ambiguity to
refer to a measure of ensemble diversity.

Here we further explore the connection between ensemble diversity and gen-
eralisation error. Following [21, 24], we define and characterise new ambiguity
measures appropriate for the log loss and hinge loss. We investigate empirically
the relationship between the ambiguity and the generalisation error. This leads
to an evolutionary algorithm for the direct maximisation of the ensemble ambi-
guity, and thus generalisation error, by optimisation of the patterns that each
ensemble member is trained on.

The principal contributions of our work are as follows:

1. the derivation of a cross-entropy-based ambiguity measure for ensemble di-
versity;

2. the derivation of a hinge-loss-based ambiguity measure for ensemble diver-
sity;

3. the empirical assessment of the ambiguity/generalisation error trade-off on a
number of widely used classification data sets, using decision trees ensembles;

4. the exploration of the effect of ensemble sampling rates on this trade-off;

5. the exploration of the direct maximisation of ensemble ambiguity via an
evolutionary optimisation of the training patterns to maximise generalisation
performance.

In the next section we present different diversity measures for ensembles
using log and hinge losses. Section 4 presents an evolutionary algorithm for the
optimisation of the cross-entropy diversity. Section 5 illustrates the performance
of the evolutionary optimiser on a range of classification problems. Section 6
presents the conclusions and the future work.

2 Ambiguity measures

Extending the idea of quantifying diversity in regression ensembles [21], Chen [24]
defined a new classifier ensemble diversity measure in terms of how diverse the
outputs of the constituent classifiers are compared with the ensemble prediction.
Following this line, we define new diversity measures as the difference between
the average error of the individual classifiers forming the ensemble and the en-
semble error; that is we define the ambiguity through the simple relation:

Ensemble error = Average error − Ambiguity (2)

In line with [24], we call these measures of diversity ambiguity measures.

We first review the ambiguity for the 0-1 loss [24], before defining new am-
biguities for the log loss and hinge loss.
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2.1 Ambiguity measure for 0-1 loss

Here we assume that the targets, the true classes against which the classifiers
are trained, are tn ∈ {−1,+1}, n = 1, . . . , N . Then the ensemble prediction for
patterns xn is

Yn = sign

(
M∑
i=1

ciyi(xn)

)
(3)

and the error or loss for the ensemble classifying xn is thus

L01(Yn · tn) =

{
0 if Yn · tn ≥ 0

1 if Yn · tn < 0.
(4)

We denote the outputs of the ensemble members when classifying patterns xn

by Yn = {yin = yi(xn)}Mi=1. Then, using (2), the corresponding ambiguity in the
ensemble when classifying a single (xn, tn) pair is thus [24]:

amb01(Yn) =
1

2

M∑
i=1

(
1

M
Yn − ciyin)tn. (5)

The ambiguity of the ensemble for a dataset of N patterns is just the ambiguity
for each pattern averaged over the N patterns.

amb(Y) =
1

N

N∑
n=1

amb(Yn) (6)

for the 0-1 loss and the other losses which we consider. It can be shown that
(see Supplementary Material) the 0-1 ambiguity is zero if and only if all the
ensemble members agree on the classification of a pattern, that is amb01(Yn) =
0⇔ yin = yjn ∀1 ≤ i, j ≤M . We note, however, that amb01(Yn) < 0 if Yn 6= tn
so that the ambiguity is negative if the ensemble classification is incorrect.

2.2 Ambiguity measure for log loss

The cross-entropy error or log loss measures the discrepancy between the output
of the classifier and the true class when the classifier produces an output between
0 and 1 which may be interpreted as a posterior probability; for convenience we
denote the classes as 0 and 1, tn ∈ {0, 1}. We can express the loss for the ith
classifier on the nth pattern as:

Llog(yin, tn) = − [tn log(yin) + (1− tn) log(1− yin)] (7)

where yin is the probability prediction of the ith classifier for the nth pattern
belonging to the positive class. The error made by the ensemble for the nth
pattern is therefore quantified as:

Llog(Yn, tn) = −[tn log(Yn) + (1− tn) log(1− Yn)]. (8)
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Again defining the ambiguity as the difference between the average loss of each
member of the ensemble and the ensemble loss we obtain the cross-entropy am-
biguity for a single pattern:

ambCE(Yn) =

M∑
i=1

ciLlog(yin, tn)− Llog(Yn, tn). (9)

Using equations (7), (8) and (9), we obtain:

ambCE(Yn) , tn log

(∑M
i=1 ciyin∏M
i=1 y

ci
in

)
+ (1− tn) log

(∑M
i=1 ci(1− yin)∏M
i=1(1− yin)ci

)
. (10)

Note that for any tn only one of the terms will not be zero, so ambCE(Yn) is
the logarithm of the ratio between the arithmetic and geometric means of the
proximity of the classifiers’ outputs to the desired targets. The cross entropy
ambiguity for many patterns is just the ambiguity averaged over patterns (6).

We note Woodhouse [25] shows that the ratio of the arithmetic mean to
the geometric mean is equivalent to a cross-entropy quantifying the amount of
information added in an image processing problem. In addition in [26] the ratio
of the arithmetic to geometric mean is used to measure homogeneity.

Using the inequality between arithmetic and geometric means, namely that
the arithmetic mean is greater than or equal to the geometric mean, it can be
seen that ambCE(Yn) ≥ 0 for any input pattern. It can also be shown that
ambCE(Yn) = 0 if and only if all the constituent classifiers agree, yin = yjn
∀1 ≤ i, j ≤M .

2.3 Ambiguity measure for hinge loss

Following the same route, an ambiguity measure can be obtained appropriate
for the hinge loss. The hinge-loss is defined as:

LH(yin, tn) = max(0, 1− tnyin). (11)

Here yin is the ith classifier score for the nth pattern and tn is the target, where
it is convenient to label the targets as {±1}. The ambiguity measure obtained
for the hinge loss is obtained by straightforward substitution, resulting in the
following:

ambHL(Yn) =

M∑
i=1

ci max(0, 1− tnyin)−max

(
0,

M∑
i=1

ci(1− tnyin)

)
. (12)

As for ambCE , the hinge loss ambiguity is non-negative: ambHL(Y) ≥ 0 ∀Y.
However, while it is easy to verify that if all the component classifiers have the
same score (yin = yjn for all 1 ≤ i, j ≤ M) then ambHL(Yn) = 0, the converse
is not true. This occurs when

1− tnyin ≥ 0 ∀i ∈ {1, . . . ,M}. (13)
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Inequality (13) can be satisfied when one of the component classifiers predicts
incorrectly the class (∃i ∈ {1, . . . ,M} tnyin < 0), whereas the others classify
correctly the class, but with a score in absolute value lower or equal to 1 (∀j ∈
{1, . . . ,M}, j 6= i, tnyjn > 0 and |yjn| ≤ 1). Proofs for the formulae of the
ambiguity measures and their properties are presented in the Supplementary
Material.

3 Correlation between ambiguity and generalisation error

Previous studies have investigated the relationship between diversity (measured
in a variety of ways) and the error/loss [23, 24]. A negative correlation between
generalisation error and ambiguity has been reported [24]. However, it is clear
that this cannot be true across the entire range of ambiguity because it would
imply that choosing the ensemble with the maximum diversity would minimise
the generalisation error, but a maximally diverse ensemble (with no predictive
power) could be constructed from learners that make random predictions. We
therefore empirically investigate the relationship between the ambiguity mea-
sured on a training data set and the error/loss on a test data set (approximating
the generalisation error).

Bagging was used in order to control the diversity by sampling different
independent samples to train the classifiers in the ensemble. We use 30 sampling
rates in the range [0.01, 1]. For each sampling rate an ensemble of decision trees,
forming a random forest [3] was trained on the sampled patterns. From the
2000 available observations, 1000 were drawn at random and used for training,
while the remaining 1000 for evaluating the generalisation error; the roles of the
training and testing sets were then swapped and the corresponding ambiguities
and losses calculated. This process was repeated 50 times and the ambiguities
and errors averaged over the resulting 100 instances.

We used the GMM5 dataset [27] which comprises two-dimensional features
generated by a Gaussian mixture model with 5 components (an extension of the
4-component model of [28]) allowing a large quantity of data to be synthesised
and the Bayes error rate to be calculated exactly.

Figure 1 shows the variation of the generalisation error with the diversity of
the ensemble measured on the training dataset for each of the ambiguity mea-
sures discussed. The first column of panels in Figure 1 corresponds to a small
ensemble of M = 5 trees the second column shows the variation for a large
ensemble of M = 100 trees. Although there is considerable variation between
the curves for the different ambiguity measures, they all display common char-
acteristics. At high sampling rates the ambiguity and test error are negatively
correlated, as also reported by [24]. In this regime, as the sampling rate in-
creases member classifiers are trained on increasingly similar views of the data
and therefore diversity decreases. Since the average error per classifier is approx-
imately constant (because adding more data does not appreciably increase their
accuracy), equation (2) shows that the ensemble error increases.
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Fig. 1. Curves of the three types of ambiguities versus the corresponding losses that
were derived from the ambiguity measures detailed in Section 2. The test error versus
the training ambiguity was plotted for different sampling rates for ensembles formed
of 5 trees (left column) and 100 tress (right column) for the gmm5test dataset. The
first row shows the behaviour of the test cross entropy versus the training cross en-
tropy ambiguity, in the second row the test 0-1 loss versus its corresponding training
ambiguity is plotted, respectively the behaviour of the hinge loss is presented in the
third row of panels. The optimal sampling rate (r) is indicated in red.

Decreasing the sampling rate means that the members of the ensemble are
trained on different views of the data, leading to increasing diversity/ambiguity
and therefore a smaller ensemble error c.f. (2). However, as the sampling rate
is reduced to even lower levels, each component classifier is trained on a very
small number of patterns and therefore starts to become inaccurate. In (2) the
average error increases more rapidly than the diversity and the result is that the
ensemble error begins to rise again. Unfortunately, determining the sampling rate
that yields the best generalisation error is not straightforward or susceptible to
a priori analysis. In section 4 we therefore describe an evolutionary algorithm
to determine this rate.

The same pattern is apparent for both small (M = 5, Figure 1 left column)
and large (M = 100, Figure 1 right column) ensembles, although the larger
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ensemble achieves a lower generalisation error. This generalisation error is very
close to the Bayes error (0.11 misclassification rate) for this data set. It might
be expected that the optimum sampling rate would be at least 1/M , so that
each classifier in the ensemble is trained on N/M examples and each example is
used on average in the training of at least one classifier. However, as the panels
in Figure 1, the optimum sampling rate is well below 1/M , meaning that some
of the data is not used at all by the ensemble. This indicates the significant role
played by diversity: to achieve best generalisation performance it is better to
ensure diversity by exposing classifiers to very different views of the data than
to better train them by providing more data.

Although only shown here for the GMM5 dataset we emphasise that very
similar relationships between ambiguity and generalisation error were observed
on a number of additional datasets (Table 1). We also repeated the experiments
using sampling with replacement, but bagging without replacement in general
yielded lower generalisation errors.

We also investigated the variation of generalisation error with the number M
of classifiers forming the ensemble. This was achieved by generating ensembles
with 2 to 100 members and training them, as before, with samples at a given rate.
This was repeated 20 times for each ensemble size and sampling rate. The average
(test) cross entropy error plotted against size of ensemble and sampling rate is
shown in the panel of Figure 2 for the Sonar data set (Table 1, [29, 30]). This
figure plainly shows the benefit of a large ensemble: the optimum generalisation
error with a large ensemble is obtained over a wide range of sampling rates.
The average training cross entropy ambiguity is plotted against size of ensemble
and sampling rate in the right panel of Figure 2. These two figures together
show the relationship between generalisation error and training ambiguity; high
ambiguities yield lower test errors, provided the sampling rate is not too small.
However, these two plots show the difficulty of predicting from the training
ambiguity the optimal rate that will yield the lowest generalisation error.

4 An Evolutionary Algorithm to Optimise Ambiguity

As we have shown, provided that the sampling rate is not too low, the general-
isation error is reduced for ensembles with high diversity. We therefore use an
evolutionary algorithm to maximise the ambiguity of an ensemble of classifiers
by selecting the patterns, that is the particular training examples, on which the
constituent optimisers are trained . Pseudocode for the algorithm is presented
in Algorithm 1.

We use ensembles of M classifiers, each of which is trained on a fraction ρ of
the N available training patterns. In common with standard bagging ensembles,
each of the classifiers is trained on all the available features. The patterns on
which each classifier is trained is represented by a string of N 0s and 1s, where
a 1 indicates that the corresponding pattern is used to train the classifier, so
that there are exactly [ρN ] 1s in each string and [·] indicates rounding to the
nearest integer. The strings representing the training patterns are initialised
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Fig. 2. The figure in the left of the panel represents the cross entropy generalisation
error versus the size of the ensemble and the sampling rate. On the right hand side the
training ambiguity derived from the cross entropy versus the size of the ensemble and
the sampling rate is plotted. The plots were obtained for the Sonar data.

using stratified random sampling without replacement so that the class ratios
are preserved.

A single ensemble is evolved through mutation. Between 1 and M strings are
mutated in one of two ways, chosen with equal probability (line 3 in Algorithm 1).
Then a type of mutation is chosen with equal probability (line 5):

1. A proportion up to N
2 of 1s and 0s are flipped at random. This is performed

in a stratified manner to preserve the class ratio and so as to maintain the
sampling rate as ρ (line 6).

2. The current string is discarded and replaced with a new string chosen in the
same way as the initialisation, preserving the class ratio and the sampling
rate (line 8).

Following mutation the Npop members with the largest ambiguity are retained
to proceed into the next generation. In case of equality, the forest with the lower
error will be preferred (line 10).

5 Experiments

We ran our algorithm on six standard classification datasets from the UCI
Machine Learning Repository: Australian, Cancer, Liver, Heart, Sonar, Iono-
sphere [31] and an additional synthetic dataset GMM5 [28, 32]. Table 1 sum-
marises the dataset characteristics.

Since the result shown in Fig. 2 show that for large ensembles, the generali-
sation error is small for sufficiently low sampling rates, we concentrate on small
ensembles. We used ensembles of M = 5 trees, which were implemented by using
the DecisionTreeClassifier function from the sklearn library [33] in Python
and the ambiguity measure ambCE(·) derived from the log loss (10).
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Algorithm 1 Evolutionary algorithm for evolving a diverse ensemble

Input: X = {xn}Nn=1 . training data
Input: t = {tn}Nn=1 . targets
Input: M . number of trees
Input: g . number of generations
Input: ρ. . sampling rate
Output: T . evolved forest

1: T ← initialize(X, t,M) . generate a random ensemble/forest
2: for i = 1→ g do
3: m← random(1,M) . choose m trees to be changed
4: indices← indicesToChange(M,m) . choose the indices of the m trees
5: if U(0, 1) < 0.5 then
6: T ′ ← mutate(T , indices, ρ) . mutation type 1
7: else
8: T ′ ← genNewTrees(T , indices, ρ) . mutation type 2
9: end if

10: if (ambCE(T ′) > ambCE(T ))or

(ambCE(T ′) = ambCE(T )andLlog(T ′, t) < Llog(T , t)) then

11: T ← T ′

12: end if
13: end for
14: return T

Table 1. Dataset characteristics

Datasets Patterns Features

GMM5 1000 2
Australian 690 14

Cancer 569 10
Liver 345 6
Heart 270 75
Sonar 208 60

Ionosphere 351 34
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Fig. 3. Example results on the Liver dataset, using an evolutionary algorithm to opti-
mise the cross-entropy ambiguity.

Evolutionary algorithm Data was partitioned into the following stratified
parts as follows: one half for the test data, a quarter of the data for the training
and the remaining quarter for the validation data. The evolutionary algorithm
was run using the training data and the resulting ensemble evaluated on the val-
idation data. The forest with the sampling rate that yields the lowest validation
error was evaluated on the test data to assess the algorithm’s performance.

Figure 3 shows example results obtained on the Liver dataset. The optimi-
sation was repeated 30 times for each sampling rate and the figure shows the
mean and interquartile range of the cross entropy generalisation error.

We compared the ensemble’s validation error for the initial generation with
the optimised ensemble’s validation error, for the following sampling rates: 0.05,
0.1, 0.2, 0.3, 0.5. The green dashed line in Figure 3 corresponds to the mean of
the 30 runs for the initial population, whereas the purple dashed line represents
the mean for the final population. Shading indicates the interquartile range. The
blue box plot corresponds to the test error for the initial populations, whereas the
red box plots represents the test error for the corresponding final populations.
These box plots were generated just for the sampling rate that yielded the lowest
average validation error.

We also performed non-parametric statistical tests to assess the significance
of the results. We used the Wilcoxon signed rank two-tailed test, p = 0.05.
In Table 2 the mean test error of the initial ensemble for the sampling rate
that yielded the smallest validation error is shown, along with the mean test
error of the corresponding final evolved ensemble. The values in the parenthesis
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Table 2. Results on datasets, mean over 30 runs given (lower and upper quartile
in brackets). Bold mean value indicates significant difference (Wilcoxon signed rank
two-tailed test, p = 0.05).

Datasets Initial cross entropy Final cross entropy

GMM5 1.32 (0.82, 1.75) 0.73 (0.6003, 0.852)

Australian 1.35 (1.11, 1.52) 1.26 (0.92, 1.39)

Cancer 0.63 (0.35, 0.74) 0.421 (0.32, 0.45)

Liver 2.41 (1.91, 2.92) 1.37 (0.98, 1.61)

Heart 1.76 (1.195, 2.17) 1.32 (0.94, 1.55 )

Sonar 2.19 (1.52, 2.953) 1.21 (0.91, 1.52)

Ionosphere 1.32 (0.97, 1.57) 1.01 (0.83, 1.195)

correspond to the 25th quartile and 75th quartiles. These results show that, in
general, the EA performs significantly better than the random sampling from
the initial population, and never worse. The ambiguity optimised ensembles have
lower test errors on average than the initial ensemble across all test problems.

What patterns are selected? In our evolutionary algorithm we evolved the
patterns that were selected in each tree. As such it would be interesting to see
which patterns were actually chosen, and if they have any particular properties.
In order to gain an understanding of which are the selected patterns, we analyse
a two dimensional case.

A preliminary experiment was to plot the evolved patterns from the final gen-
erations of the evolutionary algorithm with their frequency of appearance. We
performed this experiment just for the GMM5 dataset, because the distribution
of these data are known and we have access to the posterior probabilities. We
characterised the patterns according to their distance from the decision bound-
ary. In order to determine how far a pattern is from the decision boundary,
we calculated the maximum posterior probability of the pattern belonging to
each of the two classes. The patterns belonging to the decision boundary have
a minimum maximum posterior probability of 0.5. We averaged the number of
appearances for the patterns from the final generation throughout the 30 runs.
On the x-axis of Figure 4 the maximum of the posterior probability for both
classes for each pattern is represented in 20 bins. On the y-axis, the proportion
of occurrences is plotted. The green horizontal lines represent the medians of the
number of occurrences for the patterns belonging to each of the 20 bins. This
plot was obtained from the results of the evolutionary algorithm for the ρ = 0.1
sampling rate. Our results suggest that for this particular problem there is no
preference for choosing some patterns during the optimisation, and that there
is no correlation between whether a pattern is selected and its proximity to the
decision boundary. This is contrary to what might be expected a priori — that
is that points closer to the class boundary might be preferred as they give more
information for bracketing the boundary.
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Fig. 4. Frequency of patterns selected by the evolutionary algorithm at the final gen-
eration for the gmm5test dataset, for the 0.1 sampling rate. On the x-axis is the maxi-
mum posterior probability of a pattern belonging to each of the two classes. The y-axis
represents the average proportion each pattern was selected over the 30 runs of the
evolutionary algorithm. The values from the x-axis have been divided into 20 bins.
The green lines represent the medians of the number of occurrences of the patterns
belonging to each bin.

6 Conclusion

In this paper we introduced two ambiguity measures using the bias-variance
decomposition and the cross-entropy error or the hinge loss. Together with the
ambiguity corresponding to the 0-1 loss, we established the properties of these
new diversity measures. We evolved the training patterns of the classifiers in
order to maximise the ambiguity obtained from the cross-entropy (ambCE) and
our results show that the evolved ensemble generally has a better generalisation
error than the initial ensemble. Hence, our results support the influence that the
diversity has on minimising generalisation error. Also the ambiguity measure
obtained by using the cross-entropy error satisfies all the required properties
of a diversity measure (being always positive and being zero if and only if the
predictions of the classifiers are all the same). This property is not present in
the ambiguity obtained by using the 0-1 loss (see [24]), which we find can be
negative.
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Our results show that if random sampling is used to select patterns on which
ensemble members are trained, we find that generalisation error is negatively
correlated with diversity at high sampling rates; conversely generalisation error
is positively correlated with diversity when the sampling rate is low and the
diversity high.

Also, we found that there is no correlation between whether a pattern is
selected and its proximity to the decision boundary (at least for the problem we
considered where we had direct access to the posterior probabilities and therefore
could determine the ‘true’ decision boundary precisely).

Our experiments were based on random forests, therefore a possible extension
of our work would be to use other types of ensembles and classifiers. In addition,
other methods of inducing diversity, such as selection of features and different
models, could be investigated.

In our experiments the weights ci of the classifiers were equal, as a result our
future work will aim to optimise the weights of the classifiers in order to maximise
ambiguity, without compromising the average error. Also some patterns have
different ambiguities, so future work will focus on how to effectively select the
most ambiguous patterns.
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