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Abstract

Breast Conserving Surgery (BCS) in the treatment of breast cancer aims to
provide optimal oncological results, with minimal tissue excision to optimise
cosmetic outcome. Positive margins due to an inadequate resection occurs in
17% of UK patients undergoing BCS and prompts recommendation for further
tissue re-excision to reduce recurrence risk. A second operation causes patient
anxiety and significant healthcare costs. This issue could be resolved with
accurate intra-operative margin analysis (IMA) to enable excision of all cancerous
tissue at the index procedure. High wavenumber Raman Spectroscopy (HWN
RS) is a vibrational spectroscopy highly sensitive to changes in protein/lipid
environment and water content —biochemical differences found between tumour
and normal breast tissue. We proposed that HWN RS could be used to
differentiate between tumour and non-tumour breast tissue with a view to future
IMA.

This thesis presents the development of a Raman system to measure the HWN
region capable of accurately detecting changes in protein, lipid and water content,
in the presence of highly fluorescent surgical pigments such as blue dye that are
present in surgically excised specimens. We investigate the relationship between
changes in the HWN spectra with changes in water content in constructed breast
phantoms to mimic protein and lipid rich environments and biological tissue.
Human breast tissue of paired tumour and non-tumour samples were then
measured and analysed. We found that breast tumour tissue is a protein rich,
high water, low fat environment and that non-tumour is a low protein, fat rich
environment with a low water content, and this can be used to identify breast

cancer using HWN RS with excellent accuracy of over 90%.

This thesis demonstrates a HWN RS Raman system capable of differentiating
between tumour and non-tumour tissue in human breast tissue, and this has the

potential to provide IMA in BCS.
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CHAPTER 1: Background

1.1 Breast cancer

1.1.1 Incidence

Breast cancer is the most common cancer to affect women in the world and the
second most common cancer overall, accounting for 6.6% of all cancer deaths .
There is an incidence of 55,000 cases per year in the UK with a 1 in 8 lifetime
risk for women, accounting for 15% of all cancer diagnoses in the UK and over
11,000 deaths per year 2. This represents a significant burden to the NHS and a
major public health issue for the UK. Cancer survival in the UK lags behind many
other European countries, and an emphasis on earlier diagnosis and 5 other
priority areas was highlighted in the Cancer Strategy Implementation Plan 2015-
2020 to improve cancer survival, and demonstrates that cancer care remains a

priority for NHS England 3.

The incidence rate of breast cancer is rising and there is a much higher incidence
in high-income countries such as western Europe and the USA 4. This is
postulated to be due to the primary risk factors being difficult to modify, and
lifestyle risk factors becoming increasingly prevalent in Western lifestyle, such as
obesity, late age of first child and reduced fertility rate. The known protective
factors of breast cancer are breastfeeding — the relative risk decreases by 4.3%

for every 12 months of breastfeeding - and a moderate degree of physical activity
5

The risk factors associated with breast cancer are *:

Age — increasing age, however the rate doubles every 10 years until menopause
then the rate slows ©. Therefore, the largest proportion of breast cancer is in
women aged 45-69.

Geographical location — Higher incidence in western Europe and USA 4. Migrants
from a low risk area to a high risk area show the same incidence within one or
two generations demonstrating the significance of environmental factors 6, with a

corresponding change in breast cancer mortality .
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Timing of onset/cessation of menses — early age at menarche and later age at
menopause is associated with an increased risk of breast cancer

Reproduction — nulliparity, late age at first birth and having fewer children
increases the risk of breast cancer

Exogenous hormone intake — oral contraception use (particularly the combined
pill containing oestrogens) 8 and hormone replacement therapy

Nutrition — increased alcohol intake increases the risk of breast cancer
Cigarette Smoking — possible direct link to increased incidence, though it is not a
significant risk factor °

Anthropometry — increased weight, weight gain during adulthood and body fat
distribution

Breast density- dense breasts increase the risk of breast cancer. Although breast
density is affected by age and certain hormonal agents (such as tamoxifen and
HRT), the relative risk of breast cancer is increased four to fivefold in women with
high density breasts compared to those with low density breasts °.

Genetics —Being a carrier of the identified gene mutation BRCA 1 or 2 increases
risk of breast cancer 1, with a lifetime risk of 60-85% for BRCA1 carriers, and 50-
85% for BRCA 2 carriers °. 4-5% of breast cancer is due to inheritance of a high-
penetrance, autosomal dominant, cancer pre-disposing gene . Therefore,
certain family histories, even without identified gene mutations, may result in a

clinically higher risk requiring increased screening (Figure 1-1).

1.3.3 People without a personal history of breast cancer who meet the following criteria should be offered
referral to secondary care:

+ one first-degree female relative diagnosed with breast cancer at younger than age 40 years or
« one first-degree male relative diagnosed with breast cancer at any age or

« one first-degree relative with bilateral breast cancer where the first primary was diagnosed at
younger than age 50 years or

= two first-degree relatives, or one first-degree and one second-degree relative, diagnosed with
breast cancer at any age or

« one first-degree or second-degree relative diagnosed with breast cancer at any age and one first-
degree or second-degree relative diagnosed with ovarian cancer at any age (one of these should be
a first-degree relative) or

three first-degree or second-degree relatives diagnosed with breast cancer at any age. [2004]

Figure 1-1 Summary of NICE guidelines for those at greater risk of breast cancer based on Family
History.

Patients with a family history that fits these criteria should be referred to a secondary care family history
clinic for consideration of further investigation/surveillance *?
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Chapter 1

Although incidence is increasing, mortality rates have improved substantially over
the last 40 years. Survival at 1, 5 and 10 years has improved. At 10 years, survival
has risen from 40% in 1971-72 to 78 % for those patients diagnosed in 2010-11
(Figure 1-2). One reason for this is improved early diagnosis and the
establishment of the UK breast screening programme in 1987; even adjusting for
the lead time bias introduced by early detection, screen-detected cancers had a
substantial survival advantage compared to those that were symptom detected
13, Another reason is the substantial improvements in essentially all treatments
particularly radiotherapy, hormonal therapy, molecular profiling of cancers with
targeted treatments, and the advent of individualised treatments based on
genetic profiling. This rate of improved long term survival has not plateaued,

suggesting there is still room for improvement 4.

70
60
40
30
: I I I
0

1971-1972  1980-1981 1990-1991 2000-2001  2005-2006 2010-201

Net Survival (%)
4

=]

Period of Diagnosis

Figure 1-2. Graph showing Age-Standardised Ten-Year Net Survival, Women (Aged 15-99), England
and Wales, 1971-2011 .

There is an increase in net 10 year survival in those diagnosed with Breast Cancer. Credit — Cancer
Research UK 15

The cost of treating breast cancer in the USA in 2008 is estimated to be USD $20
— 100, 000 for a lifetime per patient cost of breast cancer 6. The cost to the whole
US healthcare economy is estimated to be USD 15-20 billion for the year 2001.
USD 16.5 billion is spent each year on breast cancer diagnosis and treatment,
and as it occurs in a young age group, there are economic factors such as lost

work productivity which increases the cost. The cost continues to rise as the
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incidence increases, and treatment (particularly new, targeted drug treatment)

gets more sophisticated leading to increased survivorship.

It can be seen that Breast cancer is an increasingly important public health issue,
with a large number of women being diagnosed with the disease and this is a
financially expensive disease for society. Improving efficiency of diagnosis and
reducing treatment costs whilst continuing to see a continuation in survivorship is

a priority for the NHS.

1.1.2 Anatomy of the breast

The mammary glands are modified sweat glands in the superficial fascia anterior
to the pectoral muscles and the anterior thoracic wall. The breast lies on the
underlying muscle separated by a layer of deep connective tissue that forms the
retromammary space. An overview of breast anatomy is demonstrated in Figure
1-3.

Surface Anatomy

Although there is a degree of variation in size, the breast is positioned on the
anterior thoracic wall between ribs Il and VI, overlying the pectoralis major
muscle. The breast extends superolaterally around the lower margin of pectoralis

major and enters the axilla.

Arterial supply and venous drainage 1/

The breast gains its blood supply from the vessels of the axillary artery (superior
thoracic, thoraco-acromial, lateral thoracic and subscapular arteries, medially
from branches of the internal thoracic artery and perforator vessels from the
thoracic wall from the second third and fourth intercostal arteries).

Venous drainage is via veins that mirror the arterial system, and drain to the
axillary, internal thoracic and intercostal veins. Innervation is from the anterior
and lateral cutaneous branches of the second to sixth intercostal nerves, the

nipple being innervated by the fourth intercostal nerve.

Lymphatic drainage
The lymphatic system is an extensive network of channels that drain the fluid

from body tissues lost from capillary beds during nutrient exchange processes
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Chapter 1

and deliver it back to the venous system 7. The lymph system is a major route of
spread of cancer from one body organ or space to another, and particularly in
breast cancer, the lymph system is often the first route of invasion, therefore the

anatomy of the lymph drainage is important in understanding breast cancer.

Lymphatic drainage of a breast is:
- 75% via lymphatic vessels draining laterally and superiorly into axillary
nodes
- The majority of the rest drain medially to parasternal nodes associated
with the internal mammary artery

- A minority drain via the lymphatics associated with the ribs 7

Internal thoracic artery

Pectoral branch of
thoracoacromial artery

Secretory lobules

Lateral thoracic artery _ (¢
\ Suspensory ligaments

Lateral axillary nodes 2 S/ . g Lactiferous ducts

Pectoral axillary nodes
Lactiferous sinuses

Axillary process Retromammary space

bosi Aral Parasternal nodes
Ly and

passes from lateral and superi;r
part of the breast into axilla

Mammary branches of
internal thoracic artery

Lymphatic and venous
drainage p from
of the breast parasternally

| part

Some lymphatic and drainag
may pass from inferior part of the
breast into the abdomen

Figure 1-3 Diagram showing the underlying structures of the breast, its anatomical relationships, the
arterial supply and venous and lymphatic drainage.

Lymphatic drainage is denoted by green arrows -note that Level | axillary lymph nodes are those defined
below Pectoralis Minor, Level Il underneath pectoralis minor, and Level Il any lymph nodes above pectoralis
minor. Reprinted from Gray’s Anatomy for Students, 4th Ed, Drake, Vigl and Mitchell, Thorax, Page No 133.,
Copyright (2020), with permission from Elsevier 17
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Breast composition

The anatomy of the human breast was originally described by Cooper in 1840
based on an extensive number of dissections and the majority of the concepts
remain unchanged 8. The breast is composed of fat, and a series of ducts and
associated secretory lobules that consist of clusters of alveoli containing
lactocytes that during lactation undergo widespread hypertrophy and hyperplasia
and synthesise breastmilk °. These lobules then converge to form ducts, the
number of which was originally thought to be around 22, but is now thought to be
a more modest 5-9 based on more recent ultrasound studies & 20, These
lactiferous ducts then open independently onto the nipple 7 (Figure 1-4). Adipose
tissue is between lobes rather than within lobules and a connective tissue stroma
surrounds the ducts and lobules, which condense in some regions to form the
Astley Cooper ligaments, which support the breast. There is significant variation
in the number and size of ducts and amount of glandular / fat tissue between

women, but is consistent between breasts within women 2°,

The development of the female breast is under hormonal control of progesterone
and prolactin during pubertal mammogenesis, and continues to respond to the
fluctuations of oestrogen and progesterone associated with the menstrual cycle
and ageing 2% Glandular tissue is abundant in lactation with a corresponding
increase and engorgement in breast size, whereas glandular tissue reduces with

age and fat increases, leading to softer and more pendulous breasts 22,
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Pectoralis major,

= !
Lactiferous ~~ / / {:j
sinuses p ‘ i

Lactiferous” y
ducts : i

Mammary glands’

Deep (pectoral) fascia

Figure 1-4 Diagram showing Cross — section of the female breast demonstrating the relationship of
fat, lobules and ducts.

The mammary glands that produce milk drain to lactiferous sinuses that discharge to the nipple during
lactation. Reprinted from Gray’'s Anatomy for Students, 4" Ed, Drake, Vigl and Mitchell, Thorax, Page No
133., Copyright (2020), with permission from Elsevier

1.1.3 Pathology of breast cancer

Although there are other cancers of the breast, this thesis mainly deals with the
most common types of ductal carcinoma (both in situ and invasive) and lobular
carcinoma. The most common location of tumours within the breast are upper
outer quadrant (50%), and central portion (20%) with 4% of women having

bilateral primary tumours.

1.1.3.1 Carcinogenesis

The development of cancer is a result of the dysregulation of the body’s normal
mechanisms for controlling cellular growth. Kumar et al. highlight three main
features that underpin carcinogenesis, and succinctly describe the fundamental

shared characteristics of cancers 23:
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. All cancers are to some degree due to DNA mutations, either induced

spontaneously or through environmental insult.
An example in breast cancer is the HER2/NEU protooncogene, that is

associated with a poor prognosis

. These genetic alterations are therefore heritable, and so family history is

an important risk factor of cancer
An example in breast cancer are the previously discussed BRCA

mutations

. Accumulation of mutations result in the hallmarks of cancer;

Self- sufficiency in growth signals and autonomous growth which is
unregulated

lack of response to inhibitory mechanisms of cell proliferation

evasion of cell death

limitless replicative potential

development of angiogenesis to sustain tumour growth

ability to invade local tissues and systemic spread (distant metastases)
reprogramming of metabolic pathways

ability to evade the immune system

In breast cancer this dysregulated growth arises from cells in the terminal lobular

unit.

Breast cancer is classified according to whether it is in situ and therefore has not

breached the basement membrane (which does not have the capacity to

metastasise) or it has breached the basement membrane (and has the capacity

to metastasise) (Figure 1-5).
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Normal Breast Duct DCIS

Invasive Breast Cancer

Figure 1-5 Diagram showing the difference between normal breast duct, DCIS and invasive breast
cancer.

The purple cells represent abnormal ‘cancerous’ cells, the orange cells the basement membrane. It is only
then the cancerous cells breach the basement membrane do the cells become a true cancer, with an ability
for distant spread.

Non invasive (in situ) Breast cancer

This can be either Ductal or Lobular in origin (DCIS or LCIS). DCIS is the
commonest form of non invasive cancer, it can be mass forming (though rare)
but is associated with mammographically detectable calcifications. It therefore
accounts for 3 — 4% of symptomatic cancers, and 17-25% of screen detected
cancers % 24, Histologically DCIS has a wide variation and is associated with
pleomorphic cells with areas of calcified necrotic debris or calcified secretary

material 2°.

DCIS is generally treated once it is detected, and the treatment is similar for
invasive breast cancer with surgical excision. The reason for treating DCIS is that
it is associated with a higher risk of developing invasive cancer with a cumulative
incidence of invasive breast cancer of 38% after 10 years 26, and there is a small
risk of metastasis, likely due to undiagnosed small foci of invasive cancer within
DCIS 25, The natural history of pure DCIS is unknown as it has traditionally been
treated; however one study looking at incompletely excised DCIS with no other
treatment demonstrated that low-grade DCIS may follow an indolent course 2.
The incidence (number of new cases per year) of such lesions has increased
considerably (particularly in older patients) with screening 28. Therefore, there are
concerns that breast abnormalities that may not be life limiting are being
overtreated , and the LORIS trial has been established to compare outcomes of
primary excision versus 10 year active surveillance in screen detected or

incidental low risk pure DCIS lesions 24.
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In comparison, LCIS is neither mass forming nor associated with calcifications
and is nearly always an incidental finding in biopsies. LCIS has a uniform
appearance with round nuclei in clusters within the lobules 2°. A diagnosis of LCIS
Is associated with an increased risk of breast cancer, and is managed only with

regular follow up ®.

Invasive Carcinoma

The majority of invasive cancers have no special type — and are referred to as
Invasive Ductal Carcinoma (IDC) and account for 85% of invasive breast cancer.
Histologically this is a heterogenous group of tumours ranging from well-
developed tubule formation and low grade nuclei to anaplastic cells 3. They are
commonly hard mass forming cancers, which replace normal fat tissue. There
are a number of special subtypes such as lobular (which account for 10% of
invasive breast cancer) and tubular, cribiform, papillary, mucinous and medullary
(accounting for the rest) ©.

Breast cancers are histologically graded Grade | (best prognosis) to Grade Il
(poorest prognosis), based on the type of tumour, mitotic rate and degree of

cellular differentiation.

Despite the wide range of histopathological characteristics which do have a
prognostic significance, these histological subtypes of invasive breast cancers
are diagnosed and treated in a similar may and will be considered as a single

group in the rest of this thesis.

1.1.3.2 Molecular Subtypes

Even before modern medicine, it was recognised that breast cancer was a
heterogenous disease as patients could present in very similar fashions, but
some progressed rapidly, whereas some patients stayed alive for many years (up
to 20 years) without treatment 26 2°. An increasingly clinically relevant pathological
distinction between breast cancers is receptor expression. If a cancer expresses
a particular receptor to a higher degree than its surrounding normal tissue, this
can act as a target for systemic treatment, able to treat local and metastatic

disease.
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Hormone receptors

The (0)Estrogen receptor (ER) is present in 75% of breast cancers and can be
targeted in treatment. The majority of ER positive tumours also present
progesterone receptors (PR), this cannot be targeted therapeutically, but has
prognostic significance. A tumour that is ER and PR positive, has a better

prognosis than a tumour that is ER positive, but PR negative.

Growth Factor Receptors

Growth factor receptors show increased expression and activation in breast
cancer. Tyrosine kinase receptors such as the Human Epidermal Growth Factor
(HER) receptors have been therapeutically targeted; HER2 being the most
relevant. A tumour that is HERZ2 positive is a biologically poor prognostic indicator,
but with modern treatments (Tranztuzamab) that target this receptor, this is no

longer necessarily the case °.

Genomic Profiling

Recent advances in genomic profiling of the molecular subtypes of breast cancer
are revealing that these biochemical differences in tumours also signify
underlying differences in cancer biology and can be subtyped to identify the
prognostic significance between groups and an ability to predict response to
therapies.

Gene expression profiling based on receptor expression has developed to show
four different prognostic groups 3! , Figure 1-6 shows the difference in survival

between the groups, which are:

Luminal A — High level of ER and a low proliferation rate. HER2 -ve.

Luminal B — Lower level of ER and a high proliferation rate. HER2 -ve.

HER2 +ve (or ERBB2+) — HER2+ve and either ER + or -

Basal like — ER -, PR -, HER2 -ve — so called ‘triple negative’ tumours and tend

to have the poorest prognosis.
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Figure 1-6. Kaplan Meier survival graph of overall survival for 72 patients with locally advanced
breast disease in a Norway cohort according to molecular subtype.
Reproduced from figure from original source 32 Copyright (2003) National Academy of Sciences

1.1.3.3 Other Prognostic factors

Alongside these molecular classifications of breast cancer, there are more
traditional prognostic factors which have been known about for decades:
Tumour size — the larger the tumour, the greater the risk of metastasis and a
worse prognosis 3.

Lymph node spread — The number of axillary lymph nodes involved with tumour.
The more lymph nodes, the worse the prognosis, with > 4 lymph nodes having a
particularly poor prognosis 34. This is a prognostic marker, rather than the simple
idea that all metastatic activity occurs through the ipsilateral lymph nodes,
exemplified by the fact that patients with node negative disease can still develop
metastatic disease 2°.

Histological grade- those with a Grade | tumour have a significantly better survival

than those with Grade 1l or Il tumours 36.

These factors can then be used to inform prognostic classification systems which
are used to guide treatment decisions. The commonest used methods are the
T(umour) N(ode) M(etastasis) staging, and the Nottingham Prognostic index
(NPI).
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The TNM classification is an evolving method of stratifying tumours. There is a
‘clinical’ stage which is based on pre- operative staging, and this can be modified
with the subsequent pathological diagnosis from the excised tumour, denoted by
a pre-script ‘p’. The TNM classification ascribes a number to each category, the
combination of which then stratifies the disease into a Stage grouping. A
modified, and simplified description of clinical TNM staging is described in Figure
1-7. A criticism of using this staging classification system is that it relies on clinical

measurements, which are inaccurate 6.

33



T(umour) Primary Tumour

Tis Carcinoma in situ e.g. DCIS

T1 Tumour <2 cm in greatest dimension

T2 Tumour 2-5 cm in greatest dimension

T3 Tumour >5cm in greatest dimension

Ta Tumour of any size with direct extension to chest wall or skin

N(odes),Regional Lymph nodes

No No regional lymph node metastasis
N1 Metastases to movable ipsilateral level I,1I axillary lymph nodes
N2 Metastases to ipsilateral axillary lymph nodes that are fixed or to
ipsilateral internal mammary nodes
N3 Metastasis to ipsilateral level Il axillary lymph nodes, internal
mammary nodes AND axillary lymph nodes, any supraclavicular
lymph nodes
M(etastasis)
M1 No distant metastasis
M2 Distant metastasis
Stage T N M
0 Tis NO MO
I T1 NO MO
A T1 N1 MO
T2 NO MO
1B T2 N1 MO
T3 NO MO
A T0-2 N2 MO
T3 N1 or 2 MO
B T4 NO,1,2 MO
Hc Any T N3 MO
v Any T Any N M1

Figure 1-7 TNM staging classification and stage grouping.

Modified from the International Union Against Cancer TNM Classification of Malignant Tumours (7™ Ed) 37
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The Nottingham Prognostic Index (NPI) uses similar information, but from the

pathological diagnosis only, in Equation 1-1 38:

NPI=[0.2X S]+N+G

Equation 1-1 The Nottingham Prognostic Index
S = size of index lesion (cm), N = Nodal status (0 nodes = 1; 1-3 nodes = 2, >3 nodes = 3), and G = Grade
of Tumour (Grade | =1, 11 =2, lll = 3)

The resultant score can give an estimated 5 year survival 3°. Both of the TNM
and NPI tools are used regularly to guide management and inform prognosis.
Increasingly online tools such as Adjuvant! Online and Predict! are used to
determine prognosis and how different treatments would be expected to change
survival rate. The clinician inputs a wide range of the patient and tumour
characteristics, and the algorithm predicts the patient individualised prognostic

outcome 49,

1.1.4 Diagnosis
Patients are diagnosed with Breast cancer in a secondary care setting having

received a tissue diagnosis. There are two routes through which the vast majority
of Breast cancer is diagnosed, and they represent different patient groups, and
often different phenotypes of Breast cancer. These are symptomatic or

screening.

1.1.4.1 Symptomatic

Despite screening, the majority of patients diagnosed with breast cancer are
diagnosed through another route, primarily after referral to a breast unit with
symptoms. Patients who present with breast symptoms and demographics that
are associated with a risk of breast cancer are referred to secondary care through
a fast track service for assessment (Figure 1-8) 4. Speed of assessment is
critical, as a delay in presentation and treatment of breast cancer is associated
with a worse survival outcome 2. Symptoms of Breast cancer include breast lump
(the commonest), breast asymmetry, nipple retraction and nipple discharge °.
Patient symptoms are taken in context of their other risk factors, for example the
positive predictive value (PPV) of a breast lump in women aged 40 -49 being
breast cancer is 4.8%, compared to a PPV of 48% in women aged >70 years 3.

Patients undergo ‘triple assessment’ during this clinic, which is discussed later.
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Refer people using a suspected cancer pathway referral (for an
appointment within 2 weeks) for breast cancer if they are:

e Aged 30 and over have an unexplained breast lump with or
without pain or
e Aged 50 and over with any of the following symptoms in one
nipple only:
o Discharge or
o Retraction or
o Other changes of concern
Consider a suspected cancer pathway referral (for an appointment

within 2 weeks) for breast cancer in people:

e With skin changes that suggest breast cancer or
e Aged 30 and over with an unexplained lump in the axilla

Figure 1-8 Summary box outlining the ‘fast track’ referral criteria from primary care to secondary

care for urgent evaluation by a Breast specialist*!

1.1.4.2 Screening

Around one quarter of the 55,000 cancers diagnosed per year in the UK are
diagnosed after screening #1. Screening invitations in the UK are currently offered
to all women aged 50-70, with a phased rolling out to women aged 47-73. Breast
cancer screening involves a single mammogram once every three years 44. 1 in
23 women are called back after attending their screening mammogram for further
tests, such as repeat mammogram, MRI or biopsy of a suspicious lesion #°.
Breast cancer screening reduces mortality, as cancers are diagnosed at an
earlier, and more treatable stage “6. Treating breast cancer at an earlier stage of
the disease also reduces the overall cost of disease treatment, as it is less likely
to require expensive adjuvant treatments 47 . Screening prevents 1 breast cancer
death for every 200 women who are screened regularly 4° and in a meta-analysis
of 11 studies they found that there was a reduction of 20% in the relative risk of
mortality from breast cancer in screening patients compared to those not

screened 48,

Despite this, screening is controversial as there are concerns over a number of
issues. Over-diagnosis, where a non-life threatening breast cancer is diagnosed
and treated, is a concern as this causes the morbidity of breast cancer treatment

with no survival benefit. It was estimated in a Danish trial that there was 2.1 cases
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of overdiagnosis per 1000 patients screened #° and in an analysis of all nations
offering screening, there was on overall rate of 1 in 3 breast cancers being over
diagnosed °0. False positive mammograms leading to unnecessary further
investigation can cause distress and reduces the chance of the patient attending
subsequent screening invitations 5. Other risks include false reassurance
leading to subsequent delayed presentation %2, pain and discomfort of
mammograms °3, and the small radiation risk from mammograms (there are an

estimated 0.07 radiation induced breast cancers per 1000 women screened) 5.

For these reasons, current uptake of Breast screening is around 70% nationally,
with many regions falling below the minimum standard for uptake . Some
nations are re-thinking breast cancer screening, with Switzerland recently
abolishing its breast screening programme citing over-diagnosis concerns as a

primary reason °°,

1.1.4.3 Triple assessment

After being referred to a symptomatic clinic or re-called after screening, patients
are clinically assessed through a history and examination by a specialist Breast
surgeon/physician, have imaging which is either a mammogram or ultrasound or
both, depending on their age ¢, and if there is a discreet lesion — a core biopsy

is taken for histopathological diagnosis.

Imaging

Mammogram is the primary mode of diagnostic imaging for breast cancer
detection both in screening and symptomatic patients. With the patient standing,
the breast is compressed between paddles and two X-ray images (cranio-caudal
and mediolateral oblique) per breast are obtained ©. In one study of 2020 patients
with a subsequent pathological diagnosis of breast cancer, mammogram alone
had a sensitivity of 82.9% and specificity of 91.9% for breast cancer detection,
compared to a combination of mammogram, ultrasound and clinical examination
(which is usual clinical practice) ®’. Factors particularly affecting diagnostic
accuracy are - increased breast density, heterogenous breast density and young
age 8. For these reasons it is not routinely used in patients less than 35 years
old ®®,
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Ultrasound is used in addition to mammograms for breast cancer diagnosis, or
for those under 35 years old as the primary modality. Patients are positioned lying
on a couch, and the breast is not restricted, and so it is used for guiding biopsies,
or localised tumours prior to surgery. Ultrasound alone has a sensitivity of 87.6%
and a specificity of 95.5% when compared to the usual practice of US,
mammogram and clinical examination of the breast ®/, and is particularly useful
in differentiating between solid and cystic lesions . The use of both mammogram
and ultrasound for detection of breast cancer in a screening population results in
an improved sensitivity and specificity compared to the techniques used alone °.

Pathology

Biopsy samples are now recommended to be taken by core biopsy or vacuum
assisted core biopsy as this preserves cellular architecture and increases
diagnostic yield compared to traditional fine needle aspiration (FNA) 44 €0 61,
Biopsies are taken from areas of suspicion either by clinical palpation for a
palpable mass undetected on imaging, or under image guidance if detected by
imaging such as for non- palpable masses and areas of suspicious heterogeneity
(such as distortion or asymmetric density areas of calcification on the

mammogram) 44 62,

Once taken, biopsy tissue must be fixed in formalin as soon as possible, as a
delay in formalin fixation by just an hour can reduce the sensitivity of techniques
in elucidating biomarkers such as progesterone and HER2 receptor status ©2.
After fixation, samples are cut and embedded in paraffin and haematoxylin and
eosin stained. A histopathologist will then analyse the slide and perform any
necessary immunohistochemistry to be able to provide the tumour classification,

grade of tumour, receptor status

Although histopathology is the current gold standard for the tissue diagnosis of
breast cancer, there are issues with the technique. It is slow, the standard time
for turn-around of a biopsy sample is two weeks. Due to the number of processes
involved in the analysis of a specimen there are a number of points of potential
human error ¢ ¢, There is also a degree of inter-observer variability in aspects
of histopathological analysis, in a study of 115 pathologists independently reading
breast pathology slides, there was only 75% agreement between study subjects
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diagnosis with the expert consensus derived diagnosis 6. A particular issue in
breast cancer is the reporting of the grade which is highly variable — in one study
with six pathologists, the statistical agreement on grade diagnosis varied from
moderate to substantial ¢, and in a study involving five pathologists, absolute
agreement was only agreed on in 83% of cases ©°.

Multi Disciplinary Team Meeting (MDT)

The MDT is an important concept in cancer care in the UK, and is designed to
reduce the unwarranted variation in patient care in the NHS 70, It is a weekly
meeting with a representative from all clinical members involved with breast
cancer care attendance, particularly breast surgeons, radiologists, pathologists
and breast cancer nurses. All patients with a core needle biopsy result should be
discussed at an MDT 44 During this meeting, all information regarding the
patients’ diagnosis is presented to agree on a diagnosis and suggest a
management plan. Treatment is based on patient characteristics, such as co-
morbidities and patient wishes, and tumour characteristics such as TNM stage,
NPI and grade of tumour.

There is a paucity of evidence demonstrating the efficacy of the MDT 7X. And a
variety of evidence to suggest that not all patients suitable for MDT are discussed
in the meeting "2, there is a large variation in their use between countries " and
an inability to reach consensus decision in 27-52% of cases in one systematic
review 4. Despite these criticisms, an effective MDT improves patient outcomes.
A systematic review of 12 studies demonstrated an improved patient survival
after the introduction of a cancer MDT 7°, and the mortality rate was found to be
11% lower in an area of Scotland that introduced an MDT compared to an area
with similar survival statistics prior to the intervention that did not introduce an

MDT over the same time period 7.

1.1.5 Management of early breast cancer

Surgery remains the first line treatment in the majority of early and locally
advanced breast cancer. Recent advancements in adjuvant and neo — adjuvant

therapies have significantly changed breast cancer management and outcomes.
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1.1.5.1 Adjuvant therapy

The recent decrease in mortality from Breast cancer 14, despite a rising incidence,
is likely due to the widespread adoption of adjuvant systemic therapies. The aim
of adjuvant therapy is to improve disease free survival and reduce local
recurrence rate, whilst taking into account the (sometime significant) side effects.
Breast cancer is a heterogenous disease, and the precise management decisions
are tailored to the patient and the biology of the tumour, which is decided at MDT.
A comprehensive review of all possible adjuvant therapies and ongoing clinical
trials is beyond the scope of this thesis, what follows is a highlighting of the

common treatment types.

Endocrine therapy

Around 75% of breast cancers are ER+ve 77 and modulation of ER activation in
these cancers is essential. This includes stopping any oestrogen containing
contraception or Hormone replacement therapy, and consideration of ovarian
suppression with GnRH agonist in high risk pre-menopausal women 7&.
Tamoxifen — is a competitive oestrogen receptor antagonist, blocking estradiol
from binding and activating the estrogen receptor. It reduces the risk of death by
around one-third during 5 years of treatment, with some benefit up to 10 years °.
NICE recommends offering tamoxifen in ER positive invasive breast cancer for
men, premenopausal women and postmenopausal women with low risk of
disease recurrence 6,

Aromatase Inhibitors (Al)- the mechanism of action is by inhibition of the
enzyme aromatase that converts androgens into oestrogens. In the ATAC trial,
looking at an Al and tamoxifen alone or in combination demonstrated that Al
alone was superior in terms of disease free survival 8, and another trial
demonstrated a possible survival advantage for those taking Al alone 8. Al is
contraindicated in premenopausal women and have significant side effects of
sexual dysfunction, and NICE recommends Al in postmenopausal women with

ER positive disease at medium or high risk of recurrence 5°.

Chemotherapy
The recommended chemotherapy regime in the treatment of breast cancer is a
combination containing a taxane (e.g. docetaxel) and anthracycline (e.g.

doxorubicin)®®. It is an effective treatment in early breast cancer and can reduce
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the annual risk of recurrence by almost 25% and reduce breast cancer mortality
by a third 8. The decision to initiate chemotherapy is based on the benefits of
survival versus the significant side effects, and is generally offered in higher risk
patients. The gain from chemotherapy is higher for younger women than in older
women. A number of factors is taken into account by the MDT in deciding whether
to offer chemotherapy, this includes age, axillary nodal status, ER status, and

DNA micro analysis in the form of Oncotype DX ©.

Biological Therapy

Trastuzamab is a recombinant humanised monoclocal antibody that binds to the
HER?2 receptor and antagonises its activation. It is recommended in HER2
positive tumours in the adjuvant setting 6, and when given concurrently with
chemotherapy leads to a decrease in recurrence and death  in these tumours

that classically had a poor prognosis.

Radiotherapy

Radiotherapy is a local treatment (compared to the systemic treatments of other
adjuvant therapies) and is a part of breast conserving therapy and is always given
to the remaining breast tissue after breast conserving surgery 8. Depending on
the disease characteristics and staging, radiotherapy is given for locally
advanced tumours and can be given to the tumour bed, axilla, supraclavicular
fossa and inframammary chain °6. Radiotherapy significantly reduces

locoregional recurrence and improves survival in locally advanced disease °.

1.1.5.2 Surgery
The aim of an oncological resection is to remove the minimal amount of tissue
necessary to reduce trauma and collateral structure damage, whilst excising the

entirety of the diseased tissue 86.

Mastectomy

A mastectomy is the removal of all breast tissue of a single breast, and is the
traditional operation for the treatment of breast cancer. Originally a Halstead
mastectomy included removal of the underlying pectoral muscle and all axillary
lymph nodes as well, but with a recognition that this did not always improve

survival and caused significant morbidity, the technique evolved to what is now a
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modified ‘simple’ mastectomy. It accounts for 30 — 40 % of breast cancer
operations. Local recurrence can occur in any residual breast cells which may

remain, or associated with the scar.

Breast Conserving Therapy

With the increasing realisation that breast cancer was a systemic disease, the
improvement of adjuvant therapies, and the detection of smaller cancers through
mammography and screening, less invasive surgical treatments were developed.
Breast conserving therapy consists of Breast Conserving Surgery (wide local
excision of the tumour) — the aim being to remove all cancerous tissue with a
margin of normal surrounding tissue, followed by whole breast radiotherapy. The
surgeon makes an incision either over the cancer, or in a more cosmetically
sensitive place on the breast and excises the breast cancer in a lump, with a rim
of healthy tissue (roughly aiming for 1 cm of normal feeling tissue around the
cancer), with the aim to excise a specimen with pathologically clear margins
(Figure 1-9).
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Figure 1-9 Diagram demonstrating options for incisions for Breast conserving surgery.
Yellow area denotes location of tumour, grey shaded area is the area of tissue resected by surgeon (to
include tumour and rim of healthy tissue). Black dotted lines are potential incisions made for tumour

resection.

The original randomised trial demonstrating the safety of breast conserving

therapy was by Fisher et al. where 1843 women were assigned to one of three
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groups — total mastectomy, segmental mastectomy, and segmental mastectomy
with breast irradiation 84, this study at the 5 year follow up actually found improved
disease free survival and overall survival with segmental mastectomy and
irradiation compared to total mastectomy. There are differences between the
study conditions and current practice which could limit these conclusions, such
as greater breast tissue volume excision than current lumpectomy, higher
radiation doses, and that all patients received systemic chemotherapy. However,
the findings have been repeatedly confirmed with more current practices, and a
meta-analysis of nine trials comparing mastectomy with breast conserving
therapy demonstrated no significant difference in 10 year mortality &, and review
of six randomised controlled trials showed no difference in rates of local control
88 and so mastectomy and breast conserving therapy are viewed as equivalent
in providing oncological control of disease.

Indications for breast conserving therapy are T1, T2 (tumour < 4 cm), NO, N1,
MO tumours, T2 tumour > 4 cm in large breast, unifocal lesions. Contraindications
are T4, N2 or M1 lesions, multifocal disease, large tumours in small breasts and
women with a strong family history or proven BRCA genetic mutations 6. The
advantages of breast conserving therapy compared to mastectomy are related to
lower psychological morbidity with less anxiety, depression, and an improved
body image, sexuality and self-esteem 8% %,

A significant issue with BCS is that incomplete excision and subsequent positive
pathological margins lead to a second operation for re-excision of margins in
around 17% of patients in the UK °! to achieve clear resection margins, which is
necessary to reduce recurrence rate °2. The current gold standard for margin
analysis and the rationale for need for intraoperative margin analysis is explored

in greater detail in section 1.3 of this thesis.

Axillary Surgery

The management of the axilla in breast cancer continues to be controversial.
Although having metastatic carcinoma in the ipsilateral axillary lymph nodes has
undoubted prognostic significance 34, the removal or treatment of these lymph
nodes with radiotherapy may not carry a survival benefit 9 %4, Therefore, axillary
surgery is primarily for staging, and in those with a positive axilla, local control.
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Sentinel lymph node biopsy - this is performed in all patients with invasive
breast cancer with a pre-operative diagnosis of a node negative axilla .
Radioactive and blue dye is injected into the breast to identify the first node(s)
that the breast drains, and these lymph nodes are excised for staging purposes
%, If the excised lymph nodes do not contain cancer, no further axillary treatment
is required. If the excised lymph node(s) do(es) contain cancer the patient may
be offered axillary lymph node clearance or axillary radiotherapy °* (this is an area
of active clinical trials °7).

Axillary Lymph Node Clearance — in patients who are pre-operatively identified
as having a node positive axilla with US imaging and pathological confirmation

from a core biopsy, the treatment is currently for an axillary lymph node clearance
56

1.1.6 Summary
Breast cancer is a potentially life-limiting disease, and due to the high, and

increasing, incidence the disease and its treatment is a significant burden to
populations and healthcare systems globally. Although there have been
advancements in treatments and survival has improved, there remains a clinical
need for improvements in delivering cancer care. Breast Conserving surgery is
the commonest operation performed for breast cancer, and the issue of positive
resection margins requiring re-operation is a significant source of anxiety to
patients, and an expensive burden for healthcare systems. If the resection
margins of a lumpectomy specimen could be analysed at the time of the index
operation -intraoperative margin analysis (IMA)- this could reduce the need for
repeat operations, and improve patient cancer care. The Association of Breast
Surgeons gap analysis working group recently produced a report highlighting that
research into technologies that could provide IMA were a priority for surgical
research 8. Raman Spectroscopy is a method of vibrational spectroscopy that
can assess the disease specific molecular compositional changes in the cells and

tissues, and the technique holds great promise in being able to perform IMA.
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1.2 Background of Raman Spectroscopy

1.2.1 The theory of Raman scattering

Raman scattering is the inelastic scattering of light. When light is directed on a
molecule, light may either pass through it without any interaction or may interact
with the molecule — where two processes can occur. The molecule can either
absorb energy from the incident photon and it is transferred to a higher energy
state (which is measured in absorption spectroscopy) or it can scatter the incident
photon, which is measured in Raman spectroscopy.

Light as a form of radiation may be considered both in terms of a wave (with a
wavelength) and as a particle (a photon) with a discreet amount of energy. The
amount of energy the light has is related to the wave properties. The energy of a
photon (E) is related to wave frequency (v) by Equation 1-2:

E= hv
Equation 1-2 \Where h = Plancks constant (6.62607004X 10 -**m?kg/s)

The wave frequency (v) is inversely related to the wavelength (1) by Equation
1-3:

A=/
Equation 1-3 \Where ¢ = the velocity of light (299,792,458 m/s?)

Therefore, wave frequency is linearly related with energy (Equation 1-4):
v = AE/h
Equation 1-4
and wavelength is inversely related to energy, thus the shortest wavelength

confers the greatest energy as shown in Figure 1-10:

Radiation Gamma | X Ultraviolet | Visible | Infrared | Microwave Radio
Type Ray Ray

Wavelength 1012 1010 | 108 0.5 10° 102 108
(m)

Energy per | 1.24 1.24 | 124 eV 1.24eV | 0.124 eV | 1.24 peV 1.24
photon MeV keV peV

Figure 1-10 The Electromagnetic spectrum on the wavelength scale in metres with associated

Energy per photon in electron volts (eV)
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The Raman effect was first described experimentally by Raman in 1928 by
focusing sunlight through a telescope onto samples of purified liquid or dust-free
vapour, and observing scattered radiation with a different frequency to the
incident light °°. Nowadays a single wavelength of light is used to provide a
coherent wavelength as an incident beam to irradiate the sample, and the energy
changes that can be detected are more subtle, but the principles remain the

same.

At room temperature the majority of molecules will be in a low energy, ground
state. When an incident light source interacts with a molecule and the incident
photon interacts with the molecule it forms a short-lived state of excitement due
to its polarization of electrons and is promoted to a ‘virtual state’, which is
unstable, and a photon is re-radiated. Elastic scattering accounts for the majority
of scattering and occurs when there is only electron cloud distortion involved in
the scattering process. It is common, and due to the light weight of electrons,
results in very small frequency change to scattering photons and the molecule
returns to its ground state and so the scattered photon is of equal energy to that
of the incident photon. This is called Rayleigh scattering in molecules. Inelastic
Raman scattering occurs when the energy transfer is significant enough to cause
nuclear motion. There is energy exchange between incident photon and
molecule, or molecule to scattered photon. Once the molecule has temporarily
been promoted to a higher energy excited vibrational state it returns back to an
energy state that is different to its original state. In this process there is a
difference of one vibrational unit between incident photon and scattered photon,
and this is Raman scattering. In Raman scattering there is Stokes and anti-Stokes
scattering. During Stokes scattering the molecule absorbs energy and is
promoted to a higher energy excited vibrational state. Some molecules may
already be in an excited energy state due to thermal energy, and when these
molecules return to ground state this will result in a scattered photon — this is anti-
Stokes scattering. These energy exchanges are depicted in Figure 1-11. For
most molecules, at room temperature, the number of molecules at the elevated
excited energy state would be very small, thus Stokes scattering will be
prevalent.19°, Although highly specific, Raman scattering is considered weak, with

only one Raman scattered photon in every 10°- 108 of total scattered photons.
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Figure 1-11. A Jablonski energy diagram of quantum energy transitions for Rayleigh and Raman
scattering.

In Rayleigh scattering the energy level returns to its original state and there is no change in energy. In Raman
scattering the energy level returns to a different state- either gaining (anti-Stokes scattering) or losing (Stokes
scattering) energy and so the scattered light has a different wavelength to that of the incident light, which
can be measured as the Raman shift from the Rayleigh line (which is equal to the incident light wavelength).

In order for a molecule to scatter light it requires polarizability, which is the ability
of an electric field to induce a dipole moment in a molecule. The induced dipole
moment (u) is equal to the molecule polarizability (o) and the incident electric
field (E) ; Equation 1-5 9%;
p = ok

Equation 1-5

A change in molecule polarizability is therefore required to change the amplitude
modulation of the dipole moment that is necessary for Stokes and anti-Stokes
emission. The change in molecular polarizability occurs through molecular
vibration and is a result of the alteration in the electron cloud about the molecule.
The molecular vibration is described by translation of the molecule in space, and
rotational movement. The degree of symmetry defines how Raman active a
molecule will be, with symmetrical and nonpolar groups being the most active 1°%.
Therefore the molecule, and the molecule number (N), the polarizability of the
molecule (a), the incident laser intensity (lo), frequency of the laser (v), and the
vibrational amplitude (Q) all determine the intensity of the Raman scattered

radiation (Ir), the relationship is shown in Equation 1-6:
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Equation 1-6

From this it can be concluded that by increasing the frequency of the laser, or

using a shorter wavelength can increase the Raman intensity. It is also

demonstrated that a change of molecular polarizability is essential for a molecule

to be Raman active. 101

The degree or type of scattering, and the gain or loss of energy, is dependent on
the degree of movement a molecule has which is a product of its atoms and
bonds, resulting in each molecule producing a unigue Raman spectrum, or
‘fingerprint’'% . In a steady electrical state, the energy of a molecule is divided
into different ‘degrees of freedom’. Three degrees of freedom describe the
translation of the molecule in space, and three describe rotational movement.
Molecules thus undergo a number of bond vibrations, symmetrical (when it is
symmetric about the centre) vibrations causing the greatest electron cloud
distortion and a greater Raman scattering. Bond vibrations include symmetric
stretching, asymmetric, stretching and are shown in Figure 1-12.

QP A9
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symmetric stretching asymmetric stretching
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Figure 1-12 Schematic diagram demonstrating the different modes of bond vibrations that may occur
within a molecule.

Reproduced from 12 under a creative commons 4.0 licence https://creativecommons.org/licenses/by-nc-
sal/4.0/
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Chapter 1

The molecular bond can be mathematically considered to be a spring between
two masses, and so relationship between the weight of the atom, and the strength
of the bond dictate the frequency of the vibration, is explained in Hookes law in
Equation 1-7:

_ 1 |k

V= o u
Equation 1-7
Where c — the velocity of light, K is the force constant of the bond between atoms
A and B (which is measure of bond strength), and p is the reduced mass of atoms
A and B of masses Ma and Mg which are related by Equation 1-8;

_ MM

b= M+ M,

Equation 1-8

And it can be seen that the lighter the atom, and the stronger the bond, the higher
the frequency. The product of these features, along with the different types of
vibration, will therefore give different energies/wavelengths and different

intensities for each molecule.

The unique vibration of an atom or bond therefore gives a peak of increased
intensity of scattered light at a particular wavelength on the spectrum. As the
wavelength of a particular peak will differ according to the wavelength of the
incident light, the Raman shift (the energy difference between incident light and
the scattered (detected) light) is usually used to describe peaks to allow
comparison of data between different incident lights. As molecules are a result of
a collection of bonds formed between atoms which interact and influence their
vibrations, more commonly there are ‘group vibrations’ and spectral peaks are
assigned to groups — such as the ‘aromatic C-H’ or ‘O-H’ regions. As molecules
are a consequence of the uniqgue make up of a combination of these vibrational
groups each molecule will have a unique Raman spectrum. The resulting peaks
of differing energies and intensity can be assigned to known vibrational groups,
and the molecular composition of a molecule can be deduced. Reference libraries
now exist of known energies and frequencies assigned to groups to allow
spectroscopists to interpret their spectra 1%3. From a biological perspective, the
majority of molecular information is gained within the ‘fingerprint’ region, which is

between 400-1800 cm* Raman shift. In this region there is well documented
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assignment of nucleic acids, proteins and lipids — which form the bulk of the
information that can be gained from Raman spectroscopy. There is an ability to
identify other biomolecules such as hydroxyapatite, porphyrins and

carbohydrates 194,

The High wavenumber (HWN) region corresponds to Raman shift 2700-3800 cm-
L, which is highly sensitive to lipids, proteins and water 1% but is often seen as
less specific than the fingerprint region. However, it has a good ability to
differentiate between a number of different cellular components % as
demonstrated in Figure 1-13. And the diagnostic ability of the HWN region has
been shown to be equal to the fingerprint region in clinical samples 7. Between

the Fingerprint and HWN regions there is little useful spectral information.
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Figure 1-13 Representative Raman spectra demonstrating the cellular molecular components that
can be measured using high wavenumber Raman Spectroscopy.
Raman spectra taken of Bovine gelatine (protein), soya bean oil (lipid) and distilled water (water) with 785nm

laser excitation

1.2.2 Experimental measurement of Raman scattering

There are a number of systems used to measure Raman scattering, and there
are a number of techniques that are discussed later in this thesis, each of which
can be used to provide different information about the molecule and biological
tissue probed. However, all systems have the same basic simple components,

which are demonstrated in Figure 1-14.
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Figure 1-14 Diagram demonstrating a typical set up for a system to perform Raman spectroscopy.
OL= Objective lens, BP = bandpass filter, NF = notch filter, DM = dichroic mirror

Laser

The excitation light source in Raman spectroscopy is usually a laser — as this
provides a single narrow band monochromatic light source to probe the molecule.
Lasers are the most suitable light source because a large amount of light is
needed to elicit Raman scattering due to its weak effect, and the unique specificity
of a Raman spectra is dependent on a single wavelength and a broader light
source would give a broader, overlapping, spectra that would be difficult to
interpret 194, The commonest type of laser used in Raman spectroscopy of
biological material are diode lasers that converts electric energy into light energy.
From Equation 1-6 it could be seen that by decreasing the laser wavelength
would increase Raman intensity, however there is a balance when dealing with
biological samples, as shorter wavelengths can heat specimens and cause
molecular change or damage. Itis also at these wavelengths that the more readily

detected effect of auto-fluorescence can become an issue.

The Near-Infrared spectrum is commonly utilised in Raman spectroscopy,
particularly of biological tissue samples, as it achieves the optimum balance
between intensity, tissue penetration and confounding auto-fluorescence 1%, It
also appears to be the safest wavelength to use. One study looking at
immortalised cell lines demonstrated rapid cell death after short exposure times
(within 5 minutes) to wavelengths 488 and 514nm, but only very mild
morphological changes and no cell death after exposure to 785nm wavelength
for 40 minutes 1%, Another study used real-time analysis of cardiomyocytes under
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a 785nm laser to demonstrate there was no effect on the beating frequency

suggesting minimal effect on the cells function 1,

Optical filters

A variety of optical filters are necessary to ensure a homogenous light is
transmitted and the collection device receives only scattered light. Band-pass
filters effectively clean up the laser light and are used to allow only the
transmission of the excitation light to the sample, ensuring monochromatic light
and optimal spectral resolution. The Dichroic mirror reflects the excitation
wavelength and longer wavelengths towards the objective lens — which focuses
the incident light on the sample to be interrogated. The scattered light then comes
back through the objective lens, the dichroic mirror allows all scattered and red-
shifted light through to the collection device, while reflecting light at the incident
wavelength and longer away. The notch filter provides a further filter to block light

at the incident light wavelength through to the spectrometer.

Detection

Gratings can be used to aid in disperse the light into its individual wavelengths.
Dispersion gratings separate the collected scattered Raman light at different
wavelength onto the detector. The more grating lines per mm, the higher the
dispersion and therefore the spectral resolution. The scattered light is then
detected by pixels on a camera chip. Each pixel (or group of pixels) in the chip
corresponds to a separate wavelength, and the amount of charge the pixel
acquires during an acquisition is directly proportional to the number of photons
detected. At the end of the acquisition the resultant charge collected by the pixel
is converted to voltage and this is transferred to a computer to produce a signal
for that wavelength, and the chip as a whole provides a read out for the entire
spectral range. The commonest camera used are thermoelectrically cooled
Charge — Coupled Devices (CCD). The CCD is a silicon chip made up of a 2D
array of detectors. The sensitivity of a camera is dependent on the photon
wavelength and the silicon absorption coefficient. This is described as the
quantum efficiency of a camera and is defined as the number of photoelectrons
generated per Raman photon !, The sensitivity of the CCD is dependent on

incident wavelength and decreases above 1000nm.
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If a silicon CCD is not appropriate for the spectral range being investigated there
are alternatives. Indium gallium arsenide (InGaAs) cameras are typically back
illuminated with a two dimensional photodiode array that, due to its lower
bandgap properties, have an improved quantum efficiency over 900nm, and are
generally used for investigating in the wavelength around 900 — 1700nm?'2,
Alternatives to silicon CCDs also include complementary metal oxide
semiconductor (CMOS) cameras, which are generally cheaper than CCD

cameras, and can provide a higher frame rate.

1.2.3 Summary
The basic principles of Raman spectroscopy have been discussed. It is a versatile

technique that has a wide range of applications in biomedical science. There are
a variety of methods of Raman spectroscopy, which can be tailored to the specific
problem posed; these are discussed in the following section. A potential
application of Raman Spectroscopy is to the intraoperative assessment of
pathological margins in surgically excised specimens — the next part of this thesis

will give a detailed review of recent developments in this field of research.
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1.3 Raman Spectroscopy for rapid intra-operative margin analysis
of surgically excised tumour specimens

(edited version from article published in Analyst)

Breast Conserving Therapy with wide local excision of breast tumour is the
commonest form of operation performed in the treatment of primary breast
cancer, as detailed in section 1.1.5 of this Background chapter. The high rate of
‘positive’ pathological margins requiring a further operation for re-excision of
margins in around 17% of patients represents a significant burden to the patient
and to the healthcare system. Raman spectroscopy may be the ideal
intraoperative tool to provide intraoperative margin analysis. This section of the
background evaluates the ability of Raman spectroscopy to provide IMA, setting
out the clinical need for IMA in breast cancer, and a number of other solid tumour
pathologies, a current critical review of previous work done, and an evaluation of
the ability of RS to provide IMA. The literature review is a modified version of the
article that was published in the journal Analyst (Reproduced from Reference %3
with permission from the Royal Society of Chemistry). The introduction and
section on Raman Spectroscopy background have been altered to avoid
repetition within the thesis, while the rest of the text is unchanged from the

published version.

1.3.1 Introduction

Surgical excision of the primary tumour remains the primary treatment for many
solid organ tumours 8. The aim of cancer surgery is to remove the smallest
amount of tissue necessary to minimise tissue trauma and collateral structural
damage, whilst excising the entirety of the diseased tissue 8. This requires the
affected tissue to be excised with a rim of normal tissue with an adequate
‘margin’. The amount of margin, or distance from the cancerous tissue to the
edge of the specimen, required to be termed ‘clear’ is different for each pathology.
If there is cancerous tissue within the defined distance from the resected surface,
itis a ‘positive’ margin and an inadequate resection, which increases the risk of

recurrence 114116 (Figure 1-15).
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Figure 1-15 A graphic to illustrate the concept of tumour margins.

A. A surgically excised specimen with an adequate margin along the resected surface; the cancerous tissue
is in the centre of the surgically excised specimen, with a rim of normal tissue surrounding it. The distance
of what defines an ‘adequate’ margin varies between pathologies. B. A surgically excised specimen with an
inadequate or ‘positive’ margin; the cancerous tissue is at the edge of the specimen. This could mean there
is further cancerous tissue in the patient that has not been excised.

A positive margin not only affects prognosis, but also future management,
meaning the need for further operations or adjuvant therapies with significant side
effects. The cost of a positive surgical margin to the patient, in terms of increased
treatment burden, further anxiety and additional side effects is difficult to quantify
but the effect on the financial resources of the healthcare provider is undoubtedly
significant 117 118, A method to assess the margins of the excised specimen intra-
operatively to allow further tissue to be taken at the time of the initial procedure,
if possible or necessary would be efficient, could reduce the risk of residual

cancer at the end of the operation and improve patient care.

1.3.2 Current methods of margin analysis

The ‘gold standard’ method for analysis of resection margins of surgically excised
specimens is currently histopathology. Histopathology analysis of prepared, ex
Vvivo, tissue is conducted with light microscopy by trained physicians and is able
to provide a detailed analysis of the excised specimen and the biochemical
characteristics of the tumour, which contributes to clinical management
decisions. However, the ‘gold standard’ of histopathology is prone to errors
although it is likely underreported; one study found an error rate of up to 11% in
cancer diagnosis '°, there is variability between pathologists in the reporting of

the tumour grade 8 89, and even variability in the final diagnosis 8’. This is even
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more apparent when diagnosing early or pre-cancers, where histopathology can

have of the order of nearly 50% inter-observer agreement 67: 120,

Histopathology analysis of surgical margins may also be subject to errors. Even
small specimens of around 2 cm across would require an impractical number of
histological sections if the entire resected surface was to be examined for
adequate margins, and so margin assessment should be seen as a
representative sampling procedure 21, The process also requires a number of
steps which introduce sampling error - orientation by the surgeon, fixation to
preserve the specimen, labelling the specimen, transportation to the pathology
department, re-orientation by the pathologist, slicing the specimen, dehydration,
embedding, sectioning, staining, representative sampling and then subjective
assessment by histopathologists 6 66122 |n addition to this, the lack of real-time
reporting delays treatment decision making meaning histopathology is an
imperfect technique for the reporting of margins. This precludes any removal of
further, possibly cancerous, tissue without the need for a second, often more
difficult, operation. In many pathologies, the risk of a second operation outweighs
the benefits of the risk of recurrence, and so in cases of a positive resection
margin, potentially cancerous tissue remains 123 124 _|t is possible that the concept
of requiring a defined margin for surgically excised specimens is a result of the
current inability to check the entire surface margin, and that if a technique could
accurately assess a specimen, smaller, or no, margin distances would be

required.

1.3.3 Methods of Intra-operative Margin Analysis (IMA)

Recognising these limitations of the traditional model, there is a large body of
research investigating methods of IMA. Current and prospective methods of IMA
are generally based on ex vivo analysis of the excised specimen, as it is the most
practical way of avoiding surgical artefacts such as blood contamination and the
space constraints of in vivo analysis.The number of methods being investigated
is vast, what follows is an overview of more established techniques that have had

routine clinical application, though not necessarily widespread adoption.

A commonly used method in cancer surgery is frozen section analysis. The

specimen is transferred to the pathology department, frozen and sections of
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interest taken for analysis by a pathologist. It is a technically difficult procedure,
requiring a histopathologist to be available on demand, a turnaround time that
can impede surgical workflow, the processing can damage specimens which
require further histopathological examination and it is expensive '%°. Frozen
section is most successfully used in Moh'’s micrographic surgery in the treatment
of Basal Cell Carcinoma (BCC) of the skin, where the entire resected surface is
examined in horizontal sections intra-operatively and the surgeon continues to
excise tissue until the margin is clear. Recurrence rates are as low as 1-3% even
in recurrent and complex disease ?6. However due to cost and time issues it is
reserved for cosmetically sensitive areas and recurrent BCC. Frozen section is
used widely in head and neck cancers 27 however there is a significant number
of false negatives 127 and it is unreliable for eradicating positive final margins 128,
The technique has also been used for IMA in breast cancer excision (where there
is reported sensitivity 70-90% and specificity 80-90%?*2° 130) and radical
prostatectomy (with a poor sensitivity of 42% 131), but has not been widely

adopted due to clinical and cost-effectiveness concerns 132 133,

Intraoperative imprint cytology has shown promise in Breast surgery. A slide is
pressed onto the lumpectomy resected surface and analysed by a pathologist for
malignant cells, which can be reported within the time frame of an operation.
Issues identified with the technique are that slide preparation can affect the
outcome, it is less accurate in lobular carcinoma 134 and in tissue that has been
subject to previous radiotherapy 2, and it reports only on the resected surface,
not the entire margin depth. A meta-analysis of eleven studies revealed a pooled
sensitivity of 91% and specificity 95% %6, however, in clinical trials the need for
delayed re-excision remained disappointingly high 134 suggesting this may not

translate into improved clinical practice.

Intra-operative imaging to assess margins has been used in various pathologies.
In breast surgery the most common adjunct in the UK to analyse margins is an
intraoperative specimen X —ray to determine how close radio-opaque lesions are
to the edge of the sample. Itis used by 96% of UK units %%, as it is readily available
and requires no additional equipment. However, in a recent meta-analysis of nine

studies to have a pooled sensitivity of 53% and specificity of 84% 6.
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Intraoperative ultrasound has also been used to guide lumpectomy in breast
conserving surgery, but margin assessment was associated with a high false
positive and false negative rate 37 and poor sensitivity 3. In brain lesions,
intraoperative US has been seen as useful to guide excision, however there is a
high degree of user variability and has been associated with a high rate of false

positives possibly due to blood artefact which is also hyperechoic 1°.

Magnetic Resonance Imaging (MRI) is used extensively in the planning of brain
cancer surgery and intra-operatively to guide excision. In a randomised controlled
trial, with a small population of 58 patients, the intra-operative use of MRI was
associated with complete tumour resection 140, However, an issue is ‘brain-shift’
where loss of cerebrospinal fluid and oedema changes the anatomy and so
reduces the accuracy of neuronavigation 4! and a Cochrane review concluded

that further studies into efficacy were needed 142,

The sheer number of techniques proposed for IMA demonstrates that no single
method has proved to be effective enough to be accepted into routine clinical
practice. To address this gap in surgical care, novel optical techniques show
promise as they can provide sensitive and specific biochemical information at a
molecular level in a rapid and non- destructive manner. A number of microscopy
techniques, such as Microscopy with UV surface excitation (MUSE), and light
sheet microscopy, show the ability to differentiate between cancerous and non-
cancerous tissue but studies so far have been limited in sample size and to
physically small samples due to speed of analysis, which limits the conclusions
as to clinical relevance 43 144 Other optical techniques have struggled to
succesfully translate promising laboratory work into the clinical environment, such
as optical coherence tomography (OCT) which was found to have reduced
effectiveness when it encountered cauterised tissue and blood 14°, and a clinical
trial in breast specimens demonstrated it only identified 63% of those with a
positive margin 46, Diffuse optical spectroscopy has the potential to provide
excellent sensitivity and specificity in cancer diagnosis!4’, but so far this has not
been realised in the analysis of margins'*®. Raman Spectroscopy (RS) is a
technique of vibrational spectroscopy that has gained particular momentum as it
can provide detailed biochemical information with excellent accuracy, within

clinically relevant times and has been succesfully used in the surgical
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environment in human tissue in a range of pathologies. RS has the potential to
change the paradigm of oncological surgery and provide IMA; an idealised

surgical workflow of this is suggested in (see Figure 1-16).

. ) Surgically excised tumour specimen
Oncological tumour resection

-

Clinically

levant . . .

Feedback to surgeon ;?:;’an Intraoperative Margin Analysis
allowing further [! (minutes) | of surgically excised specimen

Excision of potentially with Raman Spectroscopy

cancerous tissue

Graphical output from analysis
Which can be interpreted by surgeon

Figure 1-16 A graphical representation of the ideal paradigm for the surgical workflow of
intraoperative margin analysis (IMA) by Raman Spectroscopy.
This would allow the surgeon to remove all cancerous tissue at the initial operation, thus improving patient

outcome.

1.3.4 Raman spectroscopy

A detailed review of the basic principles of RS are outlined in the previous section
1.2 of the thesis. The molecular specificity of the Raman spectrum is holding great
promise in medical diagnostics '*°, and a variety of RS techniques have been
developed in response to different needs. The following is a review of the different
RS techniques that have been used in biological applications that are relevant to
IMA.

Raman micro-spectroscopy

This technique combines Raman spectroscopes with optical microscopes,
allowing for analysis of sub millimetre specimens, such as histological slides *°.
The tissue is scanned using raster scanning (point by point) which is time
consuming and so processing a sample can potentially take hours. Line scanning
(changing the size of the incident beam to a line across the sample), and multi-
focal Raman microspectroscopy (dividing the incident laser into several beams

to measure multiple Raman spectra simultaneously) can reduce the analysis time
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to more clinically relevant times 151153, Wide-field global imaging techniques,
where the whole sample is illuminated and all spectra associated with a particular
wavelength are collected can also decrease analysis times, but flat field
illumination can be difficult and this reduces the laser power per pixel, unless a
very high power laser is utilised %4,

A further method to increase the speed of analysis is to reduce the number of
Raman spectra taken for measurement by highlighting targeted areas for
intensive raster scanning, in selective scanning Raman microscopy °°. This can
be performed by predictive algorithm, where spectra are taken at two random
points on the sample, and the difference between the spectra informs an
algorithm to predict where to take the next measurement >, Another method is
to use another, less specific, but highly sensitive optical technique such as auto-
fluorescence to rapidly assess the sample and determine where to take Raman
spectra %6, This allows a substantial reduction in the number of Raman spectra

taken, with a similar diagnostic yield, and in a shorter time period.

Surface Enhanced Raman Spectroscopy (SERS)

SERS is a method to enhance the inherently weak Raman scattering by using
receptor targeted metallic nanoparticles combined with bright Raman reporter
molecules as biomarkers. Nanoparticles bind to the tissues of interest in a specific
configuration and ratio that gives a unique spectrum. These nanopatrticles give
an intense signal due to their brightness and specificity, and so a large area can
be rapidly scanned to give a reliably sensitive and specific Raman Spectrum %7
However, the obvious disadvantage lies in the time needed for pre-processing of
samples with nanoparticles, and the potential risk of toxicity of metallic
nanoparticles that may limit its in vivo use %8, The inherent heterogeneity of
tumour biochemistry and receptor expression both within and between patients

can affect the accuracy of these techniques .

Spatially Offset Raman Spectroscopy (SORS)

SORS can provide biochemical information at depth below the surface. SORS
illuminates at a central point then collects scattered data at a distance from this
central point, the light having travelled through varying depths of tissue. In using
multi-variate analysis of the resultant spectra, the offset between illumination and
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collection is accounted for, and a depth profile of the tissue with tissue information
can be gained %9, An essential component of this technique is that it ameliorates
interference by the often- stronger Raman scattering and fluorescence from the
tissue surface to be able to analyse the tissue below. The configuration of the
laser illumination centrally with an annular arrangement of collection fibres 2 — 3
mm has allowed for analysis 1 — 4 mm below skin 61, Transmission Raman
Spectroscopy (TRS) is an extreme version of SORS, where incident beam and
collecting camera are opposite one another, to allow analysis through the sample
to gain clinically relevant information at depths of up to 40 mm 12,

High Wave Number (HWVN) Raman Spectroscopy

The majority of biomedical RS uses Near Infra-Red (NIR) light to acquire spectra
within the ‘Finger Print’ (FP) region of 400-1800 cm! which has been shown to
provide extensive detail of the tissue biochemistry. However, when this laser light
illuminates the fused-silica fibre required for fibre optic probes it generates an
intense background signal %3, Using the HWVN region of 2400-3800 cm™! can
allow Raman spectra to be collected without this background interference 162,
This opens the way to numerous clinical applications and can be used within
commercially available devices such as a hypodermic needle % core needle
biopsy system 65 and endoscopes %5(see Figure 1-17). This advantage must be
weighed against the disadvantage of using HWVN region spectra, which is less
specific and may have limited diagnostic capabilities compared to data from the

FP region 167,
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Figure 1-17 Examples of fibre optic probes capable of Raman Spectroscopy measurement in a
clinical setting for cancer diagnosis, or application to in vivo surgical guidance to provide IMA,
images Authors own.

A. A fibre optic probe is incorporated into a standard 5ml syringe with a 15cm long, 20 gauge needle and so
is capable of subcutaneous measurements (in this example in a Turkey leg) as detailed in reference 18, B.
A miniature confocal Raman packaged probe with a GRIN lens objective for endoscopic use. A detailed
review on fibre optics for clinical use of Raman Spectroscopy is found in reference®

Coherent anti — Stokes Raman scattering (CARS) and stimulated Raman
spectroscopy (SRS)

CARS and SRS are non- linear processes, where the observed effect is not linear
to the incident laser power, as it is a result of multiple overlapping photons. It can
therefore generate a signal intensity greater than coherent Raman. By probing
specific, narrow spectra with high intensity, specific molecular information can be
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gained rapidly ’°. The advantages of CARS relate to its sensitivity to CH
molecules making it particularly effective at studying lipid and fat distributions,
which can been performed at video rate of 100 ns per pixel 1’1, However it is a
near surface technique and interpretation is made difficult by the presence of a

non-resonant background, causing spectral distortion and artefact 179 172,

A SRS signal is generated when the molecular vibration is equal to the difference
in frequency between the pump and Stokes photon. The change in intensity of
these beams as a result is measured. Its use was previously limited by slow
acquisition times and its reliance on back-scattering meant it was inherently
weak. However, new techniques have overcome these issues and allowed rapid
acquisition of spectra to give detailed biochemical information 72. Further, SRS
is non-resonant background free, can be performed with ambient light present
and its ability to provide high-speed imaging has been used in clinical tissue

diagnosis 1.

Spectroscopic Data Analysis

Regardless of the method of Raman spectroscopy utilised to gain spectra, the
raw spectra require careful analysis to elucidate clinically relevant information.
Differences between tissue spectra, although highly specific and holding detailed
chemical information, can be subtle. In the setting of IMA, data analysis is focused
on providing a binary outcome of whether the margin is adequate or not. In
general, there will be a ‘training set’, which are spectra assigned to known tissue
correlations i.e. a spectrum taken from tissue which has a histopathological
diagnosis (as demonstrated in Figure 1-18). These are used to create a model,
which is then tested on a ‘validation set’, where the diagnostic accuracy can be
assessed. This training — validation can be run multiple times with a Leave One
Out Cross Validation (LOOCYV) protocol to provide a measure of independence

in the performance measures 7.

The types of mathematical models used to create spectral classifications are
numerous, and expanding. A simple technique is Direct Peak Analysis — where
individual spectral features are analysed e.g. the areas under an individual
Raman band can be compared 4. Principal Component Analysis (PCA) and
Cluster analysis are unsupervised techniques, that do not require assignation of
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spectral peaks, but identify where in the spectrum the greatest variance between
data lies and classifies data according to these groups. Linear Discriminant
Analysis (LDA) is a supervised technique that is commonly used to distinguish
differences in the classes identified by PCA to increase accuracy. Increasingly
complex models have been developed such as Support Vector Machines (SVM)
and Random Forest Classifiers 1> and can improve diagnostic accuracy?’®,
however they can be more difficult to apply and interpret. The machine learning
classifier used to analyse spectral data is an important part of system
development. The balance between simplicity and speed of simpler techniques
versus the complexity and improved accuracy of more recent models needs to
be considered when developing a Raman system suitable for performing

intraoperative margin analysis in the clinical environment.

1.3.5 The use of RS to determine the surgical margin

1.3.5.1 Breast Cancer
Breast cancer holds great potential for intra-operative use of RS, with a number
of groups reporting a variety of advanced techniques to assess the margins of

lumpectomy specimens.

Background

For the majority of patients with early primary breast cancer, Breast Conserving
Surgery (BCS) (with adjuvant radiotherapy) offers an alternative treatment to
traditional Mastectomy, with equivocal survival rates and improved patient
satisfaction (Fisher, 1985). In Breast conserving surgery, the cancer is removed
from the breast, termed a lumpectomy. The method of assessing margins are
currently mainly by surgeon palpation, if it is a palpable lump, or radiographically
with an intraoperative X - ray. Neither are a reliable way of assessing the
specimen for involved or close margins 1’7, and as a result, the rate of close or

involved margins is high °2.

The definition of a positive margin is most commonly described as ‘ink on the
tumour’ 56 178 the definition of a ‘close’ margin is much more debated, however
in the UK it is defined as < 2mm, however, the resultant practice as to whether a
re-excision of margins is recommended, or indeed undertaken, is much more

variable °1. A positive margin is associated with a 2 fold increase risk of local
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recurrence, despite adjuvant therapies %2. Therefore, a positive margin, and more
variably, a close margin usually necessitates a re-excision of margins. This is a
further operation where the operation site is re-opened and the tumour bed
examined, the surgeon then takes a further 1 cm rim of breast tissue at the site
that was reported as involved. The number of cases requiring re-excision is high,
with a UK average of 17% and some units reporting up to 38-41% °1 134, The
steps involved in this re-excision are numerous and complex and the sheer

volume is a significant financial burden.

RS ability to differentiate normal from abnormal breast tissue

There is a large body of evidence confirming the ability of RS to differentiate
between normal, benign and malignant changes. A meta-analysis included 9
studies and concluded that using RS in vitro in breast tissue to diagnose breast
cancer gave a pooled sensitivity of 0.92 and specificity of 0.97 17°. However, there
was a marked heterogeneity between study techniques, and so studies need to

be considered individually.

In 2005, Haka examined lumpectomy and mastectomy tissue from 58 patients
that had been snap frozen then thawed. They used Raman micro-imaging to gain
a sampled volume of 1mm3, and determined a total of 130 spectra, which they
used in a leave-one-out cross-validation analysis. With this model they got a 94%
sensitivity, 96% specificity and an overall accuracy of 86% for detecting infiltrating
carcinoma. Fibroadenomas appeared to count for this diagnostic uncertainty; in
2 instances the Raman diagnosis was fibroadenoma, and the histopathological
diagnosis was infiltrating carcinoma. The reason may have been the sole
differentiation between the two pathologies in the diagnostic algorithm was fat

content 189,

In a paper to compare the spectroscopic techniques of fluorescence, diffuse
reflectance, combined fluorescence and diffuse reflectance and RS, in the
diagnosis of Breast cancer, Majumder et al. found RS to be the most effective 182,
They used 74 frozen — thawed specimens to measure 293 spectra with point RS.
They found distinct peaks associated with connective tissue proteins and fatty
acids discriminated well between normal tissue, fiboroadenoma, invasive ductal

carcinoma and DCIS being able to classify 99% of spectra correctly. This was
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done in laboratory conditions, and the area sampled was not reported, but can

be presumed to be small.

Barman et al. developed a single step Support Vector Model algorithm using point
RS to diagnose breast lesions from 33 patients undergoing Vacuum assisted
biopsy, specifically in those with microcalcifications 182. They achieved an overall
accuracy of 82% of diagnosis with excellent Positive Predictive Value (PPV) (the
probability of a positive result being a true positive) of 100% and Negative
Predictive Value (NPV) (the probability of a negative result being a true negative)
of 95% for breast cancer. However, this was performed in physically small biopsy
samples, with a selective population of tissue all with calcifications present, which
are known to produce relatively intense Raman spectra 83, and thus may be

unrepresentative of all breast cancers.

Han et al. used a confocal Raman system to look at freezing microtome sections
of breast tissue ¥4 They defined the peak assignments of Raman spectra
associated with breast tissue and found that the relative intensity of the C = O
peaks increased with increasing grade of malignancy. They took 475 spectra
from 39 patients and identified that there was little inter-subject variation in the
spectra. They used a Support Vector Model for their classification model and
achieved an overall accuracy of 74%.

An issue with these techniques is that they are surface techniques, so if there
was cancerous tissue more than a few hundred microns from the surface this
would not be detected, so ‘close’ margins (which usually require excision) of up
to 2 mm would go undetected. Spatially offset Raman spectroscopy (SORS) can
resolve this and Keller et al. developed a SORS probe that obtained spectra at a
depth of 2 mm 18, In 35 samples of frozen- thawed tissue they attained sensitivity
and specificity of >94%. They assessed the margins compared to histopathology
as simply ‘positive’ or ‘negative’ rather than gaining specific tissue diagnosis. The
sampling size of the probe, nor the method of location of tissue sampling is
described, but the authors recognize that assessing the entire specimen in a

clinically relevant time is a limitation of the technique.
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These studies were all done on micro or point spectroscopy, sampling very small
areas of breast tissue to obtain Raman spectra. For application to IMA, it is
necessary for a large area to be analysed, rapidly and so complimentary
techniques have been applied to enable this. Kong et al. used auto-fluorescence
imaging to inform selective -sampling Raman microscopy to provide an accurate
diagnosis within a clinically relevant time frame 6. Tissue samples cut from
blocks that were frozen-thawed were used and sensitivity and specificity of >90%
were achieved. An example of these microspectroscopy mapping results and
assignation of spectra to tissue is shown in Figure 1-18. This study only
differentiated between ductal carcinoma and normal tissue, and in other studies,
it is DCIS and fibroadenomas that negatively affect the overall accuracy of the
analysis. Once again, the breast tissue samples were small (5 X 5 mm?), and so
the conclusion of analysis within a clinically relevant time frame was extrapolated.
How the technique would be applied to a whole specimen without cutting the

sample is also unexplored.
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Figure 1-18 Example of assigning Raman spectrato tissue structures and ductal carcinoma of breast
tissue to inform the diagnostic algorithm.

(a) + (b) invasive ductal carcinoma (IDC), (c) normal breast tissue. Red arrows show focus of IDC, green
arrow tumour surrounding inflammatory stroma, blue arrows lobules and ducts, black arrows, stroma and
orange, fat (Reproduced from reference ¢ K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko and I.
Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling
Raman micro-spectroscopy. https://doi.org/10.1088/0031-9155/59/20/6141, under a Creative Commons
Attribution 3.0 licence).
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Intra-operative use of Raman spectroscopy

Based on these promising initial results, the same groups went on to use RS in
the clinical setting with the potential to give an intra-operative diagnosis.

Haka et al. used their previously validated technique in freshly excised tissue
from 28 patients measuring 220 spectra 8, Tissue with Ductal carcinoma in situ
was excluded, as the validating set had not encountered this pathology which is
an important exclusion for intra-operative use, as DCIS is associated with a
higher rate of re-excision of margins 87, It also excluded patients having
undergone neo-adjuvant chemotherapy, which is increasingly common, and
those patients with calcifications. Once again, fiboroadenoma proved a diagnostic
challenge, and the positive predictive value of 36% can be considered poor, with
an overall accuracy of 86%. Although the authors felt that the high NPV of 99%
was the main clinically relevant outcome, with such a low PPV in clinical use this
would lead to a high volume of breast tissue unnecessarily being excised. The
tissue area sampled is not mentioned, meaning the relevance of the technique to
assessing an entire sample for margin adequacy is difficult to assess.

Despite these limitations, this was performed adjacent to the operating room, in
a light box, and analysis was performed in 30 minutes, recreating conditions

necessary for intra-operative use of the technique.

Wang et al. used SERS with nanoparticles to assess 57 freshly excised
lumpectomy specimens and processed samples within 15 minutes 18, Each
specimen was topically stained with Raman active nanoparticles that were
functionalised with antibodies to target HER2, mER, EGFR and CD44 and then
raster-scanned to acquire spectra for the entire resected surface on the exposed
glandular tissue. It was possible to differentiate between normal, benign changes
and invasive carcinoma tissue, and the overall sensitivity for breast carcinoma
detection was 89% with 92% specificity, with the accuracy for the specific
biomarkers slightly less than this. This technique is not affected by haemoglobin,
surgical dyes or diathermy increasing the clinical relevance, however, it is limited
by the sensitivity and specificity of not only the functionalised nanoparticles ability
to bind to the molecules of interest, but also the accuracy of the Raman signal of
the nanoparticles. Another limitation is that, as a surface technique, ‘close’
margins are not detected.
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Using a method of selective scanning, Shipp et al. performed analysis on freshly
excised lumpectomy samples from 51 patients, and analysed one resected
surface of each specimen which was identified as being most likely to be positive
by a member of the team 8. They used multimodal spectral histopathology
(MSH), obtaining autofluorescence images, which was highly sensitive but non-
specific, to inform targeted Raman measurement points in identified ‘segments’
to reach a final diagnosis. The diagnostic algorithm was validated using a training
set based on mastectomy samples which included tissue containing
fiboroadenoma, fibrocystic change, DCIS and invasive carcinoma. MSH in the
lumpectomy samples was highly sensitive, identifying all the margins that
contained residual cancer even as small as 1 X 1 mm?, and so was 100%
sensitive, with around 80% specificity. They analysed a single resected surface
of up to 4 X 6.5 cm? in 12-24 minutes, which was achievable as MSH reduced
the number of Raman spectra required by 100 — 200 fold. Although this study
shows significant improvement in the speed of analysis and the diagnostic
accuracy, there are some limitations in the way the lumpectomy specimens were
subsequently examined, and that only one resected surface could be examined

in a clinically relevant time.

1.3.5.2 Skin Cancer

Background

Skin cancer is the most common cancer diagnosed and its diagnosis and
treatment represents a huge burden on the health economy %°. Basal Cell
Carcinoma has the highest incidence and is predicted to rise. It is a slow growing
tumour, that rarely metastasises, but local invasion leads to local tissue
destruction and deformity. Surgery remains a treatment of BCC, the tumour can
be excised by standard surgical excision where the lesion is excised with the aim
of obtaining margins of 3 — 5 mm. A positive, or close margin has been reported
in up to 7% of cases and is associated with a high recurrence rate of up to 27%
191 and requires further treatment or re-excision 192, Mohs’ micrographic surgery
is a current technique used for IMA but it is time consuming, expensive and only
recommended in high risk cases %2 193, Melanoma is less prevalent than non-
melanotic cancer but incidence is rapidly rising, it has metastatic potential and

late presentation is associated with a very poor prognosis 1°4. The management
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of melanoma is based on surgical excision, with margins of 0.5 — 2 cm required
based on the stage of disease, and re-excision performed if there are involved
margins'®>. A margin narrower than this is an inadequate resection which
increases the risk of recurrence associated with a poor prognosis, and may
possibly be associated with worse survival 1%. For both melanoma and

nonmelanoma skin cancer, there is a need for IMA to improve patient outcome.

RS ability to differentiate normal from abnormal skin tissue

Confocal RS was first used to differentiate BCC from normal skin in 2002, where
Raman maps from a small sample of 15 specimens were taken and compared to
surrounding normal tissue which yielded sensitivity and specificity of over 90% in
a logistic regression model *°7. Acknowledging the practical limitation of using
confocal RS, the group used a handheld fibre optic probe and gained spectra
using HWVN RS in the region of 2500 — 3800 cm ! to avoid background signal
from silica 1. A number of readings from each of 19 biopsies taken from the
centre of confirmed BCC’s were analysed, which demonstrated large and
consistent differences between the spectra from BCC and normal tissue,
particularly that collagen contains discriminative information at this wavelength,
with a 100% diagnosis of BCC. However, gaining spectra at this wavenumber
region took longer due to suboptimal signal-to-noise ratio, which may limit its

clinical use, and there was a small study size.

These studies looked solely at BCC, whereas non-melanotic skin cancer also
includes squamous cell carcinoma. Lieber et al. analysed 21 suspected non
melanotic skin cancers and took measurements with confocal RS from within the
tumour and compared to normal skin adjacent (1 cm distant) from the tumour
edge at a depth of 20 um 19, They achieved good sensitivity of 100% for
determining the cancerous lesion and specificity of 91%, with squamous cell
carcinoma lesions accounting for the diagnostic uncertainty. The sample
population of 19 patients was small and although marked differences in Raman
spectra were observed for each pathology this was after subtracting the matched
normal reading. There is marked inter-subject variability in the Raman spectra of
normal skin, and without a matched normal reading the diagnostic accuracy is
likely to have been affected. The same group went on to perform measurements
at varying depths on fresh-frozen samples from 39 patients with no skin
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pathology, BCC, SCC or melanoma and achieved 100% diagnostic accuracy at

the surface which decreased towards depths of 100 um 29,

Schleusener et al. recruited 104 patients scheduled for excision of a suspicious
lesion and used a fibre coupled probe in vivo with direct skin contact to sample 3
measurements on each lesion and the mean used to inform the spectra 2°1. The
heterogeneity of the lesions led to poor accuracy in determining non-melanotic
skin cancer from normal skin cancer. The major differences in skin variability
between body site also contributed to the results that achieved an accuracy of
78% in discriminating BCC and SCC from normal skin. For melanotic lesions the
lesion inhomogeneity was insignificant, and they achieved a balanced accuracy

of 91% of differentiating melanoma from normal pigmented nevi.

In a large study, Lui et al. investigated all suspicious skin lesions in vivo, both
potential non-melanoma and melanomas, in 848 patients and acquired 1022
spectra 292, Spectra from the in vivo lesion were taken, and compared with
spectra from normal appearing skin 5 cm from the tumour edge. The aim was to
detect which lesions required invasive biopsy to histologically confirm malignancy
which was achieved with 90% sensitivity and 64% specificity. The strength of this
study was its clinical relevance — measurements were gained within 1 second,
with a handheld probe, and was concerned with the relevant task of differentiating
cancerous lesions from benign lesions, rather than from normal skin like other
studies. However, the results were ultimately disappointing, with poor specificity.
This may have been due to the heterogenous group of benign lesions to compare
against (which didn’t necessarily have a confirmed histopathological diagnosis),
and a relatively small number of malignant melanomas (n=44) which may have

underpowered the diagnostic algorithm.

The same group used a similar approach with a probe measuring a diameter of
3.5mm at a depth of 1mm to validate the previous diagnostic algorithm on a new
cohort of 127 cases, where they achieved similar sensitivity and specificity in
cancer versus non cancer diagnosis to the previous study?°3. It is noted that,
setting the sensitivity level to 95%, only 8 of 9 melanoma cases were correctly
classified as a cancer, and the specificity was generally poor at 30 — 46%
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depending on the sensitivity level. The results are perhaps unsurprising as the

diagnostic algorithm had previously had poor accuracy at melanoma diagnosis.

In a meta -analysis to investigate the accuracy of RS for differentiating cancer
from normal tissue, 12 studies using different methods of RS were included, then
analysed according to ex vivo and in vivo studies and types of skin cancer. 10 of
the studies investigated discrimination of BCC, and in vivo, the pooled sensitivity
for discriminating BCC from normal tissue samples was 69% and specificity 85%,
compared to ex vivo sensitivity of 99% and specificity 96% 2%, This suggests the
use of RS to examine ex vivo, resected cancer samples, for margin assessment

may be a highly accurate technique.

There are a number of studies investigating mixed methods of combining RS with
other techniques to improve performance. Combining autofluorescence with RS,
with six spectroscopic criteria, 79 ex vivo patient samples were analysed and
cancerous tissue was classified with 97% accuracy 2. Another group used
CARS, second harmonic generation and two- photon excited fluorescence
imaging to analyse 140 ex vivo skin samples in a multimodal approach that
allowed large -area scans and the identification of dermal layering, which may

assist in diagnosis of cancerous lesions 2%,

Intra -operative use of Raman spectroscopy

Kong et al. used a method of measuring tissue autofluorescence to determine
the sampling points for RS 27, a technique alluded to in the previous section 2%,
This MSH technique was used to analyse samples from 20 patients treated with
Mohs’ microscopic surgery for BCC, half were BCC positive. Analysing tissue
samples of up to 1 X 1 cm? the sensitivity and specificity was 95% and 94%
respectively for the detection of BCC within a time of under 60 minutes. The same
group has now reported a fully-automated prototype instrument based on this
technique that allows assessment of skin surgical resections of upto a 2 X 2 cm?
area which detects residual tumour at the surface of the resected sample 2%°. This
prototype will be used to validate their previous work with a larger population of

patients.
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1.3.5.3 Brain cancer

Background

Gliomas are tumours of the neuroglia graded by histopathological features that
account for the majority of malignant brain tumours in adults. They have varying
prognoses, but the commonest, glioblastoma multiforme accounts for 55% of all
gliomas and has a 5 year prognosis of 5% with almost inevitable recurrence after
treatment 219, Surgical resection is generally recommended as part of initial
management for both histological diagnosis and to remove as much of the tumour
as possible, if it is safe to do so ?!'. A major challenge of resectional surgery is
achieving adequate margins, particularly as excessive tissue excision can lead
to major neurological morbidity for the patient. With current imaging techniques
of neurosurgical microscopes or intraoperative MRI, even in cases of an
apparently complete resection with ‘clear’ surgical margins, the vast majority of
recurrences occur at the site of resection , suggesting current techniques of
assessing intraoperative resection are inadequate 212,

Improving the intra-operative assessment of surgical resection margins could
improve adequacy of tumour resection, and thus recurrence rates for

glioblastoma.

RS ability to differentiate normal from abnormal brain tissue

The majority of initial diagnostic work has been performed in mouse models of
brain tumours. RS has been used to analyse tissue from mouse models of
glioblastoma ex vivo and is able differentiate between normal tissue (white and
grey matter) and malignant tissue with 100% accuracy ?'2 and has been used to
examine the tumour margins in mice in vivo, where RS identified tumour
undetected by bright field microscopy %'4. Uckerman et al. used CARS to probe
the C-H molecular vibration, thus imaging the lipid content of samples 2%°. A
mouse model of glioblastoma was analysed ex vivo then the same technique
used in human glioblastoma tissue to confirm the findings. They found malignant
tissue was identified by a reduction in lower CARS signal intensity which was
related to a lower content of total lipids in tumour tissue than normal tissue. This
was at a cellular level and so tumour borders could be discerned precisely, the
technique could gain images at 20 Hz, representing clinically relevant time for

intra-operative use.
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Two studies using induced glioma formation in mice models have reported the
use of systemically injected gold nanoparticles preferentially up- taken by tumour
to infform SERS guided tumour resection 26 217 The nanoparticles are
hypothesised to cross the Blood Brain Barrier via low-density lipoprotein-receptor
-related protein 1, an active transport endothelial receptor that carries exogenous
substrates across the BBB 28, The activation of the nanoparticles is then reliant
on the acidic tumour environment, which results in a specific signal at the tumour
site 216, A handheld Raman probe was used in both cases to demonstrate the
delineated tumour margin and guide tumour excision. Although they show
promise in mice models at assisting in obtaining clear excision margins, the
translation of using a systemic agent in humans for diagnostic purposes only is

likely to be complex and remains un-investigated.

In human tissue, Raman microspectroscopy has been used to differentiate
normal brain tissue, necrosis and brain metastasis and achieved accuracy of
>95% 21°, Kalkanis et al. used ex vivo human tissue from 17 donors to create
histological slides from frozen samples. Within homogenous areas of normal,
necrotic and glioblastoma areas a diagnostic accuracy of over 97% was achieved
in the validation group. However non-diagnostic areas, heterogenous areas and
those with freeze artefact were excluded which limited sample size, and limits
validity of application in vivo where heterogenous areas are likely 229,

Another clinically relevant study by Ji et al. used Stimulated Raman Scattering
(SRS) to examine tissue from 19 patients with CNS malignancy *73. They
produced two- colour images based on the Raman intensity ratios which
displayed whether the structure was lipid or protein-rich. Using biopsy samples,
they asked pathologists to compare these SRS images with standard H+E
pathology images and achieved excellent diagnostic concordance. This was
carried out in standard lighting conditions. However, they acknowledge the areas
sampled were much smaller than a true tumour bed, and SRS can only sample
at a depth of 100 um. Furthermore, this approach is only likely to work when
normal tissues are mostly lipid rich and the cancer or disease leads to a change
in protein rich tissues. Another group using SRS to analyse histology slides
achieved similar results in differentiating between normal brain tissue and tissue

containing a lesion. They used this to develop a machine learning process that
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was able to predict an automated diagnosis of tumour subtype with 90% accuracy
221

Intra -operative use of Raman spectroscopy

A recent study by Bury et al. analysed 29 fresh brain tissue samples that had
been excised during surgery within a clinically relevant time??2. Using SERS, the
samples were processed with gold nanoparticles and Raman spectra obtained,
the tissue then underwent routine histopathological analysis. There were a
number of diagnoses within the small sample size meaning it is likely to be
statistically underpowered. Despite this they gained sensitivity and specificity
above 75% in diagnosis of normal, glial and metastatic brain tumours, with
meningiomas proving a diagnostic challenge with poorer accuracy. Results were
comparable to currently used methods of IMA and superior diagnostic accuracy
is needed for clinical adoption. However, this could be overcome by increasing
sample size and measurements were taken in real time in a laboratory linked to
the operating theatre via air-tube, which is an innovative solution to the often
encountered problem of space, and demonstrates successful clinical application.

In 2015 Jermyn et al. reported the use of a handheld spectroscopy device that
used a Raman fibre optic to perform sub-millimetre single point measurements of
0.2 mm?2 in vivo in humans 222, 161 MRI guided intra-operative measurements
were taken from 17 patients with gliomas, and a biopsy taken at the
corresponding site for correlation of Raman spectra with H+E pathological
diagnosis. They found specimens with cancer cells had a difference in the lipid
bands, a higher nucleic acid content, and an increase in the band associated with
the breathing mode of phenylalanine in proteins. Tissue with cancer cells present
were distinguished from normal brain tissue with an accuracy of 92%, which was
significantly better than the operating surgeons’ visual analysis with a bright field
microscope. This was performed intra-operatively with a small, hand held probe
and measurements took less than 1 second. The limitations related to the
restricted field of view offered by the small area sampled by the probe, and the
false negatives in the Raman analysis were due to the system needing > 15%
cancer cell burden to be accurate. The same group then went on to integrate
intrinsic fluorescence spectroscopy, diffuse reflectance spectroscopy and RS into
one system to analyse biopsies taken from 15 patients with brain tumours of any
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type in a similar study design 2?4. Using this multimodal approach they achieved
sensitivity of 100% and specificity of 93% in differentiating between normal brain

tissue and tissue with cancer cells.

This group have recently developed a probe incorporated within a commercially
available biopsy system to allow Raman measurements to be taken without
disrupting surgical workflow 5, It used HWVN RS to collect data mainly from
lipids and proteins. It was successful at detecting normal brain tissue and dense
cancer tissue but could not differentiate between normal brain tissue and tissue
infiltrated with cancer- which is likely to represent the specimens with inadequate

tumour resection margins.

1.3.5.4 Head and Neck Cancer

Background

Head and neck squamous cell carcinoma (HNSCC) represent the main
oncological burden of head and neck oncology. Resection remains the mainstay
of treatment for the majority of HNSCC locations ?2°. Complete resection of the
tumour is the goal of surgical treatment, as a positive margin doubles the risk of
local recurrence compared to those with a negative margin 226, Despite this goal,
a significant proportion (30-65%) of HNSCC resections have positive resection
margins %27, A pathologically involved or close margin affects further management
which is often the use of adjuvant therapy such as chemotherapy and/or
radiotherapy. Re-resection can be considered, but only if anatomical location
allows and after associated morbidity is considered 124228, A common definition
of a close margin is <5mm for HNSCC 124 229, The Intra-operative technique for
margin analysis has been frozen section which has been specimen or tumour —
bed based, with variability in the way it is utilised, with no standard method
adopted 2. However, there has been no convincing evidence that this reduces

the positive margin rate or improves outcome 128 231,

RS ability to differentiate normal from abnormal head and neck tissue

The first report of RS to differentiate between normal and malignant larynx tissue
was from Stone et al. 222, Raman microspectroscopy was used on biopsies from
19 patients to differentiate homogenous samples of normal tissue from dysplastic

and squamous cell carcinoma tissue. Diagnostic peak height ratios were used
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rather than absolute spectral peaks to inform a diagnostic prediction model that
demonstrated sensitivity and specificity of >90% for the diagnosis of squamous

cell carcinoma.

Using frozen — thawed biopsy samples of vocal cord lesions, Lau et al. analysed
areas of 3.5 mm within 5 seconds. There was heterogeneity of tissue type within
measured samples which may have accounted for the reduced diagnostic

sensitivity of 69% of detecting carcinoma 233,

Lin et al. developed a miniaturized RS fibre optic probe that was inserted down a
working channel of nasendoscopy instrument to take measurements of
suspicious laryngeal lesions in 39 patients 234. The probe was put in contact with
the lesion for < 1 sec prior to taking biopsies for histopathological analysis. They
used the HWVN range (2800-3020 cm™) to obtain 94 spectra and identified
spectral peaks that successfully differentiated normal and malignant tissue. In a
similar experimental design in 60 patients, the same group used a combination
of FP and HWVN RS to acquire over 2000 spectra and compared this to
histopathological biopsy. They gained spectra rapidly in < 1 second, and the
combined spectra yielded an overall diagnostic accuracy of 91.1% 23°. The same
group then acquired spectra from 90 patients with nasopharyngeal cancer and
used PCA and LDA with a leave-one-out cross validation method to achieve a

diagnostic accuracy of 93.1% 236,

In the detection of oral carcinoma, Cals et al. took histological sections from 11
samples of oral SCC with surrounding normal tissue, and histopathological
evaluation then selected the regions for RS measurements 237, Raman mapping
with an automated confocal Raman microscope took point measurements at 5
pum steps to determine spectral differences between oral SCC and squamous
epithelium, connective tissue, gland, muscle, adipose tissue and nerve. They
achieved excellent distinction between SCC and healthy tissues with >97%
accuracy. They went on to develop a two-step classification model using a similar
experimental method for validation in 19 samples and achieved diagnostic

accuracy of 91% to differentiate tumour vs non-tumourous tissue 238,
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In vivo detection of oral lesions was performed by Guze et al. with a handheld
probe in real time 232, The probe, which had disposable plastic sleeves, was used
to diagnose lesions within 5 minutes and the procedure was tolerated well by the
18 patients who had a previously known histological diagnosis of the oral lesion.
They were able to differentiate between pre-malignant and malignant tissue

versus normal or benign lesions with 100% sensitivity and 77% specificity.

The difference in water content between normal tissue and SCC has been used
by one group as a marker to identify cancerous tissues in the head and neck.
Using a confocal Raman microscope with HWVN RS at 2500 - 4000 cm™ they
used freshly excised oral SCC samples from 14 patients to take up to 30 spectra
from each sample within 30 minutes and subsequently compared them to
histopathological evaluation. They found the intensity of the OH-stretching
vibration increased in SCC more than normal tissue, along with the water
concentration being significantly higher in the SCC containing tissue. They
concluded that water concentration could be determined with HWVN RS and was
a useful diagnostic marker of SCC tumour 174, The group then used freshly
resected oral SCC specimen sections containing both tumour and normal tissue
to analyse how water concentration changes with distance from the tumour.
Using a confocal Raman microscope at the same wavelength they then obtained
over 3000 Raman spectra to determine that mean water concentration within the
tumour was 76% and decreased further away from the tumour down to 54% when
> 4mm from the tumour in healthy tissue??8. A similar design was used in 26
mandibulectomy specimens and it was also found that water concentration is high
within tumour (mean of 77%) and decreases with distance from tumour to a mean
of 44% in healthy tissue. These spectra were then used to develop a classification
model for diagnosing SCC in bone in a training set and in the validation set
achieved a sensitivity of 95% and specificity of 87% in tumour detection 24°. They
showed good diagnostic accuracy within clinically relevant times of less than 30
minutes. However, there are limitations to clinical applicability; the specimens had
to be handled in a particular way to avoid desiccation, and these studies used cut
specimens which may have different water properties to an uncut specimen. A
flat surface was also necessary to achieve adequate contact with the Raman

probe, which may not be achievable with a clinical specimen.
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The data demonstrates a large inter-subject variation in water content in healthy
tissue of 17% in bone and 24% in mucosal tissue which suggests pathological
tissue measurements would always need to be compared with concurrent
‘normal’ tissue readings 24°. The calculation of water content for these
measurements were based on a protein model and ignored the contribution of
lipids to the measured spectral band. Although this is acknowledged and in oral
mucosal tissue any high lipid signals were always associated with healthy tissue,
this may not be the case with other tissues and so the ability to apply this
methodology to other pathologies may be limited 240,

1.3.5.5 Other pathologies

There has been investigation into RS in the diagnosis of other solid tumours such
as ovary 24, lung 24?243 and thyroid 244, but with little further exploration to the
application of this technology to improving the adequacy of surgical excision
margins. In some solid tumour pathologies, the use of RS in vivo for the detection
of cancer for identification of residual tumour and ensuring adequacy of resection

is another method of improving surgical oncological outcomes.

In prostate disease, histological studies have differentiated between benign
prostatic hyperplasia, prostate cancer and normal prostate tissue with a
sensitivity of 94% and sepecificity of 100% 24°, which was seen to be due to
increases in DNA and collagen changes in malignancy 246, In freshly excised
tissue both the Fingerprint and HWVN region has been used with a hand held
probe to get diagnostic accuracy of over 85%°" 247, The same group have
succesfully integrated a RS probe into the arm of a robotic operating system and
demonstrated the possibility of in vivo surgical guidance to ensure there is no

residual disease 248,

There has also been substantial research into the detection of early malignant
change in the cervix, aided by the well- defined nature of the disease and ability
to gain measurements without excision of tissue. Multiple studies have
demonstrated the ability of RS to differentiate between colposcopically normal
and abnormal areas of cervical tissue to a clinically relevant degree of accuracy
249-251 This may be useful in improving early, accurate diagnosis to guide targeted

treatment and ensure complete resection of any cervical pre-cancers.
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The ability of RS probes to be incorporated into fibre optics has significant benefit
to the potential for use as a surgical adjunct. In bladder cancer fibre optic RS
probes have been shown to be able to differentiate normal bladder and bladder
cancer with an accuracy of 84% in pathological samples 2°2. Another group
developed a fibre optic probe used in vivo to gain measurements at sites within
the bladder of 32 patients with suspected bladder cancer that were subsequently
biopsied and then matched with the definitive histopathological diagnosis. These
measurements took place alongside fluorescence cystoscopy, a technique
already in use to improve bladder cancer detection compared to simple white light
cystoscopy. This clinically relevant technique obtained a sensitivity of 85% and

specificity of 79% 253,

The introduction of RS enabled fibre optic probes down working ports in
endoscopic instruments holds promise for early diagnosis of oesophageal, gastric
and colorectal pathology, with ex vivo and in vivo studies demonstrating
consistently good diagnostic accuracy and clinical relevance 2°42%7, The utility of
this in achieving adequate surgical margins has not been investigated but given
the increased risk of recurrence associated with involved circumferential

resection margins in Gl cancers 258260 further work should be considered.

1.3.6 Translating Raman to the clinical environment for IMA

The ideal method for providing IMA would be highly sensitive, not alter the
specimen (to allow subsequent histopathological analysis), recordable to allow
accountability, give a definitive answer which is easily understood without the
need for specialist training, and processes the sample without delaying surgery.
The tool to deliver the analysis should be portable to allow use in multiple
locations, robust to withstand everyday use, easily sterilised and not interfere with

the theatre environment / procedure 261,

In many ways RS meets these criteria. The ability of RS to differentiate between
cancer and normal tissue in a non destructive manner has been established and
appears reliable in a range of pathologies. The practical advantages of Raman
as a tool for IMA are the relatively cheap equipment (£10-30K) is also small and

transportable allowing for easy insertion into operating theatres. RS systems
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have been developed that have taken measurements within the confines and
limitations of the clinical environment, overcoming the obstacles of theatre
lighting, handling the specimen and the need for a disposable/re-sterilisable

component 224 262,263 demonstrating its ability to perform in the operating theatre.

Despite these promising advances, RS is still not used in routine clinical practice,
suggesting limitations to the technique for providing IMA. For effective translation
and widespread adoption, Raman systems must be cost-effective. The advances
in detector technology and lower cost lasers resulting in cheaper Raman systems
is addressing some of the historical short falls in the technique, though it is now
the detectors and cameras that account for the greatest expense 24, systems
able to make use of high-quality but mass produced CMOS cameras used in
mobile phones may be expected to reduce costs significantly.

The time taken to analyse samples remains an issue, however innovative
techniques such as selective scanning microscopy and SERS has reduced this
time and studies presented in this review analysed samples in a clinically relevant
time frame of 15 — 60 minutes, which is within acceptable and clinically relevant
limits 185 188,189,208, 265 The fact that sample analysis can take place within the
operating theatre obviously saves significant time compared to techniques that

require the specimen leaving theatres, such as frozen section analysis.

Thus far, studies have required large data sets with complex and potentially
lengthy chemometrics to provide accurate diagnostic information. Generally
academic teams have been gaining spectra for a training set to construct a
diagnostic algorithm. This process requires a significant amount of data
processing and handling with large volumes of data and computing power to
‘train’ the diagnostic algorithm, which would be well beyond the capabilities of
routine clinical staff. However, these are preliminary studies, where the diagnostic
algorithm is being constructed and tested, but once the diagnostic algorithm has
been refined, robustly tested and validated, the data produced from a single
specimen for analysis would not be overwhelming. The speed of running new
measurements through a pre-constructed diagnostic algorithm is in the order of

milliseconds.
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When planning for the translation of a technology to the clinical environment, the
focus must be on the end -user, which for IMA will be surgeons, as they will
ultimately determine whether the technique is adopted. When using new
technologies there can be difficulties with inter-user variability- in one study
assessing IMA in breast specimens using a bio-impedance spectroscopy probe,
the results were negatively impacted by the surgeons incorrectly following the
probe protocol or incorrectly interpretating the results 268, Inter-user variability
may prove particularly problematic for hand held probe systems, where data can
be rejected or inaccurate due to incorrect probe positioning 8% 291, However,
there are a range of other systems such as an automated tissue processing
machine that uses cassettes?%?, or automated 3D scanner 2%° that may reduce

this potential for user error.

Not only must the measurements be taken by surgeons, but a clear and definitive
interpretation of data is required in order to translate to clinical use. It cannot be
expected that surgeons should be required to understand and interpret raw
Raman spectra to inform the procedure. Examples of systems that provide an
indicator of the Raman IMA result to the surgeon is the system capable of emitting
a sound to indicate abnormal tissues 2%’ and the automated 3D scanner
‘Marginbot’ which has the potential to analyse a specimen and provide a colour
coded interpretation of the Raman spectra for the surgeon mapped onto the 3D

image of the specimen (see Figure 1-19 B) 2%,

So it can be seen that despite the inevitable challenges in translating from bench
to bedside (or theatre-side), there are solutions that enable clinical Raman
systems to provide easily interpretable IMA of surgically excised tissue to aid
intra-operative decision making. Figure 1-19 provides examples of existing
Raman probes that have the potential to provide IMA, demonstrating the
beginnings of successful translation into the clinical environment. Indeed, there
are a number of companies developing commercially suitable Raman systems
showing a move away from the laboratory and towards larger scale use by

clinicians 264 268,
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Figure 1-19 Examples of Raman probe systems that could be used for IMA using Raman
spectroscopy.

A. Ex vivo RS analysis of a specimen, where the specimen is placed on top of a probe to enable a surface
to be analysed. This example uses an axillary lymph node (reproduced from reference 25, with permission
from the Royal Society of Chemistry, and the authors) B. Design of an automated 3D margin scanner
prototype (Marginbot), where the specimen is placed on a stage and automated movement of the specimen
and the Raman probe (depicted by arrows) is required to assess the specimen margins (reproduced from
reference 2%° G. Thomas, T. Q. Nguyen, I. J. Pence, B. Caldwell, M. E. O'Connor, J. Giltnane, M. E. Sanders,
A. Grau, |. Meszoely, M. Hooks, M. C. Kelley and A. Mahadevan-Jansen, Evaluating feasibility of an
automated 3-dimensional scanner using Raman spectroscopy for intraoperative breast margin assessment,
https://doi.org/10.1038/s41598-017-13237-y, under a creative commons _attribution 4.0 International

License) C. Handheld probe (Emvision, LLC) for use in vivo, in this example to interrogate brain tissue during
surgery with the potential to assist in gaining clear margins in the excised specimen. The schematic diagram
illustrates the excitation of different molecular species that produces a Raman spectra. From M. Jermyn, K.
Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M.-C. Guiot, K. Petrecca and F.
Leblond, Sci Transl Med, 2015, 7, 274ra219-274ra219 223 . Reprinted with permission from AAAS.
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1.3.7 Summary
This review has outlined the importance of the optimal management of surgical

margins for oncological excised specimens, current methods of IMA and a review
of the existing literature relevant to the use of RS in IMA in a number of solid
organ tumour pathologies. It must be noted that the majority of RS studies remain
in the realms of laboratory work, or ‘processing labs’ adjacent to theatres with the
work performed by members of academic units. Protocols have not evolved to
the point of being able to be used by non-experts, which is crucial to its expansion
into the clinical arena. Other disadvantages of RS is the time taken for spectral
acquisition, though this is being addressed by multimodal techniques 8, using
the HWVN spectra 24° or automation of specimen processing 2%, Ultimately,
larger scale clinical studies are required to demonstrate the diagnostic accuracy
of the technigue, and subsequent improvement in patient outcomes. As part of
this, probes suitable for regular clinical use will have to be developed and go
through the relevant regulatory processes, and inevitable cost-effectiveness
evaluation. The focus on translation of RS to the clinical environment must
persist. In an increasingly competitive market of emerging disruptive
technologies, future studies must focus not only on improvement of outcomes
compared to established techniques of IMA, but also show relevance amongst

novel technologies and techniques.

Despite these hurdles, RS has the ability to provide detailed biochemical
information of surgical margins with excellent diagnostic accuracy in a range of
solid tumour pathologies. Further studies are necessary for the translation of this
technology to a clinically relevant environment and demonstrate improved patient
outcomes. RS techniques have the potential to provide intra-operative margin

analysis of surgically excised solid tumours.
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1.4 Therole of water content in breast cancer diagnosis

1.4.1 |Introduction

The previous section highlighted the work performed by groups in using RS to
assess the intraoperative margins of breast cancer specimens. Although the
diagnostic ability of RS to differentiate between normal and cancerous breast
tissue is good, a major limitation is the time it takes to analyse the large area that
would be necessary for IMA. Other groups have investigated using nanopatrticles
and SERS 2?70 and multi-modal spectral histopathology combining tissue auto-

fluorescence with FP RS 189 as techniques that may reduce this time.

High Wave Number Raman Spectroscopy (HWN RS) is an increasing area of
interest in the analysis of biological tissue. The spectral features in this region are
from CH-stretching vibrations from protein and lipid at 2800-3040 cm™. OH
stretching at 3100-3500 cm™ which is primarily due to water with some
contribution from the NH stretching vibrations between 3100 and 3500 cm-t 103,

The time taken to analyse specimens is reduced using the HWN region due to
the reduced volume of data, more intense signals 271, and subsequent simplified
data analysis. In addition to this clinical advantage of reduced time for analysis,
there is evidence that the diagnostic yield gained from this part of the spectrum
is similar to that of the FP region 272273, HWN RS has been used to differentiate
between normal and cancerous cervical tissue 272, oral tissue 174, bone 24° and
brain tissue 1%, In these tissues, a difference in water content has been a
consistent discriminatory feature in the diagnostic analysis, with cancerous tissue

having a higher water content than normal tissue.

1.4.2 Theories to explain differences in water content in cancerous tissue

Water content was first noted to be higher in cancerous tissue compared to the
surrounding normal tissue in 1971, in rat tissue with sarcoma 274. Despite this
being noted decades ago the biological mechanism as to why water content is
higher in cancerous tissue compared to the surrounding normal tissue has not
been fully elucidated. One suggestion is that with the increase in cellularity in
tumours, there is a reduction of the apparent diffusion coefficient as measured by
MRI 275, With this reduction in apparent diffusion coefficient in cancerous tissue
the diffusion of water slows down and so water is trapped 276. These changes in
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the water diffusion may be related to the increased expression of Aquaporins in

cancerous tissue, which allows water influx 277.

In measuring the broadband diffuse optical spectroscopy (DOS) of breast tissue,
Chung et al. ?7® calculated that the bound water index decreased in tumours,
suggesting an increase in free water in tumours, which could be due to increased
levels of hyaluronic acid and necrosis within tumours. However neither hyaluronic
acid nor tissue necrosis were actually measured in this study, but it has been
shown that an increased rate of cell necrosis is correlated with an increase in

water content 279,

Specifically in breast tissue, a likely reason for the difference in water content is
because normal breast tissue is predominantly fatty and hydrophobic, and
cancerous tissue is predominantly stromal with a large amount of protein, which

is associated with a higher water content 2,

1.4.3 Water content in normal breast tissue

The water content in normal breast tissue has been estimated using Diffuse
Optical Spectroscopy (DOS), which is a non-invasive optical technique that
measures near infrared absorption and scattering. Tromberg et al. performed
DOS in line scans in vivo on 12 patients who were young (aged 30 — 39), and it
was demonstrated that the mean water % was 27 (+/- 12 SEM). There were
limitations with the sampling volume of the line scanner used and the sampling
depth was only 10mm from the skin surface, and therefore these figures for water
content may not be representative of the deeper breast tissue water content.
Using Near Infra Red spectroscopy in the healthy breasts of 24 females it was
found that the water percentage in breast tissue to be mainly between 40 — 60%,
however the raw data suggests a wider range was measured from 20-80%, with
an acknowledged error range of almost 10% suggests that with such a wide
range, and small number of subjects, a firm conclusion cannot be drawn 281, A
study that examined differences in the breast density as measured by MRI
measurement of water content found a significant difference between the median
water content of mothers (27%) and daughters (44.8%), but again examining the
raw data it suggests the range was wide and overlapping, as there were women

in both groups with a range of breast water content of between 20 to 80% 22°.
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This suggests there is significant physiological variation in the water content in
normal breast tissue. A number of factors may affect the water content of breast
tissue:
e Age
o Independent of menopausal status, as women get older, the breast
gets more fatty, there is less variation in lipid measurements, and a
corresponding decrease in water content 282 283
e Menopausal status
o Premenopausal breasts have a higher water and low fat content
compared to post menopausal breasts 282-284,
e Relationship to menstrual cycle
o It was demonstrated with repeated MRI measurements at different
times in the menstrual cycle there were cyclical differences in the
water content of the breast, however the clinical significance was
unclear 28
o Using NIR imaging in 7 premenopausal patients there was variation
in water content in radiographic density category, with absolute
differences of up to 30% of water fraction in normal tissue
throughout the menstrual cycle 226,
e Use of oral contraception
o Those patients taking oral contraception had breasts with higher
water content and lower lipid content than those not on oral
contraception 283
e Location in breast
o There are differences in water content not only between the two
breasts of the same patient, but also within the breast and where
the measurements were taken, with areolar water concentration
being higher 282,
e Body Mass Index
o As BMIlincreases, the water content decreases and lipid increases,
as the breast is composed more of fatty tissue compared to

glandular tissue 284
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1.4.4 Differentiating normal from cancerous tissue using water in breast cancer

There are a number of techniques that have assessed the differences in water

content in breast cancer.

Terahertz pulsed imaging is a non- invasive optical imaging technique that is
particularly sensitive to water and lipids (the main areas of spectral interest in
HWN RS). In a study using 22 samples of human breast tissue, Terahertz
imaging could differentiate between normal and cancerous tissue with good
diagnostic accuracy, the increased water content in cancerous tissue
hypothesised to be a major discriminatory factor in this 287. Subsequently a more
clinically relevant handheld probe has been developed that had reasonable
overall diagnostic accuracy of 75%, with a sensitivity of 86%, but a poor specificity
of 66% 288, This study was limited by the method of measurement, as the probe
measured both tumour and normal tissue at the same time, and relied on
matching the pixels of measurements with specimen photographs, which could
easily be mis-matched after the tissue has been through the specimen
processing pathway. Another limitation of this technique was that exact water

content changes were not able to be calculated.

A handheld DOS probe has been used in a series of studies, where spectra were
taken over a number of points on the skin over tumour containing breast, and the
contralateral normal breast. When using average readings over the affected
breast vs the contralateral normal breast, they found a significant increase in
water concentration of over 50% on the affected side, and decrease in bulk lipids
of 20% 276. As the readings were averaged over the breast which contained
normal breast tissue as well it could be assumed that if the specific cancerous
were isolated and measured the difference may have been greater. It was also
noted that there was significant physiological variation in the readings of healthy
tissue between patients. The same group used peak tumour readings compared
to average readings from the normal breast, and came to similar conclusions with
regard to the changes in water concentration and lipid concentration 22°.
However, the sample size was small with 11 patients and the tumour
concentration range was considerable and overlapped with the normal tumour

range, but still reached statistical significance.
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Water concentration in breast tissue displays large physiological variations
between patients, therefore using this as a sole measure of malignancy is likely
to be inaccurate. It has been seen that areas of tumour not only have an
increased water concentration, but also a decreased lipid concentration

compared to normal tissue.

The inverse relationship between water and lipid content is seen in studies using
MRI for tumour diagnosis. Using Magnetic Resonance Spectroscopy in 15
patients with cancer, and 14 controls with an average age of 47 years,
Jaganaathan et al. showed that the water to fat ratio increased in cancerous
tissue 2%, Spectra from tumour showed significantly higher water to fat ratio (6.0
+/- 6.9) than normal tissue (0.35 +/- 0.26)(+/-SEM). They also demonstrated a
degree of variability in tumours. The main aim of the study was to illustrate that
water to fat ratio decreased with response to neoadjuvant chemotherapy, and did
not investigate the diagnostic ability of the water to fat ratio for cancer diagnosis.
In a study using MRS on 68 cancers with healthy controls, the fat fraction was
calculated and this measure was used to demonstrate that malignant tissue had
significantly lower fat fraction (median 0.12) than normal tissue (median 0.39),
concluding that this was primarily due to increased water concentration in cancer.
However, the sensitivity of using the fat fraction to diagnose breast cancer was
only 75%, probably due to the large ranges of absolute fat and water

measurements 291,

DOS has also been used to investigate the fat to water ratio as a discriminatory
factor in differentiating normal from cancerous tissue. It is consistent with the MR
data, that cancerous tissue has higher water content, and decreased lipid

content, compared to normal tissue, both in vivo 282 and ex vivo 292,293

1.4.5 Differentiating normal from cancerous tissue using water with HWN RS in

other cancers

These studies demonstrate that water content or a measure of water fraction is a
useful biological feature in differentiating breast cancer from normal breast tissue.
HWN RS has been used to quantify the difference in water content between
normal and cancerous tissues, mainly in protein rich biological tissue. The

spectral peaks of the C-H stretch of protein and lipid at 2935 cm! and the OH
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stretching band of water at 3390cm-?, and the ratio between these peaks, or the
ratio between the area under the curve of these peaks has been used to calculate
water content in porcine brain tissue 2°4, the stratum corneum in skin 2% and eye

lenses 2%,

This technigue was used in the assessment of Oral Squamous cell carcinoma
with HWN RS to calculate water content 74, Using freshly excised tongue
resection samples, a number of measurements were taken with a HWN RS probe
from tumour and normal tissue, before the specimens were fixed and processed
for a histopathological diagnosis. They found that water content was 20% higher
in cancerous than normal tissue, and that setting the discriminatory value for
cancer of water content >69% gave them a sensitivity of 99% and specificity of
92% for differentiating normal and cancerous tissue. The same group used a
similar methodology in mandibular bone resection specimens and found a
significantly higher water concentration in cancerous tissue, and with a
discriminatory water concentration cut off value of 60% had a 99% sensitivity and
83% specificity for detection of cancerous tissue 24°. The water concentration for
these studies were calculated based on a calibration using protein/water mixes,
whereas the biological tissues that were measured had contribution of lipid
signals, so the absolute numbers calculated may not be accurate. The samples
were also washed with saline prior to measurement, meaning that fatty
(hydrophobic) areas would be unaffected, but possibly more metabolically active,
and hydrophilic areas (tumour containing cells) may have taken up water, thus
altering and exaggerating the differences in water concentration results seen.
Despite these limitations, it still holds true that the changes in the protein to water
ratios can be used to differentiate between normal and cancerous tissues. A
further limitation of these studies is that Raman microscopy with a 4um sample
area was used to gain spectra, meaning that with the equipment employed in
these studies it would be impossible to analyse the entire resection margin of a

specimen within a clinically relevant time.

Mo et al. obtained measurements from normal and dysplastic cervical tissue with
HWN RS 2?72, They observed that Raman intensities at the OH band region of
3100-3700 cm! was significantly higher in dysplastic tissue, indicating that water

content was higher in the dysplastic tissue compared to normal cervical tissue,
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and this was used in the diagnostic algorithm along with changes in the

protein/lipid region of 2800-3050 cm™ to differentiate between normal and
dysplastic tissue. However, signal intensity alone may not provide quantification
of water changes as they can be affected by other changes in optical properties
such as scattering or absorption and water concentration changes alone were
not calculated, so the contribution of changes in water concentration to the

diagnostic algorithm cannot be assessed.

1.4.6 Differentiating normal from cancerous tissue using water with HWN RS in

breast cancer

HWN RS has been used to differentiate between normal and cancerous breast
tissue in mammary rat tissue 271, In this study, measurements were taken in vivo
transcutaneous, in vivo skin removed and ex vivo biopsy from 20 rats. The in vivo
skin removed and ex vivo biopsies demonstrated that the intensity band
associated with lipid structures (at 2854 cm , 2895 and 3010 cm) was higher
with normal tissue than with cancerous tissue, and the protein band at 2937 cm-
1 was higher in the cancerous tissue. It was also noted that the water signal at
3100-3500 cm* was higher in cancer tissue than in normal and benign tissue
(Figure 1-20), consistent with there being less lipid and more water in cancerous
tissue compared to normal breast tissue. However, the analysis used the intensity
band associated with the proteins and lipids and did not include the signal
contribution from the water peaks, so the changes in water peak were not
statistically analysed. Spectra were analysed by Principle Component Analysis
and LDA analyses with cross-validation which demonstrated a sensitivity and
specificity of 100% of distinguishing normal from cancerous tissue in the ex vivo
biopsy tissue. However, the diagnostic role of the differences in water content
between the normal and cancerous environments cannot be determined. Another
limitation is that HWN RS changes in induced tumours in rats may not be relevant

to spontaneous tumours in humans.
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Figure 1-20 Figure of Raman spectra showing the mean spectra of normal and cancer tissue in a
selected HWN region for Ex vivo biopsy for normal (EVNT) and cancerous (EVCT) breast tissue from
rats.

Reprinted by permission from Springer Nature GmbH: Springer Nature, Theoretical Chemistry Accounts,
High-wavenumber FT — Raman spectroscopy for in vivo and ex vivo measurements of breast cancer, A F
Garcia- Flores, L Raniero, R A Canevari et al., 2011 271

Abramczyk et al. aimed to investigate the vibrational features of the OH water
stretching bands using Raman Spectroscopy and HWN RS in human breast
tissue. Bulk samples of fresh breast tissue were analysed in a controlled
humidified environment in a reservoir of aqueous salts. Initial experiments
confirmed that in human breast tissue, water was a major discriminatory factor in
differentiating normal from cancerous tissue with HWN RS, and that cancerous
breast tissue had a higher water content and less lipid than normal breast tissue
297 (Figure 1-21). Subsequently they interpret the vibrational features of water in
breast tissue to represent interfacial water, and note that the lack of water in
normal breast tissue is likely due to the hydrophobic adipose tissue, which is not
present in cancerous tissue 2%, There were limitations to this work as the
specimens were selectively sampled, highly pre-processed and measured under
controlled laboratory conditions. There was no summary presentation of the
results from all measured samples, and no statistical analysis of the diagnostic
ability of the HWN RS data to differentiate between normal/abnormal breast
tissue, therefore variations between patients or an assessment of the technique
for clinical use cannot be done. Therefore, whether these HWN RS findings are

found in the in vivo or clinical setting with ex vivo tissue is yet to be evaluated.
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A recent, more clinical, study by Liao et al. has used HWN RS in fresh frozen

breast tissue to ‘screen’ specimens of human breast tissue for areas of potential
tumour prior to using the FP region for definitive diagnosis 2°°. The technique did
show promise at highlighting some areas of potential tumour in specimens,
however, there were a number of limitations. The background fluorescence of
breast tissue was high with the laser excitation they used for obtaining the HWN
region (671 nm) which resulted in no spectral information being gained regarding
protein or water signals. This meant the ‘screening’ tool assessed for the
presence or absence of lipid only, with no further biochemical information from
the HWN region. From the current literature, the difference in water content
between tumour and non-tumour tissue may be essential for diagnosis, and this
is not assessed in this study. The study was also performed on a, presumably,
small number of specimens as no sample size is given, with no statistical
assessment of the technique’s accuracy in terms of sensitivity or specificity,
meaning the diagnostic ability of HWN RS remains unassessed, and the clinical

relevance of the technique cannot be determined.

Lipids
1.0

cancerous bulk breast tissue

0.8+

0.6

0.4+

0.2+

Raman intensity, counts/s

non-cancerous bulk breast tissue

0.0

s , . . . . . : ; .
2500 2750 3000 3250 3500 3750
Wavenumber, cm™

Figure 1-21. HWN Raman spectra of normal (non-cancerous), and cancerous human breast tissue
(infiltrating ductral carcinoma) compared to the bulk neat water in bulk tissue.
Note the difference in the signal intensity of the OH stretching vibration of water in cancerous tissue

compared to that of normal tissue. Reproduced from reference 2%7.

1.4.7 Summary
From review of the available literature, cancerous breast tissue has a higher

water content than normal breast tissue, and this may be used as a discriminatory

93



feature in differentiating normal from cancerous breast tissue. However, looking
at water alone shows that water content varies between patients, and even within
patients depending on hormonally influenced factors. There is an inverse
relationship between water and lipids which has been demonstrated in cancerous
tissue, that is, that cancerous tissue has a higher water content and lower lipid
content compared to normal breast tissue, and this may also be useful for
discriminatory diagnosis.

Studies using techniques other than RS utilising the changes in water content or
a fat to water ratio for diagnosis have predominantly had a small study sample
size and been in vivo; specimens that require intraoperative margin analysis are
likely to be freshly excised ex vivo, and are likely to have different hydration
properties due to their lack of blood supply. Studies using the HWN region,
looking at water content for diagnosis, have been limited to rats or highly
experimental conditions, the protocols being of little relevance to translating this
knowledge to the clinical environment.

As a solution to the limitation of fingerprint RS of time taken to analyse a sample,
it is proposed that the potentially quicker technique of HWN RS and investigating
the potential of water and/or water to fat ratio changes in discriminating normal
from cancerous breast tissue may be able to provide intraoperative margin

analysis of surgically excised breast specimens.
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CHAPTER 2:
Developing a Raman system for
intraoperative margin analysis

2.1 Introduction
Although a Raman Spectroscopy (RS) system will share the common basic
components as outlined in previous sections, each system is unique and tailored
to the aims of the experiment, specimen to be measured, and the environment in
which it is being used. The initial stage of the project was to develop a RS system
capable of obtaining measurements from breast tissue to elucidate the
biochemical features in the High Wavenumber (HWN) spectral region of normal
and cancerous breast tissue. These spectral features need to be defined and
diagnostic processes validated before the technique can be used for
Intraoperative Margin analysis (IMA).
Therefore, the requirements for our RS system were:

e Ability to measure the HWN region Raman spectrum

¢ Ability to quantify changes in the water concentration and fat/water ratio

e Suitable for use in ex vivo breast tissue specimens

e Suitable for use in the clinical environment

¢ The footprint of the system needed to fit within the space allocated to it in

the hospital, where the clinical measurements would be taken

This chapter demonstrates the development of a Raman probe that fulfils these
needs. Breast tissue phantoms were used to assess the ability of each potential
Raman system to measure the HWN region and obtain accurate water
measurements. Potential clinical/logistical problems that may be encountered
during measurements were then tested, to ensure the Raman system was
capable of obtaining high quality measurements in breast tissue within the clinical

environment.
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2.2 Materials and Methods

2.2.1 Measured materials

Breast Tissue Phantoms

Tissue phantoms are used extensively in Raman Spectroscopy for the technical
development of RS systems and to provide a ‘proof of concept’ ability of systems
to take accurate measurements prior to using that system in a clinical
environment. The simplicity of a tissue phantom in a controlled laboratory
environment underestimates the difficulty of achieving similar measurements in
a complex tissue sample in a clinical environment, however, they are useful to
validate basic functionality of a system. A variety of phantoms may be used to
assess different aspects of the intended Raman measurements. Previously used
tissue phantoms in the field of spectroscopic breast cancer diagnostics include
porcine tissue 3%, chicken breast 2%, soybean oil and water 3%, a solidifying agent
TX151 with water, oil and surfactant 3°3, pure gelatine and water phantoms 394,
and gelatine, water and intralipid phantoms 278, A single simple phantom cannot
be constructed that replicates the exact spectroscopic properties of the real tissue
specimen. The phantoms used in this chapter are Gelatine, Gelatine/intralipid

constructed phantoms, and pork meat.

The initial challenge is to identify the tissue composition and physiological
concentrations the tissue phantom is attempting to mimic. Breast tissue is
primarily composed of epithelial tissue and stroma (protein), adipose tissue (fat)
and water 284, From an MRI study (with a small sample size of n=8) it was
predicted the breast was composed of 67% fatty tissue and 33% parenchymal
tissue 295, however this was with a wide degree of inter-subject variation. A more
recent MRI study of 306 women suggests the range of fatty tissue is from a mean
of 53% in women with a mean age of 50.9 to 71% in women with a mean age of
20.8. The water content of normal breast tissue has been estimated to be around
27% with Diffuse Optical Spectroscopy 3%, 40 — 60% with NIR spectroscopy 2,
and around 20 — 80% with MRI 220 demonstrating a very wide range in the
composition of breast tissue. Breast composition varies significantly between
women in terms of mammographic density (ranging from fatty breast to dense
and homogenous 3°7) and water content 284, and within a women'’s lifetime due to
hormonal factors such as pre/post menopause, Body Mass Index (BMI), time of

menstrual cycle and exposure to the combined oral contraceptive pill 280 282, 284,
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Due to these large variations in absolute differences, looking at the change in
ratios between breast tissue constituents has been used for diagnostic purposes.
Previous work using MRI and Diffuse Optical Spectroscopy has demonstrated
that the differing ratios between water and fat relate to the differences observed
in breast tissue density?8%, and breast tissue composition changes were observed
with increasing age, menopausal status and Body Mass Index (BMI) 284, Previous
work in Raman Spectroscopy using the fingerprint region has demonstrated that
the differing ratio between collagen (protein) and fat differentiated between
normal, fibrocystic changes and cancerous breast tissue 180 262, Ship et al.
identified major spectral features in normal breast tissue as corresponding to

collagen and other proteins in stromal tissue and lipids in fatty tissue 8°.

This suggests that protein, fat and water are the major constituents in breast
tissue that can be examined for determining differences in breast tissue
composition and disease (such as cancer) that can be readily measured with
Raman Spectroscopy. These constituents are the primary biochemical signals
that can be detected with HWN RS 105, Therefore, the breast tissue phantoms
were composed of these constituents, with the ability for the ratio between them

to be changed.

Justification of type of Breast Tissue Phantoms used

Gelatine based tissue phantoms are attractive in preliminary work due to their
simplicity and the ability to set solid in the shape of the mould, which means that
any physical logistical aspect of measurements could also be assessed.
Constructing phantoms are preferable for initial experiments compared to meat-
based phantoms because they are homogenous, the phantom constituents are
known and the percentage water concentration and the phantom constituents is
a known entity. This is a necessary attribute for the tissue phantom in measuring
the ability of the RS system to measure in the HWN region and the ability to
guantify changes in water concentration. A previous study by Masson et al.
demonstrated the ability of gelatine phantoms to reproduce physiological levels
of water concentrations, the HWN Raman spectral profile of the phantoms and

the ability to accurately detect changes in water concentration 30 (Figure 2-1).
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Figure 2-1 HWN Raman spectra from a set of gelatine phantoms of different water concentrations.
Spectra were normalised to the protein peak at 2940cm. Reproduced from reference 3°* Reproduced by

permission of The Royal Society of Chemistry

Gelatine based phantoms can also be constructed to be more complex, and set
with the addition of a lipid (such as Intralipid 278 398), and scattering agents such
as india ink3°® or nigrosin 278, Prior knowledge of the optical characteristics and
properties of these phantom constituents such as absorption 3% and scattering
308 as well as the biochemical properties such as the changes in bound versus
free water 2’8 with gelatine concentration makes them a well understood and

reliable tissue phantom.

There are some limitations of intralipid /gelatine based phantoms. The lipid
concentration cannot reach the physiological concentrations of the high fat
concentrations found in breast tissue, as intralipid is only 20% soyabean oil (fat).
As an oil and predominately unsaturated fat that is liquid at body temperature, it
may have very different characteristics to that of the complex fat composition of
human adipose tissue that is solid at body temperature 31°. The optical scattering
properties of intralipid may affect the Raman cross section of phantoms with a
change in intralipid concentration which could make it difficult to ascertain if it is
changes in fat content or scattering properties that are being measured 3%,
However, the simplicity in synthesising these phantoms makes them highly
reproducible and means previous findings are applicable to our own phantoms,
along with the ability to manufacture a variety of varying lipid/protein/water
concentrations means they are the optimal phantom to be used for preliminary

work with a Raman system investigating the HWN region.
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2.2.1.1 Method for Gelatine based Breast Tissue Phantom synthesis

Pure Gelatine Phantom

Different concentrations of gelatine phantoms were made by mixing gelatine
powder from Bovine skin (Sigma Aldrich,Germany) with distilled water to a final
total weight of 10 grams in a water bath at 55°C and stirred with a magnetic
stirring bar until completely dissolved (20 — 30 minutes) then poured into moulds
and cooled at 5 — 7 °C whilst covered to avoid evaporation for 12 — 24 hours
before measurement 312, Water concentrations achieved were 85%, 87.5%, 90%,
92.5% and 95% (Figure 2-2). These water concentrations were chosen as the
phantoms would not set with water concentrations of > 95%, and when water
concentrations of <82.5% were attempted the high concentration of gelatine led
to saturation of solution. Samples were kept in petri dishes with lids between

measurements to prevent dehydration.

95% 92.5% 90% 87.5% 85%

Figure 2-2 Photograph of the pure gelatine phantoms at decreasing water concentration

Complex intralipid/gelatine Phantoms

The same method was used for the construction of the complex intralipid/gelatine
phantoms. With a final weight of 10 grams, a fixed weight of gelatine (1 gram)
and india ink (2ul)(Fischer Scientific,Pittsburgh,USA) were used in varying
amounts of distilled water and Intralipid 20% (Fresnius,Frankfurt,Germany) with
final compositions and predicted fat and water % shown in Table 2-1. Figure 2-3
shows the complex phantoms. Intralipid is composed of 20% soyabean oil, which
is 100% lipid, and 3.45% other constituents (egg yolk and glycerine) 313, and the
remainder is water allowing for the calculation of the total fat concentration and

water concentration.

In order to produce complex phantoms analogous to breast tissue the scattering
and absorption qualities had to be considered. Intralipid is a scattering fat
emulsion, the scattering coefficient changing with the intralipid concentration3*.

As the priority with these tissue phantoms was to provide a varying range of fat
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concentrations, a range of intralipid concentrations (including high concentrations
of 90%) were measured rather than attempting to reproduce physiological levels
of scattering 3!4. India ink was used to provide an absorber, concentrations in
which (0.2ul per ml) had been previously used in similar work with intralipid
phantoms 3%, As these were not deep Raman measurements, the importance of
physiological scattering and absorption coefficients are less, and are unlikely to
affect the results, however they are considered as deep Raman measurements

may have been taken later in the project.

NAME OF INTRALIPID WATER GELATINE TOTAL OTHER CALCULATED
PHANTOM (ML) (ML) (GRAMS) FAT CONSTITUENTS  WATER
(%) (%) CONCENTRATION
(%)
IL 10 1 8 1 2 0.345 88
IL 30 3 6 1 6 1.035 83
IL 50 5 4 1 10 1.725 78
IL 70 7 2 1 14 2.415 73
IL 90 9 0 1 18 3.105 68

Table 2-1 Table showing the constituent parts of the complex intralipid/gelatine phantoms
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IL 10 1130 IL 50 IL 70 IL 90

Figure 2-3 Photograph of complex gelatine phantoms with increasing concentrations of intralipid

Bovine Serum Albumin (BSA)

BSA and water solutions were made to provide a standard against which to test
the performance of gelatine phantoms. BSA (Sigma Aldrich,Germany) and
distilled water solutions were made to a total weight of 1 gram to make solutions

of final water concentrations of 95, 90, 85, 80, 75 and 70% by weight.

2.2.1.2 Recreating the challenges of the surgical environment

Introduction

After establishing the ability of the Raman system to accurately measure the
HWN region, the suitability for use in measuring fresh breast specimens with a

view to IMA needs to be evaluated. Other optical techniques which have shown
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scientific promise have had issues with measuring fresh samples in the clinical
environment, such as optical coherence tomography that could not gain a signal
in specimens that had been contaminated with blood or encountered cauterised
tissue 1%, and previous work performed by the Stone group showed that blue dye
can affect Raman signal 31°. As these challenges would be encountered in any
clinical application of a Raman system for IMA, it was imperative we designed a

system that could function in the presence of these potential signal altering dyes.

Pork Tissue

Porcine tissue has been used extensively in previous Raman studies, as it
contains fat and muscle (protein) and thus grossly replicates the chemical
composition of human breast tissue 36, The obvious visible distinction between,
and the existence of areas that are almost exclusively, fat and proteinaceous
muscle tissue means these areas can be measured to assess spectroscopic
characteristics in these different tissue types. The benefit of using meat phantoms
IS to assess possible ‘real world’ clinical issues in obtaining measurements from
breast tissue, such as the effect of surgical dye 3%°, diathermy 37 and blood /

haemoglobin contamination?°? which is not possible with gelatine phantoms.

Pork chops with distinctive meat and fat portions were selected from local
supermarkets for measurements. They were measured fresh on day of purchase,
or frozen on day of purchase at -80 °C and thawed for 24 hours in a refrigerator
at 4 — 8 °C prior to measurements. Samples were kept in petri dishes with lids

between measurements to prevent dehydration.

Patent Blue Dye

Patent blue dye was used to evaluate the ability to obtain Raman measurements
in the HWN region in tissue that had been stained with Blue dye. Blue dye is used
in the dual localisation technique as recommended by NICE for performing
sentinel lymph node biopsy 6. Blue dye is injected and travels within the
lymphatic system to identify the first or ‘sentinel’ lymph node that drains the breast
undergoing surgical excision. The theory is that if the cancer has spread into the
lymphatics, it will be to these sentinel nodes first — thus if the sentinel nodes are
negative, it is unlikely any other axillary lymph nodes have metastatic cancer 8.

Blue dye is used in all sentinel lymph node operations which are carried out within
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the breast cancer excision operation. Blue dye is injected under the nipple
subdermally, and thus frequently stains the breast tissue that is excised, with the
potential to affect Raman measurements. Patent Blue V sodium salt (Sigma
Aldrich, Germany) was dissolved in distilled water to achieve a 1% concentration
and was applied to pork tissue. Methylene blue and patent blue dye are both used
in sentinel lymph node operations, at concentrations of 1 — 2.5%38, the
concentration of staining on the actual breast tissue varies widely according to
site of tumour, site of injection, length of operation, handling of specimen so the
amount of staining on the tissue was based on a judgement of whether the
amount looked similar to the degree of staining during breast operations (Figure
2-4).

o
B 5 5
§

Figure 2-4 Photograph of pork fat (left) and meat (right) that have been stained with 1% patent blue
dye.

These specimens are as heavily stained as breast tissue specimens can be during a breast operation.

Blue dye Gelatine phantoms

To further investigate and quantify the effect of blue dye on the ability of Raman
systems to obtain Raman spectra, blue dye gelatine phantoms were produced.
90% water gelatine phantoms were produced as previously described, with blue
dye pipetted into the gelatine/water mix prior to stirring and cooling at a final

concentration of 0.01% or 0.1%.

Diathermy

During breast operations, electrocautery diathermy is used in the excision of
breast tissue. This can lead to burning / carbonisation of the breast tissue, and
on histological examination of the tissue can cause significant ‘diathermy
artefact’. This is where diathermy limits the assessment of the margins of the
excision due to carbonisation and distortion of cellular architecture3!°. Therefore,
this problem is not limited to optical techniques and negatively impacts the ‘gold
standard’ of histopathology, however, it is important to recognise its effect on
Raman spectra so it can be accounted for. A soldering iron was used to burn /
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carbonise edges of pork tissue to replicate this, and assess if there was any effect
of burnt /carbon on obtaining HWN Raman measurements (Figure 2-5). Pork fat
simply melted when using a soldering iron — which does occur during breast

operations, so only carbonised pork meat was measured.

Figure 2-5 Pork meat that has been burnt with some carbonisation evident

Haemoglobin

Blood is another pigmented substance that is frequently present on surgically
excised specimens which may be Raman active and interfere with obtaining
Raman measurements.

Haemoglobin is the major pigmented constituent of blood, and is known to have
be Raman active in the fingerprint region, and to a lesser extent in the HWN
region 32°, however work has mainly been with visible light laser such as 532nm
excitation. Normal adult haemoglobin concentrations in venous blood are 13-17
%, however, the concentration on a surgically excised specimen is likely to be
less as whole blood is mixed with melted fat, blue dye and tissue fluid. To assess
the potential for blood contamination of surgically excised specimens,
haemoglobin (Hb from bovine; Sigma Aldrich,Germany) was dissolved in distilled
water to achieve concentrations of 7.5%, and the porcine tissue soaked in the

haemoglobin solution until measurement (Figure 2-6).

Figure 2-6 Pork meat stained with Haemoglobin solution

Specimen coverings
In order to take repeated measurements, and measurements with the same

probe on a number of different samples, the probe which is interacting with the
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specimen must be able to be cleaned or disposable, to prevent cross-
contamination or tumour seeding leading to inaccurate histopathology results.
The Raman needle probe used for measurements has the fibre optic needle
recessed within a hypodermic 22G needle. Theoretically this means the probe is
capable of having a disposable needle tip, or a needle that can be cleaned while
not disturbing the optical components. It is also possible to construct a single —
use needle probe cover which would also ensure cleanliness. However, for
experiments taking surface measurements from breast specimens, this would
introduce unnecessary time delays and costs to each measurement. A simple,
disposable barrier such as Clingfilm between the needle tip and the specimen to
be measured would ensure no cross-contamination and be more cost-effective.
Measurements were taken of pork meat and fat with and without a covering of
clingfilm to investigate if this affected the Raman signal.

2.2.2 Raman Spectroscopy equipment configuration and spectral acquisition

2.2.2.1 Raman Microspectroscopy

Preliminary measurements on gelatine phantoms to confirm method of data
analysis for future Raman systems, and to validate gelatine phantom construction
reliability were taken on a Renishaw InVia confocal spectrometer system
(Renishaw, UK). Measurements were taken using a NPlan objective (Leica,
Germany) with magnification X50. An excitation source of a 785nm laser was
used with an output of 300 mW to collect spectra in the wavelength range of 2100
— 2750 cmL. Calibration of the system was performed daily with silicon, green
glass, PTFE and Neon Argon lamp. Point measurements were acquired with an

exposure time of 5 seconds with 12 accumulations.

2.2.2.2 Needle Raman probe

For all other Raman measurements, a Raman needle probe was used. It has
been developed, and is similar to, a previously described needle probe 4. The
purpose of such a probe is that, as it fits within a standard hypodermic needle, it
can be used to probe within biological tissues, with a view to having in vivo
diagnostic use and real time subcutaneous pathological diagnosis. This probe
was used at this stage of the project as it can provide measurements from small

and specific areas of specimens which could then be subsequently matched with
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the histopathology, allowing an accurate diagnosis. With this approach, spectra

can be gained from normal and cancerous tissue.

The needle probe is not suitable for performing IMA, however it allows this
preliminary work to be carried out. Once the diagnostic algorithm has been
validated, a probe that is suitable for analysing the resected surface of a breast
tissue specimen can be developed. We envisage this would use the same
experimental set up with a different probe for light delivery and collection more
suited to assessing a large surface. The basic ability to differentiate between
normal and cancerous tissue using HWN RS, which is this project’s aim, would

underpin the ability of this probe to provide IMA.

The needle probe is pictured in Figure 2-7, it is a standard stainless steel 22
gauge hypodermic needle which provides protection to the fibres, and allows
cleaning between specimen measurements. Within this probe is a bundle of low-
OH silica optical fibres stripped of coating (0.22NA, Thorlabs), arranged as 6
collection fibres around 1 excitation fibre. This gives an area of collection of 5.19
X 10% pm?2.

Figure 2-7 A picture of the needle component of the Raman needle probe which delivers and collects
light to the specimen for Raman analysis.
Covered fibres can be seen entering the unit at the tip, where they are then uncovered and pass down the

needle to tip.
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Over the course of the project, some of the collection fibres became dirty or broke,
giving poor signal, the data from these fibres was omitted from analysis. The

number of working fibres ranged from 1 — 6.

The exact equipment used is specified in each section for each potential Raman
system, but all were configured in the same basic way as depicted in Figure 2-8.
Excitation was delivered at either 680nm or 785nm delivered by an IPS spectrum
stabilised laser module (Innovative Photonic Solutions,USA) through either a
680nm or 785nm laser clean up filter (Thorlabs,NJ,USA) and 830nm edge filter
to the needle tip, providing a maximum power of 100 mW at 680nm or 250mW
at 785nm to the sample. The light was then collected through the collection fibres
through to the entry port on the spectrometer - Kaiser Holospec Imaging
Spectrograph (Kaiser optical systems inc, Ann Arbour,USA) with a broad grating
which is coupled to a camera — either a deep-depletion Charge — Coupled Device
(CCD) camera (PIXIS 400 BRX, Princeton Instruments, NJ, USA)

thermoelectrically cooled to -80°C or an InGaAs camera (iDus InGaAs 1.7um,

Andor, Belfast, UK) cooled to -85°C using water cooling (Julabo, Germany).

laser filter

Excitation

Needle tip

Collection Fibres

Edge filter

Figure 2-8 Schematic diagram showing the Raman needle probe set up, modified from ref 164,

Sample measurements

Breast tissue phantoms were placed on a PTFE block (which has no discernible
spectra in the HWN region) and measured with the tip of the Raman needle probe
in contact with the specimen. The acquisition times and number of accumulations
varied according to the Raman system, and are detailed in the corresponding

sections. All phantoms were measured in three different places to provide a
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representative result for the whole phantom, and to ensure any heterogeneity in

the phantom constituent concentrations was identified.

2.2.3 Calibration

Calibration in Raman spectroscopy is the process that is used to correlate the
observed spectral frequencies to their true values. Calibration is essential in
performing Raman spectroscopy because no two Raman instruments measuring

the same sample would give identical raw spectrum without calibration.

The need for calibration is due to the large number of sources of variation
between measurements, such as temperature, and between instruments, such
as alignment of optical systems, all of which effect the raw spectrum. These
variations can cause errors leading to miscalibration of the instrument, and
discordant results. Within the literature, the Raman shift values that are reported
and taken as standards, can vary significantly; for the example of ethanol in the
HWN region there was a difference of 2-5 cm between different labs 321 322,

which is not uncommon 323,

Common sources of variation are32*;
- Rotation of spectrograph diffraction grating or CCD
o Spectrographs allow rotation to allow reading of different regions of
the spectrum, however a misaligned grating by even a small
amount is a potential source of error in calculating wavelength.
- Displacement of the camera
o An inadvertent change to the camera position (i.e. when replacing)
can cause a shift in camera pixels.
- Changes in laser excitation wavelength
o Although stable lasers aim to achieve a single coherent
wavelength, this can change over time, and can have an
appreciable effect on wavenumber calculation
o If using reference spectra that were gained from a laser with a
different wavelength to the one being used, it can affect the peaks

due to resonance effects323.
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- Temperature

o Not only is Raman scattering dependent on temperature, but
molecular structure is also influenced by temperature.

o The ambient temperature has a significant influence on the
camera’s detection of Raman scattering. At room temperature there
is significant thermally generated background noise which can
reduce the signal to noise ratio and the ability to detect Raman
scattering, and so deep cooling of the camera is necessary to

reduce this ‘Dark noise’.

Therefore, calibration is performed to ensure that there is internal validation — that
the same instrument will give the same result on different days, and external
validation — that different instruments in different places will give the same result.
This is essential if Raman spectra results are to be reproducible, interpretable

and informative.

Frequency Calibration with Raman shift standards

There is no universally standardised method of calibration for Raman
instrumentation, and so there are a number of methods to calibrate an instrument.
The most common method is to use wavenumber calibration based on known
frequency standards such as neon-argon lamps, as these standards have a well-
documented and wide range of spectral atomic emission peaks3?°. Another
calibration method is to use known frequency Raman shift standards. In this
method a substrate is used that has well characterised and documented peaks
that have an assigned Raman shift number, the substrate is measured under the
same conditions that the experimental samples will be measured under, and the
‘true’ peak values of the substrate are mathematically fitted (by a polynomial fit)
to the obtained pixel peak values 3%3. In this way the instrument’s Raman shift
axis can be calibrated. The benefits of this method are the laser frequency does
not need to be known, as long as it is constant, the sample position does not
influence the result, and it is easy to implement 3%, In these experiments, a
number of different laser wavelengths and lasers were used, and so it was
practical to use this method for calibration, to avoid repeated measuring of the

laser frequency.
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Finding a Standard

It is suggested that a wide number of at least 10 peaks with a broad range across
the interested region are used to optimise the accuracy of calibration across the
spectrum 323, The HWN region has fewer spectral features for shift standards to
be calibrated against compared to the fingerprint region, and so a number of shift
standards can be used at the same time in order to increase the range and
accuracy of calibration 324, The American Society for Testing and Materials
(ASTM) selected a number of materials that could be used as a common Raman
shift standard, and examined them in a reproducible manner in a number of
laboratories to provide the ASTM standard. Commonly used ASTM calibration
standards that have peaks in the HWN region are 4-Acetamidophenol
(paracetamol) and acetonitrile 323 324 327" and so these were used for our
calibration. Additionally, it was found that ethanol produced a clearly defined
spectrum in the HWN region, which remained easily distinguishable in the HWN
region when using a 785nm excitation wavelength (where the paracetamol
spectrum peaks became less distinct). To ensure there were enough spectral
peaks in the HWN region ethanol was also used as a calibration standard 32*.
The Raman system to be used for the measurements therefore was calibrated
using the frequency calibration method using the Raman shift standards of

paracetamol, acetylnitrile and ethanol.

Methods of calibration for the Raman Needle probe

Calibration was performed daily, or with any change of equipment. Using the
Raman needle probe system, measurements were taken of the calibration
standards for the relevant wavelength of either 680nm or 785nm. The calibration
standards were paracetamol (Tesco,UK), acetylnitrile (Sigma Aldrich, Germany),
and ethanol (Fischer Scientific,Pittsburgh,USA). A single acquisition was taken,
with an exposure of 0.5 seconds. The pixel number of the characteristic peaks
for each standard were identified and correlated to the ‘true’ Raman shift number
from the literature (Table 2-2). These were combined and entered in a table in
Microsoft Excel, and regression analysis performed to report the adjusted R
Squared and standard error of regression (as a description of fit) and to report
the y intercept and 15t, 2"d and 3" coefficient. These were then used to fit the pixel
number to the Raman shift number using a 3™ order polynomial from Equation
2-1:
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Raman shift, =1+ Cip + C,p* + C3p°

Equation 2-1 Equation adapted from reference 328
Where 1, = Raman shift of pixel p, | = Raman shift of pixel 0, C1 is the first coefficient (cm/pixel), Cz is

the second coefficient (cm-Y/pixel), Cz is the third coefficient (cm/pixel).

The degree of polynomial to use is a subject that has been debated, as the user
needs to avoid using too low a polynomial and underfitting, or using a high
polynomial and overfitting the data. A third order polynomial was used for fitting
as it is thought to be optimal for shift accuracy when compared to other order
polynomials for pixel fitting, and is commonly used 32% 330, This produced the
calibrated Raman shift axis for the experiments produced at that laser excitation

wavelength for that particular experimental session.

CALIBRATION TRUE RAMAN SHIFT CM? LASER WAVELENGTH
STANDARD UTILISED
PARACETAMOL 1278 785nm
PARACETAMOL 1323 785nm
PARACETAMOL 1371 785nm
ACETONITRILE 1374 785nm
ETHANOL 1463 785nm
PARACETAMOL 1515 785nm
PARACETAMOL 1561 785nm
PARACETAMOL 1648 785nm
ACETONITRILE 2253 785nm
ACETONITRILE 2293 785nm
ETHANOL 2887 785nm + 680nm
PARACETAMOL 2931 785nm + 680nm
ETHANOL 2937 785nm + 680nm
ACETONITRILE 2943 785nm + 680nm
ETHANOL 2983 785nm + 680nm
PARACETAMOL 3064 785nm + 680nm
PARACETAMOL 3102 680nm
PARACETAMOL 3326 680nm

Table 2-2 Table demonstrating the Raman shift references used for calibration of the Raman shift
axis, and the laser wavelength for which they were utilised.

The reference spectra were paracetamol, acetonitrile (both reference 33) and ethanol 321,
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2.2.4 Data recording and Analysis

Raman spectra were recorded using LightField software (Princeton Instruments,
USA) when using a Princeton Instruments camera, or SOLIS software
(Andor,UK) when using an Andor camera. Raw data was exported and analysed
using software Matlab R2019a(The MathWorks Inc, USA). Bar graphs were

constructed in Microsoft Excel.

Pre-processing

The calibration protocol for the Raman Needle probe is described in the previous
section, which allowed the x-axis of Raman shift to be correctly aligned.

As previously mentioned, the number of working fibres within the Raman needle
probe varied between 1 and 6 and only spectra from working fibres was included.
Within each fibre, accumulations were summed together, and then summed to
the output from the other fibres within that measurement to create a single spectra
for each measurement. All data were baseline subtracted to remove background
fluorescence using a 15t order polynomial using the lowest count at the beginning
of the HWN region, and the end of the HWN region. As we were interested in the
protein/fat to water ratio, for visualisation purposes, spectra were then normalised
to the CH2 peak at 2935 cm™, and the average and standard deviation of the
triplicate readings calculated. This allowed visual comparison in the water spectra
to be made between samples of varying water content.

Calculation of water content

A central idea to this project is the differentiation between normal and cancerous
tissue using water content. As outlined in Chapter 1, previous studies
demonstrate that breast cancer tissue has more water than normal breast tissue,
and that changes in the fat/water ratio can be used to differentiate between
normal and cancerous breast tissue 2°: 291, |t would be useful if we could not only
identify changes in water content using Raman spectroscopy, but quantify what
those changes are, and provide estimates of water concentration. This would
allow any results to be compared with results gained from other spectroscopic
methods such as DOS %2, and compared with other Raman studies investigating
water concentration changes in other disease states 74. A peak assignation table
for the protein /fat CH stretch region is displayed in Table 2-3 and for the water

OH stretch region is displayed in Table 2-4.
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TYPE OF APPROXIMATE MOLECULAR REFERENCE

TISSUE PEAK LOCATION INTERACTION

RAT BREAST 2817-2849 CH_ symmetric B 27

TISSUE stretch of lipids

HUMAN /RAT 2854 CH: (breast) 207 211

BREAST

TISSUE

2840 - 2875 CHs symmetric 103 2r1

stretch of lipids

HUMAN /RAT 2888-2895 CH3 Lipid (breast) 207 211

BREAST

TISSUE

COLLAGEN 2928-2945 CHs Protein 332 333

TYPE | (Collagen Tpe 1)

HUMAN SKIN 2910-2966 CHgz Protein (Human 2%
Skin)

HUMAN SKIN 3329 NH 304 333

Table 2-3 Table demonstrating peak assignation for the HWN Raman spectroscopy CH stretch region

in a variety of human tissues

APPROXIMATE HYDROGEN MOLECULAR REFERENCE
PEAK LOCATION BONDING INTERACTION
SCHEME
3075 DAA Fully hydrogen 304
bound
3200-3250 O-H symmetric Bound water 334 207
stretch
3245 DDAA Fully hydrogen 304
bound
3400 - 3450 OH asymmetric Unbound water 334 297
stretch
3420 DA Partially hydrogen 3%
bound
3550 DDA Partially hydrogen 3%
bound
3650 - Free water 304
3600-3650 O-H non hydrogen  Free Water 334

bonded

Table 2-4 Peak assignation table for the HWN Raman spectroscopy OH stretch region
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The spectral intensity of a Raman peak is often proportional to the change in
concentration of the molecule assigned to that peak i.e. if a substance has more
of a molecule then that assigned band will have a higher spectral intensity than a
substance that has less of that molecule, and this can be used for diagnostic
purposes 232, We could presume that (using BSA/water mixtures analysed with
the InVia spectroscope as per the protocol in 2.2.1.1 as an example) the peak
height of the OH stretch of water at 3390 cm™ should change proportionally to
the water concentration (measuring the peak height relative to the baseline, as
previously described in reference 2%?). Figure 2-9 demonstrates that this is not the
case, and the maximum peak intensity for the OH stretch region does not vary
significantly (one-way ANOVA comparison of means, P>0.05) with a changing
water concentration. This suggests that another method is needed for quantifying

changes in water concentration.

|

o

o

o
T

95 90 85 80 75 70
% water

Figure 2-9 Bar chart of maximum Raman spectral intensity at 3390 cm™ at different water

concentrations calculated by BSA/water mixtures.

Bars are average of triplicate readings +/- SD.

The majority of other studies quantifying water content changes with HWN
Raman spectroscopy have been studying protein rich tissues. Huizinga et al.

used the ratio between the Raman intensity at the CH stretch of protein at 2935
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cm® and the OH stretch of water at 3390 cm in a range of protein/water solutions
(including BSA) at similar concentrations of 10-35% water to calibrate and
quantify the water concentration in rabbit eye lenses 2°. A similar method using
spectral intensity was used by Bauer et al. which used traditional methods of
drying and lyophilization to confirm the accuracy of this technique to within 3%
accuracy 3%. Both of these techniques are dependent on a single intensity
reading at the protein peak, which although may be present in fat-laden breast
tissue, the relationship between this sharp peak, and the broad multiple peaks of
lipid in breast tissue (which is between 2854 — 2940 cm-* 336) is unlikely to be so
simple or linear. Caspers et al. used an area under the spectral interval method
to calculate the water content in skin, and went on to use it in their work on oral
SCC 228295 They calculated the ratio of the area under the curve of OH stretching
(3350 — 3550 cmt) and the area under the curve of CHs stretching (2910 —
2965cm™?) and used BSA solutions to find the proportionality constant that related
the ratios before applying the method to skin specimens. Although this area-
under-the-curve method is attractive as it could be broadened to include lipid
regions, the overlap between the protein (2910-2965 cm™) and lipid regions
(2854-2940 cm?) in the HWN region mean distinction between measuring protein
or lipids would be arbitrary. It also uses a specific assignment of the OH stretch
of water, whereas water has a much broader range of Raman activity from 3189
— 3770 cm™ 3% and so changes in water spectrum might not be truly reflected by

choosing a narrow part of the spectrum.

A more complex model has been suggested using a training set of brain tissue,
which has some lipid content. Raman spectra were measured in the training set
of wet tissue which was then dried and repeat measurements taken, a PLS model
was then applied and achieved good diagnostic accuracy on the test set 294,
However, this method requires access to tissue which would not then undergo
pathological analysis for the training set, as it would undergo severe dehydration
which may affect diagnosis. This limits its practical use, where this excess tissue

may be difficult to obtain.

A method based on area under the spectral curve, whilst avoiding using specific
spectral bands was proposed by Masson et al. 3%, In this study they were using
the HWN region to study water concentration changes in cervical remodelling,
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where they used the ratio of the area under the water curve (3035 — 3680 cm™)
to the under the area under the entire HWN region (2850 — 3680 cm™) to predict
water concentration and validated it against wet and dry weights. The reason for
using these areas was because cervix remodelling includes significant changes
in lipids, and this was captured using this approach, suggesting its suitability for
fatty breast tissue. This method also uses all the information from the water peak
in its calculation, thus can take into account the varied contributions to the HWN
Raman spectra different states of water give. Although this method was validated
in protein only (with gelatine/water phantoms), it was subsequently used in lipid
containing biological tissue to observe changes in water content. As this method
is the only validated method that takes into account the lipid signal, and takes
into account the entire water spectrum, this method was used in this project for

calculation of water content.

Method of water calculation

In the preliminary breast phantom studies, the relationship between the
water/total area ratio and known water concentration was investigated. The area
under the curve of the water curve (3035 — 3680 cm™) and the area under the
curve of the entire HWN region (2850 — 3680 cm™) was calculated, and the
water/total area ratio calculated. This ratio was then plotted against the known
water concentration (as a ratio) of the breast phantom on the x axis, a 15 order
polynomial (line of best fit) was then calculated to assess whether the relationship
was linear. This line was also used to calculate the gradient and the y intercept,

and the Root Mean Square Error (RMSE) as an indicator of fit.

Statistical analysis
Data is displayed as mean water/total area ratio with error bars +/- 1 standard
deviation (SD). Comparison of mean water/total area ratios was performed using

one-way ANOVA test. Statistical significance was set to P<0.05.
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2.3 Evaluating Breast phantoms and data analysis procedures

The InVia microspectroscope was used to assess gelatine phantoms to test the
method of data analysis and to evaluate gelatine phantom reproducibility and
reliability. The InVia was used for this as it is a fixed, closed, laboratory system
which has a defined calibration protocol. Therefore, it allows for easier
comparison between experiments, and is a validated piece of equipment. It
means any unexpected results or variations can be assumed to be in the
phantoms measured, whereas in an unvalidated, open system which is more
dynamic such as the needle probe, unexpected results could be due to system

set up / calibration rather than the phantoms.

Evaluation of data analysis protocol for measuring water concentration

As already outlined in the previous section, raw water peak intensity does not
vary between different concentrations (Figure 2-9 and Figure 2-10 A). However,
when the data is normalised to the protein peak, it demonstrates that there is a
relative and linear change in the relative water intensity compared to the
normalised protein intensity with a change in water concentration i.e. with a
decrease in phantom water concentration there is a decrease in the relative
intensity of the water peak (Figure 2-10 B). In order to quantify this change in the
ratio between the protein and water peaks, the water/total area ratio was
calculated. A graph was then plotted to show the relationship between the
water/total area ratio and known water concentration of the BSA/water solutions
(Figure 2-11). It shows that the relationship is linear, however it is not directly
proportional.
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Figure 2-10 Graph showing Raman spectra in the HWN region of different concentrations of
BSA/water solutions.

Data is mean of 3 repeats for each concentration and baselined using 15 order polynomial. A. raw spectrum
— the peak intensity of the water peak between 3100-3700 cm™ does not vary according to water
concentration. B Spectral data normalised to protein peak at 2935 cm-1- the relative intensity of water peak
decreases corresponds with a decrease in water concentration. Data is the mean (n=3) at each
concentration after baselining using 15t order polynomial, shading in the same colour either side is +/- 1SD.
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Figure 2-11 Graphs showing calculation of the water/total area ratio in BSA/water solutions with the
InVia spectrometer.

A. Representative baselined Raman spectra of 95% water gelatine phantom showing the areas used for
calculation of water concentration. Yellow area is the area under water curve of 3035 — 3680 cm'?, orange
area is the area under the rest of the HWN region 2850 — 3035 cm™. Area under water =yellow area; total
area = yellow + orange area. B. Graph plotting mean water / total area ratio versus known water fraction of
a number of different concentrations of BSA/ water solutions (n=3), Error bars +/- SD. A line of best fit
showed a Gradient = 1.9576; RMSE = 0.0285

The suitability of the method of using the water/total area ratio to calculate the
water concentration was tested. Gelatine phantoms of varying water
concentrations were constructed, measured in a similar way, and the water/total

area ratio calculated. The following equation was used to predict the water
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concentration of the gelatine phantoms, using information on the relationship
between water/total area ratio from the BSA/water solutions.
From Equation 2-2:
y=mx-+c
Equation 2-2
This can be re-arranged to produce Equation 2-3 :
—C
x = (yT) X 100

Equation 2-3
Where x = predicted water concentration %, y = water/total area ratio of the gelatine phantom, m = gradient
of the relationship between water/total area (1.9426), c =y intercept (-1.0609)

The results of this are in Table 2-5, and demonstrates that this method of
calculation of water content is highly accurate when using substances of protein
and water mixtures. It also demonstrates that the method for gelatine phantom

construction produces phantoms of the desired concentrations.

WATER CONCENTRATION OF WATER/TOTAL PREDICTED WATER
GELATINE PHANTOM (%) AREA RATIO CONCENTRATION %
95 ‘ 0.79376838 94.8334218
20 ‘ 0.71025914 90.5288215

85 ‘ 0.61007738 85.3648132

Table 2-5 Table showing the validation of using the water/total area ratio to calculate water
concentration.

The actual concentration of gelatine phantoms is based on the weight of water and gelatine, the calculated
water/total area ratio is from the baselined spectra from Raman measurements. The predicted water
concentration is calculated using the calibration graph from BSA data and Equation 2-3 to predict the water
concentration of the gelatine phantoms.

Having established that the water/total area ratio having been calibrated to
BSA/water solution was suitable for predicting water concentration in simple
protein / water mixtures, the method was used in complex phantoms. Complex
phantoms were constructed of intralipid, india ink, water and gelatine as
described in 2.2.1.1. They were analysed and the data processed in a similar way
to calculate the water/ total ratio. Equation 2-3 was used to predict the water
concentration of the complex phantoms (Table 2-6), which shows that although

there was a trend of decreasing predicted water concentration with decrease in

118



Chapter 2

actual water concentration, it is inaccurate, and that BSA/water solution cannot

be used to predict the water/total water area of complex phantoms.

NAME OF COMPLEX  ACTUAL WATER WATER/TOTAL PREDICTED WATER
PHANTOM CONCENTRATION (%) AREA RATIO CONCENTRATION (%)
IL50 ‘ 78 0.504 79.9
IL70 ‘ 73 0.1796 63.1

IL90 ‘ 68 0.115 59.8

Table 2-6 Table showing the actual water concentration of intralipid phantoms, the calculated

water/total area ratio, and the predicted water concentration based on the BSA/water calibration.

Reproducibility of breast phantom synthesis

If there is significant evaporation of water from phantoms during construction or
measurement, it could lead to large variations between experiments and
inaccuracies in measurements. If we are to regard the gelatine phantom as being
a reference point for a particular water concentration, it needs to be reproducible

and have a stable water content.

Three batches of gelatine phantoms of 95, 90 and 85% water concentration were
constructed and measured at three different time points. Figure 2-12 shows there
was no significant variation between experiments in the water/total area ratio
suggesting the construction of gelatine phantoms is highly reproducible, and
measurements within the same phantoms show minimal variation suggesting the

phantoms are homogenous in nature.
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Figure 2-12 Graph showing gelatine phantoms of the same water concentrations in 3 different
experiments and the water /total ratio.
Bars show mean water/total area ratio (n=3), error bars +/- SD. There was no significant difference in

water/total area ratio between experiments (P>0.05;one- Way ANOVA).

During experiments, the gelatine phantoms can be on the lab bench for a number
of hours. A gelatine phantom of 95% water concentration was measured at 0 and
4 hours and was at room temperature between measurements to demonstrate
that significant changes in water concentration do not occur during this time
(Figure 2-13).

o o o
»~ o o0

Water/Total ratio

o
[\

Time zero 4 hours later
Time of measurement

Figure 2-13 Graph showing the same gelatine phantom measured at time zero and 4 hours later.
Bars show mean water/total area ratio (n=3), error bars +/- SD. Student t-test demonstrated no significant

difference in water/total area ratio between time points (P>0.05).
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Discussion

These experiments demonstrate that the method for producing gelatine
phantoms produces phantoms of the desired water concentration. It also
demonstrates the suitability of the water/total area ratio for measuring changes
in the water concentration as the relationship is linear in both protein/water and
lipid/water mixtures. However, a protein/water mixture could not be used as a
reference to predict water concentration in complex phantoms of
lipid/protein/water. The reproducibility in construction and stability over time of
gelatine phantoms is also demonstrated.

2.4 Evaluation of Raman systems

2.4.1 NP1- 680 nm laser excitation

2.4.1.1 Raman system set up

The general needle probe Raman system set up is described in 2.2.2. The
following changeable components were used:

Laser excitation: 680 nm

Laser clean up filter: 680 nm

Camera: PIXIS 400 BRX

Measurement protocol: 1 second acquisition, 10 accumulations

2.4.1.2 Gelatine phantoms

The raw spectra obtained demonstrate a high background fluorescence at this
wavelength (Figure 2-14 A). After pre-processing, it can be seen that with a higher
water concentration there was a higher water peak compared to the protein peak
(Figure 2-14 B). Figure 2-15 A shows the areas that were used to calculate the
water/total area ratio. The water/total area ratio was calculated for all
concentrations of gelatine phantom and plotted against known water
concentration (Figure 2-15 B), which shows the relationship is linear, but not

directly proportional.
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Figure 2-14 Raman spectra of a range of varying water concentrations of gelatine phantoms
measured using NP1 Raman system.
A. Representative Raw Raman spectra at 5 different concentrations. B. Raman spectra after pre-processing.
Data is the mean (n=3) at each concentration after baselining using 1%t order polynomial and normalised to

the protein peak, shading in the same colour either side is +/- 1SD.
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Figure 2-15 Using NP1 to measuring water/total area ratio in gelatine phantoms

A. Raman spectra of 85% water gelatine phantom with areas highlighted that are used to calculate water
(yellow) / total (orange + yellow) ratio. B. Graph of water area/ total area ratio versus known water
concentration of a number of different concentrations of gelatine phantoms measured using NP1 Raman
system. Average ratio plotted (n=3), Error bars +/-SD. A line of best fit showed a Gradient = 0.4972; RMSE
=0.00048

2.4.1.3 Intralipid phantoms

Measuring intralipid phantoms in a similar manner, Figure 2-16 A shows that, in
normalised spectra, with a decrease in known water content there is a decrease
in water signal. It can be seen that the water peak has a different morphology to
that of the water peak observed in the gelatine phantoms. This could be due to
fluorescence in the intralipid phantoms. Calculation of the water/total area ratio

to known water concentration demonstrates a linear relationship (Figure 2-16 B).
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Figure 2-16 Demonstrating the ability to measure changes in water concentration in complex
intralipid phantoms measured with NP1.

A. Raman spectra after pre-processing. Data is the mean (n=3) at each concentration after baselining using
1%t order polynomial and normalised to the protein peak, shading in the same colour either side is +/- 1SD.
B. Calculated water/ total area ratio versus known water concentration. Average ratio plotted (n=3), Error
bars +/-SD, with a line of best fit. Gradient 0.7573, RMSE — 0.0050.

2.4.1.4 Recreating the challenges of the surgical environment

Pork meat and fat were analysed and compared to meat and fat that had been
stained with blue dye or haemoglobin, burnt or wrapped in clingfilm. No Raman
signal could be recovered from pork stained with blue dye or that had been burnt
due to fluorescence that obliterated all signal. Haemoglobin staining and clingfilm
covering did not make a visual difference to the Raman spectra (Figure 2-17),
and comparison of water/total area ratios between pork meat vs Hb stained meat
or clingfilm covered meat and between pork fat vs Hb stained fat or clingfilm
covered fat revealed no significant difference (P>0.05; one- way ANOVA).
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Figure 2-17 Results of measurements of pork phantoms with NP1.

Raman spectra of A. Pork meat and B. pork fat that had either not been treated, stained with haemoglobin
or wrapped in clingfiim. Data is the mean (n=3) at each concentration after baselining using 1% order
polynomial and normalised to the protein peak, shading in the same colour either side is +/- 1 SD.
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2.4.1.5 Discussion

These experiments with NP1 with 680 nm excitation demonstrate the ability of
this system to obtain spectra in the HWN region. Using the water/total area ratio
for both gelatine and complex phantoms shows a linear relationship, and
demonstrates that NP1 can identify measurable changes in water concentration.
Measuring pork tissue with haemoglobin and clingfilm covering did not
significantly alter Raman spectra. However, blue dye and burnt tissue caused

fluorescence that obliterated signal.

The large degree of fluorescence caused by burnt / carbonised tissue is a
potential issue for analysing breast specimens. Diathermy artefact is usually a
local process that would not prohibit analysis of an entire resected surface, but
could ultimately reduce the sensitivity of NP1 analysis for IMA. The greater
problem posed is the fluorescence caused by blue dye, which was significantly
stronger than the Raman signal and resulted in no Raman scattering being
detected. The intensity of fluorophores is related to the excitation wavelength,
and it is generally highest in the UV or visible wavelengths 237; by increasing the
wavelength away from 680 nm, it is possible to move away from the fluorescence
produced by blue dye. Using the laser excitation of 785 nm would minimise the
influence of blue dye on Raman spectra, but would allow for measuring of the
HWN spectrum within the confines of spectrometer limits (up to 1100 nm
wavelength). Therefore the needle probe was re-configured for use with a 785

nm laser excitation to avoid the blue dye fluorescence.
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2.4.2 NP-2 785 nm set up

2.4.2.1 Raman system set up

The general needle probe Raman system set up is described in 2.2.2. The
following changeable components were used:

Laser excitation: 785 nm

Laser clean up filter: 785 nm

Camera: PIXIS 400 BRX

Measurement protocol: 1 second acquisition, 10 accumulations

2.4.2.2 Gelatine phantoms

The raw spectra obtained demonstrates the low intensity of Raman signal
detected in the HWN region using this wavelength and a CCD camera (Figure
2-18 A). Despite this, after pre-processing, it was still possible to detect
differences in water concentration; with a higher water concentration there was a
higher water peak compared to the protein peak (Figure 2-18 B). A lower signal
to noise ratio is noted. Figure 2-19 A shows the areas that were used to calculate
the water/total area ratio. The water/total area ratio was calculated for all
concentrations of gelatine phantom and plotted against known water
concentration (Figure 2-19 B), which shows the relationship is linear, but not

directly proportional.
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Figure 2-18 Raman spectra of a range of gelatine phantoms of varying water concentrations
measured using NP2 Raman system.

A. Raw spectra from a 95% water gelatine phantom. B. Raman spectra after pre-processing. Data is the
mean (n=3) at each concentration after baselining using 15 order polynomial and normalised to the protein

peak, shading in the same colour either side is +/- 1SD.
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Figure 2-19 Using NP2 to measure water/total area ratio in gelatine phantoms

A. Raman spectra of 85% water gelatine phantom with areas highlighted that are used to calculate water
(yellow) / total (orange + yellow) ratio. B. Graph of water area/ total area ratio versus known water
concentration of a number of different concentrations of gelatine phantoms measured using NP2 Raman
system. Mean ratio plotted (n=3), Error bars +/-SD. A line of best fit showed a Gradient = 2.2522; RMSE =
0.0132

2.4.2.3 Intralipid phantoms

Figure 2-20 A shows that, in normalised spectra, with a decrease in known water
content there is a decrease in water signal. Calculation of the water/total area
ratio to known water concentration demonstrates a linear relationship (Figure
2-20 B).
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Figure 2-20 Demonstrating the ability to measure changes in water concentration in complex
intralipid phantoms measured with NP2.

A. Raman spectra after pre-processing. Data is the mean (n=3) at each concentration after baselining using
1%t order polynomial and normalised to the protein peak, shading in the same colour either side is +/- 1SD.
B. Calculated water/ total area ratio versus known water concentration. Mean ratio plotted (n=3), Error bars
+/-SD, with a line of best fit. Gradient 1.038, RMSE 0.0086.

2.4.2.4 Recreating the challenges of the surgical environment

Pork meat and fat were analysed and compared to meat and fat that had been
stained with blue dye or haemoglobin, burnt or wrapped in clingfilm. Raman
signal could not be recovered from pork that had been burnt due to fluorescence.
After pre-processing the raw signal, blue dye staining, haemoglobin staining and
clingfilm covering did not make a large visual difference to the Raman spectra
(Figure 2-21), and comparison of water/total area ratios between pork meat vs
blue dye stained meat or Hb stained meat or clingfilm covered meat and between
pork fat vs blue dye stained meat or Hb stained fat or clingfilm covered fat

revealed no significant difference (P>0.05; one-way ANOVA).
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Figure 2-21 Results of measurements of pork phantoms with NP2 system.

Raman spectra of A. Pork meat and B. pork fat that had either not been treated, stained with blue dye,
stained with haemoglobin or wrapped in clingfilm. Data is the mean (n=3) at each concentration after
baselining using 1t order polynomial and normalised to the protein peak, shading in the same colour either
side is +/- 1SD.

Blue Dye Gelatine phantoms

To further investigate the effect of blue dye (BD) on obtaining Raman signal, blue
dye gelatine phantoms containing concentrations of 0.01% and 0.1% blue dye
were analysed using NP2 system. When comparing the raw spectra of gelatine
phantoms with increasing concentrations of blue dye, it can be seen that there is
an increasing background of fluorescence with blue dye. The Raman signal of
gelatine can be recovered from this, but after pre-processing a 0.01% blue dye
concentration alters the Raman signal, and led to a significantly different mean
water/total area ratio (no BD 0.745 (SD 0.17), 0.01% BD 0.776 (SD 0.018), 0.1%
BD 0.818 (SD 0.12); P=0.004; one-way ANOVA) (Figure 2-22).
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Figure 2-22 Results of measurement of blue dye (BD) gelatine phantoms with NP2.

A. Raw Raman spectrum with 10% gelatine phantom and 10% gelatine phantom with 0.01% and 0.1% blue
dye. B. Raman spectra with after pre-processing. Data is the mean (n=3) at each concentration after
baselining using 15t order polynomial and normalised to the protein peak, shading in the same colour either
side is +/- 1SD. C. Bar chart comparing the mean water/total area ratio between the three blue dye gelatine
phantoms, *- significantly different ratio between 0.01% BD and 0.1% BD (P=0.043), T - significantly different
ratio between no BD and 0.1% BD (P=0.0036); multiple comparison one-way ANOVA.

2.4.2.5 Discussion

The NP2 system is able to obtain Raman spectra in the HWN region. The system
can also be used to quantify changes in water concentration in both gelatine and
complex phantoms using the water/total area ratio as the relationship is linear.

However when examining the raw spectra there are a number of issues identified
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which are related to using a CCD camera to obtain HWN spectra using the 785

nm excitation wavelength.

There is low signal to noise and with a low signal intensity it could significantly
affect the results as the high background fluctuations may alter the AUC, and
subtle changes in water content at physiological levels could be immeasurable.
The NP2 system is only capable of recording to a maximum Raman shift of
around 3550 cm, which is the cut off on all the graphs. And although it appears
that the Raman spectrum tapers down at this extent — this is actually a result of
the limitations of the CCD camera ability to read at this wavelength, rather than a
true reflection of the Raman spectrum. If the NP1 spectra are compared with the
NP2 spectra when measuring the same gelatine phantoms, it is obvious that in
the middle of the water peak (at, for example, 3550 cm™) there is a high signal
intensity with NP1, but zero intensity with NP2. This demonstrates that the Raman
signals observed with NP2 are not a true reflection of the entire HWN region —
particularly in the water peak region of 3035 — 3680 cm™, and that using the
water/total area ratio, although a linear relationship is observed, the truncation of
the water peak means it is not a true measurement of water concentration
changes. The reason for these observed effects at the end of the CCD camera

readings is due to the quantum efficiency of the CCD at this wavelength.

CCDs contain sectored pieces of silicon that allows accumulation of scattering
over the whole exposure time, which allows discrimination between each
frequency of scattered light and multiwavelength detection 1, This allows for fast
spectral scanning and rapid spectral acquisition; however silicon has an optimum
region of sensitivity to photons (QE) and a detection cut off wavelength of
1100nm. For measuring in the HWN region and to investigate the water spectrum,
the Raman system used must be able to detect Raman shift at 3035 — 3680 cm~
L. To understand this in relation to the quantum efficiency of the camera it has to

be converted to the wavelength of light measured using Equation 2-4:

(1/ [nm])_ (Ramlan shift cm—l/

A[nm] = )
107

Equation 2-4 Conversion of Raman shift to wavelengthWhere Aex = laser excitation wavelength;

Raman shift = Raman shift of the molecule being investigated.
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Using Equation 2-4, if using NP2, which is a 785 nm laser excitation to investigate

a 3400 cm't Raman shift (the middle of the water peak):

1

(Y7g5) = (3*0%,)

A=1070nm

Alnm] =

So the wavelength of 1070 nm is very close to the CCD cut off of 1100 nm. The
manufacturer provides a quantum efficiency vs wavelength (nm) graph of the
specific CCD camera used for NP1 and 2 (Figure 2-23). From this it can be seen
that at a wavelength of 1070 nm, the quantum efficiency of the CCD is less than
10%, meaning the detection of Raman signal for the water signal is very poor,

and suggests that NP2 is an unsuitable system for measuring changes in water
concentration.
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Figure 2-23 Quantum efficiency of the Princeton Instruments camera range versus wavelength.
NP1 and NP2 used the PIX 400 BRX which is shown by the red line. Modified from reference 33,

The main reason for performing the experiments with NP2 was to assess if
Raman spectra could be measured in the presence of blue dye. These
experiments found that, unlike the NP1 data, Raman spectra could be measured
in the presence of blue dye with NP2. Measurements from blue dye gelatine
phantoms demonstrate that the raw Raman spectrum have an increased
background fluorescence with blue dye, but Raman data is recoverable from this.

This suggests that 785 nm excitation wavelength is appropriate for measuring the
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HWN region in the presence of blue dye, if camera detection quantum efficiency
can be improved. At a higher concentration of 0.1% blue dye in the gelatine
phantoms, there was a significantly different water/total area ratio compared to a
gelatine phantom without blue dye — however it may be that the low intensity
Raman signal due to the poor camera QE in the HWN means the effect of
fluorescence is more apparent, and it may be reduced with improved Raman

scattering detection.

These findings suggest that a camera that uses a 785 nm excitation, but with a
camera that has greater QE in the desired wavelength range may be the optimal
system to measure the HWN region in the presence of blue dye. A solution to this
is using a different type of camera to the silicon chip based CCD. Alternative
detectors to silicon based CCD’s are Indium gallium arsenide (InGaAs) detectors
which are semiconductors with a lower bandgap to provide sensitivity in an
extended near infrared range. The InGaAs camera available for use in this project
is the Andor InDus InGaAs, the QE data for this camera is seen in Figure 2-24,
which demonstrates that to investigate a wavelength of 1070 nm (middle of the
water peak at 785 nm), the QE of this camera would be >85%. This is
substantially better than the Princeton Instruments CCD camera, and so could
be suitable for use with a 785 nm excitation wavelength for the investigation of
water content in the presence of blue dye. This is tested in the next section —
NP3.
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Figure 2-24 Quantam efficiency at 20°C of the Andor InGaAs camera range versus wavelength which

is shown by the continuous red line. Modified from reference 3%°
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2.4.3 NP-3 785 nm InGaAs set up

2.4.3.1 Raman system set up

The general needle probe Raman system set up is described in 2.2.2. The
following changeable components were used:

Laser excitation: 785 nm

Laser clean up filter: 785 nm

Camera: iDus InGaAs 1.7um

Measurement protocol: 10 second acquisition, 5 accumulations

2.4.3.2 Gelatine phantoms

The raw spectrum of a 5% gelatine phantom, measured using NP-3
demonstrated in Figure 2-25 A shows that the signal is of much higher intensity
than that gained with NP-2 and the CCD camera, and that the morphology of the
water peak is similar to that of NP-1 and the water peak of the HWN region
documented in the literature. A higher water peak intensity is seen with increasing
water concentration when compared to the normalised protein peak (Figure 2-25
B). Figure 2-26 A shows the areas that were used to calculate the water/total area
ratio. The water/total area ratio was calculated for all concentrations of gelatine
phantom and plotted against known water concentration (Figure 2-26 B), which
shows the relationship is linear, but not directly proportional.
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Figure 2-25 Raman spectra of a range of varying water concentrations of gelatine phantoms
measured using NP1 Raman system.
A. Raw spectra from a 95% water gelatine phantom. B. Raman spectra after pre-processing. Data is the
mean (n=3) at each concentration after baselining using 15* order polynomial and normalised to the protein

peak, shading in the same colour either side is +/- 1SD.
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Figure 2-26 Using NP3 to measure water/total area ratio in gelatine phantoms

A. Raman spectra of 85% water gelatine phantom with areas highlighted that are used to calculate water
(yellow) / total (orange + yellow) ratio. B. Graph of water area/ total area ratio versus known water
concentration of a number of different concentrations of gelatine phantoms measured using NP3 Raman
system. Mean ratio plotted (n=3), Error bars +/-SD. A line of best fit showed a Gradient = 0.46; RMSE =
0.0012

2.4.3.3 Intralipid phantoms

Figure 2-27 A shows that in intralipid phantoms with normalised spectra, with a
decrease in known water content there is a decrease in water signal. Calculation
of the water/total area ratio to known water concentration demonstrates a linear

relationship (Figure 2-27 B).
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Figure 2-27 Demonstrating the ability to measure changes in water concentration in complex
intralipid phantoms measured with NP3.

A. Raman spectra after pre-processing. Data is the mean (n=3) at each concentration after baselining using
15t order polynomial and normalised to the protein peak, shading in the same colour either side is +/- 1SD.
B. Calculated water/ total area ratio versus known water concentration. Average ratio plotted (n=3), Error
bars +/-SD, with a line of best fit. Gradient 1.75, RMSE 0.0164.
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2.4.3.4 Recreating the challenges of the surgical environment

Pork meat and fat were analysed and compared to meat and fat that had been
stained with blue dye or haemoglobin, burnt or wrapped in clingfilm. Similar to
NP2, the Raman spectra were adversely affected by carbonisation in pork that
had been burnt due to fluorescence, however the protein peak could be
recovered, but the spectra from 3250-3700 cm™! (water region) was altered and
no Raman signal could be obtained in this region. After pre-processing the raw
signal, blue dye staining, haemoglobin staining and clingfilm covering did not
make a large visual difference to the Raman spectra (Figure 2-28), and
comparison of water/total area ratios between pork meat vs blue dye stained
meat or Hb stained meat or clingfilm covered meat and between pork fat vs blue
dye stained meat or Hb stained fat or clingfilm covered fat revealed no significant
difference (P>0.05; one-way ANOVA).
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Figure 2-28 Results of measurements of pork phantoms with NP3 system.

Raman spectra of A. Pork meat and B. pork fat that had either not been treated, stained with blue dye,
stained with haemoglobin, burnt or wrapped in clingfilm. Data is the mean (n=3) at each concentration after
baselining using 1%t order polynomial and normalised to the protein peak, shading in the same colour either
side is +/- 1SD.

Blue Dye Gelatine phantoms

NP3 was used to analyse the blue dye gelatine phantoms. Similar to the spectra
from the NP2 system, there was some increase in the fluorescent background in
the presence of blue dye when measuring with NP3, however this appeared to
affect the Raman spectra less than with NP2. There was no significantly different
water/total area ratio (P>0.05; one-way ANOVA) between gelatine phantoms with
0%, 0.01% and 0.1% blue dye (Figure 2-29).
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Figure 2-29 Results of measurement of blue dye gelatine phantoms with NP3.

A. Representative raw Raman spectrum with 10% gelatine phantom and 10% gelatine phantom with 0.01%
and 0.1% blue dye. B. Raman spectra after pre-processing. Data is the mean (n=3) at each concentration
after baselining using 1t order polynomial and normalised to the protein peak, shading in the same colour
either side is +/- 1SD. C. Bar chart comparing the mean water/total area ratio between the three blue dye
gelatine phantoms, statistical analysis showed no significant difference between mean ratios (P>0.05; one-
way ANOVA).

2.4.3.5 Discussion

Measurements with the NP3 system confirm the ability to take high quality spectra
in the HWN region, and using this system and the water/total area ratio, the water
concentration can be measured. The water/total area ratios obtained for the
different gelatine phantoms are very similar to those obtained with NP1, and the

water/total area ratio to known concentration graph has a similar gradient
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suggesting the information regarding water concentration is equivocal between
NP1 and NP3.

The water/total area ratios from intralipid phantoms are markedly different
between NP1 and NP3. The water spectra measured from NP3 from the intralipid
phantoms has a morphology more consistent with what would be expected from
the other experiments and from the literature 304 333 compared to NP1. The
background fluorescence of the intralipid phantoms was much greater in NP1,
and it may be that the baseline subtraction was suboptimal, giving rise to the
unusual morphology, which may have adversely affected the water/total area
ratio values. Regardless of this discrepancy, the spectra gained from the intralipid
phantoms from NP3 show a linear relationship between water/total area ratio and

known water concentration.

The results from pork phantoms suggest that measurements from NP3 system
are unaffected by blue dye, haemoglobin dye and clingfilm. Carbonisation does
affect the signal and there is some fluorescence, however, a recognisable signal
could be recovered which is improved from either the NP1 or NP2 system.

There was no difference in the water/total area ratio between gelatine phantoms
with or without blue dye, this demonstrates the ability of NP3 system to measure
Raman spectra accurately in the HWN region in the presence of blue dye with

minimal disruption.

Despite these important improvements with NP3 compared to the other systems,
the reduced signal to noise with the InGaAs camera is a potential issue. InGaAs
cameras have high dark noise signal due to the low energy photons that are being
detected3#. This effect can be reduced by cooling of the detector (which was
done to -85°C, as recommended by the manufacturer), but is still higher
compared to silicon CCDs3%, Due to this, longer acquisition times for spectral
acquisition are required. In these experiments, overall measurement time was 5
times longer (50 seconds vs 10 seconds) with the InGaAs camera. This may have
an impact in future work when taking spectra in a time-sensitive and clinical
environment. With regards to margin analysis, it is an issue that will need
optimisation for it to be effective. However, it is possible that these acquisition

times could be reduced once the system spectral acquisition has been optimised,
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and spectral analysis of breast tissue is more fully understood, to optimise the
balance between spectral resolution and time for measurements to be struck for
meaningful clinical data to be gained when measuring breast tissue. For initial,
proof of concept experiments investigating HWN region and water concentration
in breast tissue, NP3 has demonstrated its ability to measure water concentration
and obtain spectra in the presence of blue dye, meaning it is the most suited

system for this project.

2.5 Discussion

In this section of the thesis, the development of a Raman system capable of
taking high quality HWN spectra, with appropriate analysis of the spectra to
measure water concentration, whilst overcoming the potential barriers of taking
measurements in the surgical environment has been explored. Tissue phantoms
with a range of known water concentrations were constructed and analysed, and
demonstrated to be reproducible in production and stable in water content over
time. Using a closed laser, pre-calibrated, laboratory system to acquire Raman
spectra from a standard of BSA solutions and applying this to the gelatine
phantoms it was demonstrated that using a first order polynomial for baseline
subtracting the data and measuring the water/total area ratio was an accurate

method for determining water concentration.

A number of methods have been suggested for baseline subtraction in Raman
spectroscopy and particularly in the HWN region. It is often performed using
baseline subtraction using the visually most appropriate degree of polynomials,
a number of different polynomials have been used including 15t174. 271,295 2nd 337
31d 304 and 5™ 341 order. More complex methods in the form of auto correction
using multiple regression fitting have also been suggested 2%7. The aim of
baseline fluorescence subtraction is to reduce the influence of fluorescence on
the data, without removing pertinent spectral information. In these experiments
using phantoms, background fluorescence was not a major issue in the raw
spectrum and baseline subtraction with a 15t degree polynomial visually appeared
to be the most appropriate method. When using this method with the NP1 system
which used a 680nm excitation, there was a higher degree of background
fluorescence when measuring the intralipid phantoms, and it may be that the

method of background fluorescence subtraction may have led to the unusual
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appearance of the water spectrum seen. However, using other commonly used
degrees of polynomials such as 2" and 3 order did not improve the results or
visual appearance of the spectra, and it may be that more complex methods
would be required in this particular case. However, as this system was not to be
used in the project due to the major fluorescence from blue dye, this was not
performed as it would not inform the project. It may be that measurements in
breast tissue cause a higher degree of background fluorescence than the

phantoms, and that different baseline subtraction methods are needed.

Spectral data from pure protein models (gelatine phantoms) regarding water/total
area ratio could not predict water concentration in the more complex intralipid
phantoms. The CHs stretch is responsible for both the Raman signals of protein
and lipid, however the lipid band has a tendency towards higher levels of energy
compared to protein'®®, The narrow protein peak of CHs is morphologically
distinct to the broad lipid peak, and the intralipid phantoms were composed of
both protein and lipid, and so a phantom that has the same water concentration,
but a different protein/lipid ratio, will have a different area under the curve in the
region 2850 — 3035 cm* which would affect the water/total area ratio. Although
Masson et al. used this method in protein only gelatine phantoms, and
extrapolated it to interpret water concentration in the protein/lipid rich cervix , our
data suggests this is inappropriate 2%4. To predict water concentration in fat rich
breast tissue, water/total area ratio data from intralipid phantoms may be more

appropriate.

All the systems were capable of measuring Raman scattering in the HWN region.
NP1 and NP3 gave high quality, high intensity signals in this range, and NP2
gave lower intensity signals due to the quantum efficiency of the CCD camera.
All three systems could measure the water concentration of the gelatine and
intralipid phantoms. NP1 and NP3 gave very similar results in the measurement
of gelatine phantoms and both produced HWN spectra of gelatine phantoms that
were similar to the literature and both could detect changes in water
concentration. NP2 spectral analysis produced quite different results, the water
peak spectrum was truncated due to the quantum efficiency of the CCD camera

in the HWN region, adversely affecting the ability of NP2 to measure water
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concentration in the HWN region, meaning that NP2 was not suitable for this

project.

The Raman systems were also evaluated for their suitability to obtain spectra in
the presence of blue dye, haemoglobin, carbonisation and clingfilm, as this is
essential for the future work of the project of taking measurements of surgically
excised specimens. All three systems detected fluorescence in carbonised pork
tissue; NP1 and NP2 could not recover any signal, and NP3 could measure the
CHs region of protein, but the water signal was adversely affected. This is
unsurprising as carbonisation intrinsically alters the breast tissue, and confounds
analysis with the ‘gold standard’ of histopathology3!®. It may affect analysis in
breast tissue, but it is likely to with any method of IMA, it is also usually localised
to small areas rather than prohibiting analysis of an entire surface, and so an
awareness of its effect on the Raman signal is required, but it does not preclude

a Raman system from providing IMA.

Blue dye caused significant fluorescence in NP1, and no Raman scattering was
detected in the presence in even a small amount of blue dye. Blue dye is used
for sentinel lymph node detection in the majority of BCS, and staining of the
breast tissue is common; therefore, a system that cannot obtain Raman spectra
in the presence of blue dye is unsuitable for the preliminary work planned in this
project, and for any clinically relevant method of IMA. Previous studies
investigating HWN RS in breast tissue have not considered the effect of blue dye
on the ability to obtain Raman spectra 2% 336, These studies use laser excitation
wavelengths (of 671 nm 2°° and 532 nm 33) that we predict would result in
overwhelming fluorescence that obscures Raman signals in the presence of blue
dye. Laser excitation with 785nm in NP2 and NP3 could obtain Raman spectra
in the presence of blue dye. The Raman spectra, and subsequent analysis were
more affected by blue dye in NP2, this may have been because the signal
intensity was much weaker than in NP3, and so the slightly higher background
fluorescence that the blue dye caused overpowered the weak Raman signal,
whereas in NP3 there was a higher intensity Raman signal so the contribution of

the fluorescent background was relatively much less.
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2.6 Conclusion

NP3 which uses an InGaAs camera and 785 nm laser excitation has been shown
to be the most appropriate system for assessing the HWN region in breast tissue
for applicability in IMA, where blue dye is used. This is the first Raman system
that has demonstrated the ability to obtain HWN spectra that are not significantly
affected by the presence of blue dye, an essential attribute for a system to provide
IMA. The NP3 system will be the Raman system used for the human tissue

experiments in this thesis.
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CHAPTER 3:

Investigating the ability of NP3 Raman
system to quantify changes in water
content using High Wavenumber Raman
Spectroscopy

3.1 Introduction

In the previous chapter NP3 was demonstrated to be the most appropriate
Raman system for investigating the provision of intraoperative margin analysis in
human breast tissue. The analysis for this was performed using phantoms that
allowed differentiation of performance regarding basic ability to evaluate changes
in water content, and confounders that may occur in the clinical environment. The
next stage of this system development is optimisation. This is both optimisation
of the spectra that are obtained, and optimisation in the understanding of the data
that can be obtained using the system. This chapter will demonstrate the method
of optimal signal acquisition set up for NP3, evaluating the ability of NP3 to
measure changes in water concentration at physiological concentrations and
then describe a sequence of experiments on a range of phantoms to establish
what changes are observed in the High Wavenumber (HWN) region spectra with

a change in water concentration.

The intralipid breast phantoms measured in the experiments in Chapter 2 to
ascertain the ideal Raman system for measuring HWN spectra in breast tissue
had the limitation that the fat concentrations were not physiological. The intralipid
phantoms had a range of fat concentration from 2-18%, with a water
concentration being 68-88% whereas it has been suggested that the water
concentration of breast tissue is in the range 30-60%, and correspondingly the
fat concentration being 40-70% 281, However, these figures are taken as global
averages for an entire breast, or large areas of the breast. When measuring
smaller samples of breast tissue, such as a wide local excision specimen for

intraoperative margin analysis, one would see areas of almost exclusively fat,
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and other areas exclusively of protein. Therefore, further investigation is
performed in soya bean oil phantoms and in pork meat and fat to demonstrate
the ability of NP3 to measure a change in water concentration at physiological

ranges, which is necessary in order to be used in human breast tissue.

In section 2.2.4 it was noted that in a set of protein/water mixtures over a range
of water concentrations, the spectral intensity of the maximum part of the OH
peak (3390cmt in this case, due to the limitations of the CCD coupled with the
InVia system used) did not change in relation to the change of water
concentration. This spectral feature has been observed in other studies; using
lyophilisation to produce cornea phantoms at a range of water concentrations,
Bauer et al. 3% demonstrated that the OH peak Raman intensity (this time at 3400
cm™) did not change proportionally to the change in water concentration, and
used a ratio of the maximum intensity of the protein peak to water peak to quantify
the changes in water concentration. The conclusion drawn from this work has
been cited as an example of how to use protein to water ratios to accurately
determine water content, and the method has been validated since. However, the
observation that the OH peak does not change in relation to water content, the
possible significance of this and why this occurs is not addressed. If the water
peak intensity doesn’t change with changes in water concentration, and the
water/total area ratio method is an accurate, validated method for quantifying
changes in water concentration, it could be presumed that changes in the
protein/lipid peak are proportionally changing with water concentration, though

this has not been explicitly demonstrated previously.

In this chapter there is investigation and analysis of how these spectral changes
may be interpreted to give a better understanding of the HWN region and will
inform data analysis of measurements obtained from breast tissue in subsequent

chapters.
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3.2 Methods

3.2.1 Establishing the optimal signal acquisition time

The NP3 system uses an InGaAs camera, the range of Quantum Efficiency
allows acquisition of spectra from the HWN region using a 785 nm excitation
laser. An inherent limitation of InGaAs cameras is high dark noise compared to
silicon CCDs 340 that are more commonly used for Raman Spectroscopy.

Noise has to be overcome in order to obtain a signal, and accounts for variation
that can be seen between a number of identical measurements, which is
expressed as the Signal to Noise Ratio (SNR) which is the average peak height

above baseline divided by the standard deviation of the peak height 342,

Noise can come from a number of sources such as shot noise, fluorescence
background noise, dark noise, and readout noise. Shot noise is the random
variation in observed events, and so as the number of observed events increases
(e.g. by increasing acquisition time), the shot noise decreases, and so the SNR
increases. Dark noise is significant in InGaAs cameras. Dark noise is produced
by spontaneous electron generation from the detector and is best demonstrated
by obtaining a spectrum in a dark room without laser illumination342. In the
presence of high dark noise lower acquisition times give a poor SNR, as the dark
noise is proportionally more, and conversely by prolonging acquisition time more
signal is obtained, with the same amount of dark noise, meaning the SNR
improves with a longer acquisition time. Dark noise does not vary with laser
intensity or variability in samples, and so there is the ability to subtract dark noise

from spectra.

A method to improve the SNR in NP3 would be subtraction of fixed pattern noise
as this is due to pixel to pixel variation within the InGaAs detector. Therefore, the
detector dark noise was obtained by taking a measurement for the same
acquisition time and number of accumulations as used for the sample
measurement and a smoothed baseline obtained by Savitzky-Golay filter (7

polynomial) as demonstrated in Figure 3-1.
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Figure 3-1 — Spectrum showing the Dark background and Smoothed Dark background at 1 second
acquisition time with 5 accumulations.

The Smoothed Dark Background was obtained by Savitzky-Golay filter with a 7™ order polynomial fit.

This smoothed baseline was then subtracted from the spectrum obtained from
the sample, when measured for the same acquisition time and same number of
accumulations as part of pre — processing. This gave improved spectral
resolution and was successful at removing a significant source of noise from the

spectrum, without affecting relevant spectral features (Figure 3-2).
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Figure 3-2 Figure showing the effect of Dark noise baseline subtraction on a HWN spectrum.
Representative spectrum of a Gelatine phantom of 90% water, 10% gelatine composition taken with 1
second acquisition time, 5 accumulations. Raw spectrum and spectrum after pre-processing with Dark noise

‘baseline subtracted’ shown.

Although longer acquisition times may improve the issue caused by shot noise,
this may lead to sample heating degradation or burning, which for biological
samples such as breast tissue, is to be avoided. A way to increase acquisition
times and reduce the risk of burning is by taking shorter acquisition times with
multiple accumulations, which may reduce sample heating if the laser turns off

between acquisitions, allowing the sample to cool. However, the number of
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accumulations taken may be limited by readout noise — that is the noise
generated in the process of converting electrons detected into a digital signal to

the computer. This noise increases with the number of accumulations.

A consideration for overall measurement time taken for measurement is that the
time taken for the measurements needs to remain clinically relevant. If, in order
to obtain satisfactory spectra, measurements took an hour each to obtain, neither
the system nor the information gained from it would ever be useful in clinical
practice. Therefore, we considered a maximum overall measurement time of 30
seconds per measurement to be one that was clinically relevant. Although this
time per measurement is likely to be too long for use in practice, it is not so long
as to be irrelevant. The area of collection of NP3 is 5.19 x 10% um?. With a view
to NP3 providing IMA, for a lumpectomy sample of 60 X 60 mm (a normal size of
sample) it would take approximately 720 individual measurements with NP3 to
analyse a single resected edge. If each individual measurement took a second it
would take 12 minutes to analyse a single resected edge, and if the individual
measurement time took 25 seconds it would take 6 hours to analyse a single
resected edge. So, although a measurement protocol of 30 seconds would not
be clinically possible, the purpose of the experiments in this chapter are to explore
subtle changes in spectra, which require higher spectral resolution. Once the
HWN region of breast tissue is fully understood, it is likely the measurement time

could be reduced to more clinically relevant times.

To find the optimal measurement settings of the number of acquisitions and
accumulations required for NP3, measurements were taken with the NP3 system
of a 90% water / gelatine phantom and performed pre-processing of baselining
with a 15t order polynomial and normalisation to the protein peak with dark noise
baseline subtraction on the obtained spectra. Measurements were taken to
compare the overall laser exposure time at 2 different times - 5 seconds and 25
seconds- to compare the signal to noise ratio of measurements. The exposure
times were chosen to investigate if the spectra that were obtained in a short time
period (5 seconds), were of sufficient quality to allow detailed analysis, as this
time period would be closer to a clinically appropriate measurement time, or if a

longer time period (25 seconds) was necessary.

147



Within these overall time periods, measurements were taken with different

acquisition times and accumulations.

Results and Discussion

Figure 3-3 demonstrates the spectra obtained with an overall measurement time
of 5 seconds, but with different acquisition and accumulation times. In both the 5
second X 1 accumulation and 1 second X 5 accumulations all peaks are clearly
visible, however, there is more noise with 1 second X 5 accumulations, which
may be due to an increased readout noise. Although this suggests that we could
use an overall measurement time of 5 seconds, and this would still give
reasonable quality spectra, we expect a significantly higher fluorescence
background in biological tissue (as this has been observed in other studies
investigating the HWN region in biological tissue 174 394), so longer acquisition
times are likely to be necessary to obtain Raman features despite the higher

background.
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Figure 3-3 — Figure showing the difference in signal to noise in Raman spectra obtained with two
different measurement protocols, both with an overall measurement time of 5 seconds.

Measurements obtained of a 90% water/10% gelatine phantom measured at 5 seconds X 1 accumulation
(blue line) and at 1 second X 5 accumulations. Data is the sum of all accumulations to allow direct

comparison and has been baselined, normalised to the protein peak and dark noise baseline subtracted.
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Figure 3-4- Figure showing the difference in signal to noise in Raman spectra obtained with three
different measurement protocols, all with an overall measurement time of 25 seconds.
Measurements obtained of a 90% water/10% gelatine phantom measured at 25 seconds X1 accumulation
(black line), at 1 second X 25 accumulations (green line), and 5 seconds X 5 accumulations (red line). Graph
on left shows all three spectra combined, graphs on right show each spectrum separately to allow
comparison. Data is the sum of all accumulations to allow direct comparison and has been baselined,
normalised to the protein peak and dark noise baseline subtracted.

Figure 3-4 shows the results of spectra obtained at an overall measurement time
of 25 seconds, with different acquisition times and accumulations. All spectra
have improved spectral acquisition compared to the spectra obtained with an
overall measurement time of 5 seconds. There are no obvious spectral
differences between the three different measurement protocols, however, the
spectra obtained with 1 second acquisitions with 25 accumulations has slightly
increased noise which may be a result of a higher readout noise. Spectra
obtained with a single 25 second acquisition produce spectra comparable to the
spectra obtained with 5 seconds X 5 accumulations, however, multiple
accumulations allows the laser light to be off between acquisition and may reduce

biological sample heating and sample degradation.

Summary

Based on these results it can be considered that having a single acquisition time
of 5 seconds rather than 1 second gives improved signal to noise, as would be
expected. This is important as a smoothed spectrum may allow improved spectral
analysis. Prolonged acquisition times could lead to sample degradation, so a
measurement protocol of 5 second acquisition time with 5 accumulations with

dark noise baseline subtraction is optimal based on the balance of signal to noise
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and minimising the time taken to analyse a specimen, and so this measurement

protocol is adopted in the measurements in the rest of this chapter.

3.2.2 Phantom Production and Measurement

3.2.2.1 Gelatine Phantom production

Gelatine phantoms were used to observe the changes in water concentration in
the HWN region within a protein only environment. Gelatine phantoms were
produced in the previously described method in Chapter 2 at concentrations of
85%, 87.5%, 90%, 92.5% and 95% water.

3.2.2.2 Soya bean oil/ water phantom production

Soya bean oil/water phantoms were used to observe the changes in water
concentration in the HWN region with a lipid only environment and evaluate the
ability of NP3 to measure the extremes of fat and water concentration that are
likely to be encountered in clinical specimens. Olive oil would have been the
preferred choice of oil, as it is composed of monounsaturated fatty acids and is
predominantly oleic acid, which is the major fat in breast tissue 343 344, However,
with 785 nm illumination, it has a broad fluorescent peak within the HWN region
giving overwhelming fluorescence and no spectra could be obtained. Therefore,
soya bean oil was chosen to create these phantoms, as it does not have this
fluorescent band. Soya bean oil is predominantly polyunsaturated fat, composed

of Linoleic Acid344,

Soya bean oil phantoms were made according to a protocol adapted from a
method by Merritt et al. %2 to make MRI suitable lipid phantoms. Organic soya
bean oil (Clearspring,UK) was mixed with 4% of lipid volume of triton X100
(Sigma-Aldrich,Germany) which is a surfactant, which was added to allow
emulsification of the lipid. This was warmed at 55°C for 5 minutes, before distilled
water was added, mixed further, before sonification with a Hielscher Ultrasonics
UP100H Handheld Ultrasonic Processor at 30kHz at 100% amplitude and 100%
pulse (Hielscher Ultrasonics, Teltow, Germany) for 5 X 10 second pulses to
create a liquid emulsion, and stored at 5°C until measurement at room
temperature. A range of concentrations from 5% - 70% oil were made, (and 100%

oil).
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3.2.2.3 Pork serial dehydration

Serial dehydration with concurrent Raman spectra measurements was performed
with pork to observe the changes in water concentration in the HWN region within
a biological system, of both a protein rich (meat) and fat rich (fat) environment.
Pork was purchased from a local supermarket (Sainsburys,UK), meat and fat was
separated and cut into small cubes of <5 mm?3, and weighed. All specimens
weighed less than 1 gram. Specimens were then weighed initially, and Raman
spectra taken, and then left to air dry over the next 24 hours, within which at 7
different time points the specimens were weighed and Raman spectra taken.
Raman measurements were taken at random points on the specimen’s surface
as it was not possible to mark points of previous measurement and take
measurements from the same points at each measurement cycle. Changes in
pork specimens were calculated as percentage weight change from the initial
weight, and all changes in weight were assumed to be water evaporation and so
provided an estimation of changes in water content of the specimen. There were
negligible changes in the weight of the specimens after 24 hours (measured
again at 36 and 48 hours), and so it was presumed that by 24 hours the maximum
amount of water had evaporated using the air dry technique. The experiment was
performed 3 times over 3 different days on 3 different pieces of pork, to account
for possible variation in air drying/meat hydration. All experiments yielded similar
results, data shown is from a single experiment to reduce the number of

spectra/data points and allow better visualisation of results.

3.2.2.4 Mixed protein/lipid phantoms production

To investigate the effect of the protein/lipid environment on the HWN spectrum a
set of gelatine based phantoms were created that had the same water
concentrations (70 or 80%), but had varying protein/ lipid ratios. The conversion
of oil weight to volume was based on the soya bean oil having a weight of 0.92
grams/ml. Triton X100 is a lipid, with a lipid spectrum in the HWN region the same
as soya oil (and no protein or water peaks), and therefore the ‘Total oil volume’
was composed of the soya oil and Triton volume combined. This allowed the ratio
of total protein and total lipid substrates that would contribute to the respective

Raman spectra to be accurately calculated.
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Name Water Gelatin Total oil | Total oil | Soya oil | Triton
(ml) (@) (@) (mli) (ml) (ul)

1 7 0.5 2.5 2.71 2.60 108

2 7 1 2 2.17 2.08 87

3 7 15 15 1.63 1.56 65

4 8 0.5 15 1.63 1.56 65

5 8 1 1 1.08 1.037 43

6 8 15 0.5 0.54 0.519 21

Table 7 - Table to show the composition of mixed phantoms composed of protein, lipid and water
In Phantoms 1 — 3 the water concentration was 70 %, and in Phantoms 4 — 6, the water concentration was
80%. Within these water concentrations, there were changing protein (gelatine) and lipid (soya oil) ratios.

3.2.2.5 HWN Raman experimental set up

HWN Raman spectra were acquired using the previously described NP3 set up
(Chapter 2). Measurements were taken with a 5 second X 5 accumulation. 5
measurements were taken from different areas in each phantom, and acquired
with Andor Solis (UK) software.

3.2.2.6 Data processing

Data was processed using Matlab. The mean was taken of the accumulations
and then pre-processed by baselining using a 1%t order polynomial, and dark
noise background subtraction as described in section 3.2.1. The mean was taken
of the 5 different area measurements, the standard deviation (if displayed) is of
these 5 different area measurements. Normalised spectra were normalised to the
highest peak in the spectra which related to the CH stretch of either protein or
lipid (between 2850 -2950 cmt) 271, 333,

AUC water peak was calculated by taking the Area under the Curve of the Raman
spectra between 3035-3680 cm. And AUC CH stretch region (combined protein
and lipid peak) was calculated by taking the Area under the Curve of the Raman
spectra between 2850 — 3035 cm™. Water/total area ratio was calculated by
taking the AUC water divided by AUC water + AUC CH stretch region34,
Statistical comparison of water/total area ratio means was performed with one-

way ANOVA, statistical significance set to P<0.05.
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3.2.3 UV Vis experiments

UV-Vis absorbance of the individual components of the soya bean oil phantoms
was investigated to assess how the optical absorbance characteristics of these
components may affect the Raman spectra. If there is unequal absorbance by a
constituent of the sample through the spectral range, a change in sample
concentration may affect the Raman spectra due to absorbance as much as the
effects of the change in sample concentration on the Raman spectra. This would
affect the ability to quantify changes in the sample concentration, which was an
area of investigation. UV-Vis absorbance spectra were obtained on a Thermo
Scientific Evolution Array machine, using manufacturers software. Spectra were
taken of soya bean oil, Triton X-100 and water with an integration time of 1

millisecond, average of 20 scans, with a 1 mm pathlength.

3.3 Results

3.3.1 Gelatine phantoms

The association between change in water content of gelatine phantoms and
change in the water/total area ratio is shown in Figure 3-5 and was established
in Chapter 2 — the relationship is linear and with a decrease in water content,
there is a decrease in water/total area ratio. Measured with NP3, there is a
gradient of 0.57.
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Figure 3-5 Figure showing Raman spectra in the HWN region of different water concentrations of
gelatine phantoms and the relationship with water/total area ratio

A. Graph showing Raman spectra of gelatine phantoms at 5 different water concentrations, normalised to
CH stretch region between 2850 -2950 cm. Plotted lines are mean (n=5) for each concentration after pre-
processing, shading in the same colour either side is +/- 1 SD. B. Scatter graph of known water fraction
versus water/total area ratio. Points plotted are mean water/total area ratio (n=5), error bars +/- 1 SD. Red
line is line of best fit (Gradient = 0.57,RMSE = 0.00092).

Figure 3-6 shows that in gelatine phantoms (a protein only environment), the
water peak spectrum decreases with a decrease in water content, and the protein
peak increases as the water content decreases. The Area Under the Curve (AUC)
of the CH stretch region (corresponding to protein in these phantoms) increases
proportionally with a decrease in water concentration (and increase in protein
concentration) with low variability, and the Area Under the Curve (AUC) of the
water peak decreases, however this is with a greater degree of variability and the

error bars (representing standard deviation) overlap.
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Figure 3-6 Graphs demonstrating the changes in the HWN region with changes in water
concentration in a protein only environment.

A. Graph showing the spectral changes in protein peak and water peak signal intensity with changes in water
concentration. Coloured lines are mean spectrum (n=5) after pre-processing, shading in the same colour
either side is +/- 1 SD. B. Scatter plot demonstrating the change in Area Under Curve of CH stretch region
(protein peak) and Area Under Curve of water peak at different water concentrations. Line of best fit to
demonstrate linear relationship in change in water concentration and AUC of both CH stretch region (protein
peak) and water peak.

All spectra had been pre-processed by baselining and dark noise background subtraction.

3.3.2 Soya bean oil phantoms

Figure 3-7 shows the normalised mean spectra of the soya bean oil phantoms
ranging from 0% water to 95% water. It can be seen that, when normalised to
the CH stretch region (corresponding to a lipid peak in these phantoms) at
2940cm?, the water peak decreases with a decrease in the water concentration
of the phantom. However, the difference seems greater in the phantoms with high

water concentrations. The scatter graph demonstrates that there is a linear
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relationship between known water concentration of the phantoms and the
water/total area ratio. If the phantoms are grouped and analysed according to
those with higher water concentration (70-95% water) and lower water
concentration (30-65% water), there is a slight difference in the gradients (higher
water concentration gradient= 1.61 vs lower water concentration gradient = 1.04).
This suggests that at a lower water concentration (and a higher lipid
concentration) the difference in water/total area ratio between different water
concentrations reduces, and so the ability to differentiate between different water

concentrations may be reduced.
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Figure 3-7. Figure showing Raman spectra in the HWN region of different water concentrations of
soya bean oil phantoms and the relationship with water/total area ratio

A. Graph showing Raman spectra of soya bean oil phantoms at 15 different water concentrations,
normalised to CH stretch region between 2850 -2950 cm™. Plotted lines are mean (n=5) for each
concentration after pre-processing, shading in the same colour either side is +/- 1 SD.

B. Scatter graph of known water fraction versus water/total area ratio. Points plotted are mean water/total
area ratio (n=5), error bars +/- 1 SD. Black line is line of best fit of all data points (n=15) (Gradient=1.24,
RMSE = 0.031), red line is line of best fit of high water concentration phantoms (70-95% water) (Gradient =
1.61, RMSE = 4X10%), green line is line of best fit of low water concentration phantoms (30 — 65%
water)(Gradient = 1.04, RMSE=1.3X10-16).

Figure 3-8 shows that in soya bean oil phantoms (a lipid and water only
environment), the water peak spectrum does not appear to decrease with water
content, and the lipid peak increases as the water content decreases. The scatter
graph shows that with a decrease in water concentration (and subsequent
increase in lipid concentration), the AUC of the CH stretch region (lipid peak)
increases with a linear relationship, with narrow error bars suggesting a small

degree of variability in measurements. However, the AUC of the water peak
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shows no consistent relationship with a change in water concentration. At higher
water concentrations (water fraction 0.60-0.95) the AUC of water peak changes
do not have any pattern with a change in water concentration, whereas at lower
water concentrations (water fraction 0.55-0.3) with a decrease in water
concentration there is a decrease in AUC of the water peak.
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Figure 3-8 — Graphs demonstrating changes in the HWN region with changes in water concentration
in alipid only environment.

A. Graph showing the spectral changes in lipid peak and water peak signal intensity with changes in water
concentration with a range from 30 — 95% water. Coloured lines are mean spectrum (n=5) after pre-
processing, shading in the same colour either side is +/- 1 SD. B. Scatter plot demonstrating the change in
Area Under Curve of CH stretch region (lipid peak) and Area Under Curve of water peak at different water
concentrations. Line of best fit to demonstrate linear relationship in change in water concentration and AUC
of CH stretch region (lipid peak) only.

All spectra had been pre-processed by baselining and dark noise background subtraction.
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3.3.2.1 UV-Vis results

To assess the influence of optical properties on the HWN region spectra,
absorption spectra were taken from the soya bean oil phantoms. These were the
only phantoms that were suitable for UV-Vis analysis.

Figure 3-9 shows there is little change in the absorption of soya bean oil and
Triton X100 through the relevant range of wavelength. However, there is some
higher absorption of water at the lower wavenumbers, which could
disproportionally affect the spectrum and the relevant peak ratios, particularly if
the path length of the Raman scattered photons is increased or decreased by the
presence of the highly scattering lipid droplets to pass through more of the

phantom.
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Figure 3-9- Graph demonstrating the UV Vis absorption spectra of water, Triton X100 and soya bean
oil

Measurements were taken in a cuvette with 1mm pathlength for 1 millisecond with mean of 20
accumulations. Shaded area demonstrates the wavelength investigated in the HWN region equivalent to
Raman shift 2850 — 3650 cm.
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3.3.3 Pork phantoms

3.3.3.1 Meat
The serial dehydration of pork specimens over 24 hours led to 60% change in the

meat specimen weight. Figure 3-10 shows the spectral results from the serially
dehydrated pork meat- as pork meat reduced in weight (which is presumed to be
predominantly dehydration and decreasing water concentration), there was a
reduction in the water/total area ratio. The scatter graph shows that this
relationship is not linear, as the pork changed from 100% weight to 77% weight
there was very little change in the measured water/total area ratio, and after this

the water/total area ratio reduced with weight reduction.
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Figure 3-10 Figure showing Raman spectra in the HWN region of pork meat at different stages of
dehydration and the relationship with water/total area ratio

A. Graph showing Raman spectra of pork meat specimens at 7 different stages of dehydration (and different
water concentrations). Plotted lines are mean (n=5) for each %age change in weight normalised to CH
stretch region between 2850 -2950 cm?, after pre-processing, shading in the same colour either side is +/-
1SD.

B. Scatter graph of %age change in weight versus water peak/total area ratio. Points plotted are mean
water/total area ratio (n=5) from spectra taken at each stage of dehydration, error bars +/- 1 SD.

Figure 3-11 demonstrates that in a biological system of pork meat (a protein rich
environment), the water peak spectrum does not appear to decrease with water
content, and the CH stretch region (relating to protein in this protein rich
environment) increases as the water content decreases. The scatter graph shows
that with a decrease in water concentration the AUC of the CH stretch region
increases with a linear relationship. However, the amount of protein is
unchanged. It also shows that the AUC of the water peak does not have a
consistent relationship with a change in water concentration. There is a trend that

the AUC of the water peak increases with a decrease in water concentration,
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though the error bars are wide. This is true until the final measurement, where

the specimen is very dehydrated, when the AUC water peak decreases.
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Figure 3-11 — Graphs demonstrating changes in the HWN region with changes in water concentration
in a biological system.

A. Graph showing the spectral changes in CH stretch region (protein peak) and water peak signal intensity
with changes in water concentration with a range from 100% weight — 45% weight. Coloured lines are mean
spectrum (n=5) after pre-processing, shading in the same colour either side is +/- 1 SD. B. Scatter plot
demonstrating the change in Area Under Curve of CH stretch region (protein peak) and Area Under Curve
of water peak at different water concentrations. Line of best fit to demonstrate linear relationship in change
in water concentration and AUC of CH stretch region only.

All data has been pre-processed by baselining and dark noise background subtraction.
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Water in biological systems are sequestered in different environments, broadly

water is bound or unbound (free). It is known that the water peak in the HWN
region is composed of peak contributions from water sequestered in different
environments 3%, To analyse the exact contributions of each different water
environment requires detailed analysis using Voigtian curve fitting 3%4, however a
basic assessment of changes in the water environments can be performed by
looking at the spectral peaks intensities of the different environments 334, Using
this method, the water peak between 3035 — 3680 cm™ can be analysed by
comparing the spectral intensities of contributions from bound water
(corresponding to the peak at 3300 cm?) and unbound water (corresponding to

the peak at 3420 cm1)304, 334,345

To investigate changes in the types of water within the serially dehydrated pork
meat, the change in ratio between bound water versus unbound water signal
intensity was calculated. Figure 3-12 shows the spectral features that were used
to calculate the ratio and demonstrates that with greater dehydration (and a lower

water concentration), the proportion of unbound water decreases.
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Figure 3-12. Graphs showing the change in Unbound versus Bound water in serially dehydrated
pork.

A.Shows HWN Raman spectra of serially dehydrated pork at three different points of dehydration, with a
range from 100% weight — 45% weight. Plotted lines are mean (n=5) for each %age change in weight
normalised to CH stretch region between 2850 -2950 cm?, after pre-processing, shading in the same colour
either side is +/- 1 SD. Dotted lines show the spectral features of Unbound water at 3420 cm™* (black), and
the bound water at 3320 cm™ (red). B. Shows the Spectral intensity on left axis of Unbound and bound water
demonstrated with bar graphs, with unbound/bound water ratio on right axis demonstrated with line graph

at different %age weight pork. All values plotted are mean (n=5), error bars +/- SD

3.3.3.2 Pork fat

The serial dehydration of pork fat over 24 hours led to an 18% change in the fat
specimen weight, compared to the 60% change in the meat specimen weight.
This suggests that pork fat has a reduced amount of initial water than pork meat.
The results from the serial dehydration of pork fat are shown in Figure 3-13. This
shows that there was very little change in the water/total area ratio with weight
change. The relationship between percentage weight change and water/area
total ratio demonstrated in graph B is along the y axis of 0, the reason for negative
values was that baselining in pork fat spectra was difficult as there was an
inflection at the end of the spectrum due to tissue fluorescence, that was not
possible to account for leading to the occasional negative reading within the water
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spectrum (as the baseline fluctuated around zero), which then gave a small
negative water area figure.
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Figure 3-13 Figure showing Raman spectra in the HWN region of pork fat at different stages of
dehydration and the relationship with water/total area ratio
A. Graph showing Raman spectra of pork fat specimens at 7 different stages of dehydration. Plotted lines
are mean (n=5) for each %age change in weight normalised to CH stretch region between 2850 -2950 cm"
1, after pre-processing, shading in the same colour either side is +/- 1 SD.
B. Scatter graph of %age change in weight versus water/total area ratio. Points plotted are mean water/total
area ratio (n=5) from spectra taken at each stage of dehydration, error bars +/- 1 SD.

3.3.4 Mixed protein/lipid phantoms

Figure 3-14 demonstrates the results from 3 different mixed phantoms that had
the same water concentration of 70%, but different protein/lipid ratios, and Figure
3-15 shows the results from 3 different mixed phantoms that had the same water
concentration of 80%, but different protein/lipid ratios.

In both sets of phantoms it was found that with identical water concentrations,
with a change in the lipid/protein environment the HWN spectra changes, and,
significantly there is a change in the water/total area ratio. It can be seen that with
a decrease in the relative concentration of lipid within the phantom, the AUC CH
stretch region (relating to both protein and lipid peaks in these phantoms)
decreases relative to the AUC water peak. It can also be seen that with the
decrease in relative lipid concentration, there is a decrease in the AUC water
peak — although the water concentration remains the same for each set of
phantoms. These changes in the AUC CH stretch region and AUC water peak

result in changes to the water/total area ratio — the mean water/total area ratio
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increases significantly as the relative lipid concentration decreases in both the
70% water phantoms (displayed as mean water/total area ratio (SD); phantom 1-
0.4759 (SD 0.027) compared to phantom 2 -0.5486 (SD 0.0066); P=4.5X10°,
and phantom 1 compared to phantom 3- 0.5796 (SD 0.0076); P=1.2 X10°, and
phantom 2 compared to phantom 3 P= 0.031) and in the 80% water phantoms
(phantom 4- 0.6401 (SD 0.030) compared to phantom 5- 0.707 (SD 0.009);
P=2.3X10", and compared to phantom 6 - 0.7727 (SD 0.0047); P =2.1X107, and
phantom 5 compared to phantom 6; P=2.6X10*) (one -way ANOVA).
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Figure 3-14 - Figures demonstrating the effect of a change in lipid/protein environment on the HWN
spectrum in phantoms with a water concentration of 70%

Graph — A — baselined and normalised to CH stretch region between 2850 -2950 cmfor the phantoms 1 —
3, which all had a 70% water concentration but different protein/lipid ratio. B. Graph showing phantom
number, Bars demonstrate the area under the curve of the CH stretch region (AUCH - Blue), and area under
the curve of the water peak (AUW - orange), y axis on the left, with the water/total area ratio a black line with
y axis on right. All values plotted are mean (n=5), error bars +/- SD. Water/total area ratio was significantly
different between all phantoms (P< 0.05)
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Figure 3-15 - Figures demonstrating the effect of a change in lipid/protein environment on the HWN
spectrum in phantoms with a water concentration of 80%

Graph — A — baselined and normalised to CH stretch region between 2850 -2950 cmfor the phantoms 4 — 6,
which all had an 80% water concentration but different protein/lipid ratio. B. Graph showing phantom number,
Bars demonstrate the area under the curve of the CH stretch region (AUCH - Blue), and area under the curve of
the water peak (AUW - orange), y axis on the left, with the water/total area ratio a black line with y axis on right.
All values plotted are mean (n=5), error bars +/- SD. Water/total area ratio was significantly different between all
phantoms (P< 0.001).
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3.4 Discussion

3.4.1 NP3 can measure changes in water concentration at physiological

concentrations

The results from the soya bean oil phantoms of varying concentrations
demonstrate the ability of NP3 to detect changes in water concentration over a
range from 30% - 95% water in a lipid only environment, with sensitivity to detect
changes of 5%. The relationship between water/total area ratio and water
concentration was linear, with an overall gradient of 1.24. However, there was
some minor difference in the relationship between those phantoms with a higher
water concentration (70-95%) compared to those with a lower water
concentration (30-65%). The gradient of the lower water concentration line of best
fit was 1.05, which suggests that the water/total area ratio is less sensitive to
changes in the water concentration at lower water concentrations in lipid only
environments. This could mean that over these broad ranges, that are likely to
be encountered in human breast tissue, the relationship may not remain constant
and this could affect the ability to quantify changes in water concentration.
However, the difference between these two relationships are relatively small.

It should also be noted that the soya bean oil phantoms had no protein, which
would be present in human breast tissue. The presence of protein (which has a
CH peak close to the lipid CH peak) could affect the water/total area ratio and

may affect these results, and the relationship between water/total area ratio.

The results from the serially dehydrated pork meat (a predominantly protein
environment) demonstrates that there is a change in water/total area ratio with a
presumed decrease in water concentration (as calculated by weight change).
This demonstrates that NP3 is able to measure HWN spectra in biological
systems, and it is able to detect changes in water concentration. The initial
absolute water content of the pork could not be ascertained, but there was a loss
of weight down to 45% of its starting weight over the course of its dehydration
down to its ‘dry weight’, suggesting that water accounted for 55% of its initial
weight which is a range encountered in human tissue 2%. The relationship
between water/total area ratio and relative water concentration was not linear,
the water/total area ratio changed little at higher relative water concentrations of
100 — 77% weight, but between relative water concentrations of 77-44% with a

decrease in weight there was a decrease in water/total area ratio. This could
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affect the ability of NP3 to quantify changes in water concentration in biological
tissue, the reasons why this relationship may not be linear are subsequently

discussed.

The results from the serially dehydrated pork fat demonstrated that the fat
changes little in weight (by <20%), suggesting it had a very low water
concentration initially of no greater than 20% which would be expected in
hydrophobic tissue. It also dried out very quickly, with a number of measurements
being the same, suggesting that it was truly dehydrated of any free water. There
may be less bound water in fatty tissue as it is hydrophobic. As there is little bound
water, it may explain why it dehydrates quickly and completely. There was
negligible change in the water/total area in Raman spectrum over this range of
20%, and all values were close to zero (the reason for negative values is the fixed
noise pattern oscillates around the zero baseline which give negative values for
water AUC). The lowest soya bean oil phantom concentration was 30% water,
and this fat dehydrated over a range of 20%, and probably has an initial
concentration of < 30% water. It may be that in fat based environments in
biological tissue of low water concentration of < 30% , the fat/total area ratio or
any measure of HWN spectra, there is little change, and so changes in water
content at low water concentrations (or high fat concentrations) cannot be
detected. This suggests that for water concentrations <30% in predominantly lipid
environments NP3 cannot detect changes in water concentration. These low
water concentrations are likely to be encountered in some areas of fatty human
breast tissue, and so this needs to be taken into account when analysing data

from areas of low water concentration or high fat.

Summary

NP3 is capable of detecting changes in water concentration in soya bean oil
phantoms, and these changes have a linear relationship with the water/total area
ratio. The range that was investigated covers the physiological range likely of fat
and water in human breast tissue. In biological tissue of serially dehydrated pork
meat and fat the ability of the HWN region to detect changes in water
concentration are less definitive. Although there was a trend of decreasing
water/total area ratio with a decrease in water concentration in the protein rich

environment of serially dehydrated pork meat, the relationship is not linear,
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particularly when the pork meat had a higher water concentration. In pork fat,
where the initial water concentration was very low, further dehydration did not
lead to any measurable change in the water/total area ratio, suggesting that in fat
environments of very low water concentration, HWN RS may not be capable of
detecting changes in water concentration.

3.4.2 The effect of changes in water concentration on the HWN spectrum in

three different environments

This section of the discussion aims to understand more about the spectra in the
HWN region, the influences on the protein/lipid and water peak, and what needs
to be taken into account when interpreting spectra and data from the HWN region
to observe changes in water concentration or quantify changes in water
concentration. Three systems were used to explore the effect of changes in water
concentration on the HWN spectrum, protein only (gelatine/water phantoms), lipid
only (soya bean oil/ water phantoms) and a biological system (serially dehydrated

pork meat, mostly protein).

3.4.2.1 Protein only environment

In the protein only environment the spectral intensity of the protein peak
increases, and the spectral intensity of the water peak decreases with a decrease
in water concentration. This is expected as the relative protein concentration in
the sampling volume is increasing with decreasing water. The AUC water peak
decreases as water concentration decreases, and this relationship is linear.
Similarly, the AUC protein peak increases as the protein concentration increases
(and water concentration decreases), so the change in water/total area ratio seen
with a change in water concentration is a result of these two spectral changes.
This model is limited as the range of water concentrations is narrow (a 10%
range), and so this relationship may not be true at lower water concentrations.
However, it is in similar, simple, protein only systems that using HWN RS to
quantify changes in water concentration has been validated previously. Masson
et al. quantified water concentration changes in gelatin phantoms with a range of
water concentrations from 66.67-90.91% 3°4 and Caspers et al. used a range of
protein only solutions such as albumin, pepsin, lysozyme and urease to produce

solutions of 60-80% water to calibrate their method of water quantification based
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on water: protein ratios 2°°. So, it may be that this relationship remains at a greater

range of water concentrations than studied in this thesis.

This linear relationship between the protein and water peaks and water
concentration in these simple protein models has also been used by those
authors to suggest that this relationship is true in biological tissue, and therefore
they use these simple systems (such as albumin and pepsin) to ‘calibrate’ their
interpretation of the HWN spectra obtained in biological tissue (such as surgically
excised tongue specimens) and provide a quantification of change of water
concentration 174, However, as has already been noted in the biological system
of pork meat, this linear relationship is not necessarily true in more complex
systems, which also involve the effect of sampling location, sampling volume and
changing optical properties of the material with water concentration.

3.4.2.2 Lipid only environment

The results from the soya bean oil phantoms demonstrates that although in the
lipid environment there is a linear relationship between water/total area ratio and
change in water concentration the baselined, but not normalised, spectra shows
that the water peak doesn’t change much with different water concentrations, and
it is the lipid peak that changes the most. This suggests that by using just the
water/total area ratio, although validated in previous work, it may be an
insufficient method to explain or understand the changes that occur in the HWN

region with changes in water concentration.

In a lipid environment the relationship between change in water concentration
and changes in the AUC are different compared to the protein system. The AUC
water peak does not have a constant relationship with changes in water
concentration, particularly at higher water concentrations, however the AUC lipid
peak has a linear relationship of increasing with a decrease in water
concentration (and increase in lipid concentration) with a small degree of
variability throughout the range of water concentrations from 30 — 95%. There is
a linear relationship between change in water concentration and the water/total
area ratio in these soya bean phantoms. From the AUC graphs it can be assumed
that the reason for this relationship is primarily due to changes in the AUC of the

lipid peak, rather than changes in the AUC of the water peak.
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This suggests that HWN RS in a lipid only environment is more sensitive to
relative changes in lipid than changes in water concentration. In a phantom, such
as the soya bean oil phantoms, where there is only lipid or water concentrations
that are changed, the water/total area ratio remains constant with changes in
water concentration, as if the lipid increases, the water concentration must also
change. However, in a complex system which has protein, lipid and water and a
number of different concentrations, the ability to detect and quantify changes in

water concentration may be affected.

A reason for this observation is that the optical properties of the measured
substrates will affect the pathlength of the laser photons and therefore the
sampling volume, the pathlength also impacts on any differential self- absorption
of the solution, as shown by the water absorption spectrum in the HWN
wavenumber region. A limitation of the soya bean oil phantoms is that these
emulsions are highly scattering. Intralipid, which is a similar emulsion composed
of soya bean oil, has been used as a scattering agent to mimic the optical
properties of breast tissue3%® 311 So, it could be these changes in scattering
properties of the soya bean oil phantoms that are causing the changes seen in
the AUC peaks, as the changes in the highly scattering lipid may affect the
changes in the water spectrum. However, creating a lipid only phantom over a
broad range of physiological water concentrations is challenging, and a lipid only
phantom that was capable of having a known water concentration, over a large
range, that did not cause significant scattering, could not be found in the literature.
Even if this is the cause for the changes seen, it is still relevant, as breast tissue
is heterogenous and likely to contain areas of different scattering properties —
indeed the reduced scattering coefficient (a measure of light diffusion in a tissue
and reflection of scattered light from a tissue3!4) reported in the literature for
breast tissue ranges from 8.3 to 31.8 cm! 346347 (gne of the greatest ranges in
biological tissues that has been reported 314). Kim et al. found in skin that changes
in water content of a sample led to changes in the optical properties of the sample
348 For example, it was found that the reduced scattering coefficient (us') doubled
as the water content of the skin increased by 15%. This could be due to an
increase in backscattered light with an increase in water content, and this was

the main reason for variation in the intensity of Raman spectra in this study. If the
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ability of HWN RS to quantify changes in water concentration is affected by

changes in scattering properties, it must be considered when interpreting spectra.

UV-Vis measurements of the constituents of the soya bean oil phantoms were
performed to investigate if the results were affected by the absorption
characteristics of the phantoms’ constituents. The results suggest that soya bean
oil and Triton X100 had some degree of absorption, however it is at the same
level throughout the relevant wavelength region and so it wouldn’t
disproportionately affect one part of the spectrum more than the other.
Broadband absorption like this will change the entire HWN region equally, and so
ratios between intensities are unchanged. However, the water absorption does
vary throughout the spectrum, with an increase absorption between 1011-
1050nm, which corresponds to a Raman shift of 2850 cm™ and 3300 cm™? at
785nm excitation. This may mean the water absorption would reduce the CH3s
stretch region of lipid disproportionately with increases in water concentration.
This could affect the water/total area ratio as changes in water concentration are
not affecting all of the spectrum to the same degree.

The absorption characteristics in skin were investigated by Kim et al. who found
that there was a decrease in the absorption coefficient with an increase in water
content in porcine skin 348, This correlates with our findings that optical absorption
properties change with changes in water concentration in biological systems, and
so these observations need to be considered when interpreting spectra in the
HWN region when using a 785 nm laser excitation. These findings will need to

be considered in analysing spectra from breast tissue.

So, while broadband absorption will change the entire HWN region equally (when
using a 785 nm excitation laser), and so the ability of using ratios or peak
intensities for quantification of water content with HWN region remains
unchanged, the absorption properties of water may mean that differing water
concentrations may affect the HWN region spectra, and the relationship between

water/total area ratio and changes in water concentration.
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Summary

These results demonstrate that although the water/total area ratio changes with
a linear relationship with a change in water concentration in a lipid only
environment, the change in water peak doesn’t have a consistent relationship
with a change in water concentration, whereas the change in lipid peak shows a
robust and consistent relationship with a change in water concentration. This
suggests that HWN spectra of lipid rich tissue are more affected by changes in

lipid concentration than changes in water concentration.

It has also been discussed that spectra in the HWN region are affected by the
optical properties of scattering and absorption of the tissue measured, and that
the scattering properties of fat, and the absorption properties of water will change
with their respective concentrations, which may affect interpretation of HWN
spectra in the assessment of changes in water concentration when using a 785
nm excitation laser. These findings are highly relevant to measuring in biological
tissue such as breast tissue, as tissues are heterogenous with different
concentration of water and lipid, and thus will have different optical properties. It
is difficult to experimentally separate out the optical properties of our substrates
measured here (soya bean oil and water) from their concentration, as they are
inherently linked, i.e. if the concentration of lipid is increased, the scattering
properties will change, and these cannot be isolated easily. Changes in optical
properties may affect the HWN spectra to the same degree as changes in water

or fat concentration.

Therefore, when interpreting spectra from the HWN region using a 785 nm
excitation laser it must be considered that the HWN region is affected more by
changes in lipid than in water concentration and by changes in the optical
properties of the specimen. If there are changes seen between tumour and non-
tumour breast tissue in the HWN region, it must be considered that changes in
lipid concentration and optical properties affect the HWN spectra, as well as water
concentration. Therefore, any changes in the water peak of the HWN spectra
should not be considered to be due to solely a change in water content. These
findings will aid interpretation of spectra when measuring a variety of

microenvironments within breast tissue with the NP3 system.
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3.4.2.3 Biological system

The results from the serially dehydrated pork show that, although there is a
relationship between water change and water/total area ratio in pork meat, it is
not linear as it is with the more simple protein model of gelatine phantoms at
different concentrations. The pork meat is protein rich, however the results from
the changes in the HWN spectra with water concentration are more similar to the
lipid only phantom. The AUC CH stretch region peak increases with a decrease
in water concentration. It is interesting that the protein peak intensity increases
with a decrease in water content, even as we presume the amount of protein or
lipid is unchanged as they are the same pieces of meat. A presumption in these
experiments is that the weight loss of the pork is due to dehydration, and loss
only of water. The meat only dehydrated for 24 hours in a laboratory, so it is
unlikely that any decay or consumption of the protein occurred, and so we also
assume that the amount of protein remained stable throughout the experiments.
The AUC water peak does not have a consistent relationship with a decrease in
water concentration, there is however a trend of increasing AUC water with a
decrease in water concentration, although the meat lost >50% of its mass, which
is presumed to be water. Biological systems are inherently more complex than
simple phantoms constructed in the laboratory, and there are a number of

phenomena occurring that may help to interpret these findings.

As water evaporates from the dehydrating pork it may not occur evenly from the
specimen. It can be presumed that surface dehydration occurs more rapidly, and
so the percentage weight change of the whole sample may not reflect the water
change at the surface, which is where the concurrent Raman measurement is
taken. The sampling depth of the NP3 system is estimated to be 500 pm (>50%
of collected Raman photons are obtained from within this distance) 64. Therefore,
the majority of the collected photons will be collected from the surface, which is
drying more rapidly from the bulk of the specimen, and thus may be an
unrepresentative reflection of the specimen’s water content. Another
consideration is that some Raman scattering contribution will be from beyond 500
pum, from areas of greater hydration, and so within a single measurement different
depths and water concentrations are being sampled, and this may be

responsible for some of the observed intra-specimen variation.
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The sampling of the specimen may also differ — certain areas of the specimen
may have different water concentrations, and at every time point, it was not
possible to ensure that the same part of the specimen was measured, which

could lead to varying results.

Dehydrating biological tissue leads to a change in their optical properties.
Rylander et al. demonstrated in skin that as it dehydrated the scattering particles
such as collagen and organelles become more densely packed3#°. The pork
specimen in these experiments visibly decreased in size, so as water leaves the
specimen protein molecules come closer together increasing the amount of
protein (and likely scattering) sampled in a given measurement. The specimens
were also exposed to light, which may degrade or change biological pigments
such as haem or carotene which may change the optical properties of the pork
through its time of dehydration. These considerations may explain the greater
variation in measurements with larger standard deviations compared to those of

the gelatine or soya bean oil phantoms.

Another reason for the changes in HWN Raman spectra having a non-linear
relationship with changes in water concentration in biological tissue is that water
Is sequestered in a number of different environments in biological tissues.

In the spectra of pork meat at its ‘dry’ weight (the point at which no further
dehydration occurred) there is still a small spectral peak at 3280 cm* — this is
due to the vibration of the NH group present in protein, which was also observed
by Yang et al. 3% in dehydrated chicken, rather than signifying any residual water.
It has been shown that water associated with presence of this NH group is more
tightly bound 334, Therefore the presence of the NH group in protein not only
effects the HWN spectra because its vibration contributes a peak within the OH
region, but also because water may be sequestered differently in the presence of
the NH peak, which can affect the OH vibration, and subsequently the

morphology, and behaviour of the HWN OH peak3®°,

Unal et al. demonstrated that in biological tissue (bone), water is lost at different
rates according to whether it is bound or unbound 3%, In their experiments they
dehydrated bone of unbound water (by air drying) and bound water (by ethanol
dehydration) and observed the changes in Raman peak intensities associated
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with these two types of water, and found that unbound water loss followed a
similar non-linear relationship to the pork meat dehydration, whereas the bound
water loss followed a linear relationship with the associated Raman peaks. It is
likely the water loss in the pork meat also represents unbound water. It may also
be that as the specimen slowly dehydrates, water moves between compartments
from bound to unbound, which would also affect the relationship of overall water

concentration of the specimen with Raman spectra.

Figure 3-12 demonstrates that there are changes in the ratio of bound to unbound
water, as pork meat dehydrates. As the water concentration of the pork
decreases, the proportion of unbound water decreases and the unbound/bound
water ratio changes from 1 (100% weight) to 0.43 (at 31% weight), this suggests
that water losses are disproportionately from unbound water rather than bound
water. These relative changes between bound and unbound water may
contribute to our understanding as to why the water/total area ratio is not linearly
related to a change in water concentration. The relationship between water
concentration and the Raman peak intensity is dependent on the water type - the
bound water peak Raman intensity has a linear relationship with changes in water
concentration and unbound water Raman peak intensity has a non linear
relationship water. This suggests that for the same number of water molecules,
the Raman scattering cross section is dependent on the environment of the
water. This means the AUC water peak is dependent not only on the total water
concentration, but also what environment the water is in. The different water types
are contributing differing proportions towards the overall AUC water peak at the
different water concentrations which may explain why neither the AUC water nor
the water/total area ratio has a linear relationship with water concentration in

serially dehydrated pork.

This finding also helps to understand why the relationship between water/total
area ratio and water concentration is different between the protein only
environment of gelatine phantoms and the protein rich environment of pork. In
pork dehydration, there are changes in where water is sequestered over time,
whereas in gelatine phantoms that are composed of a set concentration this does
not change (the unbound/water ratio in gelatine phantoms is 1.04 and does not
change between 95% water and 85% water phantoms, data not shown).
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The rationale for using the water/total area ratio area rather than specific parts of
the water peak for calculation in water content is that it will include the changes
between these types of water, whereas if only a narrow part of the water peak
(e.g. just detecting unbound water) is used it may not detect changes in the other
part of the water peak (e.g. changes in unbound water). A benefit of using a
narrow part of the spectrum may be that the changes in water concentration with
that part of the spectrum are more fully understood, e.g. if the bound part is used,
one could assume a linear relationship with changes in water concentration.
However, this would not give a full representation of what is occurring to the
specimen in terms of total water concentration. It is not known whether the
changes in water content between tumour and non- tumour breast tissue occur
mainly in bound or unbound water, and so the whole water peak area should be

used to capture any potential differences between tissue types.

Summary

These results demonstrate that in a protein rich biological tissue there is a
relationship between water/total area ratio with change in water concentration,
but it is not a linear relationship. It is also seen that the AUC water peak does not
change in relation to a decrease in water concentration. The reasons for this
relationship may be due to sampling technique, changes in sample structure and
optical properties or changes in bound versus unbound water as the pork meat

dehydrates.

Although these may be seen as ‘limitations’ of using serially dehydrated pork as
a model, they represent challenges that are likely to be faced in biological tissue
such as breast tissue. These properties that affect the HWN spectra are unique
to each biological tissue, so what is found in pork tissue may not hold true of
breast tissue. The shifts in water compartments are likely to be different between
a tissue that is dehydrated to a certain water concentration, and a tissue that is
in homeostasis at a certain water concentration. However, a highly relevant
finding from these results is that there are changes to the HWN spectra according
to where the water is sequestered, and changes in where the water is
sequestered affects the water peak in a different manner. When measuring a

biological tissue with a number of microenvironments, these are likely to hold

176



Chapter 3

water in a different manner. Measuring the entire water peak therefore may give
the best indicator of changes, but it may be there is a non- linear relationship, as

seen in this biological pork tissue.

3.4.3 The water/total area ratio relationship with water concentration is

dependent on protein/lipid environment

This section will discuss the influence on the HWN spectrum of changes to the
protein/lipid environment on the ability to detect changes in water concentration,

examining the results from the mixed gelatine phantoms.

In 3.4.2, the results suggested that the changes in the HWN region, and more
specifically the water/total area ratio, is more a product of changes in lipid/protein
concentration than of water concentration. It could therefore be hypothesised that
the spectral changes with water concentration and the water/total area ratio will

be dependent on the protein and lipid environment.

Caspers et al. used a range of different protein substrates (BSA, pepsin,
lysozyme and urease) at a range of concentrations, to create a calibration tool for
quantifying changes in water concentration using the HWN region 2%. There was
a 15% difference in the proportionality constant calculated from the four different
calibration proteins that was used to determine the changes in the water to protein
ratio. This suggests that even between different simple protein/water mixes there
is a different relationship between change in water content and the HWN spectra,

and this may impact on the ability to assess changes in water concentration.

The water/total area ratio relationship between soya bean oil and gelatin

phantoms over the same water fraction range is shown in Figure 3-16:
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Figure 3-16 Graph showing linear relationship between known water fraction and water/total area
ratio

Gelatine phantoms (gradient = 0.57, RMSE - 9X10%) and Soya bean oil phantoms (1.61, RMSE =
4X10°16)

In both gelatine phantoms (protein only) and soya bean oil phantoms (lipid only)
there is a straight line fit relationship —the changes in water concentration are
proportional to the changes in water/total area. However, they have different
gradients, that is the rate of change in the water/total area ratio is dependent on
whether the water is in a protein or lipid environment. This suggests that changes
between protein and lipid environments changes the relationship between
water/total area ratio. A water/total area ratio from a protein rich environment will
not equate to the same water/total area ratio in a lipid rich environment of the

same water concentration.

The results from the mixed phantoms in Figure 3-14 and Figure 3-15 show that
with a constant water concentration, the AUC of the water peak and the
water/total area ratio changes with a change in protein/lipid ratio. This
demonstrates that the water peak and the relationship of the water/total area ratio

and water concentration changes is dependent on the protein/lipid environment.

These results also show that the lipid signal is dominant in the HWN region.
Observing the Raman spectra from these phantoms demonstrate that even in

phantom 5, which had the same concentrations of lipid (1%) and protein (1%),
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the lipid signal dominates. What is also observed is that as the concentration of
lipid decreases, the total AUC of both CH stretch region and water peaks
decreases. This may be due to the scattering effect of the soya bean oil emulsion,
meaning the Raman cross section of the entire phantom is reduced. However,
also note that as the lipid content decreases, the water/total area ratio increases,
this is because the AUC water peak decreases at a lesser rate than the AUC CH

stretch region.

If the relative change in lipid concentration in the phantoms is calculated, it is
eqgual to the relative change in the water/total area ratio that would be found in
the change in lipid concentration in a soya bean oil phantom. For example, in the
phantoms 4 — 6, the total oil concentration decreases by a total of 10% (from 15%
lipid to 5% lipid), over this range the water/total area ratio increases by 14 % (from
0.69 to 0.83). Figure 3-16 B demonstrates the relationship between soya bean oll
phantoms and water concentration has a gradient of 1.24, so in soya bean oil
phantoms, if the water concentration increased by 10% (and therefore the lipid
content decreased by the same amount), a 12.4% increase in water/total area
ratio would be expected. This shows that with a change in lipid concentration, but
with the same water concentration, there are changes in both the spectral
features and water/total area ratio, that are comparable to if there were significant

changes in water concentration.

Within this range of phantoms there are changes in protein concentration,
however it is changes in lipid concentration that are predominately observed. This
suggests that HWN spectrum may not identify more subtle changes in protein

concentrations in the presence of lipids.

Summary

These results suggest that in a protein/ lipid environment, the HWN region mainly
observes changes in lipids, more than changes in protein or water. A change in
lipid concentration within a constant water concentration will change the
water/total area ratio to a similar degree as a change in water concentration.
This suggests that using water/total area ratio within different protein/lipid

environments would not accurately quantify changes in water concentration, as
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altering the protein/lipid environment affects the water/total area ratio as much as

a change in water concentration.

3.5 Conclusion

This chapter has demonstrated the influences on spectral measurements in the
HWN region, and the ability to detect and quantify changes in water
concentration. The results demonstrate the ability of NP3 to measure and
quantify changes in water concentration in a lipid only environment at a range of
physiological concentrations, and the relationship between changes in water
concentration and the water/total area ratio in a biological tissue. However, the
subsequent data analysis of measuring changes in AUC of the spectral peaks,
and analysis of mixed phantoms with a constant water concentration and different
protein/lipid environments demonstrate that the relationship between water/total
area ratio is complex. The signal intensity of the water peak does not always
increase or decrease with corresponding changes in water concentration, and

the lipid peak appears to dominate the spectral features in the HWN region.

The rationale for performing these experiments was to understand the influences
on spectra in the HWN region and the changes that occur with water
concentrations. The ability to quantify changes in water concentration would be
useful, as it would allow findings to be put in context with imaging modalities other
than Raman spectroscopy. The findings from these experiments suggests that
HWN Raman can quantify changes in water concentration, if the changes occur
within the same protein/lipid environment. It is also possible to measure these
changes in a number of different protein and lipid environments. However, the
relationship between changes in water concentration and changes in the HWN
region are dependent on the protein/lipid environment and so one cannot equate
spectra or measurements of water concentration from one environment to

another.

Previous studies have used the protein/water ratio from a set of protein only
solutions to calibrate the system and then used these figures to quantify changes
in water concentration in a different environment of biological tissue. In a protein
only biological environment, such as skin 2% or corneas 2%, this may be valid as

the calibration tool is a protein only environment, so the error caused by changing

180



Chapter 3

environments may be acceptable. However, the use of a protein only calibration
tool for water quantification of spectra obtained in biological tissue including
protein and lipid spectra as was done by Barosso et al. 174, based on our data, is

likely to lead to significant inaccuracies in estimation of water content.

As biological tissue is composed of multiple different protein/lipid environments,
of different optical properties, and water is sequestered in different ways, this
complexity cannot be replicated to a sufficient degree to allow accurate
calibration. The only reliable method of accurately quantifying water
concentration within tissue is to use that tissue itself to provide a calibration tool.
One method is by calculating water fraction by freeze drying breast tissue, taking
a wet and a dry weight, and using a PLS model to correlate with the spectra
obtained from different known water concentrations, as performed in brain tissue
by Wolthuis et al. 2°4. A limitation with this method is they were only able to
produce a narrow range of water concentrations of 75-95%. Another method
would be with serially dehydrating breast tissue and taking Raman spectra,
similar to the serially dehydrated pork experiments. Access to appropriate
samples obviously may limit the possibility of being able to perform these
calibration experiments. Additionally, when analysing an area of breast tissue,
measurements would be taken from a range of different lipid, protein and water
environments, with constant changes within the specimen between these
different environments. Therefore, calibration to enable quantification water
content would require separate measurements for each environment likely to be

encountered.

It may be that quantification of water content is difficult with HWN Raman in
specific biological tissues due to limitations of accessing the appropriate
biological tissue for experimentation and calibration. However, the HWN region
has been shown to be able to detect changes in the HWN region between
different protein/lipid environments, and can provide indicators of a high water
concentration environment and a low water concentration environment. It can
detect changes between lipid and protein environments and give individual
information on where water is sequestered. Our hypothesis outlined in the
introduction is that the spectral differences between cancerous and normal breast

tissue is that tumour is a predominantly protein environment with a high water
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content, and normal breast tissue is predominantly a lipid environment with a low
water content. The experiments described in this chapter suggest that High
wavenumber Raman Spectroscopy and the NP3 system is capable of detecting
these differences, and therefore may be able to differentiate between cancerous

and normal breast tissue necessary for Intraoperative Margin Analysis.
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CHAPTER 4:

High wavenumber Raman spectroscopy for
the identification of breast cancer in Fresh
Frozen Samples

4.1 Introduction

In the background section to this thesis, the rationale for using HWN Raman
spectroscopy for intraoperative margin analysis (IMA), and in particular the use
of changes in water content to differentiate between tumour and non-tumour
tissue was outlined. The major advantages of using the HWN region for diagnosis
is that the acquisition times can be quicker and because of the reduced spectral
features, analysis can be simplified, allowing a rapid assessment of large surface
areas suitable for clinical IMA. Chapter 2 described the development of the NP3
system, which demonstrated the theoretical capability of measuring HWN Raman
spectra in breast tissue, within the clinical environment, and Chapter 3 outlined
an understanding of the influences on the HWN spectra, and how spectral data
can be interpreted in relation to changes in water content which may aid in

developing diagnostic algorithms for HWN spectra.

The next step in developing the NP3 Raman spectroscopy tool capable of
performing IMA is to assess the ability of the system to differentiate tumour from
non-tumour tissue. Raman spectroscopy has been shown to be capable of
diagnosing breast cancer with clinical breast samples, but not in a clinically
relevant timeframe for IMA 185 262 |n |aboratory conditions there has been
assessment of the HWN region spectral differences between tumour and non-
tumour human breast tissue, mainly observing changes in lipid and protein
abundance 2%, There is evidence that there are some stark differences in lipid in
the HWN spectrum between tumour and non-tumour tissue 2’ 2%7 and there is
potential for these differences to be used along with spectral information from the
FP region to identify potential areas of tumour 2°°. However, the differences in

water content between tissue types and an assessment of using HWN RS alone
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as a diagnostic tool in a clinical setting, with human breast tissue, has not been
investigated. The aim of this chapter is to assess the diagnostic ability of HWN
Raman to differentiate between tumour and non-tumour tissue in human breast

specimens.

In the Raman literature there is an obvious focus on the differentiation between
tumour and non-tumour tissue, as this is likely to be the most clinically relevant
concerning IMA. However, there are a number of other potential uses for HWN
Raman in breast cancer, particularly as the NP3 system is a needle probe which
could be used for subcutaneous diagnosis. This system could be used for initial
cancer diagnosis in addition, or in place of, core biopsy for rapid diagnosis, or
information from these studies could be used in the development of a deep
Raman system for screening of asymptomatic patients. Therefore, assessing the
ability of NP3 system to provide a pathological diagnosis, or detect differences
between pathological subtypes is an important part of developing the NP3 system

for future clinical uses.

Assessment of NP3 thus far have been focused on the HWN region, as
differences in water content may be key in rapid IMA. However, the NP3 system
has a much broader spectral window due to the choice of grating that is required
to capture the HWN region. Therefore, a large portion of the fingerprint region is
also measured in any spectral acquisition. The fingerprint region is known to be
able to differentiate between tumour and different types of non-tumour breast
tissue 8, and it may give complementary and more specific biochemical
information than the HWN region. The ability to capture both regions presents the
opportunity to have a sensitive tool that can rapidly differentiate between tumour
and non-tumour breast tissue with HWN spectral data and provide specific
biochemical information from the fingerprint region that could give detailed
pathological information.

An important part of differentiating between tumour and non-tumour specimens
is an understanding of what is the ‘normal’ baseline against which the tumour
tissue is being compared. When using changes in water content to differentiate
between tumour and non-tumour, it must be considered that there are

physiological variations in the water content of normal tissue between patients 306
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and that these physiological variations may be clinically relevant to disease states
280 This will inevitably have an effect on the diagnostic ability to differentiate this
normal tissue from tumour tissue, particularly as it may be that the extremes of
the ‘normal’ physiological variation overlap with the pathological tumour state 2.
Therefore, the spectral differences observed between the normal specimens

must be investigated as part of the pathological assessment.

Taking the aforementioned issues into account, the aim of this chapter is to
assess the ability of the NP3 system to differentiate tumour from non-tumour
tissue in human breast tissue samples. There is an emphasis on investigating the
ability of detecting changes in water content to provide this diagnosis, and
generally on the HWN spectral features that may provide diagnosis as part of
IMA, but the spectral data acquired from the fingerprint region are also assessed
to evaluate whether it can be used in conjunction, or in addition to, the HWN

region for diagnosis or additional pathological information.

4.2 Methods

4.2.1 Human Tissue samples

Human tissue samples were acquired between 2011-2015 from the Royal Devon
and Exeter Hospital. Freshly excised breast tissue removed from patients as part
of their routine cancer treatments were processed following informed consent
according to local protocols, having been approved by the Clinical Research
Facility Tissue Bank steering committee (Ref: CRF320; Tissue bank ethics
number 16/SC/0162; further information at https://exetercrfnihr.org/about/rde-
tissue-bank). Inclusion criteria were females aged >16 and able to consent for
the procedure, with a malignant tumour of greater than 2 cm determined by pre-
operative examination or imaging. Routine demographic data were collected from
clinical notes and linked anonymously with the research samples. The specimen
was sliced open fresh, and a 3 mm core biopsy was taken from the tumour and
a separate 3 mm core biopsy taken from surrounding normal tissue, distant from
the tumour edge (to allow a matched pair of biopsies of tumour and normal breast
tissue from each patient). This was performed by a histopathologist or pathology
practitioner. The rest of the specimen then underwent routine histopathological

analysis. The research core biopsies were labelled anonymously and
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immediately frozen in liquid nitrogen and stored at -80 °C. Subsequently, 5 pm
sections were taken from all of the frozen biopsies for Haemolysin and Eosin
(H+E) staining and underwent analysis by a histopathologist from
Gloucestershire Royal Hospital for a histopathological diagnosis, and sections
taken to be fixed on barium fluoride slides to enable microscopic Raman imaging.
The remainder of the biopsy (which varied in volume between roughly 2 mm? to

5 mm?3) was available for needle probe analysis.

4.2.2 Needle Probe Raman Spectroscopy configuration

The Raman needle Probe was configured as outlined in Chapter 2 for the NP3
system. In brief, a 785 nm laser excitation was used, with a Kaiser Spectrometer
with a broad grating with an InGaAs camera, with fibre optics within a needle
probe for light delivery/collection.

Daily calibrations were performed with Neon Argon lamp, Ethanol, water, PTFE
Paracetamol and aspirin. This was used to calibrate the Raman shift using the
inbuilt calibration tool in the SOLIS software. A dark signal measurement of 5
second acquisition and 5 accumulations were taken daily for baseline subtraction
(method detailed in Chapter 3).

4.2.3 Fresh Frozen sample Breast Tissue measurements

The fresh frozen biopsy samples were measured individually. The sample was
removed from the freezer, thawed at room temperature and measured
immediately to minimise loss of water by evaporation before being disposed of
appropriately. The whole process took less than 5 minutes for each sample.

Measurements were performed at an ambient temperature of 21 — 24 °C in a dark
room. The specimen was removed from its container once thawed and placed on
a calcium fluoride slide. The needle probe was then put in contact with the
specimen for measurement. 5 — 8 different areas of the specimen were measured
at random, depending on the size of the specimen. Measurements were taken as

5 second acquisitions and 5 accumulations in each of the 5-8 different areas.

4.2.4 Estimation of water content by dehydration

To obtain a correlation between the HWN Raman spectra and calculated
water/total area ratio and water content of breast tissue, a series of dehydration

experiments were performed. Five tumour specimens and two non-tumour
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specimens were chosen for the experiments — they were the largest specimens

available (to enable measurable change in weight).

Immediately after the initial Raman measurements for tumour diagnosis
experiments, samples were weighed using weighing scales accurate to 0.0001
g. This initial weight was the ‘wet weight’. The samples were then placed in the
laboratory environment to dehydrate over time and were measured every hour
until the weight was unchanged for two consecutive readings (approximately 6
hours), and this was recorded as the ‘dry weight’. Weight loss was presumed to
be wholly due to water dehydration. Water fraction was calculated as per

Equation 4-1:

Weight of specimen—'dry weight'

Water Fraction = - — -
wet weight' of specimen

Equation 4-1 Calculation of water fraction of dehydration of specimens

Immediately prior to the weighing of the specimen at each time point,
measurements were taken as per the other Needle probe Raman measurements.
This resulted in a series of Raman spectra at each stage of dehydration for each

specimen.

4.2.5 Data Processing

Spectra were recorded using SOLIS software (Andor,UK) and processed in
Matlab (Mathworks, USA). For each measurement the mean of the 5
accumulations was taken. A smoothed dark noise baseline was obtained by a
Savitzky-Golay filter with a 7" order polynomial of the dark noise reading and this
was subtracted from the spectra. Spectra that had high levels of background
fluorescence that resulted in little visible measurable Raman spectral data were

rejected (n=3).

4.2.5.1 HWN region

For calculation and analysis of the water/total area ratio the HWN spectra
underwent 3 order polynomial baselining with no normalisation (as
demonstrated in Figure 4-1 A). This is similar to other studies that have
investigated water / protein / lipid ratios , where the data has undergone minimal
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pre-processing with fluorescent baseline subtraction only prior to calculation of

the ratio 174304,

Pre-processing for the High wavenumber (HWN) data (2600-3800 cm)
underwent fluorescent baseline subtraction with a 3" order polynomial and
minimum/maximum normalisation (whereby the lowest reading in the individual
spectrum =0 and the highest reading = 1). 3™ order polynomial background
subtraction has been used previously for HWN Raman in biological tissue 240 304
and has been shown to be optimal for baselining this region compared to other
polynomials®¥’. Other methods of pre-processing of spectral data such as
normalising using the median Area under the Curve, normalising using the mean
Area under the Curve, and normalisation with minimum/maximum without
baselining were trialled (shown in Figure 4-1). This sequence of pre-processing

was used as this was the method that gave the best separation between samples.
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Figure 4-1 High wavenumber spectra of human breast tissue using different pre-processing methods
A Fluorescent Baseline subtraction using 3™ order polynomial. This was used for the calculation of
water/total area ratio. B. Normalisation of spectra using the Median Area Under the Curve C. Normalisation
of spectra using the Mean Area Under the Curve D. Normalisation using Minimum/Maximum E. Fluorescent
Baseline subtraction using 3" order polynomial followed by normalisation using Minimum/Maximum. This is

the method that was used for HWN spectral analysis.

4.2.5.2 Fingerprint Region

The Fingerprint (FP) region data (900-1886 cm™*) had a more complex fluorescent
background to consider, and needed to be pre-processed differently to the HWN
region. Using different pre-processing for the different spectral regions of
fingerprint and HWN is commonly performed when both are being measured 07
304 An example of a raw spectrum is displayed in Figure 4-2, with a hand-drawn
line demonstrates the complex shape of the background that needs subtraction.
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Figure 4-2 Demonstrating the complex fluorescent background baseline of breast tissue specimens
Representative raw Raman spectrum from a tumour (red) and non-tumour specimen (green). Hand drawn
‘baseline’ (black) suggests the ideal baseline that would be fitted to the spectra to obtain optimal spectral

pre-processing

Baseline subtraction is performed to subtract the fluorescence sufficiently to
enhance spectral features to allow greater clarity for interpretation, however if the
spectrum is ‘overfitted’ it can remove important spectral features and have the
opposite effect on interpretation %, The process is a balance between
underfitting, which leads to ‘false’ peaks of background being interpreted as
Raman peaks, and overfitting, with Raman peaks being subtracted out along with
the baseline.

Another method of processing Raman spectra, particularly for PCA and LDA
analysis (which was one of our planned methods of analysis) is to perform the
analysis on spectra that have been normalised (to provide standardisation in
intensity between spectra and allow comparison) but without any baseline
subtraction. This removes the human error of visual interpretation of a baseline
and avoids under or over fitting the baseline to the spectrum. Compared to the
HWN region, the spectral features of tumour and non-tumour breast tissue in the
fingerprint region are very well documented. Therefore, we processed the Raman
spectra without a baseline and trialled a number of different polynomial baseline
subtractions (what is displayed is representative of the baselines attempted,
rather than exhaustive) (Figure 4-3). A tumour spectrum was used, as this was
the group that was the most difficult to fit and gave the most disparate results —

non-tumour spectra were affected less by the different methods of baselining.
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Figure 4-3 Demonstrating different methods of pre-processing a representative tumour spectrum

On the left are the raw spectra, with the polynomial baseline that is calculated for subtraction, on the right
are the resultant spectra after baseline subtraction, and min/max normalisation. A. Spectrum does not
undergo baselining, just normalisation. B. Spectrum undergoes 2" order polynomial baselining and
normalisation. An example of baseline underfitting, as there remains significant fluorescence baseline
artefact. C. Spectrum undergoes 7™ order polynomial baselining and normalisation. An example of baseline

overfitting, although all fluorescence baseline is subtracted, some of the spectral features are also lost.

In the spectrum that did not undergo baselining and in the spectrum that has been

‘underfitted’ with a second order polynomial, it can be seen that interpretation of
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peaks is difficult because the baseline is significant, there is no amide Il region
(1200-1300 cm1193) which would be expected in protein rich tissue, and from the
literature3®?, and there is a large peak at 1700-1900 cm. There are no Raman
active molecules beyond 1800 cm, so it is certain that this is an artefact of
fluorescence. When we performed a PCA analysis of the spectra that had not
been baselined, or baselined with a second order polynomial, the principle
components were difficult to interpret due to the remaining baseline, and so made
it impossible to analyse the biochemical differences that were separating the

data.

The spectrum that has been processed with a 7" order polynomial shows signs
of overfitting. The amide Ill region, which would be expected to be present, is
absent, and so some of the specific biochemical features for tissue differentiation
are lost. However, it has successfully subtracted the fluorescence from 1700-
1900 cm?,

We then used a 6" order polynomial to fluorescence baseline subtract, which
gave the optimal results (Figure 4-4). The processed spectrum shows clearly the
amide Il region, which was to be expected, and there is no significant peak in the
1700-1900 cm region. When compared to a previous study’s results, which were
also obtained in fresh frozen breast tissue using a 785 nm laser excitation, the
spectrum is similar®>2, A 6" order polynomial has also been used in a previous
publication for baseline subtraction in the fingerprint region when measuring
fluorescent biological tissue 7. This ability to perform specific biochemical
analysis of the spectrum and the concordance with previous results suggested
this was the optimal method for processing our fingerprint spectral data, and so

this method was used in the rest of this study.
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Figure 4-4 Demonstrating pre-processing tumour spectrum with a 6! order polynomial flourescence
baseline subtraction prior to min/max normalisation.

A Representative raw tumour Raman spectrum, with the fitted baseline to be subtracted. B Representative
tumour spectrum after pre-processing. C. Representative tumour spectrum (smoothed with a savitzky-golay
span of 5, 1%t order polynomial) with peaks highlighted with corresponding Raman shift number. D. Figure
of Raman spectrum from the literature obtained with a 785 nm laser excitation demonstrating similarity in
Raman peaks with our spectrum in C. Reproduced from reference Li et al. 3%2,( copyright the authors 2017,
reproduced with a creative commons licence 4.0 (https://creativecommons.org/licenses/by/4.0/))
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4.2.5.3 Concatenated data

Concatenation was then performed where the pre- processed fingerprint
spectrum was ‘stitched’ with the high wavenumber data to allow analysis without
the Raman inactive region of 1900-2600 cm (as shown in Figure 4-5).
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Figure 4-5 Representative baselined and normalised Raman spectrum obtained from a single non-

tumour specimen, with demonstration of the different spectral regions measured

A Fingerprint region B. Highwavenumber (HWN) region C. Concatenated data composed of the HWN and

Fingerprint region ‘stitched’ together
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4.2.6 Data analysis

Spectra were analysed both as individual, independent spectra (e.g. each
different area on a single sample viewed as a discrete spectrum and so each
specimen had a number of spectral outputs that contributed to analysis), and as
mean/median specimen spectra (e.g. each sample had a single combined

spectral output).

The pre-processed HWN spectra were analysed using the water/total area ratio
calculation using the protocol outlined in Chapter 2. The water/total area ratio was
calculated for each individual spectrum and then the mean ratio from each
specimen was used and categorised as coming from either a tumour or not

tumour specimen. The standard deviation was calculated for mean data.

Binomial Logistic Regression was then used to obtain the optimal water/total area
ratio threshold that could be used to predict if a spectrum was from a tumour or
not tumour specimen. Classification tree machine learning was also used with a
2- way split as an alternative method to obtain the same goal. In data with more
than two classifiers (e.g. carcinoma type and grade), a multiclass error-correcting
output codes (ECOC) model using support vector machine binary learners was
trained for prediction. For each model a Receiver Operating Characteristic (ROC)
curve was plotted, with the y axis being true positive rate, and x axis 1-specificity
(or false positive rate). The optimal threshold was calculated as the point at which
the test gives the optimal accuracy and balance of sensitivity and specificity. The
accuracy of these models can be assessed by the Area Under the Curve (AUC)
of the ROC curve- a ROC with an AUC of 1 is a perfect test with 100% sensitivity
and specificity, and therefore, the closer the AUC is to 1, the more accurate the

model.

These techniques were then cross validated by a number of methods, using built
in functions within MatLab. Different cross validation techniques were used to
assess which were the most suitable to use for future data analysis. No technique
is perfect, and there is no ‘correct’ one for use in a particular scenario; it is
important to acknowledge the potential risk of bias due to each method, when

deciding which method of cross validation to use 3%,
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‘Hold out’ cross validation is where 30% of the data is held out, the model uses
the remaining 70% of data as the ‘training set’, and it then uses this output to
predict the outcome of the previously held out 30% as the ‘prediction set’. The
advantage of this technique is that none of the training set data is used for the
prediction set, meaning the prediction set is truly ‘new’ data to the algorithm.
However, with a limited data set there is a possibility of bias, as the test set (which
does not inform the algorithm) may contain important information (e.g. it may

contain all the data from a sub-population)3%4,

‘K folds’ cross validation is where the data is randomly split into the number of
‘folds’ stipulated, e.g. in K folds 5, the data is split into 5 groups. One group is left
out, the remaining groups are used as a ‘training set’ and this output is used to
predict the outcome of the previously left out group as the ‘prediction set’, this is
then repeated, but with the next group left out etc. until all groups have been held
out and used as a ‘prediction set’. The advantage to this technique, particularly
with a smaller data set, is that all the dataset is used in at least one iteration of
the training set, reducing the risk that important information or a sub-population
is not included in algorithm construction3>, however this increases the possibility
of overestimation of the algorithm prediction accuracy 3%°.Leave-One-Out-Cross-
Validation (LOOCYV) is the logical extreme of a K folds cross validation, with the
number of folds being n-1. LOOCYV is the most exhaustive cross validation
procedure and is commonly used in clinical studies providing a ‘subject-wise’
cross validation method (the training set does not include the prediction set data),
and is considered to be particularly appropriate in the evaluation of diagnostic

models 353355,

For each of the cross validation methods the accuracy of the test was assessed
by the outcome in the form of a confusion matrix with the sensitivity (true positive
rate, or true positive / true positive + false negative), specificity (true negative
rate, or true negative / false positive + true negative) and overall accuracy of the
analysis (true positive + true negative) / true positive +true negative + false

positive + false negative) calculated.

The individual specimen data also underwent analysis with a voting threshold
technigue. The optimal water/total area ratio was used as a cut off to classify
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each spectrum as either ‘tumour’ or ‘non-tumour’. The optimal water/total area
ratio that had been determined from the binomial logistic regression model
without cross validation was used as this used all available spectra, whereas in
the cross validated models a certain proportion was held out, and so reduced the
size of the training set. Algorithms were constructed in Matlab to classify the
entire sample based on the proportion of ‘tumour’ or ‘non-tumour’ spectra for that
sample. The rules of the algorithms for Voting threshold 1 or 2 are detailed in the
Results section. This gave a single binary output for each specimen, as the entire

specimen either being classified as tumour or non-tumour.

All spectral data (from individual or mean spectra from all spectral regions) was
analysed by Principal Component Analysis (PCA). Principal components (PC)
describe data as sections of spectra and the degree of variance between spectra.
It therefore describes each spectrum as a score for each PC and P values assess
the difference between the scores between spectra. It is an unsupervised test
and the potential differences between groups (e.g. tumour or not tumour) are not
acknowledged by the analysis. It is a commonly used technique in Raman

spectroscopy to analyse differences in spectra.

Spectral data were mean centred and underwent PCA, with 12 separate
component separations. Scores had P values calculated by one-way ANOVA and
were regarded as significant if P<0.01, and this cut off was used to highlight the
components that required plotting. The component scores were plotted on graphs
with the ability to differentiate between different pathologies/demographics (e.g.

tumour or non- tumour) by colour.

If there was separation on PCA by P score values, a Linear Discriminant Analysis
(LDA) was performed with the PCA fed scores. LDA is a supervised test, where
the differences in the samples (e.g. if they came from tumour or not tumour) are
loaded into the test and used to classify the spectra and so the known
pathological state is acknowledged in the analysis. In our analysis the
pathology/demographic label was loaded with the scores, with 100 bins. This was
then cross validated by a Leave-One-Out Cross Validation (LOOCV) technique,
where a sample is left out, the PCA fed LDA is performed on the rest of the data
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to have a ‘training’ set, and this is then used to predict the outcome of the sample

that was left out. This is then performed n-1 times.

Spectral data was analysed according to patient/tumour subtypes. Tumour
spectra was classified according pathological subtypes, and non- tumour spectra
classified according to patient physiological factors of Menopausal status (pre
and post) and age. Age is a continuous variable, whereas the analysis to be
performed relied on classification according to a binary or ordinal variable. To
split age into a number of different age brackets would result in a small number
of patients being in each group and under- powered calculations. Therefore, age
was divided into a binary variable, with a cut off of either 60 (i.e. below or above
60), or cut off of 50 (i.e. below or above 50). This lower age bracket was used as
there is good evidence that breast composition with regards to water content is
markedly different in much younger age groups regardless of menopausal
status?®, and if the cut off had been lower (e.g. 40), there would have been too
few patients in the group to allow analysis. In these analyses, if the subtype had
not been collected (left blank on the patient information spreadsheet), the spectra

was excluded from that analysis.

4.2.7 Raman micro spectrometry experiments

To enable matching between the measured Raman spectra obtained from the
needle probe and histological features of the breast tissue, a series of
experiments were conducted on a micro spectroscopy system. The results from
the fresh frozen specimen were examined to determine which required
corresponding microscopic analysis. Two specimens were chosen to have
microscopic analysis as they had some Raman spectra indicating ‘non-tumour’
tissue in the tumour specimen, and the prepared slides were all of sufficient

quality, with an adequate amount of tissue, to allow detailed analysis.

H+E stained slides were digitised using an upright light microscope (Carl Zeiss
AG,Oberkochen, Germany) at a X 20 magnification (20X/0.30 objective, Leitz
Wezlar, Germany), with a CMOS camera (Model - acA1920-155uc, Basler AG,
Ahrensburg, Germany) and images were captured using Manual MSI,
Microvisioneer software (Freising, Germany). The digitised images were printed,

and the original slides were analysed by a second consultant histopathologist
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from the Royal Devon and Exeter Hospital for a more detailed microscopic
diagnosis at X 40 magnification, and pathological features of the slide, which was

annotated on the digitised image.

The corresponding tissue slices that had been prepared on BaF: slides were
thawed at room temperature and immediately measured. The Renishaw InVia
confocal spectrometer system (Renishaw, UK) was used for Raman
measurements after calibration of the system with silicon, green glass, PTFE and
Neon Argon lamp. A slide scan was then performed with white light, at X5
magnification and this was correlated with the annotated digitised H+E slide.
Areas of interest had Raman measurements taken using a NPlan objective
(Leica, Germany) with magnification X50. An excitation source of a 785 nm laser
was used with an output of 300 mW to collect spectra in the wavelength range of
2100 — 2750 cm, with a single accumulation and 5 second acquisition time.
Raman spectra was analysed in Matlab, and had pre-processing by fluorescent

baseline subtraction by a first order polynomial only.
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4.3 Results

4.3.1 Patient/ Tumour demographics

Fresh frozen samples from 96 patients were used for this study. The patient and

tumour characteristics of the patients are shown in Table 4-1.

DEMOGRAPHIC DETAIL

NUMBER (%) / MEAN (+ SD)

PATIENT DEMOGRAPHIC

MEAN AGE

POST MENOPAUSAL

POSITIVE FAMILY HISTORY

ROUTE OF REFERRAL - SYMPTOMATIC

TYPE OF SURGERY

SITE OF OPERATION - LEFT BREAST
WIDE LOCAL EXCISION
MASTECTOMY

SENTINEL NODE BIOPSY (OF 95 THAT HAD
AXILLARY PROCEDURE)
AXILLARY NODE CLEARANCE

TUMOUR CHARACTERISTICS
DCIS ONLY
INVASIVE CARCINOMA
MEAN SIZE OF TUMOUR ( MM)
INVASIVE TUMOUR CHARACTERISTICS (N=93)
POSITIVE LYMPH NODES
MEAN NUMBER OF POSITIVE LYMPH NODES
INVASIVE ASSOCIATED WITH DCIS
INVASIVE CARCINOMA GRADE (N=93)
-  GRADE1
-  GRADE?2
-  GRADE3
CARCINOMA TYPE (N=93)
- DUCTAL
- LOBULAR
- MIXED
- MUCINOUS
RECEPTOR STATUS (N=96)
ER +
HER2 +

67.3 (+14)
80 (83%)
24 (25%)
85 (89%)

57 (59%)
50 (52%)
46 (48%)
73 (77%)

23 (23%)

3 (3%)
93 (97%)
30.2 (+11.8)

37 (39%)
1.3(x2.3)
72 (77%)

2 (2%)
54 (58%)
37 (39%)

64 (67%)
21 (23%)
5 (5%)
3 (3%)

82 (85%)
17 (18%)

Table 4-1 Table of patient and tumour characteristics for the samples that were measured in this

study.

Note that in demographics with a dichotomous outcome (e.g. post- menopausal) only one is included, and

it can be presumed the other patients were in the other category (e.g. pre-menopausal). ER = Estrogen

receptor, HER2 = Human Epidermal Receptor
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4.3.2 Fresh frozen specimen measurements

4.3.2.1 Spectra obtained
In total 192 specimens were measured (96 tumour specimens, 96 non-tumour
specimens), with a total of 1335 spectra obtained.
After pre-processing the data of all spectra obtained is shown in Figure 4-6.
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Figure 4-6 Graphs showing spectral data obtained from all measurements (n=1335) after pre-
processing
A. HWN region B. FP region C. Concatenated data. In all graphs the spectra shown have had fluorescent

baseline subtraction and min/max normalisation.
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4.3.2.2 Water content analysis to diagnose breast cancer

After pre-processing, it is evident that there are visual differences in the HWN
region between spectra obtained from tumour specimens and non-tumour
specimens. Figure 4-7 shows there is a clear difference in the water peak
between tumour and non-tumour specimens, with tumour specimens having a
larger water peak than non-tumour specimens, when spectra have been
normalised to the CH: stretch region (2935 cmt). Non-tumour specimens also
have a predominately lipid peak at the CH stretch region (2800-3040 cm?),
whereas tumour specimens have a predominately protein peak at the CH stretch

region.
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Figure 4-7 Mean HWN spectra of all specimens (n=1335) according to diagnosis demonstrating
changes in water content between tumour and non-tumour specimen spectra

Data is mean of spectra from all tumour specimen spectra (n=672) and all non-tumour specimen spectra
(n=663), fluorescent baseline subtraction with a 3 order polynomial, and normalised to the CH peak at
2935cm™. Shading either side of solid line in same colour is +/- 1 S.D. Red spectra=measurement from

tumour specimen, Green spectra = measurement from non-tumour specimen

The water/total area ratio was calculated for each spectrum, and the mean and
median of the ratio calculated for each specimen. Figure 4-8 shows that there is
a significant difference for both the mean (P=1.6X10-4?) and median (P=2.3X10"

30) water/total area ratio between tumour and non-tumour specimens.
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Figure 4-8 Bar charts illustrating the difference in water/total area ratio between tumour (n=96) and
non-tumour specimens (n=96)

A Bar graph demonstrating the mean water/total area ratio per specimen of tumour and non-tumour
specimens, error bars represent +/- 1 S.D. Statistically significant difference between the mean water/total
area ratio of tumour (0.7709; SD +/- 0.1240) versus non-tumour (0.2169; SD +/- 0.2027) calculated by
student T-Test (P=1.6X10"?)

B Bar graph demonstrating the median water/total area ratio per specimen of tumour and non-tumour
specimens, error bars represent +/- interquartile range. Statistically significant difference between the
median water/total area ratio of tumour (0.827; IQR — 0.0284) versus non-tumour (0.1065; IQR — 0.1536)
calculated by Kruskal Wallis test (P= 2.3 X 10-%).

Having established there was a difference in water/total area ratio between
tumour and non-tumour specimen spectra, the aim was to investigate if there was
a ratio threshold that could predict if a spectrum corresponded to tumour or non-
tumour tissue, i.e. if a spectra had a ratio above a certain value it would be
classified as coming from tissue containing tumour. This could then be used to
differentiate between normal and cancerous tissue and be a foundation of intra-
operative margin analysis. Binomial logistic regression was performed with the
water/total area ratio with the known classifier of whether the ratio was obtained
from tumour or non-tumour tissue. A Receiver Operator Characteristic (ROC)
curve (Figure 4-9) was constructed to obtain this ratio threshold value — which
was the point on the curve that related to the optimal balance between sensitivity
and specificity for diagnosis. The water/total area ratio from all the spectra as
individual data points (n=1335) was used to construct ROC curves, and a
classification trees prediction model with a two way split, which were then cross-
validated with a number of techniques, the results are shown in (Table 4-1). All

binomial logistic regression models with cross validation showed good sensitivity
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of between 92-94%, specificity of 86-87% with an overall accuracy of 89%, with
the classification trees model having a reduced sensitivity leading to a lower

overall accuracy.
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Figure 4-9 ROC curve for classification by binomial logistic regression of water/total area ratio

prediction of tumour versus non-tumour of all spectra (n=1335)

Red circle denotes the optimal water/total area ratio threshold for classification = 0.75

Model Optimal AUC | Cross Sens. | Spec. | Overall

Threshold validation accuracy
technique

Binomial 0.75 0.95 |n/a 92.7 |86.4 |89.6

logistic

regression 0.56 0.95 | Hold out 915 |87.4 |89.5
0.77 0.95 | Kfolds5 93.1 |86.6 |89.9
0.76 0.95 |Kfold10 [92.7 |86.4 |89.6
0.76 0.95 | LOOCV 92.7 |86.6 |89.7

Classification | 0.68 0.95 |LOOCV 875 |91.7 |89.6

Trees

Table 4-2 Summary table of results following Model predictions of categorising spectra as tumour

versus non-tumour based on water/total area ratio in all spectra (n=1335)
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A possible limitation of using every spectrum in the analysis is that multiple
spectra from each specimen is used in the construction of the prediction model.
This means that if a specimen had a large number of spectra taken from it, or had
some outlying ratio values, this may disproportionately influence the model and
limit the accuracy of the threshold value. Therefore, the same sequence of
analysis was undertaken with a single value for each specimen. The value was
the mean of all the water/total area ratio for each specimen. Multiple ROC curves
were constructed using binomial logistic regression and a classification tree with
a two way split (a representative ROC curve is shown in Figure 4-10) with a
number of different cross validation methods (Table 4-3). There was improved
accuracy using the mean spectral data compared to the individual data, with an

overall accuracy of the diagnostic test of 89-92%.
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Figure 4-10 ROC curve for classification by binomial logistic regression of water/total area ratio
prediction of tumour versus non-tumour of mean spectra (n=192)

Red circle denotes the optimal threshold for classification, which is 0.6264 in this example
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Model Optimal AUC | Cross Sens. | Spec. | Overall

Threshold validation accuracy
technique

Binomial 0.6264 0.98 |nl/a 95.8 | 885 |92.2

logistic

regression 0.83 0.95 | Hold out 929 [86.2 |[89.5
0.6587 097 |Kfolds5 |94.8 |89.6 |92.2
0.6333 097 |Kfold10 |94.8 |88.5 |[91.7
0.6524 0.97 | LOOCV 94.8 |885 |91.7

Classification | 0.563 0.93 | LOOCV 92.7 |90.6 |91.7

Trees

Table 4-3 Summary table of results following Model predictions of categorising spectra as tumour

versus non-tumour based on water/total area ratio in mean spectra (n=192)

Voting thresholds

A clinically relevant method of processing spectral data would be to analyse all
the spectra obtained from the resected edge of a specimen and determine
whether there was tumour present at the resected edge. This would provide a
simple dichotomous output to inform the surgeon that the margin was ‘positive’
and that the tumour bed of the resected edge required resecting. A way of
providing this output is to determine that if the majority of the resected edge had
a ‘tumour’ water/total area ratio (as defined by the threshold ratio set by binomial
logistic regression e.g. 0.75), then the entire resected edge would be classified
as tumour. The water/total area ratio data was analysed in an algorithm that
stipulated that if the majority of the specimen measurements had a ‘tumour’
water/total area ratio, the whole specimen was classified as tumour (Voting
threshold 1).
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A second algorithm was used on the same data that stipulated if any of the
specimen demonstrated a single ‘tumour’ water/total area ratio, the whole

specimen would be determined as tumour (Voting threshold 2).

The results of these two algorithms showed that voting threshold 1 gave a high
degree of specificity (95.8%), but a lower sensitivity of 87.5% with a good overall
accuracy of 91.7%. Voting threshold 2 had a higher degree of sensitivity of
95.98%, but a low specificity (88.0%) of and an overall accuracy was 88.0 %
(Figure 4-11).

A B

Not Tumour Not Tumour

True Class
True Class

Not Tumour Tumour Not Tumour Tumour
Predicted Class Predicted Class

Figure 4-11 Confusion matrices of specimen diagnosis after voting threshold analysis of water/total
area ratio using the optimal threshold of water/total area ratio of 0.75

A. Voting threshold 1 which achieved overall accuracy — 91.7%, sensitivity — 87.5%, specificity — 95.8% B.
Voting threshold 2 which achieved overall accuracy — 88.0%, sensitivity — 95.8%, Specificity — 80.2%.

The threshold used to classify as a ‘tumour’ signal in these voting thresholds
could be manipulated to tend towards being more sensitive or more specific
based on what is necessary when analysing an entire margin. For example, if a
water/total area ratio threshold of 0.4 is used in voting threshold 1, the algorithm
has a 90.1% accuracy, with 97.9% sensitivity and 82.3% specificity, and if a
water/total area threshold of 0.8 is used in voting threshold 1, the algorithm has

a 89.1% accuracy, with 79.2% sensitivity, and a 99.0% specificity Table 4-4.
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Ratio Threshold | Sensitivity Specificity Accuracy
0.1 99.0 44.8 71.9
0.2 99.0 70.8 84.9
0.3 97.9 79.2 88.5
0.4 97.9 82.3 90.1
0.5 95.8 86.5 91.1
0.6 93.8 90.6 92.2
0.7 93.8 93.8 93.8
0.8 79.2 99.0 89.1
0.9 1 99.0 <50

Table 4-4 Table demonstrating the change in diagnostic accuracy with a change in water/total area
ratio threshold (Ratio Threshold) to classify the majority of a specimen using voting threshold 1.

Using the intra-patient difference in water/total area ratio

The methods illustrated above, to provide differentiation between tumour versus
non-tumour, have used a water/total area ratio threshold based on a value
obtained from all spectra from all individuals. The physiological ‘normal’ in terms
of water content for each patient is known to be different (and is explored in a
later section of this chapter for these patients). Therefore, having the same cut-
off value for all specimens could lead to some diagnostic inaccuracy. A measure
of the change in the water/ total area ratio within a patient between tumour and
non-tumour could be sufficient to differentiate areas of tumour versus non-
tumour. Logistically this could be achieved by the surgeon ‘calibrating’ the
instrument on some obviously normal tissue, well away from the tumour site, prior
to examining the specimen for IMA, and areas of difference compared to the

‘calibration’ measurement flagged as abnormal and requiring resection.

A simple and effective measure of this change is to calculate the difference in the
water/total area ratio between the area that is being measured and the
‘calibration’ measurement from the normal tissue. The diagnostic ability of the
water/total area ratio difference to diagnose breast cancer was investigated using
the water/total area ratio from all spectra (n=1335). For each patient, the mean
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water/total area ratio was calculated from the spectra obtained from the non-
tumour specimen — this was the ‘calibration’ measurement. Then each individual
spectra (from tumour and non-tumour specimens) for each patient had the
water/total area ratio calculated, and the difference from that reading taken from

the ‘calibration’ measurement as per Equation 4-2:

W /TAR dif ference
= W/TAR of current measurement — 'Calibration’ W /TAR

Equation 4-2 — Calculation of the water/total area ratio difference

WITAR = Water/Total area ratio

‘Calibration” W/TAR = the mean of all the water/total area ratio for that patient’s non-tumour specimen
readings

This provides a uniqgue measure for each reading that represents the difference
from the mean non-tumour specimen. It could be presumed that non-tumour
measurements would be approximately O (as they produce the ‘calibration’ ratio),
and tumour measurements would be substantially greater than 0. The cut off
WI/TAR difference of 0.1 was chosen as it is close to 0 and allows for some intra-
specimen variation of non-tumour specimens W/TAR difference, but would likely
give a model with high sensitivity. Therefore, for all spectra, the W/TAR difference
was calculated, and if the W/TAR difference was >0.1, it was classified as a
tumour, and if <0.1, it was classified as non-tumour, and a confusion matrix
produced (Figure 4-12). It shows that using this method, the overall accuracy is
89.5%, with a high sensitivity of 93.6% but low specificity of 85.4%.
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Not Tumour
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Tumour

Not Tumour Tumour
Predicted Class

Figure 4-12 Confusion matrix showing the diagnostic results of the W/TAR difference cut off= 0.1 for

classifying tumour versus non-tumour spectra

An improved diagnostic accuracy may be possible, and so binomial logistic
regression was used using the W/TAR difference calculated for each spectrum,
and the classifier of whether it came from a tumour or non-tumour specimen used
to train the model. The resultant ROC curve is shown, which produced an AUC
of 0.95, and predicted the optimal threshold (cut off for the W/TAR difference)
was 0.3275 (if the W/TAR difference >0.3275, the measurement was classified
as a tumour reading, and if <0.3275, it was classified as a non-tumour reading)
(Figure 4-13). Using a k-folds 5 cross validation method, the model achieved an
accuracy of 90.1%, a sensitivity of 87.0% and specificity of 93.2%. The results of
using the ‘optimal threshold’ of 0.3275 (high specificity) compared to the
previously chosen threshold of 0.1 (high sensitivity) demonstrate that the
threshold can be manipulated to provide the desired test characteristics, similar

to using the more simple water/total area ratio calculation.
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Figure 4-13 Results of binomial logistic regression model with k folds 5 cross validation for

predicting tumour versus non-tumour specimen using the W/TAR difference
A. ROC curve for classification by binomial logistic regression of W/TAR difference prediction of tumour
versus non-tumour of all spectra (n=1335). Red circle denotes the optimal threshold for classification, which

is 0. 3275. B. Confusion matrix of prediction results after k folds 5 cross validation

Another way of performing this analysis to perform IMA would be to take a
number of readings over the area of the margin and calculate the mean
water/total area ratio for the entire margin surface prior to subtracting the mean
‘calibration’ reading and providing a single output for that area. The mean
water/total area ratio from each patient’s ‘non-tumour’ specimen was subtracted
from the matched patient’s ‘tumour’ specimen (as representative of values that
might be obtained along the margin), to give the water/total area ratio difference
for that patient’s ‘tumour’ specimen (Figure 4-14). This shows that for the mean

readings, the water/total area ratio difference was greater than 0 in all but 1
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patient, suggesting that if a threshold water/total area ratio difference of 0 was
set, 95 of 96 of patients would be correctly classified. This cannot be assessed
in more detail for diagnostic accuracy, as the mean non-tumour tissue value is by

definition 0, and so prediction models and cross validation cannot be performed.

1.2

o
o

o
~

Mean W/TAR Difference

O
N

0 20 40 60 80
Sample Number

Figure 4-14 Bar chart of sample number (n=96) and the mean W/TAR Difference for the tumour
specimen for that sample
Note — only one sample has a negative value, suggesting that if a cut off of W/TAR Difference of 0 was used,

all but one sample would be classified as tumour.
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4.3.2.3 Spectral analysis to diagnose breast cancer

HWN region

PCA analysis of pre-processed HWN spectral data was performed, with the
results demonstrated in Figure 4-15. Two of the three principal components that
achieved statistical significance between tumour and non-tumour tissue (PC1
and PC2) had incredibly small P values (recorded as 0, as they were so low as
to be rounded to 0). These two PCs were confirmed as accounting for the majority
of the classification, as PC1 accounted for 66% of the variance, and PC2 33% of
the variance, with the remaining 10 PC’s accounting for <1% of the variance.
Plotting the three most significant principal components (as defined by the
smallest P value) gave excellent visual separation between tumour and non-

tumour spectra.

PC1 and PC2 were correlated with the spectral assignation from previous work
in this thesis and were shown to correspond to protein and water peaks (PC1),
and the lipid peak (PC2), which also correlated with the spectral assignation from
the literature 2% 3%4 (Figure 4-16). This suggests that it is both of these spectral
features that allow separation of spectra according to the tumour or non-tumour
classification, and are in keeping with the findings from the water/total area ratio
calculations, that tumour (protein and water rich) can be differentiated from non-
tumour (lipid rich, with low water concentration) using the HWN region.
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Figure 4-15 Principal Component Analysis of all HWN spectral data (n=1335)

A. Principal Components (12 in total) identified in analysis B. Table of principal components and
corresponding P Values C. Scatter graphs plotting the 3 significant Principal Components (PC1, PC2, PC8),

with tumour scores plotted in red, non-tumour scores in green
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Figure 4-16 Principal components accounting for the majority of spectral variance between tumour
versus non-tumour tissue, and spectral assignation

Graphs on Left are the spectrum of Principal Components 1 and 2, and on the Right are representative
Raman spectrum of bovine gelatine (protein), soya bean oil (lipid) and distilled water (water). It can be seen
that PC1 relates to protein and water signal, and PC2 relates to lipid signal, suggesting it is these

components that differentiate between tumour and non-tumour tissue.

The PCA scores were fed into a LDA which achieved good separation between
spectra and a training performance of 90.5%, and subsequently a LOOCV
performed, the results of which are in Figure 4-17. After LOOCYV the technique
obtained sensitivity 90.2%, Specificity 90.5% with an overall accuracy of 90.3%
(Figure 4-17).
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Figure 4-17 Results of all HWN spectra (n=1335) to compare spectra from tumour versus non-tumour

specimens with PCA fed LDA analysis
A. Histogram of LDA scores versus frequency, with tumour scores plotted in red, non-tumour scores in

green. B. Confusion matrix of prediction after LOOCV

The mean spectrum for each specimen was calculated, providing a single
spectrum for each specimen (n=192). PCA was performed which revealed similar
results — PC 1 and PC2, relating to the protein and lipid peak had significant P
values, with PC1 accounting for 67.4% of variance, and PC2 accounting for
32.1%, with the remaining scores combined accounting for only 0.3% of the

variance (Figure 4-18).
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Figure 4-18 Principal Component Analysis of mean HWN spectral data (n=192)
A. Principal Components (12 in total) identified in analysis B. Table of principal components and
corresponding P Values C. Graph plotting the 2 significant Principal Components (PC1 and PC2), with

tumour scores plotted in red, non-tumour scores in green.
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LDA analysis gave excellent separation with a training performance of 93.8%

accuracy, and LOOCV gave a sensitivity of 93.8%, specificity 92.7% and overall

accuracy 93.2% (Figure 4-19).
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Figure 4-19 Results from spectral analysis of the mean HWN spectra for each specimen (n=192)

A. PCA fed LDA histogram of scores versus frequency using 12 principal components with tumour scores
plotted in red, non-tumour scores in green. B. Confusion matrix prediction of LDA LOOCV.
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Fingerprint region

Spectra from the FP region underwent pre-processing, the mean spectra from
tumour and non-tumour specimens is shown in Figure 4-20. There are evident
spectral differences in the FP region between spectra obtained from tumour

specimens and non-tumour specimens.
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Figure 4-20 Mean Fingerprint spectra of all specimens (n=1335) according to diagnosis
demonstrating differences between tumour and non-tumour specimen spectra

Data is mean of spectra from all tumour specimen spectra (n=672) and all non-tumour specimen spectra
(n=663), fluorescent baseline subtraction with a 6™ order polynomial and min/max normalisation to avoid
distortion in peak heights. Shading either side of solid line in same colour is +/- 1 S.D. Red

spectra=measurement from tumour specimen, Green spectra = measurement from non-tumour specimen

To understand the spectral differences between tumour and non-tumour
specimens, the two groups of mean spectra were separated, peaks identified,
and spectral peak assignation performed based on values from the literature
(Figure 4-21). This demonstrated that the differences between them primarily
related to differences in protein and lipid signals. This suggests that the FP region
may differentiate between tumour and non-tumour based on the differences
between protein and lipid tissue, which is the same basis for differentiation in the
HWN region.
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Figure 4-21 Spectral assignation of Fingerprint spectra in breast tissue

A. Mean of all spectra taken from tumour tissue, with peaks identified with Raman shift number. B. Spectral
assignation table for tumour tissue peaks. C. Mean of all spectra taken from non-tumour tissue. D. Spectal
assignation table for non-tumour tissue peaks.

The mean Raman spectra have been smoothed with savitzky-golay span of 5, 15t order polynomial and the
main spectral peaks are identified with corresponding Raman shift value. Biochemical peak assignation is
according to the literature 103 356,
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PCA analysis was performed and over half of the principal component scores
reached statistical significance in classifying tumour versus non-tumour scores
(7 of 12), which is more than that of the HWN region (Figure 4-22). The first 3
PCs were confirmed as being responsible for the majority of the difference
between the groups. Variance analysis of the principal components
demonstrated that PC 1 accounted for 58.5% of the variance, and PC 2 25.4 %
of the variance, with PC 3 accounting for 10.59% of the variance and the
remaining 9 PC’s accounting for 5.5% of the variance.

It can be seen that in plotting the three most significant principal components (as
defined by the smallest P value), it gave good visual separation between tumour

and non-tumour Spectra.
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Figure 4-22 Principal Component Analysis of Fingerprint region spectra of all spectra (n=1335)

A. Principal Components (12) identified in analysis B. Table of principal components and corresponding P

Values C. Scatter graphs plotting the 3 most significant Principal Components (PC1,PC2,PC3) accounting

for >95% of variance, with tumour data plotted in red, non- tumour data in green

222



Chapter 4

The spectral peaks, with the Raman shift values, were identified for the spectral
features of PC1 and PC2 as these accounted for 85% of variance. The peaks of
PC1 relate to the peaks seen for tumour tissue, and the peaks of PC2 relate to

the peaks seen for non-tumour tissue (Figure 4-23).
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Figure 4-23 Spectral assignation in the two most significant principal components in the Fingerprint
region in differentiating tumour from non-tumour tissue

A. Principal Component 1; these peaks correspond to those identified as corresponding to tumour tissue
(protein rich) B. Principal Component 2; these peaks correspond to those identified as corresponding to non-

tumour tissue (lipid rich)

Peak assignments of all of the principal component Raman peak scores that
reached statistical significance, along with a tentative assignment to the molecule
type is in Table 4-5. This demonstrates that most of the differentiation between
tissue types is due to protein and lipid differences, with some minor variance due
to DNA/RNA. This suggests, along with the mean spectra data analysis above,
that the differentiation of tumour versus non-tumour tissue in the fingerprint region
is predominantly based on the difference in tumour (protein rich) and non-tumour
(lipid rich). This is similar to the HWN region, however, in the fingerprint region

there is no measure of water content differences between tissue types.
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Principal Peaks Biochemical assignation Overall
component | (Raman tentative
shift cm™) assignment
1 1053 C-O stretching, C-N stretching (protein) | Protein
1296 Amide Il (proteins)
1441 CH2 scissoring & CHs bending in Lipids
1649 Amide | (C=C)
2 1068 Skeletal C-C stretch DNA/Lipid Lipid
1289 CH: deformation
1441 CH2 scissoring & CHs bending in Lipids
1655 Lipid (C=C stretch)
3 1296 CH2 deformation Lipid
1441 CH2 scissoring & CHs bending in Lipids
1655 Lipid (C=C stretch)
5 1675 Amide | (Beta sheet) Protein
1154 C-C and C-N stretch protein Protein
7 1324 CHs and CH2 wagging of purine bases DNA
1441 CH2 scissoring & CHs bending in Lipids
1529 Carotenoids or Cytosine
11 994 C-O Ribose DNA/RNA
1126 C-C stretch protein or carbohydrates
1421 CH deformation DNA/RNA/Deoxyribose
1516 Cytosine or carotenoids

Table 4-5 Peak assignment of significant Principal component scores in fingerprint spectral analysis

Biochemical peak assignation is according to the literature 193 356

LDA analysis using the scores from the PCA gave a training performance of

90.6%. LOOCV analysis of the model gave an overall accuracy of 90.3%,
sensitivity 90.2% and specificity 90.5% (Figure 4-24).
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Figure 4-24 PCA fed LDA analysis of all Fingerprint region spectral data (n=1335) to differentiate

between tumour and non-tumour breast spectra
A. Histogram of LDA scores versus frequency, with tumour data plotted in red, non-tumour data in green B.

Confusion matrix of prediction after LOOCV

The mean spectrum for each specimen was calculated and underwent PCA
analysis. This gave visually similar principal components for the first 12 PC’s to
the individual spectra data PC 1 accounted for 68.6% of variance, PC 2- 21.0%
so PC1 and PC2 accounted for >90% of the variance, with PC 3 accounting for
7.26% and PC 4-12 — 3.11% (Figure 4-25).
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Figure 4-25 Principal Component Analysis of Fingerprint region spectra of mean spectra (n=192)

A. Principal Components (12) identified in analysis B. Table of principal component scores and
corresponding P Values C. Scatter graphs plotting the first 3 Principal Components (PC1,PC2,PC3)
accounting for >95% of variance, with tumour data plotted in red, non-tumour data in green
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Although the principal components were very similar to the individual spectral
data, not all the significant components were the same ones between individual
and mean data. Table 4-6 highlights the significant principal components in the
mean data, with tentative spectral assignment. It shows that, similar to the
individual data, PC 1 and PC2 (that accounted for the majority of the variance)
corresponded to protein and lipid peaks, with some other PC’s contributing
DNA/RNA peaks.

Principal Peaks | Biochemical assignation Overall
component tentative

assignment
1 1053 | C-O stretching, C-N stretching (protein) | Protein

1296 | Amide Il (proteins)

1441 | CH2zscissoring & CHs bending in Lipids
1649 | Amide | (C=C)

2 1068 | Skeletal C-C stretch DNA/Lipid Lipid
1289 | CH2 deformation

1441 | CH2zscissoring & CHs bending in Lipids
1655 | Lipid (C=C stretch)

4 1038 | Collagen Protein
1197 | Amide Ill
1649 | Amide | (C=C)
6 1154 | C-C and C-N stretch protein Protein
7 1324 | CHs and CH2 wagging of purine bases DNA

1441 | CH2zscissoring & CHs bending in Lipids
1529 | Carotenoids or Cytosine

8 1261 | Amide llI Protein
1469 | C=N stretch

1669 | C=0 stretch; protein band
9 1075 | C-C stretch lipid Lipid or DNA
1310 | CH stretch lipids
1455 | Deoxyribose

11 994 C-O Ribose DNA/RNA
1126 | C-C stretch protein or carbohydrates
1421 | CH deformation DNA/RNA/Deoxyribose

1516 | Cytosine or carotenoids
Table 4-6 Peak assignment of significant Principal component scores in fingerprint mean spectral

analysis Biochemical peak assignation is according to the literature 103 356

The scores of the 12 components were fed into LDA analysis which gave a
training performance of 94.3% (Figure 4-26). LOOCV was performed which gave

92.7% overall accuracy, sensitivity 91.7% and specificity 93.8%.
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Figure 4-26 PCA fed LDA analysis of mean Fingerprint spectra (n=192) to differentiate tumour and

non- tumour specimens
A Histogram of PCA fed LDA scores, with tumour data plotted in red, non-tumour data in green. B. confusion
matrix results from LOOCYV analysis to predict tumour versus non-tumour
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Concatenated spectral data

The spectra from the HWN region and FP region were stitched together and
analysed simultaneously. Principal component analysis found 3 components
(PC1, PC2 and PC12 with significant P values <0.01 (Figure 4-27). Two of the
three principal components (PC 1 and PC2) visually relate to the HWN region,
with the protein/lipid peak and water peak being the spectral features responsible
for the highly significant scores, as PC1 accounted for 59.8% of the variance, and
PC2 33.0% of the variance. PC3 related to the fingerprint region amide Il peak
at 1338 cm! associated with protein accounting for 3.8% of the variance with the

remaining 9 PCs accounting for the remaining 3.4%.
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Figure 4-27 Principal component analysis of all concatenated spectral data (n=1335)
A 12 Principal components that were identified and underwent analysis. B. Table of principal components
and P Values C. Scatter graphs plotting the first 3 Principal Components (PC1,PC2,PC3) accounting for

>95% of variance, with tumour data plotted in red, non-tumour data in green
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PCA fed LDA analysis was performed using all 12 principal components which
gave a training performance of 90.5%. LDA LOOCYV gave a sensitivity of 90.2%,
specificity 90.5%, with overall accuracy of 90.3% (Figure 4-28).
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Figure 4-28 PCA fed LDA analysis of all concatenated spectral data (n=1335)
A PCA fed LDA analysis histogram of scores versus frequency, with tumour data plotted in red, non- tumour

data in green. B. confusion matrix prediction using LDA LOOCV

The mean concatenated spectrum for each specimen was calculated and
underwent PCA analysis. The 2 significant PC’s corresponded to protein (PC1)
and lipid (PC2) signals, which had significant scores (P<0.01). These two
principal components accounted for 63.86% (PC1) and 32.7% (PC2) of variance,
with the remaining 10PC’s accounting for the remaining <4% of variance. Plotting
the scores from the PC1l and PC2 that accounted for > 95% variance

demonstrated they achieved good separation (Figure 4-29).
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Figure 4-29 Principal Component Analysis of concatenated spectra of mean spectra (n=192)
A. Principal Components (12) identified in analysis B. Table of principal component scores and
corresponding P Values C. Graph plotting the first 2 significant Principal Components (PC1 and PC2) that

accounted for >95% variance, with tumour data plotted in red, non- tumour data in green
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PCA fed LDA analysis was performed, which gave a training performance of
94.3%, with LOOCYV the prediction gave an overall accuracy of 92.7%, sensitivity
93.8% and specificity of 91.7% (Figure 4-30).
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Figure 4-30 Analysis results of mean concatenated spectra for each specimen (n=192)

A. Histogram of PCA fed LDA scores versus frequency, with tumour data plotted in red, non- tumour data in
green. B. Confusion matrix of LDA LOOCYV prediction results
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4.3.2.4 Summary statistics for NP3 ability to differentiate between tumour and

non-tumour breast tissue

Spectral Analysis Sens. | Spec. | Overall

Region method Accuracy

HWN All spectra PCA/LDA 90.2 90.5 90.3
Mean spectra 93.8 92.7 93.2

FP All spectra 90.2 90.5 90.3
Mean spectra 91.7 93.8 92.7

Concatenate | All spectra 90.2 90.5 90.3
Mean spectra 93.8 91.7 92.7

W/TR All spectra Binomial 92.7 86.6 89.7

Logistic

regressiont
Classification | 87.5 91.7 89.6
trees
Mean spectra Binomial 94.8 89.6 92.2

Logistic

regressiont
Classification | 92.7 90.6 91.7

trees
Representative | Voting 87.5 95.8 91.7
spectrum/sample | threshold 1
WI/TAR All spectra cut off 0.1 93.6 85.4 89.5
Difference All spectra cut off 0.331 | 87.0 93.2 90.1

Table 4-7 Summary statistics table of best performing spectral analysis and water/total area ratio analysis
HWN — High Wavenumber region; FP — Fingerprint; Concatenate — HWN +FP spectra stitched together;
WI/TR — Water/ total area ratio; PCA/LDA — PCA fed LDA analysis; Sens. — sensitivity, Spec. - Specificity

T - binomial logistic regression with k-folds 5 cross validation
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4.3.2.5 Spectral analysis to differentiate between pathology subtypes

The group of tumour specimens contained a wide range of different pathology
subtypes. Spectral analysis was performed to investigate if Raman
measurements had the ability to provide specific pathological diagnosis of the
tumour.

Using E(strogen) R(eceptor) status as a representative example, the spectra
obtained from all tumour samples showed little difference between those tumour
samples that were ER+ versus those that were ER- by the sequence of analysis
of looking at the water/total area ratio (Figure 4-31 A), and spectral analysis of
the concatenated data with PCA (Figure 4-31 B). The findings were similar in

spectral analysis of all pathological subtypes.
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Figure 4-31 Results of mean tumour specimen (n=96) spectral analysis of ER status (used as a
representative example)

A. Mean HWN spectral data of all tumour specimens according to ER status. Data line is mean of spectra
from each sample of that pathology subtype; Red — ER+ (n=72), Green — ER- (n=24). Shaded area either
side in the same colour is +/- 1 S.D. Spectra were baselined using 3™ order polynomial and normalised to
2985cm™ peak. B. Scatter graph of first 2 principal components (PC1 and PC2) scores derived from PCA
analysis of concatenated spectral data. Each circle represents a specimen mean data, Red — ER+, Green —
ER-.

In the analysis of tumour versus non-tumour differentiation, it was the mean data
of the specimens that had the highest diagnostic accuracy of the water/total area
ratio, and the mean data of the concatenated spectral data. Therefore, in the
analysis of the different pathology types in tumour specimens, these data only
were analysed, as if there was poor diagnostic accuracy in differentiating

pathology types using these data, the analysis of all spectra would be presumed
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to be worse. The tumour specimens were analysed to investigate if there were
any spectral differences according to pathology groups using the water/total area
ratio and a PCA fed LDA analysis.

Spectral analysis with PCA was performed according to each pathological
subtype. It was performed using the HWN spectral region (Figure 4-32) and the
fingerprint spectral region (Figure 4-33).

The PCA scores did not reach statistical significance in either the HWN or FP
data for any of the pathological subtypes apart from carcinoma type. The principal
components obviously relating to the protein, lipid and water peak in both the
HWN and FP region (PC1l and PC 2) did not reach statistical significance
(P>0.01) in the majority of pathological subtypes, suggesting that these peaks
were not different between pathological subtypes (unlike in tumour versus non-
tumour differentiation). Although, in the HWN region PC2 (that accounted 4% of
variance) and PC4 (accounted for 0.2% variance) were significant (P<0.01) for
carcinoma type. These both relate to lipid signal, suggesting there may be a
difference in lipid signal between some carcinoma type. Also, in the FP region
PC 5 (accounted for 0.5% variance) and PC6 (accounted for 0.2% variance) were
significant (P<0.01) for carcinoma type. These both relate to the amide Il region
of protein, suggesting that difference in protein signal can differentiate between
carcinoma type. However, conclusions of biochemical differences between
carcinoma types are limited based on these results, as the significant principal

components account for very little of the variance between specimens.
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Figure 4-32 Principal component analysis of mean HWN tumour spectra according to pathological
subtype classification (n=96)

A Principal components of mean HWN spectra of all tumour specimens. B Summary table of Principal
component score P values according to pathological subtype classification. P values of principal component

scores from one-way ANOVA analysis.
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Figure 4-33 Principal component analysis of mean FP tumour spectra specimens according to

pathological subtype classification (n=96)
A Principal components of mean FP spectra of all tumour specimens. B Summary table of Principal
component score P values according to pathological subtype classification. P values of principal component

scores from one-way ANOVA analysis.
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Given the results from spectral analysis of the HWN and FP region suggest that
these individual regions cannot differentiate between tumour pathological
subtypes, the concatenated spectral data was analysed to investigate if this
improved accuracy (Figure 4-34). The only significant result was in the different
carcinoma types, where the ‘carcinoma type’ classification did reveal a single
significantly different score in PC 2 and PC5 (P<0.01). Both PC2 (accounting for
4.5% of variance) and PC5 (accounting for 0.36% of variance) relate to the lipid
peak in both the FP and HWN region (by separate spectral peak analysis not
displayed). This suggests that spectral features of lipid differentiate between
different carcinoma types. Again, these significant components only account for

a small degree of variance between spectra.

The PCA scores were used in a PCA fed LDA analysis for all pathological
subtypes using the three different spectral regions (HWN, FP and Concatenated),
to investigate if spectral differences could predict pathological subgroups- the
results are in Table 4-8. The results show that for the HWN region and FP region
results were similar between spectral regions — out of 6 subgroups tested, three
had better prediction results from the HWN region spectra than the FP region,
and vice versa. The concatenated data compared to the individual regions was
very similar in the prediction ability. All prediction accuracies were between 40%
(for lymph node status prediction using FP region) up to 78% (for ER prediction

using FP region.
Overall the results are poor and suggest that with the NP3 system, neither HWN,

FP or concatenated spectral analysis can accurately differentiate between

tumour specimen pathology subtypes.
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Figure 4-34 Principal component analysis of mean concatenated tumour spectra according to
pathological subtype classification (n=96)

A Principal components of mean concatenated spectra of all tumour specimens. B Summary table of
Principal component score P values according to pathological subtype classification. P values of principal

component scores from one-way ANOVA analysis.
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Pathological Subtype | PCA fed LDA accuracy (%)
HWN region | FP Concatenated
region

ER 76.0 78.1 77.1
HER2 63.5 61.4 66.7
Carcinoma Type 58.3 61.5 61.5
Carcinoma Grade 59.4 64.5 61.5
Assoc w/DCIS 73.9 65.6 66.7
Lymph Node status 51.0 40.6 41.7

Table 4-8 Results of ability of the three different spectral regions to predict pathological subtype by
PCA fed LDA analysis performed on mean spectral data (n=96)

The analysis of the concatenated spectral data was compared to the analysis of
the ability of water/total area ratio to differentiate between different pathological
subtypes (Table 4-9). The mean water/total area ratio was calculated for each
pathological subtype and compared between the other subtypes with a student t-
test (for dichotomous groups) or one-way ANOVA (for more than 2 groups). The
outcomes are displayed in Table 4-9, which shows that there were no water/total
area ratios that were significantly different to another. The mean water/total area
ratio was close to reaching significance between carcinoma types (P=0.0185,
one-way ANOVA), and on comparison of multiple means the only difference was
the ratio between ductal carcinoma (mean ratio 0.78; S.D. 0.11 (n=64)) versus
lobular carcinoma (0.70; S.D.0.16 (n=21)) which did not reach statistical
significance (P=0.03). This suggests that areas of ductal carcinoma tissue may
have a higher water/total area ratio than lobular carcinoma tissue. Using a
multiclass error-correcting output codes (ECOC) model based on the water/total
area ratio to predict carcinoma type had an AUC of 0.64, which suggests that
using the water/total area ratio to predict different carcinoma types performed
poorly.

The consistent significant finding in both the spectral analysis of all three regions,
and the water/total area ratio analysis, was the difference in carcinoma type. The
water/total area ratio suggested there was a difference between ductal and
lobular carcinoma. Spectral analysis also suggested differences in protein and
lipid peaks between carcinoma types which is concordant with the known
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histopathological differences between ductal and lobular tumours (lobular having
more fatty tissue, which is explored later in this chapter in our histological study).
To investigate this a PCA fed LDA sub-analysis was performed, grouping all
carcinoma types that were not lobular together, and compared all carcinoma
types versus lobular carcinoma (not displayed). The PCA showed a significant
difference in scores of PC1 and PC2, that accounted for changes in protein, lipid
and water changes. The PCA fed LDA analysis had a prediction accuracy of
81.2%, which is higher than when the carcinoma types were not grouped (61%).
This suggests that there are biochemical differences between ductal and lobular
carcinoma (these are investigated and discussed in the histological study), which
can be detected with our Raman system. However, both models (water/total area
ratio and PCA/LDA) performed poorly when using the spectral data to predict
between carcinoma types suggesting the spectral data could not accurately
differentiate between carcinoma type. It may be that this study was under
powered to detect differences in carcinoma type (the number of lobular
carcinoma was 21). It may be that with a larger data set, these differences may
reach greater significance, and allow prediction models to differentiate between

different carcinoma types.

Analysis of the other tumour characteristics of ER and HER2 status, carcinoma
grade, whether the tumour was associated with DCIS and axillary lymph node
status revealed no significant difference in comparison of the mean ratios
(P>0.01), and demonstrated the AUC of the binomial logistic regression model
with cross validation was generally poor ranging between 0.47 — 0.54, which is
similar to random chance of classification. Analysing the concatenated spectra
data with PCA fed LDA analysis according to the pathological subtypes revealed
a poor ability to accurately predict pathological subtype with the accuracy ranging
from 45 — 77%.

These results suggest that the spectra obtained in these experiments cannot

accurately differentiate between different pathological subtypes of breast tumour.
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Pathology Status Mean Comparison | AUC* | Spectral
subtype ratio* of mean P accuracy?
value*’
ER + 0.76 0.19 0.54 7%
- 0.81
HER2 + 0.75 0.52 0.49 66%
- 0.77
Carcinoma Ductal 0.78 0.0185 0.64 61%
Type
Lobular 0.70
Mixed 0.73
Mucinous 0.87
Carcinoma 1 0.83 0.87 0.48 61%
Grade
2 0.77
3 0.77
Associated w/ | + 0.76 0.13 0.50 66%
DCIS
- 0.80
Axillary lymph | + 0.75 0.15 0.47 41%
node status
- 0.79

Table 4-9 Table demonstrating analysis of mean spectra of tumour specimens (n=96) of pathology

subtypes

AUC was calculated from binomial logistic regression in dichotomous classifiers, and a multiclass ECOC

model for multiple classifiers using mean ratio values and k-folds 10 cross validation

Spectral accuracy data was from the mean spectral data, with a 12 component PCA fed LDA model, and

the resultant accuracy of the LDA model is quoted

* - denotes values derived from spectral data that had been baselined with 3™ order polynomial and the

mean water/total area ratio calculated

T - denotes values derived from mean concatenated spectral data

°- for comparison of two means, unpaired t-test, for comparison of multiple means, one-way ANOVA
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4.3.2.6 Ability of Raman to differentiate DCIS only from non-tumour tissue

The majority of the tumour samples were also associated with DCIS (77%),
therefore, when measuring a ‘tumour’ sample, the measurement could be of the
invasive element of the tumour, or the associated DCIS. Therefore, in the analysis
of tumour versus non — tumour above, the samples that contained DCIS only,
and no invasive tumour (n=3) were included as ‘tumour’ samples. DCIS is
responsible for the majority of positive margins 18/, therefore the ability to
differentiate DCIS only from non-tumour tissue is important in furthering the goal
of being able to provide IMA.

To understand if the NP3 system, and the data processing techniques, can
differentiate DCIS from non-tumour tissue, the samples from the patients with
DCIS only tissue (n=3) underwent a separate analysis.

The HWN spectra of DCIS only tissue compared to the matched non-tumour
tissue demonstrated obvious differences, with DCIS only tissue having strong
protein and water peaks, and non-tumour tissue showing lipid peaks with little
water signal (Figure 4-35). The water/total area ratio was calculated which
showed a difference between DCIS only tissue (mean water/total area ratio- 0.83;
SD- 0.019 ) and non-tumour tissue (mean water/total area ratio — 0.22; SD 0.19)
which did not reach statistical significance (P= 0.035), it is possible the small

number of samples meant the 99% confidence level could not be attained.
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Figure 4-35 Mean HWN spectra of all specimens (spectra n=42, patients n=3) according to diagnosis
demonstrating changes in water content between DCIS only and non-tumour specimen spectra
Data is mean of spectra from all DCIS only specimen spectra (n=21) and the matched non- tumour specimen
spectra (n=21), fluorescent baseline subtraction with a 3™ order polynomial, and normalised to the CH peak

at 2935cm. Shading either side of solid line in same colour is +/- 1 S.D. Red spectra=measurement from

tumour specimen, Green spectra = measurement from non-tumour specimen

The water/total area ratio was used in a binomial logistic regression to construct
a ROC curve and obtain the optimal threshold with k-folds 5 cross validation for
classifying the specimen as DCIS or non- tumour tissue. All spectral
measurements (n=42) were used. The model showed that with a water/total area
ratio threshold of 0.76, it achieved an AUC of 0.96, sensitivity of 100% and
specificity of 90.5%. With such a small number of readings, and all spectra
obtained from just 3 patients, this should be interpreted with caution, but it does
suggest that the water/total area ratio can differentiate between DCIS only and

non-tumour tissue and may be used for diagnostic prediction.

Spectral analysis was performed on the concatenated spectra of all
measurements (n=42) (Figure 4-36). 97% of the variance was accounted for by
PC1 (61.8% of variance), PC 2 (31.16% of variance) and PC 3 (4.7% of variance)
of which PC 1 and PC 2 scores achieved statistical significance (P<0.01), these
PC'’s related to protein and water (PC1) and lipid (PC2 and PC3) spectra and
plotting these two PC’s gave excellent separation, suggesting that the

245



differentiation between DCIS only and non-tumour tissue is based on the same
spectral differences as between tumour and non-tumour tissue.
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Figure 4-36 Principal Component Analysis of concatenated spectral data for patients with DCIS only
(n=42)

A. Principal Components (12 in total) identified in analysis B. Table of principal components and
corresponding P Values C. Graph plotting the 2 significant Principal Components (PC1 and PC2), with

tumour scores plotted in red, non-tumour scores in green
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PCA fed LDA analysis with LOOCV gave a 95.2% accuracy, with 95.2%

sensitivity and 95.2% specificity. As the numbers of spectra are so small it does

not give a statistically robust outcome, but it does suggest that the spectral
features of DCIS only tissue from Raman measurements and our data analysis
protocol can differentiate between DCIS only and non-tumour breast tissue.

4.3.2.7 Spectral analysis of non- tumour specimens to differentiate between
physiological variation

Spectra from non-tumour specimens were analysed according to patient
characteristic information that were collected from patients which may be
hypothesised to lead to variation in normal breast tissue composition between
patients based on the literature — these were age and menopausal status 289 306,
Patients were classed according to two age brackets — with an age cut off of <60
and <50, and menopausal status (pre and post), the summary results table is

seen in Table 4-10.

Classifying spectra obtained from non-tumour specimens according to
menopausal status found that the water/total area ratio was higher in the pre-
menopausal (water/total area ratio 0.3374; SD 0.21)(n=73) patients compared
to the post — menopausal (0.1858; SD 0.19)(n=16) patients, which reached
statistical significance (P=0.006; two tailed t-test). In Figure 4-37 B, the principal
components of the PCA analysis of all the non-tumour specimen spectra can be
seen. PC 1 which accounted for 89.8% of variance did not reach statistical
significance (P>0.01), however PC 2 (accounting for 8.2% of variance) reached
statistical significance (P<0.01) and relates to the protein and water peak in the
HWN region, suggesting that there are differences in these areas between the

groups of patients.

Using the same classification of menopausal status to classify the specimen
concatenated spectral data, PCA fed LDA achieved an accuracy of 84%,
suggesting there were differences in the spectral data between patients that were
pre- compared to post- menopausal that could allow prediction. Due to the
significance of the LDA analysis, a LOOCYV analysis was performed to assess the
accuracy of prediction on spectral data using LDA, and a sensitivity of 80.2%,

specificity of 56.2% and overall accuracy of 76.4% was achieved. This suggests
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that using the PCA fed LDA analysis data that did not form the training set is not
particularly accurate at predicting whether non-tumour specimens were from pre
or post-menopausal patients. Regardless of this, the results suggest there are
differences in the non-tumour breast tissue between pre and post-menopausal
patients, and due to the difference in the water/total area ratio, and the P values
of the principal components relating to the HWN region, it suggests that normal

breast tissue of pre-menopausal women have a higher water content.
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Figure 4-37 Results of mean spectral analysis of non-tumour breast specimens classified according
to menopausal status (n=89)

A. Mean data of all tumour specimens according to menopausal status. Data line is mean of spectra from
each sample of that pathology subtype; Red — post- menopausal (n=73), Green — pre-menopausal (n=16).
Shaded area either side in the same colour is +/- 1 S.D. Spectra were baselined using 3™ order polynomial
and normalised to 2935cm™ peak. B. Principal components of mean concatenated spectra of all tumour
specimen (n=89). PCA analysis performed on mean concatenated spectra. C. P values of principal
component scores according to menopausal status. D. Scatter graph of PC1 and PC2 scores that accounted
for >97% of variance, PC2 also had statistical significance. Each circle represents a specimen mean data,

Red — post-menopausal, Green — pre-menopausal.
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Spectral data was then classified according to age. Using the age cut off of 60 to
classify the water/total area ratio, the non-tumour specimens of those <60 had a
higher water/total area ratio (mean water/total area ratio 0.31; SD 0.21)(n=27)
compared to those patients >60 (mean water/total area ratio 0.18; SD 0.19)
(n=68), this reached statistical significance (P=0.0063; two tailed t-test). Analysis
of concatenated spectral data using a PCA fed LDA analysis showed a model
accuracy of 78.9%, and with cross validation with LOOCYV it achieved an accuracy
of 75.8%, with a sensitivity of 80.9%, and specificity of 63% showing poor ability
for prediction.

Using the age cut off of 50 to classify the water/total area ratio results showed a
greater difference between the groups. Figure 4-38 shows the results of the
analysis, and in figure A the difference in the water peak between the two groups
can be seen, with the younger group having a higher water peak. The non-tumour
specimens of those <50 had a higher water/total area ratio (mean water/total area
ratio 0.37; SD 0.21) (n=16) compared to those patients > 50 (mean water/total
arearatio 0.19; SD 0.19) (n=79), this reached statistical significance (P=0.00063;
two tailed t-test). Despite this highly significant P value, using binomial logistic
regression of water/total area ratio and age of 50 as a classifier, the model
achieved poor diagnostic ability with an accuracy of 69%. Analysis of the
concatenated spectral data using a PCA fed LDA analysis showed a model
accuracy of 85.3%. The principal components PC 1 (accounting for 89.5% of
variance) and PC2 accounting for 8.51% of variance) gained statistical
significance in their scores with age as the classifier (P<0.01), related to the lipid
(PC 1) and protein and water peak (PC 2) (Figure 4-38). The PCA scores
underwent LOOCV LDA analysis to validate the findings, and found a sensitivity
of 82.3%, specificity of 56.2% and accuracy 77.9%.

These results demonstrate that there is a difference in the normal breast tissue
composition according to the age of the patient. Younger patients have a higher
water/total area ratio, suggesting the breast tissue has a higher water content.
The difference is more obvious in using the younger age cut off of 50, with a
highly significant different water/total area ratio, however the accuracy of being

able to predict the classifier is modest.
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Figure 4-38 Results of spectral analysis of non-tumour breast specimens classified according to Age

A. Mean data of all tumour specimens according to Age (cut off 50). Data line is mean of spectra from each
sample of that pathology subtype; Red — Age >50 (n=79), Green — Age <50 (n=16). Shaded area either side

in the same colour is +/- 1 S.D. Spectra were baselined using 3" order polynomial and normalised to

2985cm peak. B. Principal components of mean Concatenated spectra of all tumour specimen (n=95). C.
P values of principal component scores according to age (cut off 50). D. scatter graph of the significant
principal components (PC1 and, PC2) scores that also accounted for >95% of variance. Each circle
represents a specimen mean data, Red - Age >50, Green - Age <50.
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The importance of these findings summarised in Table 4-10 is not in the
prediction ability of the models, but in the difference in water/total area ratios.
This demonstrates that there are significant physiological variations between the
normal, non-tumour tissue of patients according to menopausal status and age.
In the use of the HWN spectrum, or the water/total area ratio, to diagnose breast
cancer it must be considered that the baseline ‘normal’ to which the tumour
spectra are being compared is a fluctuating baseline that changes according to

the physiological characteristics of the patient.

Patient Status Mean Comparison | AUC* | Spectral
characteristic ratio* of mean P accuracy’
value*’

Menopausal Pre 0.3374 | 0.006 0.65 84%

status Post 0.1858

Age - 60 <60 0.31 0.0063 0.65 78.9%
>60 0.18

Age — 50 <50 0.37 0.00063 0.69 85.3%
>50 0.19

Table 4-10 Summary results table of analysis of non-tumour specimens mean spectra classified by
physiological characteristics

AUC was calculated from binomial logistic regression using mean ratio values and k-folds 10 cross validation
Spectral accuracy data was from the mean spectral data, with a 12 component PCA fed LDA model, and
the resultant accuracy of the LDA model is quoted

* - denotes values derived from spectral data that had been baselined with 3™ order polynomial and the
mean water/total area ratio calculated

T - denotes values derived from mean concatenated spectral data

°- comparison of two means, unpaired t-test
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4.3.3 Estimation of water content by dehydration

Tumour Specimens

Five tumour specimens underwent serial dehydration, of these five, two samples
and the corresponding Raman data were discarded due to the samples becoming
so small through dehydration that accurate Raman measurement or weighing
was not possible. Therefore, the weights and corresponding Raman data of three

specimens were included for analysis.

The starting weight of the three specimens were 0.167 g, 0.083 g and 0.089 g,
the dry weight was 0.041, 0.019 and 0.022 g, giving a total weight loss of 75%,
77% and 75% of the starting weight respectively. Corresponding HWN Raman
spectra over the period of dehydration showed visual changes in the spectra with
a decrease in the water peak (in spectra normalised to the protein peak), as
shown in Figure 4-39 A. This suggests that the weight loss was secondary to
dehydration, and that the HWN Raman measurements could measure these

changes.

The water/total area ratio was calculated for all acquired Raman spectra. These
were plotted against the known water fraction of the specimen at the time the
Raman spectra was acquired, the results are shown in Figure 4-39 B-E. In graph
E the dehydration curve of the Raman spectra is comparable between all 3
spectra, suggesting that the changes in water/total area ratio with water fraction

of tumour breast tissue is repeatable, and equivalent between different patients.
These results demonstrate that changes in water concentration in tumour

containing breast tissue can be measured, and to a certain extent, quantified by

HWN Raman spectroscopy, with calculation of the water/total area ratio.
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Figure 4-39 Results of serial dehydration of tumour specimens (n=3) and corresponding water/total
area ratio

A. Spectral data of a single tumour specimen that underwent serial dehydration, with spectra for each
corresponding water fraction plotted. Data line is mean of all spectra from the specimen at that water fraction
(n=5 areas measured). Shaded area either side in the same colour is +/- 1 S.D. Spectra were baselined
using 3" order polynomial and normalised to 2935cm! peak. Graphs B (Specimen 1) C (Specimen 2) D
(Specimen 3) and E (combined data of Specimen 1, 2 and 3) plots the mean water/total area ratio
(represented by plotted points, error bars +/- S.D.) calculated from the spectra (n=5 measurements for each
water fraction point, for each specimen) obtained at each water fraction plotted against the water fraction
calculated by weight. Graph E has a second order polynomial line of best fit to demonstrate the ‘dehydration

curve’
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Non-tumour specimen

Two non-tumour specimens underwent serial dehydration, however only one
specimen was suitable for analysis due to an inability to accurately weigh one
sample. The non-tumour specimen that underwent serial dehydration had a
starting weight of 0.240 g and dry weight of 0.215 g, which was a 10% weight
loss. This suggests that the, generally fatty, normal breast tissue had a low initial
water content. The Raman spectra normalised to the protein/lipid peak
demonstrated very little change in the water peak with serial dehydration, and
analysis of the water/total area ratio suggested there was no trend in ratio with

the water fraction (Figure 4-40).
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Figure 4-40 Results of serial dehydration of a non-tumour specimen with corresponding Raman
spectra (n=1)

A. Spectral data of a single non-tumour specimen that underwent serial dehydration, with spectra for each
corresponding water fraction plotted. Data line is mean of all spectra from the specimen at that water fraction
(n=5 areas measured). Shaded area either side in the same colour is +/- 1 S.D. Spectra were baselined
using 3 order polynomial and normalised to 2935cm! peak. B. Scatter graph of the mean water/total area
ratio (represented by plotted points, error bars +/- S.D.) calculated from the spectra (n=5 measurements for
each water fraction point) obtained at each water fraction plotted against the water fraction calculated by

weight.
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Interpretation and implementation of results

The results from the tumour specimen dehydration curve demonstrates that HWN
Raman, and using the water/total area ratio, can detect changes in water content,
and it may be possible with the dehydration curve to quantify changes in water
concentration in tumour specimens. The results from the non-tumour specimens
suggests that HWN Raman cannot detect changes in water content in low water

environments or highly lipid environments.

The dehydration curve from the tumour specimens could be used for
interpretation of differences in water content between tumour specimens. As an
example, there were differences in the mean water/total area ratio between
lobular carcinoma (0.70) and mucinous carcinoma (0.87), looking at these values
on the dehydration curve they equate to approximately a water fraction of 1.0 (for
a water/total area ratio for mucinous carcinoma) and 0.25 (for a water/total area
ratio for lobular carcinoma), suggesting there is a 75% difference in water content
between mucinous and lobular carcinoma. This is in concordance with the
understanding of the histopathological differences between the two types of
tumour — mucinous tumours are mucin ( a glycoprotein) producing and may be
associated with a higher water content, and lobular carcinoma which infiltrate
adjacent fat and so could be associated with a more fatty environment 357 which

are associated with a lower water content.

4.3.4 Raman micro spectrometry experiments

Non- tumour specimens

Review of H+E slides from non-tumour specimens demonstrated that a large
number had areas of fat cells only, with very little histopathological features.
Some non-tumour specimens however, while still predominantly fat cells, had
areas of stromal tissue (Figure 4-41). It should be noted that the patients
demonstrating these areas of heterogeneity were younger (age range 43-51)

than the mean age of the sample population (67).

A non-tumour specimen had histopathological analysis followed by HWN Raman
using Raman micro spectroscopy. The specimen was chosen for analysis
because it was histologically heterogenous, and had good enough H+E staining

to allow for accurate pathological analysis, the results are shown in (Figure 4-42).
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Figure 4-41 H+E slides of non-tumour specimens

A. Patient 14 (age — 51)) Specimen composed of mostly fatty tissue. Note that little of the H+E stain is taken
up by the fat cells, and there are few histopathological features B. Patient 105 (age-43) and C. Patient 59
(age-44) demonstrate non-tumour specimens with a mixture of tissue types. Black circle denotes area of fat

cells, Red circle denotes stromal tissue. Images taken under X 20 magnification
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Figure 4-42 HWN Micro-Raman analysis of non-tumour specimen from patient 105

A. H+E slide of non-tumour specimen, black dotted line demonstrates the area of the corresponding Raman
map. B. Area of fatty normal tissue highlighted in black at X5 magnification, and at X50 magnification with
representative HWN Raman spectra showing the lipid peak. C. Area of stromal normal tissue highlighted in
red at X5 magnification, and at X50 magnification with representative HWN Raman spectra showing the
protein peak.
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Tumour Specimens

Histopathological assessment of the tumour specimen indicated that the majority
of tissue from tumour specimens was entirely tumour, examples are shown in
Figure 4-43.

A B

50 pm

Figure 4-43 H+E slides of tumour specimens
A. (patient 17) Grade 3, Invasive ductal carcinoma, ER/HER2 -ve with no DCIS present. B. (patient 31)
Grade 2, invasive ductal carcinoma, ER +ve/HER2-ve, associated with DCIS. Both slides demonstrate

features of tumour throughout the entire histological slide.

However, there were some specimens that had areas of normal tissue within the
specimens. Raman analysis of one of these specimens shows that the areas of
the section that were identified as being tumour had a protein signal (matching
the Raman signal seen from the tumour specimen fresh frozen sample
measurements), and areas of the section that were identified as normal and non-
cancerous had a lipid signal (matching the majority of the non-tumour specimen
fresh frozen sample measurements) (Figure 4-44).

One of the specimens analysed (notably a lobular carcinoma), had
histopathological evidence of tumour throughout the specimen, as is common in
lobular carcinoma, there was cancer cell infiltration into surrounding fatty
tissue®’. Raman analysis of the spec