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Abstract 

Breast Conserving Surgery (BCS) in the treatment of breast cancer aims to 

provide optimal oncological results, with minimal tissue excision to optimise 

cosmetic outcome. Positive margins due to an inadequate resection occurs in 

17% of UK patients undergoing BCS and prompts recommendation for further 

tissue re-excision to reduce recurrence risk. A second operation causes patient 

anxiety and significant healthcare costs. This issue could be resolved with 

accurate intra-operative margin analysis (IMA) to enable excision of all cancerous 

tissue at the index procedure. High wavenumber Raman Spectroscopy (HWN 

RS) is a vibrational spectroscopy highly sensitive to changes in protein/lipid 

environment and water content –biochemical differences found between tumour 

and normal breast tissue. We proposed that HWN RS could be used to 

differentiate between tumour and non-tumour breast tissue with a view to future 

IMA. 

 

This thesis presents the development of a Raman system to measure the HWN 

region capable of accurately detecting changes in protein, lipid and water content, 

in the presence of highly fluorescent surgical pigments such as blue dye that are 

present in surgically excised specimens. We investigate the relationship between 

changes in the HWN spectra with changes in water content in constructed breast 

phantoms to mimic protein and lipid rich environments and biological tissue. 

Human breast tissue of paired tumour and non-tumour samples were then 

measured and analysed. We found that breast tumour tissue is a protein rich, 

high water, low fat environment and that non-tumour is a low protein, fat rich 

environment with a low water content, and this can be used to identify breast 

cancer using HWN RS with excellent accuracy of over 90%. 

 

This thesis demonstrates a HWN RS Raman system capable of differentiating 

between tumour and non-tumour tissue in human breast tissue, and this has the 

potential to provide IMA in BCS. 
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CHAPTER 1: Background 

 

1.1 Breast cancer  

1.1.1 Incidence 

Breast cancer is the most common cancer to affect women in the world and the 

second most common cancer overall, accounting for 6.6% of all cancer deaths 1. 

There is an incidence of 55,000 cases per year in the UK with a 1 in 8 lifetime 

risk for women, accounting for 15% of all cancer diagnoses in the UK and over 

11,000 deaths per year 2. This represents a significant burden to the NHS and a 

major public health issue for the UK. Cancer survival in the UK lags behind many 

other European countries, and an emphasis on earlier diagnosis and 5 other 

priority areas was highlighted in the Cancer Strategy Implementation Plan 2015-

2020 to improve cancer survival, and demonstrates that cancer care remains a 

priority for NHS England 3. 

 

The incidence rate of breast cancer is rising and there is a much higher incidence 

in high-income countries such as western Europe and the USA 4. This is 

postulated to be due to the primary risk factors being difficult to modify, and 

lifestyle risk factors becoming increasingly prevalent in Western lifestyle, such as 

obesity, late age of first child and reduced fertility rate. The known protective 

factors of breast cancer are breastfeeding – the relative risk decreases by 4.3% 

for every 12 months of breastfeeding - and a moderate degree of physical activity 

5. 

 

The risk factors associated with breast cancer are 1: 

Age – increasing age, however the rate doubles every 10 years until menopause 

then the rate slows 6. Therefore, the largest proportion of breast cancer is in 

women aged 45-69. 

Geographical location – Higher incidence in western Europe and USA 4. Migrants 

from a low risk area to a high risk area show the same incidence within one or 

two generations demonstrating the significance of environmental factors 6, with a 

corresponding change in breast cancer mortality 7. 
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Timing of onset/cessation of menses – early age at menarche and later age at 

menopause is associated with an increased risk of breast cancer 

Reproduction – nulliparity, late age at first birth and having fewer children 

increases the risk of breast cancer 

Exogenous hormone intake – oral contraception use (particularly the combined 

pill containing oestrogens) 8  and hormone replacement therapy 

Nutrition – increased alcohol intake increases the risk of breast cancer 

Cigarette Smoking – possible direct link to increased incidence, though it is not a 

significant risk factor 9 

Anthropometry – increased weight, weight gain during adulthood and body fat 

distribution 

Breast density- dense breasts increase the risk of breast cancer. Although breast 

density is affected by age and certain hormonal agents (such as tamoxifen and 

HRT), the relative risk of breast cancer is increased four to fivefold in women with 

high density breasts compared to those with low density breasts 5. 

Genetics –Being a carrier of the identified gene mutation BRCA 1 or 2 increases 

risk of breast cancer 10, with a lifetime risk of 60-85% for BRCA1 carriers, and 50-

85% for BRCA 2 carriers 6. 4-5% of breast cancer is due to inheritance of a high-

penetrance, autosomal dominant, cancer pre-disposing gene 11. Therefore, 

certain family histories, even without identified gene mutations, may result in a 

clinically higher risk requiring increased screening (Figure 1-1). 

 

 

 

Figure 1-1 Summary of NICE guidelines for those at greater risk of breast cancer based on Family 

History.  

Patients with a family history that fits these criteria should be referred to a secondary care family history 

clinic for consideration of further investigation/surveillance 12 
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Although incidence is increasing, mortality rates have improved substantially over 

the last 40 years. Survival at 1, 5 and 10 years has improved. At 10 years, survival 

has risen from 40% in 1971-72 to 78 % for those patients diagnosed in 2010-11 

(Figure 1-2).  One reason for this is improved early diagnosis and the 

establishment of the UK breast screening programme in 1987; even adjusting for 

the lead time bias introduced by early detection, screen-detected cancers had a 

substantial survival advantage compared to those that were symptom detected 

13. Another reason is the substantial improvements in essentially all treatments 

particularly radiotherapy, hormonal therapy, molecular profiling of cancers with 

targeted treatments, and the advent of individualised treatments based on 

genetic profiling. This rate of improved long term survival has not plateaued, 

suggesting there is still room for improvement 14.  

 

 

 

 

The cost of treating breast cancer in the USA in 2008 is estimated to be USD $20 

– 100, 000 for a lifetime per patient cost of breast cancer 16. The cost to the whole 

US healthcare economy is estimated to be USD 15-20 billion for the year 2001. 

USD 16.5 billion is spent each year on breast cancer diagnosis and treatment, 

and as it occurs in a young age group, there are economic factors such as lost 

work productivity which increases the cost. The cost continues to rise as the 

Figure 1-2. Graph showing  Age-Standardised Ten-Year Net Survival, Women (Aged 15-99), England 

and Wales, 1971-2011 . 

There is an increase in net 10 year survival in those diagnosed with Breast Cancer. Credit – Cancer 

Research UK 15 
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incidence increases, and treatment (particularly new, targeted drug treatment) 

gets more sophisticated leading to increased survivorship.  

 

It can be seen that Breast cancer is an increasingly important public health issue, 

with a large number of women being diagnosed with the disease and this is a 

financially expensive disease for society. Improving efficiency of diagnosis and 

reducing treatment costs whilst continuing to see a continuation in survivorship is 

a priority for the NHS.  

 

1.1.2 Anatomy of the breast 

The mammary glands are modified sweat glands in the superficial fascia anterior 

to the pectoral muscles and the anterior thoracic wall. The breast lies on the 

underlying muscle separated by a layer of deep connective tissue that forms the 

retromammary space. An overview of breast anatomy is demonstrated in Figure 

1-3. 

 

Surface Anatomy 

Although there is a degree of variation in size, the breast is positioned on the 

anterior thoracic wall between ribs II and VI, overlying the pectoralis major 

muscle. The breast extends superolaterally around the lower margin of pectoralis 

major and enters the axilla. 

 

Arterial supply and venous drainage 17 

The breast gains its blood supply from the vessels of the axillary artery (superior 

thoracic, thoraco-acromial, lateral thoracic and subscapular arteries, medially 

from branches of the internal thoracic artery and perforator vessels from the 

thoracic wall from the second third and fourth intercostal arteries). 

Venous drainage is via veins that mirror the arterial system, and drain to the 

axillary, internal thoracic and intercostal veins. Innervation is from the anterior 

and lateral cutaneous branches of the second to sixth intercostal nerves, the 

nipple being innervated by the fourth intercostal nerve. 

 

Lymphatic drainage 

The lymphatic system is an extensive network of channels that drain the fluid 

from body tissues lost from capillary beds during nutrient exchange processes 
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and deliver it back to the venous system 17. The lymph system is a major route of 

spread of cancer from one body organ or space to another, and particularly in 

breast cancer, the lymph system is often the first route of invasion, therefore the 

anatomy of the lymph drainage is important in understanding breast cancer. 

 

Lymphatic drainage of a breast is: 

- 75% via lymphatic vessels draining laterally and superiorly into axillary 

nodes 

- The majority of the rest drain medially to parasternal nodes associated 

with the internal mammary artery 

- A minority drain via the lymphatics associated with the ribs 17 

 

 

 

 

Figure 1-3 Diagram showing the underlying structures of the breast, its anatomical relationships, the 

arterial supply and venous and lymphatic drainage.  

Lymphatic drainage is denoted by green arrows -note that Level I axillary lymph nodes are those defined 

below Pectoralis Minor, Level II underneath pectoralis minor, and Level III any lymph nodes above pectoralis 

minor. Reprinted from Gray’s Anatomy for Students, 4th Ed, Drake, Vigl and Mitchell, Thorax, Page No 133., 

Copyright (2020), with permission from Elsevier 17 
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Breast composition 

The anatomy of the human breast was originally described by Cooper in 1840 

based on an extensive number of dissections and the majority of the concepts 

remain unchanged 18. The breast is composed of fat, and a series of ducts and 

associated secretory lobules that consist of clusters of alveoli containing 

lactocytes that during lactation undergo widespread hypertrophy and hyperplasia 

and synthesise breastmilk 19. These lobules then converge to form ducts, the 

number of which was originally thought to be around 22, but is now thought to be 

a more modest 5-9 based on  more recent ultrasound studies 18, 20. These 

lactiferous ducts then open independently onto the nipple 17 (Figure 1-4). Adipose 

tissue is between lobes rather than within lobules and a connective tissue stroma 

surrounds the ducts and lobules, which condense in some regions to form the 

Astley Cooper ligaments, which support the breast. There is significant variation 

in the number and size of ducts and amount of glandular / fat tissue between 

women, but is consistent between breasts within women 20.  

 

The development of the female breast is under hormonal control of progesterone 

and prolactin during pubertal mammogenesis, and continues to respond to the 

fluctuations of oestrogen and progesterone associated with the menstrual cycle 

and ageing 21. Glandular tissue is abundant in lactation with a corresponding 

increase and engorgement in breast size, whereas glandular tissue reduces with 

age and fat increases, leading to softer and more pendulous breasts 22.  
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1.1.3 Pathology of breast cancer 

Although there are other cancers of the breast, this thesis mainly deals with the 

most common types of ductal carcinoma (both in situ and invasive) and lobular 

carcinoma. The most common location of tumours within the breast are upper 

outer quadrant (50%), and central portion (20%) with 4% of women having 

bilateral primary tumours.  

 

1.1.3.1 Carcinogenesis 

The development of cancer is a result of the dysregulation of the body’s normal 

mechanisms for controlling cellular growth. Kumar et al. highlight three main 

features that underpin carcinogenesis, and succinctly describe the fundamental 

shared characteristics of cancers 23:   

 

Figure 1-4 Diagram showing Cross – section of the female breast demonstrating the relationship of 

fat, lobules and ducts.  

The mammary glands that produce milk drain to lactiferous sinuses that discharge to the nipple during 

lactation. Reprinted from Gray’s Anatomy for Students, 4th Ed, Drake, Vigl and Mitchell, Thorax, Page No 

133., Copyright (2020), with permission from Elsevier 17 
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1. All cancers are to some degree due to DNA mutations, either induced 

spontaneously or through environmental insult.  

- An example in breast cancer is the HER2/NEU protooncogene, that is 

associated with a poor prognosis 

2. These genetic alterations are therefore heritable, and so family history is 

an important risk factor of cancer 

- An example in breast cancer are the previously discussed BRCA 

mutations 

3. Accumulation of mutations result in the hallmarks of cancer; 

-  Self- sufficiency in growth signals and autonomous growth which is 

unregulated 

- lack of response to inhibitory mechanisms of cell proliferation 

- evasion of cell death 

- limitless replicative potential 

- development of angiogenesis to sustain tumour growth 

- ability to invade local tissues and systemic spread (distant metastases) 

- reprogramming of metabolic pathways 

- ability to evade the immune system 

 

In breast cancer this dysregulated growth arises from cells in the terminal lobular 

unit.  

 

Breast cancer is classified according to whether it is in situ and therefore has not 

breached the basement membrane (which does not have the capacity to 

metastasise) or it has breached the basement membrane (and has the capacity 

to metastasise) (Figure 1-5). 
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Non invasive (in situ) Breast cancer 

This can be either Ductal or Lobular in origin (DCIS or LCIS). DCIS is the 

commonest form of non invasive cancer, it can be mass forming (though rare) 

but is associated with mammographically detectable calcifications. It therefore 

accounts for 3 – 4% of symptomatic cancers, and 17-25% of screen detected 

cancers 6, 24. Histologically DCIS has a wide variation and is associated with 

pleomorphic cells with areas of calcified necrotic debris or calcified secretary 

material 25. 

 

DCIS is generally treated once it is detected, and the treatment is similar for 

invasive breast cancer with surgical excision. The reason for treating DCIS is that 

it is associated with a higher risk of developing invasive cancer with a cumulative 

incidence of invasive breast cancer of 38% after 10 years 26, and there is a small 

risk of metastasis, likely due to undiagnosed small foci of invasive cancer within 

DCIS 25. The natural history of pure DCIS is unknown as it has traditionally been 

treated; however one study looking at incompletely excised DCIS with no other 

treatment demonstrated that low-grade DCIS may follow an indolent course 27. 

The incidence (number of new cases per year) of such lesions has increased 

considerably (particularly in older patients) with screening 28. Therefore, there are 

concerns that breast abnormalities that may not be life limiting are being 

overtreated , and the LORIS trial has been established to compare outcomes of 

primary excision versus 10 year active surveillance in screen detected or 

incidental low risk pure DCIS lesions 24. 

Figure 1-5 Diagram showing the difference between normal breast duct, DCIS and invasive breast 

cancer.  

The purple cells represent abnormal ‘cancerous’ cells, the orange cells the basement membrane. It is only 

then the cancerous cells breach the basement membrane do the cells become a true cancer, with an ability 

for distant spread.  
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In comparison, LCIS is neither mass forming nor associated with calcifications 

and is nearly always an incidental finding in biopsies. LCIS has a uniform 

appearance with round nuclei in clusters within the lobules 25. A diagnosis of LCIS 

is associated with an increased risk of breast cancer, and is managed only with 

regular follow up 6. 

 

Invasive Carcinoma 

The majority of invasive cancers have no special type – and are referred to as 

Invasive Ductal Carcinoma (IDC) and account for 85% of invasive breast cancer. 

Histologically this is a heterogenous group of tumours ranging from well- 

developed tubule formation and low grade nuclei to anaplastic cells 23. They are 

commonly hard mass forming cancers, which replace normal fat tissue. There 

are a number of special subtypes such as lobular (which account for 10% of 

invasive breast cancer) and tubular, cribiform, papillary, mucinous and medullary 

(accounting for the rest) 6.  

Breast cancers are histologically graded Grade I (best prognosis) to Grade III 

(poorest prognosis), based on the type of tumour, mitotic rate and degree of 

cellular differentiation. 

 

Despite the wide range of histopathological characteristics which do have a 

prognostic significance, these histological subtypes of invasive breast cancers 

are diagnosed and treated in a similar may and will be considered as a single 

group in the rest of this thesis.  

 

1.1.3.2 Molecular Subtypes 

Even before modern medicine, it was recognised that breast cancer was a 

heterogenous disease as patients could present in very similar fashions, but 

some progressed rapidly, whereas some patients stayed alive for many years (up 

to 20 years) without treatment 26, 29. An increasingly clinically relevant pathological 

distinction between breast cancers is receptor expression. If a cancer expresses 

a particular receptor to a higher degree than its surrounding normal tissue, this 

can act as a target for systemic treatment, able to treat local and metastatic 

disease.  
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Hormone receptors 

The (o)Estrogen receptor (ER) is present in 75% of breast cancers and can be 

targeted in treatment. The majority of ER positive tumours also present 

progesterone receptors (PR), this cannot be targeted therapeutically, but has 

prognostic significance. A tumour that is ER and PR positive, has a better 

prognosis than a tumour that is ER positive, but PR negative.  

 

Growth Factor Receptors 

Growth factor receptors show increased expression and activation in breast 

cancer.  Tyrosine kinase receptors such as the Human Epidermal Growth Factor 

(HER) receptors have been therapeutically targeted; HER2 being the most 

relevant. A tumour that is HER2 positive is a biologically poor prognostic indicator, 

but with modern treatments (Tranztuzamab) that target this receptor, this is no 

longer necessarily the case 30. 

 

Genomic Profiling 

Recent advances in genomic profiling of the molecular subtypes of breast cancer 

are revealing that these biochemical differences in tumours also signify 

underlying differences in cancer biology and can be subtyped to identify the 

prognostic significance between groups and an ability to predict response to 

therapies. 

 

Gene expression profiling based on receptor expression has developed to show 

four different prognostic groups 31 , Figure 1-6 shows the difference in survival 

between the groups, which are: 

 

Luminal A – High level of ER and a low proliferation rate. HER2 -ve. 

Luminal B – Lower level of ER and a high proliferation rate. HER2 -ve. 

HER2 +ve (or ERBB2+) – HER2+ve and either ER + or - 

Basal like – ER -, PR -, HER2 -ve – so called ‘triple negative’ tumours and tend 

to have the poorest prognosis. 
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1.1.3.3 Other Prognostic factors 

Alongside these molecular classifications of breast cancer, there are more 

traditional prognostic factors which have been known about for decades: 

Tumour size – the larger the tumour, the greater the risk of metastasis and a 

worse prognosis 33.  

Lymph node spread – The number of axillary lymph nodes involved with tumour. 

The more lymph nodes, the worse the prognosis, with > 4 lymph nodes having a 

particularly poor prognosis 34. This is a prognostic marker, rather than the simple 

idea that all metastatic activity occurs through the ipsilateral lymph nodes, 

exemplified by the fact that patients with node negative disease can still develop 

metastatic disease 35. 

Histological grade- those with a Grade I tumour have a significantly better survival 

than those with Grade II or III tumours 36. 

 

These factors can then be used to inform prognostic classification systems which 

are used to guide treatment decisions. The commonest used methods are the 

T(umour) N(ode) M(etastasis) staging, and the Nottingham Prognostic index 

(NPI).  

Figure 1-6. Kaplan Meier survival graph of overall survival for 72 patients with locally advanced 

breast disease in a Norway cohort according to molecular subtype. 

Reproduced from figure from original source 32 Copyright (2003) National Academy of Sciences 
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The TNM classification is an evolving method of stratifying tumours. There is a 

‘clinical’ stage which is based on pre- operative staging, and this can be modified 

with the subsequent pathological diagnosis from the excised tumour, denoted by 

a pre-script ‘p’. The TNM classification ascribes a number to each category, the 

combination of which then stratifies the disease into a Stage grouping.  A 

modified, and simplified description of clinical TNM staging is described in Figure 

1-7. A criticism of using this staging classification system is that it relies on clinical 

measurements, which are inaccurate 6.
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T(umour) Primary Tumour 

Tis Carcinoma in situ e.g. DCIS 

T1 Tumour <2 cm in greatest dimension 

T2 Tumour 2-5 cm in greatest dimension 

T3 Tumour >5cm in greatest dimension 

T4 Tumour of any size with direct extension to chest wall or skin 

N(odes),Regional Lymph nodes 

N0 No regional lymph node metastasis 

N1 Metastases to movable ipsilateral level I,II axillary lymph nodes 

N2 Metastases to ipsilateral axillary lymph nodes that are fixed or to 
ipsilateral internal mammary nodes 

N3 Metastasis to ipsilateral level III axillary lymph nodes, internal 
mammary nodes AND axillary lymph nodes, any supraclavicular 
lymph nodes 

M(etastasis) 

M1 No distant metastasis 

M2 Distant metastasis  

 

Stage T N M 

0 Tis N0 M0 

I T1 N0 M0 

IIA T1 N1 M0 

T2 N0 M0 

IIB T2 N1 M0 

T3 N0 M0 

IIIA T0-2 N2 M0 

T3 N1 or 2 M0 

IIIB T4 N0,1,2 M0 

IIIC Any T N3 M0 

IV Any T Any N M1 

 

Figure 1-7 TNM staging classification and stage grouping. 

Modified from the International Union Against Cancer TNM Classification of Malignant Tumours (7th Ed) 37 
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The Nottingham Prognostic Index (NPI) uses similar information, but from the 

pathological diagnosis only, in Equation 1-1 38: 

 

NPI = [0.2 X S] + N + G 

 

The resultant score can give an estimated 5 year survival 39. Both of the TNM 

and NPI tools are used regularly to guide management and inform prognosis. 

Increasingly online tools such as Adjuvant! Online and Predict! are used to 

determine prognosis and how different treatments would be expected to change 

survival rate. The clinician inputs a wide range of the patient and tumour 

characteristics, and the algorithm predicts the patient individualised prognostic 

outcome 40. 

 

1.1.4 Diagnosis  

Patients are diagnosed with Breast cancer in a secondary care setting having 

received a tissue diagnosis. There are two routes through which the vast majority 

of Breast cancer is diagnosed, and they represent different patient groups, and 

often different phenotypes of Breast cancer. These are symptomatic or 

screening.  

 

1.1.4.1 Symptomatic 

Despite screening, the majority of patients diagnosed with breast cancer are 

diagnosed through another route, primarily after referral to a breast unit with 

symptoms. Patients who present with breast symptoms and demographics that 

are associated with a risk of breast cancer are referred to secondary care through 

a fast track service for assessment (Figure 1-8) 41. Speed of assessment is 

critical, as a delay in presentation and treatment of breast cancer is associated 

with a worse survival outcome 42. Symptoms of Breast cancer include breast lump 

(the commonest), breast asymmetry, nipple retraction and nipple discharge 6. 

Patient symptoms are taken in context of their other risk factors, for example the 

positive predictive value (PPV) of a breast lump in women aged 40 -49 being 

breast cancer is 4.8%, compared to a PPV of 48% in women aged >70 years 43. 

Patients undergo ‘triple assessment’ during this clinic, which is discussed later. 

Equation 1-1 The Nottingham Prognostic Index 

S = size of index lesion (cm), N = Nodal status (0 nodes = 1; 1-3 nodes = 2, >3 nodes = 3), and G = Grade 

of Tumour (Grade I = 1, II = 2, III = 3) 
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1.1.4.2 Screening 

Around one quarter of the 55,000 cancers diagnosed per year in the UK are 

diagnosed after screening 41. Screening invitations in the UK are currently offered 

to all women aged 50-70, with a phased rolling out to women aged 47-73. Breast 

cancer screening involves a single mammogram once every three years 44. 1 in 

23 women are called back after attending their screening mammogram for further 

tests, such as repeat mammogram, MRI or biopsy of a suspicious lesion 45. 

Breast cancer screening reduces mortality, as cancers are diagnosed at an 

earlier, and more treatable stage 46. Treating breast cancer at an earlier stage of 

the disease also reduces the overall cost of disease treatment, as it is less likely 

to require expensive adjuvant treatments 47 . Screening prevents 1 breast cancer 

death for every 200 women who are screened regularly 45 and in a meta-analysis 

of 11 studies they found that there was a reduction of 20% in the relative risk of 

mortality from breast cancer in screening patients compared to those not 

screened 48. 

 

Despite this, screening is controversial as there are concerns over a number of 

issues. Over-diagnosis, where a non-life threatening breast cancer is diagnosed 

and treated, is a concern as this causes the morbidity of breast cancer treatment 

with no survival benefit. It was estimated in a Danish trial that there was 2.1 cases 

Figure 1-8 Summary box outlining the ‘fast track’ referral criteria from primary care to secondary 

care for urgent evaluation by a Breast specialist41 

Refer people using a suspected cancer pathway referral (for an 

appointment within 2 weeks) for breast cancer if they are: 

• Aged 30 and over have an unexplained breast lump with or 
without pain or 

• Aged 50 and over with any of the following symptoms in one 
nipple only: 

o Discharge or 
o Retraction or 
o Other changes of concern 

Consider a suspected cancer pathway referral (for an appointment 

within 2 weeks) for breast cancer in people: 

• With skin changes that suggest breast cancer or 

• Aged 30 and over with an unexplained lump in the axilla 
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of overdiagnosis per 1000 patients screened 49 and in an analysis of all nations 

offering screening, there was on overall rate of 1 in 3 breast cancers being over 

diagnosed 50. False positive mammograms leading to unnecessary further 

investigation can cause distress and reduces the chance of the patient attending 

subsequent screening invitations 51. Other risks include false reassurance 

leading to subsequent delayed presentation 52, pain and discomfort of 

mammograms 53, and the small radiation risk from mammograms (there are an 

estimated 0.07 radiation induced breast cancers per 1000 women screened)  45.  

 

For these reasons, current uptake of Breast screening is around 70% nationally, 

with many regions falling below the minimum standard for uptake 54. Some 

nations are re-thinking breast cancer screening, with Switzerland recently 

abolishing its breast screening programme citing over-diagnosis concerns as a 

primary reason 55. 

 

1.1.4.3 Triple assessment  

After being referred to a symptomatic clinic or re-called after screening, patients 

are clinically assessed through a history and examination by a specialist Breast 

surgeon/physician, have imaging which is either a mammogram or ultrasound or 

both, depending on their age 56, and if there is a discreet lesion – a core biopsy 

is taken for histopathological diagnosis.  

 

Imaging 

Mammogram is the primary mode of diagnostic imaging for breast cancer 

detection both in screening and symptomatic patients. With the patient standing, 

the breast is compressed between paddles and two X-ray images (cranio-caudal 

and mediolateral oblique) per breast are obtained 6. In one study of 2020 patients 

with a subsequent pathological diagnosis of breast cancer, mammogram alone 

had a sensitivity of 82.9% and specificity of 91.9% for breast cancer detection, 

compared to a combination of mammogram, ultrasound and clinical examination 

(which is usual clinical practice) 57. Factors particularly affecting diagnostic 

accuracy are - increased breast density, heterogenous breast density and young 

age 58. For these reasons it is not routinely used in patients less than 35 years 

old 56. 
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Ultrasound is used in addition to mammograms for breast cancer diagnosis, or 

for those under 35 years old as the primary modality. Patients are positioned lying 

on a couch, and the breast is not restricted, and so it is used for guiding biopsies, 

or localised tumours prior to surgery. Ultrasound alone has a sensitivity of 87.6% 

and a specificity of 95.5% when compared to the usual practice of US, 

mammogram and clinical examination of the breast 57, and is particularly useful 

in differentiating between solid and cystic lesions 6. The use of both mammogram 

and ultrasound for detection of breast cancer in a screening population results in 

an improved sensitivity and specificity compared to the techniques used alone 59. 

 

Pathology 

Biopsy samples are now recommended to be taken by core biopsy or vacuum 

assisted core biopsy as this preserves cellular architecture and increases 

diagnostic yield compared to traditional fine needle aspiration (FNA) 44, 60, 61. 

Biopsies are taken from areas of suspicion either by clinical palpation for a 

palpable mass undetected on imaging, or under image guidance if detected by 

imaging such as for non- palpable masses and areas of suspicious heterogeneity 

(such as distortion or asymmetric density areas of calcification on the 

mammogram) 44, 62.  

 

Once taken, biopsy tissue must be fixed in formalin as soon as possible, as a 

delay in formalin fixation by just an hour can reduce the sensitivity of techniques 

in elucidating biomarkers such as progesterone and HER2 receptor status 63. 

After fixation, samples are cut and embedded in paraffin and haematoxylin and 

eosin stained. A histopathologist will then analyse the slide and perform any 

necessary immunohistochemistry to be able to provide the tumour classification, 

grade of tumour, receptor status 64   

 

Although histopathology is the current gold standard for the tissue diagnosis of 

breast cancer, there are issues with the technique. It is slow, the standard time 

for turn-around of a biopsy sample is two weeks. Due to the number of processes 

involved in the analysis of a specimen there are a number of points of potential 

human error 65, 66. There is also a degree of inter-observer variability in aspects 

of histopathological analysis, in a study of 115 pathologists independently reading 

breast pathology slides, there was only 75% agreement between study subjects 
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diagnosis with the expert consensus derived diagnosis 67. A particular issue in 

breast cancer is the reporting of the grade which is highly variable – in one study 

with six pathologists, the statistical agreement on grade diagnosis varied from 

moderate to substantial 68, and in a study involving five pathologists, absolute 

agreement was only agreed on in 83% of cases 69.  

 

Multi Disciplinary Team Meeting (MDT) 

The MDT is an important concept in cancer care in the UK, and is designed to 

reduce the unwarranted variation in patient care in the NHS 70. It is a weekly 

meeting with a representative from all clinical members involved with breast 

cancer care attendance, particularly breast surgeons, radiologists, pathologists 

and breast cancer nurses. All patients with a core needle biopsy result should be 

discussed at an MDT 44. During this meeting, all information regarding the 

patients’ diagnosis is presented to agree on a diagnosis and suggest a 

management plan. Treatment is based on patient characteristics, such as co-

morbidities and patient wishes, and tumour characteristics such as TNM stage, 

NPI and grade of tumour.  

 

There is a paucity of evidence demonstrating the efficacy of the MDT 71. And a 

variety of evidence to suggest that not all patients suitable for MDT are discussed 

in the meeting 72, there is a large variation in their use between countries 73 and 

an inability to reach consensus decision in 27-52% of cases in one systematic 

review 74. Despite these criticisms, an effective MDT improves patient outcomes. 

A systematic review of 12 studies demonstrated an improved patient survival 

after the introduction of a cancer MDT 75, and the mortality rate was found to be 

11% lower in an area of Scotland that introduced an MDT compared to an area 

with similar survival statistics prior to the intervention that did not introduce an 

MDT over the same time period 76.  

 

1.1.5 Management of early breast cancer 

Surgery remains the first line treatment in the majority of early and locally 

advanced breast cancer. Recent advancements in adjuvant and neo – adjuvant 

therapies have significantly changed breast cancer management and outcomes. 
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1.1.5.1 Adjuvant therapy 

The recent decrease in mortality from Breast cancer 14, despite a rising incidence, 

is likely due to the widespread adoption of adjuvant systemic therapies. The aim 

of adjuvant therapy is to improve disease free survival and reduce local 

recurrence rate, whilst taking into account the (sometime significant) side effects. 

Breast cancer is a heterogenous disease, and the precise management decisions 

are tailored to the patient and the biology of the tumour, which is decided at MDT. 

A comprehensive review of all possible adjuvant therapies and ongoing clinical 

trials is beyond the scope of this thesis, what follows is a highlighting of the 

common treatment types. 

 

Endocrine therapy 

Around 75% of breast cancers are ER+ve 77 and modulation of ER activation in 

these cancers is essential. This includes stopping any oestrogen containing 

contraception or Hormone replacement therapy, and consideration of ovarian 

suppression with GnRH agonist in high risk pre-menopausal women 78. 

Tamoxifen – is a competitive oestrogen receptor antagonist, blocking estradiol 

from binding and activating the estrogen receptor. It reduces the risk of death by 

around one-third during 5 years of treatment, with some benefit up to 10 years 79. 

NICE recommends offering tamoxifen in ER positive invasive breast cancer for 

men, premenopausal women and postmenopausal women with low risk of 

disease recurrence 56. 

Aromatase Inhibitors (AI)– the mechanism of action is by inhibition of the 

enzyme aromatase that converts androgens into oestrogens. In the ATAC trial, 

looking at an AI and tamoxifen alone or in combination demonstrated that AI 

alone was superior in terms of disease free survival 80, and another trial 

demonstrated a possible survival advantage for those taking AI alone 81. AI is 

contraindicated in premenopausal women and have significant side effects of 

sexual dysfunction, and NICE recommends AI in postmenopausal women with 

ER positive disease at medium or high risk of recurrence 56. 

 

Chemotherapy 

The recommended chemotherapy regime in the treatment of breast cancer is a 

combination containing a taxane (e.g. docetaxel)  and anthracycline (e.g. 

doxorubicin)56. It is an effective treatment in early breast cancer and can reduce 
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the annual risk of recurrence by almost 25% and reduce breast cancer mortality 

by a third 82. The decision to initiate chemotherapy is based on the benefits of 

survival versus the significant side effects, and is generally offered in higher risk 

patients. The gain from chemotherapy is higher for younger women than in older 

women. A number of factors is taken into account by the MDT in deciding whether 

to offer chemotherapy, this includes age, axillary nodal status, ER status, and 

DNA micro analysis in the form of Oncotype DX 6.  

 

Biological Therapy 

Trastuzamab is a recombinant humanised monoclocal antibody that binds to the 

HER2 receptor and antagonises its activation. It is recommended in HER2 

positive tumours in the adjuvant setting 56, and when given concurrently with 

chemotherapy leads to a decrease in recurrence and death 83 in these tumours 

that classically had a poor prognosis. 

 

Radiotherapy  

Radiotherapy is a local treatment (compared to the systemic treatments of other 

adjuvant therapies) and is a part of breast conserving therapy and is always given 

to the remaining breast tissue after breast conserving surgery 84. Depending on 

the disease characteristics and staging, radiotherapy is given for locally 

advanced tumours and can be given to the tumour bed, axilla, supraclavicular 

fossa and inframammary chain 56. Radiotherapy significantly reduces 

locoregional recurrence and improves survival in locally advanced disease 85. 

 

1.1.5.2 Surgery 

The aim of an oncological resection is to remove the minimal amount of tissue 

necessary to reduce trauma and collateral structure damage, whilst excising the 

entirety of the diseased tissue 86. 

 

Mastectomy 

A mastectomy is the removal of all breast tissue of a single breast, and is the 

traditional operation for the treatment of breast cancer. Originally a Halstead 

mastectomy included removal of the underlying pectoral muscle and all axillary 

lymph nodes as well, but with a recognition that this did not always improve 

survival and caused significant morbidity, the technique evolved to what is now a 
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modified ‘simple’ mastectomy.  It accounts for 30 – 40 % of breast cancer 

operations. Local recurrence can occur in any residual breast cells which may 

remain, or associated with the scar. 

 

Breast Conserving Therapy 

With the increasing realisation that breast cancer was a systemic disease, the 

improvement of adjuvant therapies, and the detection of smaller cancers through 

mammography and screening, less invasive surgical treatments were developed. 

Breast conserving therapy consists of Breast Conserving Surgery (wide local 

excision of the tumour) – the aim being to remove all cancerous tissue with a 

margin of normal surrounding tissue, followed by whole breast radiotherapy. The 

surgeon makes an incision either over the cancer, or in a more cosmetically 

sensitive place on the breast and excises the breast cancer in a lump, with a rim 

of healthy tissue (roughly aiming for 1 cm of normal feeling tissue around the 

cancer), with the aim to excise a specimen with pathologically clear margins 

(Figure 1-9). 

 

 

 

 

 

The original randomised trial demonstrating the safety of breast conserving 

therapy was by Fisher et al. where 1843 women were assigned to one of three 

Figure 1-9 Diagram demonstrating options for incisions for Breast conserving surgery.  

Yellow area denotes location of tumour, grey shaded area is the area of tissue resected by surgeon (to 

include tumour and rim of healthy tissue). Black dotted lines are potential incisions made for tumour 

resection. 
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groups – total mastectomy, segmental mastectomy, and segmental mastectomy 

with breast irradiation 84, this study at the 5 year follow up actually found improved 

disease free survival and overall survival with segmental mastectomy and 

irradiation compared to total mastectomy. There are differences between the 

study conditions and current practice which could limit these conclusions, such 

as greater breast tissue volume excision than current lumpectomy, higher 

radiation doses, and that all patients received systemic chemotherapy. However, 

the findings have been repeatedly confirmed with more current practices, and a 

meta-analysis of nine trials comparing mastectomy with breast conserving 

therapy demonstrated no significant difference in 10 year mortality 87, and review 

of six randomised controlled trials showed no difference in rates of local control 

88, and so mastectomy and breast conserving therapy are viewed as equivalent 

in providing oncological control of disease. 

 

Indications for breast conserving therapy are T1, T2 (tumour < 4 cm), NO, N1, 

M0 tumours, T2 tumour > 4 cm in large breast, unifocal lesions. Contraindications 

are T4, N2 or M1 lesions, multifocal disease, large tumours in small breasts and 

women with a strong family history or proven BRCA genetic mutations 6. The 

advantages of breast conserving therapy compared to mastectomy are related to 

lower psychological morbidity with less anxiety, depression, and an improved 

body image, sexuality and self-esteem 89, 90.  

 

A significant issue with BCS is that incomplete excision and subsequent positive 

pathological margins lead to a second operation for re-excision of margins in 

around 17% of patients in the UK 91  to achieve clear resection margins, which is 

necessary to reduce recurrence rate 92. The current gold standard for margin 

analysis and the rationale for need for intraoperative margin analysis is explored 

in greater detail in section 1.3 of this thesis.  

 

Axillary Surgery 

The management of the axilla in breast cancer continues to be controversial. 

Although having metastatic carcinoma in the ipsilateral axillary lymph nodes has 

undoubted prognostic significance 34, the removal or treatment of these lymph 

nodes with radiotherapy may not carry a survival benefit 93, 94. Therefore, axillary 

surgery is primarily for staging, and in those with a positive axilla, local control. 
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Sentinel lymph node biopsy – this is performed in all patients with invasive 

breast cancer with a pre-operative diagnosis of a node negative axilla 95. 

Radioactive and blue dye is injected into the breast to identify the first node(s) 

that the breast drains, and these lymph nodes are excised for staging purposes 

96. If the excised lymph nodes do not contain cancer, no further axillary treatment 

is required. If the excised lymph node(s) do(es) contain cancer the patient may 

be offered axillary lymph node clearance or axillary radiotherapy 94 (this is an area 

of active clinical trials 97). 

Axillary Lymph Node Clearance – in patients who are pre-operatively identified 

as having a node positive axilla with US imaging and pathological confirmation 

from a core biopsy, the treatment is currently for an axillary lymph node clearance 

56. 

 

 

1.1.6 Summary 

Breast cancer is a potentially life-limiting disease, and due to the high, and 

increasing, incidence the disease and its treatment is a significant burden to 

populations and healthcare systems globally. Although there have been 

advancements in treatments and survival has improved, there remains a clinical 

need for improvements in delivering cancer care. Breast Conserving surgery is 

the commonest operation performed for breast cancer, and the issue of positive 

resection margins requiring re-operation is a significant source of anxiety to 

patients, and an expensive burden for healthcare systems. If the resection 

margins of a lumpectomy specimen could be analysed at the time of the index 

operation -intraoperative margin analysis (IMA)- this could reduce the need for 

repeat operations, and improve patient cancer care. The Association of Breast 

Surgeons gap analysis working group recently produced a report highlighting that 

research into technologies that could provide IMA were a priority for surgical 

research 98. Raman Spectroscopy is a method of vibrational spectroscopy that 

can assess the disease specific molecular compositional changes in the cells and 

tissues, and the technique holds great promise in being able to perform IMA. 
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1.2 Background of Raman Spectroscopy 

1.2.1 The theory of Raman scattering 

Raman scattering is the inelastic scattering of light. When light is directed on a 

molecule, light may either pass through it without any interaction or may interact 

with the molecule – where two processes can occur. The molecule can either 

absorb energy from the incident photon and it is transferred to a higher energy 

state (which is measured in absorption spectroscopy) or it can scatter the incident 

photon, which is measured in Raman spectroscopy.  

 

Light as a form of radiation may be considered both in terms of a wave (with a 

wavelength) and as a particle (a photon) with a discreet amount of energy. The 

amount of energy the light has is related to the wave properties. The energy of a 

photon (E) is related to wave frequency (v) by Equation 1-2: 

𝐸 =  ℎ𝑣 

 Where ℎ = Plancks constant (6.62607004X 10 -34m2kg/s) 

 

The wave frequency (v) is inversely related to the wavelength (𝜆) by Equation 

1-3: 

𝜆 = 𝑐
𝜈⁄  

 Where c = the velocity of light (299,792,458 m/s2) 

 

Therefore, wave frequency is linearly related with energy (Equation 1-4): 

𝜈 =  Δ𝐸
ℎ⁄  

 

and wavelength is inversely related to energy, thus the shortest wavelength 

confers the greatest energy as shown in Figure 1-10: 

Radiation 

Type 

Gamma 

Ray 

X 

Ray 

Ultraviolet Visible Infrared Microwave Radio 

Wavelength 

(m) 

10-12  10-10 10-8 0.5-6 10-5 10-2 103 

Energy per 

photon 

1.24 

MeV 

1.24 

keV 

12.4 eV 1.24 eV 0.124 eV 1.24 eV 1.24 

peV 

 

Equation 1-2

 

  

Equation 1-3 

Equation 1-4 

Figure 1-10 The Electromagnetic spectrum on the wavelength scale in metres with associated 

Energy per photon in electron volts (eV)  
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The Raman effect was first described experimentally by Raman in 1928 by 

focusing sunlight through a telescope onto samples of purified liquid or dust-free 

vapour, and observing scattered radiation with a different frequency to the 

incident light 99. Nowadays a single wavelength of light is used to provide a 

coherent wavelength as an incident beam to irradiate the sample, and the energy 

changes that can be detected are more subtle, but the principles remain the 

same.  

 

At room temperature the majority of molecules will be in a low energy, ground 

state. When an incident light source interacts with a molecule and the incident 

photon interacts with the molecule it forms a short-lived state of excitement due 

to its polarization of electrons and is promoted to a ‘virtual state’, which is 

unstable, and a photon is re-radiated. Elastic scattering accounts for the majority 

of scattering and occurs when there is only electron cloud distortion involved in 

the scattering process. It is common, and due to the light weight of electrons, 

results in very small frequency change to scattering photons and the molecule 

returns to its ground state and so the scattered photon is of equal energy to that 

of the incident photon. This is called Rayleigh scattering in molecules. Inelastic 

Raman scattering occurs when the energy transfer is significant enough to cause 

nuclear motion. There is energy exchange between incident photon and 

molecule, or molecule to scattered photon. Once the molecule has temporarily 

been promoted to a higher energy excited vibrational state it returns back to an 

energy state that is different to its original state. In this process there is a 

difference of one vibrational unit between incident photon and scattered photon, 

and this is Raman scattering. In Raman scattering there is Stokes and anti-Stokes 

scattering. During Stokes scattering the molecule absorbs energy and is 

promoted to a higher energy excited vibrational state. Some molecules may 

already be in an excited energy state due to thermal energy, and when these 

molecules return to ground state this will result in a scattered photon – this is anti-

Stokes scattering. These energy exchanges are depicted in Figure 1-11. For 

most molecules, at room temperature, the number of molecules at the elevated 

excited energy state would be very small, thus Stokes scattering will be 

prevalent.100. Although highly specific, Raman scattering is considered weak, with 

only one Raman scattered photon in every 106- 108 of total scattered photons.  
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In order for a molecule to scatter light it requires polarizability, which is the ability 

of an electric field to induce a dipole moment in a molecule. The induced dipole 

moment () is equal to the molecule polarizability () and the incident electric 

field (E) ; Equation 1-5 101:  

 =  E 

 

A change in molecule polarizability is therefore required to change the amplitude 

modulation of the dipole moment that is necessary for Stokes and anti-Stokes 

emission. The change in molecular polarizability occurs through molecular 

vibration and is a result of the alteration in the electron cloud about the molecule. 

The molecular vibration is described by translation of the molecule in space, and 

rotational movement. The degree of symmetry defines how Raman active a 

molecule will be, with symmetrical and nonpolar groups being the most active 101. 

Therefore the molecule, and the molecule number (N), the polarizability of the 

molecule (), the incident laser intensity (Io), frequency of the laser (v), and the 

vibrational amplitude (Q) all determine the intensity of the Raman scattered 

radiation (IR), the relationship is shown in Equation 1-6: 

Figure 1-11. A Jablonski energy diagram of quantum energy transitions for Rayleigh and Raman 

scattering.  

In Rayleigh scattering the energy level returns to its original state and there is no change in energy. In Raman 

scattering the energy level returns to a different state- either gaining (anti-Stokes scattering) or losing (Stokes 

scattering) energy and so the scattered light has a different wavelength to that of the incident light, which 

can be measured as the Raman shift from the Rayleigh line (which is equal to the incident light wavelength). 

Equation 1-5 



 
 

 48 

𝐼𝑅 ∝ 𝑣4𝐼0𝑁 (


Q
)

2

  

 

From this it can be concluded that by increasing the frequency of the laser, or 

using a shorter wavelength can increase the Raman intensity. It is also 

demonstrated that a change of molecular polarizability is essential for a molecule 

to be Raman active.  101 

 

The degree or type of scattering, and the gain or loss of energy, is dependent on 

the degree of movement a molecule has which is a product of its atoms and 

bonds, resulting in each molecule producing a unique Raman spectrum, or 

‘fingerprint’100 . In a steady electrical state, the energy of a molecule is divided 

into different ‘degrees of freedom’. Three degrees of freedom describe the 

translation of the molecule in space, and three describe rotational movement. 

Molecules thus undergo a number of bond vibrations, symmetrical (when it is 

symmetric about the centre) vibrations causing the greatest electron cloud 

distortion and a greater Raman scattering. Bond vibrations include symmetric 

stretching, asymmetric, stretching and are shown in Figure 1-12. 

 

 

 

Equation 1-6 

Figure 1-12 Schematic diagram demonstrating the different modes of bond vibrations that may occur 

within a molecule.  

Reproduced from 102 under a creative commons 4.0 licence  https://creativecommons.org/licenses/by-nc-

sa/4.0/ 

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
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The molecular bond can be mathematically considered to be a spring between 

two masses, and so relationship between the weight of the atom, and the strength 

of the bond dictate the frequency of the vibration, is explained in Hookes law in 

Equation 1-7: 

𝜐 = 
1

2𝜋c
 √

𝐾

𝜇
 

 

Where c – the velocity of light, K is the force constant of the bond between atoms 

A and B (which is measure of bond strength), and  is the reduced mass of atoms 

A and B of masses MA and MB which are related by Equation 1-8; 

𝜇 =  
𝑀𝐴𝑀𝐵

𝑀𝐴 + 𝑀𝐵
 

And it can be seen that the lighter the atom, and the stronger the bond, the higher 

the frequency. The product of these features, along with the different types of 

vibration, will therefore give different energies/wavelengths and different 

intensities for each molecule. 

 

The unique vibration of an atom or bond therefore gives a peak of increased 

intensity of scattered light at a particular wavelength on the spectrum. As the 

wavelength of a particular peak will differ according to the wavelength of the 

incident light, the Raman shift (the energy difference between incident light and 

the scattered (detected) light) is usually used to describe peaks to allow 

comparison of data between different incident lights. As molecules are a result of 

a collection of bonds formed between atoms which interact and influence their 

vibrations, more commonly there are ‘group vibrations’ and spectral peaks are 

assigned to groups – such as the ‘aromatic C-H’ or ‘O-H’ regions. As molecules 

are a consequence of the unique make up of a combination of these vibrational 

groups each molecule will have a unique Raman spectrum. The resulting peaks 

of differing energies and intensity can be assigned to known vibrational groups, 

and the molecular composition of a molecule can be deduced. Reference libraries 

now exist of known energies and frequencies assigned to groups to allow 

spectroscopists to interpret their spectra 103. From a biological perspective, the 

majority of molecular information is gained within the ‘fingerprint’ region, which is 

between 400-1800 cm-1 Raman shift. In this region there is well documented 

Equation 1-7 

Equation 1-8 

 



 
 

 50 

assignment of nucleic acids, proteins and lipids – which form the bulk of the 

information that can be gained from Raman spectroscopy. There is an ability to 

identify other biomolecules such as hydroxyapatite, porphyrins and 

carbohydrates 104. 

 

The High wavenumber (HWN) region corresponds to Raman shift 2700-3800 cm-

1, which is highly sensitive to lipids, proteins and water 105 but is often seen as 

less specific than the fingerprint region. However, it has a good ability to 

differentiate between a number of different cellular components 106 as 

demonstrated in Figure 1-13. And the diagnostic ability of the HWN region has 

been shown to be equal to the fingerprint region in clinical samples 107. Between 

the Fingerprint and HWN regions there is little useful spectral information. 

 

 

1.2.2 Experimental measurement of Raman scattering  

There are a number of systems used to measure Raman scattering, and there 

are a number of techniques that are discussed later in this thesis, each of which 

can be used to provide different information about the molecule and biological 

tissue probed. However, all systems have the same basic simple components, 

which are demonstrated in Figure 1-14.  
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Figure 1-13 Representative Raman spectra demonstrating the cellular molecular components that 

can be measured using high wavenumber Raman Spectroscopy.  

Raman spectra taken of Bovine gelatine (protein), soya bean oil (lipid) and distilled water (water) with 785nm 

laser excitation 
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Laser 

The excitation light source in Raman spectroscopy is usually a laser – as this 

provides a single narrow band monochromatic light source to probe the molecule. 

Lasers are the most suitable light source because a large amount of light is 

needed to elicit Raman scattering due to its weak effect, and the unique specificity 

of a Raman spectra is dependent on a single wavelength and a broader light 

source would give a broader, overlapping, spectra that would be difficult to 

interpret 104. The commonest type of laser used in Raman spectroscopy of 

biological material are diode lasers that converts electric energy into light energy. 

From Equation 1-6 it could be seen that by decreasing the laser wavelength 

would increase Raman intensity, however there is a balance when dealing with 

biological samples, as shorter wavelengths can heat specimens and cause 

molecular change or damage. It is also at these wavelengths that the more readily 

detected effect of auto-fluorescence can become an issue.  

 

The Near-Infrared spectrum is commonly utilised in Raman spectroscopy, 

particularly of biological tissue samples, as it achieves the optimum balance 

between intensity, tissue penetration and confounding auto-fluorescence 108. It 

also appears to be the safest wavelength to use. One study looking at 

immortalised cell lines demonstrated rapid cell death after short exposure times 

(within 5 minutes) to wavelengths 488 and 514nm, but only very mild 

morphological changes and no cell death after exposure to 785nm wavelength 

for 40 minutes 109. Another study used real-time analysis of cardiomyocytes under 

Figure 1-14 Diagram demonstrating a typical set up for a system to perform Raman spectroscopy.  

OL= Objective lens, BP = bandpass filter, NF = notch filter, DM = dichroic mirror 
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a 785nm laser to demonstrate there was no effect on the beating frequency 

suggesting minimal effect on the cells function 110. 

 

Optical filters 

A variety of optical filters are necessary to ensure a homogenous light is 

transmitted and the collection device receives only scattered light. Band-pass 

filters effectively clean up the laser light and are used to allow only the 

transmission of the excitation light to the sample, ensuring monochromatic light 

and optimal spectral resolution. The Dichroic mirror reflects the excitation 

wavelength and longer wavelengths towards the objective lens – which focuses 

the incident light on the sample to be interrogated. The scattered light then comes 

back through the objective lens, the dichroic mirror allows all scattered and red-

shifted light through to the collection device, while reflecting light at the incident 

wavelength and longer away. The notch filter provides a further filter to block light 

at the incident light wavelength through to the spectrometer. 

 

Detection 

Gratings can be used to aid in disperse the light into its individual wavelengths. 

Dispersion gratings separate the collected scattered Raman light at different 

wavelength onto the detector. The more grating lines per mm, the higher the 

dispersion and therefore the spectral resolution. The scattered light is then 

detected by pixels on a camera chip. Each pixel (or group of pixels) in the chip 

corresponds to a separate wavelength, and the amount of charge the pixel 

acquires during an acquisition is directly proportional to the number of photons 

detected. At the end of the acquisition the resultant charge collected by the pixel 

is converted to voltage and this is transferred to a computer to produce a signal 

for that wavelength, and the chip as a whole provides a read out for the entire 

spectral range. The commonest camera used are  thermoelectrically cooled 

Charge – Coupled Devices (CCD). The CCD is a silicon chip made up of a 2D 

array of detectors. The sensitivity of a camera is dependent on the photon 

wavelength and the silicon absorption coefficient. This is described as the 

quantum efficiency of a camera and is defined as the number of photoelectrons 

generated per Raman photon 111. The sensitivity of the CCD is dependent on 

incident wavelength and decreases above 1000nm.  
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If a silicon CCD is not appropriate for the spectral range being investigated there 

are alternatives. Indium gallium arsenide (InGaAs) cameras are typically back 

illuminated with a two dimensional photodiode array that, due to its lower 

bandgap properties, have an improved quantum efficiency over 900nm, and are 

generally used for investigating in the wavelength around 900 – 1700nm112. 

Alternatives to silicon CCDs also include complementary metal oxide 

semiconductor (CMOS) cameras, which are generally cheaper than CCD 

cameras, and can provide a higher frame rate. 

 

1.2.3 Summary 

The basic principles of Raman spectroscopy have been discussed. It is a versatile 

technique that has a wide range of applications in biomedical science. There are 

a variety of methods of Raman spectroscopy, which can be tailored to the specific 

problem posed; these are discussed in the following section. A potential 

application of Raman Spectroscopy is to the intraoperative assessment of 

pathological margins in surgically excised specimens – the next part of this thesis 

will give a detailed review of recent developments in this field of research. 
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1.3 Raman Spectroscopy for rapid intra-operative margin analysis 

of surgically excised tumour specimens 

(edited version from article published in Analyst) 

Breast Conserving Therapy with wide local excision of breast tumour is the 

commonest form of operation performed in the treatment of primary breast 

cancer, as detailed in section 1.1.5 of this Background chapter. The high rate of 

‘positive’ pathological margins requiring a further operation for re-excision of 

margins in around 17% of patients represents a significant burden to the patient 

and to the healthcare system. Raman spectroscopy may be the ideal 

intraoperative tool to provide intraoperative margin analysis. This section of the 

background evaluates the ability of Raman spectroscopy to provide IMA, setting 

out the clinical need for IMA in breast cancer, and a number of other solid tumour 

pathologies, a current critical review of previous work done, and an evaluation of 

the ability of RS to provide IMA. The literature review is a modified version of the 

article that was published in the journal Analyst (Reproduced from Reference 113 

with permission from the Royal Society of Chemistry). The introduction and 

section on Raman Spectroscopy background have been altered to avoid 

repetition within the thesis, while the rest of the text is unchanged from the 

published version. 

 

1.3.1 Introduction 

Surgical excision of the primary tumour remains the primary treatment for many 

solid organ tumours 86. The aim of cancer surgery is to remove the smallest 

amount of tissue necessary to minimise tissue trauma and collateral structural 

damage, whilst excising the entirety of the diseased tissue 86. This requires the 

affected tissue to be excised with a rim of normal tissue with an adequate  

‘margin’. The amount of margin, or distance from the cancerous tissue to the 

edge of the specimen, required to be termed ‘clear’ is different for each pathology. 

If there is cancerous tissue within the defined distance from the resected surface, 

it is a  ‘positive’ margin and an inadequate resection, which increases the risk of 

recurrence 114-116 (Figure 1-15).   
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A positive margin not only affects prognosis, but also future management, 

meaning the need for further operations or adjuvant therapies with significant side 

effects. The cost of a positive surgical margin to the patient, in terms of increased 

treatment burden, further anxiety and additional side effects is difficult to quantify 

but the effect on the financial resources of the healthcare provider is undoubtedly 

significant 117, 118. A method to assess the margins of the excised specimen intra-

operatively to allow further tissue to be taken at the time of the initial procedure, 

if possible or necessary would be efficient, could reduce the risk of residual 

cancer at the end of the operation and improve patient care. 

 

1.3.2 Current methods of margin analysis 

The ‘gold standard’ method for analysis of resection margins of surgically excised 

specimens is currently histopathology. Histopathology analysis of prepared, ex 

vivo, tissue is conducted with light microscopy by trained physicians and is able 

to provide a detailed analysis of the excised specimen and the biochemical 

characteristics of the tumour, which contributes to clinical management 

decisions. However, the ‘gold standard’ of histopathology is prone to errors 

although it is likely underreported; one study found an error rate of up to 11% in 

cancer diagnosis 119, there is variability between pathologists in the reporting of 

the tumour grade 68, 69, and even variability in the final diagnosis 67. This is even 

Figure 1-15 A graphic to illustrate the concept of tumour margins. 

 A. A surgically excised specimen with an adequate margin along the resected surface; the cancerous tissue 

is in the centre of the surgically excised specimen, with a rim of normal tissue surrounding it. The distance 

of what defines an ‘adequate’ margin varies between pathologies. B. A surgically excised specimen with an 

inadequate or ‘positive’ margin; the cancerous tissue is at the edge of the specimen. This could mean there 

is further cancerous tissue in the patient that has not been excised. 
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more apparent when diagnosing early or pre-cancers, where histopathology can 

have of the order of nearly 50% inter-observer agreement 67, 120.  

 

Histopathology analysis of surgical margins may also be subject to errors. Even 

small specimens of around 2 cm across would require an impractical  number of 

histological sections if the entire resected surface was to be examined for 

adequate margins, and so margin assessment should be seen as a 

representative sampling procedure 121. The process also requires a number of 

steps which introduce sampling error - orientation by the surgeon, fixation to 

preserve the specimen, labelling the specimen, transportation to the pathology 

department, re-orientation by the pathologist, slicing the specimen, dehydration, 

embedding, sectioning, staining, representative sampling and then subjective 

assessment by histopathologists 65, 66, 122. In addition to this, the lack of real-time 

reporting delays treatment decision making meaning histopathology is an 

imperfect technique for the reporting of margins. This precludes any removal of 

further, possibly cancerous, tissue without the need for a second, often more 

difficult, operation. In many pathologies, the risk of a second operation outweighs 

the benefits of the risk of recurrence, and so in cases of a positive resection 

margin, potentially cancerous tissue remains 123, 124. It is possible that the concept 

of requiring a defined margin for surgically excised specimens is a result of the 

current inability to check the entire surface margin, and that if a technique could 

accurately assess a specimen, smaller, or no, margin distances would be 

required. 

 

1.3.3 Methods of Intra-operative Margin Analysis (IMA) 

Recognising these limitations of the traditional model, there is a large body of 

research investigating methods of IMA. Current and prospective methods of IMA 

are generally based on ex vivo analysis of the excised specimen, as it is the most 

practical way of avoiding surgical artefacts such as blood contamination and the 

space constraints of in vivo analysis.The number of methods being investigated 

is vast, what follows is an overview of more established techniques that have had 

routine clinical application, though not necessarily widespread adoption.  

 

A commonly used method in cancer surgery is frozen section analysis. The 

specimen is transferred to the pathology department, frozen and sections of 
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interest taken for analysis by a pathologist. It is a technically difficult procedure, 

requiring a histopathologist to be available on demand, a turnaround time that 

can impede surgical workflow, the processing can damage specimens which 

require further histopathological examination and it is expensive 125. Frozen 

section is most successfully used in Moh’s micrographic surgery in the treatment 

of Basal Cell Carcinoma (BCC) of the skin, where the entire resected surface is 

examined in horizontal sections intra-operatively and the surgeon continues to 

excise tissue until the margin is clear. Recurrence rates are as low as 1-3% even 

in recurrent and complex disease 126. However due to cost and time issues it is 

reserved for cosmetically sensitive areas and recurrent BCC.  Frozen section is 

used widely in head and neck cancers 127 however there is a significant number 

of false negatives 127 and it is unreliable for eradicating positive final margins 128. 

The technique has also been used for IMA in breast cancer excision (where there 

is reported sensitivity 70-90% and specificity 80-90%129, 130)  and radical 

prostatectomy (with a poor sensitivity of 42% 131), but has not been widely 

adopted due to clinical and cost-effectiveness concerns 132, 133.  

 

Intraoperative imprint cytology has shown promise in Breast surgery. A slide is 

pressed onto the lumpectomy resected surface and analysed by a pathologist for 

malignant cells, which can be reported within the time frame of an operation. 

Issues identified with the technique are that slide preparation can affect the 

outcome, it is less accurate in lobular carcinoma 134 and in tissue that has been 

subject to previous radiotherapy 135, and it reports only on the resected surface, 

not the entire margin depth.  A meta-analysis of eleven studies revealed a pooled 

sensitivity of 91% and specificity 95% 136, however, in clinical trials the need for 

delayed re-excision remained disappointingly high 134 suggesting this may not 

translate into improved clinical practice.  

 

Intra-operative imaging to assess margins has been used in various pathologies.  

In breast surgery the most common adjunct in the UK to analyse margins is an 

intraoperative specimen X – ray to determine how close radio-opaque lesions are 

to the edge of the sample. It is used by 96% of UK units 91, as it is readily available 

and requires no additional equipment. However, in a recent meta-analysis of nine 

studies to have a pooled sensitivity of 53% and specificity of 84% 136.  
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Intraoperative ultrasound has also been used to guide lumpectomy in breast 

conserving surgery, but margin assessment was associated with a high false 

positive and false negative rate 137 and poor sensitivity 138. In brain lesions, 

intraoperative US has been seen as useful to guide excision, however there is a 

high degree of user variability and has been associated with a high rate of false 

positives possibly due to blood artefact which is also hyperechoic 139. 

 

Magnetic Resonance Imaging (MRI) is used extensively in the planning of brain 

cancer surgery and intra-operatively to guide excision. In a randomised controlled 

trial, with a small population of 58 patients, the intra-operative use of MRI was 

associated with complete tumour resection 140. However, an issue is ‘brain-shift’ 

where loss of cerebrospinal fluid and oedema changes the anatomy and so 

reduces the accuracy of neuronavigation 141 and a Cochrane review concluded 

that further studies into efficacy were needed 142.  

 

The sheer number of techniques proposed for IMA demonstrates that no single 

method has proved to be effective enough to be accepted into routine clinical 

practice. To address this gap in surgical care, novel optical techniques show 

promise as they can provide sensitive and specific biochemical information at a 

molecular level in a rapid and non- destructive manner. A number of microscopy 

techniques, such as Microscopy with UV surface excitation (MUSE), and light 

sheet microscopy, show the ability to differentiate between cancerous and non-

cancerous tissue but studies so far have been limited in sample size and to 

physically small samples due to speed of analysis, which limits the conclusions 

as to clinical relevance 143 144. Other optical techniques have struggled to 

succesfully translate promising laboratory work into the clinical environment, such 

as optical coherence tomography (OCT) which was found to have reduced 

effectiveness when it encountered cauterised tissue and blood 145, and a clinical 

trial in breast specimens demonstrated it only identified 63% of those with a 

positive margin 146. Diffuse optical spectroscopy has the potential to provide 

excellent sensitivity and specificity in cancer diagnosis147, but so far this has not 

been realised in the analysis of margins148. Raman Spectroscopy (RS) is a 

technique of vibrational spectroscopy that has gained particular momentum as it 

can provide detailed biochemical information with excellent accuracy, within 

clinically relevant times and has been succesfully used in the surgical 
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environment in human tissue in a range of pathologies. RS has the potential to 

change the paradigm of oncological surgery and provide IMA; an idealised 

surgical workflow of this is suggested in (see Figure 1-16). 

 

 

1.3.4 Raman spectroscopy  

A detailed review of the basic principles of RS are outlined in the previous section 

1.2 of the thesis. The molecular specificity of the Raman spectrum is holding great 

promise in medical diagnostics 149, and a variety of RS techniques have been 

developed in response to different needs. The following is a review of the different 

RS techniques that have been used in biological applications that are relevant to 

IMA. 

 

Raman micro-spectroscopy 

This technique combines Raman spectroscopes with optical microscopes, 

allowing for analysis of sub millimetre specimens, such as histological slides 150. 

The tissue is scanned using raster scanning (point by point) which is time 

consuming and so processing a sample can potentially take hours. Line scanning 

(changing the size of the incident beam to a line across the sample), and multi-

focal Raman microspectroscopy (dividing the incident laser into several beams 

to measure multiple Raman spectra simultaneously) can reduce the analysis time 

Figure 1-16 A graphical representation of the ideal paradigm for the surgical workflow of 

intraoperative margin analysis (IMA) by Raman Spectroscopy.  

This would allow the surgeon to remove all cancerous tissue at the initial operation, thus improving patient 

outcome. 
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to more clinically relevant times 151-153. Wide-field global imaging techniques, 

where the whole sample is illuminated and all spectra associated with a particular 

wavelength are collected can also decrease analysis times, but flat field 

illumination can be difficult and this reduces the laser power per pixel, unless a 

very high power laser is utilised 154.  

 

A further method to increase the speed of analysis is to reduce the number of 

Raman spectra taken for measurement by highlighting targeted areas for 

intensive raster scanning, in selective scanning Raman microscopy 155. This can 

be performed by predictive algorithm, where spectra are taken at two random 

points on the sample, and the difference between the spectra informs an 

algorithm to predict where to take the next measurement 155. Another method is 

to use another, less specific, but highly sensitive optical technique such as auto-

fluorescence to rapidly assess the sample and determine where to take Raman 

spectra 156. This allows a substantial reduction in the number of Raman spectra 

taken, with a similar diagnostic yield, and in a shorter time period.  

 

Surface Enhanced Raman Spectroscopy (SERS) 

SERS is a method to enhance the inherently weak Raman scattering by using 

receptor targeted metallic nanoparticles combined with bright Raman reporter 

molecules as biomarkers. Nanoparticles bind to the tissues of interest in a specific 

configuration and ratio that gives a unique spectrum. These nanoparticles give 

an intense signal due to their brightness and specificity, and so a large area can 

be rapidly scanned to give a reliably sensitive and specific Raman Spectrum 157. 

However, the obvious disadvantage lies in the time needed for pre-processing of 

samples with nanoparticles, and the potential risk of toxicity of metallic 

nanoparticles that may limit its in vivo use 158. The inherent heterogeneity of 

tumour biochemistry and receptor expression both within and between patients 

can affect the accuracy of these techniques 159. 

 

Spatially Offset Raman Spectroscopy (SORS) 

SORS can provide biochemical information at depth below the surface. SORS 

illuminates at a central point then collects scattered data at a distance from this 

central point, the light having travelled through varying depths of tissue. In using 

multi-variate analysis of the resultant spectra, the offset between illumination and 
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collection is accounted for, and a depth profile of the tissue with tissue information 

can be gained 160. An essential component of this technique is that it ameliorates 

interference by the often- stronger Raman scattering and fluorescence from the 

tissue surface to be able to analyse the tissue below. The configuration of the 

laser illumination centrally with an annular arrangement of collection fibres 2 – 3 

mm has allowed for analysis 1 – 4 mm below skin 161. Transmission Raman 

Spectroscopy (TRS) is an extreme version of SORS, where incident beam and 

collecting camera are opposite one another, to allow analysis through the sample 

to gain clinically relevant information at depths of up to 40 mm 162. 

 

High Wave Number (HWVN) Raman Spectroscopy 

The majority of biomedical RS uses Near Infra-Red (NIR) light to acquire spectra 

within the ‘Finger Print’ (FP) region of 400-1800 cm-1 which has been shown to 

provide extensive detail of the tissue biochemistry. However, when this laser light 

illuminates the fused-silica fibre required for fibre optic probes it generates an 

intense background signal 163. Using the HWVN region of 2400-3800 cm-1 can 

allow Raman spectra to be collected without this background interference 163. 

This opens the way to numerous clinical applications and can be used within 

commercially available devices such as a hypodermic needle 164 core needle 

biopsy system 165 and endoscopes 166(see Figure 1-17). This advantage must be 

weighed against the disadvantage of using HWVN region spectra, which is less 

specific and may have limited diagnostic capabilities compared to data from the 

FP region 167. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 62 

 

 

A 

 

B 

 

 

 

Coherent anti – Stokes Raman scattering (CARS) and stimulated Raman 

spectroscopy (SRS) 

CARS and SRS are non- linear processes, where the observed effect is not linear 

to the incident laser power, as it is a result of multiple overlapping photons. It can 

therefore generate a signal intensity greater than coherent Raman. By probing 

specific, narrow spectra with high intensity, specific molecular information can be 

Figure 1-17 Examples of fibre optic probes capable of Raman Spectroscopy measurement in a 

clinical setting for cancer diagnosis, or application to in vivo surgical guidance to provide IMA, 

images Authors own.  

A. A fibre optic probe is incorporated into a standard 5ml syringe with a 15cm long, 20 gauge needle and so 

is capable of subcutaneous measurements (in this example in a Turkey leg) as detailed in reference 168. B. 

A miniature confocal Raman packaged probe with a GRIN lens objective for endoscopic use. A detailed 

review on fibre optics for clinical use of Raman Spectroscopy is found in reference169 
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gained rapidly 170. The advantages of CARS relate to its sensitivity to CH 

molecules making it particularly effective at studying lipid and fat distributions, 

which can been performed at video rate of 100 ns per pixel 171. However it is a 

near surface technique and interpretation is made difficult by the presence of a 

non-resonant background, causing spectral distortion and artefact 170, 172.  

 

A SRS signal is generated when the molecular vibration is equal to the difference 

in frequency between the pump and Stokes photon. The change in intensity of 

these beams as a result is measured. Its use was previously limited by slow 

acquisition times and its reliance on back-scattering meant it was inherently 

weak. However, new techniques have overcome these issues and allowed rapid 

acquisition of spectra to give detailed biochemical information 172. Further, SRS 

is non-resonant background free, can be performed with ambient light present 

and its ability to provide high-speed imaging has been used in clinical tissue 

diagnosis 173. 

 

Spectroscopic Data Analysis 

Regardless of the method of Raman spectroscopy utilised to gain spectra, the 

raw spectra require careful analysis to elucidate clinically relevant information. 

Differences between tissue spectra, although highly specific and holding detailed 

chemical information, can be subtle. In the setting of IMA, data analysis is focused 

on providing a binary outcome of whether the margin is adequate or not. In 

general, there will be a ‘training set’, which are spectra assigned to known tissue 

correlations i.e. a spectrum taken from tissue which has a histopathological 

diagnosis (as demonstrated in Figure 1-18). These are used to create a model, 

which is then tested on a ‘validation set’, where the diagnostic accuracy can be 

assessed. This training – validation can be run multiple times with a Leave One 

Out Cross Validation (LOOCV) protocol to provide a measure of independence 

in the performance measures 107. 

 

The types of mathematical models used to create spectral classifications are 

numerous, and expanding. A simple technique is Direct Peak Analysis – where 

individual spectral features are analysed e.g. the areas under an individual 

Raman band  can be compared 174. Principal Component Analysis (PCA) and 

Cluster analysis are unsupervised techniques, that do not require assignation of 
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spectral peaks, but identify where in the spectrum the greatest variance between 

data lies and classifies data according to these groups. Linear Discriminant 

Analysis (LDA) is a supervised technique that is commonly used to distinguish 

differences in the classes identified by PCA to increase accuracy. Increasingly 

complex models have been developed such as Support Vector Machines (SVM) 

and Random Forest Classifiers 175 and can improve diagnostic accuracy176, 

however they can be more difficult to apply and interpret. The machine learning 

classifier used to analyse spectral data is an important part of system 

development. The balance between simplicity and speed of simpler techniques 

versus the complexity and improved accuracy of more recent models needs to 

be considered when developing a Raman system suitable for performing 

intraoperative margin analysis in the clinical environment. 

 

1.3.5 The use of RS to determine the surgical margin 

1.3.5.1 Breast Cancer 

Breast cancer holds great potential for intra-operative use of RS, with a number 

of groups reporting a variety of advanced techniques to assess the margins of 

lumpectomy specimens.  

 

Background 

For the majority of patients with early primary breast cancer, Breast Conserving 

Surgery (BCS) (with adjuvant radiotherapy) offers an alternative treatment to 

traditional Mastectomy, with equivocal survival rates and improved patient 

satisfaction (Fisher, 1985). In Breast conserving surgery, the cancer is removed 

from the breast, termed a lumpectomy. The method of assessing margins are 

currently mainly by surgeon palpation, if it is a palpable lump, or radiographically 

with an intraoperative X - ray. Neither are a reliable way of assessing the 

specimen for involved or close margins 177, and as a result, the rate of close or 

involved margins is high 91.  

 

The definition of a positive margin is most commonly described as ‘ink on the 

tumour’ 56, 178, the definition of a ‘close’ margin is much more debated, however 

in the UK it is defined as < 2mm, however, the resultant practice as to whether a 

re-excision of margins is recommended, or indeed undertaken, is much more 

variable 91. A positive margin is associated with a 2 fold increase risk of local 
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recurrence, despite adjuvant therapies 92. Therefore, a positive margin, and more 

variably, a close margin usually necessitates a re-excision of margins. This is a 

further operation where the operation site is re-opened and the tumour bed 

examined, the surgeon then takes a further 1 cm rim of breast tissue at the site 

that was reported as involved. The number of cases requiring re-excision is high, 

with a UK average of 17% and some units reporting up to 38-41% 91, 134. The 

steps involved in this re-excision are numerous and complex and the sheer 

volume is a significant financial burden.  

 

RS ability to differentiate normal from abnormal breast tissue 

There is a large body of evidence confirming the ability of RS to differentiate 

between normal, benign and malignant changes. A meta-analysis included 9 

studies and concluded that using RS in vitro in breast tissue to diagnose breast 

cancer gave a pooled sensitivity of 0.92 and specificity of 0.97 179. However, there 

was a marked heterogeneity between study techniques, and so studies need to 

be considered individually.  

 

In 2005, Haka examined lumpectomy and mastectomy tissue from 58 patients 

that had been snap frozen then thawed. They used Raman micro-imaging to gain 

a sampled volume of 1mm3, and determined a total of 130 spectra, which they 

used in a leave-one-out cross-validation analysis. With this model they got a 94% 

sensitivity, 96% specificity and an overall accuracy of 86% for detecting infiltrating 

carcinoma. Fibroadenomas appeared to count for this diagnostic uncertainty; in 

2 instances the Raman diagnosis was fibroadenoma, and the histopathological 

diagnosis was infiltrating carcinoma. The reason may have been the sole 

differentiation between the two pathologies in the diagnostic algorithm was fat 

content 180.  

 

In a paper to compare the spectroscopic techniques of fluorescence, diffuse 

reflectance, combined fluorescence and diffuse reflectance and RS, in the 

diagnosis of Breast cancer, Majumder et al. found RS to be the most effective 181. 

They used 74 frozen – thawed specimens to measure 293 spectra with point RS. 

They found distinct peaks associated with connective tissue proteins and fatty 

acids discriminated well between normal tissue, fibroadenoma, invasive ductal 

carcinoma and DCIS being able to classify 99% of spectra correctly. This was 
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done in laboratory conditions, and the area sampled was not reported, but can 

be presumed to be small. 

 

Barman et al. developed a single step Support Vector Model algorithm using point 

RS to diagnose breast lesions from 33 patients undergoing Vacuum assisted 

biopsy, specifically in those with microcalcifications 182. They achieved an overall 

accuracy of 82% of diagnosis with excellent Positive Predictive Value (PPV) (the 

probability of a positive result being a true positive) of 100% and Negative 

Predictive Value (NPV) (the probability of a negative result being a true negative) 

of 95% for breast cancer. However, this was performed in physically small biopsy 

samples, with a selective population of tissue all with calcifications present, which 

are known to produce relatively intense Raman spectra 183, and thus may be 

unrepresentative of all breast cancers. 

 

Han et al. used a confocal Raman system to look at freezing microtome sections 

of breast tissue 184. They defined the peak assignments of Raman spectra 

associated with breast tissue and found that the relative intensity of the C = O 

peaks increased with increasing grade of malignancy. They took 475 spectra 

from 39 patients and identified that there was little inter-subject variation in the 

spectra. They used a Support Vector Model for their classification model and 

achieved an overall accuracy of 74%. 

 

An issue with these techniques is that they are surface techniques, so if there 

was cancerous tissue more than a few hundred microns from the surface this 

would not be detected, so ‘close’ margins (which usually require excision) of up 

to 2 mm would go undetected. Spatially offset Raman spectroscopy (SORS) can 

resolve this and Keller et al. developed a SORS probe that obtained spectra at a 

depth of 2 mm 185. In 35 samples of frozen- thawed tissue they attained sensitivity 

and specificity of >94%. They assessed the margins compared to histopathology 

as simply ‘positive’ or ‘negative’ rather than gaining specific tissue diagnosis. The 

sampling size of the probe, nor the method of location of tissue sampling is 

described, but the authors recognize that assessing the entire specimen in a 

clinically relevant time is a limitation of the technique. 
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These studies were all done on micro or point spectroscopy, sampling very small 

areas of breast tissue to obtain Raman spectra. For application to IMA, it is 

necessary for a large area to be analysed, rapidly and so complimentary 

techniques have been applied to enable this. Kong et al. used auto-fluorescence 

imaging to inform selective -sampling Raman microscopy to provide an accurate 

diagnosis within a clinically relevant time frame 156. Tissue samples cut from 

blocks that were frozen-thawed were used and sensitivity and specificity of >90% 

were achieved. An example of these microspectroscopy mapping results and 

assignation of spectra to tissue is shown in Figure 1-18. This study only 

differentiated between ductal carcinoma and normal tissue, and in other studies, 

it is DCIS and fibroadenomas that negatively affect the overall accuracy of the 

analysis. Once again, the breast tissue samples were small (5 X 5 mm2), and so 

the conclusion of analysis within a clinically relevant time frame was extrapolated. 

How the technique would be applied to a whole specimen without cutting the 

sample is also unexplored. 

 

Figure 1-18 Example of assigning Raman spectra to tissue structures and ductal carcinoma of breast 

tissue to inform the diagnostic algorithm.  

(a) + (b) invasive ductal carcinoma (IDC), (c) normal breast tissue. Red arrows show focus of IDC, green 

arrow tumour surrounding inflammatory stroma, blue arrows  lobules and ducts, black arrows, stroma and 

orange, fat (Reproduced from reference 156 K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko and I. 

Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling 

Raman micro-spectroscopy. https://doi.org/10.1088/0031-9155/59/20/6141, under a Creative Commons 

Attribution 3.0 licence). 

https://doi.org/10.1088/0031-9155/59/20/6141
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
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Intra-operative use of Raman spectroscopy 

Based on these promising initial results, the same groups went on to use RS in 

the clinical setting with the potential to give an intra-operative diagnosis. 

Haka et al. used their previously validated technique in freshly excised tissue 

from 28 patients measuring 220 spectra 186. Tissue with Ductal carcinoma in situ 

was excluded, as the validating set had not encountered this pathology which is 

an important exclusion for intra-operative use, as DCIS is associated with a 

higher rate of re-excision of margins 187. It also excluded patients having 

undergone neo-adjuvant chemotherapy, which is increasingly common, and 

those patients with calcifications. Once again, fibroadenoma proved a diagnostic 

challenge, and the positive predictive value of 36% can be considered poor, with 

an overall accuracy of 86%. Although the authors felt that the high NPV of 99% 

was the main clinically relevant outcome, with such a low PPV in clinical use this 

would lead to a high volume of breast tissue unnecessarily being excised. The 

tissue area sampled is not mentioned, meaning the relevance of the technique to 

assessing an entire sample for margin adequacy is difficult to assess. 

Despite these limitations, this was performed adjacent to the operating room, in 

a light box, and analysis was performed in 30 minutes, recreating conditions 

necessary for intra-operative use of the technique. 

 

Wang et al. used SERS with nanoparticles to assess 57 freshly excised 

lumpectomy specimens and processed samples within 15 minutes 188. Each 

specimen was topically stained with Raman active nanoparticles that were 

functionalised with antibodies to target HER2, mER, EGFR and CD44 and then 

raster-scanned to acquire spectra for the entire resected surface on the exposed 

glandular tissue. It was possible to differentiate between normal, benign changes 

and invasive carcinoma tissue, and the overall sensitivity for breast carcinoma 

detection was 89% with 92% specificity, with the accuracy for the specific 

biomarkers slightly less than this. This technique is not affected by haemoglobin, 

surgical dyes or diathermy increasing the clinical relevance, however, it is limited 

by the sensitivity and specificity of not only the functionalised nanoparticles ability 

to bind to the molecules of interest, but also the accuracy of the Raman signal of 

the nanoparticles.  Another limitation is that, as a surface technique, ‘close’ 

margins are not detected. 
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Using a method of selective scanning, Shipp et al. performed analysis on freshly 

excised lumpectomy samples from 51 patients, and analysed one resected 

surface of each specimen which was identified as being most likely to be positive 

by a member of the team 189. They used multimodal spectral histopathology 

(MSH), obtaining autofluorescence images, which was highly sensitive but non-

specific, to inform targeted Raman measurement points in identified ‘segments’ 

to reach a final diagnosis. The diagnostic algorithm was validated using a training 

set based on mastectomy samples which included tissue containing 

fibroadenoma, fibrocystic change, DCIS and invasive carcinoma. MSH in the 

lumpectomy samples was highly sensitive, identifying all the margins that 

contained residual cancer even as small as 1 X 1 mm2, and so was 100% 

sensitive, with around 80% specificity. They analysed a single resected surface 

of up to 4 X 6.5 cm2 in 12-24 minutes, which was achievable as MSH reduced 

the number of Raman spectra required by 100 – 200 fold. Although this study 

shows significant improvement in the speed of analysis and the diagnostic 

accuracy, there are some limitations in the way the lumpectomy specimens were 

subsequently examined, and that only one resected surface could be examined 

in a clinically relevant time.  

 

1.3.5.2 Skin Cancer 

Background 

Skin cancer is the most common cancer diagnosed and its diagnosis and 

treatment represents a huge burden on the health economy 190. Basal Cell 

Carcinoma has the highest incidence and is predicted to rise. It is a slow growing 

tumour, that rarely metastasises, but local invasion leads to local tissue 

destruction and deformity. Surgery remains a treatment of BCC, the tumour can 

be excised by standard surgical excision where the lesion is excised with the aim 

of obtaining margins of 3 – 5 mm. A positive, or close margin has been reported 

in up to 7% of cases and is associated with a high recurrence rate of up to 27% 

191 and requires further treatment or re-excision 192. Mohs’ micrographic surgery 

is a current technique used for IMA but it is time consuming, expensive and only 

recommended in high risk cases 192, 193. Melanoma is less prevalent than non-

melanotic cancer but incidence is rapidly rising, it has metastatic potential and 

late presentation is associated with a very poor prognosis 194. The management 
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of melanoma is based on surgical excision, with margins of 0.5 – 2 cm required 

based on the stage of disease, and re-excision performed if there are involved 

margins195. A margin narrower than this is an inadequate resection which 

increases the risk of recurrence associated with a poor prognosis, and may 

possibly be associated with worse survival 196. For both melanoma and 

nonmelanoma skin cancer, there is a need for IMA to improve patient outcome. 

 

RS ability to differentiate normal from abnormal skin tissue 

Confocal RS was first used to differentiate BCC from normal skin in 2002, where 

Raman maps from a small sample of 15 specimens were taken and compared to 

surrounding normal tissue which yielded sensitivity and specificity of over 90% in 

a logistic regression model 197. Acknowledging the practical limitation of using 

confocal RS, the group used a handheld fibre optic probe and gained spectra 

using HWVN RS in the region of 2500 – 3800 cm -1 to avoid background signal 

from silica 198. A number of readings from each of 19 biopsies taken from the 

centre of confirmed BCC’s were analysed, which demonstrated large and 

consistent differences between the spectra from BCC and normal tissue, 

particularly that collagen contains discriminative information at this wavelength, 

with a 100% diagnosis of BCC. However, gaining spectra at this wavenumber 

region took longer due to suboptimal signal-to-noise ratio, which may limit its 

clinical use, and there was a small study size.  

 

These studies looked solely at BCC, whereas non-melanotic skin cancer also 

includes squamous cell carcinoma. Lieber et al. analysed 21 suspected non 

melanotic skin cancers and took measurements with confocal RS from within the 

tumour and compared to normal skin adjacent (1 cm distant) from the tumour 

edge at a depth of 20 µm 199. They achieved good sensitivity of 100% for 

determining the cancerous lesion and specificity of 91%, with squamous cell 

carcinoma lesions accounting for the diagnostic uncertainty. The sample 

population of 19 patients was small and although marked differences in Raman 

spectra were observed for each pathology this was after subtracting the matched 

normal reading. There is marked inter-subject variability in the Raman spectra of 

normal skin, and without a matched normal reading the diagnostic accuracy is 

likely to have been affected. The same group went on to perform measurements 

at varying depths on fresh-frozen samples from 39 patients with no skin 
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pathology, BCC, SCC or melanoma and achieved 100% diagnostic accuracy at 

the surface which decreased towards depths of 100 µm 200. 

 

 

Schleusener et al. recruited 104 patients scheduled for excision of a suspicious 

lesion and used a fibre coupled probe in vivo with direct skin contact to sample 3 

measurements on each lesion and the mean used to inform the spectra 201. The 

heterogeneity of the lesions led to poor accuracy in determining non-melanotic 

skin cancer from normal skin cancer. The major differences in skin variability 

between body site also contributed to the results that achieved an accuracy of 

78% in discriminating BCC and SCC from normal skin. For melanotic lesions the 

lesion inhomogeneity was insignificant, and they achieved a balanced accuracy 

of 91% of differentiating melanoma from normal pigmented nevi. 

 

In a large study, Lui et al. investigated all suspicious skin lesions in vivo, both 

potential non-melanoma and melanomas, in 848 patients and acquired 1022 

spectra 202. Spectra from the in vivo lesion were taken, and compared with 

spectra from normal appearing skin 5 cm from the tumour edge. The aim was to 

detect which lesions required invasive biopsy to histologically confirm malignancy 

which was achieved with 90% sensitivity and 64% specificity. The strength of this 

study was its clinical relevance – measurements were gained within 1 second, 

with a handheld probe, and was concerned with the relevant task of differentiating 

cancerous lesions from benign lesions, rather than from normal skin like other 

studies. However, the results were ultimately disappointing, with poor specificity. 

This may have been due to the heterogenous group of benign lesions to compare 

against (which didn’t necessarily have a confirmed histopathological diagnosis), 

and a relatively small number of malignant melanomas (n=44) which may have 

underpowered the diagnostic algorithm.     

 

The same group used a similar approach with a probe measuring a diameter of 

3.5mm at a depth of 1mm to validate the previous diagnostic algorithm on a new 

cohort of 127 cases, where they achieved similar sensitivity and specificity in 

cancer versus non cancer diagnosis to the previous study203. It is noted that, 

setting the sensitivity level to 95%, only 8 of 9 melanoma cases were correctly 

classified as a cancer, and the specificity was generally poor at 30 – 46% 
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depending on the sensitivity level. The results are perhaps unsurprising as the 

diagnostic algorithm had previously had poor accuracy at melanoma diagnosis. 

 

In a meta -analysis to investigate the accuracy of RS for differentiating cancer 

from normal tissue, 12 studies using different methods of RS were included, then 

analysed according to ex vivo and in vivo studies and types of skin cancer. 10 of 

the studies investigated discrimination of BCC, and in vivo, the pooled sensitivity  

for discriminating BCC from normal tissue samples was 69% and specificity 85%, 

compared to ex vivo sensitivity of 99% and specificity 96% 204. This suggests the 

use of RS to examine ex vivo, resected cancer samples, for margin assessment 

may be a highly accurate technique. 

 

There are a number of studies investigating mixed methods of combining RS with 

other techniques to improve performance. Combining autofluorescence with RS, 

with six spectroscopic criteria, 79 ex vivo patient samples were analysed and 

cancerous tissue was classified with 97% accuracy 205. Another group used 

CARS, second harmonic generation and two- photon excited fluorescence 

imaging to analyse 140 ex vivo skin samples in a multimodal approach that 

allowed large -area scans and the identification of dermal layering, which may 

assist in diagnosis of cancerous lesions 206. 

 

Intra -operative use of Raman spectroscopy 

Kong et al. used a method of measuring tissue autofluorescence to determine 

the sampling points for RS 207, a technique alluded to in the previous section 208. 

This MSH technique was used to analyse samples from 20 patients treated with 

Mohs’ microscopic surgery for BCC, half were BCC positive. Analysing tissue 

samples of up to 1 X 1 cm2 the sensitivity and specificity was 95% and 94% 

respectively for the detection of BCC within a time of under 60 minutes. The same 

group has now reported a fully-automated prototype instrument based on this 

technique that allows assessment of skin surgical resections of up to a 2 X 2 cm2 

area which detects residual tumour at the surface of the resected sample 209. This 

prototype will be used to validate their previous work with a larger population of 

patients. 
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1.3.5.3 Brain cancer 

Background 

Gliomas are tumours of the neuroglia graded by histopathological features that 

account for the majority of malignant brain tumours in adults. They have varying 

prognoses, but the commonest, glioblastoma multiforme accounts for 55% of all 

gliomas and has a 5 year prognosis of 5% with almost inevitable recurrence after 

treatment 210. Surgical resection is generally recommended as part of initial 

management for both histological diagnosis and to remove as much of the tumour 

as possible, if it is safe to do so 211. A major challenge of resectional surgery is 

achieving adequate margins, particularly as excessive tissue excision can lead 

to major neurological morbidity for the patient. With current imaging techniques 

of neurosurgical microscopes or intraoperative MRI, even in cases of an 

apparently complete resection with ‘clear’ surgical margins, the vast majority of 

recurrences occur at the site of resection , suggesting current techniques of 

assessing intraoperative resection are inadequate 212.  

Improving the intra-operative assessment of surgical resection margins could 

improve adequacy of tumour resection, and thus recurrence rates for 

glioblastoma. 

 

RS ability to differentiate normal from abnormal brain tissue 

The majority of initial diagnostic work has been performed in mouse models of 

brain tumours. RS has been used to analyse tissue from mouse models of 

glioblastoma ex vivo and is able differentiate between normal tissue (white and 

grey matter) and malignant tissue with 100% accuracy 213 and has been used to 

examine the tumour margins in mice in vivo, where RS identified tumour 

undetected by bright field microscopy 214. Uckerman et al. used CARS to probe 

the C-H molecular vibration, thus imaging the lipid content of samples 215. A 

mouse model of glioblastoma was analysed ex vivo then the same technique 

used in human glioblastoma tissue to confirm the findings. They found malignant 

tissue was identified by a reduction in lower CARS signal intensity which was 

related to a lower content of total lipids in tumour tissue than normal tissue. This 

was at a cellular level and so tumour borders could be discerned precisely, the 

technique could gain images at 20 Hz, representing clinically relevant time for 

intra-operative use. 

 



 
 

 74 

Two studies using induced glioma formation in mice models have reported the 

use of systemically injected gold nanoparticles preferentially up- taken by tumour 

to inform SERS guided tumour resection 216, 217. The nanoparticles are 

hypothesised to cross the Blood Brain Barrier via low-density lipoprotein-receptor 

-related protein 1, an active transport endothelial receptor that carries exogenous 

substrates across the BBB 218. The activation of the nanoparticles is then reliant 

on the acidic tumour environment, which results in a specific signal at the tumour 

site 216. A handheld Raman probe was used in both cases to demonstrate the 

delineated tumour margin and guide tumour excision. Although they show 

promise in mice models at assisting in obtaining clear excision margins, the 

translation of using a systemic agent in humans for diagnostic purposes only is 

likely to be complex and remains un-investigated. 

 

In human tissue, Raman microspectroscopy has been used to differentiate 

normal brain tissue, necrosis and brain metastasis and achieved accuracy of 

>95% 219.  Kalkanis et al. used ex vivo human tissue from 17 donors to create 

histological slides from frozen samples. Within homogenous areas of normal, 

necrotic and glioblastoma areas a diagnostic accuracy of over 97% was achieved 

in the validation group. However non-diagnostic areas, heterogenous areas and 

those with freeze artefact were excluded which limited sample size, and limits 

validity of application in vivo where heterogenous areas are likely 220. 

 

Another clinically relevant study by Ji et al. used Stimulated Raman Scattering 

(SRS) to examine tissue from 19 patients with CNS malignancy 173. They 

produced two- colour images based on the Raman intensity ratios which 

displayed whether the structure was lipid or protein-rich. Using biopsy samples, 

they asked pathologists to compare these SRS images with standard H+E 

pathology images and achieved excellent diagnostic concordance. This was 

carried out in standard lighting conditions. However, they acknowledge the areas 

sampled were much smaller than a true tumour bed, and SRS can only sample 

at a depth of 100 µm. Furthermore, this approach is only likely to work when 

normal tissues are mostly lipid rich and the cancer or disease leads to a change 

in protein rich tissues. Another group using SRS to analyse histology slides 

achieved similar results in differentiating between normal brain tissue and tissue 

containing a lesion. They used this to develop a machine learning process that 
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was able to predict an automated diagnosis of tumour subtype with 90% accuracy 

221. 

 

Intra -operative use of Raman spectroscopy 

A recent study by Bury et al. analysed 29 fresh brain tissue samples that had 

been excised during surgery within a clinically relevant time222. Using SERS, the 

samples were processed with gold nanoparticles and Raman spectra obtained, 

the tissue then underwent routine histopathological analysis. There were a 

number of diagnoses within the small sample size meaning it is likely to be 

statistically underpowered. Despite this they gained sensitivity and specificity 

above 75% in diagnosis of normal, glial and metastatic brain tumours, with 

meningiomas proving a diagnostic challenge with poorer accuracy. Results were 

comparable to currently used methods of IMA and superior diagnostic accuracy 

is needed for clinical adoption. However, this could be overcome by increasing 

sample size and measurements were taken in real time in a laboratory linked to 

the operating theatre via air-tube, which is an innovative solution to the often 

encountered problem of space, and demonstrates successful clinical application.  

 

In 2015 Jermyn et al. reported the use of a handheld spectroscopy device that 

used a Raman fibre optic to perform sub-millimetre single point measurements of 

0.2 mm2 in vivo in humans 223. 161 MRI guided intra-operative measurements 

were taken from 17 patients with gliomas, and a biopsy taken at the 

corresponding site for correlation of Raman spectra with H+E pathological 

diagnosis. They found specimens with cancer cells had a difference in the lipid 

bands, a higher nucleic acid content, and an increase in the band associated with 

the breathing mode of phenylalanine in proteins. Tissue with cancer cells present 

were distinguished from normal brain tissue with an accuracy of 92%, which was 

significantly better than the operating surgeons’ visual analysis with a bright field 

microscope. This was performed intra-operatively with a small, hand held probe 

and measurements took less than 1 second. The limitations related to the 

restricted field of view offered by the small area sampled by the probe, and the 

false negatives in the Raman analysis were due to the system needing > 15% 

cancer cell burden to be accurate. The same group then went on to integrate 

intrinsic fluorescence spectroscopy, diffuse reflectance spectroscopy and RS into 

one system to analyse biopsies taken from 15 patients with brain tumours of any 
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type in a similar study design 224. Using this multimodal approach they achieved 

sensitivity of 100% and specificity of 93% in differentiating between normal brain 

tissue and tissue with cancer cells. 

 

This group have recently developed a probe incorporated within a commercially 

available biopsy system to allow Raman measurements to be taken without 

disrupting surgical workflow 165. It used HWVN RS to collect data mainly from 

lipids and proteins. It was successful at detecting normal brain tissue and dense 

cancer tissue but could not differentiate between normal brain tissue and tissue 

infiltrated with cancer- which is likely to represent the specimens with inadequate 

tumour resection margins. 

 

1.3.5.4 Head and Neck Cancer 

Background 

Head and neck squamous cell carcinoma (HNSCC) represent the main 

oncological burden of head and neck oncology. Resection remains the mainstay 

of treatment for the majority of HNSCC locations 225.  Complete resection of the 

tumour is the goal of surgical treatment, as a positive margin doubles the risk of 

local recurrence compared to those with a negative margin 226. Despite this goal, 

a significant proportion (30-65%) of HNSCC resections have positive resection 

margins 227. A pathologically involved or close margin affects further management 

which is often the use of adjuvant therapy such as chemotherapy and/or 

radiotherapy. Re-resection can be considered, but only if anatomical location 

allows and after associated morbidity is considered 124, 228. A common definition 

of a close margin is <5mm for HNSCC 124, 229. The Intra-operative technique for 

margin analysis has been frozen section which has been specimen or tumour – 

bed based, with variability in the way it is utilised, with no standard method 

adopted 230. However, there has been no convincing evidence that this reduces 

the positive margin rate or improves outcome 128, 231.  

 

RS ability to differentiate normal from abnormal head and neck tissue 

The first report of RS to differentiate between normal and malignant larynx tissue 

was from Stone et al. 232. Raman microspectroscopy was used on biopsies from 

19 patients to differentiate homogenous samples of normal tissue from dysplastic 

and squamous cell carcinoma tissue. Diagnostic peak height ratios were used 
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rather than absolute spectral peaks to inform a diagnostic prediction model that 

demonstrated sensitivity and specificity of >90% for the diagnosis of squamous 

cell carcinoma. 

 

Using frozen – thawed biopsy samples of vocal cord lesions, Lau et al. analysed 

areas of 3.5 mm within 5 seconds. There was heterogeneity of tissue type within 

measured samples which may have accounted for the reduced diagnostic 

sensitivity of 69% of detecting carcinoma 233.  

 

Lin et al. developed a miniaturized RS fibre optic probe that was inserted down a 

working channel of nasendoscopy instrument to take measurements of 

suspicious laryngeal lesions in 39 patients 234. The probe was put in contact with 

the lesion for < 1 sec prior to taking biopsies for histopathological analysis. They 

used the HWVN range (2800–3020 cm−1) to obtain 94 spectra and identified 

spectral peaks that successfully differentiated normal and malignant tissue. In a 

similar experimental design in 60 patients, the same group used a combination 

of FP and HWVN RS to acquire over 2000 spectra and compared this to 

histopathological biopsy. They gained spectra rapidly in < 1 second, and the 

combined spectra yielded an overall diagnostic accuracy of 91.1% 235. The same 

group then acquired spectra from 90 patients with nasopharyngeal cancer and 

used PCA and LDA with a leave-one-out cross validation method to achieve a 

diagnostic accuracy of 93.1% 236. 

 

In the detection of oral carcinoma, Cals et al.  took histological sections from 11 

samples of oral SCC with surrounding normal tissue, and histopathological 

evaluation then selected the regions for RS measurements 237. Raman mapping 

with an automated confocal Raman microscope took point measurements at 5 

µm steps to determine spectral differences between oral SCC and squamous 

epithelium, connective tissue, gland, muscle, adipose tissue and nerve. They 

achieved excellent distinction between SCC and healthy tissues with >97% 

accuracy. They went on to develop a two-step classification model using a similar 

experimental method for validation in 19 samples and achieved diagnostic 

accuracy of 91% to differentiate tumour vs non-tumourous tissue 238.  
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In vivo detection of oral lesions was performed by Guze et al. with a handheld 

probe in real time 239. The probe, which had disposable plastic sleeves, was used 

to diagnose lesions within 5 minutes and the procedure was tolerated well by the 

18 patients who had a previously known histological diagnosis of the oral lesion. 

They were able to differentiate between pre-malignant and malignant tissue 

versus normal or benign lesions with 100% sensitivity and 77% specificity.  

 

The difference in water content between normal tissue and SCC has been used 

by one group as a marker to identify cancerous tissues in the head and neck. 

Using a confocal Raman microscope with HWVN RS at 2500 - 4000 cm−1 they 

used freshly excised oral SCC samples from 14 patients to take up to 30 spectra 

from each sample within 30 minutes and subsequently compared them to 

histopathological evaluation. They found the intensity of the OH-stretching 

vibration increased in SCC more than normal tissue, along with the water 

concentration being significantly higher in the SCC containing tissue. They 

concluded that water concentration could be determined with HWVN RS and was 

a useful diagnostic marker of SCC tumour 174. The group then used freshly 

resected oral SCC specimen sections containing both tumour and normal tissue 

to analyse how water concentration changes with distance from the tumour. 

Using a confocal Raman microscope at the same wavelength they then obtained 

over 3000 Raman spectra to determine that mean water concentration within the 

tumour was 76% and decreased further away from the tumour down to 54% when 

> 4mm from the tumour in healthy tissue228. A similar design was used in 26 

mandibulectomy specimens and it was also found that water concentration is high 

within tumour (mean of 77%) and decreases with distance from tumour to a mean 

of 44% in healthy tissue. These spectra were then used to develop a classification 

model for diagnosing SCC in bone in a training set and in the validation set 

achieved a sensitivity of 95% and specificity of 87% in tumour detection 240. They 

showed good diagnostic accuracy within clinically relevant times of less than 30 

minutes. However, there are limitations to clinical applicability; the specimens had 

to be handled in a particular way to avoid desiccation, and these studies used cut 

specimens which may have different water properties to an uncut specimen. A 

flat surface was also necessary to achieve adequate contact with the Raman 

probe, which may not be achievable with a clinical specimen.  
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The data demonstrates a large inter-subject variation in water content in healthy 

tissue of 17% in bone and 24% in mucosal tissue which suggests pathological 

tissue measurements would always need to be compared with concurrent 

‘normal’ tissue readings 240. The calculation of water content for these 

measurements were based on a protein model and ignored the contribution of 

lipids to the measured spectral band. Although this is acknowledged and in oral 

mucosal tissue any high lipid signals were always associated with healthy tissue, 

this may not be the case with other tissues and so the ability to apply this 

methodology to other pathologies may be limited 240. 

 

1.3.5.5 Other pathologies 

There has been investigation into RS in the diagnosis of other solid tumours such 

as ovary 241, lung 242, 243 and thyroid 244, but with little further exploration to the 

application of this technology to improving the adequacy of surgical excision 

margins. In some solid tumour pathologies, the use of RS in vivo for the detection 

of cancer for identification of residual tumour and ensuring adequacy of resection 

is another method of improving surgical oncological outcomes.  

 

In prostate disease, histological studies have differentiated between benign 

prostatic hyperplasia, prostate cancer and normal prostate tissue with a 

sensitivity of 94% and sepecificity of 100% 245, which was seen to be due to 

increases in DNA and collagen changes in malignancy 246. In freshly excised 

tissue both the Fingerprint and HWVN region has been used with a hand held 

probe to get diagnostic accuracy of over 85%107, 247. The same group have 

succesfully integrated a RS probe into the arm of a robotic operating system and 

demonstrated the possibility of in vivo surgical guidance to ensure there is no 

residual disease 248. 

 

There has also been substantial research into the detection of early malignant 

change in the cervix, aided by the well- defined nature of the disease and ability 

to gain measurements without excision of tissue. Multiple studies have 

demonstrated the ability of RS to differentiate between colposcopically normal 

and abnormal areas of cervical tissue to a clinically relevant degree of accuracy 

249-251. This may be useful in improving early, accurate diagnosis to guide targeted 

treatment and ensure complete resection of any cervical pre-cancers. 
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The ability of RS probes to be incorporated into fibre optics  has significant benefit 

to the potential for use as a surgical adjunct. In bladder cancer fibre optic RS 

probes have been shown to be able to differentiate normal bladder and bladder 

cancer with an accuracy of 84% in pathological samples 252. Another group 

developed a fibre optic probe used in vivo to gain measurements at sites within 

the bladder of 32 patients with suspected bladder cancer that were subsequently 

biopsied and then matched with the definitive histopathological diagnosis. These 

measurements took place alongside fluorescence cystoscopy, a technique 

already in use to improve bladder cancer detection compared to simple white light 

cystoscopy. This clinically relevant technique obtained a sensitivity of 85% and 

specificity of 79% 253. 

 

The introduction of RS enabled fibre optic probes down working ports in 

endoscopic instruments holds promise for early diagnosis of oesophageal, gastric 

and colorectal pathology, with ex vivo and in vivo studies demonstrating 

consistently good diagnostic accuracy and clinical relevance 254-257. The utility of 

this in achieving adequate surgical margins has not been investigated but given 

the increased risk of recurrence associated with involved circumferential 

resection margins in GI cancers 258-260, further work should be considered. 

 

1.3.6 Translating Raman to the clinical environment for IMA 

The ideal method for providing IMA would be highly sensitive, not alter the 

specimen (to allow subsequent histopathological analysis), recordable to allow 

accountability, give a definitive answer which is easily understood without the 

need for specialist training, and processes the sample without delaying surgery. 

The tool to deliver the analysis should be portable to allow use in multiple 

locations, robust to withstand everyday use, easily sterilised and not interfere with 

the theatre environment / procedure 261.  

 

In many ways RS meets these criteria. The ability of RS to differentiate between 

cancer and normal tissue in a non destructive manner has been established and 

appears reliable in a range of pathologies. The practical advantages of Raman 

as a tool for IMA are the relatively cheap equipment (£10-30K) is also small and 

transportable allowing for easy insertion into operating theatres. RS systems 
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have been developed that have taken measurements within the confines and 

limitations of the clinical environment, overcoming the obstacles of theatre 

lighting, handling the specimen and the need for a disposable/re-sterilisable 

component 224, 262, 263, demonstrating its ability to perform in the operating theatre. 

 

Despite these promising advances, RS is still not used in routine clinical practice, 

suggesting limitations to the technique for providing IMA. For effective translation 

and widespread adoption, Raman systems must be cost-effective. The advances 

in detector technology and lower cost lasers resulting in cheaper Raman systems 

is addressing some of the historical short falls in the technique, though it is now 

the detectors and cameras that account for the greatest expense 264, systems 

able to make use of high-quality but mass produced CMOS cameras used in 

mobile phones may be expected to reduce costs significantly.  

 

The time taken to analyse samples remains an issue, however innovative 

techniques such as selective scanning microscopy and SERS has reduced this 

time and studies presented in this review analysed samples in a clinically relevant 

time frame of 15 – 60 minutes, which is within acceptable and clinically relevant 

limits 185, 188, 189, 208, 265. The fact that sample analysis can take place within the 

operating theatre obviously saves significant time compared to techniques that 

require the specimen leaving theatres, such as frozen section analysis.  

 

Thus far, studies have required large data sets with complex and potentially 

lengthy chemometrics to provide accurate diagnostic information. Generally 

academic teams have been gaining spectra for a training set to construct a 

diagnostic algorithm. This process requires a significant amount of data 

processing and handling with large volumes of data and computing power to 

‘train’ the diagnostic algorithm, which would be well beyond the capabilities of 

routine clinical staff. However, these are preliminary studies, where the diagnostic 

algorithm is being constructed and tested, but once the diagnostic algorithm has 

been refined, robustly tested and validated, the data produced from a single 

specimen for analysis would not be overwhelming. The speed of running new 

measurements through a pre-constructed diagnostic algorithm is in the order of 

milliseconds. 
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When planning for the translation of a technology to the clinical environment, the 

focus must be on the end -user, which for IMA will be surgeons, as they will 

ultimately determine whether the technique is adopted. When using new 

technologies there can be difficulties with inter-user variability- in one study 

assessing IMA in breast specimens using a bio-impedance spectroscopy probe, 

the results were negatively impacted by the surgeons incorrectly following the 

probe protocol or incorrectly interpretating the results 266. Inter-user variability 

may prove particularly problematic for hand held probe systems, where data can 

be rejected or inaccurate due to incorrect probe positioning 185, 201. However, 

there are a range of other systems such as an automated tissue processing 

machine that uses cassettes209, or automated 3D scanner 265 that may reduce 

this potential for user error. 

 

Not only must the measurements be taken by surgeons, but a clear and definitive 

interpretation of data is required in order to translate to clinical use. It cannot be 

expected that surgeons should be required to understand and interpret raw 

Raman spectra to inform the procedure. Examples of systems that provide an 

indicator of the Raman IMA result to the surgeon is the system capable of emitting 

a sound to indicate abnormal tissues 267 and the automated 3D scanner 

‘Marginbot’ which has the potential to analyse a specimen and provide a colour 

coded interpretation of the Raman spectra for the surgeon mapped onto the 3D 

image of the specimen (see Figure 1-19 B) 265.  

 

So it can be seen that despite the inevitable challenges in translating from bench 

to bedside (or theatre-side), there are solutions that enable clinical Raman 

systems to provide easily interpretable IMA of surgically excised tissue to aid 

intra-operative decision making. Figure 1-19 provides examples of existing 

Raman probes that have the potential to provide IMA, demonstrating the 

beginnings of successful translation into the clinical environment. Indeed, there 

are a number of companies developing commercially suitable Raman systems 

showing a move away from the laboratory and towards larger scale use by 

clinicians 264, 268. 
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A 

 

B 

 

C 

 

Figure 1-19 Examples of Raman probe systems that could be used for IMA using Raman 

spectroscopy.  

A. Ex vivo RS analysis of a specimen, where the specimen is placed on top of a probe to enable a surface 

to be analysed. This example uses an axillary lymph node (reproduced from reference 269, with permission 

from the Royal Society of Chemistry, and the authors) B. Design of an automated 3D margin scanner 

prototype (Marginbot), where the specimen is placed on a stage and automated movement of the specimen 

and the Raman probe (depicted by arrows) is required to assess the specimen margins (reproduced from 

reference 265 G. Thomas, T. Q. Nguyen, I. J. Pence, B. Caldwell, M. E. O'Connor, J. Giltnane, M. E. Sanders, 

A. Grau, I. Meszoely, M. Hooks, M. C. Kelley and A. Mahadevan-Jansen, Evaluating feasibility of an 

automated 3-dimensional scanner using Raman spectroscopy for intraoperative breast margin assessment, 

https://doi.org/10.1038/s41598-017-13237-y, under a creative commons attribution 4.0 International 

License) C. Handheld probe (Emvision, LLC) for use in vivo, in this example to interrogate brain tissue during 

surgery with the potential to assist in gaining clear margins in the excised specimen. The schematic diagram 

illustrates the excitation of different molecular species that produces a Raman spectra. From M. Jermyn, K. 

Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M.-C. Guiot, K. Petrecca and F. 

Leblond, Sci Transl Med, 2015, 7, 274ra219-274ra219 223 . Reprinted with permission from AAAS. 

https://doi.org/10.1038/s41598-017-13237-y
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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1.3.7 Summary 

This review has outlined the importance of the optimal management of surgical 

margins for oncological excised specimens, current methods of IMA and a review 

of the existing literature relevant to the use of RS in IMA in a number of solid 

organ tumour pathologies. It must be noted that the majority of RS studies remain 

in the realms of laboratory work, or ‘processing labs’ adjacent to theatres with the 

work performed by members of academic units. Protocols have not evolved to 

the point of being able to be used by non-experts, which is crucial to its expansion 

into the clinical arena. Other disadvantages of RS is the time taken for spectral 

acquisition, though this is being addressed by multimodal techniques 189, using 

the HWVN spectra 240 or automation of specimen processing 265. Ultimately, 

larger scale clinical studies are required to demonstrate the diagnostic accuracy 

of the technique, and subsequent improvement in patient outcomes. As part of 

this, probes suitable for regular clinical use will have to be developed and go 

through the relevant regulatory processes, and inevitable cost-effectiveness 

evaluation. The focus on translation of RS to the clinical environment must 

persist. In an increasingly competitive market of emerging disruptive 

technologies, future studies must focus not only on improvement of outcomes 

compared to established techniques of IMA, but also show relevance amongst 

novel technologies and techniques. 

 

Despite these hurdles, RS has the ability to provide detailed biochemical 

information of surgical margins with excellent diagnostic accuracy in a range of 

solid tumour pathologies. Further studies are necessary for the translation of this 

technology to a clinically relevant environment and demonstrate improved patient 

outcomes. RS techniques have the potential to provide intra-operative margin 

analysis of surgically excised solid tumours. 
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1.4 The role of water content in breast cancer diagnosis  

1.4.1 Introduction 

The previous section highlighted the work performed by groups in using RS to 

assess the intraoperative margins of breast cancer specimens. Although the 

diagnostic ability of RS to differentiate between normal and cancerous breast 

tissue is good, a major limitation is the time it takes to analyse the large area that 

would be necessary for IMA. Other groups have investigated using nanoparticles 

and SERS 270 and multi-modal spectral histopathology combining tissue auto-

fluorescence with FP RS 189 as techniques that may reduce this time.   

 

High Wave Number Raman Spectroscopy (HWN RS) is an increasing area of 

interest in the analysis of biological tissue. The spectral features in this region are 

from CH-stretching vibrations from protein and lipid at 2800-3040 cm-1. OH 

stretching at 3100-3500 cm-1 which is primarily due to water with some 

contribution from the NH stretching vibrations between 3100 and 3500 cm-1 103. 

The time taken to analyse specimens is reduced using the HWN region due to 

the reduced volume of data, more intense signals 271, and subsequent simplified 

data analysis. In addition to this clinical advantage of reduced time for analysis, 

there is evidence that the diagnostic yield gained from this part of the spectrum 

is similar to that of the FP region 272, 273. HWN RS has been used to differentiate 

between normal and cancerous cervical tissue 272, oral tissue 174, bone 240 and 

brain tissue 165. In these tissues, a difference in water content has been a 

consistent discriminatory feature in the diagnostic analysis, with cancerous tissue 

having a higher water content than normal tissue.  

 

1.4.2 Theories to explain differences in water content in cancerous tissue 

Water content was first noted to be higher in cancerous tissue compared to the 

surrounding normal tissue in 1971, in rat tissue with sarcoma 274. Despite this 

being noted decades ago the biological mechanism as to why water content is 

higher in cancerous tissue compared to the surrounding normal tissue has not 

been fully elucidated. One suggestion is that with the increase in cellularity in 

tumours, there is a reduction of the apparent diffusion coefficient as measured by 

MRI 275. With this reduction in apparent diffusion coefficient in cancerous tissue 

the diffusion of water slows down and so water is trapped 276. These changes in 
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the water diffusion may be related to the increased expression of Aquaporins in 

cancerous tissue, which allows water influx 277. 

 

In measuring the broadband diffuse optical spectroscopy (DOS) of breast tissue, 

Chung et al. 278 calculated that the bound water index decreased in tumours, 

suggesting an increase in free water in tumours, which could be due to increased 

levels of hyaluronic acid and necrosis within tumours. However neither hyaluronic 

acid nor tissue necrosis were actually measured in this study, but it has been 

shown that an increased rate of cell necrosis is correlated with an increase in 

water content 279. 

 

Specifically in breast tissue, a likely reason for the difference in water content is 

because normal breast tissue is predominantly fatty and hydrophobic, and 

cancerous tissue is predominantly stromal with a large amount of protein, which 

is associated with a higher water content 280. 

 

1.4.3 Water content in normal breast tissue 

The water content in normal breast tissue has been estimated using Diffuse 

Optical Spectroscopy (DOS), which is a non-invasive optical technique that 

measures near infrared absorption and scattering. Tromberg et al. performed 

DOS in line scans in vivo on 12 patients who were young (aged 30 – 39), and it 

was demonstrated that the mean water % was 27 (+/- 12 SEM). There were 

limitations with the sampling volume of the line scanner used and the sampling 

depth was only 10mm from the skin surface, and therefore these figures for water 

content may not be representative of the deeper breast tissue water content. 

Using Near Infra Red spectroscopy in the healthy breasts of 24 females it was 

found that the water percentage in breast tissue to be mainly between 40 – 60%, 

however the raw data suggests a wider range was measured from 20-80%, with 

an acknowledged error range of almost 10% suggests that with such a wide 

range, and small number of subjects, a firm conclusion cannot be drawn  281. A 

study that examined differences in the breast density as measured by MRI 

measurement of water content found a significant difference between the median 

water content of mothers (27%) and daughters (44.8%), but again examining the 

raw data it suggests the range was wide and overlapping, as there were women 

in both groups with a range of breast water content of between 20 to 80% 280. 
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This suggests there is significant physiological variation in the water content in 

normal breast tissue. A number of factors may affect the water content of breast 

tissue: 

• Age 

o Independent of menopausal status, as women get older, the breast 

gets more fatty, there is less variation in lipid measurements, and a 

corresponding decrease in water content 282, 283 

• Menopausal status 

o Premenopausal breasts have a higher water and low fat content 

compared to post menopausal breasts 282-284. 

• Relationship to menstrual cycle 

o It was demonstrated with repeated MRI measurements at different 

times in the menstrual cycle there were cyclical differences in the 

water content of the breast, however the clinical significance was 

unclear 285 

o Using NIR imaging in 7 premenopausal patients there was variation 

in water content in radiographic density category, with absolute 

differences of up to 30% of water fraction in normal tissue 

throughout the menstrual cycle 286. 

• Use of oral contraception  

o Those patients taking oral contraception had breasts with higher 

water content and lower lipid content than those not on oral 

contraception 283 

• Location in breast 

o There are differences in water content not only between the two 

breasts of the same patient, but also within the breast and where 

the measurements were taken, with areolar water concentration 

being higher 282.  

• Body Mass Index 

o As BMI increases, the water content decreases and lipid increases, 

as the breast is composed more of fatty tissue compared to 

glandular tissue 284 
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1.4.4 Differentiating normal from cancerous tissue using water in breast cancer 

There are a number of techniques that have assessed the differences in water 

content in breast cancer. 

 

Terahertz pulsed imaging is a non- invasive optical imaging technique that is 

particularly sensitive to water and lipids (the main areas of spectral interest in 

HWN RS). In a study using 22 samples of human breast tissue, Terahertz 

imaging could differentiate between normal and cancerous tissue with good 

diagnostic accuracy, the increased water content in cancerous tissue 

hypothesised to be a major discriminatory factor in this 287. Subsequently a more 

clinically relevant handheld probe has been developed that had reasonable 

overall diagnostic accuracy of 75%, with a sensitivity of 86%, but a poor specificity 

of 66% 288. This study was limited by the method of measurement, as the probe 

measured both tumour and normal tissue at the same time, and relied on 

matching the pixels of measurements with specimen photographs, which could 

easily be mis-matched after the tissue has been through the specimen 

processing pathway. Another limitation of this technique was that exact water 

content changes were not able to be calculated. 

 

A handheld DOS probe has been used in a series of studies, where spectra were 

taken over a number of points on the skin over tumour containing breast, and the 

contralateral normal breast. When using average readings over the affected 

breast vs the contralateral normal breast, they found a significant increase in 

water concentration of over 50% on the affected side, and decrease in bulk lipids 

of 20% 276. As the readings were averaged over the breast which contained 

normal breast tissue as well it could be assumed that if the specific cancerous 

were isolated and measured the difference may have been greater. It was also 

noted that there was significant physiological variation in the readings of healthy 

tissue between patients. The same group used peak tumour readings compared 

to average readings from the normal breast, and came to similar conclusions with 

regard to the changes in water concentration and lipid concentration 289. 

However, the sample size was small with 11 patients and the tumour 

concentration range was considerable and overlapped with the normal tumour 

range, but still reached statistical significance.  
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Water concentration in breast tissue displays large physiological variations 

between patients, therefore using this as a sole measure of malignancy is likely 

to be inaccurate. It has been seen that areas of tumour not only have an 

increased water concentration, but also a decreased lipid concentration 

compared to normal tissue. 

 

The inverse relationship between water and lipid content is seen in studies using 

MRI for tumour diagnosis. Using Magnetic Resonance Spectroscopy in 15 

patients with cancer, and 14 controls with an average age of 47 years, 

Jaganaathan et al. showed that the water to fat ratio increased in cancerous 

tissue 290. Spectra from tumour showed significantly higher water to fat ratio (6.0 

+/- 6.9) than normal tissue (0.35 +/- 0.26)(+/-SEM). They also demonstrated a 

degree of variability in tumours. The main aim of the study was to illustrate that 

water to fat ratio decreased with response to neoadjuvant chemotherapy, and did 

not investigate the diagnostic ability of the water to fat ratio for cancer diagnosis. 

In a study using MRS on 68 cancers with healthy controls, the fat fraction was 

calculated and this measure was used to demonstrate that malignant tissue had 

significantly lower fat fraction (median 0.12) than normal tissue (median 0.39), 

concluding that this was primarily due to increased water concentration in cancer. 

However, the sensitivity of using the fat fraction to diagnose breast cancer was 

only 75%, probably due to the large ranges of absolute fat and water 

measurements 291. 

 

DOS has also been used to investigate the fat to water ratio as a discriminatory 

factor in differentiating normal from cancerous tissue. It is consistent with the MR 

data, that cancerous tissue has higher water content, and decreased lipid 

content, compared to normal tissue, both in vivo 283 and ex vivo 292, 293 .  

 

1.4.5 Differentiating normal from cancerous tissue using water with HWN RS in 

other cancers  

These studies demonstrate that water content or a measure of water fraction is a 

useful biological feature in differentiating breast cancer from normal breast tissue. 

HWN RS has been used to quantify the difference in water content between 

normal and cancerous tissues, mainly in protein rich biological tissue. The 

spectral peaks of the C-H stretch of protein and lipid at 2935 cm-1 and the OH 
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stretching band of water at 3390cm-1, and the ratio between these peaks, or the 

ratio between the area under the curve of these peaks has been used to calculate 

water content in porcine brain tissue 294, the stratum corneum in skin 295 and eye 

lenses 296. 

 

This technique was used in the assessment of Oral Squamous cell carcinoma 

with HWN RS to calculate water content 174. Using freshly excised tongue 

resection samples, a number of measurements were taken with a HWN RS probe 

from tumour and normal tissue, before the specimens were fixed and processed 

for a histopathological diagnosis. They found that water content was 20% higher 

in cancerous than normal tissue, and that setting the discriminatory value for 

cancer of water content >69% gave them a sensitivity of 99% and specificity of 

92% for differentiating normal and cancerous tissue. The same group used a 

similar methodology in mandibular bone resection specimens and found a 

significantly higher water concentration in cancerous tissue, and with a 

discriminatory water concentration cut off value of 60% had a 99% sensitivity and 

83% specificity for detection of cancerous tissue 240. The water concentration for 

these studies were calculated based on a calibration using protein/water mixes, 

whereas the biological tissues that were measured had contribution of lipid 

signals, so the absolute numbers calculated may not be accurate. The samples 

were also washed with saline prior to measurement, meaning that fatty 

(hydrophobic) areas would be unaffected, but possibly more metabolically active, 

and hydrophilic areas (tumour containing cells) may have taken up water, thus 

altering and exaggerating the differences in water concentration results seen. 

Despite these limitations, it still holds true that the changes in the protein to water 

ratios can be used to differentiate between normal and cancerous tissues. A 

further limitation of these studies is that Raman microscopy with a 4m sample 

area was used to gain spectra, meaning that with the equipment employed in 

these studies it would be impossible to analyse the entire resection margin of a 

specimen within a clinically relevant time. 

 

Mo et al. obtained measurements from normal and dysplastic cervical tissue with 

HWN RS 272. They observed that Raman intensities at the OH band region of 

3100-3700 cm-1 was significantly higher in dysplastic tissue, indicating that water 

content was higher in the dysplastic tissue compared to normal cervical tissue, 
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and this was used in the diagnostic algorithm along with changes in the 

protein/lipid region of 2800-3050 cm-1 to differentiate between normal and 

dysplastic tissue. However, signal intensity alone may not provide quantification 

of water changes as they can be affected by other changes in optical properties 

such as scattering or absorption and water concentration changes alone were 

not calculated, so the contribution of changes in water concentration to the 

diagnostic algorithm cannot be assessed.  

 

1.4.6 Differentiating normal from cancerous tissue using water with HWN RS in 

breast cancer 

HWN RS has been used to differentiate between normal and cancerous breast 

tissue in mammary rat tissue 271. In this study, measurements were taken in vivo 

transcutaneous, in vivo skin removed and ex vivo biopsy from 20 rats. The in vivo 

skin removed and ex vivo biopsies demonstrated that the intensity band 

associated with lipid structures (at 2854 cm-1 , 2895 and 3010 cm-1) was higher 

with normal tissue than with cancerous tissue, and the protein band at 2937 cm-

1  was higher in the cancerous tissue. It was also noted that the water signal at 

3100-3500 cm-1 was higher in cancer tissue than in normal and benign tissue 

(Figure 1-20), consistent with there being less lipid and more water in cancerous 

tissue compared to normal breast tissue. However, the analysis used the intensity 

band associated with the proteins and lipids and did not include the signal 

contribution from the water peaks, so the changes in water peak were not 

statistically analysed.  Spectra were analysed by Principle Component Analysis 

and LDA analyses with cross-validation which demonstrated a sensitivity and 

specificity of 100% of distinguishing normal from cancerous tissue in the ex vivo 

biopsy tissue. However, the diagnostic role of the differences in water content 

between the normal and cancerous environments cannot be determined. Another 

limitation is that HWN RS changes in induced tumours in rats may not be relevant 

to spontaneous tumours in humans. 
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Abramczyk et al. aimed to investigate the vibrational features of the OH water 

stretching bands using Raman Spectroscopy and HWN RS in human breast 

tissue. Bulk samples of fresh breast tissue were analysed in a controlled 

humidified environment in a reservoir of aqueous salts. Initial experiments 

confirmed that in human breast tissue, water was a major discriminatory factor in 

differentiating normal from cancerous tissue with HWN RS, and that cancerous 

breast tissue had a higher water content and less lipid than normal breast tissue 

297 (Figure 1-21). Subsequently they interpret the vibrational features of water in 

breast tissue to represent interfacial water, and note that the lack of water in 

normal breast tissue is likely due to the hydrophobic adipose tissue, which is not 

present in cancerous tissue 298. There were limitations to this work as the 

specimens were selectively sampled, highly pre-processed and measured under 

controlled laboratory conditions. There was no summary presentation of the 

results from all measured samples, and no statistical analysis of the diagnostic 

ability of the HWN RS data to differentiate between normal/abnormal breast 

tissue, therefore variations between patients or an assessment of the technique 

for clinical use cannot be done. Therefore, whether these HWN RS findings are 

found in the in vivo or clinical setting with ex vivo tissue is yet to be evaluated. 

 

Figure 1-20 Figure of Raman spectra showing the mean spectra of normal and cancer tissue in a 

selected HWN region for Ex vivo biopsy for normal (EVNT) and cancerous (EVCT) breast tissue from 

rats.  

Reprinted by permission from Springer Nature GmbH: Springer Nature, Theoretical Chemistry Accounts, 

High-wavenumber FT – Raman spectroscopy for in vivo and ex vivo measurements of breast cancer, A F 

Garcia- Flores,  L Raniero, R A Canevari et al., 2011 271 
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A recent, more clinical, study by Liao et al. has used HWN RS in fresh frozen 

breast tissue to ‘screen’ specimens of human breast tissue for areas of potential 

tumour prior to using the FP region for definitive diagnosis 299. The technique did 

show promise at highlighting some areas of potential tumour in specimens, 

however, there were a number of limitations. The background fluorescence of 

breast tissue was high with the laser excitation they used for obtaining the HWN 

region (671 nm) which resulted in no spectral information being gained regarding 

protein or water signals. This meant the ‘screening’ tool assessed for the 

presence or absence of lipid only, with no further biochemical information from 

the HWN region. From the current literature, the difference in water content 

between tumour and non-tumour tissue may be essential for diagnosis, and this 

is not assessed in this study. The study was also performed on a, presumably, 

small number of specimens as no sample size is given, with no statistical 

assessment of the technique’s accuracy in terms of sensitivity or specificity, 

meaning the diagnostic ability of HWN RS remains unassessed, and the clinical 

relevance of the technique cannot be determined. 

 

 

 

 

 

1.4.7 Summary 

From review of the available literature, cancerous breast tissue has a higher 

water content than normal breast tissue, and this may be used as a discriminatory 

Figure 1-21. HWN Raman spectra of normal (non-cancerous), and cancerous human breast tissue 

(infiltrating ductral carcinoma) compared to the bulk neat water in bulk tissue.  

Note the difference in the signal intensity of the OH stretching vibration of water in cancerous tissue 

compared to that of normal tissue. Reproduced from reference 297. 
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feature in differentiating normal from cancerous breast tissue. However, looking 

at water alone shows that water content varies between patients, and even within 

patients depending on hormonally influenced factors. There is an inverse 

relationship between water and lipids which has been demonstrated in cancerous 

tissue, that is, that cancerous tissue has a higher water content and lower lipid 

content compared to normal breast tissue, and this may also be useful for 

discriminatory diagnosis. 

Studies using techniques other than RS utilising the changes in water content or 

a fat to water ratio for diagnosis have predominantly had a small study sample 

size and been in vivo; specimens that require intraoperative margin analysis are 

likely to be freshly excised ex vivo, and are likely to have different hydration 

properties due to their lack of blood supply.  Studies using the HWN region, 

looking at water content for diagnosis, have been limited to rats or highly 

experimental conditions, the protocols being of little relevance to translating this 

knowledge to the clinical environment.  

As a solution to the limitation of fingerprint RS of time taken to analyse a sample, 

it is proposed that the potentially quicker technique of HWN RS and investigating 

the potential of water and/or water to fat ratio changes in discriminating normal 

from cancerous breast tissue may be able to provide intraoperative margin 

analysis of surgically excised breast specimens.  
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CHAPTER 2:  
Developing a Raman system for 
intraoperative margin analysis 

 

2.1 Introduction 

Although a Raman Spectroscopy (RS) system will share the common basic 

components as outlined in previous sections, each system is unique and tailored 

to the aims of the experiment, specimen to be measured, and the environment in 

which it is being used. The initial stage of the project was to develop a RS system 

capable of obtaining measurements from breast tissue to elucidate the 

biochemical features in the High Wavenumber (HWN) spectral region of normal 

and cancerous breast tissue. These spectral features need to be defined and 

diagnostic processes validated before the technique can be used for 

Intraoperative Margin analysis (IMA). 

Therefore, the requirements for our RS system were: 

• Ability to measure the HWN region Raman spectrum  

• Ability to quantify changes in the water concentration and fat/water ratio 

• Suitable for use in ex vivo breast tissue specimens 

• Suitable for use in the clinical environment 

• The footprint of the system needed to fit within the space allocated to it in 

the hospital, where the clinical measurements would be taken 

 

This chapter demonstrates the development of a Raman probe that fulfils these 

needs. Breast tissue phantoms were used to assess the ability of each potential 

Raman system to measure the HWN region and obtain accurate water 

measurements. Potential clinical/logistical problems that may be encountered 

during measurements were then tested, to ensure the Raman system was 

capable of obtaining high quality measurements in breast tissue within the clinical 

environment. 

 



 
 

 96 

2.2 Materials and Methods  

2.2.1 Measured materials 

Breast Tissue Phantoms 

Tissue phantoms are used extensively in Raman Spectroscopy for the technical 

development of RS systems and to provide a ‘proof of concept’ ability of systems 

to take accurate measurements prior to using that system in a clinical 

environment. The simplicity of a tissue phantom in a controlled laboratory 

environment underestimates the difficulty of achieving similar measurements in 

a complex tissue sample in a clinical environment, however, they are useful to 

validate basic functionality of a system. A variety of phantoms may be used to 

assess different aspects of the intended Raman measurements. Previously used 

tissue phantoms in the field of spectroscopic breast cancer diagnostics include 

porcine tissue 300, chicken breast 301, soybean oil and water 302, a solidifying agent 

TX151 with water, oil and surfactant 303, pure gelatine and water phantoms 304, 

and gelatine, water and intralipid phantoms 278. A single simple phantom cannot 

be constructed that replicates the exact spectroscopic properties of the real tissue 

specimen. The phantoms used in this chapter are Gelatine, Gelatine/intralipid 

constructed phantoms, and pork meat. 

 

The initial challenge is to identify the tissue composition and physiological 

concentrations the tissue phantom is attempting to mimic. Breast tissue is 

primarily composed of epithelial tissue and stroma (protein), adipose tissue (fat) 

and water 284. From an MRI study (with a small sample size of n=8) it was 

predicted the breast was composed of 67% fatty tissue and 33% parenchymal 

tissue 305, however this was with a wide degree of inter-subject variation. A more 

recent MRI study of 306 women suggests the range of fatty tissue is from a mean 

of 53% in women with a mean age of 50.9 to 71% in women with a mean age of 

20.8. The water content of normal breast tissue has been estimated to be around 

27% with Diffuse Optical Spectroscopy 306, 40 – 60% with NIR spectroscopy 281, 

and around 20 – 80% with MRI 280 demonstrating a very wide range in the 

composition of breast tissue. Breast composition varies significantly between 

women in terms of mammographic density (ranging from fatty breast to dense 

and homogenous 307) and water content 284, and within a women’s lifetime due to 

hormonal factors such as pre/post menopause, Body Mass Index (BMI), time of 

menstrual cycle and exposure to the combined oral contraceptive pill 280, 282, 284.  
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Due to these large variations in absolute differences, looking at the change in 

ratios between breast tissue constituents has been used for diagnostic purposes. 

Previous work using MRI and Diffuse Optical Spectroscopy has demonstrated 

that the differing ratios between water and fat relate to the differences observed 

in breast tissue density280, and breast tissue composition changes were observed 

with increasing age, menopausal status and Body Mass Index (BMI) 284. Previous 

work in Raman Spectroscopy using the fingerprint region has demonstrated that 

the differing ratio between collagen (protein) and fat differentiated between 

normal, fibrocystic changes and cancerous breast tissue 180, 262. Ship et al. 

identified major spectral features in normal breast tissue as corresponding to 

collagen and other proteins in stromal tissue and lipids in fatty tissue 189.  

 

This suggests that protein, fat and water are the major constituents in breast 

tissue that can be examined for determining differences in breast tissue 

composition and disease (such as cancer) that can be readily measured with 

Raman Spectroscopy. These constituents are the primary biochemical signals 

that can be detected with HWN RS 105. Therefore, the breast tissue phantoms 

were composed of these constituents, with the ability for the ratio between them 

to be changed. 

 

Justification of type of Breast Tissue Phantoms used 

Gelatine based tissue phantoms are attractive in preliminary work due to their 

simplicity and the ability to set solid in the shape of the mould, which means that 

any physical logistical aspect of measurements could also be assessed. 

Constructing phantoms are preferable for initial experiments compared to meat-

based phantoms because they are homogenous, the phantom constituents are 

known and the percentage water concentration and the phantom constituents is 

a known entity. This is a necessary attribute for the tissue phantom in measuring 

the ability of the RS system to measure in the HWN region and the ability to 

quantify changes in water concentration. A previous study by Masson et al. 

demonstrated the ability of gelatine phantoms to reproduce physiological levels 

of water concentrations, the HWN Raman spectral profile of the phantoms and 

the ability to accurately detect changes in water concentration 304 (Figure 2-1).  
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Gelatine based phantoms can also be constructed to be more complex, and set 

with the addition of a lipid (such as Intralipid 278, 308), and scattering agents such 

as india ink308  or nigrosin 278. Prior knowledge of the optical characteristics and 

properties of these phantom constituents such as absorption 309 and scattering 

308  as well as the biochemical properties such as the changes in bound versus 

free water 278 with gelatine concentration makes them a well understood and 

reliable tissue phantom. 

 

There are some limitations of intralipid /gelatine based phantoms. The lipid 

concentration cannot reach the physiological concentrations of the high fat 

concentrations found in breast tissue, as intralipid is only 20% soyabean oil (fat). 

As an oil and predominately unsaturated fat that is liquid at body temperature, it 

may have very different characteristics to that of the complex fat composition of 

human adipose tissue that is solid at body temperature 310. The optical scattering 

properties of intralipid may affect the Raman cross section of phantoms with a 

change in intralipid concentration which could make it difficult to ascertain if it is 

changes in fat content or scattering properties that are being measured 311.  

However, the simplicity in synthesising these phantoms makes them highly 

reproducible and means previous findings are applicable to our own phantoms, 

along with the ability to manufacture a variety of varying lipid/protein/water 

concentrations means they are the optimal phantom to be used for preliminary 

work with a Raman system investigating the HWN region.  

 

 

 

Figure 2-1 HWN Raman spectra from a set of gelatine phantoms of different water concentrations.  

Spectra were normalised to the protein peak at 2940cm-1. Reproduced from reference 304 Reproduced by 

permission of The Royal Society of Chemistry 
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2.2.1.1 Method for Gelatine based Breast Tissue Phantom synthesis 

Pure Gelatine Phantom 

Different concentrations of gelatine phantoms were made by mixing gelatine 

powder from Bovine skin (Sigma Aldrich,Germany) with distilled water to a final 

total weight of 10 grams in a water bath at 55C and stirred with a magnetic 

stirring bar until completely dissolved (20 – 30 minutes) then poured into moulds 

and cooled at 5 – 7 C whilst covered to avoid evaporation for 12 – 24 hours 

before measurement 312. Water concentrations achieved were 85%, 87.5%, 90%, 

92.5% and 95% (Figure 2-2). These water concentrations were chosen as the 

phantoms would not set with water concentrations of > 95%, and when water 

concentrations of <82.5% were attempted the high concentration of gelatine led 

to saturation of solution. Samples were kept in petri dishes with lids between 

measurements to prevent dehydration. 

 

 

95% 92.5% 90% 87.5% 85% 

 

 

Complex intralipid/gelatine Phantoms 

The same method was used for the construction of the complex intralipid/gelatine 

phantoms. With a final weight of 10 grams, a fixed weight of gelatine (1 gram) 

and india ink (2l)(Fischer Scientific,Pittsburgh,USA) were used in varying 

amounts of distilled water and Intralipid 20% (Fresnius,Frankfurt,Germany) with 

final compositions and predicted fat and water % shown in Table 2-1. Figure 2-3 

shows the complex phantoms. Intralipid is composed of 20% soyabean oil, which 

is 100% lipid, and 3.45% other constituents (egg yolk and glycerine) 313, and the 

remainder is water allowing for the calculation of the total fat concentration and 

water concentration. 

 

In order to produce complex phantoms analogous to breast tissue the scattering 

and absorption qualities had to be considered. Intralipid is a scattering fat 

emulsion, the scattering coefficient changing with the intralipid concentration311. 

As the priority with these tissue phantoms was to provide a varying range of fat 

Figure 2-2 Photograph of the pure gelatine phantoms at decreasing water concentration 
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concentrations, a range of intralipid concentrations (including high concentrations 

of 90%) were measured rather than attempting to reproduce physiological levels 

of scattering 314. India ink was used to provide an absorber, concentrations in 

which (0.2l per ml) had been previously used in similar work with intralipid 

phantoms 308. As these were not deep Raman measurements, the importance of 

physiological scattering and absorption coefficients are less, and are unlikely to 

affect the results, however they are considered as deep Raman measurements 

may have been taken later in the project. 

 

 

 

 

 

IL 10 Il 30 IL 50 IL 70 IL 90 

 

Bovine Serum Albumin (BSA) 

BSA and water solutions were made to provide a standard against which to test 

the performance of gelatine phantoms. BSA (Sigma Aldrich,Germany) and 

distilled water solutions were made to a total weight of 1 gram to make solutions 

of final water concentrations of 95, 90, 85, 80, 75 and 70% by weight.     

 

2.2.1.2 Recreating the challenges of the surgical environment 

Introduction 

After establishing the ability of the Raman system to accurately measure the 

HWN region, the suitability for use in measuring fresh breast specimens with a 

view to IMA needs to be evaluated. Other optical techniques which have shown 

NAME OF 
PHANTOM 

INTRALIPID 
(ML) 

WATER 
(ML) 

GELATINE 
(GRAMS) 

TOTAL 
FAT 
(%) 

OTHER 
CONSTITUENTS 
(%) 

CALCULATED 
WATER 
CONCENTRATION 
(%) 

IL 10 1 8 1 2 0.345 88 

IL 30 3 6 1 6 1.035 83 

IL 50 5 4 1 10 1.725 78 

IL 70 7 2 1 14 2.415 73 

IL 90 9 0 1 18 3.105 68 

Table 2-1 Table showing the constituent parts of the complex intralipid/gelatine phantoms 

Figure 2-3 Photograph of complex gelatine phantoms with increasing concentrations of intralipid 
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scientific promise have had issues with measuring fresh samples in the clinical 

environment, such as optical coherence tomography that could not gain a signal 

in specimens that had been contaminated with blood or encountered cauterised 

tissue 145, and previous work performed by the Stone group showed that blue dye 

can affect Raman signal 315. As these challenges would be encountered in any 

clinical application of a Raman system for IMA, it was imperative we designed a 

system that could function in the presence of these potential signal altering dyes.  

 

Pork Tissue 

Porcine tissue has been used extensively in previous Raman studies, as it 

contains fat and muscle (protein) and thus grossly replicates the chemical 

composition of human breast tissue 316. The obvious visible distinction between, 

and the existence of areas that are almost exclusively, fat and proteinaceous 

muscle tissue means these areas can be measured to assess spectroscopic 

characteristics in these different tissue types. The benefit of using meat phantoms 

is to assess possible ‘real world’ clinical issues in obtaining measurements from 

breast tissue, such as the effect of surgical dye 315, diathermy 317 and blood / 

haemoglobin contamination292 which is not possible with gelatine phantoms. 

 

Pork chops with distinctive meat and fat portions were selected from local 

supermarkets for measurements. They were measured fresh on day of purchase, 

or frozen on day of purchase at -80 C and thawed for 24 hours in a refrigerator 

at 4 – 8 C prior to measurements. Samples were kept in petri dishes with lids 

between measurements to prevent dehydration. 

 

Patent Blue Dye 

Patent blue dye was used to evaluate the ability to obtain Raman measurements 

in the HWN region in tissue that had been stained with Blue dye. Blue dye is used 

in the dual localisation technique as recommended by NICE for performing 

sentinel lymph node biopsy 56. Blue dye is injected and travels within the 

lymphatic system to identify the first or ‘sentinel’ lymph node that drains the breast 

undergoing surgical excision. The theory is that if the cancer has spread into the 

lymphatics, it will be to these sentinel nodes first – thus if the sentinel nodes are 

negative, it is unlikely any other axillary lymph nodes have metastatic cancer 84. 

Blue dye is used in all sentinel lymph node operations which are carried out within 
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the breast cancer excision operation. Blue dye is injected under the nipple 

subdermally, and thus frequently stains the breast tissue that is excised, with the 

potential to affect Raman measurements. Patent Blue V sodium salt (Sigma 

Aldrich, Germany) was dissolved in distilled water to achieve a 1% concentration 

and was applied to pork tissue. Methylene blue and patent blue dye are both used 

in sentinel lymph node operations, at concentrations of 1 – 2.5%318, the 

concentration of staining on the actual breast tissue varies widely according to 

site of tumour, site of injection, length of operation, handling of specimen so the 

amount of staining on the tissue was based on a judgement of whether the 

amount looked similar to the degree of staining during breast operations (Figure 

2-4).  

 

 

 

Blue dye Gelatine phantoms 

To further investigate and quantify the effect of blue dye on the ability of Raman 

systems to obtain Raman spectra, blue dye gelatine phantoms were produced. 

90% water gelatine phantoms were produced as previously described, with blue 

dye pipetted into the gelatine/water mix prior to stirring and cooling at a final 

concentration of 0.01% or 0.1%. 

 

Diathermy 

During breast operations, electrocautery diathermy is used in the excision of 

breast tissue. This can lead to burning / carbonisation of the breast tissue, and 

on histological examination of the tissue can cause significant ‘diathermy 

artefact’. This is where diathermy limits the assessment of the margins of the 

excision due to carbonisation and distortion of cellular architecture319. Therefore, 

this problem is not limited to optical techniques and negatively impacts the ‘gold 

standard’ of histopathology, however, it is important to recognise its effect on 

Raman spectra so it can be accounted for. A soldering iron was used to burn / 

Figure 2-4 Photograph of pork fat (left) and meat (right) that have been stained with 1% patent blue 

dye.  

These specimens are as heavily stained as breast tissue specimens can be during a breast operation. 



Chapter 2 
 

 103 

carbonise edges of pork tissue to replicate this, and assess if there was any effect 

of burnt /carbon on obtaining HWN Raman measurements (Figure 2-5). Pork fat 

simply melted when using a soldering iron – which does occur during breast 

operations, so only carbonised pork meat was measured. 

 

 

 

 Haemoglobin 

Blood is another pigmented substance that is frequently present on surgically 

excised specimens which may be Raman active and interfere with obtaining 

Raman measurements.  

Haemoglobin is the major pigmented constituent of blood, and is known to have 

be Raman active in the fingerprint region, and to a lesser extent in the HWN 

region 320, however work has mainly been with visible light laser such as 532nm 

excitation. Normal adult haemoglobin concentrations in venous blood are 13-17 

%, however, the concentration on a surgically excised specimen is likely to be 

less as whole blood is mixed with melted fat, blue dye and tissue fluid. To assess 

the potential for blood contamination of surgically excised specimens, 

haemoglobin (Hb from bovine; Sigma Aldrich,Germany) was dissolved in distilled 

water to achieve concentrations of 7.5%, and the porcine tissue soaked in the 

haemoglobin solution until measurement (Figure 2-6). 

 

 

Specimen coverings 

In order to take repeated measurements, and measurements with the same 

probe on a number of different samples, the probe which is interacting with the 

Figure 2-5 Pork meat that has been burnt with some carbonisation evident 

Figure 2-6 Pork meat stained with Haemoglobin solution 



 
 

 104 

specimen must be able to be cleaned or disposable, to prevent cross-

contamination or tumour seeding leading to inaccurate histopathology results. 

The Raman needle probe used for measurements has the fibre optic needle 

recessed within a hypodermic 22G needle. Theoretically this means the probe is 

capable of having a disposable needle tip, or a needle that can be cleaned while 

not disturbing the optical components. It is also possible to construct a single – 

use needle probe cover which would also ensure cleanliness. However, for 

experiments taking surface measurements from breast specimens, this would 

introduce unnecessary time delays and costs to each measurement. A simple, 

disposable barrier such as Clingfilm between the needle tip and the specimen to 

be measured would ensure no cross-contamination and be more cost-effective. 

Measurements were taken of pork meat and fat with and without a covering of 

clingfilm to investigate if this affected the Raman signal.  

 

2.2.2 Raman Spectroscopy equipment configuration and spectral acquisition 

2.2.2.1 Raman Microspectroscopy 

Preliminary measurements on gelatine phantoms to confirm method of data 

analysis for future Raman systems, and to validate gelatine phantom construction 

reliability were taken on a Renishaw InVia confocal spectrometer system 

(Renishaw, UK). Measurements were taken using a NPlan objective (Leica, 

Germany) with magnification X50. An excitation source of a 785nm laser was 

used with an output of 300 mW to collect spectra in the wavelength range of 2100 

– 2750 cm-1. Calibration of the system was performed daily with silicon, green 

glass, PTFE and Neon Argon lamp. Point measurements were acquired with an 

exposure time of 5 seconds with 12 accumulations. 

 

2.2.2.2 Needle Raman probe 

For all other Raman measurements, a Raman needle probe was used. It has 

been developed, and is similar to, a previously described needle probe 164. The 

purpose of such a probe is that, as it fits within a standard hypodermic needle, it 

can be used to probe within biological tissues, with a view to having in vivo 

diagnostic use and real time subcutaneous pathological diagnosis. This probe 

was used at this stage of the project as it can provide measurements from small 

and specific areas of specimens which could then be subsequently matched with 
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the histopathology, allowing an accurate diagnosis. With this approach, spectra 

can be gained from normal and cancerous tissue.  

 

The needle probe is not suitable for performing IMA, however it allows this 

preliminary work to be carried out. Once the diagnostic algorithm has been 

validated, a probe that is suitable for analysing the resected surface of a breast 

tissue specimen can be developed. We envisage this would use the same 

experimental set up with a different probe for light delivery and collection more 

suited to assessing a large surface. The basic ability to differentiate between 

normal and cancerous tissue using HWN RS, which is this project’s aim, would 

underpin the ability of this probe to provide IMA. 

 

The needle probe is pictured in Figure 2-7, it is a standard stainless steel 22 

gauge hypodermic needle which provides protection to the fibres, and allows 

cleaning between specimen measurements. Within this probe is a bundle of low-

OH silica optical fibres stripped of coating (0.22NA, Thorlabs), arranged as 6 

collection fibres around 1 excitation fibre. This gives an area of collection of 5.19 

x 104 µm2. 

 

 

Figure 2-7 A picture of the needle component of the Raman needle probe which delivers and collects 

light to the specimen for Raman analysis.  

Covered fibres can be seen entering the unit at the tip, where they are then uncovered and pass down the 

needle to tip. 
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Over the course of the project, some of the collection fibres became dirty or broke, 

giving poor signal, the data from these fibres was omitted from analysis. The 

number of working fibres ranged from 1 – 6.  

 

The exact equipment used is specified in each section for each potential Raman 

system, but all were configured in the same basic way as depicted in Figure 2-8. 

Excitation was delivered at either 680nm or 785nm delivered by an IPS spectrum 

stabilised laser module (Innovative Photonic Solutions,USA) through either a 

680nm or 785nm laser clean up filter (Thorlabs,NJ,USA) and 830nm edge filter 

to the needle tip, providing a maximum power of 100 mW at 680nm  or 250mW 

at 785nm to the sample. The light was then collected through the collection fibres 

through to the entry port on the spectrometer - Kaiser Holospec Imaging 

Spectrograph (Kaiser optical systems inc, Ann Arbour,USA) with a broad grating 

which is coupled to a camera – either a deep-depletion Charge – Coupled Device 

(CCD) camera (PIXIS 400 BRX, Princeton Instruments, NJ, USA) 

thermoelectrically cooled to -80C or an InGaAs camera (iDus InGaAs 1.7m, 

Andor, Belfast, UK) cooled to -85C using water cooling (Julabo, Germany).  

 

 

 

 

Sample measurements 

Breast tissue phantoms were placed on a PTFE block (which has no discernible 

spectra in the HWN region) and measured with the tip of the Raman needle probe 

in contact with the specimen. The acquisition times and number of accumulations 

varied according to the Raman system, and are detailed in the corresponding 

sections. All phantoms were measured in three different places to provide a 

Figure 2-8 Schematic diagram showing the Raman needle probe set up, modified from ref 164. 
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representative result for the whole phantom, and to ensure any heterogeneity in 

the phantom constituent concentrations was identified.  

 

 

2.2.3 Calibration 

Calibration in Raman spectroscopy is the process that is used to correlate the 

observed spectral frequencies to their true values. Calibration is essential in 

performing Raman spectroscopy because no two Raman instruments measuring 

the same sample would give identical raw spectrum without calibration.  

 

The need for calibration is due to the large number of sources of variation 

between measurements, such as temperature, and between instruments, such 

as alignment of optical systems, all of which effect the raw spectrum. These 

variations can cause errors leading to miscalibration of the instrument, and 

discordant results. Within the literature, the Raman shift values that are reported 

and taken as standards, can vary significantly; for the example of ethanol in the 

HWN region there was a difference of 2-5 cm-1 between different labs 321, 322, 

which is not uncommon 323. 

 

Common sources of variation are324: 

- Rotation of spectrograph diffraction grating or CCD 

o Spectrographs allow rotation to allow reading of different regions of 

the spectrum, however a misaligned grating by even a small 

amount is a potential source of error in calculating wavelength. 

- Displacement of the camera 

o An inadvertent change to the camera position (i.e. when replacing) 

can cause a shift in camera pixels. 

- Changes in laser excitation wavelength  

o Although stable lasers aim to achieve a single coherent 

wavelength, this can change over time, and can have an 

appreciable effect on wavenumber calculation 

o If using reference spectra that were gained from a laser with a 

different wavelength to the one being used, it can affect the peaks 

due to resonance effects323. 
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- Temperature 

o Not only is Raman scattering dependent on temperature, but 

molecular structure is also influenced by temperature.  

o The ambient temperature has a significant influence on the 

camera’s detection of Raman scattering. At room temperature there 

is significant thermally generated background noise which can 

reduce the signal to noise ratio and the ability to detect Raman 

scattering, and so deep cooling of the camera is necessary to 

reduce this ‘Dark noise’.  

 

Therefore, calibration is performed to ensure that there is internal validation – that 

the same instrument will give the same result on different days, and external 

validation – that different instruments in different places will give the same result. 

This is essential if Raman spectra results are to be reproducible, interpretable 

and informative.  

 

Frequency Calibration with Raman shift standards 

There is no universally standardised method of calibration for Raman 

instrumentation, and so there are a number of methods to calibrate an instrument. 

The most common method is to use wavenumber calibration based on known 

frequency standards such as neon-argon lamps, as these standards have a well-

documented and wide range of spectral atomic emission peaks325. Another 

calibration method is to use known frequency Raman shift standards. In this 

method a substrate is used that has well characterised and documented peaks 

that have an assigned Raman shift number, the substrate is measured under the 

same conditions that the experimental samples will be measured under, and the 

‘true’ peak values of the substrate are mathematically fitted (by a polynomial fit) 

to the obtained pixel peak values 323. In this way the instrument’s Raman shift 

axis can be calibrated. The benefits of this method are the laser frequency does 

not need to be known, as long as it is constant, the sample position does not 

influence the result, and it is easy to implement 326. In these experiments, a 

number of different laser wavelengths and lasers were used, and so it was 

practical to use this method for calibration, to avoid repeated measuring of the 

laser frequency.  
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Finding a Standard 

It is suggested that a wide number of at least 10 peaks with a broad range across 

the interested region are used to optimise the accuracy of calibration across the 

spectrum 323. The HWN region has fewer spectral features for shift standards to 

be calibrated against compared to the fingerprint region, and so a number of shift 

standards can be used at the same time in order to increase the range and 

accuracy of calibration 324. The American Society for Testing and Materials 

(ASTM) selected a number of materials that could be used as a common Raman 

shift standard, and examined them in a reproducible manner in a number of 

laboratories to provide the ASTM standard. Commonly used ASTM calibration 

standards that have peaks in the HWN region are 4-Acetamidophenol 

(paracetamol) and acetonitrile 323, 324, 327, and so these were used for our 

calibration. Additionally, it was found that ethanol produced a clearly defined 

spectrum in the HWN region, which remained easily distinguishable in the HWN 

region when using a 785nm excitation wavelength (where the paracetamol 

spectrum peaks became less distinct). To ensure there were enough spectral 

peaks in the HWN region ethanol was also used as a calibration standard 321. 

The Raman system to be used for the measurements therefore was calibrated 

using the frequency calibration method using the Raman shift standards of 

paracetamol, acetylnitrile and ethanol. 

 

Methods of calibration for the Raman Needle probe 

Calibration was performed daily, or with any change of equipment. Using the 

Raman needle probe system, measurements were taken of the calibration 

standards for the relevant wavelength of either 680nm or 785nm. The calibration 

standards were paracetamol (Tesco,UK), acetylnitrile (Sigma Aldrich, Germany), 

and ethanol (Fischer Scientific,Pittsburgh,USA). A single acquisition was taken, 

with an exposure of 0.5 seconds. The pixel number of the characteristic peaks 

for each standard were identified and correlated to the ‘true’ Raman shift number 

from the literature (Table 2-2). These were combined and entered in a table in 

Microsoft Excel, and regression analysis performed to report the adjusted R 

Squared and standard error of regression (as a description of fit) and to report 

the y intercept and 1st, 2nd and 3rd coefficient. These were then used to fit the pixel 

number to the Raman shift number using a 3rd order polynomial from Equation 

2-1: 
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𝑅𝑎𝑚𝑎𝑛 𝑠ℎ𝑖𝑓𝑡𝑝 = 𝐼 + 𝐶1𝑝 + 𝐶2𝑝2 +  𝐶3𝑝3 

 

The degree of polynomial to use is a subject that has been debated, as the user 

needs to avoid using too low a polynomial and underfitting, or using a high 

polynomial and overfitting the data. A third order polynomial was used for fitting 

as it is thought to be optimal for shift accuracy when compared to other order 

polynomials for pixel fitting, and is commonly used 329, 330. This produced the 

calibrated Raman shift axis for the experiments produced at that laser excitation 

wavelength for that particular experimental session. 

 

CALIBRATION 

STANDARD 

TRUE RAMAN SHIFT CM-1 LASER WAVELENGTH 

UTILISED 

PARACETAMOL 1278 785nm 

PARACETAMOL 1323 785nm 

PARACETAMOL 1371 785nm 

ACETONITRILE 1374 785nm 

ETHANOL 1463 785nm 

PARACETAMOL 1515 785nm 

PARACETAMOL 1561 785nm 

PARACETAMOL 1648 785nm 

ACETONITRILE 2253 785nm 

ACETONITRILE 2293 785nm 

ETHANOL 2887 785nm + 680nm 

PARACETAMOL 2931 785nm + 680nm 

ETHANOL 2937 785nm + 680nm 

ACETONITRILE 2943 785nm + 680nm 

ETHANOL 2983 785nm + 680nm 

PARACETAMOL 3064 785nm + 680nm 

PARACETAMOL 3102 680nm 

PARACETAMOL 3326 680nm 

 

Equation 2-1 Equation adapted from reference 328 

Where 𝜆𝑝 = 𝑅𝑎𝑚𝑎𝑛 𝑠ℎ𝑖𝑓𝑡 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 𝑝, I = Raman shift of pixel 0, C1 is the first coefficient (cm-1/pixel), C2 is 

the second coefficient (cm-1/pixel), C3 is the third coefficient (cm-1/pixel). 

Table 2-2 Table demonstrating the Raman shift references used for calibration of the Raman shift 

axis, and the laser wavelength for which they were utilised.  

The reference spectra were paracetamol, acetonitrile (both reference 331) and ethanol 321. 
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2.2.4 Data recording and Analysis 

Raman spectra were recorded using LightField software (Princeton Instruments, 

USA) when using a Princeton Instruments camera, or SOLIS software 

(Andor,UK) when using an Andor camera. Raw data was exported and analysed 

using software Matlab R2019a(The MathWorks Inc, USA). Bar graphs were 

constructed in Microsoft Excel. 

 

Pre-processing 

The calibration protocol for the Raman Needle probe is described in the previous 

section, which allowed the x-axis of Raman shift to be correctly aligned.  

As previously mentioned, the number of working fibres within the Raman needle 

probe varied between 1 and 6 and only spectra from working fibres was included. 

Within each fibre, accumulations were summed together, and then summed to 

the output from the other fibres within that measurement to create a single spectra 

for each measurement. All data were baseline subtracted to remove background 

fluorescence using a 1st order polynomial using the lowest count at the beginning 

of the HWN region, and the end of the HWN region. As we were interested in the 

protein/fat to water ratio, for visualisation purposes, spectra were then normalised 

to the CH2 peak at 2935 cm-1, and the average and standard deviation of the 

triplicate readings calculated. This allowed visual comparison in the water spectra 

to be made between samples of varying water content. 

 

Calculation of water content 

A central idea to this project is the differentiation between normal and cancerous 

tissue using water content. As outlined in Chapter 1, previous studies 

demonstrate that breast cancer tissue has more water than normal breast tissue, 

and that changes in the fat/water ratio can be used to differentiate between 

normal and cancerous breast tissue 290, 291. It would be useful if we could not only 

identify changes in water content using Raman spectroscopy, but quantify what 

those changes are, and provide estimates of water concentration. This would 

allow any results to be compared with results gained from other spectroscopic 

methods such as DOS 289, and compared with other Raman studies investigating 

water concentration changes in other disease states 174. A peak assignation table 

for the protein /fat CH stretch region is displayed in Table 2-3 and for the water 

OH stretch region is displayed in Table 2-4. 
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TYPE OF 
TISSUE 

APPROXIMATE 
PEAK LOCATION 

MOLECULAR 
INTERACTION 

REFERENCE 

RAT BREAST 
TISSUE 

2817-2849 CH2 symmetric 
stretch of lipids 

103, 271 

HUMAN /RAT 
BREAST 
TISSUE 

2854 CH2 (breast) 297, 271 

 2840 - 2875 CH3 symmetric 
stretch of lipids 

103, 271 

HUMAN /RAT 
BREAST 
TISSUE 

2888-2895 CH3 Lipid (breast) 297, 271 

COLLAGEN 
TYPE I 

2928-2945 CH3 Protein 
(Collagen Tpe 1) 

332, 333 

HUMAN SKIN 2910-2966 CH3 Protein (Human 
Skin) 

295 

HUMAN SKIN 3329 NH 304, 333 

 

APPROXIMATE 
PEAK LOCATION 

HYDROGEN 
BONDING 
SCHEME 

MOLECULAR 
INTERACTION 

REFERENCE 

3075 DAA Fully hydrogen 
bound 

304 

3200-3250 O-H symmetric 
stretch 

Bound water 334, 297 

3245 DDAA Fully hydrogen 
bound 

304 

3400 - 3450 OH asymmetric 
stretch 

Unbound water 334, 297 

3420 DA Partially hydrogen 
bound 

304 

3550 DDA Partially hydrogen 
bound 

304 

3650 - Free water 304 

3600-3650 O-H non hydrogen 
bonded 

Free Water 334 

 

Table 2-3 Table demonstrating peak assignation for the HWN Raman spectroscopy CH stretch region 

in a variety of human tissues 

Table 2-4 Peak assignation table for the HWN Raman spectroscopy OH stretch region 
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The spectral intensity of a Raman peak is often proportional to the change in 

concentration of the molecule assigned to that peak i.e. if a substance has more 

of a molecule then that assigned band will have a higher spectral intensity than a 

substance that has less of that molecule, and this can be used for diagnostic 

purposes 232. We could presume that (using BSA/water mixtures analysed with 

the InVia spectroscope as per the protocol in 2.2.1.1 as an example) the peak 

height of the OH stretch of water at 3390 cm-1 should change proportionally to 

the water concentration (measuring the peak height relative to the baseline, as 

previously described in reference 232). Figure 2-9 demonstrates that this is not the 

case, and the maximum peak intensity for the OH stretch region does not vary 

significantly (one-way ANOVA comparison of means, P>0.05) with a changing 

water concentration. This suggests that another method is needed for quantifying 

changes in water concentration. 

 

 

 

The majority of other studies quantifying water content changes with HWN 

Raman spectroscopy have been studying protein rich tissues. Huizinga et al. 

used the ratio between the Raman intensity at the CH stretch of protein at 2935 
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Figure 2-9 Bar chart of maximum Raman spectral intensity at 3390 cm-1 at different water 

concentrations calculated by BSA/water mixtures.  

Bars are average of triplicate readings +/- SD. 
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cm-1 and the OH stretch of water at 3390 cm-1 in a range of protein/water solutions 

(including BSA) at similar concentrations of 10-35% water to calibrate and 

quantify the water concentration in rabbit eye lenses 296. A similar method using 

spectral intensity was used by Bauer et al. which used traditional methods of 

drying and lyophilization to confirm the accuracy of this technique to within 3% 

accuracy 335. Both of these techniques are dependent on a single intensity 

reading at the protein peak, which although may be present in fat-laden breast 

tissue, the relationship between this sharp peak, and the broad multiple peaks of 

lipid in breast tissue (which is between 2854 – 2940 cm-1 336) is unlikely to be so 

simple or linear. Caspers et al. used an area under the spectral interval method 

to calculate the water content in skin, and went on to use it in their work on oral 

SCC 228, 295. They calculated the ratio of the area under the curve of OH stretching 

(3350 – 3550 cm-1) and the area under the curve of CH3 stretching (2910 – 

2965cm-1) and used BSA solutions to find the proportionality constant that related 

the ratios before applying the method to skin specimens. Although this area-

under-the-curve method is attractive as it could be broadened to include lipid 

regions, the overlap between the protein (2910-2965 cm-1) and lipid regions 

(2854-2940 cm-1) in the HWN region mean distinction between measuring protein 

or lipids would be arbitrary. It also uses a specific assignment of the OH stretch 

of water, whereas water has a much broader range of Raman activity from 3189 

– 3770 cm-1 336, and so changes in water spectrum might not be truly reflected by 

choosing a narrow part of the spectrum.   

 

A more complex model has been suggested using a training set of brain tissue, 

which has some lipid content. Raman spectra were measured in the training set 

of wet tissue which was then dried and repeat measurements taken, a PLS model 

was then applied and achieved good diagnostic accuracy on the test set 294. 

However, this method requires access to tissue which would not then undergo 

pathological analysis for the training set, as it would undergo severe dehydration 

which may affect diagnosis. This limits its practical use, where this excess tissue 

may be difficult to obtain. 

 

A method based on area under the spectral curve, whilst avoiding using specific 

spectral bands was proposed by Masson et al. 304. In this study they were using 

the HWN region to study water concentration changes in cervical remodelling, 
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where they used the ratio of the area under the water curve (3035 – 3680 cm-1) 

to the under the area under the entire HWN region (2850 – 3680 cm-1) to predict 

water concentration and validated it against wet and dry weights. The reason for 

using these areas was because cervix remodelling includes significant changes 

in lipids, and this was captured using this approach, suggesting its suitability for 

fatty breast tissue. This method also uses all the information from the water peak 

in its calculation, thus can take into account the varied contributions to the HWN 

Raman spectra different states of water give. Although this method was validated 

in protein only (with gelatine/water phantoms), it was subsequently used in lipid 

containing biological tissue to observe changes in water content. As this method 

is the only validated method that takes into account the lipid signal, and takes 

into account the entire water spectrum, this method was used in this project for 

calculation of water content. 

 

Method of water calculation  

In the preliminary breast phantom studies, the relationship between the 

water/total area ratio and known water concentration was investigated. The area 

under the curve of the water curve (3035 – 3680 cm-1) and the area under the 

curve of the entire HWN region (2850 – 3680 cm-1) was calculated, and the 

water/total area ratio calculated. This ratio was then plotted against the known 

water concentration (as a ratio) of the breast phantom on the x axis, a 1st order 

polynomial (line of best fit) was then calculated to assess whether the relationship 

was linear. This line was also used to calculate the gradient and the y intercept, 

and the Root Mean Square Error (RMSE) as an indicator of fit. 

 

Statistical analysis 

Data is displayed as mean water/total area ratio with error bars +/- 1 standard 

deviation (SD). Comparison of mean water/total area ratios was performed using 

one-way ANOVA test. Statistical significance was set to P<0.05. 
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2.3 Evaluating Breast phantoms and data analysis procedures 

The InVia microspectroscope was used to assess gelatine phantoms to test the 

method of data analysis and to evaluate gelatine phantom reproducibility and 

reliability. The InVia was used for this as it is a fixed, closed, laboratory system 

which has a defined calibration protocol. Therefore, it allows for easier 

comparison between experiments, and is a validated piece of equipment. It 

means any unexpected results or variations can be assumed to be in the 

phantoms measured, whereas in an unvalidated, open system which is more 

dynamic such as the needle probe, unexpected results could be due to system 

set up / calibration rather than the phantoms. 

 

Evaluation of data analysis protocol for measuring water concentration 

As already outlined in the previous section, raw water peak intensity does not 

vary between different concentrations (Figure 2-9  and Figure 2-10 A). However, 

when the data is normalised to the protein peak, it demonstrates that there is a 

relative and linear change in the relative water intensity compared to the 

normalised protein intensity with a change in water concentration i.e. with a 

decrease in phantom water concentration there is a decrease in the relative 

intensity of the water peak (Figure 2-10 B). In order to quantify this change in the 

ratio between the protein and water peaks, the water/total area ratio was 

calculated. A graph was then plotted to show the relationship between the 

water/total area ratio and known water concentration of the BSA/water solutions 

(Figure 2-11). It shows that the relationship is linear, however it is not directly 

proportional.  
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A      B 

  

A                                            B 

  

 

The suitability of the method of using the water/total area ratio to calculate the 

water concentration was tested. Gelatine phantoms of varying water 

concentrations were constructed, measured in a similar way, and the water/total 

area ratio calculated. The following equation was used to predict the water 
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Figure 2-10 Graph showing Raman spectra in the HWN region of different concentrations of 

BSA/water solutions.  

Data is mean of 3 repeats for each concentration and baselined using 1st order polynomial. A. raw spectrum 

– the peak intensity of the water peak between 3100-3700 cm-1 does not vary according to water 

concentration. B Spectral data normalised to protein peak at 2935 cm-1- the relative intensity of water peak 

decreases corresponds with a decrease in water concentration. Data is the mean (n=3) at each 

concentration after baselining using 1st order polynomial, shading in the same colour either side is +/- 1SD. 

Figure 2-11 Graphs showing calculation of the water/total area ratio in BSA/water solutions with the 

InVia spectrometer. 

 A. Representative baselined Raman spectra of 95% water gelatine phantom showing the areas used for 

calculation of water concentration. Yellow area is the area under water curve of 3035 – 3680 cm-1, orange 

area is the area under the rest of the HWN region 2850 – 3035 cm-1. Area under water =yellow area;  total 

area = yellow + orange area. B. Graph plotting mean water / total area ratio versus known water fraction of 

a number of different concentrations of BSA/ water solutions (n=3), Error bars +/- SD. A line of best fit 

showed a Gradient = 1.9576; RMSE = 0.0285 
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concentration of the gelatine phantoms, using information on the relationship 

between water/total area ratio from the BSA/water solutions. 

From Equation 2-2: 

𝑦 = 𝑚𝑥 + 𝑐 

 

This can be re-arranged to produce Equation 2-3 : 

𝑥 =  (
𝑦 − 𝑐

𝑚
) 𝑋 100 

 

The results of this are in Table 2-5, and demonstrates that this method of 

calculation of water content is highly accurate when using substances of protein 

and water mixtures. It also demonstrates that the method for gelatine phantom 

construction produces phantoms of the desired concentrations. 

  

WATER CONCENTRATION OF 
GELATINE PHANTOM (%) 

WATER/TOTAL 
AREA RATIO 

PREDICTED WATER 
CONCENTRATION % 

95 0.79376838 94.8334218 

90 0.71025914 90.5288215 

85 0.61007738 85.3648132 

 

 

Having established that the water/total area ratio having been calibrated to 

BSA/water solution was suitable for predicting water concentration in simple 

protein / water mixtures, the method was used in complex phantoms. Complex 

phantoms were constructed of intralipid, india ink, water and gelatine as 

described in 2.2.1.1. They were analysed and the data processed in a similar way 

to calculate the water/ total ratio. Equation 2-3 was used to predict the water 

concentration of the complex phantoms (Table 2-6), which shows that although 

there was a trend of decreasing predicted water concentration with decrease in 

Equation 2-2 

Equation 2-3 

Where x = predicted water concentration %, y = water/total area ratio of the gelatine phantom, m = gradient 

of the relationship between water/total area (1.9426), c = y intercept (-1.0609) 

Table 2-5 Table showing the validation of using the water/total area ratio to calculate water 

concentration. 

The actual concentration of gelatine phantoms is based on the weight of water and gelatine, the calculated 

water/total area ratio is from the baselined spectra from Raman measurements. The predicted water 

concentration is calculated using the calibration graph from BSA data and Equation 2-3 to predict the water 

concentration of the gelatine phantoms.  
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actual water concentration, it is inaccurate, and that BSA/water solution cannot 

be used to predict  the water/total water area of complex phantoms. 

 

NAME OF COMPLEX 
PHANTOM 

ACTUAL WATER 
CONCENTRATION (%) 

WATER/TOTAL 
AREA RATIO 

PREDICTED WATER 
CONCENTRATION (%) 

IL 50 78 0.504 79.9 

IL 70 73 0.1796 63.1 

IL 90 68 0.115 59.8 

 

Reproducibility of breast phantom synthesis 

If there is significant evaporation of water from phantoms during construction or 

measurement, it could lead to large variations between experiments and 

inaccuracies in measurements. If we are to regard the gelatine phantom as being 

a reference point for a particular water concentration, it needs to be reproducible 

and have a stable water content. 

 

Three batches of gelatine phantoms of 95, 90 and 85% water concentration were 

constructed and measured at three different time points. Figure 2-12 shows there 

was no significant variation between experiments in the water/total area ratio 

suggesting the construction of gelatine phantoms is highly reproducible, and 

measurements within the same phantoms show minimal variation suggesting the 

phantoms are homogenous in nature.  

 

Table 2-6 Table showing the actual water concentration of intralipid phantoms, the calculated 

water/total area ratio, and the predicted water concentration based on the BSA/water calibration. 
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During experiments, the gelatine phantoms can be on the lab bench for a number 

of hours. A gelatine phantom of 95% water concentration was measured at 0 and 

4 hours and was at room temperature between measurements to demonstrate 

that significant changes in water concentration do not occur during this time 

(Figure 2-13). 
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Figure 2-12 Graph showing gelatine phantoms of the same water concentrations in 3 different 

experiments and the water /total ratio.  

Bars show mean water/total area ratio (n=3), error bars +/- SD. There was no significant difference in 

water/total area ratio between experiments (P>0.05;one- Way ANOVA). 

Figure 2-13 Graph showing the same gelatine phantom measured at time zero and 4 hours later.  

Bars show mean water/total area ratio (n=3), error bars +/- SD. Student t-test demonstrated no significant 

difference in water/total area ratio between time points (P>0.05). 
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Discussion 

These experiments demonstrate that the method for producing gelatine 

phantoms produces phantoms of the desired water concentration. It also 

demonstrates the suitability of the water/total area ratio for measuring changes 

in the water concentration as the relationship is linear in both protein/water and 

lipid/water mixtures. However, a protein/water mixture could not be used as a 

reference to predict water concentration in complex phantoms of 

lipid/protein/water. The reproducibility in construction and stability over time of 

gelatine phantoms is also demonstrated. 

 

2.4 Evaluation of Raman systems  

 

2.4.1 NP1- 680 nm laser excitation 

2.4.1.1 Raman system set up 

The general needle probe Raman system set up is described in 2.2.2. The 

following changeable components were used: 

Laser excitation: 680 nm 

Laser clean up filter: 680 nm 

Camera: PIXIS 400 BRX 

Measurement protocol: 1 second acquisition, 10 accumulations 

 

2.4.1.2 Gelatine phantoms 

The raw spectra obtained demonstrate a high background fluorescence at this 

wavelength (Figure 2-14 A). After pre-processing, it can be seen that with a higher 

water concentration there was a higher water peak compared to the protein peak 

(Figure 2-14 B). Figure 2-15 A shows the areas that were used to calculate the 

water/total area ratio. The water/total area ratio was calculated for all 

concentrations of gelatine phantom and plotted against known water 

concentration (Figure 2-15 B), which shows the relationship is linear, but not 

directly proportional. 
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2.4.1.3 Intralipid phantoms 

Measuring intralipid phantoms in a similar manner, Figure 2-16 A shows that, in 

normalised spectra, with a decrease in known water content there is a decrease 

in water signal. It can be seen that the water peak has a different morphology to 

that of the water peak observed in the gelatine phantoms. This could be due to 

fluorescence in the intralipid phantoms. Calculation of the water/total area ratio 

to known water concentration demonstrates a linear relationship (Figure 2-16 B).  
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  Figure 2-14 Raman spectra of a range of varying water concentrations of gelatine phantoms 

measured using NP1 Raman system.  

A. Representative Raw Raman spectra at 5 different concentrations. B. Raman spectra after pre-processing. 

Data is the mean (n=3) at each concentration after baselining using 1st order polynomial and normalised to 

the protein peak, shading in the same colour either side is +/- 1SD. 

Figure 2-15 Using NP1 to measuring water/total area ratio in gelatine phantoms 

A. Raman spectra of 85% water gelatine phantom with areas highlighted that are used to calculate water 

(yellow) / total (orange + yellow) ratio. B. Graph of water area/ total area ratio versus known water 

concentration of a number of different concentrations of gelatine phantoms measured using NP1 Raman 

system. Average ratio plotted (n=3), Error bars +/-SD. A line of best fit showed a Gradient = 0.4972; RMSE 

= 0.00048 
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2.4.1.4 Recreating the challenges of the surgical environment  

Pork meat and fat were analysed and compared to meat and fat that had been 

stained with blue dye or haemoglobin, burnt or wrapped in clingfilm. No Raman 

signal could be recovered from pork stained with blue dye or that had been burnt 

due to fluorescence that obliterated all signal. Haemoglobin staining and clingfilm 

covering did not make a visual difference to the Raman spectra (Figure 2-17), 

and comparison of water/total area ratios between pork meat vs Hb stained meat 

or clingfilm covered meat and between pork fat vs Hb stained fat or clingfilm 

covered fat revealed no significant difference (P>0.05; one- way ANOVA). 

A      B 
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Figure 2-16 Demonstrating the ability to measure changes in water concentration in complex 

intralipid phantoms measured with NP1.  

A. Raman spectra after pre-processing. Data is the mean (n=3) at each concentration after baselining using 

1st order polynomial and normalised to the protein peak, shading in the same colour either side is +/- 1SD. 

B. Calculated water/ total area ratio versus known water concentration. Average ratio plotted (n=3), Error 

bars +/-SD, with a line of best fit. Gradient 0.7573, RMSE – 0.0050. 

Figure 2-17 Results of measurements of pork phantoms with NP1.  

Raman spectra of A. Pork meat and B. pork fat that had either not been treated, stained with haemoglobin 

or wrapped in clingfilm. Data is the mean (n=3) at each concentration after baselining using 1st order 

polynomial and normalised to the protein peak, shading in the same colour either side is +/- 1 SD.  
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2.4.1.5 Discussion 

These experiments with NP1 with 680 nm excitation demonstrate the ability of 

this system to obtain spectra in the HWN region. Using the water/total area ratio 

for both gelatine and complex phantoms shows a linear relationship, and 

demonstrates that NP1 can identify measurable changes in water concentration. 

Measuring pork tissue with haemoglobin and clingfilm covering did not 

significantly alter Raman spectra. However, blue dye and burnt tissue caused 

fluorescence that obliterated signal.  

 

The large degree of fluorescence caused by burnt / carbonised tissue is a 

potential issue for analysing breast specimens. Diathermy artefact is usually a 

local process that would not prohibit analysis of an entire resected surface, but 

could ultimately reduce the sensitivity of NP1 analysis for IMA. The greater 

problem posed is the fluorescence caused by blue dye, which was significantly 

stronger than the Raman signal and resulted in no Raman scattering being 

detected. The intensity of fluorophores is related to the excitation wavelength, 

and it is generally highest in the UV or visible wavelengths 337; by increasing the 

wavelength away from 680 nm, it is possible to move away from the fluorescence 

produced by blue dye. Using the laser excitation of 785 nm would minimise the 

influence of blue dye on Raman spectra, but would allow for measuring of the 

HWN spectrum within the confines of spectrometer limits (up to 1100 nm 

wavelength). Therefore the needle probe was re-configured for use with a 785 

nm laser excitation to avoid the blue dye fluorescence. 
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2.4.2 NP-2 785 nm  set up 

2.4.2.1 Raman system set up 

The general needle probe Raman system set up is described in 2.2.2. The 

following changeable components were used: 

Laser excitation: 785 nm 

Laser clean up filter: 785 nm 

Camera: PIXIS 400 BRX 

Measurement protocol: 1 second acquisition, 10 accumulations 

 

2.4.2.2 Gelatine phantoms 

The raw spectra obtained demonstrates the low intensity of Raman signal 

detected in the HWN region using this wavelength and a CCD camera (Figure 

2-18 A). Despite this, after pre-processing, it was still possible to detect 

differences in water concentration; with a higher water concentration there was a 

higher water peak compared to the protein peak (Figure 2-18 B). A lower signal 

to noise ratio is noted. Figure 2-19 A shows the areas that were used to calculate 

the water/total area ratio. The water/total area ratio was calculated for all 

concentrations of gelatine phantom and plotted against known water 

concentration (Figure 2-19 B), which shows the relationship is linear, but not 

directly proportional. 
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2.4.2.3 Intralipid phantoms 

Figure 2-20 A shows that, in normalised spectra, with a decrease in known water 

content there is a decrease in water signal. Calculation of the water/total area 

ratio to known water concentration demonstrates a linear relationship (Figure 

2-20 B).  
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Figure 2-18 Raman spectra of a range of gelatine phantoms of varying water concentrations 

measured using NP2 Raman system.  

A. Raw spectra from a 95% water gelatine phantom. B. Raman spectra after pre-processing. Data is the 

mean (n=3) at each concentration after baselining using 1st order polynomial and normalised to the protein 

peak, shading in the same colour either side is +/- 1SD. 

Figure 2-19 Using NP2 to measure water/total area ratio in gelatine phantoms  

 A. Raman spectra of 85% water gelatine phantom with areas highlighted that are used to calculate water 

(yellow) / total (orange + yellow) ratio. B. Graph of water area/ total area ratio versus known water 

concentration of a number of different concentrations of gelatine phantoms measured using NP2 Raman 

system. Mean ratio plotted (n=3), Error bars +/-SD. A line of best fit showed a Gradient = 2.2522; RMSE = 

0.0132 
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2.4.2.4 Recreating the challenges of the surgical environment 

Pork meat and fat were analysed and compared to meat and fat that had been 

stained with blue dye or haemoglobin, burnt or wrapped in clingfilm. Raman 

signal could not be recovered from pork that had been burnt due to fluorescence. 

After pre-processing the raw signal, blue dye staining, haemoglobin staining and 

clingfilm covering did not make a large visual difference to the Raman spectra 

(Figure 2-21), and comparison of water/total area ratios between pork meat vs 

blue dye stained meat or Hb stained meat or clingfilm covered meat and between 

pork fat vs blue dye stained meat or Hb stained fat or clingfilm covered fat 

revealed no significant difference (P>0.05; one-way ANOVA). 

 

 

 

 

 

 

 

 

 

 

 

0.65 0.7 0.75 0.8 0.85 0.9

Water fraction

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

W
a
te

r/
to

ta
l a

re
a
 r

a
tio

Figure 2-20 Demonstrating the ability to measure changes in water concentration in complex 

intralipid phantoms measured with NP2.  

A. Raman spectra after pre-processing. Data is the mean (n=3) at each concentration after baselining using 

1st order polynomial and normalised to the protein peak, shading in the same colour either side is +/- 1SD. 

B. Calculated water/ total area ratio versus known water concentration. Mean ratio plotted (n=3), Error bars 

+/-SD, with a line of best fit. Gradient 1.038, RMSE 0.0086. 
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Blue Dye Gelatine phantoms 

To further investigate the effect of blue dye (BD) on obtaining Raman signal, blue 

dye gelatine phantoms containing concentrations of 0.01% and 0.1% blue dye 

were analysed using NP2 system. When comparing the raw spectra of gelatine 

phantoms with increasing concentrations of blue dye, it can be seen that there is 

an increasing background of fluorescence with blue dye. The Raman signal of 

gelatine can be recovered from this, but after pre-processing a 0.01% blue dye 

concentration alters the Raman signal, and led to a significantly different mean 

water/total area ratio (no BD 0.745 (SD 0.17), 0.01% BD 0.776 (SD 0.018), 0.1% 

BD 0.818 (SD 0.12); P=0.004; one-way ANOVA) (Figure 2-22). 
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Figure 2-21 Results of measurements of pork phantoms with NP2 system.   

Raman spectra of A. Pork meat and B. pork fat that had either not been treated, stained with blue dye, 

stained with haemoglobin or wrapped in clingfilm. Data is the mean (n=3) at each concentration after 

baselining using 1st order polynomial and normalised to the protein peak, shading in the same colour either 

side is +/- 1SD. 
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C 

 

2.4.2.5 Discussion 

The NP2 system is able to obtain Raman spectra in the HWN region. The system 

can also be used to quantify changes in water concentration in both gelatine and 

complex phantoms using the water/total area ratio as the relationship is linear.  

However when examining the raw spectra there are a number of issues identified 
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Figure 2-22 Results of measurement of blue dye (BD) gelatine phantoms with NP2.  

A. Raw Raman spectrum with 10% gelatine phantom and 10% gelatine phantom with 0.01% and 0.1% blue 

dye. B. Raman spectra with after pre-processing. Data is the mean (n=3) at each concentration after 

baselining using 1st order polynomial and normalised to the protein peak, shading in the same colour either 

side is +/- 1SD. C.  Bar chart comparing the mean water/total area ratio between the three blue dye gelatine 

phantoms,  *- significantly different ratio between 0.01% BD and 0.1% BD (P=0.043), † - significantly different 

ratio between no BD and 0.1% BD (P=0.0036); multiple comparison one-way ANOVA. 
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which are related to using a CCD camera to obtain HWN spectra using the 785 

nm excitation wavelength. 

 

There is low signal to noise and with a low signal intensity it could significantly 

affect the results as the high background fluctuations may alter the AUC, and 

subtle changes in water content at physiological levels could be immeasurable. 

The NP2 system is only capable of recording to a maximum Raman shift of 

around 3550 cm-1, which is the cut off on all the graphs. And although it appears 

that the Raman spectrum tapers down at this extent – this is actually a result of 

the limitations of the CCD camera ability to read at this wavelength, rather than a 

true reflection of the Raman spectrum. If the NP1 spectra are compared with the 

NP2 spectra when measuring the same gelatine phantoms, it is obvious that in 

the middle of the water peak (at, for example, 3550 cm-1) there is a high signal 

intensity with NP1, but zero intensity with NP2. This demonstrates that the Raman 

signals observed with NP2 are not a true reflection of the entire HWN region – 

particularly in the water peak region of 3035 – 3680 cm-1, and that using the  

water/total area ratio, although a linear relationship is observed, the truncation of 

the water peak means it is not a true measurement of water concentration 

changes. The reason for these observed effects at the end of the CCD camera 

readings is due to the quantum efficiency of the CCD at this wavelength. 

 

CCDs contain sectored pieces of silicon that allows accumulation of scattering 

over the whole exposure time, which allows discrimination between each 

frequency of scattered light and multiwavelength detection 100. This allows for fast 

spectral scanning and rapid spectral acquisition; however silicon has an optimum 

region of sensitivity to photons (QE) and a detection cut off wavelength of 

1100nm. For measuring in the HWN region and to investigate the water spectrum, 

the Raman system used must be able to detect Raman shift at 3035 – 3680 cm-

1. To understand this in relation to the quantum efficiency of the camera it has to 

be converted to the wavelength of light measured using Equation 2-4: 

 

𝜆 [𝑛𝑚] =  
1

(1
𝜆𝑒𝑥[𝑛𝑚]

⁄ )− (
𝑅𝑎𝑚𝑎𝑛 𝑠ℎ𝑖𝑓𝑡 𝑐𝑚−1

107⁄ )
     

Where ex = laser excitation wavelength; 

Raman shift = Raman shift of the molecule being investigated.  

Equation 2-4 Conversion of Raman shift to wavelength 
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Using Equation 2-4, if using NP2, which is a 785 nm laser excitation to investigate 

a 3400 cm-1 Raman shift (the middle of the water peak): 

 

𝜆 [𝑛𝑚] =  
1

(1
785⁄ ) −  (3400

107⁄ )
 

    𝜆 = 1070nm 

 

So the wavelength of 1070 nm is very close to the CCD cut off of 1100 nm. The 

manufacturer provides a quantum efficiency vs wavelength (nm) graph of the 

specific CCD camera used for NP1 and 2 (Figure 2-23). From this it can be seen 

that at a wavelength of 1070 nm, the quantum efficiency of the CCD is less than 

10%, meaning the detection of Raman signal for the water signal is very poor, 

and  suggests that NP2 is an unsuitable system for measuring changes in water 

concentration. 

 

 

 

 

The main reason for performing the experiments with NP2 was to assess if 

Raman spectra could be measured in the presence of blue dye. These 

experiments found that, unlike the NP1 data, Raman spectra could be measured 

in the presence of blue dye with NP2. Measurements from blue dye gelatine 

phantoms demonstrate that the raw Raman spectrum have an increased 

background fluorescence with blue dye, but Raman data is recoverable from this. 

This suggests that 785 nm excitation wavelength is appropriate for measuring the 

Figure 2-23 Quantum efficiency of the Princeton Instruments camera range versus wavelength.  

NP1 and NP2 used the PIX 400 BRX which is shown by the red line. Modified from reference  338. 
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HWN region in the presence of blue dye, if camera detection quantum efficiency 

can be improved. At a higher concentration of 0.1% blue dye in the gelatine 

phantoms, there was a significantly different water/total area ratio compared to a 

gelatine phantom without blue dye – however it may be that the low intensity 

Raman signal due to the poor camera QE in the HWN means the effect of 

fluorescence is more apparent, and it may be reduced with improved Raman 

scattering detection. 

 

These findings suggest that a camera that uses a 785 nm excitation, but with a 

camera that has greater QE in the desired wavelength range may be the optimal 

system to measure the HWN region in the presence of blue dye. A solution to this 

is using a different type of camera to the silicon chip based CCD. Alternative 

detectors to silicon based CCD’s are Indium gallium arsenide (InGaAs) detectors 

which are semiconductors with a lower bandgap to provide sensitivity in an 

extended near infrared range. The InGaAs camera available for use in this project 

is the Andor InDus InGaAs, the QE data for this camera is seen in Figure 2-24, 

which demonstrates that to investigate a wavelength of 1070 nm (middle of the 

water peak at 785 nm), the QE of this camera would be >85%. This is 

substantially better than the Princeton Instruments CCD camera, and so could 

be suitable for use with a 785 nm excitation wavelength for the investigation of 

water content in the presence of blue dye. This is tested in the next section – 

NP3. 

 

 

 

Figure 2-24 Quantam efficiency at 20C of the Andor InGaAs camera range versus wavelength which 

is shown by the continuous red line. Modified from reference 339   

1070nm- the 
wavelength of 
Raman shift 
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2.4.3 NP-3 785 nm InGaAs set up 

2.4.3.1 Raman system set up 

The general needle probe Raman system set up is described in 2.2.2. The 

following changeable components were used: 

Laser excitation: 785 nm 

Laser clean up filter: 785 nm 

Camera: iDus InGaAs 1.7m 

Measurement protocol: 10 second acquisition, 5 accumulations 

 

2.4.3.2 Gelatine phantoms 

The raw spectrum of a 5% gelatine phantom, measured using NP-3 

demonstrated in Figure 2-25 A shows that the signal is of much higher intensity 

than that gained with NP-2 and the CCD camera, and that the morphology of the 

water peak is similar to that of NP-1 and the water peak of the HWN region 

documented in the literature. A higher water peak intensity is seen with increasing 

water concentration when compared to the normalised protein peak (Figure 2-25 

B). Figure 2-26 A shows the areas that were used to calculate the water/total area 

ratio. The water/total area ratio was calculated for all concentrations of gelatine 

phantom and plotted against known water concentration (Figure 2-26 B), which 

shows the relationship is linear, but not directly proportional.  

 

 

A      B 

   

Figure 2-25 Raman spectra of a range of varying water concentrations of gelatine phantoms 

measured using NP1 Raman system.  

A. Raw spectra from a 95% water gelatine phantom. B. Raman spectra after pre-processing. Data is the 

mean (n=3) at each concentration after baselining using 1st order polynomial and normalised to the protein 

peak, shading in the same colour either side is +/- 1SD. 
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2.4.3.3 Intralipid phantoms 

Figure 2-27 A shows that in intralipid phantoms with normalised spectra, with a 

decrease in known water content there is a decrease in water signal. Calculation 

of the water/total area ratio to known water concentration demonstrates a linear 

relationship (Figure 2-27 B).  
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Figure 2-26 Using NP3 to measure water/total area ratio in gelatine phantoms 

A. Raman spectra of 85% water gelatine phantom with areas highlighted that are used to calculate water 

(yellow) / total (orange + yellow) ratio. B. Graph of water area/ total area ratio versus known water 

concentration of a number of different concentrations of gelatine phantoms measured using NP3 Raman 

system. Mean ratio plotted (n=3), Error bars +/-SD. A line of best fit showed a Gradient = 0.46; RMSE = 

0.0012 

Figure 2-27 Demonstrating the ability to measure changes in water concentration in complex 

intralipid phantoms measured with NP3.  

A. Raman spectra after pre-processing. Data is the mean (n=3) at each concentration after baselining using 

1st order polynomial and normalised to the protein peak, shading in the same colour either side is +/- 1SD. 

B. Calculated water/ total area ratio versus known water concentration. Average ratio plotted (n=3), Error 

bars +/-SD, with a line of best fit. Gradient 1.75, RMSE 0.0164. 
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2.4.3.4 Recreating the challenges of the surgical environment 

Pork meat and fat were analysed and compared to meat and fat that had been 

stained with blue dye or haemoglobin, burnt or wrapped in clingfilm. Similar to 

NP2, the Raman spectra were adversely affected by carbonisation in pork that 

had been burnt due to fluorescence, however the protein peak could be 

recovered, but the spectra from 3250-3700 cm-1 (water region) was altered and 

no Raman signal could be obtained in this region. After pre-processing the raw 

signal, blue dye staining, haemoglobin staining and clingfilm covering did not 

make a large visual difference to the Raman spectra (Figure 2-28), and 

comparison of water/total area ratios between pork meat vs blue dye stained 

meat or Hb stained meat or clingfilm covered meat and between pork fat vs blue 

dye stained meat or Hb stained fat or clingfilm covered fat revealed no significant 

difference (P>0.05; one-way ANOVA). 

 

A       B 

    

 

Blue Dye Gelatine phantoms 

NP3 was used to analyse the blue dye gelatine phantoms. Similar to the spectra 

from the NP2 system, there was some increase in the fluorescent background in 

the presence of blue dye when measuring with NP3, however this appeared to 

affect the Raman spectra less than with NP2. There was no significantly different 

water/total area ratio (P>0.05; one-way ANOVA) between gelatine phantoms with 

0%, 0.01% and 0.1% blue dye (Figure 2-29). 
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Figure 2-28 Results of measurements of pork phantoms with NP3 system.   

Raman spectra of A. Pork meat and B. pork fat that had either not been treated, stained with blue dye, 

stained with haemoglobin, burnt or wrapped in clingfilm. Data is the mean (n=3) at each concentration after 

baselining using 1st order polynomial and normalised to the protein peak, shading in the same colour either 

side is +/- 1SD. 
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2.4.3.5 Discussion 

Measurements with the NP3 system confirm the ability to take high quality spectra 

in the HWN region, and using this system and the water/total area ratio, the water 

concentration can be measured. The water/total area ratios obtained for the 

different gelatine phantoms are very similar to those obtained with NP1, and the 

water/total area ratio to known concentration graph has a similar gradient 
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Figure 2-29 Results of measurement of blue dye gelatine phantoms with NP3.  

A. Representative raw Raman spectrum with 10% gelatine phantom and 10% gelatine phantom with 0.01% 

and 0.1% blue dye. B. Raman spectra after pre-processing. Data is the mean (n=3) at each concentration 

after baselining using 1st order polynomial and normalised to the protein peak, shading in the same colour 

either side is +/- 1SD.  C. Bar chart comparing the mean water/total area ratio between the three blue dye 

gelatine phantoms, statistical analysis showed no significant difference between mean ratios (P>0.05; one-

way ANOVA). 



Chapter 2 
 

 137 

suggesting the information regarding water concentration is equivocal between 

NP1 and NP3.   

 

The water/total area ratios from intralipid phantoms are markedly different 

between NP1 and NP3. The water spectra measured from NP3 from the intralipid 

phantoms has a morphology more consistent with what would be expected from 

the other experiments and from the literature 304, 333, compared to NP1. The 

background fluorescence of the intralipid phantoms was much greater in NP1, 

and it may be that the baseline subtraction was suboptimal, giving rise to the 

unusual morphology, which may have adversely affected the water/total area 

ratio values. Regardless of this discrepancy, the spectra gained from the intralipid 

phantoms from NP3 show a linear relationship between water/total area ratio and 

known water concentration. 

 

The results from pork phantoms suggest that measurements from NP3 system 

are unaffected by blue dye, haemoglobin dye and clingfilm. Carbonisation does 

affect the signal and there is some fluorescence, however, a recognisable signal 

could be recovered which is improved from either the NP1 or NP2 system.  

There was no difference in the water/total area ratio between gelatine phantoms 

with or without blue dye, this demonstrates the ability of NP3 system to measure 

Raman spectra accurately in the HWN region in the presence of blue dye with 

minimal disruption. 

 

Despite these important improvements with NP3 compared to the other systems, 

the reduced signal to noise with the InGaAs camera is a potential issue. InGaAs 

cameras have high dark noise signal due to the low energy photons that are being 

detected340. This effect can be reduced by cooling of the detector (which was 

done to -85C, as recommended by the manufacturer), but is still higher 

compared to silicon CCDs339. Due to this, longer acquisition times for spectral 

acquisition are required. In these experiments, overall measurement time was 5 

times longer (50 seconds vs 10 seconds) with the InGaAs camera. This may have 

an impact in future work when taking spectra in a time-sensitive and clinical 

environment. With regards to margin analysis, it is an issue that will need 

optimisation for it to be effective. However, it is possible that these acquisition 

times could be reduced once the system spectral acquisition has been optimised, 
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and spectral analysis of breast tissue is more fully understood, to optimise the 

balance between spectral resolution and time for measurements to be struck for 

meaningful clinical data to be gained when measuring breast tissue. For initial, 

proof of concept experiments investigating HWN region and water concentration 

in breast tissue, NP3 has demonstrated its ability to measure water concentration 

and obtain spectra in the presence of blue dye, meaning it is the most suited 

system for this project. 

 

2.5 Discussion 

In this section of the thesis, the development of a Raman system capable of 

taking high quality HWN spectra, with appropriate analysis of the spectra to 

measure water concentration, whilst overcoming the potential barriers of taking 

measurements in the surgical environment has been explored. Tissue phantoms 

with a range of known water concentrations were constructed and analysed, and 

demonstrated to be reproducible in production and stable in water content over 

time. Using a closed laser, pre-calibrated, laboratory system to acquire Raman 

spectra from a standard of BSA solutions and applying this to the gelatine 

phantoms it was demonstrated that using a first order polynomial for baseline 

subtracting the data and measuring the water/total area ratio was an accurate 

method for determining water concentration.  

 

A number of methods have been suggested for baseline subtraction in Raman 

spectroscopy and particularly in the HWN region. It is often performed using 

baseline subtraction using the visually most appropriate degree of polynomials, 

a number of different polynomials have been used including 1st 174, 271, 295, 2nd 337, 

3rd 304 and 5th 341 order. More complex methods in the form of auto correction 

using multiple regression fitting have also been suggested 337. The aim of 

baseline fluorescence subtraction is to reduce the influence of fluorescence on 

the data, without removing pertinent spectral information. In these experiments 

using phantoms, background fluorescence was not a major issue in the raw 

spectrum and baseline subtraction with a 1st degree polynomial visually appeared 

to be the most appropriate method. When using this method with the NP1 system 

which used a 680nm excitation, there was a higher degree of background 

fluorescence when measuring the intralipid phantoms, and it may be that the 

method of background fluorescence subtraction may have led to the unusual 
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appearance of the water spectrum seen. However, using other commonly used 

degrees of polynomials such as 2nd and 3rd order did not improve the results or 

visual appearance of the spectra, and it may be that more complex methods 

would be required in this particular case. However, as this system was not to be 

used in the project due to the major fluorescence from blue dye, this was not 

performed as it would not inform the project. It may be that measurements in 

breast tissue cause a higher degree of background fluorescence than the 

phantoms, and that different baseline subtraction methods are needed. 

 

Spectral data from pure protein models (gelatine phantoms) regarding water/total 

area ratio could not predict water concentration in the more complex intralipid 

phantoms. The CH3 stretch is responsible for both the Raman signals of protein 

and lipid, however the lipid band has a tendency towards higher levels of energy 

compared to protein103. The narrow protein peak of CH3 is morphologically 

distinct to the broad lipid peak, and the intralipid phantoms were composed of 

both protein and lipid, and so a phantom that has the same water concentration, 

but a different protein/lipid ratio, will have a different area under the curve in the 

region 2850 – 3035 cm-1 which would affect the water/total area ratio. Although 

Masson et al. used this method in protein only gelatine phantoms, and 

extrapolated it to interpret water concentration in the protein/lipid rich cervix , our 

data suggests this is inappropriate 304. To predict water concentration in fat rich 

breast tissue, water/total area ratio data from intralipid phantoms may be more 

appropriate. 

 

All the systems were capable of measuring Raman scattering in the HWN region. 

NP1 and NP3 gave high quality, high intensity signals in this range, and NP2 

gave lower intensity signals due to the quantum efficiency of the CCD camera. 

All three systems could measure the water concentration of the gelatine and 

intralipid phantoms. NP1 and NP3 gave very similar results in the measurement 

of gelatine phantoms and both produced HWN spectra of gelatine phantoms that 

were similar to the literature and both could detect changes in water 

concentration. NP2 spectral analysis produced quite different results, the water 

peak spectrum was truncated due to the quantum efficiency of the CCD camera 

in the HWN region, adversely affecting the ability of NP2 to measure water 
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concentration in the HWN region, meaning that NP2 was not suitable for this 

project.  

 

The Raman systems were also evaluated for their suitability to obtain spectra in 

the presence of blue dye, haemoglobin, carbonisation and clingfilm, as this is 

essential for the future work of the project of taking measurements of surgically 

excised specimens. All three systems detected fluorescence in carbonised pork 

tissue; NP1 and NP2 could not recover any signal, and NP3 could measure the 

CH3 region of protein, but the water signal was adversely affected. This is 

unsurprising as carbonisation intrinsically alters the breast tissue, and confounds 

analysis with the ‘gold standard’ of histopathology319. It may affect analysis in 

breast tissue, but it is likely to with any method of IMA, it is also usually localised 

to small areas rather than prohibiting analysis of an entire surface, and so an 

awareness of its effect on the Raman signal is required, but it does not preclude 

a Raman system from providing IMA. 

 

Blue dye caused significant fluorescence in NP1, and no Raman scattering was 

detected in the presence in even a small amount of blue dye. Blue dye is used 

for sentinel lymph node detection in the majority of BCS, and staining of the 

breast tissue is common; therefore, a system that cannot obtain Raman spectra 

in the presence of blue dye is unsuitable for the preliminary work planned in this 

project, and for any clinically relevant method of IMA. Previous studies 

investigating HWN RS in breast tissue have not considered the effect of blue dye 

on the ability to obtain Raman spectra 299, 336. These studies use laser excitation 

wavelengths (of 671 nm 299 and 532 nm 336) that we predict would result in 

overwhelming fluorescence that obscures Raman signals in the presence of blue 

dye.  Laser excitation with 785nm in NP2 and NP3 could obtain Raman spectra 

in the presence of blue dye. The Raman spectra, and subsequent analysis were 

more affected by blue dye in NP2, this may have been because the signal 

intensity was much weaker than in NP3, and so the slightly higher background 

fluorescence that the blue dye caused overpowered the weak Raman signal, 

whereas in NP3 there was a higher intensity Raman signal so the contribution of 

the fluorescent background was relatively much less. 
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2.6 Conclusion 

NP3 which uses an InGaAs camera and 785 nm laser excitation has been shown 

to be the most appropriate system for assessing the HWN region in breast tissue 

for applicability in IMA, where blue dye is used. This is the first Raman system 

that has demonstrated the ability to obtain HWN spectra that are not significantly 

affected by the presence of blue dye, an essential attribute for a system to provide 

IMA.  The NP3 system will be the Raman system used for the human tissue 

experiments in this thesis. 
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CHAPTER 3:  
Investigating the ability of NP3 Raman 
system to quantify changes in water 
content using High Wavenumber Raman 
Spectroscopy 

 

3.1 Introduction 

In the previous chapter NP3 was demonstrated to be the most appropriate 

Raman system for investigating the provision of intraoperative margin analysis in 

human breast tissue. The analysis for this was performed using phantoms that 

allowed differentiation of performance regarding basic ability to evaluate changes 

in water content, and confounders that may occur in the clinical environment. The 

next stage of this system development is optimisation. This is both optimisation 

of the spectra that are obtained, and optimisation in the understanding of the data 

that can be obtained using the system. This chapter will demonstrate the method 

of optimal signal acquisition set up for NP3, evaluating the ability of NP3 to 

measure changes in water concentration at physiological concentrations and 

then describe a sequence of experiments on a range of phantoms to establish 

what changes are observed in the High Wavenumber (HWN) region spectra with 

a change in water concentration.  

 

The intralipid breast phantoms measured in the experiments in Chapter 2 to 

ascertain the ideal Raman system for measuring HWN spectra in breast tissue 

had the limitation that the fat concentrations were not physiological. The intralipid 

phantoms had a range of fat concentration from 2-18%, with a water 

concentration being 68-88% whereas it has been suggested that the water 

concentration of breast tissue is in the range 30-60%, and correspondingly the 

fat concentration being 40-70% 281. However, these figures are taken as global 

averages for an entire breast, or large areas of the breast. When measuring 

smaller samples of breast tissue, such as a wide local excision specimen for 

intraoperative margin analysis, one would see areas of almost exclusively fat, 
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and other areas exclusively of protein. Therefore, further investigation is 

performed in soya bean oil phantoms and in pork meat and fat to demonstrate 

the ability of NP3 to measure a change in water concentration at physiological 

ranges, which is necessary in order to be used in human breast tissue. 

 

In section 2.2.4 it was noted that in a set of protein/water mixtures over a range 

of water concentrations, the spectral intensity of the maximum part of the OH 

peak (3390cm-1 in this case, due to the limitations of the CCD coupled with the 

InVia system used) did not change in relation to the change of water 

concentration. This spectral feature has been observed in other studies; using 

lyophilisation to produce cornea phantoms at a range of water concentrations, 

Bauer et al. 335 demonstrated that the OH peak Raman intensity (this time at 3400 

cm-1) did not change proportionally to the change in water concentration, and 

used a ratio of the maximum intensity of the protein peak to water peak to quantify 

the changes in water concentration. The conclusion drawn from this work has 

been cited as an example of how to use protein to water ratios to accurately 

determine water content, and the method has been validated since. However, the 

observation that the OH peak does not change in relation to water content, the 

possible significance of this and why this occurs is not addressed. If the water 

peak intensity doesn’t change with changes in water concentration, and the 

water/total area ratio method is an accurate, validated method for quantifying 

changes in water concentration, it could be presumed that changes in the 

protein/lipid peak are proportionally changing with water concentration, though 

this has not been explicitly demonstrated previously. 

 

In this chapter there is investigation and analysis of how these spectral changes 

may be interpreted to give a better understanding of the HWN region and will 

inform data analysis of measurements obtained from breast tissue in subsequent 

chapters. 
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3.2 Methods 

3.2.1 Establishing the optimal signal acquisition time 

The NP3 system uses an InGaAs camera, the range of Quantum Efficiency 

allows acquisition of spectra from the HWN region using a 785 nm excitation 

laser. An inherent limitation of InGaAs cameras is high dark noise compared to 

silicon CCDs 340 that are more commonly used for Raman Spectroscopy. 

Noise has to be overcome in order to obtain a signal, and accounts for variation 

that can be seen between a number of identical measurements, which is 

expressed as the Signal to Noise Ratio (SNR) which is the average peak height 

above baseline divided by the standard deviation of the peak height 342. 

 

Noise can come from a number of sources such as shot noise, fluorescence 

background noise, dark noise, and readout noise. Shot noise is the random 

variation in observed events, and so as the number of observed events increases 

(e.g. by increasing acquisition time), the shot noise decreases, and so the SNR 

increases. Dark noise is significant in InGaAs cameras. Dark noise is produced 

by spontaneous electron generation from the detector and is best demonstrated 

by obtaining a spectrum in a dark room without laser illumination342. In the 

presence of high dark noise lower acquisition times give a poor SNR, as the dark 

noise is proportionally more, and conversely by prolonging acquisition time more 

signal is obtained, with the same amount of dark noise, meaning the SNR 

improves with a longer acquisition time. Dark noise does not vary with laser 

intensity or variability in samples, and so there is the ability to subtract dark noise 

from spectra. 

 

A method to improve the SNR in NP3 would be subtraction of fixed pattern noise 

as this is due to pixel to pixel variation within the InGaAs detector. Therefore, the 

detector dark noise was obtained by taking a measurement for the same 

acquisition time and number of accumulations as used for the sample 

measurement and a smoothed baseline obtained by Savitzky-Golay filter (7th 

polynomial) as demonstrated in Figure 3-1. 
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This smoothed baseline was then subtracted from the spectrum obtained from 

the sample, when measured for the same acquisition time and same number of 

accumulations as part of pre – processing. This gave improved spectral 

resolution and was successful at removing a significant source of noise from the 

spectrum, without affecting relevant spectral features (Figure 3-2). 

 

 

Although longer acquisition times may improve the issue caused by shot noise, 

this may lead to sample heating degradation or burning, which for biological 

samples such as breast tissue, is to be avoided. A way to increase acquisition 

times and reduce the risk of burning is by taking shorter acquisition times with 

multiple accumulations, which may reduce sample heating if the laser turns off 

between acquisitions, allowing the sample to cool. However, the number of 
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Figure 3-1 – Spectrum showing the Dark background and Smoothed Dark background at 1 second 

acquisition time with 5 accumulations. 

The Smoothed Dark Background was obtained by Savitzky-Golay filter with a 7th order polynomial fit. 

 

Figure 3-2 Figure showing the effect of Dark noise baseline subtraction on a HWN spectrum.  

Representative spectrum of a Gelatine phantom of 90% water, 10% gelatine composition taken with 1 

second acquisition time, 5 accumulations. Raw spectrum and spectrum after pre-processing with Dark noise 

‘baseline subtracted’ shown. 
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accumulations taken may be limited by readout noise – that is the noise 

generated in the process of converting electrons detected into a digital signal to 

the computer. This noise increases with the number of accumulations. 

 

A consideration for overall measurement time taken for measurement is that the 

time taken for the measurements needs to remain clinically relevant. If, in order 

to obtain satisfactory spectra, measurements took an hour each to obtain, neither 

the system nor the information gained from it would ever be useful in clinical 

practice. Therefore, we considered a maximum overall measurement time of 30 

seconds per measurement to be one that was clinically relevant. Although this 

time per measurement is likely to be too long for use in practice, it is not so long 

as to be irrelevant. The area of collection of NP3 is 5.19 x 104 µm2. With a view 

to NP3 providing IMA, for a lumpectomy sample of 60 X 60 mm (a normal size of 

sample) it would take approximately 720 individual measurements with NP3 to 

analyse a single resected edge. If each individual measurement took a second it 

would take 12 minutes to analyse a single resected edge, and if the individual 

measurement time took 25 seconds it would take 6 hours to analyse a single 

resected edge. So, although a measurement protocol of 30 seconds would not 

be clinically possible, the purpose of the experiments in this chapter are to explore 

subtle changes in spectra, which require higher spectral resolution. Once the 

HWN region of breast tissue is fully understood, it is likely the measurement time 

could be reduced to more clinically relevant times.  

 

To find the optimal measurement settings of the number of acquisitions and 

accumulations required for NP3, measurements were taken with the NP3 system 

of a 90% water / gelatine phantom and performed pre-processing of baselining 

with a 1st order polynomial and normalisation to the protein peak with dark noise 

baseline subtraction on the obtained spectra. Measurements were taken to 

compare the overall laser exposure time at 2 different times - 5 seconds and 25 

seconds- to compare the signal to noise ratio of measurements. The exposure 

times were chosen to investigate if the spectra that were obtained in a short time 

period (5 seconds), were of sufficient quality to allow detailed analysis, as this 

time period would be closer to a clinically appropriate measurement time, or if a 

longer time period (25 seconds) was necessary. 
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Within these overall time periods, measurements were taken with different 

acquisition times and accumulations. 

 

Results and Discussion 

Figure 3-3 demonstrates the spectra obtained with an overall measurement time 

of 5 seconds, but with different acquisition and accumulation times. In both the 5 

second X 1 accumulation and 1 second X 5 accumulations all peaks are clearly 

visible, however, there is more noise with 1 second X 5 accumulations, which 

may be due to an increased readout noise. Although this suggests that we could 

use an overall measurement time of 5 seconds, and this would still give 

reasonable quality spectra, we expect a significantly higher fluorescence 

background in biological tissue (as this has been observed in other studies 

investigating the HWN region in biological tissue 174, 304), so longer acquisition 

times are likely to be necessary to obtain Raman features despite the higher 

background. 

 

 

 

Measurements obtained of a 90% water/10% gelatine phantom measured at 5 seconds X 1 accumulation 

(blue line) and at 1 second X 5 accumulations. Data is the sum of all accumulations to allow direct 

comparison and has been baselined, normalised to the protein peak and dark noise baseline subtracted. 
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Figure 3-3 – Figure showing the difference in signal to  noise in Raman spectra obtained with two 

different measurement protocols, both with an overall measurement time of 5 seconds.  
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Measurements obtained of a 90% water/10% gelatine phantom measured at 25 seconds X1 accumulation 

(black line), at 1 second X 25 accumulations (green line), and 5 seconds X 5 accumulations (red line). Graph 

on left shows all three spectra combined, graphs on right show each spectrum separately to allow 

comparison. Data is the sum of all accumulations to allow direct comparison and has been baselined, 

normalised to the protein peak and dark noise baseline subtracted. 

 

Figure 3-4 shows the results of spectra obtained at an overall measurement time 

of 25 seconds, with different acquisition times and accumulations. All spectra 

have improved spectral acquisition compared to the spectra obtained with an 

overall measurement time of 5 seconds. There are no obvious spectral 

differences between the three different measurement protocols, however, the 

spectra obtained with 1 second acquisitions with 25 accumulations has slightly 

increased noise which may be a result of a higher readout noise. Spectra 

obtained with a single 25 second acquisition produce spectra comparable to the 

spectra obtained with 5 seconds X 5 accumulations, however, multiple 

accumulations allows the laser light to be off between acquisition and may reduce 

biological sample heating and sample degradation.  

 

Summary  

Based on these results it can be considered that having a single acquisition time 

of 5 seconds rather than 1 second gives improved signal to noise, as would be 

expected. This is important as a smoothed spectrum may allow improved spectral 

analysis. Prolonged acquisition times could lead to sample degradation, so a 

measurement protocol of 5 second acquisition time with 5 accumulations with 

dark noise baseline subtraction is optimal based on the balance of signal to noise 
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Figure 3-4- Figure showing the difference in signal to noise in Raman spectra obtained with three 

different measurement protocols, all with an overall measurement time of 25 seconds.  
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and minimising the time taken to analyse a specimen, and so this measurement 

protocol is adopted in the measurements in the rest of this chapter. 

 

3.2.2 Phantom Production and Measurement 

3.2.2.1 Gelatine Phantom production 

Gelatine phantoms were used to observe the changes in water concentration in 

the HWN region within a protein only environment. Gelatine phantoms were 

produced in the previously described method in Chapter 2 at concentrations of 

85%, 87.5%, 90%, 92.5% and 95% water. 

 

3.2.2.2 Soya bean oil/ water phantom production 

Soya bean oil/water phantoms were used to observe the changes in water 

concentration in the HWN region with a lipid only environment and evaluate the 

ability of NP3 to measure the extremes of fat and water concentration that are 

likely to be encountered in clinical specimens. Olive oil would have been the 

preferred choice of oil, as it is composed of monounsaturated fatty acids and is 

predominantly oleic acid, which is the major fat in breast tissue 343, 344. However, 

with 785 nm illumination, it has a broad fluorescent peak within the HWN region 

giving overwhelming fluorescence and no spectra could be obtained. Therefore, 

soya bean oil was chosen to create these phantoms, as it does not have this 

fluorescent band. Soya bean oil is predominantly polyunsaturated fat, composed 

of Linoleic Acid344. 

 

Soya bean oil phantoms were made according to a protocol adapted from a 

method by Merritt et al. 302 to make MRI suitable lipid phantoms. Organic soya 

bean oil (Clearspring,UK) was mixed with 4% of lipid volume of triton X100 

(Sigma-Aldrich,Germany) which is a surfactant, which was added to allow 

emulsification of the lipid. This was warmed at 55C for 5 minutes, before distilled 

water was added, mixed further, before sonification with a Hielscher Ultrasonics 

UP100H Handheld Ultrasonic Processor at 30kHz at 100% amplitude and 100% 

pulse (Hielscher Ultrasonics, Teltow, Germany) for 5 X 10 second pulses to 

create a liquid emulsion, and stored at 5C until measurement at room 

temperature. A range of concentrations from 5% - 70% oil were made, (and 100% 

oil).  
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3.2.2.3 Pork serial dehydration 

Serial dehydration with concurrent Raman spectra measurements was performed 

with pork to observe the changes in water concentration in the HWN region within 

a biological system, of both a protein rich (meat) and fat rich (fat) environment.  

Pork was purchased from a local supermarket (Sainsburys,UK), meat and fat was 

separated and cut into small cubes of <5 mm3, and weighed. All specimens 

weighed less than 1 gram. Specimens were then weighed initially, and Raman 

spectra taken, and then left to air dry over the next 24 hours, within which at 7 

different time points the specimens were weighed and Raman spectra taken. 

Raman measurements were taken at random points on the specimen’s surface 

as it was not possible to mark points of previous measurement and take 

measurements from the same points at each measurement cycle. Changes in 

pork specimens were calculated as percentage weight change from the initial 

weight, and all changes in weight were assumed to be water evaporation and so 

provided an estimation of changes in water content of the specimen. There were 

negligible changes in the weight of the specimens after 24 hours (measured 

again at 36 and 48 hours), and so it was presumed that by 24 hours the maximum 

amount of water had evaporated using the air dry technique. The experiment was 

performed 3 times over 3 different days on 3 different pieces of pork, to account 

for possible variation in air drying/meat hydration. All experiments yielded similar 

results, data shown is from a single experiment to reduce the number of 

spectra/data points and allow better visualisation of results.  

 

3.2.2.4 Mixed protein/lipid phantoms production 

To investigate the effect of the protein/lipid environment on the HWN spectrum a 

set of gelatine based phantoms were created that had the same water 

concentrations (70 or 80%), but had varying protein/ lipid ratios. The conversion 

of oil weight to volume was based on the soya bean oil having a weight of 0.92 

grams/ml. Triton X100 is a lipid, with a lipid spectrum in the HWN region the same 

as soya oil (and no protein or water peaks), and therefore the ‘Total oil volume’ 

was composed of the soya oil and Triton volume combined. This allowed the ratio 

of total protein and total lipid substrates that would contribute to the respective 

Raman spectra to be accurately calculated. 
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Name Water 

(ml) 

Gelatin 

(g) 

Total oil 

(g) 

Total oil 

(ml) 

Soya oil 

(ml) 

Triton 

(ul) 

1 7 0.5 2.5 2.71 2.60 108 

2 7 1 2 2.17 2.08 87 

3 7 1.5 1.5 1.63 1.56 65 

4 8 0.5 1.5 1.63 1.56 65 

5 8 1 1 1.08 1.037 43 

6 8 1.5 0.5 0.54 0.519 21 

 

 

3.2.2.5 HWN Raman experimental set up 

HWN Raman spectra were acquired using the previously described NP3 set up 

(Chapter 2). Measurements were taken with a 5 second X 5 accumulation. 5 

measurements were taken from different areas in each phantom, and acquired 

with Andor Solis (UK) software. 

 

3.2.2.6 Data processing 

Data was processed using Matlab. The mean was taken of the accumulations 

and then pre-processed by baselining using a 1st order polynomial, and dark 

noise background subtraction as described in section 3.2.1. The mean was taken 

of the 5 different area measurements, the standard deviation (if displayed) is of 

these 5 different area measurements. Normalised spectra were normalised to the 

highest peak in the spectra which related to the CH stretch of either protein or 

lipid (between 2850 -2950 cm-1) 271, 333. 

AUC water peak was calculated by taking the Area under the Curve of the Raman 

spectra between 3035-3680 cm-1. And AUC CH stretch region (combined protein 

and lipid peak) was calculated by taking the Area under the Curve of the Raman 

spectra between 2850 – 3035 cm-1. Water/total area ratio was calculated by 

taking the AUC water divided by AUC water + AUC CH stretch region304. 

Statistical comparison of water/total area ratio means was performed with one-

way ANOVA, statistical significance set to P<0.05.  

 

Table 7 - Table to show the composition of mixed phantoms composed of protein, lipid and water 

In Phantoms 1 – 3 the water concentration was 70 %, and in Phantoms 4 – 6, the water concentration was 

80%. Within these water concentrations, there were changing protein (gelatine) and lipid (soya oil) ratios. 
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3.2.3 UV Vis experiments 

UV-Vis absorbance of the individual components of the soya bean oil phantoms 

was investigated to assess how the optical absorbance characteristics of these 

components may affect the Raman spectra. If there is unequal absorbance by a 

constituent of the sample through the spectral range, a change in sample 

concentration may affect the Raman spectra due to absorbance as much as the 

effects of the change in sample concentration on the Raman spectra. This would 

affect the ability to quantify changes in the sample concentration, which was an 

area of investigation. UV-Vis absorbance spectra were obtained on a Thermo 

Scientific Evolution Array machine, using manufacturers software. Spectra were 

taken of soya bean oil, Triton X-100 and water with an integration time of 1 

millisecond, average of 20 scans, with a 1 mm pathlength. 

 

3.3 Results 

3.3.1 Gelatine phantoms 

The association between change in water content of gelatine phantoms and 

change in the water/total area ratio is shown in Figure 3-5 and was established 

in Chapter 2 – the relationship is linear and with a decrease in water content, 

there is a decrease in water/total area ratio. Measured with NP3, there is a 

gradient of 0.57. 
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Figure 3-6 shows that in gelatine phantoms (a protein only environment), the 

water peak spectrum decreases with a decrease in water content, and the protein 

peak increases as the water content decreases. The Area Under the Curve (AUC) 

of the CH stretch region (corresponding to protein in these phantoms) increases 

proportionally with a decrease in water concentration (and increase in protein 

concentration) with low variability, and the Area Under the Curve (AUC) of the 

water peak decreases, however this is with a greater degree of variability and the 

error bars (representing standard deviation) overlap.  
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Figure 3-5 Figure showing Raman spectra in the HWN region of different water concentrations of 

gelatine phantoms and the relationship with water/total area ratio  

A. Graph showing Raman spectra of gelatine phantoms at 5 different water concentrations, normalised to 

CH stretch region between 2850 -2950 cm-1. Plotted lines are mean (n=5) for each concentration after pre-

processing, shading in the same colour either side is +/- 1 SD. B. Scatter graph of known water fraction 

versus water/total area ratio. Points plotted are mean water/total area ratio (n=5), error bars +/- 1 SD. Red 

line is line of best fit (Gradient = 0.57,RMSE = 0.00092). 



Chapter 3 
 

 155 

A 
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3.3.2 Soya bean oil phantoms 

Figure 3-7 shows the normalised mean spectra of the soya bean oil phantoms 

ranging from 0% water to 95% water.  It can be seen that, when normalised to 

the CH stretch region (corresponding to a lipid peak in these phantoms) at 

2940cm-1, the water peak decreases with a decrease in the water concentration 

of the phantom. However, the difference seems greater in the phantoms with high 

water concentrations. The scatter graph demonstrates that there is a linear 
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Figure 3-6 Graphs demonstrating the changes in the HWN region with changes in water 

concentration in a protein only environment. 

A. Graph showing the spectral changes in protein peak and water peak signal intensity with changes in water 

concentration. Coloured lines are mean spectrum (n=5) after pre-processing, shading in the same colour 

either side is +/- 1 SD.   B. Scatter plot demonstrating the change in Area Under Curve of CH stretch region 

(protein peak) and Area Under Curve of water peak at different water concentrations. Line of best fit to 

demonstrate linear relationship in change in water concentration and AUC of both CH stretch region (protein 

peak) and water peak. 

All spectra had been pre-processed by baselining and dark noise background subtraction.   
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relationship between known water concentration of the phantoms and the 

water/total area ratio. If the phantoms are grouped and analysed according to 

those with higher water concentration (70-95% water) and lower water 

concentration (30-65% water), there is a slight difference in the gradients (higher 

water concentration gradient= 1.61 vs lower water concentration gradient = 1.04). 

This suggests that at a lower water concentration (and a higher lipid 

concentration) the difference in water/total area ratio between different water 

concentrations reduces, and so the ability to differentiate between different water 

concentrations may be reduced. 
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Figure 3-8 shows that in soya bean oil phantoms (a lipid and water only 

environment), the water peak spectrum does not appear to decrease with water 

content, and the lipid peak increases as the water content decreases. The scatter 

graph shows that with a decrease in water concentration (and subsequent 

increase in lipid concentration), the AUC of the CH stretch region (lipid peak) 

increases with a linear relationship, with narrow error bars suggesting a small 

degree of variability in measurements. However, the AUC of the water peak 
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Figure 3-7. Figure showing Raman spectra in the HWN region of different water concentrations of 

soya bean oil phantoms and the relationship with water/total area ratio 

A. Graph showing Raman spectra of soya bean oil phantoms at 15 different water concentrations, 

normalised to CH stretch region between 2850 -2950 cm-1. Plotted lines are mean (n=5) for each 

concentration after pre-processing, shading in the same colour either side is +/- 1 SD. 

B. Scatter graph of known water fraction versus water/total area ratio. Points plotted are mean water/total 

area ratio (n=5), error bars +/- 1 SD. Black line is line of best fit of all data points (n=15) (Gradient=1.24, 

RMSE = 0.031), red line is line of best fit of high water concentration phantoms (70-95% water) (Gradient = 

1.61, RMSE = 4X10-16), green line is line of best fit of low water concentration phantoms (30 – 65% 

water)(Gradient = 1.04, RMSE=1.3X10-16). 
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shows no consistent relationship with a change in water concentration. At higher 

water concentrations (water fraction 0.60-0.95) the AUC of water peak changes 

do not have any pattern with a change in water concentration, whereas at lower 

water concentrations (water fraction 0.55-0.3) with a decrease in water 

concentration there is a decrease in AUC of the water peak. 
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Figure 3-8 – Graphs demonstrating changes in the HWN region with changes in water concentration 

in a lipid only environment. 

A. Graph showing the spectral changes in lipid peak and water peak signal intensity with changes in water 

concentration with a range from 30 – 95% water. Coloured lines are mean spectrum (n=5) after pre-

processing, shading in the same colour either side is +/- 1 SD.   B. Scatter plot demonstrating the change in 

Area Under Curve of CH stretch region (lipid peak) and Area Under Curve of water peak at different water 

concentrations. Line of best fit to demonstrate linear relationship in change in water concentration and AUC 

of CH stretch region (lipid peak) only. 

All spectra had been pre-processed by baselining and dark noise background subtraction.   
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3.3.2.1 UV-Vis results 

To assess the influence of optical properties on the HWN region spectra, 

absorption spectra were taken from the soya bean oil phantoms. These were the 

only phantoms that were suitable for UV-Vis analysis. 

Figure 3-9 shows there is little change in the absorption of soya bean oil and 

Triton X100 through the relevant range of wavelength. However, there is some 

higher absorption of water at the lower wavenumbers, which could 

disproportionally affect the spectrum and the relevant peak ratios, particularly if 

the path length of the Raman scattered photons is increased or decreased by the 

presence of the highly scattering lipid droplets to pass through more of the 

phantom. 

 

 

 

 

Figure 3-9- Graph demonstrating the UV Vis absorption spectra of water, Triton X100 and soya bean 

oil 

Measurements were taken in a cuvette with 1mm pathlength for 1 millisecond with mean of 20 

accumulations. Shaded area demonstrates the wavelength investigated in the HWN region equivalent to 

Raman shift 2850 – 3650 cm-1. 
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3.3.3 Pork phantoms 

3.3.3.1 Meat 

The serial dehydration of pork specimens over 24 hours led to 60% change in the 

meat specimen weight. Figure 3-10 shows the spectral results from the serially 

dehydrated pork meat- as pork meat reduced in weight (which is presumed to be 

predominantly dehydration and decreasing water concentration), there was a 

reduction in the water/total area ratio. The scatter graph shows that this 

relationship is not linear, as the pork changed from 100% weight to 77% weight 

there was very little change in the measured water/total area ratio, and after this 

the water/total area ratio reduced with weight reduction.  

 

A      B 

   

 

Figure 3-11 demonstrates that in a biological system of pork meat (a protein rich 

environment), the water peak spectrum does not appear to decrease with water 

content, and the CH stretch region (relating to protein in this protein rich 

environment) increases as the water content decreases. The scatter graph shows 

that with a decrease in water concentration the AUC of the CH stretch region 

increases with a linear relationship. However, the amount of protein is 

unchanged. It also shows that the AUC of the water peak does not have a 

consistent relationship with a change in water concentration. There is a trend that 

the AUC of the water peak increases with a decrease in water concentration, 
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Figure 3-10 Figure showing Raman spectra in the HWN region of pork meat at different stages of 

dehydration and the relationship with water/total area ratio  

A. Graph showing Raman spectra of pork meat specimens at 7 different stages of dehydration (and different 

water concentrations). Plotted lines are mean (n=5) for each %age change in weight normalised to CH 

stretch region between 2850 -2950 cm-1, after pre-processing, shading in the same colour either side is +/- 

1 SD.  

B. Scatter graph of %age change in weight versus water peak/total area ratio. Points plotted are mean 

water/total area ratio (n=5) from spectra taken at each stage of dehydration, error bars +/- 1 SD.  
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though the error bars are wide. This is true until the final measurement, where 

the specimen is very dehydrated, when the AUC water peak decreases. 
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Figure 3-11 – Graphs demonstrating changes in the HWN region with changes in water concentration 

in a biological system. 

A. Graph showing the spectral changes in CH stretch region (protein peak) and water peak signal intensity 

with changes in water concentration with a range from 100% weight – 45% weight. Coloured lines are mean 

spectrum (n=5) after pre-processing, shading in the same colour either side is +/- 1 SD.   B. Scatter plot 

demonstrating the change in Area Under Curve of CH stretch region (protein peak) and Area Under Curve 

of water peak at different water concentrations. Line of best fit to demonstrate linear relationship in change 

in water concentration and AUC of CH stretch region only. 

All data has been pre-processed by baselining and dark noise background subtraction.   
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Water in biological systems are sequestered in different environments, broadly 

water is bound or unbound (free). It is known that the water peak in the HWN 

region is composed of peak contributions from water sequestered in different 

environments 336. To analyse the exact contributions of each different water 

environment requires detailed analysis using Voigtian curve fitting 304, however a 

basic assessment of changes in the water environments can be performed by 

looking at the spectral peaks intensities of the different environments 334. Using 

this method, the water peak between 3035 – 3680 cm-1 can be analysed by 

comparing the spectral intensities of contributions from bound water 

(corresponding to the peak at 3300 cm-1) and unbound water (corresponding to 

the peak at 3420 cm-1)304, 334, 345. 

 

To investigate changes in the types of water within the serially dehydrated pork 

meat, the change in ratio between bound water versus unbound water signal 

intensity was calculated. Figure 3-12 shows the spectral features that were used 

to calculate the ratio and demonstrates that with greater dehydration (and a lower 

water concentration), the proportion of unbound water decreases.  
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3.3.3.2 Pork fat 

The serial dehydration of pork fat over 24 hours led to an 18% change in the fat 

specimen weight, compared to the 60% change in the meat specimen weight. 

This suggests that pork fat has a reduced amount of initial water than pork meat. 

The results from the serial dehydration of pork fat are shown in Figure 3-13. This 

shows that there was very little change in the water/total area ratio with weight 

change. The relationship between percentage weight change and water/area 

total ratio demonstrated in graph B is along the y axis of 0, the reason for negative 

values was that baselining in pork fat spectra was difficult as there was an 

inflection at the end of the spectrum due to tissue fluorescence, that was not 

possible to account for leading to the occasional negative reading within the water 

Figure 3-12. Graphs showing the change in Unbound versus Bound water in serially dehydrated 

pork. 

A.Shows HWN Raman spectra of serially dehydrated pork at three different points of dehydration, with a 

range from 100% weight – 45% weight. Plotted lines are mean (n=5) for each %age change in weight 

normalised to CH stretch region between 2850 -2950 cm-1, after pre-processing, shading in the same colour 

either side is +/- 1 SD. Dotted lines show the spectral features of Unbound water at 3420 cm-1 (black), and 

the bound water at 3320 cm-1 (red). B. Shows the Spectral intensity on left axis of Unbound and bound water 

demonstrated with bar graphs, with unbound/bound water ratio on right axis demonstrated with line graph 

at different %age weight pork. All values plotted are mean (n=5), error bars +/- SD 
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spectrum (as the baseline fluctuated around zero), which then gave a small 

negative water area figure. 

 

A B 

  

Figure 3-13 Figure showing Raman spectra in the HWN region of pork fat at different stages of 

dehydration and the relationship with water/total area ratio  

A. Graph showing Raman spectra of pork fat specimens at 7 different stages of dehydration. Plotted lines 

are mean (n=5) for each %age change in weight normalised to CH stretch region between 2850 -2950 cm-

1, after pre-processing, shading in the same colour either side is +/- 1 SD.  

B. Scatter graph of %age change in weight versus water/total area ratio. Points plotted are mean water/total 

area ratio (n=5) from spectra taken at each stage of dehydration, error bars +/- 1 SD.  

 

 

3.3.4 Mixed protein/lipid phantoms 

Figure 3-14 demonstrates the results from 3 different mixed phantoms that had 

the same water concentration of 70%, but different protein/lipid ratios, and Figure 

3-15 shows the results from 3 different mixed phantoms that had the same water 

concentration of 80%, but different protein/lipid ratios. 

 

In both sets of phantoms it was found that with identical water concentrations, 

with a change in the lipid/protein environment the HWN spectra changes, and, 

significantly there is a change in the water/total area ratio. It can be seen that with 

a decrease in the relative concentration of lipid within the phantom, the AUC CH 

stretch region (relating to both protein and lipid peaks in these phantoms) 

decreases relative to the AUC water peak. It can also be seen that with the 

decrease in relative lipid concentration, there is a decrease in the AUC water 

peak – although the water concentration remains the same for each set of 

phantoms. These changes in the AUC CH stretch region and AUC water peak 

result in changes to the water/total area ratio – the mean water/total area ratio 
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increases significantly as the relative lipid concentration decreases in both the 

70% water phantoms (displayed as mean water/total area ratio (SD); phantom 1- 

0.4759 (SD 0.027) compared to phantom 2 -0.5486 (SD 0.0066); P=4.5X10-5, 

and phantom 1 compared to phantom 3- 0.5796 (SD 0.0076); P=1.2 X10-6 , and 

phantom 2 compared to phantom 3 P= 0.031) and in the 80% water phantoms 

(phantom 4- 0.6401 (SD 0.030) compared to phantom 5- 0.707 (SD 0.009); 

P=2.3X10-4, and compared to phantom 6 - 0.7727 (SD 0.0047); P = 2.1X10-7, and 

phantom 5 compared to phantom 6; P=2.6X10-4 ) (one -way ANOVA).  

 

A 

 

B 

 

Figure 3-14 - Figures demonstrating the effect of a change in lipid/protein environment on the HWN 

spectrum in phantoms with a water concentration of 70% 

Graph – A – baselined and normalised to CH stretch region between 2850 -2950 cm-1for the phantoms 1 – 

3, which all had a 70% water concentration but different protein/lipid ratio. B. Graph showing phantom 

number, Bars demonstrate the area under the curve of the CH stretch region (AUCH - Blue), and area under 

the curve of the water peak (AUW - orange), y axis on the left, with the water/total area ratio a black line with 

y axis on right. All values plotted are mean (n=5), error bars +/- SD. Water/total area ratio was significantly 

different between all phantoms (P< 0.05) 
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A 

 

B 

 

Figure 3-15 - Figures demonstrating the effect of a change in lipid/protein environment on the HWN 

spectrum in phantoms with a water concentration of 80% 

Graph – A – baselined and normalised to CH stretch region between 2850 -2950 cm-1for the phantoms 4 – 6, 

which all had an 80% water concentration but different protein/lipid ratio. B. Graph showing phantom number, 

Bars demonstrate the area under the curve of the CH stretch region (AUCH - Blue), and area under the curve of 

the water peak (AUW - orange), y axis on the left, with the water/total area ratio a black line with y axis on right. 

All values plotted are mean (n=5), error bars +/- SD. Water/total area ratio was significantly different between all 

phantoms (P< 0.001). 
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3.4 Discussion 

3.4.1 NP3 can measure changes in water concentration at physiological 

concentrations 

The results from the soya bean oil phantoms of varying concentrations 

demonstrate the ability of NP3 to detect changes in water concentration over a 

range from 30% - 95% water in a lipid only environment, with sensitivity to detect 

changes of 5%. The relationship between water/total area ratio and water 

concentration was linear, with an overall gradient of 1.24. However, there was 

some minor difference in the relationship between those phantoms with a higher 

water concentration (70-95%) compared to those with a lower water 

concentration (30-65%). The gradient of the lower water concentration line of best 

fit was 1.05, which suggests that the water/total area ratio is less sensitive to 

changes in the water concentration at lower water concentrations in lipid only 

environments. This could mean that over these broad ranges, that are likely to 

be encountered in human breast tissue, the relationship may not remain constant 

and this could affect the ability to quantify changes in water concentration. 

However, the difference between these two relationships are relatively small. 

It should also be noted that the soya bean oil phantoms had no protein, which 

would be present in human breast tissue. The presence of protein (which has a 

CH peak close to the lipid CH peak) could affect the water/total area ratio and 

may affect these results, and the relationship between water/total area ratio.  

 

The results from the serially dehydrated pork meat (a predominantly protein 

environment) demonstrates that there is a change in water/total area ratio with a 

presumed decrease in water concentration (as calculated by weight change). 

This demonstrates that NP3 is able to measure HWN spectra in biological 

systems, and it is able to detect changes in water concentration. The initial 

absolute water content of the pork could not be ascertained, but there was a loss 

of weight down to 45% of its starting weight over the course of its dehydration 

down to its ‘dry weight’, suggesting that water accounted for 55% of its initial 

weight which is a range encountered in human tissue 294. The relationship 

between water/total area ratio and relative water concentration was not linear, 

the water/total area ratio changed little at higher relative water concentrations of 

100 – 77% weight, but between relative water concentrations of 77-44% with a 

decrease in weight there was a decrease in water/total area ratio. This could 
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affect the ability of NP3 to quantify changes in water concentration in biological 

tissue, the reasons why this relationship may not be linear are subsequently 

discussed. 

 

The results from the serially dehydrated pork fat demonstrated that the fat 

changes little in weight (by <20%), suggesting it had a very low water 

concentration initially of no greater than 20% which would be expected in 

hydrophobic tissue. It also dried out very quickly, with a number of measurements 

being the same, suggesting that it was truly dehydrated of any free water. There 

may be less bound water in fatty tissue as it is hydrophobic. As there is little bound 

water, it may explain why it dehydrates quickly and completely. There was 

negligible change in the water/total area in Raman spectrum over this range of 

20%, and all values were close to zero (the reason for negative values is the fixed 

noise pattern oscillates around the zero baseline which give negative values for 

water AUC). The lowest soya bean oil phantom concentration was 30% water, 

and this fat dehydrated over a range of 20%, and probably has an initial 

concentration of < 30% water. It may be that in fat based environments in 

biological tissue of low water concentration of < 30% , the fat/total area ratio or 

any measure of HWN spectra, there is little change, and so changes in water 

content at low water concentrations (or high fat concentrations) cannot be 

detected. This suggests that for water concentrations <30% in predominantly lipid 

environments NP3 cannot detect changes in water concentration. These low 

water concentrations are likely to be encountered in some areas of fatty human 

breast tissue, and so this needs to be taken into account when analysing data 

from areas of low water concentration or high fat. 

 

Summary 

NP3 is capable of detecting changes in water concentration in soya bean oil 

phantoms, and these changes have a linear relationship with the water/total area 

ratio. The range that was investigated covers the physiological range likely of fat 

and water in human breast tissue. In biological tissue of serially dehydrated pork 

meat and fat the ability of the HWN region to detect changes in water 

concentration are less definitive. Although there was a trend of decreasing 

water/total area ratio with a decrease in water concentration in the protein rich 

environment of serially dehydrated pork meat, the relationship is not linear, 
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particularly when the pork meat had a higher water concentration.  In pork fat, 

where the initial water concentration was very low, further dehydration did not 

lead to any measurable change in the water/total area ratio, suggesting that in fat 

environments of very low water concentration, HWN RS may not be capable of 

detecting changes in water concentration.   

 

3.4.2 The effect of changes in water concentration on the HWN spectrum in 

three different environments  

This section of the discussion aims to understand more about the spectra in the 

HWN region, the influences on the protein/lipid and water peak, and what needs 

to be taken into account when interpreting spectra and data from the HWN region 

to observe changes in water concentration or quantify changes in water 

concentration. Three systems were used to explore the effect of changes in water 

concentration on the HWN spectrum, protein only (gelatine/water phantoms), lipid 

only (soya bean oil/ water phantoms) and a biological system (serially dehydrated 

pork meat, mostly protein). 

 

3.4.2.1 Protein only environment 

In the protein only environment the spectral intensity of the protein peak 

increases, and the spectral intensity of the water peak decreases with a decrease 

in water concentration. This is expected as the relative protein concentration in 

the sampling volume is increasing with decreasing water. The AUC water peak 

decreases as water concentration decreases, and this relationship is linear. 

Similarly, the AUC protein peak increases as the protein concentration increases 

(and water concentration decreases), so the change in water/total area ratio seen 

with a change in water concentration is a result of these two spectral changes. 

This model is limited as the range of water concentrations is narrow (a 10% 

range), and so this relationship may not be true at lower water concentrations. 

However, it is in similar, simple, protein only systems that using HWN RS to 

quantify changes in water concentration has been validated previously. Masson 

et al. quantified water concentration changes in gelatin phantoms with a range of 

water concentrations from 66.67-90.91% 304 and Caspers et al. used a range of 

protein only solutions such as albumin, pepsin, lysozyme and urease to produce 

solutions of 60-80% water to calibrate their method of water quantification based 
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on water: protein ratios 295. So, it may be that this relationship remains at a greater 

range of water concentrations than studied in this thesis.  

 

This linear relationship between the protein and water peaks and water 

concentration in these simple protein models has also been used by those 

authors to suggest that this relationship is true in biological tissue, and therefore 

they use these simple systems (such as albumin and pepsin) to ‘calibrate’ their 

interpretation of the HWN spectra obtained in biological tissue (such as surgically 

excised tongue specimens) and provide a quantification of change of water 

concentration 174. However, as has already been noted in the biological system 

of pork meat, this linear relationship is not necessarily true in more complex 

systems, which also involve the effect of sampling location, sampling volume and 

changing optical properties of the material with water concentration. 

 

3.4.2.2 Lipid only environment 

The results from the soya bean oil phantoms demonstrates that although in the 

lipid environment there is a linear relationship between water/total area ratio and 

change in water concentration the baselined, but not normalised, spectra shows 

that the water peak doesn’t change much with different water concentrations, and 

it is the lipid peak that changes the most. This suggests that by using just the 

water/total area ratio, although validated in previous work, it may be an 

insufficient method to explain or understand the changes that occur in the HWN 

region with changes in water concentration.  

 

In a lipid environment the relationship between change in water concentration 

and changes in the AUC are different compared to the protein system. The AUC 

water peak does not have a constant relationship with changes in water 

concentration, particularly at higher water concentrations, however the AUC lipid 

peak has a linear relationship of increasing with a decrease in water 

concentration (and increase in lipid concentration) with a small degree of 

variability throughout the range of water concentrations from 30 – 95%. There is 

a linear relationship between change in water concentration and the water/total 

area ratio in these soya bean phantoms. From the AUC graphs it can be assumed 

that the reason for this relationship is primarily due to changes in the AUC of the 

lipid peak, rather than changes in the AUC of the water peak.  
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This suggests that HWN RS in a lipid only environment is more sensitive to 

relative changes in lipid than changes in water concentration. In a phantom, such 

as the soya bean oil phantoms, where there is only lipid or water concentrations 

that are changed, the water/total area ratio remains constant with changes in 

water concentration, as if the lipid increases, the water concentration must also 

change. However, in a complex system which has protein, lipid and water and a 

number of different concentrations, the ability to detect and quantify changes in 

water concentration may be affected. 

 

A reason for this observation is that the optical properties of the measured 

substrates will affect the pathlength of the laser photons and therefore the 

sampling volume, the pathlength also impacts on any differential self- absorption 

of the solution, as shown by the water absorption spectrum in the HWN 

wavenumber region. A limitation of the soya bean oil phantoms is that these 

emulsions are highly scattering. Intralipid, which is a similar emulsion composed 

of soya bean oil, has been used as a scattering agent to mimic the optical 

properties of breast tissue308, 311. So, it could be these changes in scattering 

properties of the soya bean oil phantoms that are causing the changes seen in 

the AUC peaks, as the changes in the highly scattering lipid may affect the 

changes in the water spectrum. However, creating a lipid only phantom over a 

broad range of physiological water concentrations is challenging, and a lipid only 

phantom that was capable of having a known water concentration, over a large 

range, that did not cause significant scattering, could not be found in the literature. 

Even if this is the cause for the changes seen, it is still relevant, as breast tissue 

is heterogenous and likely to contain areas of different scattering properties – 

indeed the reduced scattering coefficient (a measure of light diffusion in a tissue 

and reflection of scattered light from a tissue314) reported in the literature for 

breast tissue ranges from 8.3 to 31.8 cm-1 346, 347 (one of the greatest ranges in 

biological tissues that has been reported 314). Kim et al. found in skin that changes 

in water content of a sample led to changes in the optical properties of the sample 

348. For example, it was found that the reduced scattering coefficient (μs') doubled 

as the water content of the skin increased by 15%. This could be due to an 

increase in backscattered light with an increase in water content, and this was 

the main reason for variation in the intensity of Raman spectra in this study. If the 
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ability of HWN RS to quantify changes in water concentration is affected by 

changes in scattering properties, it must be considered when interpreting spectra. 

 

UV-Vis measurements of the constituents of the soya bean oil phantoms were 

performed to investigate if the results were affected by the absorption 

characteristics of the phantoms’ constituents. The results suggest that soya bean 

oil and Triton X100 had some degree of absorption, however it is at the same 

level throughout the relevant wavelength region and so it wouldn’t 

disproportionately affect one part of the spectrum more than the other. 

Broadband absorption like this will change the entire HWN region equally, and so 

ratios between intensities are unchanged. However, the water absorption does 

vary throughout the spectrum, with an increase absorption between 1011-

1050nm, which corresponds to a Raman shift of 2850 cm-1 and 3300 cm-1 at 

785nm excitation. This may mean the water absorption would reduce the CH3 

stretch region of lipid disproportionately with increases in water concentration. 

This could affect the water/total area ratio as changes in water concentration are 

not affecting all of the spectrum to the same degree. 

 

The absorption characteristics in skin were investigated by Kim et al. who found 

that there was a decrease in the absorption coefficient with an increase in water 

content in porcine skin 348. This correlates with our findings that optical absorption 

properties change with changes in water concentration in biological systems, and 

so these observations need to be considered when interpreting spectra in the 

HWN region when using a 785 nm laser excitation. These findings will need to 

be considered in analysing spectra from breast tissue. 

 

So, while broadband absorption will change the entire HWN region equally (when 

using a 785 nm excitation laser), and so the ability of using ratios or peak 

intensities for quantification of water content with HWN region remains 

unchanged, the absorption properties of water may mean that differing water 

concentrations may affect the HWN region spectra, and the relationship between 

water/total area ratio and changes in water concentration. 
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Summary 

These results demonstrate that although the water/total area ratio changes with 

a linear relationship with a change in water concentration in a lipid only 

environment, the change in water peak doesn’t have a consistent relationship 

with a change in water concentration, whereas the change in lipid peak shows a 

robust and consistent relationship with a change in water concentration. This 

suggests that HWN spectra of lipid rich tissue are more affected by changes in 

lipid concentration than changes in water concentration. 

 

It has also been discussed that spectra in the HWN region are affected by the 

optical properties of scattering and absorption of the tissue measured, and that 

the scattering properties of fat, and the absorption properties of water will change 

with their respective concentrations, which may affect interpretation of HWN 

spectra in the assessment of changes in water concentration when using a 785 

nm excitation laser. These findings are highly relevant to measuring in biological 

tissue such as breast tissue, as tissues are heterogenous with different 

concentration of water and lipid, and thus will have different optical properties. It 

is difficult to experimentally separate out the optical properties of our substrates 

measured here (soya bean oil and water) from their concentration, as they are 

inherently linked, i.e. if the concentration of lipid is increased, the scattering 

properties will change, and these cannot be isolated easily. Changes in optical 

properties may affect the HWN spectra to the same degree as changes in water 

or fat concentration.  

 

Therefore, when interpreting spectra from the HWN region using a 785 nm 

excitation laser it must be considered that the HWN region is affected more by 

changes in lipid than in water concentration and by changes in the optical 

properties of the specimen. If there are changes seen between tumour and non-

tumour breast tissue in the HWN region, it must be considered that changes in 

lipid concentration and optical properties affect the HWN spectra, as well as water 

concentration. Therefore, any changes in the water peak of the HWN spectra 

should not be considered to be due to solely a change in water content. These 

findings will aid interpretation of spectra when measuring a variety of 

microenvironments within breast tissue with the NP3 system.  
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3.4.2.3 Biological system 

The results from the serially dehydrated pork show that, although there is a 

relationship between water change and water/total area ratio in pork meat, it is 

not linear as it is with the more simple protein model of gelatine phantoms at 

different concentrations. The pork meat is protein rich, however the results from 

the changes in the HWN spectra with water concentration are more similar to the 

lipid only phantom. The AUC CH stretch region peak increases with a decrease 

in water concentration. It is interesting that the protein peak intensity increases 

with a decrease in water content, even as we presume the amount of protein or 

lipid is unchanged as they are the same pieces of meat. A presumption in these 

experiments is that the weight loss of the pork is due to dehydration, and loss 

only of water. The meat only dehydrated for 24 hours in a laboratory, so it is 

unlikely that any decay or consumption of the protein occurred, and so we also 

assume that the amount of protein remained stable throughout the experiments. 

The AUC water peak does not have a consistent relationship with a decrease in 

water concentration, there is however a trend of increasing AUC water with a 

decrease in water concentration, although the meat lost >50% of its mass, which 

is presumed to be water. Biological systems are inherently more complex than 

simple phantoms constructed in the laboratory, and there are a number of 

phenomena occurring that may help to interpret these findings. 

 

As water evaporates from the dehydrating pork it may not occur evenly from the 

specimen. It can be presumed that surface dehydration occurs more rapidly, and 

so the percentage weight change of the whole sample may not reflect the water 

change at the surface, which is where the concurrent Raman measurement is 

taken. The sampling depth of the NP3 system is estimated to be 500 µm (>50% 

of collected Raman photons are obtained from within this distance) 164. Therefore, 

the majority of the collected photons will be collected from the surface, which is 

drying more rapidly from the bulk of the specimen, and thus may be an 

unrepresentative reflection of the specimen’s water content. Another 

consideration is that some Raman scattering contribution will be from beyond 500 

µm, from areas of greater hydration, and so within a single measurement different 

depths and water concentrations are being sampled, and  this may be 

responsible for some of the observed intra-specimen variation. 
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The sampling of the specimen may also differ – certain areas of the specimen 

may have different water concentrations, and at every time point, it was not 

possible to ensure that the same part of the specimen was measured, which 

could lead to varying results. 

 

Dehydrating biological tissue leads to a change in their optical properties. 

Rylander et al. demonstrated in skin that as it dehydrated the scattering particles 

such as collagen and organelles become more densely packed349. The pork 

specimen in these experiments visibly decreased in size, so as water leaves the 

specimen protein molecules come closer together increasing the amount of 

protein (and likely scattering) sampled in a given measurement. The specimens 

were also exposed to light, which may degrade or change biological pigments 

such as haem or carotene which may change the optical properties of the pork 

through its time of dehydration. These considerations may explain the greater 

variation in measurements with larger standard deviations compared to those of 

the gelatine or soya bean oil phantoms. 

 

Another reason for the changes in HWN Raman spectra having a non-linear 

relationship with changes in water concentration in biological tissue is that water 

is sequestered in a number of different environments in biological tissues.  

In the spectra of pork meat at its ‘dry’ weight (the point at which no further 

dehydration occurred) there is still a small spectral peak at 3280 cm-1 – this is 

due to the vibration of the NH group present in protein, which was also observed 

by Yang et al. 345 in dehydrated chicken, rather than signifying any residual water. 

It has been shown that water associated with presence of this NH group is more 

tightly bound 334. Therefore the presence of the NH group in protein not only 

effects the HWN spectra because its vibration contributes a peak within the OH 

region, but also because water may be sequestered differently in the presence of 

the NH peak, which can affect the OH vibration, and subsequently the 

morphology, and behaviour of the HWN OH peak350. 

 

Unal et al. demonstrated that in biological tissue (bone), water is lost at different 

rates according to whether it is bound or unbound 351. In their experiments they 

dehydrated bone of unbound water (by air drying) and bound water (by ethanol 

dehydration) and observed the changes in Raman peak intensities associated 
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with these two types of water, and found that unbound water loss followed a 

similar non-linear relationship to the pork meat dehydration, whereas the bound 

water loss followed a linear relationship with the associated Raman peaks. It is 

likely the water loss in the pork meat also represents unbound water. It may also 

be that as the specimen slowly dehydrates, water moves between compartments 

from bound to unbound, which would also affect the relationship of overall water 

concentration of the specimen with Raman spectra.  

 

Figure 3-12 demonstrates that there are changes in the ratio of bound to unbound 

water, as pork meat dehydrates. As the water concentration of the pork 

decreases, the proportion of unbound water decreases and the unbound/bound 

water ratio changes from 1 (100% weight) to 0.43 (at 31% weight), this suggests 

that water losses are disproportionately from unbound water rather than bound 

water. These relative changes between bound and unbound water may 

contribute to our understanding as to why the water/total area ratio is not linearly 

related to a change in water concentration. The relationship between water 

concentration and the Raman peak intensity is dependent on the water type - the 

bound water peak Raman intensity has a linear relationship with changes in water 

concentration and unbound water Raman peak intensity has a non linear 

relationship water. This suggests that for the same number of water molecules, 

the Raman scattering cross section is dependent on the environment of the 

water. This means the AUC water peak is dependent not only on the total water 

concentration, but also what environment the water is in. The different water types 

are contributing differing proportions towards the overall AUC water peak at the 

different water concentrations which may explain why neither the AUC water nor 

the water/total area ratio has a linear relationship with water concentration in 

serially dehydrated pork. 

 

This finding also helps to understand why the relationship between water/total 

area ratio and water concentration is different between the protein only 

environment of gelatine phantoms and the protein rich environment of pork. In 

pork dehydration, there are changes in where water is sequestered over time, 

whereas in gelatine phantoms that are composed of a set concentration this does 

not change (the unbound/water ratio in gelatine phantoms is 1.04 and does not 

change between 95% water and 85% water phantoms, data not shown).  
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The rationale for using the water/total area ratio area rather than specific parts of 

the water peak for calculation in water content is that it will include the changes 

between these types of water, whereas if only a narrow part of the water peak 

(e.g. just detecting unbound water) is used it may not detect changes in the other 

part of the water peak (e.g. changes in unbound water). A benefit of using a 

narrow part of the spectrum may be that the changes in water concentration with 

that part of the spectrum are more fully understood, e.g. if the bound part is used, 

one could assume a linear relationship with changes in water concentration. 

However, this would not give a full representation of what is occurring to the 

specimen in terms of total water concentration. It is not known whether the 

changes in water content between tumour and non- tumour breast tissue occur 

mainly in bound or unbound water, and so the whole water peak area should be 

used to capture any potential differences between tissue types. 

 

Summary 

These results demonstrate that in a protein rich biological tissue there is a 

relationship between water/total area ratio with change in water concentration, 

but it is not a linear relationship. It is also seen that the AUC water peak does not 

change in relation to a decrease in water concentration. The reasons for this 

relationship may be due to sampling technique, changes in sample structure and 

optical properties or changes in bound versus unbound water as the pork meat 

dehydrates. 

 

 Although these may be seen as ‘limitations’ of using serially dehydrated pork as 

a model, they represent challenges that are likely to be faced in biological tissue 

such as breast tissue. These properties that affect the HWN spectra are unique 

to each biological tissue, so what is found in pork tissue may not hold true of 

breast tissue. The shifts in water compartments are likely to be different between 

a tissue that is dehydrated to a certain water concentration, and a tissue that is 

in homeostasis at a certain water concentration. However, a highly relevant 

finding from these results is that there are changes to the HWN spectra according 

to where the water is sequestered, and changes in where the water is 

sequestered affects the water peak in a different manner. When measuring a 

biological tissue with a number of microenvironments, these are likely to hold 
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water in a different manner. Measuring the entire water peak therefore may give 

the best indicator of changes, but it may be there is a non- linear relationship, as 

seen in this biological pork tissue. 

 

3.4.3 The water/total area ratio relationship with water concentration is 

dependent on protein/lipid environment 

This section will discuss the influence on the HWN spectrum of changes to the 

protein/lipid environment on the ability to detect changes in water concentration, 

examining the results from the mixed gelatine phantoms.  

 

In 3.4.2, the results suggested that the changes in the HWN region, and more 

specifically the water/total area ratio, is more a product of changes in lipid/protein 

concentration than of water concentration. It could therefore be hypothesised that 

the spectral changes with water concentration and the water/total area ratio will 

be dependent on the protein and lipid environment. 

 

Caspers et al. used a range of different protein substrates (BSA, pepsin, 

lysozyme and urease) at a range of concentrations, to create a calibration tool for 

quantifying changes in water concentration using the HWN region 295. There was 

a 15% difference in the proportionality constant calculated from the four different 

calibration proteins that was used to determine the changes in the water to protein 

ratio. This suggests that even between different simple protein/water mixes there 

is a different relationship between change in water content and the HWN spectra, 

and this may impact on the ability to assess changes in water concentration. 

 

The water/total area ratio relationship between soya bean oil and gelatin 

phantoms over the same water fraction range is shown in Figure 3-16: 
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In both gelatine phantoms (protein only) and soya bean oil phantoms (lipid only) 

there is a straight line fit relationship –the changes in water concentration are 

proportional to the changes in water/total area. However, they have different 

gradients, that is the rate of change in the water/total area ratio is dependent on 

whether the water is in a protein or lipid environment. This suggests that changes 

between protein and lipid environments changes the relationship between 

water/total area ratio. A water/total area ratio from a protein rich environment will 

not equate to the same water/total area ratio in a lipid rich environment of the 

same water concentration. 

 

The results from the mixed phantoms in Figure 3-14 and Figure 3-15 show that 

with a constant water concentration, the AUC of the water peak and the 

water/total area ratio changes with a change in protein/lipid ratio. This 

demonstrates that the water peak and the relationship of the water/total area ratio 

and water concentration changes is dependent on the protein/lipid environment. 

 

These results also show that the lipid signal is dominant in the HWN region. 

Observing the Raman spectra from these phantoms demonstrate that even in 

phantom 5, which had the same concentrations of lipid (1%) and protein (1%), 

0.8 0.85 0.9 0.95 1

Known water fraction

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

W
a
te

r/
to

ta
l 
a

re
a
 r

a
ti
o

Gelatine phantom

Soya bean oil phantom

Figure 3-16 Graph showing linear relationship between known water fraction and water/total area 

ratio  

 Gelatine phantoms (gradient = 0.57, RMSE – 9X10-4) and  Soya bean oil phantoms (1.61, RMSE = 

4X10-16) 



Chapter 3 
 

 179 

the lipid signal dominates. What is also observed is that as the concentration of 

lipid decreases, the total AUC of both CH stretch region and water peaks 

decreases. This may be due to the scattering effect of the soya bean oil emulsion, 

meaning the Raman cross section of the entire phantom is reduced. However, 

also note that as the lipid content decreases, the water/total area ratio increases, 

this is because the AUC water peak decreases at a lesser rate than the AUC CH 

stretch region.  

 

If the relative change in lipid concentration in the phantoms is calculated, it is 

equal to the relative change in the water/total area ratio that would be found in 

the change in lipid concentration in a soya bean oil phantom. For example, in the 

phantoms 4 – 6, the total oil concentration decreases by a total of 10% (from 15% 

lipid to 5% lipid), over this range the water/total area ratio increases by 14 % (from 

0.69 to 0.83). Figure 3-16 B demonstrates the relationship between soya bean oil 

phantoms and water concentration has a gradient of 1.24, so in soya bean oil 

phantoms, if the water concentration increased by 10% (and therefore the lipid 

content decreased by the same amount), a 12.4% increase in water/total area 

ratio would be expected. This shows that with a change in lipid concentration, but 

with the same water concentration, there are changes in both the spectral 

features and water/total area ratio, that are comparable to if there were significant 

changes in water concentration. 

 

Within this range of phantoms there are changes in protein concentration, 

however it is changes in lipid concentration that are predominately observed. This 

suggests that HWN spectrum may not identify more subtle changes in protein 

concentrations in the presence of lipids.  

 

Summary 

These results suggest that in a protein/ lipid environment, the HWN region mainly 

observes changes in lipids, more than changes in protein or water. A change in 

lipid concentration within a constant water concentration will change the 

water/total area ratio to a similar degree as a change in water concentration. 

This suggests that using water/total area ratio within different protein/lipid 

environments would not accurately quantify changes in water concentration, as 
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altering the protein/lipid environment affects the water/total area ratio as much as 

a change in water concentration. 

 

3.5 Conclusion 

This chapter has demonstrated the influences on spectral measurements in the 

HWN region, and the ability to detect and quantify changes in water 

concentration. The results demonstrate the ability of NP3 to measure and 

quantify changes in water concentration in a lipid only environment at a range of 

physiological concentrations, and the relationship between changes in water 

concentration and the water/total area ratio in a biological tissue. However, the 

subsequent data analysis of measuring changes in AUC of the spectral peaks, 

and analysis of mixed phantoms with a constant water concentration and different 

protein/lipid environments demonstrate that the relationship between water/total 

area ratio is complex. The signal intensity of the water peak does not always 

increase or decrease with corresponding changes in water concentration, and 

the lipid peak appears to dominate the spectral features in the HWN region. 

 

The rationale for performing these experiments was to understand the influences 

on spectra in the HWN region and the changes that occur with water 

concentrations. The ability to quantify changes in water concentration would be 

useful, as it would allow findings to be put in context with imaging modalities other 

than Raman spectroscopy. The findings from these experiments suggests that 

HWN Raman can quantify changes in water concentration, if the changes occur 

within the same protein/lipid environment. It is also possible to measure these 

changes in a number of different protein and lipid environments. However, the 

relationship between changes in water concentration and changes in the HWN 

region are dependent on the protein/lipid environment and so one cannot equate 

spectra or measurements of water concentration from one environment to 

another. 

 

Previous studies have used the protein/water ratio from a set of protein only 

solutions to calibrate the system and then used these figures to quantify changes 

in water concentration in a different environment of biological tissue. In a protein 

only biological environment, such as skin 295 or corneas 296, this may be valid as 

the calibration tool is a protein only environment, so the error caused by changing 
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environments may be acceptable. However, the use of a protein only calibration 

tool for water quantification of spectra obtained in biological tissue including 

protein and lipid spectra as was done by Barosso et al. 174, based on our data, is 

likely to lead to significant inaccuracies in estimation of water content. 

 

As biological tissue is composed of multiple different protein/lipid environments, 

of different optical properties, and water is sequestered in different ways, this 

complexity cannot be replicated to a sufficient degree to allow accurate 

calibration. The only reliable method of accurately quantifying water 

concentration within tissue is to use that tissue itself to provide a calibration tool. 

One method is by calculating water fraction by freeze drying breast tissue, taking 

a wet and a dry weight, and using a PLS model to correlate with the spectra 

obtained from different known water concentrations, as performed in brain tissue 

by Wolthuis et al. 294. A limitation with this method is they were only able to 

produce a narrow range of water concentrations of 75-95%. Another method 

would be with serially dehydrating breast tissue and taking Raman spectra, 

similar to the serially dehydrated pork experiments. Access to appropriate 

samples obviously may limit the possibility of being able to perform these 

calibration experiments. Additionally, when analysing an area of breast tissue, 

measurements would be taken from a range of different lipid, protein and water 

environments, with constant changes within the specimen between these 

different environments. Therefore, calibration to enable quantification water 

content would require separate measurements for each environment likely to be 

encountered. 

 

It may be that quantification of water content is difficult with HWN Raman in 

specific biological tissues due to limitations of accessing the appropriate 

biological tissue for experimentation and calibration. However, the HWN region 

has been shown to be able to detect changes in the HWN region between 

different protein/lipid environments, and can provide indicators of a high water 

concentration environment and a low water concentration environment. It can 

detect changes between lipid and protein environments and give individual 

information on where water is sequestered. Our hypothesis outlined in the 

introduction is that the spectral differences between cancerous and normal breast 

tissue is that tumour is a predominantly protein environment with a high water 
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content, and normal breast tissue is predominantly a lipid environment with a low 

water content. The experiments described in this chapter suggest that High 

wavenumber Raman Spectroscopy and the NP3 system is capable of detecting 

these differences, and therefore may be able to differentiate between cancerous 

and normal breast tissue necessary for Intraoperative Margin Analysis. 
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CHAPTER 4:  
High wavenumber Raman spectroscopy for 
the identification of breast cancer in Fresh 
Frozen Samples 

 

4.1 Introduction 

In the background section to this thesis, the rationale for using HWN Raman 

spectroscopy for intraoperative margin analysis (IMA), and in particular the use 

of changes in water content to differentiate between tumour and non-tumour 

tissue was outlined. The major advantages of using the HWN region for diagnosis 

is that the acquisition times can be quicker and because of the reduced spectral 

features, analysis can be simplified, allowing a rapid assessment of large surface 

areas suitable for clinical IMA. Chapter 2 described the development of the NP3 

system, which demonstrated the theoretical capability of measuring HWN Raman 

spectra in breast tissue, within the clinical environment, and Chapter 3 outlined 

an understanding of the influences on the HWN spectra, and how spectral data 

can be interpreted in relation to changes in water content which may aid in 

developing diagnostic algorithms for HWN spectra. 

 

The next step in developing the NP3 Raman spectroscopy tool capable of 

performing IMA is to assess the ability of the system to differentiate tumour from 

non-tumour tissue. Raman spectroscopy has been shown to be capable of 

diagnosing breast cancer with clinical breast samples, but not in a clinically 

relevant timeframe for IMA 185, 262. In laboratory conditions there has been 

assessment of the HWN region spectral differences between tumour and non- 

tumour human breast tissue, mainly observing changes in lipid and protein 

abundance 297. There is evidence that there are some stark differences in lipid in 

the HWN spectrum between tumour and non-tumour tissue 271, 297, and there is 

potential for these differences to be used along with spectral information from the 

FP region to identify potential areas of tumour 299. However, the differences in 

water content between tissue types and an assessment of using HWN RS alone 
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as a diagnostic tool in a clinical setting, with human breast tissue, has not been 

investigated. The aim of this chapter is to assess the diagnostic ability of HWN 

Raman to differentiate between tumour and non-tumour tissue in human breast 

specimens. 

 

In the Raman literature there is an obvious focus on the differentiation between 

tumour and non-tumour tissue, as this is likely to be the most clinically relevant 

concerning IMA. However, there are a number of other potential uses for HWN 

Raman in breast cancer, particularly as the NP3 system is a needle probe which 

could be used for subcutaneous diagnosis. This system could be used for initial 

cancer diagnosis in addition, or in place of, core biopsy for rapid diagnosis, or 

information from these studies could be used in the development of a deep 

Raman system for screening of asymptomatic patients. Therefore, assessing the 

ability of NP3 system to provide a pathological diagnosis, or detect differences 

between pathological subtypes is an important part of developing the NP3 system 

for future clinical uses.  

 

Assessment of NP3 thus far have been focused on the HWN region, as 

differences in water content may be key in rapid IMA. However, the NP3 system 

has a much broader spectral window due to the choice of grating that is required 

to capture the HWN region. Therefore, a large portion of the fingerprint region is 

also measured in any spectral acquisition. The fingerprint region is known to be 

able to differentiate between tumour and different types of non-tumour breast 

tissue 186, and it may give complementary and more  specific biochemical 

information than the HWN region. The ability to capture both regions presents the 

opportunity to have a sensitive tool that can rapidly differentiate between tumour 

and non-tumour breast tissue with HWN spectral data and provide specific 

biochemical information from the fingerprint region that could give detailed 

pathological information.  

 

An important part of differentiating between tumour and non-tumour specimens 

is an understanding of what is the ‘normal’ baseline against which the tumour 

tissue is being compared. When using changes in water content to differentiate 

between tumour and non-tumour, it must be considered that there are 

physiological variations in the water content of normal tissue between patients 306 
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and that these physiological variations may be clinically relevant to disease states 

280. This will inevitably have an effect on the diagnostic ability to differentiate this 

normal tissue from tumour tissue, particularly as it may be that the extremes of 

the ‘normal’ physiological variation overlap with the pathological tumour state 276. 

Therefore, the spectral differences observed between the normal specimens 

must be investigated as part of the pathological assessment. 

 

Taking the aforementioned issues into account, the aim of this chapter is to 

assess the ability of the NP3 system to differentiate tumour from non-tumour 

tissue in human breast tissue samples. There is an emphasis on investigating the 

ability of detecting changes in water content to provide this diagnosis, and 

generally on the HWN spectral features that may provide diagnosis as part of 

IMA, but the spectral data acquired from the fingerprint region are also assessed 

to evaluate whether it can be used in conjunction, or in addition to, the HWN 

region for diagnosis or additional pathological information. 

 

 

4.2 Methods 

4.2.1 Human Tissue samples 

Human tissue samples were acquired between 2011-2015 from the Royal Devon 

and Exeter Hospital. Freshly excised breast tissue removed from patients as part 

of their routine cancer treatments were processed following informed consent 

according to local protocols, having been approved by the Clinical Research 

Facility Tissue Bank steering committee (Ref: CRF320; Tissue bank ethics 

number 16/SC/0162; further information at https://exetercrfnihr.org/about/rde-

tissue-bank). Inclusion criteria were females aged >16 and able to consent for 

the procedure, with a malignant tumour of greater than 2 cm determined by pre-

operative examination or imaging. Routine demographic data were collected from 

clinical notes and linked anonymously with the research samples. The specimen 

was sliced open fresh, and a 3 mm core biopsy was taken from the tumour and 

a separate 3 mm core biopsy taken from surrounding normal tissue, distant from 

the tumour edge (to allow a matched pair of biopsies of tumour and normal breast 

tissue from each patient). This was performed by a histopathologist or pathology 

practitioner. The rest of the specimen then underwent routine histopathological 

analysis. The research core biopsies were labelled anonymously and 
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immediately frozen in liquid nitrogen and stored at -80 ºC. Subsequently, 5 µm 

sections were taken from all of the frozen biopsies for Haemolysin and Eosin 

(H+E) staining and underwent analysis by a histopathologist from 

Gloucestershire Royal Hospital for a histopathological diagnosis, and sections 

taken to be fixed on barium fluoride slides to enable microscopic Raman imaging. 

The remainder of the biopsy (which varied in volume between roughly 2 mm3 to 

5 mm3) was available for needle probe analysis. 

 

4.2.2 Needle Probe Raman Spectroscopy configuration 

The Raman needle Probe was configured as outlined in Chapter 2 for the NP3 

system. In brief, a 785 nm laser excitation was used, with a Kaiser Spectrometer 

with a broad grating with an InGaAs camera, with fibre optics within a needle 

probe for light delivery/collection. 

Daily calibrations were performed with Neon Argon lamp, Ethanol, water, PTFE 

Paracetamol and aspirin. This was used to calibrate the Raman shift using the 

inbuilt calibration tool in the SOLIS software. A dark signal measurement of 5 

second acquisition and 5 accumulations were taken daily for baseline subtraction 

(method detailed in Chapter 3).  

 

4.2.3 Fresh Frozen sample Breast Tissue measurements 

The fresh frozen biopsy samples were measured individually. The sample was 

removed from the freezer, thawed at room temperature and measured 

immediately to minimise loss of water by evaporation before being disposed of 

appropriately. The whole process took less than 5 minutes for each sample.  

Measurements were performed at an ambient temperature of 21 – 24 ºC in a dark 

room. The specimen was removed from its container once thawed and placed on 

a calcium fluoride slide. The needle probe was then put in contact with the 

specimen for measurement. 5 – 8 different areas of the specimen were measured 

at random, depending on the size of the specimen. Measurements were taken as 

5 second acquisitions and 5 accumulations in each of the 5-8 different areas. 

 

4.2.4 Estimation of water content by dehydration  

To obtain a correlation between the HWN Raman spectra and calculated 

water/total area ratio and water content of breast tissue, a series of dehydration 

experiments were performed. Five tumour specimens and two non-tumour 
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specimens were chosen for the experiments – they were the largest specimens 

available (to enable measurable change in weight). 

 

Immediately after the initial Raman measurements for tumour diagnosis 

experiments, samples were weighed using weighing scales accurate to 0.0001 

g. This initial weight was the ‘wet weight’. The samples were then placed in the 

laboratory environment to dehydrate over time and were measured every hour 

until the weight was unchanged for two consecutive readings (approximately 6 

hours), and this was recorded as the ‘dry weight’. Weight loss was presumed to 

be wholly due to water dehydration. Water fraction was calculated as per 

Equation 4-1: 

 

𝑊𝑎𝑡𝑒𝑟 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛−′𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡′

′𝑤𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡′ 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
  

 

Immediately prior to the weighing of the specimen at each time point, 

measurements were taken as per the other Needle probe Raman measurements. 

This resulted in a series of Raman spectra at each stage of dehydration for each 

specimen. 

 

4.2.5 Data Processing 

Spectra were recorded using SOLIS software (Andor,UK) and processed in 

Matlab (Mathworks, USA). For each measurement the mean of the 5 

accumulations was taken. A smoothed dark noise baseline was obtained by a 

Savitzky-Golay filter with a 7th order polynomial of the dark noise reading and this 

was subtracted from the spectra. Spectra that had high levels of background 

fluorescence that resulted in little visible measurable Raman spectral data were 

rejected (n=3). 

 

4.2.5.1 HWN region 

For calculation and analysis of the water/total area ratio the HWN spectra 

underwent 3rd order polynomial baselining with no normalisation (as 

demonstrated in Figure 4-1 A). This is similar to other studies that have 

investigated water / protein / lipid ratios , where the data has undergone minimal 

Equation 4-1 Calculation of water fraction of dehydration of specimens 
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pre-processing with fluorescent baseline subtraction only prior to calculation of 

the ratio 174, 304. 

 

Pre-processing for the High wavenumber (HWN) data (2600-3800 cm-1) 

underwent fluorescent baseline subtraction with a 3rd order polynomial and 

minimum/maximum normalisation (whereby the lowest reading in the individual 

spectrum =0 and the highest reading = 1). 3rd order polynomial background 

subtraction has been used previously for HWN Raman in biological tissue 240, 304 

and has been shown to be optimal for baselining this region compared to other 

polynomials337. Other methods of pre-processing of spectral data such as 

normalising using the median Area under the Curve, normalising using the mean 

Area under the Curve, and normalisation with minimum/maximum without 

baselining were trialled (shown in Figure 4-1). This sequence of pre-processing 

was used as this was the method that gave the best separation between samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 
 

 189 

A 

 

B 

 

C 

 

D 

 

E 

 

  

 

4.2.5.2 Fingerprint Region 

The Fingerprint (FP) region data (900-1886 cm-1) had a more complex fluorescent 

background to consider, and needed to be pre-processed differently to the HWN 

region. Using different pre-processing for the different spectral regions of 

fingerprint and HWN is commonly performed when both are being measured 107, 

304. An example of a raw spectrum is displayed in Figure 4-2, with a hand-drawn 

line demonstrates the complex shape of the background that needs subtraction. 

 

Figure 4-1 High wavenumber spectra of human breast tissue using different pre-processing methods 

A Fluorescent Baseline subtraction using 3rd order polynomial. This was used for the calculation of 

water/total area ratio. B. Normalisation of spectra using the Median Area Under the Curve C. Normalisation 

of spectra using the Mean Area Under the Curve D. Normalisation using Minimum/Maximum E. Fluorescent 

Baseline subtraction using 3rd order polynomial followed by normalisation using Minimum/Maximum. This is 

the method that was used for HWN spectral analysis. 
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Baseline subtraction is performed to subtract the fluorescence sufficiently to 

enhance spectral features to allow greater clarity for interpretation, however if the 

spectrum is ‘overfitted’ it can remove important spectral features and have the 

opposite effect on interpretation 100. The process is a balance between 

underfitting, which leads to ‘false’ peaks of background being interpreted as 

Raman peaks, and overfitting, with Raman peaks being subtracted out along with 

the baseline.  

 

Another method of processing Raman spectra, particularly  for PCA and LDA 

analysis (which was one of our planned methods of analysis) is to perform the 

analysis on spectra that have been normalised (to provide standardisation in 

intensity between spectra and allow comparison) but without any baseline 

subtraction. This removes the human error of visual interpretation of a baseline 

and avoids under or over fitting the baseline to the spectrum. Compared to the 

HWN region, the spectral features of tumour and non-tumour breast tissue in the 

fingerprint region are very well documented. Therefore, we processed the Raman 

spectra without a baseline and trialled a number of different polynomial baseline 

subtractions (what is displayed is representative of the baselines attempted, 

rather than exhaustive) (Figure 4-3). A tumour spectrum was used, as this was 

the group that was the most difficult to fit and gave the most disparate results – 

non-tumour spectra were affected less by the different methods of baselining. 

Figure 4-2 Demonstrating the complex fluorescent background baseline of breast tissue specimens 

Representative raw Raman spectrum from a tumour (red) and non-tumour specimen (green). Hand drawn 

‘baseline’ (black) suggests the ideal baseline that would be fitted to the spectra to obtain optimal spectral 

pre-processing 
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Raw Spectrum Processed Spectrum 

A                                       No Baseline, Normalised 

  

B                                        2nd order polynomial baseline 

  

C                                         7rd order polynomial baseline 

  

 

In the spectrum that did not undergo baselining and in the spectrum that has been 

‘underfitted’ with a second order polynomial, it can be seen that interpretation of 
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Figure 4-3 Demonstrating different methods of pre-processing a representative tumour spectrum 

On the left are the raw spectra, with the polynomial baseline that is calculated for subtraction, on the right 

are the resultant spectra after baseline subtraction, and min/max normalisation. A. Spectrum does not 

undergo baselining, just normalisation. B. Spectrum undergoes 2nd order polynomial baselining and 

normalisation. An example of baseline underfitting, as there remains significant fluorescence baseline 

artefact. C. Spectrum undergoes 7th order polynomial baselining and normalisation. An example of baseline 

overfitting, although all fluorescence baseline is subtracted, some of the spectral features are also lost. 
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peaks is difficult because the baseline is significant, there is no amide III region 

(1200-1300 cm-1103 ) which would be expected in protein rich tissue, and from the 

literature352, and there is a large peak at 1700-1900 cm-1. There are no Raman 

active molecules beyond 1800 cm-1, so it is certain that this is an artefact of 

fluorescence. When we performed a PCA analysis of the spectra that had not 

been baselined, or baselined with a second order polynomial, the principle 

components were difficult to interpret due to the remaining baseline, and so made 

it impossible to analyse the biochemical differences that were separating the 

data.  

 

The spectrum that has been processed with a 7th order polynomial shows signs 

of overfitting. The amide III region, which would be expected to be present, is 

absent, and so some of the specific biochemical features for tissue differentiation 

are lost. However, it has successfully subtracted the fluorescence from 1700-

1900 cm-1.  

 

We then used a 6th order polynomial to fluorescence baseline subtract, which 

gave the optimal results (Figure 4-4). The processed spectrum shows clearly the 

amide III region, which was to be expected, and there is no significant peak in the 

1700-1900 cm-1 region. When compared to a previous study’s results, which were 

also obtained in fresh frozen breast tissue using a 785 nm laser excitation, the 

spectrum is similar352. A 6th order polynomial has also been used in a previous 

publication for baseline subtraction in the fingerprint region when measuring 

fluorescent biological tissue 107. This ability to perform specific biochemical 

analysis of the spectrum and the concordance with previous results suggested 

this was the optimal method for processing our fingerprint spectral data, and so 

this method was used in the rest of this study. 
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 Figure 4-4 Demonstrating pre-processing tumour spectrum with a 6th order polynomial flourescence 

baseline subtraction prior to min/max normalisation. 

A Representative raw tumour Raman spectrum, with the fitted baseline to be subtracted. B Representative 

tumour spectrum after pre-processing. C. Representative tumour spectrum (smoothed with a savitzky-golay 

span of 5, 1st order polynomial) with peaks highlighted with corresponding Raman shift number. D. Figure 

of Raman spectrum from the literature obtained with a 785 nm laser excitation demonstrating similarity in 

Raman peaks with our spectrum in C. Reproduced from reference Li et al. 352,( copyright the authors 2017,  

reproduced with a creative commons licence 4.0 (https://creativecommons.org/licenses/by/4.0/))   

https://creativecommons.org/licenses/by/4.0/
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4.2.5.3 Concatenated data 

Concatenation was then performed where the pre- processed fingerprint 

spectrum was ‘stitched’ with the high wavenumber data to allow analysis without 

the Raman inactive region of 1900-2600 cm-1 (as shown in Figure 4-5).  

 

 

A B 

  

C 

 

 

 

 

 

 

1000 1200 1400 1600

Raman shift cm
-1

0

0.2

0.4

0.6

0.8

1

A
.U

.

Fingerprint

2500 3000 3500 4000

Raman shift cm
-1

0

0.2

0.4

0.6

0.8

1

A
.U

.

HWN

1000 1500 // 3000 3500

Raman shift cm
-1

0

0.2

0.4

0.6

0.8

1

A
.U

.
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Figure 4-5 Representative baselined and normalised Raman spectrum obtained from a single non-

tumour specimen, with demonstration of the different spectral regions measured 

A Fingerprint region B. Highwavenumber (HWN) region C. Concatenated data composed of the HWN and 

Fingerprint region ‘stitched’ together 
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4.2.6 Data analysis 

Spectra were analysed both as individual, independent spectra (e.g. each 

different area on a single sample viewed as a discrete spectrum and so each 

specimen had a number of spectral outputs that contributed to analysis), and as 

mean/median specimen spectra (e.g. each sample had a single combined 

spectral output). 

 

The pre-processed HWN spectra were analysed using the water/total area ratio 

calculation using the protocol outlined in Chapter 2. The water/total area ratio was 

calculated for each individual spectrum and then the mean ratio from each 

specimen was used and categorised as coming from either a tumour or not 

tumour specimen. The standard deviation was calculated for mean data.  

 

Binomial Logistic Regression was then used to obtain the optimal water/total area 

ratio threshold that could be used to predict if a spectrum was from a tumour or 

not tumour specimen. Classification tree machine learning was also used with a 

2- way split as an alternative method to obtain the same goal. In data with more 

than two classifiers (e.g. carcinoma type and grade), a multiclass error-correcting 

output codes (ECOC) model using support vector machine binary learners was 

trained for prediction. For each model a Receiver Operating Characteristic (ROC) 

curve was plotted, with the y axis being true positive rate, and x axis 1-specificity 

(or false positive rate). The optimal threshold was calculated as the point at which 

the test gives the optimal accuracy and balance of sensitivity and specificity. The 

accuracy of these models can be assessed by the Area Under the Curve (AUC) 

of the ROC curve- a ROC with an AUC of 1 is a perfect test with 100% sensitivity 

and specificity, and therefore, the closer the AUC is to 1, the more accurate the 

model.  

 

These techniques were then cross validated by a number of methods, using built 

in functions within MatLab. Different cross validation techniques were used to 

assess which were the most suitable to use for future data analysis. No technique 

is perfect, and there is no ‘correct’ one for use in a particular scenario; it is 

important to acknowledge the potential risk of bias due to each method, when 

deciding which method of cross validation to use 353. 
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 ‘Hold out’ cross validation is where 30% of the data is held out, the model uses 

the remaining 70% of data as the ‘training set’, and it then uses this output to 

predict the outcome of the previously held out 30% as the ‘prediction set’. The 

advantage of this technique is that none of the training set data is used for the 

prediction set, meaning the prediction set is truly ‘new’ data to the algorithm. 

However, with a limited data set there is a possibility of bias, as the test set (which 

does not inform the algorithm) may contain important information (e.g. it may 

contain all the data from a sub-population)354.  

 

 ‘K folds’ cross validation is where the data is randomly split into the number of 

‘folds’ stipulated, e.g. in K folds 5, the data is split into 5 groups. One group is left 

out, the remaining groups are used as a ‘training set’ and this output is used to 

predict the outcome of the previously left out group as the ‘prediction set’, this is 

then repeated, but with the next group left out etc. until all groups have been held 

out and used as a ‘prediction set’. The advantage to this technique, particularly 

with a smaller data set, is that all the dataset is used in at least one iteration of 

the training set, reducing the risk that important information or a sub-population 

is not included in algorithm construction354, however this increases the possibility 

of overestimation of the algorithm prediction accuracy 355.Leave-One-Out-Cross-

Validation (LOOCV) is the logical extreme of a K folds cross validation, with the 

number of folds being n-1. LOOCV is the most exhaustive cross validation 

procedure and is commonly used in clinical studies providing a ‘subject-wise’ 

cross validation method (the training set does not include the prediction set data), 

and is considered to be particularly appropriate in the evaluation of diagnostic 

models 353, 355. 

 

For each of the cross validation methods the accuracy of the test was assessed 

by the outcome in the form of a confusion matrix with the sensitivity (true positive 

rate, or true positive / true positive + false negative), specificity (true negative 

rate, or true negative / false positive + true negative) and overall accuracy of the 

analysis (true positive + true negative) / true positive +true negative + false 

positive + false negative) calculated. 

 

The individual specimen data also underwent analysis with a voting threshold 

technique. The optimal water/total area ratio was used as a cut off to classify 
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each spectrum as either ‘tumour’ or ‘non-tumour’. The optimal water/total area 

ratio that had been determined from the binomial logistic regression model 

without cross validation was used as this used all available spectra, whereas in 

the cross validated models a certain proportion was held out, and so reduced the 

size of the training set. Algorithms were constructed in Matlab to classify the 

entire sample based on the proportion of ‘tumour’ or ‘non-tumour’ spectra for that 

sample. The rules of the algorithms for Voting threshold 1 or 2 are detailed in the 

Results section. This gave a single binary output for each specimen, as the entire 

specimen either being classified as tumour or non-tumour.  

 

All spectral data (from individual or mean spectra from all spectral regions) was 

analysed by Principal Component Analysis (PCA). Principal components (PC) 

describe data as sections of spectra and the degree of variance between spectra. 

It therefore describes each spectrum as a score for each PC and P values assess 

the difference between the scores between spectra. It is an unsupervised test 

and the potential differences between groups (e.g. tumour or not tumour) are not 

acknowledged by the analysis. It is a commonly used technique in Raman 

spectroscopy to analyse differences in spectra. 

 

Spectral data were mean centred and underwent PCA, with 12 separate 

component separations. Scores had P values calculated by one-way ANOVA and 

were regarded as significant if P<0.01, and this cut off was used to highlight the 

components that required plotting. The component scores were plotted on graphs 

with the ability to differentiate between different pathologies/demographics (e.g. 

tumour or non- tumour) by colour.  

 

If there was separation on PCA by P score values, a Linear Discriminant Analysis 

(LDA) was performed with the PCA fed scores. LDA is a supervised test, where 

the differences in the samples (e.g. if they came from tumour or not tumour) are 

loaded into the test and used to classify the spectra and so the known 

pathological state is acknowledged in the analysis. In our analysis the 

pathology/demographic label was loaded with the scores, with 100 bins. This was 

then cross validated by a Leave-One-Out Cross Validation (LOOCV) technique, 

where a sample is left out, the PCA fed LDA is performed on the rest of the data 
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to have a ‘training’ set, and this is then used to predict the outcome of the sample 

that was left out. This is then performed n-1 times.  

 

Spectral data was analysed according to patient/tumour subtypes. Tumour 

spectra was classified according pathological subtypes, and non- tumour spectra 

classified according to patient physiological factors of Menopausal status (pre 

and post) and age. Age is a continuous variable, whereas the analysis to be 

performed relied on classification according to a binary or ordinal variable. To 

split age into a number of different age brackets would result in a small number 

of patients being in each group and under- powered calculations. Therefore, age 

was divided into a binary variable, with a cut off of either 60 (i.e. below or above 

60), or cut off of 50 (i.e. below or above 50). This lower age bracket was used as 

there is good evidence that breast composition with regards to water content is 

markedly different in much younger age groups regardless of menopausal 

status280, and if the cut off had been lower (e.g. 40), there would have been too 

few patients in the group to allow analysis. In these analyses, if the subtype had 

not been collected (left blank on the patient information spreadsheet), the spectra 

was excluded from that analysis. 

 

4.2.7 Raman micro spectrometry experiments 

To enable matching between the measured Raman spectra obtained from the 

needle probe and histological features of the breast tissue, a series of 

experiments were conducted on a micro spectroscopy system. The results from 

the fresh frozen specimen were examined to determine which required 

corresponding microscopic analysis. Two specimens were chosen to have 

microscopic analysis as they had some Raman spectra indicating ‘non-tumour’ 

tissue in the tumour specimen, and the prepared slides were all of sufficient 

quality, with an adequate amount of tissue, to allow detailed analysis.  

 

H+E stained slides were digitised using an upright light microscope (Carl Zeiss 

AG,Oberkochen, Germany)   at a X 20 magnification (20X/0.30 objective, Leitz 

Wezlar, Germany), with a CMOS camera (Model - acA1920-155uc, Basler AG, 

Ahrensburg, Germany) and images were captured using Manual MSI, 

Microvisioneer software (Freising, Germany). The digitised images were printed, 

and the original slides were analysed by a second consultant histopathologist 



Chapter 4 
 

 199 

from the Royal Devon and Exeter Hospital for a more detailed microscopic 

diagnosis at X 40 magnification, and pathological features of the slide, which was 

annotated on the digitised image. 

 

The corresponding tissue slices that had been prepared on BaF2 slides were 

thawed at room temperature and immediately measured. The Renishaw InVia 

confocal spectrometer system (Renishaw, UK) was used for Raman 

measurements after calibration of the system with silicon, green glass, PTFE and 

Neon Argon lamp. A slide scan was then performed with white light, at X5 

magnification and this was correlated with the annotated digitised H+E slide. 

Areas of interest had Raman measurements taken using a NPlan objective 

(Leica, Germany) with magnification X50. An excitation source of a 785 nm laser 

was used with an output of 300 mW to collect spectra in the wavelength range of 

2100 – 2750 cm-1, with a single accumulation and 5 second acquisition time. 

Raman spectra was analysed in Matlab, and had pre-processing by fluorescent 

baseline subtraction by a first order polynomial only. 
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4.3 Results 

4.3.1 Patient/ Tumour demographics 

Fresh frozen samples from 96 patients were used for this study. The patient and 

tumour characteristics of the patients are shown in Table 4-1. 

 

DEMOGRAPHIC DETAIL NUMBER (%) / MEAN (± SD) 

PATIENT DEMOGRAPHIC 
 

MEAN AGE 67.3 (±14) 

POST MENOPAUSAL 80 (83%) 

POSITIVE FAMILY HISTORY 24 (25%) 

ROUTE OF REFERRAL - SYMPTOMATIC 85 (89%)   

TYPE OF SURGERY 
 

SITE OF OPERATION - LEFT BREAST 57 (59%) 

WIDE LOCAL EXCISION 50 (52%) 

MASTECTOMY 46 (48%) 

SENTINEL NODE BIOPSY (OF 95 THAT HAD 
AXILLARY PROCEDURE) 

73 (77%) 

AXILLARY NODE CLEARANCE 23 (23%)   

TUMOUR CHARACTERISTICS 
 

DCIS ONLY 3 (3%) 

INVASIVE CARCINOMA 93 (97%) 

MEAN SIZE OF TUMOUR ( MM) 30.2 (± 11.8) 

INVASIVE TUMOUR CHARACTERISTICS (N=93) 
 

POSITIVE LYMPH NODES 37 (39%) 

MEAN NUMBER OF POSITIVE LYMPH NODES 1.3 (± 2.3) 

INVASIVE ASSOCIATED WITH DCIS 72 (77%) 

INVASIVE CARCINOMA GRADE (N=93) 
 

- GRADE 1 2 (2%) 

- GRADE 2 54 (58%) 

- GRADE 3 37 (39%) 

CARCINOMA TYPE (N=93) 
 

- DUCTAL 64 (67%) 

- LOBULAR 21 (23%) 

- MIXED 5 (5%) 

- MUCINOUS 3 (3%) 

RECEPTOR STATUS (N= 96) 
 

ER + 82 (85%) 

HER2 + 17 (18%) 

 

Table 4-1 Table of patient and tumour characteristics for the samples that were measured in this 

study. 

Note that in demographics with a dichotomous outcome (e.g. post- menopausal) only one is included, and 

it can be presumed the other patients were in the other category (e.g. pre-menopausal). ER = Estrogen 

receptor, HER2 = Human Epidermal Receptor  
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4.3.2 Fresh frozen specimen measurements 

4.3.2.1 Spectra obtained  

In total 192 specimens were measured (96 tumour specimens, 96 non-tumour 

specimens), with a total of 1335 spectra obtained. 

After pre-processing the data of all spectra obtained is shown in Figure 4-6. 

A 

 

B 

  

C 

  

 

 

Figure 4-6 Graphs showing spectral data obtained from all measurements (n=1335) after pre-

processing 

A. HWN region B. FP region C. Concatenated data. In all graphs the spectra shown have had fluorescent 

baseline subtraction and min/max normalisation.  
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4.3.2.2 Water content analysis to diagnose breast cancer 

After pre-processing, it is evident that there are visual differences in the HWN 

region between spectra obtained from tumour specimens and non-tumour 

specimens. Figure 4-7 shows there is a clear difference in the water peak 

between tumour and non-tumour specimens, with tumour specimens having a 

larger water peak than non-tumour specimens, when spectra have been 

normalised to the CH2 stretch region (2935 cm-1). Non-tumour specimens also 

have a predominately lipid peak at the CH stretch region (2800-3040 cm-1), 

whereas tumour specimens have a predominately protein peak at the CH stretch 

region. 

 

 

 

The water/total area ratio was calculated for each spectrum, and the mean and 

median of the ratio calculated for each specimen. Figure 4-8 shows that there is 

a significant difference for both the mean (P=1.6X10-42) and median (P=2.3X10-

30) water/total area ratio between tumour and non-tumour specimens.  

 

Figure 4-7 Mean HWN spectra of all specimens (n=1335) according to diagnosis demonstrating 

changes in water content between tumour and non-tumour specimen spectra 

Data is mean of spectra from all tumour specimen spectra (n=672) and all non-tumour specimen spectra 

(n=663), fluorescent baseline subtraction with a 3rd order polynomial, and normalised to the CH peak at 

2935cm-1. Shading either side of solid line in same colour is +/- 1 S.D. Red spectra=measurement from 

tumour specimen, Green spectra = measurement from non-tumour specimen 
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A      B 

  

 

Having established there was a difference in water/total area ratio between 

tumour and non-tumour specimen spectra, the aim was to investigate if there was 

a ratio threshold that could predict if a spectrum corresponded to tumour or non-

tumour tissue, i.e. if a spectra had a ratio above a certain value it would be 

classified as coming from tissue containing tumour. This could then be used to 

differentiate between normal and cancerous tissue and be a foundation of intra-

operative margin analysis. Binomial logistic regression was performed with the 

water/total area ratio with the known classifier of whether the ratio was obtained 

from tumour or non-tumour tissue. A Receiver Operator Characteristic (ROC) 

curve (Figure 4-9) was constructed to obtain this ratio threshold value – which 

was the point on the curve that related to the optimal balance between sensitivity 

and specificity for diagnosis. The water/total area ratio from all the spectra as 

individual data points (n=1335) was used to construct ROC curves, and a 

classification trees prediction model with a two way split, which were then cross-

validated with a number of techniques, the results are shown in (Table 4-1). All 

binomial logistic regression models with cross validation showed good sensitivity 
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Figure 4-8 Bar charts illustrating the difference in water/total area ratio between tumour (n=96) and 

non-tumour specimens (n=96) 

A Bar graph demonstrating the mean water/total area ratio per specimen of tumour and non-tumour 

specimens, error bars represent +/- 1 S.D. Statistically significant difference between the mean water/total 

area ratio of tumour (0.7709; SD +/- 0.1240) versus non-tumour (0.2169; SD +/- 0.2027) calculated by 

student T-Test (P=1.6X10-42) 

B Bar graph demonstrating the median water/total area ratio per specimen of tumour and non-tumour 

specimens, error bars represent +/- interquartile range. Statistically significant difference between the 

median water/total area ratio of tumour (0.827; IQR – 0.0284) versus non-tumour (0.1065; IQR – 0.1536) 

calculated by Kruskal Wallis test (P= 2.3 X 10-39). 
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of between 92-94%, specificity of 86-87% with an overall accuracy of 89%, with 

the classification trees model having a reduced sensitivity leading to a lower 

overall accuracy. 

 

 

 

Model Optimal 
Threshold 

AUC Cross 
validation 
technique 

Sens. Spec. Overall 
accuracy 

Binomial 

logistic 

regression 

0.75 0.95 n/a 92.7 86.4 89.6 

0.56 0.95 Hold out 91.5 87.4 89.5 

0.77 0.95 K folds 5 93.1 86.6 89.9 

0.76 0.95 K fold 10 92.7 86.4 89.6 

0.76 0.95 LOOCV 92.7 86.6 89.7 

Classification 

Trees 

0.68 0.95 LOOCV 87.5 91.7 89.6 
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Figure 4-9 ROC curve for classification by binomial logistic regression of water/total area ratio 

prediction of tumour versus non-tumour of all spectra (n=1335)  

Red circle denotes the optimal water/total area ratio threshold for classification = 0.75  

Table 4-2 Summary table of results following Model predictions of categorising spectra as tumour 

versus non-tumour based on water/total area ratio in all spectra (n=1335)  
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A possible limitation of using every spectrum in the analysis is that multiple 

spectra from each specimen is used in the construction of the prediction model. 

This means that if a specimen had a large number of spectra taken from it, or had 

some outlying ratio values, this may disproportionately influence the model and 

limit the accuracy of the threshold value. Therefore, the same sequence of 

analysis was undertaken with a single value for each specimen. The value was 

the mean of all the water/total area ratio for each specimen. Multiple ROC curves 

were constructed using binomial logistic regression and a classification tree with 

a two way split (a representative ROC curve is shown in Figure 4-10) with a 

number of different cross validation methods (Table 4-3). There was improved 

accuracy using the mean spectral data compared to the individual data, with an 

overall accuracy of the diagnostic test of 89-92%. 
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Figure 4-10 ROC curve for classification by binomial logistic regression of water/total area ratio 

prediction of tumour versus non-tumour of mean spectra (n=192) 

Red circle denotes the optimal threshold for classification, which is 0.6264 in this example 
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Model Optimal 
Threshold 

AUC Cross 
validation 
technique 

Sens. Spec. Overall 
accuracy 

Binomial 

logistic 

regression 

0.6264 0.98 n/a 95.8 88.5 92.2 

0.83 0.95 Hold out 92.9 86.2 89.5 

0.6587 0.97 K folds 5 94.8 89.6 92.2 

0.6333 0.97 K fold 10 94.8 88.5 91.7 

0.6524 0.97 LOOCV 94.8 88.5 91.7 

Classification 

Trees 

0.563 0.93 LOOCV 92.7 90.6 91.7 

 

 

Voting thresholds 

A clinically relevant method of processing spectral data would be to analyse all 

the spectra obtained from the resected edge of a specimen and determine 

whether there was tumour present at the resected edge. This would provide a 

simple dichotomous output to inform the surgeon that the margin was ‘positive’ 

and that the tumour bed of the resected edge required resecting. A way of 

providing this output is to determine that if the majority of the resected edge had 

a ‘tumour’ water/total area ratio (as defined by the threshold ratio set by binomial 

logistic regression e.g. 0.75), then the entire resected edge would be classified 

as tumour. The water/total area ratio data was analysed in an algorithm that 

stipulated that if the majority of the specimen measurements had a ‘tumour’ 

water/total area ratio, the whole specimen was classified as tumour (Voting 

threshold 1). 

 

Table 4-3 Summary table of results following Model predictions of categorising spectra as tumour 

versus non-tumour based on water/total area ratio in mean spectra (n=192) 
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A second algorithm was used on the same data that stipulated if any of the 

specimen demonstrated a single ‘tumour’ water/total area ratio, the whole 

specimen would be determined as tumour (Voting threshold 2). 

 

The results of these two algorithms showed that voting threshold 1 gave a high 

degree of specificity (95.8%), but a lower sensitivity of 87.5% with a good overall 

accuracy of 91.7%. Voting threshold 2 had a higher degree of sensitivity of 

95.98%, but a low specificity (88.0%) of and an overall accuracy was 88.0 % 

(Figure 4-11).  

 

A      B 

    

 

The threshold used to classify as a ‘tumour’ signal in these voting thresholds 

could be manipulated to tend towards being more sensitive or more specific 

based on what is necessary when analysing an entire margin. For example, if a 

water/total area ratio threshold of 0.4 is used in voting threshold 1, the algorithm 

has a 90.1% accuracy, with 97.9% sensitivity and 82.3% specificity, and if a 

water/total area threshold of 0.8 is used in voting threshold 1, the algorithm has 

a 89.1% accuracy, with 79.2% sensitivity, and a 99.0% specificity Table 4-4. 

 

 

 

 

 

Figure 4-11 Confusion matrices of specimen diagnosis after voting threshold analysis of water/total 

area ratio using the optimal threshold of water/total area ratio of 0.75 

A. Voting threshold 1 which achieved overall accuracy – 91.7%, sensitivity – 87.5%, specificity – 95.8% B. 

Voting threshold 2 which achieved overall accuracy – 88.0%, sensitivity – 95.8%, Specificity – 80.2%. 
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Ratio Threshold Sensitivity Specificity Accuracy 

0.1 99.0 44.8 71.9 

0.2 99.0 70.8 84.9 

0.3 97.9 79.2 88.5 

0.4 97.9 82.3 90.1 

0.5 95.8 86.5 91.1 

0.6 93.8 90.6 92.2 

0.7 93.8 93.8 93.8 

0.8 79.2 99.0 89.1 

0.9 1 99.0 <50 

 

Using the intra-patient difference in water/total area ratio 

The methods illustrated above, to provide differentiation between tumour versus 

non-tumour, have used a water/total area ratio threshold based on a value 

obtained from all spectra from all individuals. The physiological ‘normal’ in terms 

of water content for each patient is known to be different (and is explored in a 

later section of this chapter for these patients). Therefore, having the same cut-

off value for all specimens could lead to some diagnostic inaccuracy.  A measure 

of the change in the water/ total area ratio within a patient between tumour and 

non-tumour could be sufficient to differentiate areas of tumour versus non-

tumour. Logistically this could be achieved by the surgeon ‘calibrating’ the 

instrument on some obviously normal tissue, well away from the tumour site, prior 

to examining the specimen for IMA, and areas of difference compared to the 

‘calibration’ measurement flagged as abnormal and requiring resection.  

 

A simple and effective measure of this change is to calculate the difference in the 

water/total area ratio between the area that is being measured and the 

‘calibration’ measurement from the normal tissue. The diagnostic ability of the 

water/total area ratio difference to diagnose breast cancer was investigated using 

the water/total area ratio from all spectra (n=1335). For each patient, the mean 

Table 4-4 Table demonstrating the change in diagnostic accuracy with a change in water/total area 

ratio threshold (Ratio Threshold)  to classify the majority of a specimen using voting threshold 1. 
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water/total area ratio was calculated from the spectra obtained from the non-

tumour specimen – this was the ‘calibration’ measurement. Then each individual 

spectra (from tumour and non-tumour specimens) for each patient had the 

water/total area ratio calculated, and the difference from that reading taken from 

the ‘calibration’ measurement as per Equation 4-2: 

 

𝑊 𝑇𝐴𝑅⁄  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

=  𝑊 𝑇𝐴𝑅 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡⁄  −  ′𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛′ 𝑊 𝑇𝐴𝑅⁄   

 

This provides a unique measure for each reading that represents the difference 

from the mean non-tumour specimen. It could be presumed that non-tumour 

measurements would be approximately 0 (as they produce the ‘calibration’ ratio), 

and tumour measurements would be substantially greater than 0. The cut off 

W/TAR difference of 0.1 was chosen as it is close to 0 and allows for some intra-

specimen variation of non-tumour specimens W/TAR difference, but would likely 

give a model with high sensitivity. Therefore, for all spectra, the W/TAR difference 

was calculated, and if the W/TAR difference was >0.1, it was classified as a 

tumour, and if <0.1, it was classified as non-tumour, and a confusion matrix 

produced (Figure 4-12). It shows that using this method, the overall accuracy is 

89.5%, with a high sensitivity of 93.6% but low specificity of 85.4%. 

 

 

Equation 4-2 – Calculation of the water/total area ratio difference 

W/TAR = Water/Total area ratio 

‘Calibration’ W/TAR = the mean of all the water/total area ratio for that patient’s non-tumour specimen 

readings 
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An improved diagnostic accuracy may be possible, and so binomial logistic 

regression was used using the W/TAR difference calculated for each spectrum, 

and the classifier of whether it came from a tumour or non-tumour specimen used 

to train the model. The resultant ROC curve is shown, which produced an AUC 

of 0.95, and predicted the optimal threshold (cut off for the W/TAR difference) 

was 0.3275 (if the W/TAR difference >0.3275, the measurement was classified 

as a tumour reading, and if <0.3275, it was classified as a non-tumour reading) 

(Figure 4-13). Using a k-folds 5 cross validation method, the model achieved an 

accuracy of 90.1%, a sensitivity of 87.0% and specificity of 93.2%. The results of 

using the ‘optimal threshold’ of 0.3275 (high specificity) compared to the 

previously chosen threshold of 0.1 (high sensitivity) demonstrate that the 

threshold can be manipulated to provide the desired test characteristics, similar 

to using the more simple water/total area ratio calculation. 

 

Figure 4-12 Confusion matrix showing the diagnostic results of the W/TAR difference cut off= 0.1 for 

classifying tumour versus non-tumour spectra  
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A 

 

B 

  

 

Another way of performing this analysis to perform IMA would be to take a 

number of readings over the area of the margin and calculate the mean 

water/total area ratio for the entire margin surface prior to subtracting the mean 

‘calibration’ reading and providing a single output for that area. The mean 

water/total area ratio from each patient’s ‘non-tumour’ specimen was subtracted 

from the matched patient’s ‘tumour’ specimen (as representative of values that 

might be obtained along the margin), to give the water/total area ratio difference 

for that patient’s ‘tumour’ specimen (Figure 4-14). This shows that for the mean 

readings, the water/total area ratio difference was greater than 0 in all but 1 
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Figure 4-13 Results of binomial logistic regression model with k folds 5 cross validation for 

predicting tumour versus non-tumour specimen using the W/TAR difference 

A. ROC curve for classification by binomial logistic regression of W/TAR difference prediction of tumour 

versus non-tumour of all spectra (n=1335). Red circle denotes the optimal threshold for classification, which 

is 0. 3275. B. Confusion matrix of prediction results after k folds 5 cross validation 



 
 

 212 

patient, suggesting that if a threshold water/total area ratio difference of 0 was 

set, 95 of 96 of patients would be correctly classified. This cannot be assessed 

in more detail for diagnostic accuracy, as the mean non-tumour tissue value is by 

definition 0, and so prediction models and cross validation cannot be performed.  
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Figure 4-14 Bar chart of sample number (n=96) and the mean W/TAR Difference for the tumour 

specimen for that sample 

Note – only one sample has a negative value, suggesting that if a cut off of W/TAR Difference of 0 was used, 

all but one sample would be classified as tumour. 
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4.3.2.3 Spectral analysis to diagnose breast cancer 

HWN region 

PCA analysis of pre-processed HWN spectral data was performed, with the 

results demonstrated in Figure 4-15. Two of the three principal components that 

achieved statistical significance between tumour and non-tumour tissue (PC1 

and PC2) had incredibly small P values (recorded as 0, as they were so low as 

to be rounded to 0). These two PCs were confirmed as accounting for the majority 

of the classification, as PC1 accounted for 66% of the variance, and PC2 33% of 

the variance, with the remaining 10 PC’s accounting for <1% of the variance. 

Plotting the three most significant principal components (as defined by the 

smallest P value) gave excellent visual separation between tumour and non-

tumour spectra.   

 

PC1 and PC2 were correlated with the spectral assignation from previous work 

in this thesis and were shown to correspond to protein and water peaks (PC1), 

and the lipid peak (PC2), which also correlated with the spectral assignation from 

the literature 295, 304 (Figure 4-16). This suggests that it is both of these spectral 

features that allow separation of spectra according to the tumour or non-tumour 

classification, and are in keeping with the findings from the water/total area ratio 

calculations, that tumour (protein and water rich) can be differentiated from non-

tumour (lipid rich, with low water concentration) using the HWN region. 
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PC 1 PC 2 PC 3 PC 4 

0 0 0.97 0.86 

PC 5 PC 6 PC 7 PC 8 

0.91 0.39 0.50 0.0026 

PC 9 PC 10 PC 11 PC 12 

0.24 0.52 0.11 0.99 

C   
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Figure 4-15 Principal Component Analysis of all HWN spectral data (n=1335) 

A. Principal Components (12 in total) identified in analysis B. Table of principal components and 

corresponding P Values C. Scatter graphs plotting the 3 significant Principal Components (PC1, PC2, PC8), 

with tumour scores plotted in red, non-tumour scores in green 
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The PCA scores were fed into a LDA which achieved good separation between 

spectra and a training performance of 90.5%, and subsequently a LOOCV 

performed, the results of which are in Figure 4-17. After LOOCV the technique 

obtained sensitivity 90.2%, Specificity 90.5% with an overall accuracy of 90.3% 

(Figure 4-17). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-16 Principal components accounting for the majority of spectral variance between tumour 

versus non-tumour tissue, and spectral assignation 

Graphs on Left are the spectrum of Principal Components 1 and 2, and on the Right are representative 

Raman spectrum of bovine gelatine (protein), soya bean oil (lipid) and distilled water (water). It can be seen 

that PC1 relates to protein and water signal, and PC2 relates to lipid signal, suggesting it is these 

components that differentiate between tumour and non-tumour tissue.  
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The mean spectrum for each specimen was calculated, providing a single 

spectrum for each specimen (n=192). PCA was performed which revealed similar 

results – PC 1 and PC2, relating to the protein and lipid peak had significant P 

values, with PC1 accounting for 67.4% of variance, and PC2 accounting for 

32.1%, with the remaining scores combined accounting for only 0.3% of the 

variance (Figure 4-18). 
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Figure 4-17 Results of all HWN spectra (n=1335) to compare spectra from tumour versus non- tumour 

specimens with PCA fed LDA analysis 

A. Histogram of LDA scores versus frequency, with tumour scores plotted in red, non-tumour scores in 

green. B. Confusion matrix of prediction after LOOCV 
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PC 1 PC 2 PC 3 PC 4 

5.0X10-64 4.0X10-65 0.97 0.79 

PC 5 PC 6 PC 7 PC 8 

0.81 0.80 0.56 0.53 

PC 9 PC 10 PC 11 PC 12 

0.72 0.97 0.66 0.82 
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Figure 4-18 Principal Component Analysis of mean HWN spectral data (n=192) 

A. Principal Components (12 in total) identified in analysis B. Table of principal components and 

corresponding P Values C. Graph plotting the 2 significant Principal Components (PC1 and PC2), with 

tumour scores plotted in red, non-tumour scores in green. 
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LDA analysis gave excellent separation with a training performance of 93.8% 

accuracy, and LOOCV gave a sensitivity of 93.8%, specificity 92.7% and overall 

accuracy 93.2% (Figure 4-19).  
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Figure 4-19 Results from spectral analysis of the mean HWN spectra for each specimen (n=192)  

A. PCA fed LDA histogram of scores versus frequency using 12 principal components with tumour scores 

plotted in red, non-tumour scores in green. B. Confusion matrix prediction of LDA LOOCV. 
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Fingerprint region 

Spectra from the FP region underwent pre-processing, the mean spectra from 

tumour and non-tumour specimens is shown in Figure 4-20. There are evident 

spectral differences in the FP region between spectra obtained from tumour 

specimens and non-tumour specimens.  

 

 

 

To understand the spectral differences between tumour and non-tumour 

specimens, the two groups of mean spectra were separated, peaks identified, 

and spectral peak assignation performed based on values from the literature 

(Figure 4-21). This demonstrated that the differences between them primarily 

related to differences in protein and lipid signals. This suggests that the FP region 

may differentiate between tumour and non-tumour based on the differences 

between protein and lipid tissue, which is the same basis for differentiation in the 

HWN region. 

 

Figure 4-20 Mean Fingerprint spectra of all specimens (n=1335) according to diagnosis 

demonstrating differences between tumour and non-tumour specimen spectra 

Data is mean of spectra from all tumour specimen spectra (n=672) and all non-tumour specimen spectra 

(n=663), fluorescent baseline subtraction with a 6th order polynomial and min/max normalisation to avoid 

distortion in peak heights. Shading either side of solid line in same colour is +/- 1 S.D. Red 

spectra=measurement from tumour specimen, Green spectra = measurement from non-tumour specimen 
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A 

 

 

B Spectral 
Peak 

Biochemical assignation 

1046 
(1034-1053) 

C-O stretching, C-N stretching (protein) 
Possibly collagen 

 1254 
(1200-1300) 

Amide III (proteins) 

1338 
(1335-1345) 

Amide III; CH3CH2 wagging mode of collagen 

1448 CH2 & CH3 deformation; collagen  

1649 Amide I (C=C) 

1727-1753 C=O stretch, ester group 
 

C 

  

D Spectral 
Peak 

Biochemical assignation 

1060 Skeletal C-C stretch DNA/Lipid 

1296 CH2 deformation 

1441 CH2 scissoring & CH3 bending in Lipids 

1649 Lipid (C=C stretch) 

1740 C=O stretch Lipid, ester group 
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Figure 4-21 Spectral assignation of Fingerprint spectra in breast tissue  

A. Mean of all spectra taken from tumour tissue, with peaks identified with Raman shift number. B. Spectral 

assignation table for tumour tissue peaks. C. Mean of all spectra taken from non-tumour tissue. D. Spectal 

assignation table for non-tumour tissue peaks. 

The mean Raman spectra have been smoothed with savitzky-golay span of 5, 1st order polynomial and the 

main spectral peaks are identified with corresponding Raman shift value. Biochemical peak assignation is 

according to the literature 103 356. 
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PCA analysis was performed and over half of the principal component scores 

reached statistical significance in classifying tumour versus non-tumour scores 

(7 of 12), which is more than that of the HWN region (Figure 4-22). The first 3 

PCs were confirmed as being responsible for the majority of the difference 

between the groups. Variance analysis of the principal components 

demonstrated that PC 1 accounted for 58.5% of the variance, and PC 2 25.4 % 

of the variance, with PC 3 accounting for 10.59% of the variance and the 

remaining 9 PC’s accounting for 5.5% of the variance.  

It can be seen that in plotting the three most significant principal components (as 

defined by the smallest P value), it gave good visual separation between tumour 

and non-tumour spectra.  
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PC 1 PC 2 PC 3 PC 4 

4.08X10-27 4.89X10-115 2.89X10-116 0.99 
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1.93X10-6 3.56X10-4 6.30X10-6 0.02 
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Figure 4-22 Principal Component Analysis of Fingerprint region spectra of all spectra (n=1335) 

A. Principal Components (12) identified in analysis B. Table of principal components and corresponding P 

Values C. Scatter graphs plotting the 3 most significant Principal Components (PC1,PC2,PC3) accounting 

for >95% of variance, with tumour data plotted in red, non- tumour data in green 
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The spectral peaks, with the Raman shift values, were identified for the spectral 

features of PC1 and PC2 as these accounted for 85% of variance. The peaks of 

PC1 relate to the peaks seen for tumour tissue, and the peaks of PC2 relate to 

the peaks seen for non-tumour tissue (Figure 4-23).  

 

A      B 

 

 

Peak assignments of all of the principal component Raman peak scores that 

reached statistical significance, along with a tentative assignment to the molecule 

type is in Table 4-5. This demonstrates that most of the differentiation between 

tissue types is due to protein and lipid differences, with some minor variance due 

to DNA/RNA. This suggests, along with the mean spectra data analysis above, 

that the differentiation of tumour versus non-tumour tissue in the fingerprint region 

is predominantly based on the difference in tumour (protein rich) and non-tumour 

(lipid rich). This is similar to the HWN region, however, in the fingerprint region 

there is no measure of water content differences between tissue types. 
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Figure 4-23 Spectral assignation in the two most significant principal components in the Fingerprint 

region in differentiating tumour from non-tumour tissue 

A. Principal Component 1; these peaks correspond to those identified as corresponding to tumour tissue 

(protein rich) B. Principal Component 2; these peaks correspond to those identified as corresponding to non-

tumour tissue (lipid rich) 
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Principal 

component 

Peaks 

(Raman 

shift cm-1) 

Biochemical assignation Overall 

tentative 

assignment 

1 1053 C-O stretching, C-N stretching (protein) Protein 

1296 Amide III (proteins) 

1441 CH2 scissoring & CH3 bending in Lipids 

1649 Amide I (C=C) 

2 1068 Skeletal C-C stretch DNA/Lipid Lipid 

 1289 CH2 deformation 

 1441 CH2 scissoring & CH3 bending in Lipids 

 1655 Lipid (C=C stretch) 

3 1296 CH2 deformation Lipid 

 1441 CH2 scissoring & CH3 bending in Lipids 

 1655 Lipid (C=C stretch) 

5 1675 Amide I (Beta sheet) Protein 

6 1154 C-C and C-N stretch protein Protein 

7 1324 CH3 and CH2 wagging of purine bases DNA 

 1441 CH2 scissoring & CH3 bending in Lipids 

 1529 Carotenoids or Cytosine 

11 994 C-O Ribose DNA/RNA 

 1126 C-C stretch protein or carbohydrates 

 1421 CH deformation DNA/RNA/Deoxyribose 

 1516 Cytosine or carotenoids 

 

 

LDA analysis using the scores from the PCA gave a training performance of 

90.6%. LOOCV analysis of the model gave an overall accuracy of 90.3%, 

sensitivity 90.2% and specificity 90.5% (Figure 4-24). 

 

 

 

 

Table 4-5 Peak assignment of significant Principal component scores in fingerprint spectral analysis  

Biochemical peak assignation is according to the literature 103 356 
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A 
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The mean spectrum for each specimen was calculated and underwent PCA 

analysis. This gave visually similar principal components for the first 12 PC’s to 

the individual spectra data PC 1 accounted for 68.6% of variance,  PC 2- 21.0% 

so PC1 and PC2 accounted for >90% of the variance, with  PC 3 accounting for 

7.26% and PC 4-12 – 3.11% (Figure 4-25).  
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Figure 4-24 PCA fed LDA analysis of all Fingerprint region spectral data (n=1335)  to differentiate 

between tumour and non-tumour breast spectra 

A. Histogram of LDA scores versus frequency, with tumour data plotted in red, non-tumour data in green B. 

Confusion matrix of prediction after LOOCV 
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A 

 

B 
 

PC 1 PC 2 PC 3 PC 4 

7.90X10-238 1.97X10-26 0.089 1.32X10-5 

PC 5 PC 6 PC 7 PC 8 

0.049 0.0011 0.0013 4.12X10-6 

PC 9 PC 10 PC 11 PC 12 

0.0091 0.0258 8.9X10-4 0.30 

C  
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Figure 4-25 Principal Component Analysis of Fingerprint region spectra of mean spectra (n=192) 

A. Principal Components (12) identified in analysis B. Table of principal component scores and 

corresponding P Values C. Scatter graphs plotting the first 3 Principal Components (PC1,PC2,PC3) 

accounting for >95% of variance, with tumour data plotted in red, non-tumour data in green 
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Although the principal components were very similar to the individual spectral 

data, not all the significant components were the same ones between individual 

and mean data. Table 4-6 highlights the significant principal components in the 

mean data, with tentative spectral assignment. It shows that, similar to the 

individual data, PC 1 and PC2 (that accounted for the majority of the variance) 

corresponded to protein and lipid peaks, with some other PC’s contributing 

DNA/RNA peaks. 

 

Principal 
component 

Peaks Biochemical assignation Overall 
tentative 
assignment 

1 1053 C-O stretching, C-N stretching (protein) Protein 

1296 Amide III (proteins) 

1441 CH2 scissoring & CH3 bending in Lipids 

1649 Amide I (C=C) 

2 1068 Skeletal C-C stretch DNA/Lipid Lipid 

1289 CH2 deformation 

1441 CH2 scissoring & CH3 bending in Lipids 

1655 Lipid (C=C stretch) 

4 1038 Collagen Protein 

1197 Amide III 

1649 Amide I (C=C) 

6 1154 C-C and C-N stretch protein Protein 

7 1324 CH3 and CH2 wagging of purine bases DNA 

1441 CH2 scissoring & CH3 bending in Lipids 

1529 Carotenoids or Cytosine 

8 1261 Amide III Protein 

1469 C=N stretch 

1669 C=O stretch; protein band 

9 1075 C-C stretch lipid Lipid or DNA 

1310 CH stretch lipids 

1455 Deoxyribose 

11 994 C-O Ribose DNA/RNA 

1126 C-C stretch protein or carbohydrates 

1421 CH deformation DNA/RNA/Deoxyribose 

1516 Cytosine or carotenoids 

 

 

The scores of the 12 components were fed into LDA analysis which gave a 

training performance of 94.3% (Figure 4-26). LOOCV was performed which gave 

92.7% overall accuracy, sensitivity 91.7% and specificity 93.8%.   

Table 4-6 Peak assignment of significant Principal component scores in fingerprint mean spectral 

analysis Biochemical peak assignation is according to the literature 103 356 
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Figure 4-26 PCA fed LDA analysis of mean Fingerprint spectra (n=192) to differentiate tumour and 

non- tumour specimens 

A Histogram of PCA fed LDA scores, with tumour data plotted in red, non-tumour data in green. B. confusion 

matrix results from LOOCV analysis to predict tumour versus non-tumour 
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Concatenated spectral data 

The spectra from the HWN region and FP region were stitched together and 

analysed simultaneously. Principal component analysis found 3 components 

(PC1, PC2 and PC12 with significant P values <0.01 (Figure 4-27). Two of the 

three principal components (PC 1 and PC2) visually relate to the HWN region, 

with the protein/lipid peak and water peak being the spectral features responsible 

for the highly significant scores, as PC1 accounted for 59.8% of the variance, and 

PC2 33.0% of the variance. PC3 related to the fingerprint region amide III peak 

at 1338 cm-1 associated with protein accounting for 3.8% of the variance with the 

remaining 9 PCs accounting for the remaining 3.4%. 
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A 

 

B PC 1 PC 2 PC 3 PC 4 

1.27X10-318 0 0.01 0.16 

PC 5 PC 6 PC 7 PC 8 

0.15 0.75 0.20 0.45 

PC 9 PC 10 PC 11 PC 12 

0.72 0.01 0.058 4.0X10-4 
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Figure 4-27 Principal component analysis of all concatenated spectral data (n=1335) 

A 12 Principal components that were identified and underwent analysis. B. Table of principal components 

and P Values C. Scatter graphs plotting the first 3 Principal Components (PC1,PC2,PC3) accounting for 

>95% of variance, with tumour data plotted in red, non-tumour data in green 
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PCA fed LDA analysis was performed using all 12 principal components which 

gave a training performance of 90.5%. LDA LOOCV gave a sensitivity of 90.2%, 

specificity 90.5%, with overall accuracy of 90.3% (Figure 4-28). 

A 

  

B 

  

 

The mean concatenated spectrum for each specimen was calculated and 

underwent PCA analysis. The 2 significant PC’s corresponded to protein (PC1) 

and lipid (PC2) signals, which had significant scores (P<0.01). These two 

principal components accounted for 63.86% (PC1) and 32.7% (PC2) of variance, 

with the remaining 10PC’s accounting for the remaining <4% of variance. Plotting 

the scores from the PC1 and PC2 that accounted for > 95% variance 

demonstrated they achieved good separation (Figure 4-29). 
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Figure 4-28 PCA fed LDA analysis of all concatenated spectral data (n=1335) 

A PCA fed LDA analysis histogram of scores versus frequency,  with tumour data plotted in red, non- tumour 

data in green. B. confusion matrix prediction using LDA LOOCV 
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A 

  

B PC 1 PC 2 PC 3 PC 4 

1.67X10-62 4.70X10-65 0.556 0.397 

PC 5 PC 6 PC 7 PC 8 

0.858 0.908 0.774 0.915 

PC 9 PC 10 PC 11 PC 12 

0.763 0.267 0.741 0.574 
 

C 
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Figure 4-29 Principal Component Analysis of concatenated spectra of mean spectra (n=192) 

A. Principal Components (12) identified in analysis B. Table of principal component scores and 

corresponding P Values C. Graph plotting the first 2 significant Principal Components (PC1 and PC2) that 

accounted for >95% variance, with tumour data plotted in red, non- tumour data in green 
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PCA fed LDA analysis was performed, which gave a training performance of 

94.3%, with LOOCV the prediction gave an overall accuracy of 92.7%, sensitivity   

93.8% and specificity of 91.7% (Figure 4-30). 
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Figure 4-30 Analysis results of mean concatenated spectra for each specimen (n=192) 

A. Histogram of PCA fed LDA scores versus frequency, with tumour data plotted in red, non- tumour data in 

green. B. Confusion matrix of LDA LOOCV prediction results  
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4.3.2.4 Summary statistics for NP3 ability to differentiate between tumour and 

non-tumour breast tissue 

Spectral 

Region 

 Analysis 

method 

Sens. Spec. Overall 

Accuracy 

HWN All spectra PCA/LDA 

 

90.2 90.5 90.3 

Mean spectra 93.8 92.7 93.2 

FP All spectra 90.2 90.5 90.3 

Mean spectra 91.7 93.8 92.7 

Concatenate All spectra 90.2 90.5 90.3 

Mean spectra 93.8 91.7 92.7 

W/TR All spectra Binomial 

Logistic 

regression† 

92.7 86.6 89.7 

Classification 

trees 

87.5 91.7 89.6 

Mean spectra Binomial 

Logistic 

regression† 

94.8 89.6 92.2 

Classification 

trees 

92.7 90.6 91.7 

Representative 

spectrum/sample 

Voting 

threshold 1 

87.5 95.8 91.7 

W/TAR 

Difference 

All spectra cut off 0.1 93.6 85.4 89.5 

All spectra cut off 0.33† 87.0 93.2 90.1 

 

 

 

 

 

 

 

Table 4-7 Summary statistics table of best performing spectral analysis and water/total area ratio analysis  

HWN – High Wavenumber region; FP – Fingerprint; Concatenate – HWN +FP spectra stitched together; 

W/TR – Water/ total area ratio; PCA/LDA – PCA fed LDA analysis; Sens. – sensitivity, Spec. - Specificity 

† - binomial logistic regression with k-folds 5 cross validation 



Chapter 4 
 

 235 

4.3.2.5 Spectral analysis to differentiate between pathology subtypes 

The group of tumour specimens contained a wide range of different pathology 

subtypes. Spectral analysis was performed to investigate if Raman 

measurements had the ability to provide specific pathological diagnosis of the 

tumour. 

Using E(strogen) R(eceptor) status as a representative example, the spectra 

obtained from all tumour samples showed little difference between those tumour 

samples that were ER+ versus those that were ER- by the sequence of analysis 

of looking at the water/total area ratio (Figure 4-31 A), and spectral analysis of 

the concatenated data with PCA (Figure 4-31 B). The findings were similar in 

spectral analysis of all pathological subtypes. 

 

 

A B 

 
  

 

In the analysis of tumour versus non-tumour differentiation, it was the mean data 

of the specimens that had the highest diagnostic accuracy of the water/total area 

ratio, and the mean data of the concatenated spectral data. Therefore, in the 

analysis of the different pathology types in tumour specimens, these data only 

were analysed, as if there was poor diagnostic accuracy in differentiating 

pathology types using these data, the analysis of all spectra would be presumed 
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Figure 4-31 Results of mean tumour specimen (n=96) spectral analysis of ER status (used as a 

representative example) 

A. Mean HWN spectral data of all tumour specimens according to ER status. Data line is mean of spectra 

from each sample of that pathology subtype; Red – ER+ (n=72), Green – ER- (n=24). Shaded area either 

side in the same colour is +/- 1 S.D. Spectra were baselined using 3rd order polynomial and normalised to 

2985cm-1 peak. B. Scatter graph of first 2 principal components (PC1 and PC2) scores derived from PCA 

analysis of concatenated spectral data. Each circle represents a specimen mean data, Red – ER+, Green – 

ER-. 
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to be worse. The tumour specimens were analysed to investigate if there were 

any spectral differences according to pathology groups using the water/total area 

ratio and a PCA fed LDA analysis. 

 

Spectral analysis with PCA was performed according to each pathological 

subtype. It was performed using the HWN spectral region (Figure 4-32) and the 

fingerprint spectral region (Figure 4-33).  

 

The PCA scores did not reach statistical significance in either the HWN or FP 

data for any of the pathological subtypes apart from carcinoma type. The principal 

components obviously relating to the protein, lipid and water peak in both the 

HWN and FP region (PC1 and PC 2) did not reach statistical significance 

(P>0.01) in the majority of pathological subtypes, suggesting that these peaks 

were not different between pathological subtypes (unlike in tumour versus non-

tumour differentiation). Although, in the HWN region PC2 (that accounted 4% of 

variance) and PC4 (accounted for 0.2% variance) were significant (P<0.01) for 

carcinoma type. These both relate to lipid signal, suggesting there may be a 

difference in lipid signal between some carcinoma type. Also, in the FP region 

PC 5 (accounted for 0.5% variance) and PC6 (accounted for 0.2% variance) were 

significant (P<0.01) for carcinoma type. These both relate to the amide III region 

of protein, suggesting that difference in protein signal can differentiate between 

carcinoma type. However, conclusions of biochemical differences between 

carcinoma types are limited based on these results, as the significant principal 

components account for very little of the variance between specimens. 
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A 

 

B 

Pathological 
Subtype 

Principal Component 

1 2 3 4 5 6 7 8 9 10 11 12 

ER 0.09 0.30 0.02 0.07 0.43 0.40 0.68 0.30 0.17 0.64 0.23 0.62 

HER2 0.62 0.41 0.71 0.54 0.84 0.17 0.49 0.42 0.43 0.18 0.16 0.76 

Carcinoma 
Type 

0.03 <0.01 0.57 <0.01 0.89 0.98 0.36 0.99 0.31 0.17 0.14 0.26 

Carcinoma 
Grade 

0.95 0.92 0.72 0.14 0.84 0.22 0.62 0.75 0.03 0.61 0.76 0.87 

Assoc. 
w/DCIS 

0.08 0.26 0.07 0.57 0.54 0.21 0.15 0.04 0.81 0.38 0.25 0.42 

Lymph Node 
status 

0.56 0.43 0.92 0.87 0.81 0.75 0.25 0.24 0.10 0.56 0.65 0.43 
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Figure 4-32 Principal component analysis of mean HWN tumour spectra according to pathological 

subtype classification (n=96) 

A Principal components of mean HWN spectra of all tumour specimens. B Summary table of Principal 

component score P values according to pathological subtype classification. P values of principal component 

scores from one-way ANOVA analysis. 
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A 

 

B 

Pathological 
Subtype 

Principal Component 

1 2 3 4 5 6 7 8 9 10 11 12 

ER 0.15 0.16 0.69 0.79 0.44 0.58 0.64 0.31 0.03 0.07 0.52 0.28 

HER2 0.36 0.70 0.40 0.19 0.06 0.37 0.88 0.99 0.32 0.89 0.80 0.87 

Carcinoma 
Type 

0.60 0.05 0.02 0.73 <0.01 <0.01 0.18 0.93 0.96 0.81 0.49 0.92 

Carcinoma 
Grade 

0.69 0.80 0.48 0.11 0.09 0.71 0.80 0.91 0.10 0.24 0.09 0.47 

Assoc 
w/DCIS 

0.03 0.05 0.56 0.46 0.73 0.37 0.47 0.65 0.55 0.49 0.43 0.67 

Lymph 
Node status 

0.85 0.36 0.36 0.91 0.13 0.10 0.19 0.83 0.10 0.87 0.55 0.64 

 

 

 

 

 

 

 

 

 

 

 

1000 1200 1400 1600

-0.2

-0.1

0

0.1

PC1

1000 1200 1400 1600

-0.1

0

0.1

PC2

1000 1200 1400 1600

-0.1

0

0.1

PC3

1000 1200 1400 1600

-0.2

-0.1

0

0.1

0.2

PC4

1000 1200 1400 1600

-0.1

0

0.1

0.2

PC5

1000 1200 1400 1600

-0.2

-0.1

0

0.1

0.2

PC6

1000 1200 1400 1600

-0.3

-0.2

-0.1

0

0.1

PC7

1000 1200 1400 1600
-0.2

-0.1

0

0.1

0.2

PC8

1000 1200 1400 1600

-0.2

-0.1

0

0.1

0.2
PC9

1000 1200 1400 1600

-0.1

0

0.1

0.2

PC10

1000 1200 1400 1600

-0.3

-0.2

-0.1

0

0.1

0.2

PC11

1000 1200 1400 1600

-0.2

-0.1

0

0.1

0.2

PC12

Figure 4-33 Principal component analysis of mean FP  tumour spectra specimens according to 

pathological subtype classification (n=96) 

A Principal components of mean FP spectra of all tumour specimens. B Summary table of Principal 

component score P values according to pathological subtype classification. P values of principal component 

scores from one-way ANOVA analysis. 
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Given the results from spectral analysis of the HWN and FP region suggest that 

these individual regions cannot differentiate between tumour pathological 

subtypes, the concatenated spectral data was analysed to investigate if this 

improved accuracy (Figure 4-34). The only significant result was in the different 

carcinoma types, where the ‘carcinoma type’ classification did reveal a single 

significantly different score in PC 2 and PC5 (P<0.01). Both PC2 (accounting for 

4.5% of variance) and PC5 (accounting for 0.36% of variance) relate to the lipid 

peak in both the FP and HWN region (by separate spectral peak analysis not 

displayed). This suggests that spectral features of lipid differentiate between 

different carcinoma types. Again, these significant components only account for 

a small degree of variance between spectra. 

 

The PCA scores were used in a PCA fed LDA analysis for all pathological 

subtypes using the three different spectral regions (HWN, FP and Concatenated), 

to investigate if spectral differences could predict pathological subgroups- the 

results are in Table 4-8. The results show that for the HWN region and FP region 

results were similar between spectral regions – out of 6 subgroups tested, three 

had better prediction results from the HWN region spectra than the FP region, 

and vice versa. The concatenated data compared to the individual regions was 

very similar in the prediction ability. All prediction accuracies were between 40% 

(for lymph node status prediction using FP region) up to 78% (for ER prediction 

using FP region. 

 

Overall the results are poor and suggest that with the NP3 system, neither HWN, 

FP or concatenated spectral analysis can accurately differentiate between 

tumour specimen pathology subtypes. 
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A 

 

B 

Pathological 
Subtype 

Principal Component 

1 2 3 4 5 6 7 8 9 10 11 12 

ER 0.08 0.17 0.47 0.77 0.88 0.01 0.62 0.54 0.12 0.60 0.29 0.76 

HER2 0.55 0.38 0.88 0.72 0.18 0.76 0.16 0.25 0.65 0.36 0.33 0.45 

Carcinoma 
Type 

0.04 <0.01 0.60 0.24 <0.01 0.08 0.73 0.70 0.60 0.36 0.91 0.54 

Carcinoma 
Grade 

0.93 0.92 0.86 0.15 0.47 0.51 0.07 0.07 0.31 0.98 0.88 0.65 

Assoc 
w/DCIS 

0.06 0.09 0.23 0.74 0.23 0.37 0.77 0.85 0.17 0.76 0.42 0.48 

Lymph Node 
status 

0.62 0.30 0.81 0.48 0.88 0.45 0.32 0.62 0.07 0.64 0.08 0.59 
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Figure 4-34 Principal component analysis of mean concatenated tumour spectra according to 

pathological subtype classification (n=96) 

A Principal components of mean concatenated spectra of all tumour specimens. B Summary table of 

Principal component score P values according to pathological subtype classification. P values of principal 

component scores from one-way ANOVA analysis. 
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Pathological Subtype PCA fed LDA accuracy (%) 

HWN region FP 
region 

Concatenated 

ER 76.0 78.1 77.1 

HER2 63.5 61.4 66.7 

Carcinoma Type 58.3 61.5 61.5 

Carcinoma Grade 59.4 64.5 61.5 

Assoc w/DCIS 73.9 65.6 66.7 

Lymph Node status 51.0 40.6 41.7 

 

 

The analysis of the concatenated spectral data was compared to the analysis of 

the ability of water/total area ratio to differentiate between different pathological 

subtypes (Table 4-9). The mean water/total area ratio was calculated for each 

pathological subtype and compared between the other subtypes with a student t-

test (for dichotomous groups) or one-way ANOVA (for more than 2 groups). The 

outcomes are displayed in Table 4-9, which shows that there were no water/total 

area ratios that were significantly different to another. The mean water/total area 

ratio was close to reaching significance between carcinoma types (P=0.0185, 

one-way ANOVA), and on comparison of multiple means the only difference was 

the ratio between ductal carcinoma (mean ratio 0.78; S.D. 0.11 (n=64)) versus 

lobular carcinoma (0.70; S.D.0.16 (n=21)) which did not reach statistical 

significance (P=0.03). This suggests that areas of ductal carcinoma tissue may 

have a higher water/total area ratio than lobular carcinoma tissue. Using a 

multiclass error-correcting output codes (ECOC) model based on the water/total 

area ratio to predict carcinoma type had an AUC of 0.64, which suggests that 

using the water/total area ratio to predict different carcinoma types performed 

poorly.  

 

The consistent significant finding in both the spectral analysis of all three regions, 

and the water/total area ratio analysis, was the difference in carcinoma type. The 

water/total area ratio suggested there was a difference between ductal and 

lobular carcinoma. Spectral analysis also suggested differences in protein and 

lipid peaks between carcinoma types which is concordant with the known 

Table 4-8 Results of ability of the three different spectral regions to predict pathological subtype by 

PCA fed LDA analysis performed on  mean spectral data (n=96) 
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histopathological differences between ductal and lobular tumours (lobular having 

more fatty tissue, which is explored later in this chapter in our histological study). 

To investigate this a PCA fed LDA sub-analysis was performed, grouping all 

carcinoma types that were not lobular together, and compared all carcinoma 

types versus lobular carcinoma (not displayed). The PCA showed a significant 

difference in scores of PC1 and PC2, that accounted for changes in protein, lipid 

and water changes. The PCA fed LDA analysis had a prediction accuracy of 

81.2%, which is higher than when the carcinoma types were not grouped (61%). 

This suggests that there are biochemical differences between ductal and lobular 

carcinoma (these are investigated and discussed in the histological study), which 

can be detected with our Raman system. However, both models (water/total area 

ratio and PCA/LDA) performed poorly when using the spectral data to predict 

between carcinoma types suggesting the spectral data could not accurately 

differentiate between carcinoma type. It may be that this study was under 

powered to detect differences in carcinoma type (the number of lobular 

carcinoma was 21). It may be that with a larger data set, these differences may 

reach greater significance, and allow prediction models to differentiate between 

different carcinoma types. 

 

Analysis of the other tumour characteristics of ER and HER2 status, carcinoma 

grade, whether the tumour was associated with DCIS and axillary lymph node 

status revealed no significant difference in comparison of the mean ratios 

(P>0.01), and demonstrated the AUC of the binomial logistic regression model 

with cross validation was generally poor ranging between 0.47 – 0.54, which is 

similar to random chance of classification. Analysing the concatenated spectra 

data with PCA fed LDA analysis according to the pathological subtypes revealed 

a poor ability to accurately predict pathological subtype with the accuracy ranging 

from 45 – 77%.  

 

These results suggest that the spectra obtained in these experiments cannot 

accurately differentiate between different pathological subtypes of breast tumour. 
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Pathology 
subtype 

Status Mean 
ratio+ 

Comparison 
of mean P 
value+° 

AUC+ Spectral 
accuracy† 

ER +  0.76 0.19 0.54 77% 

-  0.81 

HER2 + 0.75 0.52 0.49 66% 

- 0.77 

Carcinoma 
Type  

Ductal 0.78 0.0185 0.64 61% 

Lobular 0.70 

Mixed 0.73 

Mucinous 0.87 

Carcinoma 
Grade  

1 0.83 0.87 0.48 61% 

2 0.77 

3 0.77 

Associated w/ 
DCIS 

+ 0.76 0.13 0.50 66% 

- 0.80 

Axillary lymph 
node status 

+ 0.75 0.15 0.47 41% 

- 0.79 

 

 

 

Table 4-9 Table demonstrating analysis of mean spectra of tumour specimens (n=96) of pathology 

subtypes 

AUC was calculated from binomial logistic regression in dichotomous classifiers, and a multiclass ECOC 

model for multiple classifiers  using mean ratio values and k-folds 10 cross validation  

Spectral accuracy data was from the mean spectral data, with a 12 component PCA fed LDA model, and 

the resultant accuracy of the LDA model is quoted 

+ - denotes values derived from spectral data that had been baselined with 3rd order polynomial and the 

mean water/total area ratio calculated 

 † - denotes values derived from mean concatenated spectral data  

°- for comparison of two means, unpaired t-test, for comparison of multiple means, one-way ANOVA 
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4.3.2.6 Ability of Raman to differentiate DCIS only from non-tumour tissue 

The majority of the tumour samples were also associated with DCIS (77%), 

therefore, when measuring a ‘tumour’ sample, the measurement could be of the 

invasive element of the tumour, or the associated DCIS. Therefore, in the analysis 

of tumour versus non – tumour above, the samples that contained DCIS only, 

and no invasive tumour (n=3) were included as ‘tumour’ samples. DCIS is 

responsible for the majority of positive margins 187, therefore the ability to 

differentiate DCIS only from non-tumour tissue is important in furthering the goal 

of being able to provide IMA. 

 

To understand if the NP3 system, and the data processing techniques, can 

differentiate DCIS from non-tumour tissue, the samples from the patients with 

DCIS only tissue (n=3) underwent a separate analysis.  

 

The HWN spectra of DCIS only tissue compared to the matched non-tumour 

tissue demonstrated obvious differences, with DCIS only tissue having strong 

protein and water peaks, and non-tumour tissue showing lipid peaks with little 

water signal (Figure 4-35). The water/total area ratio was calculated which 

showed a difference between DCIS only tissue (mean water/total area ratio- 0.83; 

SD- 0.019 ) and non-tumour tissue (mean water/total area ratio – 0.22; SD 0.19) 

which did not reach statistical significance (P= 0.035), it is possible the small 

number of samples meant the 99% confidence level could not be attained.  
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The water/total area ratio was used in a binomial logistic regression to construct 

a ROC curve and obtain the optimal threshold with k-folds 5 cross validation for 

classifying the specimen as DCIS or non- tumour tissue. All spectral 

measurements (n=42) were used. The model showed that with a water/total area 

ratio threshold of 0.76, it achieved an AUC of 0.96, sensitivity of 100% and 

specificity of 90.5%. With such a small number of readings, and all spectra 

obtained from just 3 patients, this should be interpreted with caution, but it does 

suggest that the water/total area ratio can differentiate between DCIS only and 

non-tumour tissue and may be used for diagnostic prediction. 

 

Spectral analysis was performed on the concatenated spectra of all 

measurements (n=42) (Figure 4-36). 97% of the variance was accounted for by 

PC1 (61.8% of variance), PC 2 (31.16% of variance) and PC 3 (4.7% of variance) 

of which PC 1 and PC 2 scores achieved statistical significance (P<0.01), these 

PC’s related to protein and water (PC1) and lipid (PC2 and PC3) spectra and 

plotting these two PC’s gave excellent separation, suggesting that the 

Figure 4-35 Mean HWN spectra of all specimens (spectra n=42, patients n=3) according to diagnosis 

demonstrating changes in water content between DCIS only and non-tumour specimen spectra 

Data is mean of spectra from all DCIS only specimen spectra (n=21) and the matched non- tumour specimen 

spectra (n=21), fluorescent baseline subtraction with a 3rd order polynomial, and normalised to the CH peak 

at 2935cm-1. Shading either side of solid line in same colour is +/- 1 S.D. Red spectra=measurement from 

tumour specimen, Green spectra = measurement from non-tumour specimen 
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differentiation between DCIS only and non-tumour tissue is based on the same 

spectral differences as between tumour and non-tumour tissue.  

A 

  

B 
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Figure 4-36 Principal Component Analysis of concatenated spectral data for patients with DCIS only 

(n=42) 

A. Principal Components (12 in total) identified in analysis B. Table of principal components and 

corresponding P Values C. Graph plotting the 2 significant Principal Components (PC1 and PC2), with 

tumour scores plotted in red, non-tumour scores in green 
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PCA fed LDA analysis with LOOCV gave a 95.2% accuracy, with 95.2% 

sensitivity and 95.2% specificity. As the numbers of spectra are so small it does 

not give a statistically robust outcome, but it does suggest that the spectral 

features of DCIS only tissue from Raman measurements and our data analysis 

protocol can differentiate between DCIS only and non-tumour breast tissue.   

 

4.3.2.7 Spectral analysis of non- tumour specimens to differentiate between 

physiological variation 

Spectra from non-tumour specimens were analysed according to patient 

characteristic information that were collected from patients which may be 

hypothesised to lead to variation in normal breast tissue composition between 

patients based on the literature – these were age and menopausal status 280, 306. 

Patients were classed according to two age brackets – with an age cut off of <60 

and <50, and menopausal status (pre and post), the summary results table is 

seen in Table 4-10. 

 

Classifying spectra obtained from non-tumour specimens according to 

menopausal status found that the water/total area ratio was higher in the pre-

menopausal (water/total area ratio 0.3374; SD 0.21)(n=73)  patients compared 

to the post – menopausal (0.1858; SD 0.19)(n=16) patients, which reached 

statistical significance (P=0.006; two tailed t-test). In Figure 4-37 B, the principal 

components of the PCA analysis of all the non-tumour specimen spectra can be 

seen. PC 1 which accounted for 89.8% of variance did not reach statistical 

significance (P>0.01), however PC 2 (accounting for 8.2% of variance) reached 

statistical significance (P<0.01) and relates to the protein and water peak in the 

HWN region, suggesting that there are differences in these areas between the 

groups of patients. 

 

Using the same classification of menopausal status to classify the specimen 

concatenated spectral data, PCA fed LDA achieved an accuracy of 84%, 

suggesting there were differences in the spectral data between patients that were 

pre- compared to post- menopausal that could allow prediction. Due to the 

significance of the LDA analysis, a LOOCV analysis was performed to assess the 

accuracy of prediction on spectral data using LDA, and a sensitivity of 80.2%, 

specificity of 56.2% and overall accuracy of 76.4% was achieved. This suggests 
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that using the PCA fed LDA analysis data that did not form the training set is not 

particularly accurate at predicting whether non-tumour specimens were from pre 

or post-menopausal patients. Regardless of this, the results suggest there are 

differences in the non-tumour breast tissue between pre and post-menopausal 

patients, and due to the difference in the water/total area ratio, and the P values 

of the principal components relating to the HWN region, it suggests that normal 

breast tissue of pre-menopausal women have a higher water content. 

 

A B 
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Figure 4-37 Results of mean spectral analysis of non-tumour breast specimens classified according 

to menopausal status (n=89) 

A. Mean data of all tumour specimens according to menopausal status. Data line is mean of spectra from 

each sample of that pathology subtype; Red – post- menopausal (n=73), Green – pre-menopausal (n=16). 

Shaded area either side in the same colour is +/- 1 S.D. Spectra were baselined using 3rd order polynomial 

and normalised to 2935cm-1 peak. B. Principal components of mean concatenated spectra of all tumour 

specimen (n=89). PCA analysis performed on mean concatenated spectra. C. P values of principal 

component scores according to menopausal status. D. Scatter graph of PC1 and PC2 scores that accounted 

for >97% of variance, PC2 also had statistical significance. Each circle represents a specimen mean data, 

Red – post-menopausal, Green – pre-menopausal. 
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Spectral data was then classified according to age. Using the age cut off of 60 to 

classify the water/total area ratio, the non-tumour specimens of those <60 had a 

higher water/total area ratio (mean water/total area ratio 0.31; SD 0.21)(n=27) 

compared to those patients >60 (mean water/total area ratio 0.18; SD 0.19) 

(n=68), this reached statistical significance (P= 0.0063; two tailed t-test). Analysis 

of concatenated spectral data using a PCA fed LDA analysis showed a model 

accuracy of 78.9%, and with cross validation with LOOCV it achieved an accuracy 

of 75.8%, with a sensitivity of 80.9%, and specificity of 63% showing poor ability 

for prediction.  

 

Using the age cut off of 50 to classify the water/total area ratio results showed a 

greater difference between the groups. Figure 4-38 shows the results of the 

analysis, and in figure A the difference in the water peak between the two groups 

can be seen, with the younger group having a higher water peak. The non-tumour 

specimens of those <50 had a higher water/total area ratio (mean water/total area 

ratio 0.37; SD 0.21) (n=16) compared to those patients > 50 (mean water/total 

area ratio 0.19; SD 0.19) (n=79), this reached statistical significance (P=0.00063; 

two tailed t-test). Despite this highly significant P value, using binomial logistic 

regression of water/total area ratio and age of 50 as a classifier, the model 

achieved poor diagnostic ability with an accuracy of 69%. Analysis of the 

concatenated spectral data using a PCA fed LDA analysis showed a model 

accuracy of 85.3%. The principal components PC 1 (accounting for 89.5% of 

variance) and PC2 accounting for 8.51% of variance) gained statistical 

significance in their scores with age as the classifier (P<0.01), related to the lipid 

(PC 1) and protein and water peak (PC 2) (Figure 4-38). The PCA scores 

underwent LOOCV LDA analysis to validate the findings, and found a sensitivity 

of 82.3%, specificity of 56.2% and accuracy 77.9%.  

 

These results demonstrate that there is a difference in the normal breast tissue 

composition according to the age of the patient. Younger patients have a higher 

water/total area ratio, suggesting the breast tissue has a higher water content. 

The difference is more obvious in using the younger age cut off of 50, with a 

highly significant different water/total area ratio, however the accuracy of being 

able to predict the classifier is modest.  
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Figure 4-38 Results of spectral analysis of non-tumour breast specimens classified according to Age 

(cut off 50) (n=95) 

A. Mean data of all tumour specimens according to Age (cut off 50). Data line is mean of spectra from each 

sample of that pathology subtype; Red – Age >50 (n=79), Green – Age <50 (n=16). Shaded area either side 

in the same colour is +/- 1 S.D. Spectra were baselined using 3rd order polynomial and normalised to 

2985cm-1 peak. B. Principal components of mean Concatenated spectra of all tumour specimen (n=95). C. 

P values of principal component scores according to age (cut off 50). D. scatter graph of the significant 

principal components (PC1 and, PC2) scores that also accounted for >95% of variance. Each circle 

represents a specimen mean data, Red - Age >50, Green - Age <50. 
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The importance of these findings summarised in Table 4-10  is not in the 

prediction ability of the models, but in the difference in water/total area ratios. 

This demonstrates that there are significant physiological variations between the 

normal, non-tumour tissue of patients according to menopausal status and age. 

In the use of the HWN spectrum, or the water/total area ratio, to diagnose breast 

cancer it must be considered that the baseline ‘normal’ to which the tumour 

spectra are being compared is a fluctuating baseline that changes according to 

the physiological characteristics of the patient. 

 

Patient 
characteristic 

Status Mean 
ratio+ 

Comparison 
of mean P 
value+° 

AUC+ Spectral 
accuracy† 

Menopausal 
status 

Pre  0.3374 0.006 0.65 84% 

Post 0.1858 

Age - 60 <60 0.31 0.0063 0.65 78.9% 

>60 0.18 

Age – 50 <50 0.37 0.00063 0.69 85.3% 

>50 0.19 

 

 

 

 

 

 

 

 

 

 

Table 4-10 Summary results table of analysis of non-tumour specimens mean spectra classified by 

physiological characteristics  

AUC was calculated from binomial logistic regression using mean ratio values and k-folds 10 cross validation  

Spectral accuracy data was from the mean spectral data, with a 12 component PCA fed LDA model, and 

the resultant accuracy of the LDA model is quoted 

+ - denotes values derived from spectral data that had been baselined with 3rd order polynomial and the 

mean water/total area ratio calculated 

 † - denotes values derived from mean concatenated spectral data  

°- comparison of two means, unpaired t-test 
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4.3.3 Estimation of water content by dehydration  

Tumour Specimens 

Five tumour specimens underwent serial dehydration, of these five, two samples 

and the corresponding Raman data were discarded due to the samples becoming 

so small through dehydration that accurate Raman measurement or weighing 

was not possible. Therefore, the weights and corresponding Raman data of three 

specimens were included for analysis. 

 

The starting weight of the three specimens were 0.167 g, 0.083 g and 0.089 g, 

the dry weight was 0.041, 0.019 and 0.022 g, giving a total weight loss of 75%, 

77% and 75% of the starting weight respectively. Corresponding HWN Raman 

spectra over the period of dehydration showed visual changes in the spectra with 

a decrease in the water peak (in spectra normalised to the protein peak), as 

shown in Figure 4-39 A. This suggests that the weight loss was secondary to 

dehydration, and that the HWN Raman measurements could measure these 

changes. 

 

The water/total area ratio was calculated for all acquired Raman spectra. These 

were plotted against the known water fraction of the specimen at the time the 

Raman spectra was acquired, the results are shown in Figure 4-39 B-E. In graph 

E the dehydration curve of the Raman spectra is comparable between all 3 

spectra, suggesting that the changes in water/total area ratio with water fraction 

of tumour breast tissue is repeatable, and equivalent between different patients. 

 

These results demonstrate that changes in water concentration in tumour 

containing breast tissue can be measured, and to a certain extent, quantified by 

HWN Raman spectroscopy, with calculation of the water/total area ratio.  
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Figure 4-39 Results of serial dehydration of tumour specimens (n=3) and corresponding water/total 

area ratio 

A. Spectral data of a single tumour specimen that underwent serial dehydration, with spectra for each 

corresponding water fraction plotted. Data line is mean of all spectra from the specimen at that water fraction 

(n=5 areas measured). Shaded area either side in the same colour is +/- 1 S.D. Spectra were baselined 

using 3rd order polynomial and normalised to 2935cm-1 peak. Graphs B (Specimen 1) C (Specimen 2) D 

(Specimen 3) and E (combined data of Specimen 1, 2 and 3) plots the mean water/total area ratio 

(represented by plotted points, error bars +/- S.D.) calculated from the spectra (n=5 measurements for each 

water fraction point, for each specimen) obtained at each water fraction plotted against the water fraction 

calculated by weight. Graph E has a second order polynomial line of best fit to demonstrate the ‘dehydration 

curve’ 
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Non-tumour specimen 

Two non-tumour specimens underwent serial dehydration, however only one 

specimen was suitable for analysis due to an inability to accurately weigh one 

sample. The non-tumour specimen that underwent serial dehydration had a 

starting weight of 0.240 g and dry weight of 0.215 g, which was a 10% weight 

loss. This suggests that the, generally fatty, normal breast tissue had a low initial 

water content. The Raman spectra normalised to the protein/lipid peak 

demonstrated very little change in the water peak with serial dehydration, and 

analysis of the water/total area ratio suggested there was no trend in ratio with 

the water fraction (Figure 4-40).  

 

 

A      B 

  

 

 

 

 

 

 

 

 

2800 3000 3200 3400 3600 3800

Raman shift cm
-1

-20

0

20

40

60

80

100

120

A
.U

.

1

0.5

0

Water Fraction

0 0.2 0.4 0.6 0.8 1

Water fraction

0.06

0.08

0.1

0.12

0.14

0.16

0.18

W
a

te
r/

to
ta

l 
a

re
a

 r
a

ti
o

Figure 4-40 Results of serial dehydration of a non-tumour specimen with corresponding Raman 

spectra (n=1) 

A. Spectral data of a single non-tumour specimen that underwent serial dehydration, with spectra for each 

corresponding water fraction plotted. Data line is mean of all spectra from the specimen at that water fraction 

(n=5 areas measured). Shaded area either side in the same colour is +/- 1 S.D. Spectra were baselined 

using 3rd order polynomial and normalised to 2935cm-1 peak. B. Scatter graph of the mean water/total area 

ratio (represented by plotted points, error bars +/- S.D.) calculated from the spectra (n=5 measurements for 

each water fraction point) obtained at each water fraction plotted against the water fraction calculated by 

weight. 
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Interpretation and implementation of results 

The results from the tumour specimen dehydration curve demonstrates that HWN 

Raman, and using the water/total area ratio, can detect changes in water content, 

and it may be possible with the dehydration curve to quantify changes in water 

concentration in tumour specimens. The results from the non-tumour specimens 

suggests that HWN Raman cannot detect changes in water content in low water 

environments or highly lipid environments.  

 

The dehydration curve from the tumour specimens could be used for 

interpretation of differences in water content between tumour specimens. As an 

example, there were differences in the mean water/total area ratio between 

lobular carcinoma (0.70) and mucinous carcinoma (0.87), looking at these values 

on the dehydration curve they equate to approximately a water fraction of 1.0 (for 

a water/total area ratio for mucinous carcinoma) and 0.25 (for a water/total area 

ratio for lobular carcinoma), suggesting there is a 75% difference in water content 

between mucinous and lobular carcinoma. This is in concordance with the 

understanding of the histopathological differences between the two types of 

tumour – mucinous tumours are mucin ( a glycoprotein) producing and may be 

associated with a higher water content, and lobular carcinoma which infiltrate 

adjacent fat and so could be associated with a more fatty environment 357 which 

are associated with a lower water content. 

 

4.3.4 Raman micro spectrometry experiments 

Non- tumour specimens  

Review of H+E slides from non-tumour specimens demonstrated that a large 

number had areas of fat cells only, with very little histopathological features. 

Some non-tumour specimens however, while still predominantly fat cells, had 

areas of stromal tissue (Figure 4-41). It should be noted that the patients 

demonstrating these areas of heterogeneity were younger (age range 43-51) 

than the mean age of the sample population (67). 

 

A non-tumour specimen had histopathological analysis followed by HWN Raman 

using Raman micro spectroscopy. The specimen was chosen for analysis 

because it was histologically heterogenous, and had good enough H+E staining 

to allow for accurate pathological analysis, the results are shown in (Figure 4-42).  
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Figure 4-41 H+E slides of non-tumour specimens 

A. Patient 14 (age – 51)) Specimen composed of mostly fatty tissue. Note that little of the H+E stain is taken 

up by the fat cells, and there are few histopathological features B. Patient 105 (age-43) and C. Patient 59 

(age-44) demonstrate non-tumour specimens with a mixture of tissue types. Black circle denotes area of fat 

cells, Red circle denotes stromal tissue. Images taken under X 20 magnification  
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Figure 4-42 HWN Micro-Raman analysis of non-tumour specimen from patient 105 

A. H+E slide of non-tumour specimen, black dotted line demonstrates the area of the corresponding Raman 

map. B. Area of fatty normal tissue highlighted in black at X5 magnification, and at X50 magnification with 

representative HWN Raman spectra showing the lipid peak. C. Area of stromal normal tissue highlighted in 

red at X5 magnification, and at X50 magnification with representative HWN Raman spectra showing the 

protein peak. 
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Tumour Specimens 

Histopathological assessment of the tumour specimen indicated that the majority 

of tissue from tumour specimens was entirely tumour, examples are shown in 

Figure 4-43. 

 

A B 

 

 

 

However, there were some specimens that had areas of normal tissue within the 

specimens. Raman analysis of one of these specimens shows that the areas of 

the section that were identified as being tumour had a protein signal (matching 

the Raman signal seen from the tumour specimen fresh frozen sample 

measurements), and areas of the section that were identified as normal and non-

cancerous had a lipid signal (matching the majority of the non-tumour specimen 

fresh frozen sample measurements) (Figure 4-44). 

One of the specimens analysed (notably a lobular carcinoma), had 

histopathological evidence of tumour throughout the specimen, as is common in 

lobular carcinoma, there was cancer cell infiltration into surrounding fatty 

tissue357. Raman analysis of the specimen demonstrated areas of tumour that 

had Raman spectra with a protein signal, which would be expected in tumour 

according to our results from the fresh frozen specimens, but it also demonstrated 

areas of tumour with a strong lipid signal, which would likely be classified as being 

non-tumour based on the measurements gained from the fresh frozen specimens 

(Figure 4-45). This highlights that lobular carcinoma may be a potential source of 

diagnostic inaccuracy. 

Figure 4-43 H+E slides of tumour specimens 

A. (patient 17) Grade 3, Invasive ductal carcinoma, ER/HER2 -ve with no DCIS present. B. (patient 31) 

Grade 2, invasive ductal carcinoma, ER +ve/HER2-ve, associated with DCIS. Both slides demonstrate 

features of tumour throughout the entire histological slide. 
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Figure 4-44 HWN Micro-Raman analysis of tumour specimen from patient 105 

A. H+E slide of tumour specimen, a Grade 2 invasive ductal carcinoma, ER +ve, HER2+ve associated with 

DCIS, and corresponding Raman map. B. Area of tissue containing tumour highlighted in red at X5 

magnification, and at X50 magnification with representative HWN Raman spectra showing the protein peak. 

C. Area of normal fatty tissue highlighted in black at X5 magnification, and at X50 magnification with 

representative HWN Raman spectra showing the lipid peak. 
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Figure 4-45 HWN Micro-Raman analysis of tumour specimen from patient 14 

A. H+E slide of tumour specimen, a Grade 2 invasive lobular carcinoma, ER +ve, HER2-ve associated with 

DCIS, and corresponding Raman map. B. Area of tissue containing tumour highlighted in red at X5 

magnification, and at X50 magnification with representative HWN Raman spectra showing the protein peak. 

C. Area of tumour containing tumour tissue highlighted in black at X5 magnification, and at X50 magnification 

with representative HWN Raman spectra showing the lipid peak. 
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4.4 Discussion 

This chapter demonstrates the diagnostic ability of HWN Raman spectroscopy to 

differentiate tumour from non-tumour tissue in human breast tissue, which has 

been demonstrated for the first time. This is a promising technique that may be 

able to provide IMA in breast conserving surgery. The individual aspects of the 

results from the study will be discussed, and the clinical implications considered, 

with a view to what future work can be recommended to successfully translate 

the findings of this proof of concept study to a clinically robust method of IMA. 

 

The results of this study have demonstrated that through analysis of the 

water/total area ratio as a measure of water content, and spectral analysis of both 

the fingerprint and HWN region a number of techniques can be utilised in the 

differentiation of human breast tissue with good diagnostic accuracy. The results 

suggest that the spectral data obtained using the NP3 system, a 785 nm 

excitation laser and InGaAs camera configuration, is unable to give specific 

pathological diagnoses, as there were no differences between pathological 

subtypes, however, tissue that had DCIS only was able to be differentiated from 

non-tumour tissue which is crucial for accurate IMA. The dehydration 

experiments have given an important insight into the role of measuring water 

content in breast tissue in the diagnosis of tumour tissue, and suggest that HWN 

Raman measures a change in the microenvironment of water more accurately 

than quantitatively assessing the change in water content. The biochemical 

changes seen from the Raman spectra to differentiate between tumour and non-

tumour tissue using NP3 have been matched to the histopathological diagnosis 

using Raman micro spectrometry, which validates the conclusions regarding 

differences between tissue types. 

 

4.4.1 Interpretation of results 

4.4.1.1 Chemometric analysis  

The results from this study highlight the biochemical differences between tissue 

types. Analysis of the differences in water/total area ratio between tumour (high 

water/total area ratio) compared to non-tumour tissue (low water/total area ratio) 

suggest that tumour contains a higher water content compared to non-tumour 

tissue. This difference in water content between tumour and non-tumour tissue 

has previously been suggested in human breast tissue with other optical 
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techniques, but it has not been used as the primary diagnostic marker  276, 297. In 

this study we have quantified those changes in water content between the two 

tissue types and demonstrated that this simple marker is powerful enough to 

accurately differentiate between tumour and non-tumour tissue with an overall 

accuracy of >90% (depending on the exact data analysis protocol). 

 

Peak assignation with values from the literature of the significant principal 

components identified that in both the fingerprint region and HWN region of the 

Raman spectrum non-tumour tissue had a high lipid profile and tumour tissue 

was predominately protein, and that there are the spectral components that 

differentiate between tumour and non-tumour tissue. Haka et al. used spectral 

data from the fingerprint region to differentiate between tumour and benign breast 

tissue, and noted that lipid and protein changes were central to the diagnostic 

algorithm that achieved good specificity of 93%, but a poor sensitivity of 83% due 

to misclassification of certain benign breast tissue types 186. Previous data from 

the HWN region from breast tissue in rats 271 and human tissue 336 suggested 

these biochemical changes were also observed in the HWN region, but no 

studies have previously been performed on human breast tissue with a view to 

using the biochemical changes for diagnostic classification. Neither has a study 

concatenated data from both of the regions to produce a single spectrum from a 

single area that includes this data from both regions. The study outlined in this 

thesis confirms that both regions are evaluating similar biochemical changes, and 

the main spectral features in differentiating tumour from non-tumour tissue are 

protein and lipid changes (fingerprint region) and protein, lipid and water changes 

(HWN region). 

 

The Raman mapping experiments validate the main chemometric findings from 

the NP3 system. The Raman mapping showed that areas of tumour, confirmed 

by histopathology diagnosis, were characterised by protein signal, and areas of 

non-tumour were characterised by lipid signal. This demonstrates that there is 

agreement in the chemometric data gained from HWN Raman spectra gained 

with the NP3 system with peak assignation from the literature and spectra from 

micro spectrometry that were matched to a formal histopathological diagnosis. 

This gives confidence to the assumption that ‘tumour’ signals were indeed from 

tumour tissue, and non-tumour signals were from non-tumour tissue. 
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A limitation of the Raman mapping method is that it used dried slices of tissue, 

and therefore no information on water content could be ascertained, and changes 

in water content could not be matched with the histopathology diagnosis. 

However, it was a consistent feature in the fresh frozen samples that protein rich 

tissue, which was matched with the histopathology diagnosis, had a higher water 

content.  

 

 

4.4.1.2 The role of water content in differentiating tumour from non-tumour tissue 

An original aim of this study was to investigate whether water content was a 

marker of differentiating tumour from non-tumour, and whether this could be 

quantified to assess if changes in tissue water content could be used in the 

assessment of pathological margins. 

 

The results from this study suggest that differences in water content are able to 

differentiate tumour from non-tumour. The spectral data from the HWN region, 

particularly when normalised to the protein peak demonstrate that tumour 

specimens have a much higher water peak than non-tumour specimens, and 

when using the water/total area ratio as a measure of water content, tumour 

specimens have a significantly higher water content than non-tumour specimens. 

Using the water/total area ratio alone could accurately differentiate between 

tumour and non – tumour specimens, with an accuracy of 89-91%, confirming 

that the difference in water content between tumour and non-tumour tissue is 

substantial, measurable, and diagnostic. 

 

The dehydration experiments had some success in quantifying changes in water 

content. Using tumour tissue, which had a high initial water content, the water 

content of the tissues was sequentially measured, and the associated Raman 

signals obtained, from which a measure of water content at that time (the 

water/total area ratio) could be calculated. This produced a calibration curve 

allowing HWN Raman spectra to be taken of a breast tumour specimen, the 

water/total area ratio to be calculated, and the calibration curve used to assess 

the water content of that breast tumour specimen, the example of a lobular 

carcinoma versus a mucinous carcinoma was used. This demonstrates that 
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quantification of changes in water content can be performed in tumour tissue. It 

should also be noted that it is only relative changes in water content that can be 

measured, as the absolute starting water concentration of the tumour specimen 

was not calculated, and, as stated in chapter 3, other absolute measures of water 

concentration may not be relevant to the microenvironment of breast tissue.  

Measuring the relative differences in water can be used to improve HWN Raman 

in providing IMA, as it has been utilised in skin cancer 295, and oral SCC 174. It 

also allows correlation with HWN Raman findings with other modes of 

investigation and diagnosis that use changes in water content, such as DOS 276, 

Terahertz imaging 288 and MRI 358, and so allow the findings with these modalities 

be translatable to Raman research, and vice versa.  

 

The dehydration experiment results also demonstrated what was predicted in 

chapter 3, that the water/total area ratio relationship with water content is different 

according to the tissue microenvironment. This means that if the same water/total 

area ratio is measured in an area of tumour tissue and non- tumour tissue the 

two areas will not have the same water concentration. An obvious illustration of 

this in the dehydration experiment results is that when the specimen is in a state 

of complete dehydration (where the water fraction =0), for non-tumour tissue, the 

water/total area ratio is 0.12, and for tumour tissue it was between 0.5 and 0.6. 

This is the only point at which the two types of tissue can be directly comparable 

as having no water content, whereas at the other points of measurement they will 

have varied according to the initial water concentration. One of the reasons for 

this particular finding is that protein has a peak at 3280 cm-1 due to NH stretch 

345, which is present in dehydrated protein tissue, but not in lipid tissue, which will 

contribute to the ‘water’ part of the water/total area ratio giving protein a higher 

reading at this complete dehydration compared to lipid tissue. However, this is 

not the only reason for the findings, as lipid is more Raman active than protein, 

and lipid gives a broader Raman peak, both of which would also alter the 

relationship with the water/total area ratio, even if the water peak was identical in 

both tissue types. This confirms what has been discussed in Chapter 3, that the 

water/total area ratio, and the change in HWN spectrum according to changes in 

water content, is dependent on the microenvironment of the water, and so 

changes between that of a predominantly protein environment (tumour) and lipid 
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(non-tumour) environment, meaning the same dehydration curve cannot be used 

for calibration for both environments.   

 

There are limitations to the methods of the dehydration experiments, which need 

to be considered. The experiments were done in fresh frozen samples, which 

may have a different initial water content to fresh breast tissue, and the thawing 

process could alter the water content rapidly. The distribution of water and type 

of water (bound versus unbound) could also be different between fresh frozen 

tissue and fresh tissue – chapter 3 demonstrated that this has an effect on the 

HWN Raman spectrum, and subsequently the water/total area ratio. The 

dehydration curves also demonstrate that the majority of the dehydration (as 

measured by loss of mass) occurred between the initial and second 

measurement (over the course of the first hour), with some specimens losing 

almost 50% of their mass during this period. The specimens were so small the 

rate of dehydration was rapid. However, despite these limitations, the findings are 

consistent and repeatable (in the tumour specimens, 3 different specimens gave 

remarkably similar results). The findings would ideally be validated by repeating 

these experiments in larger pieces of fresh breast tissue that could be measured 

more frequently. This would be logistically very difficult.  

 

Comparing the dehydration curve of the breast tumour tissue and the dehydration 

curve of the pork meat tissue, and the breast non-tumour tissue and the pork fat 

tissue in chapter 3, the curves are very similar in shape, rate of dehydration, and 

findings. The pork tissue did not have any of these limitations and gave similar 

results, suggesting that the findings in the fresh frozen breast tissue are valid and 

may not be altered if performed in more ideal tissue.  

 

These findings demonstrate that HWN RS differentiates between the tumour/ 

non-tumour specimens as an analysis of the microenvironment (whether it is a 

protein or lipid environment) and the effect of that microenvironment on the water 

peak, rather than by quantifying the changes in water content.  Therefore, when 

measuring different tissue types containing protein and/or lipid, the protein and 

lipid peak should be considered along with the water peak for diagnosis, rather 

than just using the water peak. 
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Within the tumour (protein) environment, there can be differentiation and 

quantification in changes in water content as the water/total area ratio changes 

in response to changes in the water content. These more subtle changes in the 

tumour environment may assist in the diagnosis of pathological margins. 

Previous work has suggested that in breast tissue, and breast cancer, rather than 

there being an abrupt change in the water content, there is a steady change in 

the water content when measuring from a higher water environment ( tumour) 

across the border of the tumour to low water environment (non-tumour) 293. This 

theory has been examined with HWN Raman spectroscopy in the diagnosis of 

oral SCC margins 228, but has not been investigated for the diagnosis of breast 

pathological margins. In these previous studies, the effect that the change in 

protein and lipid microenvironment going from tumour to a non-tumour 

environment would have on the ability to interpret the difference in water peak 

was not explored – and our results suggest this is crucial to understanding the 

differences in water content in different microenvironments. The results from our 

study suggest that HWN Raman spectroscopy is able to detect and quantify 

changes in water content, allowing the theory of water changes at the margins of 

breast tumour tissue to be investigated in the future. 

 

4.4.1.3 DCIS only tissue 

The ability to differentiate between DCIS only tissue and non-tumour tissue is 

paramount for IMA. Despite this, in a number of studies intending to provide IMA, 

DCIS only tissue is often excluded from analysis, which results in a major 

limitation of the clinical relevance of the study 156, 180, 185. The majority of positive 

margins are due to DCIS only 187, and not invasive tumour, and so the NP3 

system must have the ability to identify DCIS only tissue as requiring resection if 

it is to be clinically useful. 

 

The initial analysis on all tumour tissue (which was composed of mainly invasive 

tumour tissue, but 3 DCIS only specimens) suggested that this was possible. The 

majority of tumour tissue (77%) was associated with DCIS, and it is highly 

probable that when measuring the tumour specimens, the associated DCIS was 

being measured as well, and contributing to the tumour signals. When the 

detailed histopathological analysis was performed for the Raman micro 

spectrometry experiments, DCIS was often adjacent or within areas of invasive 
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tumour. There was also no difference identified between water/tumour area ratio, 

nor on principal component spectral analysis when pathological subgroup 

analysis was performed between those associated with DCIS, and those that 

were not.  

 

In addition to this a subgroup analysis was performed on the specimens from 3 

patients that had DCIS only (and no invasive element) in their tumour specimen. 

This analysis demonstrated that there were obvious visual differences between 

the DCIS only tissue and non-tumour tissue. The biochemical differences were 

the same as the analysis between the all tumour data (of invasive tumours and 

DCIS only) and non-tumour specimens, DCIS only tissue was predominately 

protein with a high water content, compared to the non-tumour tissue of lipid with 

a low water content. Analysis of these spectra using the water/total area ratio and 

concatenated spectral data suggested the potential for satisfactory diagnostic 

ability to differentiate between DCIS only tissue and non- tumour tissue. A 

limitation of this subgroup analysis is the small number of patients and therefore 

the statistically significant findings should be interpreted with caution. However, 

these results do suggest that the basic chemometric principles that are used to 

differentiate tumour from non-tumour specimens hold true for differentiating DCIS 

only and non-tumour specimens. Although it would require a larger number of 

DCIS only tissue to be conclusive, these results suggest that NP3 has the ability 

to differentiate between DCIS only and non-tumour tissue, a crucial attribute for 

IMA. 

 

4.4.1.4 Comparing data analysis techniques 

Based on the chemometric findings, a number of data analysis techniques were 

used to assess the ability to differentiate between tumour and non-tumour tissue 

based on the Raman spectra. Each technique had broadly similar results, with 

generally good overall accuracies between 89-93%, and a broader range of 

sensitivities 87-96% and specificities 86-96%. An important feature of the 

analysis is that all methods underwent cross validation, with testing of the 

prediction accuracy with a ‘prediction’ set of data that was separate to the data 

used for ‘training’ the diagnostic model. This suggests that if the diagnostic model 

was used in an entirely new set of spectral data, the results would be similar. 
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A benefit of having performed a number of methods of spectral analysis is that 

the protocol that would be suitable for clinical use can be assessed. The 

technique for use in a clinical environment for IMA would take into account what 

is needed from the test in order to get the desired clinical outcome. For example, 

a test that has very high sensitivity would reduce the re-excision rate 

considerably, but if there was a low specificity of the test it may result in an 

unnecessary removal of breast tissue, which is associated with poor cosmesis. 

Equally a highly specific test would guard against the unnecessary removal of 

breast tissue but may not be sensitive enough to reduce the number of re-

excision operations significantly. Therefore, each analysis technique should be 

considered in turn and assessed as to how it could be used for IMA. 

 

Water/total area ratio 

The water/total area ratio is a simple technique for assessing differences between 

spectra. It requires minimal pre-processing (fluorescence baseline subtraction 

only), and a simple calculation of the AUC of two peaks (water and the total HWN 

spectral region) in order to calculate the ratio. This ratio is also a single figure that 

can be used to characterise a spectrum. Using simple data analysis such as this 

may have real strengths in the clinical environment for IMA, as it would require 

less processing power, be quicker than more complex techniques and be easier 

to devise diagnostic algorithms.  

 

A use of the water/total area ratio is by using different voting thresholds to provide 

a single dichotomous answer for each specimen. In a clinical setting this method 

could be used to take a number of measurements for the entire resected edge of 

a specimen and using the data to provide an outcome of whether that resected 

edge had a positive margin and further resection was required or not. The results 

demonstrated that it was possible to use a defined cut off of water/total area ratio 

to classify a spectrum as tumour or non-tumour, the proportion of the number of 

‘tumour’ readings could then be taken into account to ‘vote’ if the specimen (or 

resected edge) was positive. The cut-off could be varied according to the clinical 

outcome required – and whether greater or lesser sensitivity or specificity was 

required needs more research. The two voting methods give very different clinical 

outcomes (Voting threshold 1 sensitivity - 87.5%, overall accuracy 91.7%, Voting 

threshold 2 – sensitivity 95.98%, overall accuracy 88.0%). The limitations are 
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evident, voting threshold 1 (where the majority spectrum classifies the entire 

specimen) could lead to small areas of tumour being ‘missed’, and voting 

threshold 2 (where a single tumour spectrum classifies the entire specimen as 

tumour) could lead to an unnecessary amount of tissue being excised. However, 

these methods represent a clinically relevant method for data analysis and giving 

a clear outcome for a resected edge, which is essential for IMA. 

 

Using the W/TAR difference is a different way of utilising the ratios to take into 

account variations between patients physiological ‘normal’. The analysis of the 

normal breast tissue demonstrated significant variations in the Raman spectra 

between patient specimens, particularly with age. Using a ‘calibration’ reading 

from obviously normal tissue, and comparing the possible tumour readings to this 

‘calibration’, there is the possibility of increasing the accuracy of the device. The 

results in this study are very dependent on the ‘cut off’ used to define a tumour 

or non-tumour, though this could be adjusted for the desired objective of analysis. 

Though, interestingly, whatever the cut off used, the overall accuracy of this 

technique was equivalent to the other methods that did not take into account the 

individual patients baseline normal tissue, perhaps suggesting that this does not 

affect the diagnostic accuracy significantly. This method of ‘calibration’ of the 

machine prior to taking margin readings is already performed in another device 

that is used for IMA – the ClearEdge 266, suggesting others have thought it 

important to take into account the individual baseline of the patient. However, 

ultimately the results from the ClearEdge were disappointing, and in a number of 

cases there was surgeon error in using the device to achieve the ‘calibration’ 

reading. It may be that a calibration reading step could over-complicate the 

measurement protocol, without giving sufficient additional diagnostic accuracy. 

 

There are limitations to using the water/total area ratio. One, explored above, is 

that the physiological normal, non-tumour, readings can overlap with the ratio of 

tumour tissue. Particularly younger, pre-menopausal women may have higher 

water/total area ratios in normal tissue and have a greater incidence of false 

positive readings using this technique. Another consideration is that although in 

this analysis the water/total area ratio diagnostic accuracy was similar to the more 

complex spectral analysis, it may be that there are subtle changes in the spectral 

analysis that would be missed if only the water/total area ratio was used for 
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diagnosis. Spectral analysis gives greater tissue biochemical information and it 

may be that minor variations did not reach statistical significance in this setting 

due to the relatively small number of spectra, but with a greater sample number 

these minor variations may become significant and provide a greater diagnostic 

accuracy. 

 

Spectral analysis 

Spectral analysis was performed on the fingerprint region, HWN region and the 

two regions concatenated. The diagnostic performance using the mean spectra 

from the fingerprint (accuracy 92.7%) was slightly reduced compared to the HWN 

(accuracy 93.2%) region. Interestingly the accuracy from the concatenated 

spectra was the same as that of the FP only region (92.7%), suggesting that the 

addition of the fingerprint region reduces accuracy compared to the diagnostic 

information of the HWN region alone.  

 

The chemometric analysis suggest that similar biochemical differences in the 

tissue are used to differentiate between tissue types, but that the HWN region 

provides information on water content in addition to the protein/lipid changes 

seen in the fingerprint region, suggesting that the change in water content 

information may be responsible for the increased diagnostic accuracy when using 

the HWN region. 

 

When using the spectral data for differentiating tissue types, the concatenated 

spectra could be used. There are no negative aspects of using the entire 

spectrum that is available when measuring using the NP3 system, and both 

fingerprint and HWN regions are captured using the NP3 system without having 

to change any hardware such as laser excitation wavelength or filters – unlike 

other systems that have used both regions for tissue diagnosis 299, 304. This means 

to capture both regions does not take any more time or expense compared to 

capturing just a single region. Although, from this study, there appears to be no 

diagnostic benefit to using both regions, it may be that further work with a greater 

number of samples exposes subtle spectral changes that allow an increased 

diagnostic accuracy while using both regions for data analysis. 
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A limitation of using the entire spectrum and performing spectral analysis is that, 

although in this study the acquisition time allowed for obtaining both regions of 

the spectrum with good spectral resolution, if acquisition time was decreased 

significantly (to allow more rapid IMA) it may mean the entire spectral region was 

not adequate for analysis. In the spectral analysis a sequence of principal 

component analysis (PCA) was used to calculate scores which were fed into a 

linear discriminate analysis (LDA). This is a complex method of analysis that 

would take longer than for calculation of the water/total area ratio and may require 

greater computing hardware. A way to decrease this burden of spectral analysis 

would be to reduce the number of principal components used. In all cases it was 

the first 2 principal components (with a minor contribution from PC3) that 

accounted for >95% of variance in spectra contributing to tissue diagnosis. The 

spectral analysis could be reduced to the first 2 or 3 principal components to 

reduce the data processing time, however, it may come with a decrease in 

diagnostic accuracy. 

 

Another limitation of spectral analysis is that it is reliant purely on mathematical 

modelling to decide the best way to analyse the tissue specimens, without the 

ability to change it according to clinical need. Using the water/tumour area ratio, 

the threshold for diagnosing a spectrum as ‘tumour’ is easily manipulated to 

achieve the desired clinical aim, whereas using a PCA fed LDA model it is not so 

easy to ‘fine-tune’ the model to the desired clinical outcome. 

 

The use of mean data  

A consistent finding in all the spectral analysis, regardless of method, was that 

the mean data (that is obtaining a mean spectrum or ratio for each specimen, so 

each specimen had a single output) gave an improved diagnostic accuracy 

compared to analysing each individual spectrum as a discrete reading. The most 

apparent example is for spectral analysis of the HWN region, where using 

individual spectra gave an overall accuracy of 90.3%, and using the mean spectra 

gave an accuracy of 93.2%. The reason for this is likely to be when analysing the 

data as single spectra, if a large number of specimens each had a small number 

of ‘discordant’ spectra (i.e. non-tumour measurements in a tumour sample), this 

would give a large number of ‘discordant’ spectra overall that would be classified 

incorrectly. If taking the mean of each specimen, these small number of 



 
 

 272 

‘discordant’ spectra would be averaged out, compared to the large number of e.g. 

tumour spectra in tumour specimens. The Raman mapping experiments 

demonstrated that within ‘tumour’ specimens, there were areas of non-tumour, 

so this may explain why there were a small number of ‘discordant’ spectra which 

negatively affected the diagnostic accuracy when assessing the spectra 

individually. 

 

Analysing the data from these experiments using the mean data has greater 

statistical validity, as for each patient specimen there is a single outcome. When 

analysing each spectrum individually, in the diagnostic models a number of 

measurements are originating from the same tissue, and if, theoretically one 

patient contributed 100 measurements, and another only 10 (which did not occur, 

the variation in the number of contributed measurements was +/-2) that would 

unbalance the model in favour of the type of measurements from the patient 

contributing 100. However, from a practical point of view of providing IMA, it is 

not necessarily clinically relevant to use a ‘mean’ spectrum. The mean could be 

the mean of a number of readings from a small area, or the mean of all readings 

from an entire resected surface. The area over which to average the readings 

needs to be determined, and would be reliant on the sampling area and properties 

of the device that would be performing IMA. The findings from chapter 3, and 

observing the raw ‘counts’ from spectra gained from this study, is that the protein 

signal is weak and lipid has a relatively strong Raman cross section, and so small 

areas of tumour (protein rich) could easily go undetected with this method of data 

analysis. The main danger of using a mean spectrum over a large area, such as 

the entire resected surface, would be a reduced sensitivity that small areas of 

abnormal tissue would be averaged out and not be detected. It may be that 

providing a mean spectrum over a small area would improve accuracy, account 

for minor physiological variations, and improve the diagnostic accuracy of the 

analysis. 

 

Suggested protocol for data analysis 

It is important that the data analysis of Raman spectra can be processed and 

utilised to provide a clinical outcome, which is easily interpreted by a surgeon, 

and informs whether a resected edge is ‘positive’ (i.e. tumour identified) and 
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further resection is required, or a resected edge is ‘negative’ (i.e. no tumour 

identified) and no further resection is required. 

Based on the results and subsequent discussion of the various data analysis 

techniques of the spectral data obtained with NP3, the following sequence is 

suggested as the most accurate, and clinically relevant, method of data analysis 

(Figure 4-46): 

1. The resected edge of the specimen has all Raman measurements taken. 

• The measurements are obtained in a systematic order, with the 

resected edge divided into ‘sections’ that allow grouping of close by 

measurements together. The ability to do this would depend on the 

final design/ measurement protocol of the probe to be used. 

2. Pre-process data 

• Fluorescence background subtraction using 3rd order polynomial for 

HWN region, and 6th order polynomial for FP region 

3. Calculate the water/total area ratio from the HWN region of each spectrum  

4. Primary classification -  the mean water/total area ratio for each section 

is used to classify the section as tumour or non-tumour with a low threshold 

of water/total area ratio (e.g. 0.4 - to provide high sensitivity). 

5. Secondary classification- for all sections classified as tumour, analyse 

the spectral data to provide high specificity. 

• All the spectra from a section identified as ‘tumour’ by the first 

classification would be used in the reclassification of that section 

• The concatenated spectral data has min/max normalisation 

followed by PCA fed LDA analysis to re-classify if the section is 

tumour/ non – tumour. 

6. Final classification-  All section outcomes of resected edge are 

processed with a voting threshold analysis, if there is one or more area 

classified as ‘tumour’, the entire resected edge is classified as ‘positive’ 

and further resection is required. 
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Figure 4-46 A schematic representation of how the suggested data processing algorithm could be 

used on a specimen resected to give a clinical outcome  
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4.4.2 Limitations of methods 

4.4.2.1 Demographics of study patient and tumour characteristics 

The demographics of the patients were broadly representative of patients 

undergoing breast cancer surgery in normal clinical practice. The age of patients 

(mean age 67) is representative of the age of patients diagnosed with breast 

cancer seen in clinical practice, the majority being post- menopausal 359.  

 

A vital inclusion criteria in the study – that is tumours had to be greater than 2 cm 

to allow core biopsy and tissue sampling- leads to selection bias in the tumour 

characteristics of the specimens measured. 2 cm tumours are usually 

symptomatic- 89% of patients in the study group were diagnosed via a 

symptomatic route of referral; whereas only 75% of all breast cancers present 

with symptoms 41. 2 cm tumours are also more likely to be removed by 

mastectomy rather than breast conserving surgery – 48% of the study group 

underwent mastectomy as opposed to breast conserving surgery. Mastectomy 

rates vary, but account for around 30-40% of breast cancer operations 6. This 

means that larger tumours that would undergo a procedure not requiring IMA are 

slightly over-represented in this population study, when compared to the 

population that are likely to require IMA, that is, more screen-detected, smaller 

tumours undergoing breast conserving surgery. The result of this is that the 

tumour characteristics of the study population are possibly not representative of 

the population likely to require IMA. Screen detected tumours are more likely to 

be smaller, and diagnosed and treated at an earlier stage 359. The screen 

detected population also present the majority of DCIS only disease which is often 

treated with breast conserving surgery, and represent a large number of patients 

that require re-excision of margins 187. Therefore, early-stage disease and DCIS 

only disease is under-represented in the population study. The under-

representation of DCIS only disease needs to be considered in future work. The 

initial assessment suggests that the NP3 system is capable of differentiating 

between DCIS only tissue and non – tumour tissue, but the number of such 

patients was small (n=3) and so further work does need to be performed to 

confirm this. 

 

Despite these limitations the number treated by breast conserving surgery are 

only marginally below what would be expected. There is also a broad range of 
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breast cancer disease, and the carcinoma type (with the majority being Ductal), 

carcinoma grade (majority Grade 2) the receptor status (with the majority being 

ER+ and minority HER2+ve) is broadly in keeping with the tumour characteristics 

of a typical patient undergoing breast conserving surgery. Therefore, the study 

population is similar enough that it is probably representative, and so the data 

drawn from these studies is likely to be translatable to a general breast cancer 

population undergoing breast conserving surgery. 

 

4.4.2.2 Specimen type  

The specimens that underwent measurement had been taken from areas that 

were macroscopically tumour or non- tumour in the view of an experience 

healthcare professional (pathologist or associated practitioner). The review of the 

histopathology H+E slides suggest that the tissue samples were mostly 

composed of homogenous tissue types that had been correctly categorised as 

tumour or non- tumour. The benefit of using these samples is that the study 

specimens are similar to the type of tissue that is measured in IMA. They are 

larger pieces of tissue, over which a number of measurements were obtained, 

and a diagnosis made based on the Raman spectrum – similar to IMA. 

 

The limitations of the tissue type are that they were fresh frozen, then thawed 

prior to measurement. This is unlikely to have affected the composition of the 

specimen with regards to protein or lipid but is likely to have affected the water 

content. Indeed, during the dehydration experiments the specimens lost almost 

50% of their mass (in presumed water dehydration) in only an hour. However, the 

measurements took less than 5 minutes to complete, so significant amounts of 

dehydration may not have occurred. This is evidenced by the fact that the 

differences in water content between tumour and non-tumour tissue could still be 

measured, were significant and used for diagnostic purposes as demonstrated 

by the diagnostic accuracy of using the water/total area ratio. It is also true that 

in fresh breast tissue, when performing IMA, there would be dehydration from the 

resected specimen edge in the clinical environment. Therefore, if the water 

content remains a major spectral feature to differentiate tumour from non-tumour 

even in tissue that has been freeze/thawed, is small, and has a rapid dehydration 

time, may suggest that these are robust findings that would be valid in fresh 

breast tissue. The effect the freeze/thaw cycle had on the water content in the 
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specimens is unknown, and measurements in fresh tissue are necessary to 

understand if the findings regarding water content are valid in fresh breast tissue, 

which is the tissue type IMA would take place in.  

 

A further limitation of the sample types is that they were all homogenous tissue 

and the tumour sample was taken from the centre of the tumour. This means the 

periphery of the tumour – which is where a positive margin would most likely be 

– was not necessarily included in the sample. Previous studies have investigated 

the ‘borderline’ regions of tumours, describing a gradual decrease in water 

content the further from the tumour is measured 228, 293. It may be this gradual 

decrease in water content that could be measured to provide IMA. This study has 

demonstrated the basic science underpinning this technique – that tumours have 

higher water content, this can be measured using HWN Raman, and changes in 

tumour water content quantified using the water/total area ratio. Further work with 

access to take Raman measurements from the tumour and the borderline region 

into non-tumour tissue is necessary to see if this can provide IMA. 

 

The non-tumour specimens did not undergo histopathological analysis and were 

all considered to be a homogenous group of ‘normal’ tissue. On review of a select 

few H+E slides of the non-tumour tissue, they were confirmed to be normal with 

no particular histopathological features. ‘Normal’ breast tissue is a broad variety 

of tissue encompassing a number of pathological features, from fatty tissue which 

has few histological features, to the myriad of benign breast tissue changes 

named under the umbrella term ‘Aberrations in the normal Development and 

Involution of the Breast’ (ANDI) 360. These all have their own specific 

histopathological features which may have particular Raman signals associated 

with them. A previous study using fingerprint Raman demonstrated that these 

benign abnormalities could affect the diagnostic accuracy of the technique, as 

there was overlap in the Raman spectrum of these benign findings and tumour, 

particularly in fibrocystic change and fibroadenomas 262. However, it is not known 

if any of the non-tumour tissue in this study contained these histopathological 

variations, therefore, the diagnostic algorithms cannot take these into account.  
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4.4.2.3 Methods of Analysis 

Using the NP3 system for this study demonstrated the potential for performing 

IMA. Each measurement was simple to perform and would not require a specialist 

operator to perform, requiring only light contact between the needle probe and 

the sample. If necessary, the needle could have a single use covering over it to 

allow the actual needle to remain clean between patients.  

 

There are limitations to the method of analysis. The NP3 probe had sufficient 

sampling volume (5.19 x 104 µm2) to measure small biopsies of tissue, but to 

sample an entire resected edge of a breast tissue specimen would not be 

possible. The time taken for each measurement was 25 seconds (5 second 

acquisition with 5 accumulations), to measure such a small area this is not a 

clinically relevant period of measurement. The reason for this was to gain 

accurate diagnostic information, as this was a proof of principle study. The results 

suggest that the HWN region alone gives sufficient diagnostic information, and 

the water/total area ratio is as accurate as full spectral analysis. The water/total 

area ratio could still be calculated with a reduced spectral resolution, and so the 

acquisition times could be reduced significantly, while maintaining diagnostic 

accuracy to make the method more clinically relevant.  

 

Although the NP3 system gave more clinically relevant readings than the micro 

spectrometry analysis, the readings obtained with the NP3 system could not be 

directly correlated with the histopathological features. The micro spectrometry 

analysis of the tissue sections demonstrated that there are some ‘normal’ areas 

of breast tissue within the breast tumour specimens. When measuring with the 

NP3 it was not possible to know if a ‘tumour’ area or ‘normal’ area was being 

measured from the tumour specimen, so ‘normal’ readings may have been 

obtained from a tumour specimen, which would have been classified as ‘false 

negative’ in the prediction models (when the readings were actually true 

negatives), and so the diagnostic accuracy may be an underestimate. 
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4.4.3 Tissue types presenting a diagnostic challenge  

4.4.3.1 Pathological subtypes 

The analysis of tumour specimens investigating spectral differences between 

pathological subtypes demonstrated that there were no significant differences 

between subtypes. This means the NP3 system cannot differentiate between 

different tumour characteristics. This is not a limitation for IMA, as the 

differentiation only needs to be tumour versus non-tumour, but if the probe were 

to be developed for other clinical needs such as needle biopsy, it may be relevant 

that it is unlikely the NP3 system could provide a specific diagnosis.  

 

4.4.3.2 ‘Normal’ tissue 

Breast tissue composition varies between patients according to a number of 

physiological factors including age 283, menopausal status 282 and hormonal 

factors such as menstrual cycle and exogenous hormones 283, 285. The 

demographic data that had been collected on these samples allowed analysis of 

the differences in non-tumour tissue according to age and menopausal status. 

These are independently associated with changes in breast tissue 

composition284, however there is obviously a link between these two 

characteristics, as post-menopausal patients are generally older.  

 

The analysis found significant spectral differences between the non-tumour 

specimens of younger and older patients and pre-and post -menopausal patients. 

Younger patients, and pre-menopausal patients had significantly higher 

water/total area ratios than those that were older or post-menopausal. This 

suggests young and pre-menopausal patients have a higher water content in the 

non-tumour breast tissue. This is in keeping with previous findings seen with other 

techniques such as Diffuse Optical Spectroscopy 284 and Magnetic Resonance 

imaging 285, however, in these studies the optical technique findings were not 

correlated with the histopathological findings but on radiological imaging. The 

micro spectroscopy analysis of non-tumour tissue demonstrated that younger 

patients had areas of stromal tissue (protein rich tissue) which gave a protein 

peak in the HWN region. However, the HWN spectra obtained from non-tumour 

tissue was dominated by a lipid peak, rather than a protein peak. The areas of 

protein tissue are still embedded within surrounding lipid tissue and the sampling 

area of the probe may include both areas. The Raman cross section of lipid is 
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greater than protein and only a small amount of lipid is needed within that 

sampling area to give a lipid peak, which dominates the protein peak in the CH 

stretch region (similar to the findings with the mixed gelatine/soya bean phantoms 

in Chapter 3). This results in no observable protein peak and the higher amount 

of water still measurable in an increased water peak. This would result in a higher 

water/total area ratio, and perhaps explains the differences observed between 

non-tumour specimens. 

 

These differences in the physiological ‘normal’ could account for any diagnostic 

inaccuracy seen in the method, as at the extremes of variation, the physiological 

‘normal’ spectra overlap with the tumour spectra. In a number of studies 

investigating the changes in water content to differentiate between tumour and 

non-tumour breast tissue using optical techniques other than Raman, the range 

of the physiological ‘normal’ breast water measurements have overlapped with 

the range of the ‘tumour’ water measurements, thus affecting the diagnostic 

accuracy of using water to differentiate between tissue types 276, 289, 291. A 

limitation of these studies was that in the calculation of the ‘tumour’ water 

measurements they used information from scans of large areas of breast tissue 

that contained both tumour and non-tumour tissue, which may have 

underestimated the degree of difference in water content between tissue types. 

If the variation in physiological ‘normal’ was significant and the cause of 

diagnostic inaccuracy it may mean that using water content as a main diagnostic 

marker is less accurate in the young/pre-menopausal in particular. It would 

therefore be expected that accounting for this variation would improve diagnostic 

accuracy of the technique. Calculation of the W/TAR difference allowed for 

interpretation of the tumour Raman spectra to be performed as a measure against 

the patient’s own baseline, provided in a ‘calibration’ measurement. Therefore, if 

a patient had a high water/total area ratio baseline in their non-tumour tissue, this 

would be accounted for as the tumour tissue readings would be measured as any 

change from that baseline. The results from this analysis did not show an 

increased diagnostic accuracy compared to other methods of analysis. This 

suggests that the physiological variation of non-tumour tissue water/total area 

ratio between patients does not adversely affect the diagnostic accuracy of 

differentiating between tumour and non-tumour tissue. 
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4.4.3.3 Lobular Carcinoma 

Lobular carcinoma can be a diagnostic challenge; mammography has poor 

sensitivity in detection of the disease 361, and is poorly circumscribed 

histologically with a single line infiltration of malignant cells 25. It may also present 

a diagnostic challenge in Raman spectroscopy; previous studies using Raman 

spectroscopy for IMA do not investigate lobular carcinoma as a possible 

pathological sub-group that may cause diagnostic inaccuracy 189, 262. 

 

The micro spectroscopy analysis of the tumour specimen of patient 14 (which 

was a lobular carcinoma) demonstrated lipid signals (which are generally 

associated with non – tumour tissue) even within tumour. It was also noted by the 

histopathologist on review of the H+E slide, that it was a difficult case to examine 

and the scattered cancer cells made it a diagnostic challenge. 

 

The histopathological features are different between lobular and ductal 

carcinoma, and the water/total area ratio was lower for lobular carcinoma, 

suggesting there are some spectral differences between the two carcinoma 

types. However, despite this possible diagnostic challenge in the subgroup 

analysis of all the tumour specimens, although the water/total area ratio was 

different between ductal (mean ratio - 0.77) and lobular carcinoma (mean ratio. 

0.70), it did not reach statistical significance. Comparing these ratios with the 

mean water/total area ratio for the non-tumour specimens which was 0.2 

demonstrates that the variation between carcinoma types was relatively small, 

compared to the differences between tumour and non-tumour tissue. This 

suggests that although lobular carcinoma may present a diagnostic challenge for 

Raman spectroscopy, it is the nature of the pathology, and NP3 is capable of 

differentiating lobular carcinoma tissue from non-tumour tissue. 

 

 

4.5 Conclusion 

This study has demonstrated the ability of NP3 to differentiate between tumour 

and non-tumour breast tissue with an excellent diagnostic accuracy of up to 93%. 

A wide range of data processing techniques using the fingerprint region, HWN 

region and the water/total area ratio are capable of differentiating tissue types. 

The water/total area ratio method is simple and could reduce data processing 
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time whilst providing accuracy equal to more complex spectral analysis, 

suggesting this may be the most clinically relevant method of data analysis to 

provide IMA. 

 

The biochemical differences between tumour (protein and water rich) tissue and 

non-tumour (lipid rich, water poor) have been demonstrated with spectral 

assignation, and validated with micro spectroscopy Raman measurements, that 

matched histopathological features with Raman spectral features. The impact of 

pathological subtypes that have previously been difficult to diagnose, such as 

DCIS only tissue, the broad range of variation in physiological ‘normal’ non-

tumour breast tissue and lobular carcinoma on the diagnostic ability of the 

technique has been discussed. Although more work is required, it suggests that 

the NP3 system is capable of good diagnostic accuracy even in these traditionally 

more difficult pathological subgroups. 

 

There are some limitations to the study, such as the study was conducted on 

fresh frozen tissue and the time taken for each spectral measurement was 25 

seconds. Further work is required to validate these study findings on fresh breast 

tissue and a probe and study protocol that could provide IMA within clinically 

relevant times needs to be developed. However, the findings and analysis of the 

data from this study suggests how this may be accomplished, and highlights 

which areas need particular attention. 

 

This study has been successful in providing the proof of principle that NP3, and 

in particular HWN Raman spectroscopy, can differentiate between tumour and 

non-tumour tissue with excellent diagnostic accuracy. This gives a basis for 

further work to translate these findings to providing IMA. 
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CHAPTER 5:  
An optimised Raman system for 
Intraoperative Margin Analysis 

 

5.1 Introduction 

Chapter 4 demonstrated the proof of principle that tumour can be differentiated 

from non- tumour breast tissue using the NP3 system. However, a number of 

limitations of the NP3 system were recognised in the acquisition of the data.  

Particular problems encountered with the NP3 system were: 

- The probe was physically fragile and susceptible to breaking if incorrectly 

handled or dropped 

- Some of the collection fibres did not work, and these were 

inaccessible/difficult to replace 

- Transporting it between the laboratory and the hospital site was difficult 

(due to fragility) 

- A small sampling volume 

-  

The NP3 system was unlikely to be successfully utilised without further probe 

manufacturing to become a system capable of providing IMA due to these 

limitations. To effectively translate the promising findings in chapter 4 towards 

providing Intraoperative Margin Analysis (IMA), the limitations of the probe need 

to be addressed. Therefore, using the knowledge gained through the thesis with 

the NP3 system, and using the same basic set up of a 785 nm laser excitation 

wavelength and InGaAs camera, a new handheld probe Raman system was 

developed for future clinical use. 

 

This chapter explores this new handheld Raman system (HH Raman system), 

ensuring the basic characteristics (i.e. ability to obtain HWN Raman 

measurements) are similar to the NP3 system, and going on to investigate the 

limitations and clinically relevant capabilities of the system to assess its suitability 

to provide IMA in the future. 
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5.2 Methods 

5.2.1 HH Raman system configuration 

The HH Raman system is similar in principle to the NP3 system, however the 

probe delivery system is different (Figure 5-1). Laser excitation was delivered at 

785 nm IPS spectrum stabilised laser module (Innovative Photonic 

Solutions,USA) with a 105µm core fibre through a collimating lens and then a 

785nm laser bandpass filter (Thorlabs,NJ,USA), and collimated light passed 

through a 785 nm dichroic mirror (Thorlabs,NJ,USA). A plano-convex 20mm lens 

with anti-reflective coating (Thorlabs,NJ,USA) and a 20mm spacer ensure light is 

focused at the tip of the probe, providing a maximum power of 250mW to the 

sample with a 0.19mm spot size. The light was then collected through an SMA 

7X 105 µm collection bundle with a collection spot size of 0.64 mm through a 

785nm notch filter to the entry port on the spectrometer - Kaiser Holospec 

Imaging Spectrograph (Kaiser optical systems inc, Ann Arbour,USA) with a broad 

HVG 800 grating which is coupled to a camera InGaAs camera (iDus InGaAs 

1.7m, Andor, Belfast, UK) cooled to -70C.  
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5.2.2 Breast Phantom construction 

To assess the HH Raman system, and to compare the results with all previous 

work in the thesis, the same phantoms were used for testing purposes. Gelatine 

phantoms were made to produce a range of water concentrations 85-95% using 

the same methods described in full in Chapter 2. 

Pork tissue was used to mimic biological tissue, analogous to fat rich, normal 

breast tissue (pork fat, and pork lard in later lumpectomy phantom construction) 

and protein and water rich tumour tissue (pork meat). Pork tissue and lard were 

purchased from a local supermarket (Tesco, UK). 

Figure 5-1 HH Raman system configuration 

A. Schematic diagram showing the system components, configuration and light path. Red line is excitation 

light (785 nm), Green line is Raman scattered light. B. Picture of handheld component taking a measurement 

from block of PTFE. The spot looks much larger than it is due to the significant scattering in the PTFE block. 
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The composition of each phantom was specific to each experiment, and is 

described in the corresponding section below. 

 

5.2.3 Measurement protocol 

Spectra were recorded using SOLIS software (Andor, UK) and processed in 

Matlab (Mathworks, USA). Daily calibrations were performed with Neon Argon 

lamp, Ethanol, water, PTFE, paracetamol and aspirin. The Raman peaks of 

paracetamol in the HWN region were used to calibrate the Raman shift using the 

inbuilt calibration tool in the SOLIS software. A dark signal measurement (with 

laser and background lights off) that corresponded to the signal acquisition time 

was taken daily for subsequently detailed spectral pre-processing. 

 

Specimens were wrapped in clingfilm to reduce probe contamination, and 

because in clinical studies the probe will need a disposable protective sheath of 

clingfilm for each measurement. Measurements taken of pork tissue with and 

without clingfilm on the surface revealed no discernible difference to the resulting 

Raman spectra – data not shown. As a main aim of these experiments was to 

reduce signal acquisition time - signal acquisition for these experiments was a 

single acquisition of 5 seconds per measurement (apart from in the experiments 

evaluating decreasing signal acquisition time).  

 

Measurements were taken with the HH Raman system, with the probe in light 

contact with the specimen (apart from in the experiments evaluating increasing 

this distance). 5 measurements were taken, at random, over the surface of each 

phantom. 

 

5.2.4 Data processing and analysis 

Spectra were pre-processed initially by dark noise subtraction. A smoothed dark 

noise baseline was obtained by a Savitzky-Golay filter with a 7th order polynomial 

of the dark noise reading of the corresponding spectral acquisition time (5 

seconds unless otherwise stated in the individual sections) and this was 

subtracted from each spectrum. Baseline subtraction was undertaken with a 2nd 

order polynomial fit. Spectra presented are the mean spectra of the 5 repeats 

(n=5) +/- 1 Standard Deviation (SD), and have been normalised to the CH stretch 

region between 2850-2950 cm-1. Each spectrum was analysed using the 
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water/total area ratio method, (area under the curve of 3035-3680 cm-1 region 

divided by area under the curve of 2850-3680 cm-1 region) as previously 

described in Chapter 3 and 4. The mean water/total area ratio +/- 1 SD is used 

to describe each specimen. Scatter graphs were constructed for the gelatine 

phantoms using this data plotted versus the known water fraction of the gelatine 

phantom, and a linear fit calculated based on all points with quality of fit described 

by the Root Mean Square Error (RMSE). 

 

Statistical analysis to compare water/total area ratio was performed with one -

way ANOVA, statistical significance P<0.05. 

 

5.3 Experimental protocol and results 

5.3.1 Assessment of probe detecting changes in water content 

The initial test of the HH system was to ensure it could obtain Raman spectra 

with a good signal to noise ratio using the phantoms that had previously been 

used to mimic breast tissue (pork meat and fat), as these were to be used in 

subsequent experiments. Figure 5-2 shows that high quality, high signal to noise, 

Raman spectra were obtained with just 5 second acquisition times. 

 

 

 

The ability of the HH Raman system to detect changes in water content were then 

tested. The results from the fresh frozen breast tissue suggest that normal, fatty, 

Figure 5-2 Showing Raman spectrum of pork meat and pork fat obtained with HH Raman system. 

Spectra are mean spectra with shading in the same colour either side +/- 1 S.D. (n=5). Acquisition time 5 

seconds. 
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breast tissue has a very low water content and that changes in the water content 

cannot be measured using HWN Raman – therefore changes in water content in 

a lipid environment were not tested as it is of limited clinical relevance. However, 

the protein rich tumour areas had a range of water contents that could be 

measured using the water/total area ratio calculation. Therefore, gelatine 

phantoms at a range of water concentrations (95-85% water) were measured to 

test if the HH Raman system could measure changes in water concentration 

using the water/total area ratio method of spectral analysis. Figure 5-3 shows that 

there was a linear relationship between known water fraction and the water/total 

area ratio, with a gradient of 0.533 and RMSE of 0.002. This demonstrates that 

the HH Raman system can obtain HWN spectra of sufficient quality to detect 

small changes of 2.5% (in a protein rich environment) in water concentration. 

These results are similar to the results from the NP3 system (where similar plots 

of water fraction vs water/total area ratio had a gradient of 0.57), suggesting that 

the HH Raman system has comparable performance in measurement of the 

HWN region. 
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Figure 5-3 showing Raman spectra in the HWN region of different water concentrations of gelatine 

phantoms and the relationship with the water/total area ratio 

A. Graph showing Raman spectra of gelatine phantoms at 5 different water concentrations, normalised to 

CH stretch region between 2850 – 2950 cm-1. Plotted lines are mean (n=5) for each concentration after pre-

processing, shading in the same colour either side is +/- 1 SD. B. Scatter graph of known water fraction 

versus water/total area ratio. Points plotted are mean water/total area ratio (n=5), error bars +/- 1 SD. Red 

line is line of best fit (Gradient 0.53, RMSE = 0.002) 
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5.3.2 The effect of changing measurement parameters on signal acquisition 

5.3.2.1 Decreasing laser power 

The standard power of the 785 nm laser for these experiments was 250 mW. 

Higher laser powers could be obtained and attempted with this system (up to 350 

mW), but this led to sample degradation through burning. With the power at 250 

mW no burning of any samples was observed, this was also the power that was 

used for the NP3 system measurements of fresh frozen breast tissue (where the 

power density is much higher due to the laser being focused on a smaller area 

362) where there was no burning of small, dry, biopsy samples. The method of 

IMA that is envisaged with the HH probe is for ex vivo analysis of excised breast 

tissue samples. Therefore, although burning of samples is to be avoided as it 

may confound subsequent histopathological analysis, it would not cause 

immediate harm to a patient. It may be that future uses for the HH Raman system 

could be in vivo assessment of the tumour bed, similar to work done in 

neurosurgery 223. It is possible that the laser power would have to be reduced 

below 250 mW to avoid deleterious tissue temperature increases and burning for 

future in vivo studies. Most studies using Raman spectroscopy in vivo on skin 363 

and within the abdominal cavity 248 use a delivered power of 100 -150 mW, and 

in vivo analysis of the tumour bed it was as low as 37-64 mW 223 (though no 

studies actually measured specimen temperatures/degradation).  

 

As the intensity of Raman scattering is related to the laser power, reducing laser 

power could negatively affect signal acquisition 362. To investigate the potential 

for the system to be used in vivo on biological tissue at reduced power, a series 

of measurements were performed on pork meat at different laser powers. The 

Raman cross section of protein and water is much lower than lipid 364, and so any 

anticipated reduction in signal to noise ratio would affect the ability to detect 

protein and water more than the ability to detect lipid. Therefore, pork meat was 

measured as the detection of protein and water rich areas (mimicking a tumour 

environment) is the most clinically relevant. 

 

Figure 5-4 shows the results of measuring pork meat at different laser powers. At 

all laser powers there is good signal to noise and Raman signal could be 

recovered. Analysis of the water/total area ratio between the laser powers 

demonstrates that the mean ratio was different between laser powers (250 mW 
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– 0.794 (SD 0.006), 150 mW – 0.787 (SD 0.006), 80 mW – 0.776 (SD 0.012)) 

and this reached statistical significance (P= 0.016) and multi-group comparison 

of the ratios was significant between 250 mW and 80 mW (P= 0.013), but not 

between any other group comparisons (250 mW vs 150 mW; 150 mW vs 80 mW; 

P>0.05). 

 

A B 

   

  

These results demonstrate that the HH Raman system can be used with a 

decreased laser power, and Raman signal is obtained at the low power of 80 

mW. Although the water/total area ratio is statistically different between the laser 

powers, in real terms it only varies maximally by a ratio value of 0.04 between the 

highest and lowest power, and this would be unlikely to adversely affect the 

diagnostic ability in differentiating tumour and non- tumour tissue (in the fresh 

frozen samples the differences in water/total area ratio between tissue types were 

in the order of 0.5). This may be useful if future work requires the probe to be 

used at lower laser powers for in vivo use. 

 

5.3.2.2 Measurement acquisition time 

A limitation in previous experiments in this thesis has been the acquisition time 

to obtain measurements. In the fresh frozen breast specimens, a total acquisition 

time of 25 seconds was used to ensure adequate signals were obtained for the 
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Figure 5-4 Results of measurement of pork meat with HH Raman system with different laser 

excitation powers 

A Graph showing Raman spectra of pork meat at 3 different laser powers, normalised to CH stretch region 

between 2850 – 2950 cm-1. Plotted lines are mean (n=5) for each concentration after pre-processing, 

shading in the same colour either side is +/- 1 SD. B. Bar graph comparing the mean water/total area ratio 

between the signal acquisition times, error bars +/- 1 SD. One-way ANOVA to compare between samples, 

comparison between 250mW and 80mW revealed statistical significance, denoted by * P=0.013  

* 
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proof of principle phase. Future work with the HH Raman system will be in the 

clinical environment and reducing the signal acquisition time would allow a 

reduction in time for specimen analysis.  

 

A limitation of InGaAs cameras is the increased dark noise, requiring additional 

pre-processing steps, and readout detector noise, requiring longer acquisition 

times to overcome this, compared to CCD cameras 340, 365. Santos et al. used an 

InGaAs camera in biological tissue (skin) and used acquisition times of 10 

seconds, and when reduced acquisition times were attempted the results were 

poor (though they were measuring pigmented skin lesions) 365. This is in 

comparison to a recent study by Liao et al. a CCD camera and excitation 

wavelength of 671 nm with a 2-axis scanning galvo- mirror system was used to 

obtain signals with a signal acquisition time of 10 ms, however, this did not 

provide signals in the entire HWN region (omitting the water peak), there was 

significant background fluorescence and the HWN signals were not diagnostic 

signals 299. This work by other groups suggests that advancing the HH Raman 

system and the use of InGaAs cameras requires the ability to reduce signal 

acquisition time to compete with the timescales achieved with CCD cameras for 

signal acquisition. 

 

In the previous sections in this chapter, an acquisition time of 5 seconds has been 

used, and the results have so far demonstrated that this provides excellent 

Raman signals with good signal to noise, and that this reduced acquisition could 

be used in the future. Reducing the signal acquisition times even further could 

have great clinical benefits in progressing the HH Raman system closer towards 

providing IMA in clinically relevant timeframes. Therefore, a series of 

measurements were obtained on pork meat over a range of signal acquisition 

times (from 5 seconds to 0.1 seconds), and the resultant spectra water/total area 

ratio compared to determine the effect of signal acquisition times on obtaining 

spectra in the HWN region (Figure 5-5). 
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Figure 5-5 shows that discernible Raman signal was recovered at all signal 

acquisition times, even to the very short time of 0.1 second. The spectra for 

acquisition times of 0.5 seconds and greater were remarkably similar in 

appearance. However, spectra obtained at 0.1 seconds are visually poor quality, 

with a low signal to noise, and the background noise impacting significantly on 

the spectra particularly in the region of the OH stretch (3035 – 3680 cm-1). 

Analysis of the water/total area ratio for the spectra showed the mean water/total 

area ratio did decrease with signal acquisition time (from 5 seconds – 0.77 to 0.1 

second - 0.71) but this did not reach statistical significance on multiple 

comparison between all groups (P >0.05).  

 

These signal acquisition times are considerably shorter than other Raman 

systems utilising an InGaAs camera, while still maintaining Raman spectra with 

reasonable signal to noise 345, 365. One reason could be the pre-processing that 

we perform with dark noise subtraction, which is not performed in the other 

studies. The quality of Raman spectra obtained at 0.1 second (100 ms) is 

comparable, if not better (considering they are with less scattering protein rich 

tissue), than those obtained in fatty tissue with a CCD at 10 ms 299. Some 

biochemical information (the water peak) may be lost at these lower acquisition 

times, however, depending on the spectral features required for analysis, 

acquisition times could be reduced further.   

 

These results demonstrate that it is possible to reduce signal acquisition times to 

as low as 0.5 seconds with the HH Raman system and our pre-processing 

methods and obtain sufficient quality Raman spectra for full biochemical analysis 

and interpretation. 

 

Figure 5-5 Raman spectra of pork meat obtained with HH Raman system with a range of signal 

acquisition times (5 second – 0.1 second) 

A – G –Raman spectra of pork meat at  different signal acquisition times (titled), normalised to CH stretch 

region between 2850 – 2950 cm-1. Plotted lines are mean (n=5) for each acquisition time after pre-

processing, shading in the same colour either side is +/- 1 SD. H. Bar graph comparing the mean water/total 

area ratio between the signal acquisition times, error bars +/- 1 SD. One-way ANOVA to compare between 

samples, found no significant difference between water/total area ratio P>0.05 
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5.3.2.3 Reduced probe contact 

An element of signal acquisition that is particularly important with a handheld 

probe is the variability in contact between the probe and the surface being 

measured. These variations may occur either due to human factors (i.e. not 

consistently putting the probe directly in contact with the specimen) or specimen 

factors (i.e. unequal surface of specimen). This occurred in the use of the 

ClearEdge probe which caused an error in the device and the margin could not 

be assessed in a number of specimens 266. This is a potential major limitation 

with a handheld probe.  

 

The HH Raman system is designed for the probe objective to be in light contact 

with the surface of the specimen throughout the acquisition time, as the 20 mm 

lens focuses the excitation light at that point. However, it is important to assess 

the effect that variation would have if the specimen was measured not in the ‘ideal 

conditions’ of having the probe in light contact with the specimen, as this is likely 

to happen with some measurements in a clinical setting. A series of 

measurements were taken with the probe at a range of distances from the surface 

of the specimen (pork meat) to investigate the effect that reduced probe contact 

with the specimen has on obtaining Raman spectra (Figure 5-6). 
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Figure 5-6 shows the spectra obtained of pork meat at a range of probe to 

specimen distances. It can be seen that the spectra obtained when the probe is 

in contact with the specimen (0 mm probe to specimen distance) has a smaller 

standard deviation by a factor of 10 compared to other measurements (mean 

water/total area ratio (SD)- 0 mm 0.789 (0.005); 1 mm 0.731 (0.053); 3 mm 0.767 

(0.031); 5 mm 0.714 (0.121); 10 mm 0.764 (0.053)). This suggests the least 

variability in measurements when the probe is in contact with the specimen. 

0 1 3 5 10

Probe to specimen distance (mm)

0

0.2

0.4

0.6

0.8

1

W
a
te

r/
to

ta
l 
a

re
a
 r

a
ti
o

Figure 5-6 Raman spectra of pork meat obtained with HH Raman system with a range of probe to 

specimen distances  (0 mm – 10 mm) 

A – E –In the left column is a photo demonstrating the distance from probe to specimen (pork meat in 

clingfilm), in the right column is Raman spectra of pork meat at  different probe to specimen distances (titled), 

normalised to CH stretch region between 2850 – 2950 cm-1. Plotted lines are mean (n=5) for each acquisition 

time after pre-processing, shading in the same colour either side is +/- 1 SD. H. Bar graph comparing the 

mean water/total area ratio between the probe to specimen distances, error bars +/- 1 SD. One-way ANOVA 

to compare between samples, found no significant difference between water/total area ratio P>0.05 
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However, when the water/total area ratios were compared between all groups 

they were not significantly different (P>0.05).  

There are a number of reasons why introducing a gap between the probe and 

specimen would introduce greater spectral variability, such as stray light 263 and 

reduced efficiency of collection of Raman scattering 160. These results suggest 

the optimal method of measurement is with the probe in light contact with the 

specimen, but that adequate Raman spectra can be obtained when the probe is 

up to 10 mm away from the surface of the specimen. Therefore, if there was 

deviation from measurement protocol, and the probe takes measurements not in 

contact with the specimen, it should not critically affect results. 

 

5.3.2.4 Sub-surface Sampling depth 

A characteristic of the probe that has particular clinical relevance is the sampling 

depth. The sub-surface sampling depth of a Raman system is defined by the 

lateral distance from the illumination source to the collection system 160. In 

traditional Raman microspectroscopy, where the illumination and collection light 

are in the same place, the sampling depth is in the order of a few hundred microns 

and is predominantly a surface technique 366. If there is a spatial offset the 

photons that have travelled some depth into the tissue are collected, thus likely 

to collect scattered photons from beyond the surface of the sample 160. There is 

a clinical significance to this, as if there is disease within 2 mm of the resected 

edge re-excision should be considered, and if disease is at the resected edge, 

re-excision should be undertaken 56. In the HH Raman system the illumination 

source and collection bundle are not separated and there is negligible spatial 

offset. Therefore, there should be minimal contribution from spatial scattered 

photons beyond the sample surface. Understanding the sampling depth of the 

probe is important to interpret the Raman signals, and what the clinical 

significance may be, when it is applied to IMA. 

 

Most studies examining sampling depth measure a highly scattering substance 

at increasing depths 367 to ascertain if the Raman signal from the buried medium 

can be detected. However, for a clinical probe this is of limited value and 

significance, as the ability to measure a buried medium is dependent on the 

Raman cross section of the buried medium i.e. if it is highly scattering the Raman 

signal will be detected at much greater depths than if it is poorly scattering 160. 
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Therefore, as the biological tissue will have a different Raman cross section to 

the experimental buried medium, the sampling depth will not necessarily be valid 

in the clinical application 368. 

 

To further understand the sampling depth of the probe with clinical relevance, 

substances that have analogous scattering properties to human breast tissue 

were used. Pork fat was used to mimic normal, fatty breast tissue as it is highly 

scattering 162, 314. For the first experiment measuring fatty tissue underneath a 

protein rich tissue, a 90% water gelatine phantom was used to mimic protein rich 

tumour tissue, rather than pork meat. This is because gelatine phantoms have 

lower scattering properties than pork meat, and it was noted in chapter 4 that 

tumour tissue had a low degree of scattering (with low intensity signals), and have 

been used to mimic tumour tissue previously 304. Gelatine phantoms will have 

lower scattering than breast tumour tissue, and therefore these models represent 

a ‘worst case scenario’ of a low scattering, thin layer of tumour overlying a thick 

layer of highly scattering normal fatty tissue.  

 

The first experiment measured pork fat with an increasing depth of gelatine 

phantom on top. The 90% water gelatine phantom was sliced into 1 mm deep 

strips and placed on top of the pork fat (range from no gelatine– 7 mm of gelatine). 

This is analogous to measuring a tumour overlying normal fatty tissue. 

Figure 5-7 shows that with 1 and 3 mm of gelatine phantom overlying the pork 

fat, the lipid signal is predominant, though the water content of the gelatine 

phantom is apparent. With 5 and 7 mm of gelatine phantom the protein and water 

of the gelatine phantom predominate, though there is still some residual lipid 

signal contribution to the spectra. Analysis of the water/total area ratio shows that 

the mean ratio increases with the depth of gelatine over the fat, highlighting the 

increasing contribution from the water peak to the spectra and these were 

statistically significant (No Gelatine water/total area ratio – 0.12 (SD 0.015) 

versus 1 mm Gelatine – 0.41 (SD 0.16); 3 mm Gelatine 0.46 (SD 0.035); 5 mm 

Gelatine 0.72 (SD 0.054) and 7 mm Gelatine 0.79 (SD 0.031); all comparisons 

P=<0.001).  

 

 

 



Chapter 5 
 

 299 

 

A      B 

 

 

 

The second experiment aimed to assess the sampling depth with lipid overlying 

a protein rich sample. Due to the results from experiment one suggesting that the 

gelatine phantom has a low Raman cross section, it seemed unlikely that gelatine 

phantom under a layer of lipid would be detected. Therefore, pork meat (which 

had been observed to have a more intense Raman signal) was used as the 

protein rich sample. To get as thin a layer of lipid over the top of the meat, pork 

lard was used as fat could not be cut thin enough. This model replicates an area 

of tumour, with a very thin layer of normal fatty tissue overlying it – this could 

represent a positive margin that requires consideration for re-excision. 

Figure 5-8 demonstrates that even with as thin a layer of lard as possible, no 

meat signal could be recovered, as the lard is so highly scattering the lipid signal 

dominates. 
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Figure 5-7  Raman spectra of pork meat obtained with HH Raman system with a range of depths of 

90% water gelatine phantom overlying the fat (0 mm – 7 mm) 

A Graph showing Raman spectra of pork meat with different depths of overlying gelatine phantom, 

normalised to CH stretch region between 2850 – 2950 cm-1. Plotted lines are mean (n=5) for each 

concentration after pre-processing, shading in the same colour either side is +/- 1 SD. B. Bar graph 

comparing the mean water/total area ratio between the signal acquisition times, error bars +/- 1 SD. One-

way ANOVA to compare between samples, comparison between 0 mm (no gelatine) and all other depths of 

gelatine phantom revealed statistical significance, denoted by * P=<0.001 
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These results demonstrate that when a protein rich layer with low scattering and 

a low Raman cross section (gelatine phantom) is overlying a highly scattering 

agent (pork fat), significant contribution from the highly scattering agent persists 

at substantial depths of up to 5 mm using the HH Raman system. However, the 

water/total area ratio analysis suggests that despite this, the Raman spectra are 

significantly different between just fat, and fat with gelatine overlying it. In the 

second experiment protein rich tissue (mimicking tumour) could not be detected 

beneath a thin (<1 mm) layer of lipid rich tissue (mimicking normal fatty tissue). 

 

There are some limitations to these experiments. The thickness of the gelatine 

slices in experiment 1, and the thickness of the lard in experiment 2 could not be 

precisely established. It may also be that the scattering properties and Raman 

cross section of the phantoms may not exactly mimic breast tissue, which would 

alter the subsurface sampling depth. The first experiment of gelatine overlying 

pork fat represents a ‘worst case scenario’ of small amounts of low scattering 

breast tumour overlying normal fatty tissue. As breast tumour tissue is more 

scattering than gelatine phantoms, this issue may not be so pronounced with 

clinical tissue measurements. Despite these limitations, this work highlights the 

difficulty in detecting protein rich tissue (tumour) below even a thin layer of lipid 

rich tissue (normal breast tissue). Further work is required when there is access 

to human breast tissue to ascertain the depths below normal fatty tissue at which 

tumour tissue can be detected. If this is found to be necessary in clinical 

Figure 5-8 Raman spectra of pork meat and lard covering pork meat obtained with HH Raman system  

Graph showing Raman spectra normalised to CH stretch region between 2850 – 2950 cm-1. Plotted lines 

are mean (n=5) for each concentration after pre-processing, shading in the same colour either side is +/- 1 

SD. 
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specimens, the probe could be modified to introduce a spatial offset to maximise 

signal from below the surface. 

 

5.3.3 Assessment of probe in ‘tumour’ detection  

Assessing the sampling area of the probe is an essential step in understanding 

the capability of the probe and the clinical significance of the results generated 

from the HH Raman system. The important clinical question is – what is the 

smallest area of tumour that can be detected by the probe? 

 

Raman based techniques have been reported to detect residual tumours on the 

surface of specimens as small as 1 mm2, though the diagnostic threshold 

sensitive enough to detect these smaller tumours had a specificity of 83% 

indicating a significant number of false positives using this diagnostic 

threshold189. The MarginProbe (currently the most advanced and ‘at market’ tool 

for IMA) reported a sensitivity of only 56% for detecting tumours of 0.7mm 369. 

These literature reports suggest that detection of tumours around 1 mm2 is 

necessary for the HH Raman system to be clinically useful, and competitive with 

other devices and technologies. 

 

Similar to the previous work on investigating sampling depth, experimental 

methods with other materials could ascertain, perhaps with greater theoretical 

precision, the sampling area of the probe. However, as the diameter of the 

sampling volume is affected by the optical properties (such as refraction, 

scattering, absorption) of the measured specimen, using biological tissue gives a 

closer understanding of what may be seen with human breast tissue in the clinical 

setting 362.  

 

For these experiments a series of lumpectomy phantoms were created from pork 

lard (to mimic normal, fatty breast tissue) and pork meat (to mimic protein and 

water rich tumour breast tissue). Pork meat was dissected into pieces ranging 

from 0.5 mm2 to 5 mm2 and placed into squares of pork lard (Figure 5-9). 
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5.3.3.1 Point scans 

To assess the sampling area, measurements were taken directly over the area 

of pork meat of each lumpectomy phantom. If the sampling area is greater than 

the piece of meat, it would also sample the surrounding lard. As lipid is much 

more scattering than protein, the lipid signal may dominate the resultant spectra 

and the protein and water signal may not be detected. This would result in that 

‘tumour’ size not being detectable. Therefore, the size of the pork meat in lard 

ranged from as small as possible that was able to be dissected and measured 

accurately (0.5 mm2) and was predicted to be smaller than the sampling area, to 

Figure 5-9 Figure showing the lumpectomy phantoms 

A. pork meat (tumour mimic) cut into a range of sizes (0.5-5mm2). B. Lumpectomy phantoms with the pork 

meat (tumour mimic) of a range of sizes (written next to the corresponding phantom) in a square of lard 

(normal breast tissue mimic) 
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large pieces (5 mm2) that, if remained undetectable with the probe, would render 

the probe clinically inappropriate. 

 

The results displayed in Figure 5-10 A demonstrate the change in the Raman 

spectra as the pork meat (‘tumour’) increases in size. As there is an increase in 

size of the pork meat, the protein signal and the water peak become more 

dominant in the spectrum. The water peak is small in the 0.5 mm lumpectomy 

specimen which could be due either to a small amount of water in the pork meat 

(with rapid dehydration from the surface due to relatively large surface area), poor 

targeting of the probe on the lesion, or, more likely, because of dominant lipid 

signals giving a relative decrease in the water peak. As there is some lipid 

contribution to this spectrum, this suggests that the sampling area of the HH 

Raman system is at least 0.5 mm2. This would likely adversely affect the 

diagnostic ability of the system in tumours of this size. 

 

The water/total area analysis in Figure 5-10 B shows that there is a difference in 

the mean water/total area ratio between pure lard (0.013 (SD 0.011)) compared 

to the lumpectomy phantoms (0.5 mm phantom 0.31 (0.021);  1 mm phantom 

0.59 (0.0055); 2 mm phantom 0.51 (0.068); 3 mm phantom 0.49 (0.056); 4 mm 

phantom 0.60 (0.036); 5 mm phantom 0.67 (0.030)), and this reached statistical 

significance (P<0.001; one-way ANOVA). All lumpectomy phantoms had 

significantly different water/total area ratios to each other (1 mm phantom versus 

2 mm phantom (P=0.03) and 3 mm phantom (P=0.0026), all other comparisons 

P<0.001), apart from 1 mm phantom and 4 mm phantom (P=0.99) and 2 mm 

phantom and 3 mm phantom (P=0.99). 

 

The limitations to these experiments are that the pork meat may have a different 

Raman cross section to real human breast tumour tissue, which may alter the 

detection rate. The lumpectomy phantoms with >1 mm2 pieces of pork meat had 

different water/total area ratios on comparison, which suggests there may have 

been other influences on the Raman signal than just the pork meat (i.e. the 

sampling area may have been greater than 1 mm2). However, the water/total area 

ratios for these phantoms were of a similar magnitude (0.49 - 0.67), compared to 

that of lard (0.013). Therefore, it is more likely that this variation represents 

natural variation in the pork meat used, as a different piece of pork meat was 
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used for each lumpectomy phantom, which will have had slightly different 

biochemical/water properties, and a different rate of dehydration, all of which will 

affect the water/total area ratio. 

 

These results demonstrate that all lumpectomy phantom ‘tumours’ (ranging from 

0.5 – 5 mm2) had significantly different water/total area ratios compared to lard 

(mimicking normal breast tissue). This suggests that tumours as small as 0.5 

mm2, and certainly tumours of 1 mm2, could be detected with the HH Raman 

system.  
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5.3.3.2 Line scanning 

The final component of assessment of the HH Raman system was to 

conceptualise how the system may be used in the future to provide IMA for Breast 

Conserving Surgery. One method would be using the probe as a hand-held 

device and taking measurements of an area of concern – similar to the method 

described above. However, this would rely on the surgeon identifying an area of 

concern for analysis, and would not be capable of scanning an entire resected 

edge / specimen in a methodical manner. A way of measuring an entire resected 

edge systematically would be to have the probe stationary, and the specimen on 

a mechanical stage that would automatically move the specimen in the 

appropriate step sizes for each measurement to ensure the entire area of the 

resected edge was measured. This could then give a real time read out of the 

specimen as it is scanned, or a binary outcome at the end of scanning of whether 

the resected edge is clear or not of tumour. 

 

To test the feasibility of this potential use, the HH Raman system was kept 

stationary, and a lumpectomy phantom was moved manually with a roughly 1 mm 

step size in a line through the tumour. The lumpectomy phantom with a 1 mm2 

piece of pork meat in the centre was measured, to mimic a small 1 mm2 tumour 

at the resected edge of a lumpectomy specimen. The signal acquisition time was 

1 second, to further reduce the time taken for specimen analysis. The acquired 

spectra were pre-processed and the water/total area ratio calculated. In clinical 

practise for IMA the surgeon would want a binary, and easily interpretable, output 

Figure 5-10 Raman spectra of lumpectomy phantoms obtained with HH Raman system with a range 

of pork meat (to mimic ‘tumour’) sizes  (0 mm2 – 5 mm2) 

A. On the left column is a graphic illustrating the measurements were taken from the centre of the ‘tumour’ 

in the lumpectomy phantom. The lumpectomy phantoms had a range of pork meat areas to mimic different 

tumour sizes. On the right column is the resultant Raman spectra from the centre of the ‘tumour’ for the 

corresponding lumpectomy phantom, normalised to CH stretch region between 2850 – 2950 cm-1. Plotted 

lines are mean (n=5) for each acquisition time after pre-processing, shading in the same colour either side 

is +/- 1 SD. B. Bar graph comparing the mean water/total area ratio between the lumpectomy phantoms, 

error bars +/- 1 SD. One-way ANOVA to compare between samples, found all water/tumour area ratios were 

significantly different between the phantom with no pork meat (0mm) and all other lumpectomy phantoms 

(denoted by * P<0.001) and all lumpectomy phantoms were significantly different from each other (P<0.05), 

apart from between lumpectomy phantoms with ‘tumours’ of 2mm and 3mm (denoted by †= P>0.05), and 

1mm and 4mm (denoted by ‡= P>0.05). 
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of the Raman spectra findings to determine whether the margin was positive or 

not and aid their clinical decision to resect further tissue or not. Therefore, based 

on the results and methods in chapter 4 (using binomial logistic regression to 

obtain the optimal water/total area ratio cut off to detect tumour) a water/total area 

ratio of 0.5 was used to classify the resulting spectrum as tumour (water/total 

area ratio ≥ 0.5; red) or normal (water/total area ratio <0.5; green) (Figure 5-11). 

 

 

 

There are limitations to this illustrative experiment. Although the point 

measurements had suggested that ‘tumours’ of 0.5 mm2 could be detected, the 

1 mm phantom was used because the pork meat in the 0.5 mm phantom could 

Figure 5-11 demonstrating the concept of a rapid line scan of a lumpectomy phantom 

Left-illustration of HH Raman system taking measurements from the lumpectomy phantom, and the line of 

measurements to be taken (dotted line). Measurements taken at 1 mm step size in a line on the phantom, 

the corresponding spectrum is displayed, and water/total area ratio (W/TAR) calculated. A visual output is 

provided based on a W/TAR cut off of 0.5 to differentiate tumour (≥ 0.5; green) from non-tumour (<0.5; red). 

Raman spectra are single spectrum with 1 second acquisition, pre-processed and normalised to CH stretch 

region between 2850 – 2950 cm-1 
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not be accurately seen to confirm it was being measured in the dark laser safe 

room. A manual single line scan directly through an area of known ‘tumour’ will 

obviously have an improved detection rate compared to an automated scan 

through tissue of unknown composition. The spectral differences between pork 

meat and lard will undoubtedly be easier to identify than the more subtle changes 

that can be seen between breast tumour and non-tumour tissue. 

 

Despite these limitations, this experiment illustrates the potential in the HH 

Raman system for providing IMA. These results demonstrate that a small area of 

‘tumour’ (1mm2) could be easily detected with the HH Raman system in a 

lumpectomy phantom measured in a line scan, with acquisition times of 1 second. 

The calculation of the water/total area ratio allows for rapid assessment of the 

Raman spectra and could give outputs that are easy to interpret by the surgeon 

to assist intraoperative decision making.  

 

 

5.4 Discussion 

The series of experiments in this chapter demonstrates the technical capabilities 

and limitations of the HH Raman system, focused on its clinical application to 

providing IMA in human breast tissue.  

 

5.4.1 Clinical context of findings 

The results from the gelatine phantoms of varying water concentrations 

demonstrate that the HH Raman system can quantify changes in water content 

in a protein rich environment, and the results are very similar to those obtained 

with the NP3 system. This suggests that the previous work performed with the 

NP3 system concerning water content, and the influences on the HWN spectral 

region, remain valid with the new HH Raman system. 

 

The experiments concerning laser power, acquisition time and probe to specimen 

distance were designed to assess the influence of changing these parameters on 

the resultant Raman spectra. The experiments found that Raman spectra with an 

adequate signal to noise can still be obtained with the laser power as low as 80 

mW, which is a laser power utilised in other studies using Raman in vivo 223, 363. 

Although the water/total area ratio was significantly different to the ratio obtained 
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with 250 mW power, it would be unlikely to have a detrimental impact on 

diagnostic ability. 

 

Adequate Raman spectra could be obtained with signal acquisition times as low 

as 1 second. Even measurement with an acquisition time of 0.5 seconds did not 

have a significantly different water/total area ratio compared to the longer 

acquisition times, however visually the signal to noise was suboptimal and would 

likely cause diagnostic difficulties. These are significantly shorter acquisition 

times than previous work with InGaAs cameras in biological tissue, and may be 

due to our pre-processing methods of dark noise subtraction 345, 365. 

 

The probe is best used with the tip in light contact with the specimen. 

Measurements performed in this way had the least variability in the water/total 

area ratio. However, the results were not significantly different from when 

measurements were taken with the probe not in contact with the specimen and 

spectra could still be obtained when the probe was at a distance of up to 10 mm 

away from the specimen. This is reassuring that if there is variability in using the 

probe between users, or between specimens, the results would not be adversely 

affected, which is a potential pitfall for handheld probes providing IMA 266. 

 

These effects of the change of measurement parameters are important to note, 

as during clinical measurements they may alter erroneously, or if these 

parameters needed to be altered for experimental need, the effect this may have 

on the Raman spectra can be anticipated, and this information can inform the 

decisions on experimental protocol. 

 

Experiments were performed to understand the subsurface sampling depth of the 

HH Raman probe. Many other Raman systems developed for IMA have focused 

primarily on surface techniques, with no ability to sample below the surface 186, 

189, 299, though SORS probes have had a subsurface sampling capability of up to 

2 mm 185, and 3 mm 265 . The experiments investigating the subsurface sampling 

depth of the probe demonstrated that with up to 3 mm of gelatine phantom 

overlying fat, lipid signal still contributed to the Raman spectra. There was still a 

spectral difference, and significant difference in the water/total area ratio, 

between lipid alone and those with gelatine overlying the lipid. However, it 
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suggests that in a ‘worse case scenario’ if there was a small area of protein rich 

tumour tissue overlying a lot of lipid tissue the signal may be overwhelmed by the 

lipid contribution and cause diagnostic inaccuracy. More clinically relevant was 

the finding that even a small amount of lipid (lard) overlying protein rich tissue 

(pork meat) resulted in no signal from the protein rich tissue being obtained. 

Translating this to the provision of IMA, if a tumour has a small amount of normal, 

fatty tissue overlying it, it may go undetected. Currently the guidance is that 

further excision should only be performed if there is tumour at the resected edge 

(tumour ‘on ink’) i.e. an exposed tumour with no normal tissue overlying it 56. 

Margins of 0-2mm are subject to discussion about re-excision only, and therefore 

it is probable they would not take place necessarily at the time of the operation 

anyway. With these current guidelines therefore, the subsurface sampling depth 

of the HH Raman probe (of <1 mm in areas of lipid) are ideal for the provision of 

IMA. 

 

Experiments on lumpectomy phantoms (with pork meat mimicking ‘tumour’, and 

lard ‘non-tumour’ tissue) gave insight into the sampling area of the HH Raman 

system. Raman spectra obtained from point measurements of the 0.5 mm 

lumpectomy phantom had some lipid contribution from the surrounding lard, 

whereas the spectra from the 1 mm phantom did not, suggesting that the 

sampling area of the probe is between 0.5 – 1 mm2. The lipid contribution was 

visually apparent in the spectra from the 0.5 mm phantom which did reduce the 

water/total area ratio in this phantom compared to the larger ‘tumour’ phantoms 

(1-5 mm) but the water/total area ratio was still significantly different between lard 

and all the lumpectomy phantoms (0.5 – 5 mm). This suggests that ‘tumours’ as 

small as 0.5 mm2 could be detected using the HH Raman system, and certainly 

‘tumours’ of 1mm2 or greater could be readily detected. This size of tumour 

detection would compare very favourably with not only other Raman systems 189 

but also other technologies 370 aiming to provide IMA. 

 

The line scan of a lumpectomy phantom with a 1 mm2 ‘tumour’ (pork meat within 

lard) demonstrates the potential of the HH Raman system and possible future 

application. The scan demonstrated the potential to detect a small tumour of 1 

mm2 with 1 second acquisition times, with the water/total area ratio calculated 

simultaneously with a ‘real time’ easily interpretable output to assist clinical 
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decision making. The line scan shows that the entire resected edge of a small 

lumpectomy specimen (30 X 30 mm) could be analysed in 15 minutes with this 

system (assuming 1 mm step size). This is potentially a highly favourable 

specimen analysis time when compared to other Raman systems 156, 189, and 

other methods of IMA such as frozen section or cytology 136 and is a clinically 

relevant time.  

 

5.4.2 Limitations 

Many of these experiments compared pork meat to pork fat/lard through the 

water/total area ratio. Although fat/lard had consistent water/total area ratio, pork 

meat had more heterogenous findings. This is due to the natural variation in pork 

meat, but also its water content, as the pork meat may have had different initial 

water content and it may dehydrate at different rates according to the size it was 

dissected into (i.e. the difference in surface area between 0.5 mm2 and 5 mm2). 

This led to some variation between water/total area ratios between 

measurements of pork meat that may not have been expected (e.g. in the 

lumpectomy specimens the 2 mm and 3 mm phantoms had lower water/total area 

ratios than the 1 mm and 4 mm phantom). However, this heterogenous tissue, 

with a variation of water content and water/total area ratio makes it more 

comparable to human breast tissue than a more experimentally produced 

phantom with a fixed water content. It should also be noted that these (relatively) 

minor variations between pork meat tissue did not diminish the large spectral 

differences between pork meat and pork fat and the general findings and 

conclusions. 

 

A specific limitation of the subsurface sampling depth experiments was the 

inability to accurately measure the depth of the material (gelatine phantom or 

lard) overlying the base tissue (pork fat or meat). This means that the results are 

estimations of sampling depths only. The lard overlying meat was particularly 

limiting as no meat signals could be obtained, it would be interesting to see if that 

would still be true with only microns of lard overlying. Due to these limitations the 

subsurface sampling depth of the probe could not be accurately quantified, 

however, clinically relevant deductions regarding the ability to detect tumour 

beneath normal tissue could still be surmised. 
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A general limitation of the experiments is that pork meat and fat and lard may not 

have the same Raman cross section as breast tissue and the results found with 

pork tissue may not be precisely validated in human breast tissue. Similarly, 

spectral differences between pork meat and fat are well defined and precise, 

compared to more heterogenous breast tissue. The ability to differentiate meat 

and fat in these experiments may not equal the diagnostic ability of the system in 

breast tissue. However, the aim of these experiments was to provide a close 

representation of what could be expected with breast tissue and pork tissue is 

the most suitable phantom for breast tissue, as has previously been 

demonstrated in this thesis, and in other studies 371. 

 

The line scan measurements performed at 1 second acquisition time show great 

promise in reducing specimen analysis time, however, it is not just signal 

acquisition time that dictates this. The entire specimen analysis time would need 

to include the movement between step measurements of an electronic stage, or 

the turning of a specimen on a platform to allow measurement of another resected 

edge. Working to reduce the specimen analysis time will be necessary in the 

future. 

 

5.4.3 Further work 

Further work with the HH Raman probe will be with human breast tissue. With 

the understanding of the probe capabilities demonstrated in this chapter, 

measurements on fresh breast tissue can be performed. If it is found e.g. that the 

laser power needs to be reduced, or an uneven specimen surface results in poor 

probe contact with the specimen, the results can now be interpreted accordingly. 

The main emphasis is on using fresh breast tissue to determine the ability of HH 

Raman system to differentiate between tumour and non-tumour tissue. Once this 

has been ascertained, more refined diagnostic capabilities such as the minimal 

detectable tumour size and reducing specimen analysis time can be the focus. 

 

Optimisation of the HH Raman system towards IMA provision can continue 

alongside clinical studies in human breast tissue. Acquisition times of 1 second 

are plausible with the HH Raman system immediately, however, with some 

further work shorter acquisition times look likely to be obtainable. Further work 

such as reducing the laser induced background of the probe, optimisation of 
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fluorescent subtracting baselining, further InGaAs camera cooling 339 and a 

higher quality InGaAs camera with less inherent dark noise 365 are all possible 

and could lead to reduced signal acquisition times. Introducing a mechanical 

electronic stage scan, and a sampling procedure to minimise the overall 

specimen analysis time would all be steps towards translating this technology into 

the clinical sphere. 

 

5.5 Conclusion 

This chapter has presented a new HH Raman system that was constructed to 

address the recognised limitations of the NP3 system that has been used 

previously throughout the thesis. A variety of the probe’s characteristics have 

been explored, demonstrating that laser power, signal acquisition time and probe 

to specimen contact can be changed according to the needs of future 

experimental design, and the impact on these changes on Raman spectra are 

demonstrated. The limitations of the probes subsurface sampling depth are now 

recognised, but this is unlikely to have a negative clinical effect in providing IMA. 

Ultimately the future potential of the probe is demonstrated, in a pork meat/lard 

lumpectomy phantom a line scan could be performed with 1 second signal 

acquisition identifying a ‘tumour’ of 1 mm2. Future work identified will be in human 

breast tissue validating these findings and assessing the diagnostic ability of the 

probe. This is a robust Raman system that has the potential to measure small 

tumours in a clinically relevant time and is the next stage in project development 

towards successfully providing IMA. 
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CHAPTER 6: Discussion 

 

6.1 Summary of Thesis findings 

In the background to this thesis (chapter 1), the primary clinical problem was 

outlined – a large proportion (17%) of women undergoing BCS in the UK have a 

second operation for re-excision of margins 91. This represents a substantial cost 

to health services and is a source of anxiety for patients 372. If it was possible to 

provide accurate Intraoperative Margin Analysis (IMA), this would improve patient 

outcomes and reduce the cost of treating breast cancer in a resource-stretched 

NHS. Raman spectroscopy is capable of rapid, non-invasive tissue analysis 

providing excellent diagnostic accuracy and shows promise for IMA in a number 

of pathologies, and a detailed review of the current literature is presented in 

chapter 1. A common limitation for Raman spectroscopy to provide IMA is that 

the time taken to analyse a specimen can be impractical, due to spectral 

acquisition time and small sampling volumes. The increased spectral intensity in 

the HWN region can reduce measurement times compared to the fingerprint 

region, thus making it an ideal emerging technology that warrants investigation 

to provide IMA. This aim of the thesis was to investigate the potential of HWN RS 

to provide IMA using its high sensitivity to detect protein, lipid and particularly 

water changes, and explore the ability of HWN RS to differentiate tumour from 

non-tumour in breast tissue.  

 

The first step was to develop a Raman system configuration that was capable of 

accurately detecting changes in protein, lipid and water content. Chapter 2 

demonstrates the evolution of the Raman system. All three Raman systems that 

were trialled could measure changes in water content. However, I found that 

surgical pigments (particularly blue dye) that are commonly used in BCS 

produced overwhelming fluorescence with a 680 nm laser excitation wavelength. 

Many previous Raman studies either avoid samples with blue dye 299, wash 

samples or avoid areas with surgical pigments on 174, 189, however, this is 

impractical for clinical ex vivo assessments. A Raman system to provide IMA 

must be accurate in the presence of surgical pigments. I found that capturing the 

HWN region, while avoiding the strong fluorescent patent blue dye, required a 
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785 nm laser with an InGaAs camera – the NP3 system. We are the first group 

to directly address the issue of blue dye fluorescence when capturing the HWN 

region and NP3 is the first Raman system that has been shown to capture the 

HWN region in the presence of blue dye. 

 

In chapter 3 I investigated how the HWN spectra change in response to water 

content, particularly in biological samples. I demonstrated that the Raman water 

peak, and changes with water content of a sample, are affected by the 

microenvironment (whether it was in a protein or lipid rich area) of the water. This 

means that in a biological sample, such as breast tissue, when measurements 

are taken from different microenvironments it is difficult to quantify differences in 

water content with HWN RS. Previous studies have not acknowledged the 

importance that the microenvionment of water has on the ability of HWN RS to 

measure changes in water content 174. These new insights into the influences of 

the microenvironment on the ability of HWN RS to quantify water content in 

complex biological systems help to deepen the understanding of the technique 

within the field. However, the experiments did confirm that changes in water 

content within a homogenous environment can be quantified accurately, and that 

HWN spectral analysis using the water/total area ratio can be used to measure 

differences in water content, and differences in protein or lipid rich areas. 

 

Human breast samples were measured in chapter 4 to investigate if HWN 

Raman, and NP3 could diagnose breast cancer with a view to IMA. It showed 

that breast tumour tissue is a protein rich, high water, low fat environment and 

that non-tumour is a low protein, fat rich environment with a low water content, 

and, for the first time, it was shown that these HWN features can be used to 

differentiate tumour from non-tumour breast tissue using HWN RS with excellent 

accuracy. A number of different spectral analyses were undertaken, with similar 

diagnostic accuracies – of note – the simplest analysis using the water/total area 

ratio had a comparable diagnostic accuracy to complex concatenated spectral 

analysis using PCA fed LDA analysis. No studies have previously compared the 

diagnostic ability of Raman spectra from the HWN region compared to the FP 

region taken from the same measurement spot in breast tissue, and we found 

that the HWN region had a similar diagnostic accuracy, if not marginally better, 

than the FP region. It was also encouraging that our HWN Raman system was 
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capable of differentiating DCIS only tissue from non-tumour tissue, which is 

important in the provision of IMA, and has not been assessed in other studies 

investigating the HWN region.  

 

Having performed the proof of principle studies, the NP3 system configuration 

was optimised for clinical use by the development of the HH probe in chapter 5. 

The technical capabilities of the probe were assessed, and studies in lumpectomy 

phantoms demonstrated the potential of the system to identify small (<1 mm) 

tumours in measurement times that would allow analysis of a resected specimen 

edge in a clinically relevant timeframe (15 minutes). 

 

Ultimately this thesis has shown, for the first time, the excellent diagnostic 

capability of a Raman system to differentiate tumour from non-tumour using HWN 

RS and this can be performed in the presence of blue dye. The HH probe and 

measurement protocol suitable for clinical use has been developed for the next 

experimental stage to translate these findings towards the provision of IMA.  

These results need to be considered compared to other methods of IMA, and 

how to further these thesis findings and Raman systems into a working clinical 

device for IMA, which is now discussed. 

 

6.2 Clinical applications of thesis findings  

The primary aim was to develop a Raman system to provide IMA. However, some 

of the findings from this thesis have wider implications. In 2018 The Association 

of Breast Surgery Surgical Gap Analysis Working Group published a report of 

suggested areas of focus for future research relating to breast surgery. Raman 

spectroscopy is well suited to a number of these research areas and exploration 

for the potential applications of the technique is warranted 98. A brief summary of 

how some of the findings from this thesis could be exploited for clinical use, or 

areas worthy of further research identified by the ABS Gap analysis (identified by  

*) are highlighted. 

 

- Biochemical understanding of breast cancer. We demonstrate the 

differences between tumour and non-tumour tissue, in the differences in 

protein/lipid, and the substantial differences in water content. These have 

previously only been demonstrated in rat models, or in a highly controlled 
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laboratory environment. The results in chapter 4 robustly corroborate 

these findings in human breast tissue, suggesting these biochemical 

differences are easily detectable with HWN RS. 

- Biochemical differences in non-tumour tissue. We found that there is a 

significant physiological variation in water content in normal, non-tumour 

specimens related to age and menopausal status. This may be important 

in understanding the role of Raman spectroscopy in the diagnosis of 

disease states. For example, breast density (which is closely related to 

water content) is an independent breast cancer risk factor 280. This 

detection of physiological differences with HWN RS could be utilised in 

screening or risk assessment etc. for personalised medicine to identify 

patients at an increased risk of breast cancer e.g. those in need of earlier 

or more intensive screening for breast cancer as a way to reduce 

screening overdiagnosis (*). 

- Diagnosis / tumour guidance with needle biopsy. We have shown that a 

Raman system using a needle biopsy (22G) is clinically effective and can 

take measurements to diagnose cancer. This demonstrates that HWN RS 

could be used percutaneously for instant biopsy diagnosis to improve cost-

effectiveness of symptomatic assessment (*), tumour localisation 

guidance (i.e. in replacement of wire guided tumour localisation for 

impalpable tumours) or local brachytherapy. 

- Translating findings to Deep Raman. Using the understanding of changes 

in water content from this thesis has already been translated into furthering 

understanding of HWN RS in Deep Raman, with a view to providing 

transcutaneous Raman measurements for the screening program or to 

complement Mammography 371. 

- Neoadjuvant therapy monitoring(*). An exciting prospect for this specific 

Raman system, would be for monitoring patient tumour response to 

neoadjuvant chemotherapy. Indications for neoadjuvant therapy are 

increasing, and yet there is no accurate way of assessing tumour 

response. Tumour water content changes in response to chemotherapy 

289, and HWN RS may provide an accurate method for assessing patient 

response.  
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6.3 Comparing findings to other methods of IMA 

It is important to consider the clinical implications of the diagnostic accuracy of a 

system that aims to provide IMA. The aim, as with any diagnostic test, is to have 

as high a sensitivity and specificity as possible, but in reality, there is a balance 

between the two. A system that gives a high degree of sensitivity and low 

specificity would reduce the need for delayed re-excision of margins, but would 

lead to a high number of false positives, unnecessary breast tissue excision and 

an undesirable cosmetic impact 373. A system that has a low sensitivity and high 

specificity may not identify positive margins and not reduce the delayed re-

excision rate sufficiently enough to be of practical use. The sensitivity and 

specificity of our system presented in this thesis needs to be considered in the 

context of other methods of IMA for breast conserving surgery. 

 

A number of established techniques have been previously used to provide IMA  

in breast conserving surgery, however, none have gained widespread adoption 

– invariably due to logistical difficulties or ultimately poor clinical outcomes. A 

review of the commonly used techniques is in Chapter one of this thesis, a 

summary of the sensitivity and specificity of established techniques along with 

their clinical advantages and disadvantages is displayed in Table 6-1. These 

results show that radiological techniques of ultrasound and X-ray give very poor 

sensitivity, and thus do not adequately reduce the need for re-excision of 

margins. Frozen section and cytology are both pathological techniques that 

require real-time histopathology/cytology expertise availability. Although this 

gives them the best diagnostic accuracy, it is also their disadvantage as these 

are expensive services to run – providing the service is only cost effective when 

there are unusually high rates of delayed re-excision of over 36% 132. It may also 

be that the diagnostic accuracy found in funded research studies from specialist 

centres may not translate to equitable clinical benefit in a more ‘normal’ setting of 

a time-pressured, non-academic, routine service. This is the likely reason for 

these methods not being routinely used, but despite these disadvantages, frozen 

section and cytology have the best sensitivity and specificity, and this accuracy 

would have to be matched or improved by any new technology to be widely 

adopted. 
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IMA 
TECHNIQUE 

SENS. SPEC. ADVANTAGES DISADVANTAGES 

FROZEN 
SECTION 

86% 96% Established technology 
and used in other 
surgical oncology 

Expensive as requires 
histopathologist on 
stand-by 

CYTOLOGY 91% 95% Proven efficacy Expensive. Surface 
technique only - Cannot 
provide information on 
margin width. Decline in 
cytology skills within 
workforce 

ULTRA- 
SOUND 

59% 81% Cheap and available 
technology 

Operator dependent. 
Requires surgeon to be 
trained to operate. Poor 
accuracy 

SPECIMEN 
RADIOLOGY 
(X-RAY) 

53% 84% Cheap and available 
technology 

X ray interpretation 
inaccurate. Poor 
accuracy. 

 

There are a number of new, emerging technologies that aim to provide IMA. 

Some have been available for a number of years, have undergone assessment 

in the clinical environment, and are approved by regulatory bodies.  

 

The MarginProbe ® (DUNE Medical Devices, Alpharetta, Georgia, USA) is a 

handheld probe that provides IMA on resected specimens using radiofrequency. 

In a study that assessed the diagnostic accuracy of the probe compared to 

histopathology diagnosis, the sensitivity was dependent on the size of the tumour 

– with an overall sensitivity and specificity of 70% 369. The diagnostic accuracy 

was dependent on the size of the tumour (large tumours had very good accuracy, 

however, it is unlikely there are large tumours at the resected edge that would 

require IMA), and heterogenous tumours affected the specificity. Despite these 

limitations the device has had a number of clinical trials, stating promising initial 

results, in one study there was a 57% reduction in re-operation rates, however 

the ‘control’ arm (that did not undergo IMA with the device) had a re-excision rate 

Table 6-1 Table demonstrating the sensitivity (Sens.) and specificity (spec.) of commonly used 

Intraoperative Margin Analysis (IMA) techniques 

The figures for sensitivity and specificity obtained from the pooled meta-analysis of techniques from 

reference 136. Studies were clinical studies where the IMA technique outcome (positive/negative margin) was 

compared to the final histopathology report. 
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of 30%, which is substantially higher than the UK average of 17% 91, and the re-

excision rate was reduced to 14% 374. Another, subsequent study had similar 

results – a high re-excision rate in the control arm of 39% with the re-excision 

rate being reduced to 17% (the current UK average) 370. Neither of the studies 

reduced the re-excision rate substantially below the current UK average. 

However, these results have attracted enough attention for the MarginProbe to 

be the subject of randomised control trial in the UK, the results of which are 

awaited 375. 

 

The ClearEdge (LS BioPath, Saratoga, CA, USA) is a handheld probe that uses 

bioimpedance spectroscopy to analyse tissue and has had more limited clinical 

evaluation. Preliminary results of the diagnostic accuracy of the probe of breast 

tissue matching to the histopathology could not be found on a literature search, 

nor referenced in relevant papers, or on the company website. A single clinical 

study composed of two phases using the device was performed, where the 

outcome recorded from the probe analysis of a margin was compared to the final 

histopathology of the specimen margin, and it gave a sensitivity of 84-87% and 

specificity of 82-75% 266. A result of note is that in the patients where the device 

was used appropriately (which did not always occur), the re-excision rate was 

reduced from 37% (unusually high) to 17% (the current UK average). This 

diagnostic accuracy is reasonable, however, with no preliminary data it is difficult 

to compare against this technology, and the clinical results were acceptable but 

only from a single study, and so further evidence is required before being able to 

make judgements on the diagnostic accuracy of the device. 

 

In these two ‘at market’ products that have undergone clinical evaluation it is 

interesting that when using either devices, the re-excision rate was only ‘reduced’ 

to the current UK average for re-excision (17%), which is the re-excision rate 

without the use of these devices. It does suggest that, although useful in those 

units with an initial high re-excision rate, there is significant room for 

improvement, and the problem of re-excision in breast conserving surgery is 

unlikely to be solved by currently available products.  

 

Novel techniques that are currently at the development stage have therefore 

been used to investigate if they can provide an improved clinical outcome. The 
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iKnife, a monopolar hand piece that analyses the diathermy plume of smoke, was 

used for analysis of 260 breast tissue specimens that gave a sensitivity of 90.9% 

and specificity of 98.8% in differentiating between tumour and non-tumour 

samples 376. However, validation of results was by whole specimen final 

pathological diagnosis rather than specific matching of measurement points to a 

corresponding histological analysis. Another obvious limitation of this technique 

for IMA is that it requires the diathermy to go into tumour before giving a result, 

which is not what a surgeon would be aiming for, and it would also not give 

feedback on ‘close’ margins.  

 

Optical techniques have been studied to provide the diagnostic accuracy of 

differentiating tumour from non-tumour tissues, the limitations of which are 

discussed in chapter 1. Some techniques have relatively poor diagnostic 

accuracy such as  Terahertz imaging (Accuracy of 75%, sensitivity 86% and 

specificity 66%) 288 and Diffuse Optical Spectroscopy (sensitivity 81-88% and 

specificity 79-84%) 283. Optical Coherence Tomography (OCT) had initially 

promising results, with work in human breast tissue showing an accuracy of 

91.9% with a sensitivity of 98.1% and specificity 82.4% 377 at differentiating 

tumour from fibroglandular tissue, however, when used to provide IMA in cavity 

shaves from lumpectomy specimens the technique only identified 5 out of 8 

specimens with positive margins, giving it a sensitivity of 62.5% 146. Image 

interpretation was performed by clinicians, and may have contributed to the poor 

accuracy, exemplifying the need for clear outcomes from a clinical device.   

 

A number of groups have investigated Raman spectroscopy to examine the 

accuracy of differentiating tumour from non-tumour specimens, the results of 

these studies is displayed in Table 6-2. 
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ARTICLE RAMAN SYSTEM SPECIMENS SENS SPEC LIMITATIONS TO 
CLINICAL USE 

HAKA186 Handheld probe, point 
diagnosis 

Freshly 
excised 
surgical 
specimens 

83% 93% Poor positive 
predictive value of 
36% 
Long acquisition times 
(30secs), with a small 
sampling volume 

KONG156 Micro-spectrometry, 
Raster scanning 

Small tissue 
sections 

95.6% 96.2% Microscopic diagnosis 
only – not applicable 
to large tissue 
volumes of surgical 
specimens 

SHIPP189 Combined Auto-
fluorescence/Raman 
microscope 

Freshly 
excised and 
fresh frozen 
surgical 
specimens 

95% 82% Raman measurements 
from specimens were 
not always matched 
with histopathology 
Only one resected 
edge could be 
analysed in clinically 
relevant time 
  

WANG270 SERS Small 
sections from 
Freshly 
excised 
surgical 
specimens 

89% 92% Specimen processing 
steps for 
Nanoparticles result in 
overall long 
measurement times 
Small number of 
samples (n=5) 

 

The aim of reviewing these other techniques and previous Raman work is to 

establish what diagnostic accuracy is required from our own Raman system for it 

to be clinical useful, and ‘competitive’ to other more established techniques. It 

would seem the general accuracy for the established techniques is low, hence 

why there is a continued need for methods of IMA. A technique with a sensitivity 

over 85%, and a specificity of over 90% would be comparable to the techniques 

of frozen section and cytology. Compared to the emerging techniques, including 

other work from Raman spectroscopy, a system that could achieve both 

sensitivity of around 90%-92% and specificity of 86-89% would be highly 

favourable. The results from chapter 4 suggest that with NP3 probe and using 

the mean concatenated spectrum from homogenous areas in a PCA fed LDA 

analysis, the system can achieve a sensitivity of 93.8% and a specificity of 92.7% 

Table 6-2 Summary table of diagnostic accuracy of different techniques based on Raman 

spectroscopy for differentiating normal breast tissue from breast tumour. 

SERS – surface enhanced Raman scattering. Sens – sensitivity, Spec - specificity 



Chapter 6 
 

 323 

at differentiating tumour from non-tumour tissue. This ability to differentiate 

between tumour and non-tumour tissue exceeds the diagnostic accuracy of the 

‘at market’ probes of Marginprobe and ClearEdge, the optical techniques that are 

currently under development and previous Raman studies. If this translates into 

clinical practice this is comparable diagnostic accuracy to the pathological 

methods of frozen section and cytology, and exceeds the commonly used 

methods of US and specimen X ray. However, there does have to be caution in 

the interpretation of how our study data may translate into clinical results due to 

the study limitations.  

 

6.4 Limitations  

There are some limitations to the presented work that require consideration and 

identify areas for future work for translating HWN RS into a clinical effective 

technology to provide IMA. 

 

We were unable to quantify the changes in water content between tumour and 

non-tumour breast tissue. Although this would have been useful to achieve in the 

study, experimental results demonstrated that this is not possible using HWN RS 

in different breast tissue types. In chapter 3 it was shown that changes in the 

water peak in the HWN region was influenced as much by changes in the 

microenvironment of the water, as they were by changes in water content. This 

was confirmed in the dehydration experiments in chapter 4, where different 

water/total area ratio values were obtained for entirely desiccated specimens of 

tumour and non-tumour samples, showing that the ratio values cannot be 

comparable between tissue types. This means that we cannot assign a water 

concentration to the spectral findings in human breast tissue. Although this does 

not impact on the ability to provide IMA, the inability to quantify changes in water 

content between different breast tissue limits our assessment of the role of water 

in diagnosis with HWN RS and ability to compare with water values obtained with 

other techniques. However, the dehydration experiments in chapter 4, and 

spectral analysis demonstrates that there are substantial differences in water 

content between tumour (water rich) and non-tumour (water poor) breast tissue, 

and that these differences form the basis of tissue differentiation with HWN RS.  
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One limitation is that the human breast tissue measured was tissue that had been 

frozen. A previous study suggested that there were no significant differences in 

the Fingerprint Raman spectrum between fresh or frozen breast tissue189, 

however, this may not be true in the HWN region, as frozen samples may have a 

different water content compared to the ‘true’ water content of fresh tissue. Water 

content of the specimen is likely to be affected by the freeze/thaw cycle. However, 

the samples were immediately snap frozen on collection and measured rapidly 

on thawing, reducing the time for dehydration.  

 

Small biopsy samples were measured in this study, where the water in the tissue 

may behave differently to the larger samples of breast tissue that would be 

measured for IMA. Small biopsy samples are often used in preliminary work, 

which may have substantial biochemical or logistical differences in their sampling 

methods compared to in the clinical study of an entire lumpectomy specimen.  

Although it should be noted that one would expect more rapid dehydration from 

smaller samples (due to the increased surface area), and so the differences in 

water content between tissue types may actually be underestimated in smaller 

samples, so it is unlikely these changes in water content would not be seen in 

larger specimens of fresh tissue.  

 

The measured samples are relatively homogenous samples of tumour tissue 

(taken from the centre of the tumour) and non-tumour tissue (taken far from the 

tumour). It may be that the stark difference in water content between the two 

tissue types, in reality, is more of a gradual change in water content from high 

(tumour) to low (normal), as was found between 0 – 4 mm from the tumour margin 

in oral cavity squamous cell carcinoma with HWN RS 228. A study using DRS 

suggested that the water content at the border of the tumour may differ from the 

centre of the tumour and normal breast tissue (>1 cm from the tumour edge) 293. 

This gradual change in water content may assist in the identification of tumour 

margins and ‘close’ margins, and would benefit from further studies to investigate 

if there is a gradual change in water content from the tumour edge. The thesis 

has demonstrated that the difference in water content (as measured by 

water/total area ratio) between pure tumour and pure normal tissue is substantial, 

and if there is a gradual change this would very likely be measurable with our 

Raman system.  
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The sample size of 96 in the study is a reasonable number, however, it is too 

small to draw definitive conclusions regarding potential differences between 

pathological sub-types. There are a number of differences between breast 

cancers such as receptor status or grade. Our analysis suggested that neither 

the fingerprint nor HWN region identified significant differences between 

pathological sub-types, but this may be due to the small sample size, and the 

study was under-powered to detect subtle differences. 

 

There is some suggestion from our data that lobular carcinoma may prove to be 

a diagnostic challenge, as it has a lower water/total area ratio than ductal 

carcinoma, and the Raman micro-spectroscopy studies showed that Raman 

spectra of lobular carcinoma has similarities to normal breast tissue. Further work 

is needed, with larger numbers of lobular carcinoma to investigate this. It may be 

that additional information from the fingerprint spectrum may aid in refining the 

diagnosis. 

 

There was an insufficient number of DCIS only tumour samples to be confident 

that the Raman system can differentiate between DCIS only and normal tissue. 

The ability to detect DCIS only is essential for IMA, as DCIS accounts for a large 

number of positive margins that require re-excision. The results suggest that the 

Raman system is capable of diagnosis, and are encouraging, but further work 

with a greater number of DCIS only samples is required. 

 

This study has provided the proof of principle that was necessary to demonstrate 

that HWN RS can differentiate between tumour and non-tumour tissue, however 

the NP3 system is a needle probe, which is not a suitable delivery system for 

providing IMA as it has a small sampling volume. The time taken for each 

individual spectral measurement (25 seconds) is also not suitable for clinical use. 

Ultimately it would take too long to analyse an entire BCS specimen using the 

delivery system and the acquisition times used in the study in chapter 4. 

 

Many of the limitations of the NP3 system have been addressed in the 

development of the HH Raman system that is presented in chapter 5. There are 

still elements that will require further optimisation and can be addressed with 
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further work developing the delivery system capable of providing IMA in a 

clinically relevant time. The measurement acquisition times will need to reduce to 

the minimal amount of time necessary to achieve adequate signal to noise for 

diagnosis. This study has demonstrated that the spectral differences between 

tissue types, particularly in the HWN region, are stark and so it is likely this will 

be achievable as even with a substantial reduction in signal to noise the 

differences would still be detectable and measurable, particularly if the water/total 

area ratio was used for diagnosis. In Chapter 5, adequate spectra could be 

obtained with acquisition times as little as 0.5 seconds, and with some 

optimisation (such as improved hardware and optimised spectra processing) this 

could be reduced even further.  

 

Although this study has demonstrated our Raman system has a good diagnostic 

accuracy differentiating between tumour and not tumour when matched to 

histopathology, this is different to reducing the rate of re-excision which is the 

ultimate aim. The number of steps between tissue differentiation and providing 

IMA are multiple, and the ‘diagnostic accuracy’ can get reduced at every stage. 

Initially promising results in laboratory conditions can be disappointing in a clinical 

setting, as was the case with Diffuse Optical Spectroscopy 148. Logistical 

difficulties can also intercede, such as in the ClearEdge study were surgeons 

misinterpreted the probe results 266. However, the opposite can also be true such 

as with the MarginProbe, where initial assessment of tissue differentiation 

seemed poor, but the clinical results at reducing re-excision rate is more 

impressive 370. 



 327 

CHAPTER 7: Further Work and Conclusion 

 

7.1 Further Work 

7.1.1 Validation of diagnostic findings in fresh breast tissue 

The immediate next phase for the project is to validate the thesis findings in 

freshly excised breast tissue. A limitation of the breast tissue study is that the 

specimens were frozen and thawed, which may affect the water content of the 

specimens, or there may be other biochemical differences between frozen and 

fresh specimens. Previous studies suggest that there are minimal differences in 

the Raman spectra between fresh and frozen breast tissue 189, but our findings 

still require validation in fresh tissue.  

 

The aims would be to confirm and validate the diagnostic ability of HWN RS to 

differentiate between tumour and non-tumour breast tissue in fresh specimens 

using the HH Raman system. It would also give us insight into the differences in 

water content between tissue types, and allow exploration of the concept that 

there may be a gradual change in water content from the centre of the tumour to 

the tumour edge and towards normal tissue. We have already gained ethical and 

local approval for this study (REC ref: 18/NW/0366, IRAS ID: 210732), using 

freshly excised breast tissue of mastectomy and lumpectomy specimens that will 

be sliced in half to expose the tumour surface, allowing Raman measurements to 

be taken from tumour and non-tumour tissue. A diagram will indicate to the 

pathologist where measurements have been obtained, and this will allow for a 

block to be taken for histopathological diagnosis to allow pathology matching with 

the Raman measurements. Initial ethical approval is for 50 patients to be recruited 

for the study. 

 

Once the initial phase is completed, and if the thesis diagnostic findings are 

confirmed in fresh tissue, we may need to extend the study. This may be 

necessary to increase sample size to ensure all pathology subtypes are 

encountered during analysis, especially adequate numbers of DCIS and lobular 

carcinoma, as these are potential diagnostic challenges. There should also be 

some histological matching for normal tissue, to investigate the Raman spectra 

of benign abnormalities, as this may affect diagnostic accuracy. 



 
 

 328 

 

7.1.2 Probe optimisation 

Alongside validation of diagnostic accuracy of the HH Raman system in 

differentiating tumour from non-tumour tissue, probe optimisation is required. 

This is to develop a probe that is capable of analysing a lumpectomy in a clinically 

relevant time frame (<30 minutes). 

 

Two components of this optimisation are to reduce the signal acquisition times 

for each measurement, or to reduce the number of measurements required to 

accurately analyse a specimen. The signal acquisition time needs further 

investigation to discover what is the shortest signal acquisition time possible that 

still gives a diagnostic Raman spectrum, this can be done by testing a number of 

signal acquisition times as part of the fresh breast tissue experiments. The main 

limitation to reducing the signal acquisition time currently is the high degree of 

detector noise from the InGaAs camera, which is a known limitation of this type 

of camera. However, technology is improving, and there are recent reports of 

novel deep cooled InGaAs cameras that have a lower noise characteristics, 

comparable to those of CCD cameras 365. Assessment of the detector noise 

characteristics of different InGaAs cameras may be necessary to identify the 

optimal hardware for reducing signal acquisition times. 

 

Another method to reduce signal acquisition times is to reduce the number of 

spectra required for specimen assessment. If the beam area of the probe was 

increased to increase the probe’s ‘field of view’, this would reduce the number of 

measurements required to measure the entire specimen. Further work to assess 

how much the probe area can be increased without a reduction in diagnostic 

accuracy is required. 

 

We have developed a handheld probe for the initial phases of the project, and it 

may be that this is the most suitable device for the clinical environment. The 

margin of concern to the surgeon can be easily analysed using a clinical probe, 

and the fact that the other ‘at market’ devices for IMA are also handheld probes 

(ClearEdge and MarginProbe) suggests that this might be the most effective way 

of IMA. However, other devices should be considered, whether that is an 

automatic device that moves the specimen underneath the already designed 
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probe (such as an automated stage with rapid raster scanning for analysis of a 

single margin), or a more complex device allowing all margins to be analysed 

such as the Marginbot 265. A recently reported Raman system using a 2 axis 

galvo-mirror system and a microscope with a large field of view may provide rapid 

analysis, and our configuration could be incorporated into a similar system 299. 

These possibilities should be explored to determine the optimal device for 

delivering IMA in clinically relevant times. 

 

7.1.3 Data analysis optimisation 

The results in this thesis from the analysis of frozen breast tissue suggests that 

the diagnostic ability from the water/total area ratio and PCA fed LDA analysis of 

the HWN or FP region and the concatenated spectra were similar. The planned 

fresh tissue studies will help to clarify this further, and assist in deciding the exact 

diagnostic route that should be used for IMA; a suggested algorithm based on 

the thesis results is presented in Chapter 4, but this may alter depending on the 

results of this further work. 

 

Data analysis needs to be as rapid as possible, to reduce the time taken for 

specimen analysis. It also needs a simple output for each of the analysed 

specimen resected edges that is easily interpretable to the surgeon, to allow them 

to make a clinical decision to excise further tissue or not. A suggested simplified 

algorithm based just on the water/total area ratio is presented in chapter 5. 

 

7.1.4 Clinical trial  

Once these phases of optimisation have been successfully completed, we could 

be confident that we have a Raman system that can differentiate between tumour 

and non-tumour tissue accurately, can analyse a lumpectomy specimen in 

clinically relevant times and the data can be presented in a clinically meaningful 

way to a surgeon. At this stage a clinical study assessing the ability of the final 

Raman system to provide IMA is necessary, along with commercialisation of the 

probe. This will involve recruiting patients undergoing lumpectomy and analysing 

the margins of specimens and determining the sensitivity and specificity of the 

system of detecting positive margins compared to the final histopathology report. 

The next phase is a randomised controlled trial with one arm using the IMA 

system output to influence the surgeons’ clinical decision to resect and the other 
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arm being surgeons continuing their usual methods of IMA. The measurable 

outcome will be if the Raman IMA system reduces the re-excision rate with 

minimal unnecessary breast volume loss. 

 

7.2 Conclusion 

This thesis presents a Raman system, and method of spectral analysis, capable 

of quantifying changes in water content in a number of different environments 

using HWN RS. This is unaffected by the presence of commonly used surgical 

pigments. I explored the optical influences on Raman spectra in the HWN region, 

and concluded the interpretation of the water peak is dependent on its 

microenvironment. This formed the basis for a study using human breast tissue 

which demonstrated, for the first time, that HWN RS has an excellent diagnostic 

accuracy in differentiating tumour from non- tumour specimens. These findings 

could be useful in a number of novel ways in future clinical applications, but 

providing IMA is the immediate focus for further work and development. Our study 

results compare favourably, if not better, than current and emerging methods for 

IMA.  

 

Further work must focus on assessing the diagnostic ability of HWN RS in larger 

volumes of freshly excised breast tissue in a large number of patients, and in the 

future, translating this proof of principle into the operating theatre to improve 

patient outcomes in BCS and reduce the need for surgical re-excision.  

 

This thesis has demonstrated that high wavenumber Raman Spectroscopy has 

the potential to provide intraoperative margin analysis in the provision of breast 

conserving surgery. 
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