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We consider the basic, thermodynamic properties of an elementary micro-machine
operating at colloidal length scales. In particular, we track and analyze the driven
stochastic motion of a carefully designed micro-propeller rotating unevenly in an optical
tweezers, in water. In this intermediate regime, the second law of macroscopic
thermodynamics is satisfied only as an ensemble average, and individual trajectories
can be temporarily associated with decreases in entropy. We show that our light driven
micro-propeller satisfies an appropriate fluctuation theorem that constrains the probability
with which these apparent violations of the second law occur. Implications for the
development of more complex micro-machines are discussed.
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1 INTRODUCTION

Advances in micro-fabrication techniques enable the manufacture of finely structured objects with
ever greater precision [1]. As a consequence, increasingly sophisticated micro-machines are being
developed [2–4] to perform a variety of previously unrealisable tasks in the colloidal regime.
Examples include controlled transport, micro-fluidics, pumping and mixing [5–9], sensing [10], or
even hydrodynamic manipulation [11]. More recently, self-organizing, dynamically reconfigurable
and self-propelled micro-machines have been exhibited [12–15]. Quantitatively describing the
behavior of machines at these length scales is not trivial. Classical thermodynamics was
developed, in part, to help optimize the efficiency of conventional machines. This framework,
however, is inadequate for the colloidal regime where the energy flows that drive the machines are
comparable in size to stochastic thermal fluctuations. In this article, we analyze the influence of
thermal fluctuations on an elementary micro-machine, in this case a light driven micro-propeller or
light-mill, observing that they are constrained by an appropriate fluctuation theorem [16]. In doing
so, we underscore the usefulness of applying the principles of stochastic thermodynamics [17] to the
design of novel micro-machines.

As with biological analogues such as molecular motors [18], artificial micro-machines operate in
an intermediate thermodynamic regime. Conventional machines, working at every-day length scales,
conform to the laws of classical, macroscopic thermodynamics where physical processes are strictly
irreversible and associated with increasing disorder, or entropy. In contrast, dynamical motion at
microscopic length scales is governed by time symmetric equations of motion. The thermodynamics
of micro-machines are neither purely reversible nor completely irreversible and the second law of
thermodynamics, which prohibits entropy from decreasing with time, appears not as an absolute law,
but as a limiting case, emerging only for sufficiently large systems, over sufficient time intervals [17,
19]. For micro-machines, working in the colloidal regime, individual trajectories can be associated
with decreasing entropy for finite periods of time. The relative probability of observing such a
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trajectory is constrained by the fluctuation theorem (FT), the
term really applying to a family of theorems, and decreases
exponentially with time, with the second law restored in the
limit either of long times or large system sizes. For a general
system the FT takes the following form:

P(Σt � +Σ)
P(Σt � −Σ) � exp(Σ), (1)

where Σt is the entropy production of a trajectory integrated over
time t (divided by Boltzmann’s constant kB to make it
dimensionless) and P(Σt � Σ) the probability density that Σt
takes the value Σ. Equation 1 therefore quantifies the relative
probabilities of entropy producing and consuming trajectories.
Since Σt is extensive, it increases with the system size and
averaging time. An immediate consequence of Eq. 1 is the
second law inequality, 〈Σt〉≥ 0, where the average is taken over
an ensemble of experiments with the same start time, averaged
over a fixed time period t [19]. The second law inequality requires
that the average entropy change is non-decreasing. Unlike the
classical second law, it does not, however, prohibit decreases in
entropy occurring in some of the realizations comprising the
ensemble.

Equation 1 is commonly referred to as the transient or
detailed FT (DFT) to distinguish it from the integrated version,

P(Σt < 0)
P(Σt > 0) � 〈exp(−Σt)〉Σt > 0, (2)

where P(Σt < 0) � ∫ 0

−∞dΣtP(Σt) etc. and 〈 . . . 〉Σt > 0 denotes an
average over all trajectories for which Σt > 0. Again, since Σt is
extensive, the right hand side of Eq. 2 approaches zero as the
system size or time duration increase.

We wish to confirm appropriate versions of the fluctuation
theorems, Eqs 1 and 2 for an elementary micro-machine.
Previous tests of the FT involve dragging spherical beads
through water with optical traps [20, 21] under various
conditions [22]. In these studies, a colloidal bead is dragged in
a straight line, with a force that does not depend explicitly on
position. By contrast, we use an autonomous micro-machine,
with a more complex geometry and force profile. As will become
clear, this increase in complexity gives rise to a number of
experimental challenges, especially those relating to the design
of our micro-machine and to the tracking of its motion.

Our chosenmachine is a simple, light driven propeller or light-
mill, which we fabricate using two-photon polymerization [23].
We track its motion as it rotates in a laser trap, showing that it
conforms to an appropriate FT. The propeller has been carefully
designed so that it rotates slowly about its axis, allowing its
motion to be tracked with sufficient accuracy and resolution
to observe trajectories with temporarily decreasing entropy.
Small, natural asymmetries in the system cause the axial
torque to vary strongly with orientation, so that the rotational
motion is highly uneven. For the rotor used in this study, the ratio
of the maximum to minimum torque is ∼ 2.6. Rather than being
a defect of the study, these irregularities are an important part of
it. The case of constant torque is comparatively trivial. In
particular, diffusion of a particle exposed to a spatially

invariant force or torque is very well understood [24]. In our
case, the dependence of the torque on the orientation of the
propeller provides a more demanding and interesting test of
the FT.

In the following sections we review the necessary theoretical
background, which closely follows the work of Speck, Seifert et al.
[22], describe the design and fabrication of the rotor and the
experimental procedure. We next present tests of the detailed and
integrated forms of the rotational FT. We comment on the small
discrepancies between theory and experiment and conclude with
a discussion of the implications for the optimal design of future
micro-machines.

2 THEORETICAL BACKGROUND

We consider the over-damped motion of a Brownian propeller or
rotor, rotating about a fixed axis in water. This motion is
described by the Langevin equation,

ξr _ϕ � Γ(ϕ) + ΓS(t), (3)

where ϕ is the orientation of the rotor and ξr is the rotational
friction. The systematic, external torque, Γ(ϕ) varies with ϕ but is
always of the same sign and ΓS(t) is the stochastic, Langevin
torque with zero mean, uncorrelated and with variance
determined by the fluctuation dissipation theorem, i.e.,

〈ΓS(t)〉 � 0 (4)

〈ΓS(t)ΓS(t′)〉 � 2kBTξrδ(t − t′). (5)

Thus, we focus on axial rotations, assuming that the motion of
all other degrees of freedom are negligible or independent.
Qualitative features of the motion follow from a consideration
of the impulses, I, delivered to the rotor over a finite time interval,
Δt, i.e., I � ∫Δt

dtΓ(t). For short time intervals, the impulse from
the systematic torque, Isys, is obviously proportional to Δt,
i.e., Isys ≈ Γ(ϕ0)Δt, if ϕ0 is the initial orientation and we
assume the torque does not vary too much over Δt. By
comparison, the impulse from the stochastic torque, Istoch, is a
Gaussian random variable drawn from a distribution with a
variance of 〈(Istoch)2〉 � 2kBTξrΔt. The probability that the
stochastic impulse exceeds the systematic impulse is therefore,

P(∣∣∣∣Istoch∣∣∣∣> |Isys|) ≈ erfc(Γ(ϕ0) ��
Δt

√
2

�����
kBTξr

√ ). (6)

In other words, for very small Δt→ 0 we expect the total
impulse to be dominated by the stochastic term,
i.e., I ≡ Istoch + Isys ≈ Istoch. It may therefore act in the opposite
sense to the systematic torque. As Δt increases, this becomes
progressively less likely, until the total impulse is approximately
equal to the contribution from the systematic torque. The angular
displacements made by the rotor may be expected to behave
similarly, i.e., for short times there is significant probability that
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the propeller rotates in the opposite sense to the applied torque
while, for greater time intervals, the propeller is practically
guaranteed to rotate with the systematic torque. Furthermore,
if we consider the probability, p(ϕ, t)dϕ that, at time t, the
propeller has an orientation in the interval [ϕ, ϕ + dϕ], it is
clear that p(ϕ, t) must approach a steady state limit, pss(ϕ), as
the time interval over which data is collected increases,
i.e., limt→∞p(ϕ, t) � pss(ϕ). The time evolution of p(ϕ, t) is
determined by the Fokker-Plank equation [25] with drift and
diffusion coefficients derived from the Langevin equation, Eq. 3,

ztp(ϕ, t) � −zϕj(ϕ, t) � −1
ξr
zϕ[Γ(ϕ)p(ϕ, t) − kBTzϕp(ϕ, t)],

(7)

where p(ϕ, t) is the probability distribution of the orientation and
ξrj(ϕ, t) � Γ(ϕ)p(ϕ, t) − kBTzϕp(ϕ, t) is the total probability
current, the first and second terms of which correspond,
respectively, to the drift and diffusion currents. As time
progresses, p(ϕ, t) approaches a non-equilibrium steady state,
pss(ϕ) [26]. Since we are treating this as a one dimensional
system, the associated steady state current, jss and mean
angular velocity, ωss(ϕ) satisfy jss � pss(ϕ)ωss(ϕ), where jss is
independent of orientation in accordance with conservation of
probability, i.e.,

jss � 1
ξr
[Γ(ϕ)pss(ϕ) − kBTzϕpss(ϕ)] � pss(ϕ)ωss(ϕ). (8)

As mentioned above, the torque, Γ(ϕ) does not change sign and
the propeller rotates continuously. Obviously, this is a non-
conservative system which is not at thermodynamic
equilibrium. For such systems, we would usually expect
thermodynamic properties (e.g., work done) to depend on the
details of the stochastic trajectory of the propeller (ϕ(t) for
t0 ≤ t ≤ t1), making accurate measurement challenging if not
impossible. Fortunately, that is not the case here. Since the
system is one dimensional we can define an effective potential
from which the torque can be derived. If we write
Γ(ϕ) � T0 + T1(ϕ), where T0 is the average value of Γ(ϕ) in
the range [0, 2π), then the corresponding potential is,

V(ϕc) � −∫ ϕc

0
dϕ′Γ(ϕ′) � −T0ϕc − ∫  ϕc

0
dϕ′T1(ϕ′)

� −T0ϕc − ∫ ϕ

0
dϕ′T1(ϕ′)

≡ − T0ϕc + V0(ϕ).
(9)

Here, ϕc is a continuously varying angular displacement that can
become arbitrarily large and counts multiple complete rotations,
i.e., it is the total angular displacement. The upper limit in the
integral appearing in the final term of Eq. 9 can be changed from
ϕc, which measures the total angular displacement, to ϕ, the
orientation of the propeller (i.e., ϕ � ϕc − 2πn for integer
n � ⌊ϕc/2π⌋) since the integral of T1(ϕ′) over a complete
rotation is zero by construction. This step allows us to
evaluate thermodynamic quantities in terms of the end points
of trajectories, rather than having to measure the detailed motion.
To illustrate, the dissipated heat is [22],

dq � Γ(ϕ)dϕ q[ϕ(τ)] � ∫  t

0
dτΓ(ϕ(τ)) _ϕ(τ) � T0ϕc − ΔV0,

(10)

where the integral in Eq. 10 is evaluated by writing the torque as
the derivative of the potential in Eq. 9, and ΔV0 � V0(ϕ(t)) −
V0(ϕ(0)) and ϕ again, is the orientation whereas ϕc is the total
angular displacement. Following Ref. 22, the total change in
entropy along a trajectory is given by the sum of the change
in the medium,

ΔΣm[ϕ(τ)] � Δsm[ϕ(τ)]
kB

� q[ϕ(τ)]
kBT

, (11)

and the change in the system entropy,

ΔΣ(ϕ0, ϕτ) � Σ(ϕτ) − Σ(ϕ0),
Σ(ϕτ) � s(τ)

kB
� −ln pss(ϕτ), (12)

where pss(ϕ) is the steady state distribution of the propeller
orientation. This latter quantity, the system entropy, is defined
in analogy with the usual Gibbs entropy, with the integral over
microstates replaced by an integral along the particle trajectory
[27]. An additional term, related to the configurational entropy
induced by the external field is significant for molecular systems
[28], but negligible here. Since we have assumed that the sign of
the torque is the same for all orientations (a condition satisfied for
the propeller used in the experiments, see below), the total
potential [Eq. 9] is monotonic. Trajectories associated with the
consumption of medium entropy [Eq. 11] therefore relate to
small rotations against the applied torque which, as discussed
above, occur only over short time intervals. We note that Eq. 10
can be arrived at by various other routes. For instance, the torque
can be separated into a part derived from a 2π periodic potential,
V0 say, and a constant, non-conservative term. By computing the
work from an integral of the non-conservative torque, and the
change in internal energy from V0, an application of the
integrated first law reproduces Eq. 10 [22]. Of course, the
force can be partitioned into conservative and non-
conservative components in infinitely many ways, all leading
to the same result. As stated above, the fundamental reason is that
this is a one dimensional system so the force can be represented as
the derivative of a scalar function, as in Eq. 9.

The principles described above provide us with a simple way of
testing the rotational fluctuation theorem for a driven micro-
propeller. First we measure the steady state orientation
distribution, pss(ϕ) and average rotational velocity, ωss(ϕ).
Next we evaluate the systematic torque from the steady state
probability current, jss, Eq. 8. This step requires the rotational
drag, ξr, which we estimate numerically [29].We note that it is not
possible to find an exact, independent value for ξr since the precise
dimensions of the micro-fabricated rotor are not available. The
numerical estimate of ξr is therefore treated as a guide and, since it
is a scalar, it is straightforward to consider moderate variations in
this parameter. Finally, Eqs 11 and 12 are used to evaluate
entropy changes over time intervals of varying length and
apply them in the integrated and detailed fluctuation
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theorems, Eqs 1 and 2. Achieving this experimentally is rather
demanding, and the protocols and techniques we adopted are
described in greater detail below.

3 PROPELLER DESIGN AND FABRICATION

Testing the rotational FTs described above places some
demanding constraints on the design and behavior of our
micro-propeller. It must exhibit three key characteristics. 1)
The propeller should rotate about a single fixed axis, with
minimal fluctuations in the orientation of the axis. 2) It
should rotate slowly enough for the short term, entropy
consuming trajectories to be accurately resolved by the
available technology. Finally, 3) its shape should facilitate
accurate tracking of its orientation. We discuss each of these
issues in more detail below.

(1) Axis stability: Elongated, dielectric objects tend to align
themselves with the axis of optical beams [30]. The
stability of the rotation axis of a micro-propeller is
therefore promoted by providing it with a long, sturdy
central spindle.

(2) Rotation rate: Equation 6 allows us to find a crude estimate
of the rotation rate required to observe entropy consuming
trajectories, i.e., we require Δt(4kBTξr/Γ2(ϕ0) � 4kBT/ξrω2,
where ω is the typical angular velocity at ϕ0. Taking Δtmin to be
the smallest time interval over which we can accurately
measure gives ω2 ≈ 4kBT/ξrΔtmin. Finally, if we approximate
the rotational drag by that of a sphere, ξr ≈ 8πμa3 with an
effective radius a � 2 μm we get ω(0.1/

����
Δtmin

√
. In our case,

Δtmin � 1ms, suggesting that we require a rotation rate of
<0.5 Hz. Most light-mills rotate at greater rates, typically in
excess of several Hz [31–33], and more effort is devoted to
increasing rotation frequency than decreasing it [34].
Designing a propeller that rotates this slowly without
stalling completely is a greater experimental challenge than
might have been expected. To meet it, we recall the basic
symmetry properties of optical torque coupling [35]. An object
with rotational symmetry and a mirror plane that includes the
beam axis has a preferred orientation in a linearly polarized
optical tweezer, while an object with chiral symmetry
experiences a constant, orientation independent torque. We
adopt a basic design for the propeller in which the torque it
experiences should be controllable through a single parameter.
This design consists of a propeller with two tiers of five
cylindrical arms. When the tiers are aligned, the rotor has a
mirror plane, and does not rotate. By gradually displacing the
tiers with respect to one another, we can control the rotation
speed. Natural imperfections in the beam and propeller result
in a torque that, rather than being constant, is strongly
dependent on orientation. This tendency becomes more
conspicuous the closer the propeller is to having a
mirror plane.

(3) Tracking: Finally, it must be possible to track the orientation
of the propeller with as much angular precision as possible.
To do this, we add microspheres to the ends of the rotor

arms, and make use of the established methods for high
precision sphere tracking [36]. The orientation of the
propeller can then be accurately retrieved from
measurements of the sphere positions.

With these principles in mind, we arrived at the following final
design, shown in Figure 1.

We fabricate micro-propellers using two-photon
polymerization. To implement the geometric design shown in
Figure 1 (left), we use custom software (LabVIEW) to generate an
instruction file to control the path of a laser beam in a two-photon
polymerization machine (Photonic Professional, Nanoscribe). By
specifying the beam path directly, rather than relying on slicing
software to automatically generate a path from a CAD file, we
retain fine control over the fabrication process. We deposit
approximately 20 μL of photoresist material (IP-G 780,
Nanoscribe) on a coverslip, and then heat it using a hotplate
(100 C for 1 h), following the manufacturer’s instructions for
photoresist preparation. We then fabricate many (>50) copies of
our micro-propeller design using the two-photon polymerization
machine to scan a laser beam through the prepared photoresist
according to our custom beam path file. The polymerized
material is developed, and unpolymerized material washed
away, by submersing the coverslip first in developing fluid
(Microposit EC Solvent) for 20 min, followed by isopropanol
for 5 min. We move the fabricated micro-propellers into
suspension by placing a drop of water (Direct-Q 3 UV,
Millipore) on top of them, and then apply mechanical
agitation to detach them from the coverslip using a thin wire
manipulated by a 3-axis translation stage (ULTRAlign Precision
XYZ Linear Stage, Newport), similar to a previously employed
method [37, 38]. The suspension is transferred to a custom
microscope sample chamber consisting of one microscope
slide and three coverslips bonded together (UV Adhesive 81
or 68, Norland) using a pipette, and the remaining volume of the
chamber is filled with additional water then sealed with adhesive.
This process typically results in around 50–80% of the fabricated
micro-propellers being transferred into the microscope sample
chamber. The two-photon polymerization and transfer steps are
all carried out in a clean room.

FIGURE 1 | Themicropropeller used in the experiment. (Left)Schematic
of the design, rendered using POV-Ray, (right) SEM image of the
microfabricated (two-photon polymerization) propeller used in the experiment.
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4 EXPERIMENT

We optically trap one of the micro-propellers inside the sample
chamber using a custom-built holographic optical tweezers
system, which is similar to a system described elsewhere [39].
The optical tweezers are based around a 1,070 nm laser (YLM-5-
LP-SC, IPG Photonics) whose beam is expanded to fill a spatial
light modulator, or SLM (XY Series HSP512-1064-DVI, Boulder
Nonlinear Systems). The beam is then tightly focused using an oil
immersion, 1.4 NA, 100× objective lens (Plan-Apochromat,
Zeiss) to form optical trap(s). Relative translation of the
sample and optics is achieved with a piezo-based translator
(Mipos 140 PL, Piezosystem Jena) along the optical (z) axis,
and with a servomotor-based stage (MS2000, ASI) in the
orthogonal (xy) plane. Imaging of the sample is performed by
illumination from a custom LED source (University of Glasgow).
Light from the LED which is transmitted by the sample is then
collected by the objective lens and directed to a camera (EoSens
CLMC1362, Mikrotron) using a polarizing beam-splitter. Images
from the camera are acquired on a computer through a PCI-e
frame grabber (PCIe-1433, National Instruments). We use the
“Red Tweezers” software [36] to generate and position optical
traps through control of the SLM. A single micro-propeller is
picked up with an optical trap, such that the long axis of the
propeller’s spindle aligns with the optical axis. The micro-
propeller is then translated to the center of the sample
chamber in the xy plane, and to a distance of around 30 μm
above the coverslip along the z axis using the microscope stages.
Note that the latter distance is limited by the working distance of
the objective lens. The micro-propeller is simultaneously
confined in translational space and driven to rotate
continuously about its spindle by the optical trap.

We record a high speed (1 kHz) video of a trapped and
rotating micro-propeller using a custom LabVIEW program to
acquire images from the system’s camera. The fast frame rate is
achieved by i) reducing the active area of the camera to the
minimum needed to view the propeller, ii) use of a signal
generator (33220A, Agilent) to trigger the frame grabber, and
iii) use of a circular buffer in software that losslessly transfers
acquired images to an SSD drive (HyperX SH100S3/120G,
Kingston). In our set up, the frame rate is limited by
illumination intensity and control over the camera’s
exposure time.

Data analysis is performed offline, starting by extracting the
position of the micro-propeller in each frame of the video using
an additional custom LabVIEW program. We first find the
Cartesian position of each of the five spheres on the micro-
propeller, using a symmetry transform tracking library, taken
from the Red Tweezers software [36, 40]. The propeller’s
orientation, ϕ, can then be defined by the Cartesian position
of one of the spheres and the position of the propeller’s center.
The center is calculated in each frame as the average of the
positions of all five spheres.

We record video of a rotating micro-propeller for a period of
15 min, equivalent to approximately 175 complete rotations, and
extract the orientation in each frame as described above. The
steady state probability distribution, pss(ϕ) is constructed as a

histogram by binning the available data. The bins have a width of
one degree. We confirm that pss(ϕ) is a true steady state by
comparing with separate orientation distributions derived from
the first and second halves of the total Brownian trail. These two
distributions are the same, with the exception of a jagged, high
frequency component. These sharp features are of very low
amplitude in comparison to the overall shape of pss(ϕ) and
derive from multiple sources including the finiteness of the
Brownian trail, tracking errors, center of mass motion and
tilting. To prevent unrealistic contributions to the medium
entropy introduced via the gradient of pss(ϕ), we smooth the
distribution function. To evaluate ωss(ϕ) we form a histogram of
the coarse-grained velocity, i.e., we take the numerical derivative
of the orientation over a single time step and bin the result
according to the average orientation over the time step. Figure 2
shows pss(ϕ), ωss(ϕ) and their product, jss [see Eq. 7]. Smoothed
data is shown in thin, colored lines with the raw data plotted on
thicker gray lines. The small variation of jss with orientation
provides a measure of the errors in the experiment. Next, we
calculate V(ϕ) using the integral in Eq. 9 and Γ � ξr _ϕ (with
ξr � 2.8 aNm s/rad). We then perform the arbitrary separation of
V(ϕ) into a conservative potential, V0(ϕ), and our choice of T0

(the average value of Γ(ϕ): T0 � -3.59 aN·m), see Figure 3.
Finally, we investigate total change in entropy over different

time scales. We choose an interval, t, and split the time series of
micro-propeller orientations from the experiment into T/t
sections, each spanning time t. For each of these sections, the
total entropy change is calculated from the sum of Eqs 11 and 12,
using the end points of the trajectory and the previously
calculated values for pss(ϕ), T0, and V0(ϕ). We repeat this
analysis for different intervals, t.

Figure 4 shows histograms of entropy change, Σt , over a
sequence of time intervals, t. As suggested above, for the
shorter time interval, t � 1 ms, the distribution is strongly
peaked close to zero, with a substantial fraction of trajectories

FIGURE 2 | Steady state distributions of the orientation, pss(ϕ), angular
velocity, ωss(ϕ) and probability current, jss. The data are averaged over ≈ 175
revolutions, using bins of width 1°. In each case, the raw data (gray) is
overlayed with the smoothed data. The scale used for jss is numerically
equivalent to that used for pss(ϕ), with units Hz.
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showing negative changes in entropy. As the time interval
lengthens, the distribution spreads out, and the peak shifts to
higher positive values. At each stage the fraction of trajectories
showing negative entropy change decreases. This process is
quantified by the transient and integrated rotational FTs,
which are tested in Figure 5. On the left hand side, Figure 5A
we plot the logarithm of Eq. 1. In accordance with the FT, the
graph is a linear one passing through the origin. The gradient of
the best fit line is 1.14, compared with 1, as it would be for perfect
agreement. The integrated form is tested by plotting the right and

left hand sides of Eq. 2. The shaded region shows the effect of
varying the value of ξr by ± 15% when evaluating Γ(ϕ). Since the
rotational friction scales with the cube of the length, this variation
corresponds to a change in linear dimension of ≈ ± 5%. The
strength of the agreement increases with the time interval,
becoming very close for ta3ms.

5 DISCUSSION

We have defined a version of the FT suitable for describing
fluctuations of a rudimentary, light driven micro-machine.

The scenario we have considered is somewhat contrived: we
had to go to considerable lengths to ensure that we could reliably
resolve the behavior of interest. In particular we had to design a
propeller that would rotate slowly enough for the transient,
entropy consuming trajectories to be accurately measured. The

design also minimized motion of the center of mass, and angular
fluctuations of the rotation axis, allowing us to eliminate five of
the six physical degrees of freedom and focus on the remaining
axial rotations. For the detailed FT, Eq. 1 and Figure 5A, the
experimental data, which are plotted for the logarithm of Eq. 1
are represented by a straight line, indicating the exponential
dependence expected from the FT, however the gradient is
higher than expected. In the case of the integrated FT, Eq. 2
and Figure 5B, our measurements tend to under-estimate the
entropy changes over very small time intervals, although the

FIGURE 3 | Conservative (left hand side) and total potentials (right hand side).

FIGURE 4 | Evolution of the distribution of entropy change for a series of
increasing time periods.

FIGURE 5 | Experimental tests of the FT. Left hand side: detailed FT plotted as the natural logarithm of Eq. 1, with best fit straight line with gradient ≈ 1.14. Right
hand side: left and right hand sides of the integrated FT, Eq. 2.
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agreement becomes more accurate for intervals of longer
duration. There are a number of sources of error including
image blur and fluctuations in the rotation axis of the micro-
propeller. Both of these factors are more significant for short time
intervals. In the first case, each video image does not represent an
instantaneous moment, but contains contributions from previous
times. This has the effect of low pass filtering the measured
rotations relative to actual rotations. Tilting of the rotation axis
adds a small error to the measured displacement of each tracking
sphere, when projected onto a fixed horizontal plane. In addition
the effects of data smoothing (Figure 2) will be more significant
for shorter intervals.

Nevertheless, the essential features are qualitatively
reproduced. For short time intervals, entropy consuming
trajectories occur with substantially higher probability, and
this probability decreases exponentially as the duration of the
time interval increases.

Although it was not straight forward to observe and quantify
this behavior, we note that fluctuations influence the efficiency
and precision of micro-machines whether they are measured or
not. The concepts described in this article, and in the many
articles devoted to both the fundamental theory, and to
applications in biology, are directly relevant to the growing
field of artificial micro-machines [2, 3]. This will become
increasingly more true as we try to design increasingly small
machines. Indeed, the analysis of the micro-propeller is
somewhat simplified by the fact that the underlying potential
(Eq. 9; Figure 3) is many times greater than kBT . For this reason,
the effect of diffusion in Eqs 8 and 11 is relatively weak in
comparison to the drift terms produced by the systematic torques.
Understanding the role of fluctuations in more complex micro-
machines, will present further challenges, especially for machines
involving multiple degrees of freedom. Under these
circumstances, the steady state distributions are themselves
multi-dimensional, complicating the interpretation of force,
locally. For instance, if we wish to design a micro-machine
that applies a particular force in a particular configuration, we
might also need to understand the morphology of pss in multiple
dimensions. Providing theoretical approximations for the effect
of fluctuations on more complex micro-scale devices with many
degrees of freedom, including synchronizing systems [41, 42],

presents an interesting challenge and one that could be
technologically useful. One possibility would be to try to
eliminate spurious degrees of freedom, by considering the
cycle of the machine as a one dimensional curve embedded in
a higher dimensional phase space. In fact, this is precisely what
has been done for the rotor considered above. Ultimately,
understanding the interplay between deterministic and
fluctuating forces is essential for the design and optimization
of complex, multi-dimensional, mesoscopic machines.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

SB designed and fabricated micro-propellers with support from
DP, and performed all experiments, data analysis and figure
preparation. SS supervised the project with theoretical support
from MA. SS wrote the article with input from all authors.

FUNDING

SS was supported by the Czech Science Foundation (GA19-
17765S) and the European Regional Development Fund
(CZ.02.1.01/0.0/0.0/15_003/0000476). SB acknowledges
funding from the EPSRC and DP thanks the Royal Academy
of Engineering for financial support.

ACKNOWLEDGMENTS

The authors are grateful to Prof. John Rarity for the opportunity
to use his two-photon polymerization apparatus, and to Prof.
Mervyn Miles for the use of his optical tweezers. This work was
conducted in the Bristol Center for Nanoscience and Quantum
Information.

REFERENCES

1. LaFratta CN, Baldacchini T. Two-photon polymerization metrology:
characterization methods of mechanisms and microstructures.
Micromachines (2017) 8:101. doi:10.3390/mi8040101.

2. Knopf G, Uchino K. Light driven micromachines. Abingdon, UK: Taylor &
Francis (2018)

3. Xu Q. Micromachines for biological micromanipulation. Berlin, Germany:
Springer International Publishing (2018)

4. Andrew PK, Williams MAK, Avci E. Optical micromachines for biological
studies. Micromachines (2020) 11:192. doi:10.3390/mi11020192.

5. Hong Y, Diaz M, Córdova-Figueroa UM, Sen A. Light-driven titanium-dioxide-
based reversible microfireworks and micromotor/micropump systems. Adv
Funct Mater (2010) 20:1568–76. doi:10.1002/adfm.201000063.

6. Chen H, Zhao Q, Du X. Light-powered micro/nanomotors. Micromachines
(2018) 9:41. doi:10.3390/mi9020041.

7. Huang TY, Sakar MS, Mao A, Petruska AJ, Qiu F, Chen XB, et al. 3D printed
microtransporters: compound micromachines for spatiotemporally controlled
delivery of therapeutic agents.AdvMater (2015) 27:6644–50. doi:10.1002/adma.
201503095.

8. Swartzlander GA, Jr., Peterson TJ, Artusio-Glimpse AB, Raisanen AD.
Stable optical lift. Nat Photonics. (2011) 5:48–51. doi:10.1038/NPHOTON.
2010.266.

9. Simpson SH, Hanna S, Peterson TJ, Swartzlander GA, Jr. Optical lift from
dielectric semicylinders. Opt Lett (2012) 37:4038–40. doi:10.1364/OL.37.
004038.

10. Phillips DB, Padgett MJ, Hanna S, Ho YLD, Carberry DM, Miles MJ, et al.
Shape-induced force fields in optical trapping. Nat Photonics. (2014) 8:400–5.
doi:10.1038/nphoton.2014.74.

11. Butaite UG, Gibson GM, Ho YLD, TaverneM, Taylor JM, Phillips DB. Indirect
optical trapping using light driven micro-rotors for reconfigurable
hydrodynamic manipulation. Nat Commun (2019) 10:1215. doi:10.1038/
s41467-019-08968-7.

Frontiers in Physics | www.frontiersin.org November 2020 | Volume 8 | Article 5931227

Box et al. Entropy Production in Micro-Machines

https://doi.org/10.3390/mi8040101
https://doi.org/10.3390/mi11020192
https://doi.org/10.1002/adfm.201000063
https://doi.org/10.3390/mi9020041
https://doi.org/10.1002/adma.201503095
https://doi.org/10.1002/adma.201503095
https://doi.org/10.1038/NPHOTON.2010.266
https://doi.org/10.1038/NPHOTON.2010.266
https://doi.org/10.1364/OL.37.004038
https://doi.org/10.1364/OL.37.004038
https://doi.org/10.1038/nphoton.2014.74
https://doi.org/10.1038/s41467-019-08968-7
https://doi.org/10.1038/s41467-019-08968-7
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


12. Cui J, Huang TY, Luo Z, Testa P, Gu H, Chen XZ, et al. Nanomagnetic
encoding of shape-morphing micromachines. Nature (2019) 575:164–8.
doi:10.1038/s41586-019-1713-2.

13. Alapan Y, Yigit B, Beker O, Demirörs AF, Sitti M. Shape-encoded dynamic
assembly of mobile micromachines. Nat Mater (2019) 18:1244–51. doi:10.
1038/s41563-019-0407-3.

14. Huang HW, Sakar MS, Petruska AJ, Pané S, Nelson BJ. Soft micromachines
with programmable motility and morphology. Nat Commun (2016) 7:12263.
doi:10.1038/ncomms12263.

15. Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregón A, Nelson BJ.
Magnetic helical micromachines: fabrication, controlled swimming, and cargo
transport. Adv Mater (2012) 24:811–6. doi:10.1002/adma.201103818.

16. Evans D, Searles D. The fluctuation theorem. Adv Phys (2002) 51:1529–85.
doi:10.1080/00018730210155133.

17. Seifert U. Stochastic thermodynamics, fluctuation theorems and molecular
machines. Rep Prog Phys (2012) 75:126001. doi:10.1088/0034-4885/75/12/126001.

18. Hoffmann PM. How molecular motors extract order from chaos (a key issues
review). Rep Prog Phys. (2016) 79:032601. doi:10.1088/0034-4885/79/3/032601.

19. Evans DJ, Searles DJ, Williams SR. Dissipation and the relaxation to
equilibrium. J Stat Mech-Theory E. (2009) 24:P07029. doi:10.1088/1742-
5468/2009/07/P07029.

20. Reid J, Carberry D, Wang G, Sevick E, Evans D, Searles D. Reversibility in
nonequilibrium trajectories of an optically trapped particle. Phys Rev E (2004)
70:016111. doi:10.1103/PhysRevE.70.016111.

21. Carberry D, Reid J, Wang G, Sevick E, Searles D, Evans D. Fluctuations and
irreversibility: an experimental demonstration of a second-law-like theorem
using a colloidal particle held in an optical trap. Phys Rev Lett (2004) 92:
140601. doi:10.1103/PhysRevLett.92.140601.

22. Speck T, Blickle V, Bechinger C, Seifert U. Distribution of entropy production
for a colloidal particle in a nonequilibrium steady state. Europhys Lett (2007)
79:30002. doi:10.1209/0295-5075/79/30002.

23. Cumpston B, Ananthavel S, Barlow S, Dyer D, Ehrlich J, Erskine L, et al. Two-
photon polymerization initiators for three-dimensional optical data storage
and microfabrication. Nature (1999) 398:51–4. doi:10.1038/17989.

24. Coffey WT, Kalmykov YP, Waldron JT. The Langevin equation. Singapore:
World Scientific Publishing (1996)

25. Van Kampen N. Stochastic processes in physics and chemistry. Amsterdam,
Netherlands: Elsevier Science B.V. (1992)

26. De Groot S, Mazur P. Non-equilibrium thermodynamics. Mineola, NY: Dover
Publications (1984)

27. Seifert U. Entropy production along a stochastic trajectory and an integral
fluctuation theorem. Phys Rev Lett (2005) 95:040602. doi:10.1103/
PhysRevLett.95.040602.

28. Johari GP. Effects of electric field on the entropy, viscosity, relaxation time, and
glass formation. J Chem Phys (2013) 138:154503. doi:10.1063/1.4799268.

29. Carrasco B, de la Torre J. Hydrodynamic properties of rigid particles:
comparison of different modeling and computational procedures. Biophys J.
(1999) 76:3044–57. doi:10.1016/S0006-3495(99)77457-6.

30. Simpson SH, Hanna S. Stability analysis and thermal motion of optically
trapped nanowires. Nanotechnology (2012) 23:205502. doi:10.1088/0957-
4484/23/20/205502.

31. Galajda P, Ormos P. Rotors produced and driven in laser tweezers with
reversed direction of rotation. Appl Phys Lett (2002) 80:4653–5. doi:10.1063/1.
1480885.

32. Asavei T, Loke VLY, Barbieri M, Nieminen TA, Heckenberg NR, Rubinsztein-
Dunlop H. Optical angular momentum transfer to microrotors fabricated by
two-photon photopolymerization. New J Phys (2009) 11:093021. doi:10.1088/
1367-2630/11/9/093021.
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