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ABSTRACT: Disentangling the contribution of changing Arctic sea ice to midlatitude winter climate variability remains

challenging because of the large internal climate variability in midlatitudes, difficulties separating cause from effect,

methodological differences, and uncertainty around whether models adequately simulate connections between Arctic sea

ice and midlatitude climate. We use regression analysis to quantify the links between Arctic sea ice and midlatitude winter

climate in observations and large initial-condition ensembles of multiple climatemodels, in both coupled configurations and

so-called Atmospheric Model Intercomparison Project (AMIP) configurations, where observed sea ice and/or sea surface

temperatures are prescribed. The coupled models capture the observed links in interannual variability between winter

Barents–Kara sea ice and Eurasian surface temperature, and between winter Chukchi–Bering sea ice and North American

surface temperature. The coupled models also capture the delayed connection between reduced November–December

Barents–Kara sea ice, a weakened winter stratospheric polar vortex, and a shift toward the negative phase of the North

Atlantic Oscillation in late winter, although this downward impact is weaker than observed. The strength and sign of the

connections both vary considerably between individual 35-yr-long ensemble members, highlighting the need for large

ensembles to separate robust connections from internal variability. All the aforementioned links are either absent or are

substantially weaker in theAMIP experiments prescribedwith only observed sea ice variability.We conclude that the causal

effects of sea ice variability on midlatitude winter climate are much weaker than suggested by statistical associations,

evident in observations and coupled models, because the statistics are inflated by the effects of atmospheric circulation

variability on sea ice.
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1. Introduction

The Arctic has warmed rapidly over recent decades, concom-

itant with sea ice loss (Stroeve and Notz 2018) that is already

having large impacts on the local climate and ecosystems (Meier

et al. 2014). Changes in Arctic sea ice have the potential to in-

fluence midlatitude weather and climate, but there is low confi-

dence in the detection of this influence for specific weather types

(Cohen et al. 2014; Barnes and Screen 2015; Francis 2017; Screen

et al. 2018;Vavrus 2018). In particular, it has been highlighted that

studies primarily based on observations often conclude that there

is a stronger impact of sea ice loss on the midlatitudes than those

based on models (Cohen et al. 2020). Arctic sea ice loss is ex-

pected to continue due to increasing greenhouse gas emissions

and thus, narrowing the uncertainties of the potential far-flung

impacts is of crucial societal importance.

A common approach used to infer the response to reduced

sea ice or Arctic warming from observations is to examine

statistical relationships in variability and trends. Regression or

composite analysis can be implemented to identify the mid-

latitude conditions associated with reduced sea ice, in variability

from daily to decadal time scales. Some associations that have

been commonly found include a wintertime high pressure cir-

culation anomaly over the Ural Mountain region, which advects

cold air into Eurasia (Honda et al. 2009; Inoue et al. 2012; Tang

et al. 2013; Mori et al. 2014, 2019; Kug et al. 2015), and dy-

namically driven cold winters in NorthAmerica (Kug et al. 2015;

Cohen et al. 2018). Reduced sea ice in the Barents–Kara Sea has

been linked to the negative phase of the North Atlantic

Oscillation (NAO) (Liu et al. 2012; Jaiser et al. 2012; García-
Serrano et al. 2015; Nakamura et al. 2015), potentially via a

weakening of the polar stratospheric vortex (Kim et al. 2014;

Nakamura et al. 2015; García-Serrano et al. 2015; Kretschmer

et al. 2016). Some of these links are also seen in trends, partic-

ularly over recent decades, coincident with accelerated sea ice

loss and Arctic warming (Cohen et al. 2014; Kug et al. 2015;

Cohen et al. 2018; Mori et al. 2019).

Statistical analysis of observations can be hindered by nu-

merous shortcomings. First, causality can be hard to establish

because connections found in variability do not necessarily

represent a forced response to sea ice. A number of studies

have argued that some of the aforementioned observed links in

variability may not imply a causal response to reduced sea ice

or Arctic warming (Sorokina et al. 2016; Smith et al. 2017;

Peings 2019; Blackport et al. 2019; McGraw and Barnes 2019;

Warner et al. 2020; Blackport and Screen 2020). In particular,

Blackport et al. (2019) concluded that the correlation between

regional winter sea ice and cold midlatitude winters arises

primarily because both are driven by the same anticyclonic

circulation anomalies. Similarly, Peings (2019) concluded that
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an anticyclonic circulation over the Ural mountain region—-

often referred to as ‘‘Ural blocking’’—drives both November

Barents–Kara sea ice loss and a weakening of the stratospheric

polar vortex, questioning the causality of the lagged connection

between autumn sea ice and winter climate. Another issue is

that many of the observed links are found based on only ;35

years of data, which may not be sufficient to draw robust

conclusions amidst large internal variability in the midlatitude

circulation (Screen et al. 2014). This is highlighted by Kolstad

and Screen (2019), who found that the observed correlation

between autumn sea ice and the winter NAO has varied con-

siderably over the past century, in both sign and magnitude.

Modeling experiments are a useful tool in addressing the

limitations of observational analyses. Causality can be exam-

ined using targeted modeling experiments where reduced sea

ice is imposed, and large ensembles can be used to robustly

separate forced responses from internal variability (Deser et al.

2020). While some modeling studies have detected midlatitude

responses to observed sea ice loss and variability (Liu et al.

2012; Kim et al. 2014; Mori et al. 2014; Nakamura et al. 2015),

in general, large ensemble simulations forced with observed

sea ice loss tend to suggest that the midlatitude responses are

weak compared to internal variability (Screen et al. 2013, 2014;

McCusker et al. 2016; Sun et al. 2016; Collow et al. 2018;Ogawa

et al. 2018; Liang et al. 2020). In particular, a multimodel large

ensemble consisting of six models found little impact of sea ice

on the midlatitude variability (Koenigk et al. 2019), nor on

multidecadal trends during winter (Ogawa et al. 2018). The

latter study concluded that the observed trends can likely be

explained by internal variability.

More robust midlatitude responses are found when models

are forced by projected sea ice loss, typically for high-end

emissions scenarios, that include weakening and equatorward

shift of the jet, and an expansion of the Siberian high (Screen

et al. 2018; Zappa et al. 2018; Screen and Blackport 2019a).

However, these circulation responses to sea ice loss are often

opposed by the response to warming outside the Arctic and, as a

result, are not seen in net response to projected greenhouse gas

increases (Barnes and Polvani 2015; Blackport and Kushner

2017; McCusker et al. 2017; Oudar et al. 2017; Sun et al. 2018;

Hay et al. 2018; Dai and Song 2020). Thus, in model projections,

sea ice loss modulates, but does not appear to be the dominant

driver of, the projected midlatitude response to global warming.

The limited studies that have compared the model-simulated

response to reduced sea ice to observed statistical connections

have suggested that models underestimate the response to sea

ice (Honda et al. 2009;Mori et al. 2014, 2019). For example,Mori

et al. (2019) argue that the stronger association between the so-

called Warm Arctic–Cold Eurasia (WACE) pattern and

Barents–Kara sea ice in reanalysis than in models forced with

observed sea ice and SST is evidence of a model bias. However,

the discrepancy between observations and model experiments

could also be reconciled if the observed correlations overes-

timate the strength of the causal response to sea ice variability

because they also include the impact of atmosphere vari-

ability on sea ice (Blackport et al. 2019; Screen and Blackport

2019b). Understanding whether discrepancies between ob-

served statistical connections and model experiments are due

to model biases, or are a result of misinterpretation of cau-

sality, is critical to increasing confidence in the climate re-

sponse to sea ice loss.

In this study, we address two main questions:

1) Can coupled ocean-atmosphere models reproduce the

previously identified observed links between sea ice and the

midlatitudes in variability and trends?

2) Do these statistical links provide a reliable estimate of the

strength of the forced response to changes in sea ice?

To address the first question, we compare the observed links

to a multimodel initial-condition large ensemble that has re-

cently been made available (Deser et al. 2020). For model

evaluation, it is essential that observed links in variability are

directly compared to coupled climate models as they include

the two-way interaction between the sea ice and the atmo-

sphere. For the second question, we use so-called Atmospheric

Model Intercomparison Project (AMIP) experiments. More

specifically, we analyze two sets of atmosphere-only simula-

tions, one set forced with both observed sea surface tempera-

tures (SST) and sea ice concentrations (SIC) and the other,

forced only with the observed SST. This experimental setup

allows us to isolate (by subtracting the latter set from the for-

mer set) the influence of sea ice variability and trends on the

atmosphere. As all simulations consist of large initial-condition

ensembles, we are able to examine the full range of plausible

associations and trends in the presence of internal variability.

The specific links between sea ice and the midlatitudes that we

focus on are those that are well documented in previous literature.

These include: the link between winter sea ice in the Barents–Kara

Sea and winter cooling over Eurasia (Inoue et al. 2012; Tang et al.

2013; Kug et al. 2015; Mori et al. 2019), the link between winter sea

ice in the Chukchi–Bering Sea and cold winters over North

America (Kug et al. 2015; Overland and Wang 2018; Tachibana

et al. 2019; Jang et al. 2019) and the link between late autumn/early

winter sea ice in the Barents–Kara Sea and late winter Eurasian

climate that occurs via the so-called stratospheric pathway (e.g.,

Kimet al. 2014;García-Serranoet al. 2015;DeandWu2019).While

these links have been studied previously, the novelty in this study is

to explore these in a consistent way across observations, in both

coupled andAMIPmodel configurations, and using large ensemble

simulations from multiple models.

The rest of this paper is organized as follows: section 2 de-

scribes the data and analysis methods. Section 3a examines the

links between regional winter sea ice and cold midlatitude

winters in interannual variability. In section 3b, we examine the

stratosphere pathway that connects November–December

Barents–Kara sea ice to late-winter midlatitude climate. This

is followed by an analysis of winter trends in section 3c. We

finish with discussion in section 4 and conclusions in section 5.

2. Methods

a. Data

For our analysis of observations, we use monthly mean fields

of sea ice concentration (SIC) near-surface air temperature

(SAT), mean sea level pressure (SLP), 500-hPa geopotential
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height (Z500), 300-hPa geopotential height (Z300), and zonal

mean zonal wind (U) from ERA-Interim reanalysis (Dee et al.

2011). For comparisons with the AMIP model experiment we

focus on the period from 1979 to 2014; for context, however, we

also include some results extending to 2019 and note if they

considerably differ from the 1979–2014 values.

For coupled ocean-atmospheric simulations, we use initial-

condition large ensembles from five different models (CESM1-

CAM5, CanESM2, GFDL-CM3, GFDL-ESM2M,MPI-ESM),

each consisting of between 20 and 100 ensemble members

(Deser et al. 2020). The details of these are provided in Table 1.

Each member was forced by historical forcing until 2005 and

RCP8.5, a high-end emissions scenario, thereafter. Each en-

semble member differs only by small changes in the initial

condition, which were applied well prior to 1979, so differences

between ensemble members are only due to internal variabil-

ity. We present analyses for the time period common to all

simulations and observations, 1979–2014, but obtained nearly

identical results if data up to 2019 were used. One model

(GFDL-ESM2M) did not have the variable U available, so

only four models are used for analysis using this variable.

We also make use of a multimodel ensemble of AMIP ex-

periments from the Facility for Weather and Climate

Assessments (FACTS) dataset, which consists of 16–90 ensem-

ble members for each of six models (Table 2). These are forced

with historical radiative forcinguntil 2005 andRCP6, amidrange

emissions scenario, thereafter. Surface ocean boundary condi-

tions were prescribed, following the observed monthly mean

SIC and SST fromHurrell et al. (2008). By definition, the AMIP

configuration only captures the one-way influence of SST and

SIC on the atmosphere, and not the influence of the atmosphere

on the ocean-ice. Once more, we use data from 1979 to 2014

because this is the longest period that is common to all model

experiments. Again, there was no variable U for one model

(AM3), so this analysis only consists of five models.

To isolate the impacts of sea ice on the atmosphere, we use

an additional set of experiments that are identical to the AMIP

experiments described above, except that the SIC and SSTs in

the polar regions are set to the climatological values (referred

to as AMIP-PolarClim). These consist of four different models

each with 20–30 ensemble members (Table 2). Specifically, all

SIC are set to the seasonally varying 1979–89 average values.

For grid points and months where the 1979–89 SIC is greater

than zero, the SSTswere also set to the 1979–89 average values,

but elsewhere they were set to the observed values. These

experiments isolate the impacts of SST outside of the polar

regions on the atmosphere. To estimate the impacts of only sea

ice and polar SSTs, we subtract the ensemble mean from

AMIP-PolarClim for the respectivemodel from each ensemble

member of the AMIP experiment. Hereinafter, this residual

will be referred to as AMIP-Polar. Note, that calculating the

impact of sea ice loss this way depends on the assumptions that

20–30 ensembles are sufficient to capture the forced response

to the SST variability, and that the atmospheric response to

SST and SIC are linearly additive. The latter assumption ap-

pears to be true in winter, at least in response to greenhouse gas

forcing (McCusker et al. 2017).

b. Analysis

First, all data were interpolated to a common 28 3 28
latitude–longitude grid. To investigate interannual links be-

tween sea ice and the midlatitudes, we regressed atmospheric

fields onto two indices of regional-mean sea ice cover. We fo-

cus on the regional sea ice anomalies in two regions that have

previously been shown to have strong links to the midlatitudes

(e.g., Kug et al. 2015): Barents–Kara Sea (BKS; 108–908E, 658–
858N) and Chukchi–Bering Sea (CBS; 1558–1958W, 558–808N).

The average SIC was taken for each region and then normal-

ized by the observed standard deviation. Nearly identical re-

sults were obtained when the model SIC time series were

instead normalized by the standard deviation in each model

(not shown). All seasonal or monthly averaged data were lin-

early detrended prior to regression. In the model experiments,

the detrending is performed on each ensemble member, to

TABLE 1. Detailed information on the coupled model experiments.

Model No. of members Horizonal atmospheric resolution No. of vertical levels Model top

CESM1-CAM5 40 0.98 3 1.38 30 2 hPa

CanESM2 50 2.88 3 2.88 35 1 hPa

GFDL-CM3 20 2.08 3 2.58 48 0.01 hPa

GFDL-ESM2M 30 2.08 3 2.58 24 3 hPa

MPI-ESM 100 1.98 3 1.98 47 0.01 hPa

TABLE 2. Detailed information on the AMIP model experiments.

Model No. of AMIP members No. of AMIP- PolarClim members Horizonal resolution No. of vertical levels Model top

CAM5 90 20 0.98 3 1.38 30 2 hPa

AM3 17 N/A 1.98 3 1.98 48 0.01 hPa

CAM4 20 20 0.98 3 1.38 26 2 hPa

CAM5L46 16 N/A 0.98 3 1.38 46 0.3 hPa

ECHAM5 50 30 0.758 3 0.758 31 10 hPa

GFSv2 50 30 1.08 3 1.08 64 0.2 hPa
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match what is done in the reanalysis. For regressions in re-

analysis, we use the SIC from ERA-Interim and for the re-

gressions in the AMIP experiments, we use the forcing data

from Hurrell et al. (2008). These two SIC datasets are similar

and produced nearly identical results when they were inter-

changed (not shown). The sign of the SIC is reversed, so that

the regressions represent the field associated with a one stan-

dard deviation reduction in sea ice.

We present maps of the fields averaged over all models used.

For each model, the regression was performed after concate-

nating the detrended time series from each realization. The

multimodel mean was obtained by averaging the ensemble

means, so that each model was weighted equally regardless of

how many ensemble members it had. As the available models

were not the same for each configuration (e.g., coupled,

AMIP), we also present results for just the CESM1-CAM5

model, as this was the only model that had been run in all three

configurations. For selected regions, we also show the ensem-

ble spread for each model. For SAT, these regions are Central

Eurasia (CEU; 608–1208E, 408–608N) andNorth America (NA;

808–1208W, 408–558N). For SLP the regions are Ural mountain

region (Ural; 408–908E, 558–708N) and North Western North

America (NWNA; 1108–1508W 558–708N). The NAO index

was calculated as the standardized difference between the box-

averaged SLP between Iceland (168–258W, 638–678N) and the

Azores (208–288W, 368–408N). Statistical significance is as-

sessed using a two-sided Students t-test.

We caution that regression analysis alone cannot identify

causality or quantify the strength of causal connections.

However, we argue that there is still value in applying the con-

sistent statistical analyses to observations and models, and the

models in both coupled and AMIP configurations. The com-

parison between observations and coupled models enables

model evaluation of covariability between sea ice and the

atmosphere, but causality remains unclear. Causality can be

inferred, however, by comparing regressions in coupled experi-

ments to the those in AMIP experiments, because in the latter

the effects of atmospheric variability on sea ice are excluded,

leaving only the effects of sea ice variability on the atmosphere.

3. Results

a. Links between winter sea ice variability and midlatitude
temperature

We begin by investigating links between winter [December–

February (DJF)] sea ice in the BKS and Eurasian winter cli-

mate (Fig. 1). In ERA-Interim reanalysis, reduced sea ice in

the BKS is associated with strong warming over the BKS and

FIG. 1. DJF SAT (8C; shading) and SLP (0.25-hPa contour levels) regressed onto DJF BKS sea ice for (a) ERA-Interim, (b) coupled

multimodel mean, (c) AMIP multimodel mean (d) AMIP-Polar multimodel mean, (e) CESM1-CAM5, (f) CAM5 AMIP, and (g) CAM5

AMIP-Polar. AMIP-Polar refers to the AMIP experiments with the influence of SST outside the polar regions removed. Solid contours

indicate positive values, and dashed lines indicate negative values (the zero contour is not shown). The sign of the regression is reversed so

that the fields shown are associated with a reduction in sea ice.
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cooling over much of the Eurasian continent – the so-called

WACE pattern. Recall that the sign is reversed so that the

plotted fields are those associated with a reduction in sea ice.

The surface atmospheric circulation pattern consists of

anomalous high SLP over the Ural mountain region, low SLP

over Greenland and high SLP over the midlatitude Atlantic

region, when BKS sea ice is below average. These features are

also clearly present in the coupled model regressions (Fig. 1b).

On average, the magnitude of the Ural SLP and Eurasian

cooling are weaker in themodels. However, the regressions are

of larger magnitude in CESM1-CAM5 and closer to the ob-

served values (Fig. 1e).

Figure 2 shows the full ensemble spread of regression coef-

ficients of the Ural SLP and CEU SAT onto the BKS SIC, in

each model. Statistically significant regression coefficients are

found in all models for Ural SLP, and in 4 out of 5 models for

CEU SAT. Note that GFDL-ESM2M does have statistically

significant cooling, but it is shifted to the south (not shown) and

is not significant in the CEU region as defined here. In all five

models, the majority of the ensemblemembers have regression

coefficients between BKS SIC and CEU temperature with the

same sign as observations (88%, 80%, 70%, 60% and 69% of

ensemble members in each model). Figure 2 reveals that the

range of regression coefficients found within an ensemble,

solely due to internal variability, is extremely large. For ex-

ample, in CESM1-CAM5, some individual ensemble

members show regression coefficients of more than twice

the observed magnitude, while others show similar magni-

tudes to observation but with opposite sign. The observed

regression coefficients fall within the ensemble ranges for

nearly all models.

Figures 1 and 2 show that coupled models capture the ob-

served links between BKS sea ice, Ural SLP and CEU cooling.

However, because of the two-way coupling, it is unclear

whether the statistical relationship represents a forced re-

sponse to sea ice. The high pressure anomaly in the Ural

FIG. 2. Ensemble spread of the regression coefficients for (a) DJF Ural SLP and (b) DJF CEU SAT regressed

withDJFBKS sea ice for eachmodel. Boxes show the upper and lower quartile values, whiskers show themaximum

and minimum values, and the line indicates the median. The box-and-whisker plots are shown with thicker lines if

the modeled regression coefficient (concatenated time series) is statistically significant at the 95% level. ERA-

Interim regression coefficients with the 95% confidence range are indicated in black for 1979–2014 and gray for

1979–2019. The number in parentheses next to the model name indicates the number of ensemble members.
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region, correlated with reduced ice and cold CEU, will advect

warm and moist air into the BKS, reducing sea ice (Gong and

Luo 2017; Luo et al. 2017; Blackport et al. 2019). Thus, we

would expect correlations between BKS sea ice, Ural SLP and

CEU temperatures even without a response to sea ice. The

regressions in the AMIP experiments, which are forced by

observed sea ice and SST, are shown in Fig. 1c for the multi-

model mean and in Fig. 1f for CAM5. The AMIP regressions

also display theWACE pattern, although the cooling is weaker

than observed, in agreement with Mori et al. (2019). The

cooling in the AMIP regressions is also weaker compared to

the coupled models, especially in CESM1-CAM5, indicating

that this relationship in coupled models is not entirely forced

by sea ice and/or SST. The SLP pattern associated with re-

duced sea ice is robust across all models (not shown) and

consists of a positive NAO and high pressure over the North

Pacific (Figs. 2c,f), indicating these aspects of the observed

regression pattern are forced by SST and/or SIC. However, the

high SLP over the Ural mountain region, seen in the observed

and coupled model regression, is absent in the AMIP results,

suggesting it is not a forced response to observed sea ice and/or

SST variability.

The regressions in the AMIP experiments still, however, do

not necessarily represent a response to sea ice, as they could be

associated with SST outside the Arctic, which covaries with

BKS sea ice. Figures 1d and 1g shows the regressions in the

AMIP-Polar experiments, which isolates the impact of sea ice

(by removing the influence of the nonpolar SST). While the

warming over the BKS remains, the cooling over the CEU

disappears in the model mean (Fig. 1d), and is weaker and

more localized to the North CEU in CAM5 (Fig. 1g). While

this cooling associated with low BKS is extremely weak (cor-

relation coefficient of;0.05), it is statistically significant due to

the extremely large ensemble size (3150 years). Thus, accord-

ing to the AMIP-Polar results, reduced BKS sea ice leads to

warmer SAT in the Arctic but has little influence on SAT over

Eurasia. The SLP patterns associated with reduced sea ice in

the coupled model and AMIP experiments are not seen in

AMIP-Polar, indicating that these are also not forced by sea

ice. As with the coupled model simulations, the ensemble

spread in the regression coefficients in the AMIP experiments

(Fig. 2) is very large, with some realizations showing CEU

cooling as strong as observed and others showing strong

warming, which once again highlights the large uncertainty due

to internal atmospheric variability on a 35-yr time scale.

Figures 3 and 4 show analogous regressions, but for sea

ice variability in Chukchi–Bering Sea, which has been

linked to cold winters over North America (Kug et al. 2015).

Regressions in reanalysis show reduced CBS sea ice is associ-

ated with warm temperatures over the CBS, a cyclonic

anomaly to the west of the CBS, an anticyclonic circulation to

the east, and cold temperatures over North America. As with

the connections with BKS sea ice, the coupled models capture

these features of the observed regression pattern, but with

reduced magnitude on average, although CESM1-CAM5 de-

picts regressions nearly as strong as observed. Most coupled

FIG. 3. As in Fig. 1, but for regressions with DJF CBS sea ice.
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model ensemble members show regression coefficients with

the same sign as the observations (100%, 76%, 65%, 93% and

99% in each individual model for the connection to NA tem-

perature). Although all models show statistically significant

regressions between CBS sea ice and North American cooling,

and betweenCBS sea ice andNWNASLP, the observed values

are outside the model spread in some models (Fig. 4). The

AMIP regressions look very different from the coupled model

regressions (Figs. 3c,f), as they feature only reduced SLP over

the North Pacific (i.e., a deepening of the Aleutian low) and

have no evidence of the anticyclonic anomalies or cooling over

North America. The lower SLP over the North Pacific is sig-

nificantly reduced in AMIP-Polar regressions indicating that it

is primarily driven by SSTs. Thus, as with the links to winter

BKS sea ice, the coupled models capture the observed con-

nection between CBS sea ice and the midlatitudes, but the

AMIP-Polar results indicate these links are not forced by

sea ice.

The differences between the regressions in the coupled

models and in the AMIP simulations in Figs. 1–4 seem to

indicate that the links between reduced sea ice and the

midlatitudes are not primarily forced by sea ice, but

instead these links occur because the circulation drives the

reduction in sea ice, in agreement with Blackport et al.

(2019). This is consistent with the physical interpretation

of the circulation patterns—they tend to be associated with

the advection of warm and moist air into the Arctic, which

reduces sea ice. However, another possible interpretation

of the discrepancy is that the response to reduced sea ice is

stronger in the coupled models, either due to coupling with

the ocean (Deser et al. 2015, 2016) or due to differences in

background state between the coupled and AMIP simula-

tions (Smith et al. 2017). In short, the two possible inter-

pretations differ in their causal inference: whether sea ice

forces the atmosphere or vice versa.

With this in mind, Fig. 5 shows monthly lead-lag regressions

between the Ural SLP and BKS sea ice, and between NWNA

SLP and CBS sea ice, in the coupled CESM1-CAM5 and

CAM5 AMIP and AMIP-Polar simulations. In the coupled

model, there are strong associations when SLP leads sea ice by

1–2 months, for all months fromOctober toMarch. In contrast,

when the SLP lags sea ice by 1–2 months, the regression co-

efficients are substantially weaker, again for all months from

October to March. In both configurations of the AMIP

FIG. 4. As in Fig. 2, but for (a) NWNA SLP and (b) NA SAT regressed onto CBS sea ice.
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experiments, the regression coefficients are weak at all lags,

consistent with the weak connection in the DJF average.

The clear contrast between the regression coefficients pre-

ceding and following reduced sea ice in the coupled simulations

(Figs. 5a,d) is consistent with the connection arising primarily

because the circulation drives the sea ice. While causal infer-

ence from lead-lag regressions can be hampered by autocor-

relation (McGraw and Barnes 2018), we argue that in this case,

the stronger autocorrelation of sea ice anomalies, compared to

atmospheric anomalies, actually helps to inform causality. If

we were to hypothesize that the simultaneous regressions were

primarily driven by sea ice (H1), we would expect that the

circulation response to sea ice anomalies would persist along

with the sea ice anomalies into the following months. If this

were the case, the regression coefficients would remain high

when the circulation lags sea ice (in the coupled simulations).

However, we find little evidence for this in Fig. 5, so reject H1.

In contrast, if we hypothesis that the simultaneous regressions

were primarily driven by the atmospheric circulation (H2),

then we would expect the circulation-driven sea ice anomalies

to persist into the following months. In the coupled simula-

tions, this would result in high regression coefficients when sea

ice lags the circulation, but little effect when sea ice leads the

circulation. This is precisely what is seen in Fig. 5, strongly

supporting H2. We therefore reject H1 and accept H2, mean-

ing that the differences between the coupled and AMIP re-

gressions are likely a consequence of the atmosphere forcing

sea ice and not because the atmospheric response to sea ice is

stronger in the coupled experiments than in the AMIP

experiments.

b. Delayed response to November–December sea ice
variability

We next examine the delayed link to November-December

(ND) sea ice, motivated by previous work suggesting that re-

duced BKS sea ice in late autumn and early winter causes an

anticyclonic circulation response over the Ural mountain re-

gion, which constructively interferes with background clima-

tological planetary waves, and in turn, causes a weakening of

the stratospheric polar vortex (Kim et al. 2014; Nakamura et al.

2015; De andWu 2019; García-Serrano et al. 2015). Ultimately,

the stratospheric anomalies can propagate downward to the

troposphere, causing a shift toward the negative phase of the

NAO in late winter. We examine each step in this proposed

chain of causality, in observations and models, by regressing

the atmosphere fields onto ND BKS sea ice.

Figure 6 shows the regressions of ND SLP and Z500 onto

ND BKS sea ice. Similar to the regressions in winter (Fig. 1),

FIG. 5. Monthly lead–lag regression coefficients (hPa) for October–March for (top) Ural SLP with BKS sea ice and (bottom) NWNASLP

and CBS sea ice in (a),(d) CESM1-CAM5; (b),(e) CAM5 AMIP; and (c),(f) CAM5 AMIP-Polar.
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low BKS sea ice is associated with a barotropic anticyclonic

circulation over the Ural region in reanalysis. The coupled models

capture this connection, but with reduced magnitude in the en-

semble mean. However, the equivalent regressions in AMIP and

AMIP-Polar are very weak. Together with the monthly lead–lag

regressions in Fig. 5, this result suggests that the tropospheric cir-

culation associatedwith lowNDBKS sea ice in the coupledmodels

and in ERA-Interim primarily occurs because the tropospheric

circulation is driving the reduced sea ice, and not vice versa.

We next examine the regressions of wave-1 and wave-2 Z300

onto the ND BKS sea ice (Fig. 7). We only show results for

CESM1-CAM5 and ERA-Interim, but the model means are

nearly identical (not shown).When the anomalous wave field is

in phase with the background climatological wave, the waves

are said to constructively interfere. This constructive interfer-

ence can cause a weakening of the stratospheric polar vortex by

increasing the wave activity flux into the stratosphere

(Garfinkel et al. 2010; Smith et al. 2010). In ERA-Interim, the

wave-1 component of the regressions is out of phase with the

climatological wave-1 (Fig. 7a), but there is clear constructive

interference between the anomalous and climatological wave-

2 (Fig. 7e). The coupled model shows constructive interference

in both the wave-1 and wave-2 Z300 fields, though the latter is

weaker than observed. Consistent with the very weak tropo-

spheric connection shown in Fig. 6, theAMIP andAMIP-Polar

results also show very small wave-1 and wave-2 anomalies as-

sociated with low ND BKS sea ice (Figs. 7c,d,g,h).

Figures 6 and 7 suggest that low ND BKS sea ice should be

associated with a weakened winter stratospheric polar vortex

in ERA-Interim and in the coupled models. Indeed, we find

that reducedBKS inND is associated with reduced zonal winds

in the stratosphere during DJF (Fig. 8). We note, however, that

the connections are relatively weak compared to internal vari-

ability: the correlation coefficients between the DJF zonal-mean

zonal wind at 10hPa (U10) from 608 to 808N andNDBKS sea ice

are only 0.14 in ERA-Interim and 0.13 in CESM1-CAM5. The

AMIP simulations show very little connection between BKS sea

ice and the stratosphere (Figs. 8c,f). If anything, they show a very

weak strengthening, consistent with the weak destructive inter-

ference seen in thewave-1 upper-troposphere anomalies (Fig. 7c).

Themodel-mean forAMIP-Polar suggests no impact of NDBKS

sea ice on the winter stratosphere.

Figure 9a shows the ensemble spread in regression coeffi-

cients in each model. Three of the four coupled models show

statistically significant weakening of the stratosphere at 10 hPa,

and the model that does not (GFDL-CM3) shows statistically

significantweakening in the lower stratosphere, below 10hPa (not

shown). These results are consistent with De andWu (2019) who

found this relationship to be robust in preindustrial control runs

from CMIP5. For AMIP-Polar, one model has a weak but sta-

tistically significant strengthening of U10 and two models show a

small but statistically significant weakening (Fig. 9). Once again,

statistical significance occurs because of the extremely large en-

semble size and despite the tiny correlations (e.g., 0.04 in CAM5).

Figure 10 shows the regression of February SLP and SAT

onto NDBKS sea ice. Note, that if January–February averages

are used, the results are similar, but slighter weaker in mag-

nitude for both ERA-Interim and coupled models. In ERA-

FIG. 6. As in Fig. 1, but for ND Z500 (m; shading) and SLP (0.25-hPa contour levels) regressed onto ND BKS sea ice.
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Interim, low ND BKS is associated with a SLP pattern that

resembles the negative phase of the NAO, but with high pressure

extending over northern Eurasia, and cold anomalies over most of

Eurasia. These features are also seen in CESM1-CAM5, but with

lesser magnitudes (Fig. 10e). In the coupled model mean, the neg-

ative NAO is even less visible and there is no cooling over northern

Eurasia.However, threeoutof thefivemodels do showa statistically

significant negative NAO associated with reduced NDBKS sea ice,

and the observed magnitude is within the ensemble range for all

models (Fig. 9b). Consistent with the absence of a strato-

spheric connection, we also find little influence of ND BKS

sea ice in the midlatitudes in February, in any of the models

and in neither AMIP or AMIP-Polar. Even CAM5, which in

its coupled configuration shows a negative NAO associated

with low NDBKS ice, shows a weak positive NAO associated

with low ND BKS ice in both AMIP and AMIP-Polar.

The range of regression coefficients across ensemble members is

extremely large (Fig. 9). To better visualize the contribution of in-

ternal variability, we show ensemble members 47 and 45 from the

CAM5AMIP configuration in Fig. 11. In ensemblemember 47, low

ND BKS sea ice is associated with strong anticyclonic circulation

over the Ural mountain region in the same months, constructive

interference between the anomalous and climatological wave-2 in

theupper troposphere, aweakeningof thewinter stratospheric polar

vortex, and a negativeNAO in February. Each step in the proposed

chain of causality looks remarkably like that seen in ERA-Interim,

both in termsof spatial patternandmagnitude. In contrast, ensemble

member 45 shows the opposite—cyclonic circulation over the Ural

region in ND, destructive interference between the anomalous and

climatological wave-1, strengthening of the winter stratospheric

polar vortex and a positive February NAO. Recall, that across all

ensemble members for this model in this configuration, there is no

robust link betweenNDBKS sea ice and thewinter stratosphere, or

between ND BKS sea ice and negative NAO in February. This

means that the entire proposed pathway linking ND BKS to the

stratosphere and then to late winter midlatitude climate can occur

entirely from internal atmospheric variability, but be correlatedwith

ND sea ice by chance, on a 35-yr time scale.

Taken together, Figs. 6–10 show that the coupledmodels capture

the stratospheric pathway linking ND BKS sea ice to late winter

midlatitude climate, though the downward impact at the surface is

substantially weaker than observed. However, the AMIP and

AMIP-Polar simulations show that sea ice does not appear to be

the main driver of these connections. Instead, they likely occur

because of common driver: Ural blocking, which increases plan-

etary wave activity and weakens the stratospheric polar vortex,

but also drives sea ice melt (Peings 2019).

c. Multidecadal trends

Last, we now turn our attention to whether models can

capture the observed trends in winter SLP and SAT over the

1979–2014 period. In ERA-Interim, strong warming trends are

FIG. 7. ND (top) wave-1 and (bottom) wave-2 Z300 (m; shading) regressed onto ND BKS sea ice for (a),(e) ERA-Interim; (b),(f)

CESM-CAM5; (c),(g) CAM5 AMIP; and (d),(h) CAM5 AMIP-Polar. Contours are the climatological wave-1 or wave-2 Z300 zonal

anomalies (25-m contour levels).
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found over the Arctic, with the strongest trends located over

the BKS (Fig. 12a). Trends over the midlatitude continents are

weak, but show cooling over the CEU, associated with a pos-

itive SLP trend (i.e., strengthened Siberian high) over northern

Eurasia. We note that the winter temperatures over the CEU

since 2014 have been anomalously warm, so the cooling trend

over the 1979–2019 period is reduced by ;70% compared to

that for the period 1979–2014 (Fig. 13). There are also trends

toward higher pressure over the North Pacific, but there are no

statistically significant SLP trends over the North Atlantic. In

the ensemble mean of the coupled models, there is strong

warming over the Arctic and weaker warming over the mid-

latitude continents but only very weak trends in SLP. As with

the regression coefficients, there is very large spread across

ensemble members for simulated trends in Ural SLP and CEU

SAT (Fig. 13). The observed trends over 1979–2014 in Ural

SLP and CEU SAT are on edge of the distribution of the

coupled model trends.

There is strong warming over the BKS in the AMIP simu-

lations, in agreement with the reanalysis and coupled models.

Like the coupled models, but unlike reanalysis, there is no

evidence of any cooling over the midlatitudes or SLP trends

over northern Eurasia. A trend toward higher SLP is found

over the North Pacific in AMIP, likely connected to weak

cooling over Western North America; both of which may be

partially driven by tropical Pacific SST variability (Sigmond

and Fyfe 2016). In AMIP-Polar, we find that although the re-

duced sea ice can explain much of the Arctic warming, it has

very little impact on temperature or SLP outside the Arctic, in

broad agreement with earlier results.

4. Discussion

We have investigated the links between Arctic sea ice and

the midlatitude winter climate in large initial-condition en-

sembles, in both coupled and AMIP configurations. We found

that coupled models are able to capture the observed links

between reduced regional winter sea ice, cold winters, and the

large-scale atmospheric circulation patterns they are associ-

ated with. However, AMIP simulations forced with observed

sea ice and SST variability and trends show that these links are

not primarily driven by sea ice. The very weak midlatitude

response was robust across models and found both in response

to sea ice variability and trends, in agreement with previous

large ensemble experiments with different models (McCusker

et al. 2016; Collow et al. 2018; Ogawa et al. 2018; Koenigk et al.

2019). Instead, the connections in the coupled models likely

arise because the anticyclonic circulation that drives reduced

sea ice also drives cold midlatitude winters. This is an agree-

ment with the conclusions of Blackport et al. (2019), but is

shown here with different methods and additional models. In

fact, the inferred response to sea ice loss from Blackport et al.

(2019), based on the sign of the turbulent heat fluxes and lead-

lag regressions, is nearly identical to the response found here in

the AMIP-Polar simulations, providing further independent

support for these conclusions. Even the weak connection

FIG. 8. DJF zonal mean, zonal wind (m s21) regressed onto ND BKS sea ice for (a) ERA-Interim, (b) coupled multimodel mean, (c)

AMIPmultimodel mean, (d) AMIP-Polar multimodel mean, (e) CESM1-CAM5, (f) CAM5AMIP, and (g) CAM5AMIP-Polar. The sign

of the regression is reversed so that the fields shown are associated with a reduction in sea ice.
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between the Eurasian cooling and BKS sea ice found in the

AMIP simulations (Mori et al. 2019) is not found when the SST

forcing was removed in the AMIP-Polar experiments, indi-

cating that this correlation arises due to covarying SST forcing

outside the Arctic, not BKS sea ice.

We found that the role of sea ice in forcing the delayed con-

nection between ND BKS sea ice, the winter stratosphere, and

late wintermidlatitude climate is also likely overestimated in the

simple statistical connections. Coupled models capture the as-

sociations between ND BKS sea ice and the tropospheric cir-

culation, leading to constructive interference with the

background circulation, and a weakened stratospheric polar

vortex. Some of the models also capture a downward impact at

the surface that projects onto the negative NAO, but the ob-

served value was substantially stronger than in any model, and

on the far on end of the ensemble range. One possible expla-

nation for this discrepancy could be that models are unable to

capture this downward impact due to model error. However, we

find that models do capture the observed connection between

winter stratosphere wind strength and surface climate in late

winter (not shown), so it is unlikely to be the primary reason.

Alternatively, it may be due to model error in the troposphere

pathway, or internal variability. The stratospheric pathway was

not found to be a robust response to varying sea ice in theAMIP

experiments, indicating the sea ice forced component is weak.

Instead, we argue that the ND tropospheric circulation, specif-

ically Ural blocking, causes reduced ND sea ice and also

weakens the stratospheric polar vortex, with subsequent down-

ward impacts. This proposed causal chain can explain the lagged

correlation between sea ice and winter climate but does not

require that circulation changes are driven by sea ice. This is

interpretation is in agreement with Peings (2019), but replicated

here using different methods and additional models. We note

that we do not rule out a role for sea ice in driving some of the

link between BKS sea ice and the stratosphere (Kretschmer

et al. 2016); or for that matter, in driving any of the other links

examined here. Instead, we argue that simple statistical mea-

sures will overestimate the influence of sea ice because they

include a contribution from atmospheric variability affecting

sea ice.

The differences between the coupled models and AMIP ex-

periments shown here can help explain some of the discrep-

ancies between studies. Most observational based studies have

concluded much stronger impacts of sea ice on the midlatitudes

FIG. 9. As in Fig. 2, but for (a) DJF U10 averaged from 608 to 808N regressed into ND BKS sea ice (m s21) and

(b) February NAO index regressed onto ND BKS sea ice (no units).
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than those based on model experiments (Cohen et al. 2020).

However, many of these observational studies are based on links

seen in observed variability where the causality is assumed (of-

ten implicitly) to be the sea ice forcing the atmosphere. Our

results indicate that this assumption is likely not valid. Given

that links likely arise because of atmospheric forcing of sea ice,

which is excluded in AMIP experiments, comparisons between

observations and AMIP experiments should not be used to

FIG. 10. As in Fig. 1, but for February SAT (8C shading) and SLP (0.25-hPa contour intervals) regressed onto ND BKS sea ice.

FIG. 11. Regressions ontoNDBKS sea ice for CAM5 ensemblemembers (top) 47 and (bottom) 45 for (a),(f) NDZ500 (m; shading) and

SLP (0.25-hPa contour levels); (b),(g) ND wave-1 Z300 (m; shading) and climatological wave-1 Z300 zonal anomalies (25-m contour

levels); (c),(h) ND wave-2 Z300 (m; shading) and climatological wave-2 Z300 zonal anomalies (25-m contour levels); (d),(i) DJF zonal

mean, zonal wind (m s21); and (e),(j) February SAT(8C; shading) and SLP (0.25-hPa contour levels).
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evaluate whether climate models can simulate the response to

sea ice loss, as also illustrated by Screen and Blackport (2019b).

In all relationships and trends investigated, we found very

large spread across the ensemble members, which shows the

difficulty in robustly quantifying the midlatitude connections

to sea ice from only ;35 years of data. Therefore, caution is

needed when interpreting differences between observations

and small ensembles. The small signal-to-noise ratio empha-

sizes the need for large ensembles to accurately detect forced

responses to observed sea ice and trends. This issue could be

one factor to why somemodeling studies differ on the impact of

the observed sea ice loss on the midlatitudes. Modeling studies

that have found a larger response to observed sea ice tend to

use smaller number of ensembles (Kim et al. 2014; Nakamura

et al. 2015; Liu et al. 2012). In contrast, large ensembles tend to

find very little impact of observed sea ice loss and variability on

the midlatitudes (Screen et al. 2013; Sun et al. 2016; McCusker

et al. 2016; Ogawa et al. 2018; Koenigk et al. 2019), in agree-

ment with the results presented here. A case in point: Kim et al.

(2014) used the difference between two 40-yr ensembles (one

for high and one for low BKS sea ice) from CAM5 and con-

cluded that reduced sea ice drives a weakening of stratospheric

polar vortex, whereas we, in contrast, found little impact of

BKS sea ice on the stratosphere from over 3000 years from the

same model. This difference likely stems from the inadequate

ensemble size in Kim et al. (2014), because we can easily find

35-yr-long ensemble members that show a weakened polar

vortex correlated with low BKS sea ice; although we cannot

rule out the possibility that other differences between experi-

mental setups contribute to the differences between studies.

Regardless of the cause of the discrepancies, our results show

that the stratospheric response to observed sea ice variability is

not robust.

It has been suggested that low-top models may not capture

Arctic-midlatitude links because of the importance of strato-

spheric representation (De andWu 2019). Contrary to this, we

find stronger links betweenArctic sea ice, the stratosphere, and

the midlatitudes in low-top models compared to high-top

models in both coupled and AMIP configurations. Although

we are wary to draw firm conclusions from this limited com-

parison, it at least suggests, that while the stratospheric rep-

resentation may be important for some Arctic-midlatitude

links (Sun et al. 2015), it is likely more complex than simply

vertical resolution and/or the height of the model top.

We interpret the absence of significant regressions (and

trends) in the AMIP experiments, or their weaker magnitudes

in uncoupled simulations compared to coupled simulations

and/or observations, as being evidence that the relationships

arise, partly or fully, because of atmospheric forcing of sea ice.

We arrive at the conclusion based on physical reasoning, lead-

lag analysis and the lack of trends in the coupled models. In

particular, the lead-lag analysis highlights that the differences

between the coupled and AMIP occur when the circulation

leads the sea ice by 1–2 months and not when the circulation

lags sea ice (Fig. 5; also see Blackport et al. 2019; Screen and

Blackport 2019b). This is inconsistent with the differences

FIG. 12. As in Fig. 1, but for DJF SAT (8Cdecade21; shading) and SLP (0.5 hPa decade21 contour interval) trends.
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arising because of a stronger response to sea ice variability in

the coupled model. However, it is still possible that other

factors play a lesser role. For example, there could be a

stronger response to sea ice loss in coupled models due to

(i) coupled feedbacks (Deser et al. 2015, 2016), (ii) different

background states (Smith et al. 2017) or (iii) absence of sea ice

thickness changes in AMIP simulations. Multiple lines of evi-

dence suggest these are unlikely to be primary reasons for the

discrepancy because, in turn, (i) there is no evidence for a

stronger midlatitude cooling response to sea ice loss in coupled

model sea ice loss in coupled models compared to uncoupled

models (e.g., Deser et al. 2016; Blackport and Kushner 2017;

Sun et al. 2018; Blackport and Screen 2019; Screen and

Blackport 2019b; Ringgaard et al. 2020) (ii) we find no con-

sistent differences in background circulation states between

the coupled andAMIP simulations (not shown) and (iii) sea ice

thickness reduction is likely a secondary effect compared to the

changes in SIC (Labe et al. 2018).

Although we find little impact of sea ice loss overall, there could

be certain years or background stateswhen the response is stronger,

which could be important for seasonal prediction. For example, it

has been shown that the response is stronger under a background

easterly phase of the Quasi-biennial Oscillation than the westerly

phase (Labe et al. 2019) or the negative phase of the Pacific decadal

oscillation compared to the positive phase (Screen and Francis

2016). It has been suggested that the causal effects of Arctic sea ice

loss in the midlatitudes may be intermittent or at least that the

observed relationship are nonstationary (Kolstad and Screen 2019;

Siew et al. 2020). It remains unclear to what extent nonstationarity

arises because of intermittent causality or large internal variability

superimposed on a small causal effect.

Another caveat is that we have only investigated the re-

sponse to observed sea ice variability and trends. It is possible

that projected future sea ice loss will result in stronger re-

sponses (Deser et al. 2010; Sun et al. 2015; Screen et al. 2018;

Zhang et al. 2018), although it is important to keep inmind that

future projections also include strong warming outside the

Arctic, which may counteract the response to solely sea ice loss

(McCusker et al. 2017; Oudar et al. 2017; Sun et al. 2018; Dai

and Song 2020), meaning that the response to sea ice loss may

remain difficult to detect.

5. Conclusions

In summary, we find that coupled models are able to capture

observed interannual links between sea ice and midlatitude

FIG. 13. As in Fig. 2, but for DJF Ural SLP (hPa decade21) and DJF CEU SAT (8Cdecade21) trends.
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winter climate. Themagnitude of the links tend to beweaker in the

multimodel mean than in observations, but for most models and

links, the observed magnitude is within the large ensemble spread.

Examining the same relationships in AMIP simulations suggests

that statistical analysis (i.e., linear regression/correlation) overesti-

mate the strength of the causal response to sea ice variability. This is

because correlation/regression do not separate the sea ice impacts

on the midlatitudes from the effects of the midlatitude circulation

variability on sea ice. We find that the midlatitude winter climate

response to observed sea ice variability and trends is very small

compared to internal variability, in agreement with previous work

using sufficiently large ensembles. Our work highlights the extreme

caution needed when making causal interpretations of observed

links between theArctic andmidlatitudes, because of large internal

variability and strong influences of midlatitude atmospheric vari-

ability on Arctic sea ice.
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