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Abstract 9 

Floating solar photovoltaics, or floatovoltaics (FPV), are a relatively new form of renewable energy, 10 

currently experiencing rapid growth in deployment. FPV decarbonises the energy supply while 11 

reducing land-use pressures, offers higher electricity generating efficiencies compared to ground-12 

based systems and reduces water body evaporation. However, the effects on lake temperature and 13 

stratification of FPV both sheltering the water’s surface from the wind and limiting the solar 14 

radiation reaching the water column are unresolved, despite temperature and stratification being 15 

key drivers of the ecosystem response to FPV deployment. These unresolved impacts present a 16 

barrier to further deployment, with water body managers concerned of any deleterious effects. To 17 

overcome this knowledge gap, here the effects of FPV-induced changes in wind speed and solar 18 

radiation on lake thermal structure were modelled utilising the one-dimensional process-based 19 

MyLake model. To resolve the effect of FPV arrays of different sizes and designs, observed wind 20 

speed and solar radiation were scaled using a factorial approach from 0 % to 100 % in 1 % intervals. 21 

The simulations returned a highly non-linear response, dependent on system design and coverage. 22 

The responses could be either positive or negative, and were often highly variable, although, most 23 

commonly, water temperatures reduce, stratification shortens and mixed depths shallow. 24 

Modifications to the thermal dynamics of the water body may subsequently drastically alter 25 

biogeochemical processes, with fundamental implications for ecosystem service provision and water 26 

treatment costs. The extreme nature of response for particular wind speed and solar radiation 27 

combinations results in impacts that could be comparable to, or more significant than, climate 28 

change. As such, depending on how they are used, FPV have the potential to mitigate some of the 29 

impacts of climate change on water bodies and could be a useful tool for water body managers in 30 

dealing with changes to water quality, or, conversely, they could induce deleterious impacts on 31 
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standing water ecosystems. These simulations provide a starting point to inform the design of future 32 

systems that maximise ecosystem service and environmental co-benefits from this growing water 33 

body change of use.  34 
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1 Introduction 40 

Increased energy demands and the urgent need to decarbonise are prompting the rapid deployment 41 

of renewable energy technologies. One such technology, solar photovoltaics (PV), has experienced 42 

exponential growth over the past 25 years (IEA, 2019) and accounted for 57 % of newly installed 43 

renewable energy capacity in 2019 (REN21, 2020). While solar PV has traditionally been ground- or 44 

rooftop-mounted, water-deployed, floating solar photovoltaics (FPV), known colloquially as 45 

floatovoltaics, have emerged in recent years. Global cumulative FPV capacity more than trebled 46 

among the top 70 FPV systems from 2018 to 2019 (Solar Asset Management, 2018; Solarplaza, 2019; 47 

World Bank Group et al., 2019), with a forecasted annual average growth rate of 22 % (Cox, 2019). 48 

Conservative estimates suggest that FPV has a global potential of 400 GW-peak (World Bank Group 49 

et al., 2018), demonstrating the likely widespread uptake of this renewable energy technology. 50 

Although this could be severely hampered by a lack of understanding about the impacts of the 51 

technology on the hosting environment (Gorjian et al., 2021; Lee et al., 2020; Stiubiener et al., 2020; 52 

Zhang et al., 2020; Ziar et al., 2020). 53 

FPV systems are typically comprised of five main components: a pontoon of floaters, a mooring 54 

system, PV modules, cabling, and connectors (Sahu et al., 2016). The specific design of a system can 55 

be adapted to suit water body function and application through variations to floater material 56 

(Oliveira-Pinto and Stokkermans, 2020), PV module type (Tina et al., 2021; Ziar et al., 2020), 57 

orientation (Campana et al., 2019), and surface coverage (Cagle et al., 2020). However, each 58 

combination of components will have a unique impact on the atmospheric drivers of lake dynamics, 59 

potentially resulting in a large variation in lake function impacts between systems. 60 

A growing body of evidence suggests that FPV has several advantages over conventionally deployed 61 

PV. Firstly, FPV averts the need for large areas of land-use change by occupying the surface of water 62 

bodies (Cagle et al., 2020; Holm, 2017). This is of particular benefit to land-scarce countries and 63 

regions with high land prices (Abid et al., 2019; Campana et al., 2019). Secondly, FPV has been 64 

shown to deliver enhanced performance over ground-based PV due to the cooling effect of the 65 

hosting water body (Choi et al., 2013; Oliveira-Pinto and Stokkermans, 2020; Sacramento et al., 66 

2015; Yadav et al., 2016). The cooling yield has been found to vary across climates, with heat loss 67 

dependent on wind speed and the openness of the floating structure (Dörenkämper et al., 2021). 68 

Thirdly, and also dependent on system design, FPV has also been shown to reduce evaporative 69 

losses substantially (Choi, 2014; Sahu et al., 2016; Santafe et al., 2014; Taboada et al., 2017), 70 

potentially providing vital water savings for drought-stricken areas. Furthermore, studies have 71 

shown that hydroelectric dams operating in conjunction with FPV can optimise energy efficiency and 72 

https://eur02.safelinks.protection.outlook.com/ap/w-59584e83/?url=https%3A%2F%2Flivelancsac-my.sharepoint.com%2Fpersonal%2Fexleyg_lancaster_ac_uk%2FDocuments%2FWriting%2FPaper%25201%2FSolar%2520Energy%2520Submission%2FManuscript_SE_Exley_et_al_revised.docx%23_ENREF_21&data=04%7C01%7Cg.exley%40lancaster.ac.uk%7C416ded2d945841619a3308d8c4482e86%7C9c9bcd11977a4e9ca9a0bc734090164a%7C0%7C0%7C637475161665557186%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=egB2ZKb8Iiu4pnyt9yS9uJN9CBUWf%2FPyOgU%2F15GEIkc%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/ap/w-59584e83/?url=https%3A%2F%2Flivelancsac-my.sharepoint.com%2Fpersonal%2Fexleyg_lancaster_ac_uk%2FDocuments%2FWriting%2FPaper%25201%2FSolar%2520Energy%2520Submission%2FManuscript_SE_Exley_et_al_revised.docx%23_ENREF_18&data=04%7C01%7Cg.exley%40lancaster.ac.uk%7C416ded2d945841619a3308d8c4482e86%7C9c9bcd11977a4e9ca9a0bc734090164a%7C0%7C0%7C637475161665567177%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=PTWmiGyqhNAB6XQlijl5BBPMltxR1Y4W7NS2J6Itw4E%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/ap/w-59584e83/?url=https%3A%2F%2Flivelancsac-my.sharepoint.com%2Fpersonal%2Fexleyg_lancaster_ac_uk%2FDocuments%2FWriting%2FPaper%25201%2FSolar%2520Energy%2520Submission%2FManuscript_SE_Exley_et_al_revised.docx%23_ENREF_26&data=04%7C01%7Cg.exley%40lancaster.ac.uk%7C416ded2d945841619a3308d8c4482e86%7C9c9bcd11977a4e9ca9a0bc734090164a%7C0%7C0%7C637475161665577175%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=ybm%2FDxBDq3iDuu8w06b5HvDmYVtnyfMWrO5%2Bkm18vcQ%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/ap/w-59584e83/?url=https%3A%2F%2Flivelancsac-my.sharepoint.com%2Fpersonal%2Fexleyg_lancaster_ac_uk%2FDocuments%2FWriting%2FPaper%25201%2FSolar%2520Energy%2520Submission%2FManuscript_SE_Exley_et_al_revised.docx%23_ENREF_29&data=04%7C01%7Cg.exley%40lancaster.ac.uk%7C416ded2d945841619a3308d8c4482e86%7C9c9bcd11977a4e9ca9a0bc734090164a%7C0%7C0%7C637475161665587168%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=mtJw4G9Kw8u01rP%2BUEeW4yKPp5c1uvTH4R6lFpGcHic%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/ap/w-59584e83/?url=https%3A%2F%2Flivelancsac-my.sharepoint.com%2Fpersonal%2Fexleyg_lancaster_ac_uk%2FDocuments%2FWriting%2FPaper%25201%2FSolar%2520Energy%2520Submission%2FManuscript_SE_Exley_et_al_revised.docx%23_ENREF_3&data=04%7C01%7Cg.exley%40lancaster.ac.uk%7C416ded2d945841619a3308d8c4482e86%7C9c9bcd11977a4e9ca9a0bc734090164a%7C0%7C0%7C637475161665587168%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=ZHYw2xb35mkKFF1ttqQbwzR%2Bihz6kEix2qtAzlvLgVw%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/ap/w-59584e83/?url=https%3A%2F%2Flivelancsac-my.sharepoint.com%2Fpersonal%2Fexleyg_lancaster_ac_uk%2FDocuments%2FWriting%2FPaper%25201%2FSolar%2520Energy%2520Submission%2FManuscript_SE_Exley_et_al_revised.docx%23_ENREF_2&data=04%7C01%7Cg.exley%40lancaster.ac.uk%7C416ded2d945841619a3308d8c4482e86%7C9c9bcd11977a4e9ca9a0bc734090164a%7C0%7C0%7C637475161665597166%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=wL7a8BAHAmuv2Njs%2Fk432Ai2tdfh%2BdvVkvLpIABJYSs%3D&reserved=0
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improve system reliability (Stiubiener et al., 2020; Zhou et al., 2020). Integrated hydroelectric-FPV 73 

systems may also lessen the environmental and social impacts of stand-alone hydroelectric 74 

operation (Sulaeman et al., 2021) providing synergistic benefits to the water-food-energy nexus 75 

(Zhou et al., 2020).  76 

Nonetheless, the biological, chemical and physical impacts of FPV on water bodies remain virtually 77 

unknown (Ziar et al., 2020), despite the global importance of water bodies for supplying numerous 78 

ecosystem goods and services (Grizzetti et al., 2019; Maltby et al., 2011; Reynaud and Lanzanova, 79 

2017). Given the forecasted growth in FPV deployment, it is critical that we increase our 80 

understanding of its impact on water bodies. A fundamental starting point to this understanding is 81 

recognising the impacts of FPV on the thermal structure of a water body, as this thermal structure 82 

will be directly affected by FPV and it has a pervasive influence on most other aspects of the 83 

ecosystem (e.g. Diehl et al., 2002; Huisman et al., 2004; Jäger et al., 2008; Macintyre, 1993). 84 

A small number of previous studies have considered the effects of natural or artificial floating 85 

elements on lakes (e.g. Maestre-Valero et al., 2013; Ozkundakci et al., 2016). However, their focus 86 

has typically been on specific surface coverage ratios (e.g. Aminzadeh et al., 2018) or particular 87 

ecological effects such as phytoplankton and zooplankton assemblages (e.g. Cazzanelli et al., 2008; 88 

Pinto et al., 2007). Present understanding relating specifically to the ecological impacts of FPV on 89 

lake functioning is limited, with studies typically focussed on technological advancements and 90 

system implementation (e.g. Liu et al., 2017). Of the limited number of studies with an ecological 91 

focus, topics include; the viability of FPV on fish ponds (Chateau et al., 2019); the effect of novel FPV 92 

designs on water quality indicators at an FPV pilot site (Ziar et al., 2020) and the potential impact of 93 

sunlight reduction on biological processes, such as algal blooms (Haas et al., 2020) and 94 

microorganism proliferation in drinking water reservoirs (Mathijssen et al., 2020). Up to now, the 95 

impacts of FPV on water body thermal structure remains unexamined. 96 

FPV will both reduce the amount of solar radiation reaching the water and shelter the water from 97 

the effects of wind mixing (Armstrong et al., 2020), modifying water body temperature and 98 

stratification. Wind speed and solar radiation typically have opposite effects on water body thermal 99 

structure. Decreases in wind will tend to increase stratification and surface warming, while 100 

reductions in solar radiation will enhance mixing and cooling of surface water (Kalff, 2002). At 101 

present, it remains unclear whether FPV-induced changes in wind speed or solar radiation will 102 

dominate, as well as the extent of any resulting changes to lake thermal structure. The critical role of 103 

temperature and stratification in determining lake biochemical and ecological processes (Elci, 2008; 104 

Kraemer et al., 2017) means that without this knowledge, deployment of FPV risks inadvertently 105 
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altering the provisioning of ecosystem goods and services. This could derail future investment in 106 

FPV. Modifications to the processes, function and service delivery of water bodies with an FPV 107 

installation must be carefully managed to ensure the pathway to decarbonisation continues with 108 

minimal concomitant environmental impacts.  109 

Here we address this knowledge gap by applying simulations from a one-dimensional, process-based 110 

model and data from a test lake in North West England. We simulate water temperature, mixed 111 

depth and stratification timing to (1) determine the sensitivity of a lake’s thermal structure to FPV 112 

deployed at varying scale. We then (2) consider the potential ecosystem consequences and 113 

implications for lake management in a changing climate. 114 

2 Methods 115 

2.1 Site description 116 

The impacts of FPV on lake thermal structure were modelled for the south basin of Windermere, a 117 

typical monomictic, mesotrophic, deep and temperate lake in the Lake District, North West England. 118 

The south basin of Windermere is long and narrow in shape – with a maximum depth of 42 m, a 119 

mean depth of 16.8 m and a surface area of approximately 6.7 km2. As one of the most 120 

comprehensively studied lake systems in the world (Rooney and Jones, 2010), the wealth of 121 

understanding and availability of high-resolution meteorological and in-lake water temperature data 122 

make Windermere an excellent test system for this study (Maberly and Elliott, 2012). 123 

2.2 Modelling methodology 124 

 MyLake 125 

To resolve the effects of FPV on lake physical properties, we simulated lake variables by adapting an 126 

existing MATLAB model. MyLake v1.2 (Saloranta and Andersen, 2007) is a one-dimensional process-127 

based model, used to simulate the daily vertical distributions of water body temperature, 128 

evaporation and instances of ice cover accurately. MyLake partitions horizontal layer volumes by 129 

exploiting interpolated lake bathymetric data, making it similar to other one-dimensional lake 130 

models. The lake water simulation part of the model is based on Ford and Stefan (1980), Riley and 131 

Stefan (1988) and Hondzo and Stefan (1993), while the ice simulation component is based on 132 

Leppäranta (1993) and Saloranta (2000). In brief, the model initially computes the temperature 133 

distribution of the lake for the 24-hour time-step, taking into account diffusive mixing processes and 134 

local heat fluxes. A sequential process then accounts for convective mixing, wind-induced mixing, 135 

the water-ice heat flux and the effect of river inflow (Saloranta and Andersen, 2007). The model has 136 

been successfully applied to various projects as a standalone simulation tool assessing lake 137 
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thermodynamics and ice regime (e.g. Livingstone and Adrian, 2009; Woolway, R. Iestyn et al., 2017). 138 

Predominantly, model parameters were kept as per the user manual (Saloranta and Andersen, 139 

2004), with minor adjustments made during calibration (see Section 2.4). 140 

 Input data 141 

Meteorological data, logged at 4-minute intervals using a Campbell Scientific CR10X data logger, 142 

were obtained from an Automatic Water Quality Monitoring Station (AWQMS) located at the 143 

deepest point of Windermere south basin for 2009. Specifically, air temperature (Skye Instruments 144 

SKH2012) was measured with a relative accuracy of ±0.35 °C; relative humidity (HOBO U23-001) with 145 

an accuracy of ±3 %; incoming short-wave radiation (Kipp & Zonen CMP6) with a relative accuracy of 146 

5 %, and wind speed (Vector Instruments A100L2) was measured with an accuracy of 1 % for wind 147 

speeds >10.3 m s−1 and an accuracy of up to 0.1 m s−1 for wind speeds <10.3 m s−1. Water 148 

temperature profiles were obtained from 12 stainless-steel sheathed platinum resistance 149 

thermometers (Labfacility PT100), accurate to within 0.1 °C at the following depths; 1, 2, 4, 7, 10, 13, 150 

16, 19, 22, 25, 30 and 35 m. Data were averaged to daily time steps. Estimates for cloud cover (0-1) 151 

were obtained from the R package insol (Corripio, 2019), using incoming short-wave radiation data 152 

from the AWQMS. As MyLake requires air temperature and relative humidity at 2 m, and wind speed 153 

at 10 m, corrections for measurement height were applied using a modified version of Lake Heat 154 

Flux Analyser (Woolway et al., 2015b). An iteration scheme with a smoothing function capable of 155 

assessing bulk fluxes at individual time steps allowed the appropriate scheme to be applied for 156 

accurate bulk flux simulation. 157 

Daily discharge data from Windermere (River Leven) were used as a proxy for inflow (National River 158 

Flow Archive, 2018), following the assumption that inflow was approximately matched by outflow, 159 

with negligible change in lake level. Lake morphometry (Ramsbottom, 1976) was interpolated to 160 

one-metre intervals. The light attenuation coefficient (Kd, m-1) for Windermere south basin was 161 

obtained from Woolway et al. (2015a). 162 

 Thermal structure simulations 163 

The effect on wind speed and solar radiation (forcing variables) for a given percentage coverage of 164 

FPV is unknown and likely to vary substantially depending on the design of the floatovoltaic 165 

deployment. While reductions to both forcing variables are likely, the relative proportions of these 166 

reductions remain to be determined. Here, the forcing variables were altered using a factorial 167 

design, simulating reductions at 1 % intervals from 0 % to 100 %. A factorial design allowed the 168 

identification of non-linear changes and thresholds in the output variables; this was of particular 169 

importance given the range of FPV designs and surface coverages that exist between different 170 
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systems. Considering reductions to the forcing variables as a whole lake average, not just in the 171 

footprint of the array, maximises transferability between systems with different FPV designs. 172 

2.3 Data Analysis 173 

Mixed layer depth and Schmidt stability were subsequently estimated from modelled water 174 

temperatures using Lake Analyzer (Read et al., 2011), a freely available physical limnological tool 175 

(e.g. Kraemer et al., 2015; Read et al., 2012). Mixed layer depth was estimated using the 176 

metalimnion extent function, an algorithm that defines the approximate depth of the base of the 177 

mixed layer using a density gradient threshold of 0.1 kg m-3 m-1. Mean mixed layer depth for the 178 

stratified period of each scenario, along with annual mean mixed layer depth were calculated. 179 

The onset of thermal stratification was defined from the depth-resolved temperature simulations as 180 

the time when the temperature differential between the surface (0 m) and the bottom (42 m) of the 181 

lake exceeded 1 °C (Fee et al., 1996). Alterations to stratification duration were assessed by 182 

calculating the longest stratified period, defined here as the greatest number of consecutive days of 183 

stratification across the simulated period. This was then compared to the stratified period of the 184 

water body without FPV (unmodified system), permitting the calculation of a gain or loss in stratified 185 

days. Stratification onset and overturn days were derived from these data, with onset being the first 186 

day and overturn being the final day of the longest stratified period. 187 

Three simulation scenarios were considered in further detail. The first being an equal (1:1) reduction 188 

to each forcing variable. Given the relative proportions of reductions to forcing variables remain 189 

unknown and are likely to vary substantially depending on FPV design (see Section 2.2.3), two 190 

scenarios with scaled forcing variables were simulated. A ‘wind dominant’ scenario where the wind 191 

speed reduction scales as 80 % of the solar radiation reduction and a ‘solar dominant’ scenario 192 

where the reduction to solar radiation scales as 80 % of the wind speed reduction. 193 

2.4 Model Calibration 194 

The model was calibrated for a one-year period against observed water body temperatures. 195 

Standard calibration procedures were undertaken following Moriasi et al. (2007). Briefly, calibration 196 

of the scaling of forcing variables was guided by Monte Carlo sampling of uniform parameter 197 

distributions. The Nash-Sutcliffe model efficiency coefficient (NSE) (Nash and Sutcliffe, 1970) and the 198 

Root Mean Square Error (RMSE) for metalimnion top, Schmidt stability and volume average 199 

temperature (see supplementary information) were used to identify the best simulation. Slight 200 

modifications to scale the original driving data were required to achieve the optimum parameter 201 

values for the calibration year; these were +2 % for wind speed and +13 % for solar radiation. These 202 

modifications are within the instrumentation error range and help reflect the variation likely 203 
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experienced in forcing variables across the whole of the water body. Thus, driving the model using 204 

2009 measured meteorological data with a wind speed multiplier of 1.02 and a solar radiation 205 

multiplier of 1.13 provided the optimum fit against the observed in-lake temperature data and this 206 

then constituted the baseline model simulation. 207 

3 Results 208 

After calibration, simulated water temperatures, volume averaged temperatures, mixed layer depth 209 

and Schmidt stability compared favourably to the observed data (Figure S1). Model efficiency 210 

computed with NSE ranged from 0.93 to 0.97, an encouraging indication of the ability of the model 211 

to reproduce the system response (see supplementary information for full calibration details, Table 212 

S1). 213 

3.1 Response of water body temperature to FPV 214 

Modelled reductions to the forcing variables generally reduced annual mean surface water 215 

temperatures (Figure 1a). Surface water temperature reductions were non-linear, with small 216 

reductions to the forcing variables having a negligible effect and larger reductions having an 217 

increasingly greater effect (Table S2). Increases in surface water temperatures occurred only in 218 

scenarios when wind speed was reduced considerably more than solar radiation. Similarly, annual 219 

mean bottom temperatures generally decreased, albeit less than surface temperatures (Figure 1b). 220 

As could be expected, given the reductions in surface and bottom water temperatures, mean annual 221 

volume average temperature was reduced for all scenarios (Figure S2). 222 

 223 

Figure 1 - Differences in mean surface and bottom water temperatures. Results are shown for mean annual (a) surface 224 

water temperature and (b) bottom water temperature. Water temperatures for the unmodified system were (a) 11.2 °C and 225 

(b) 7.0 °C. The solid black line represents an equal wind speed and solar radiation reduction approximating floating solar 226 

coverage (1:1). A wind dominant scenario (solar radiation reduced more than wind speed) is shown with a dashed line. The 227 

dot-dash line represents a solar dominant scenario (wind speed reduced more than solar radiation). 228 
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In 2009 there was no ice-cover on the lake and, indeed, ice cover on Windermere is very rare. 229 

Nevertheless, simulations with more than a 90 % reduction to the forcing variables resulted in 230 

sufficiently cold surface water temperatures for ice to form (Figure S3). Ice cover duration increased 231 

as the forcing variables were further reduced above 90 %. For example, a 90 % 1:1 reduction 232 

resulted in 22 days of ice cover, while a 98 % reduction resulted in 43 days of ice cover. 233 

Each reduction to the forcing variables decreased total annual evaporation in comparison to the 234 

baseline (Figure 2). At a 74 % 1:1 forcing variable reduction, a threshold was crossed where dew 235 

formed on the lake surface, providing an annual net gain in water. Wind dominant scenarios (solar 236 

reduced by more than wind) saw greater reductions in evaporation than in solar dominant scenarios 237 

(Table S2). 238 

 239 

Figure 2 - Annual evaporation and change in evaporation. Results are shown for (a) total annual evaporation. A negative 240 

value indicates a net loss of water from the lake, while a positive value indicates a net gain in water. (b) The percentage 241 

change in evaporation in comparison to the baseline (375.2 mm year-1). The solid black line represents an equal wind speed 242 

and solar radiation reduction approximating floating solar coverage (1:1). A wind dominant scenario (solar radiation 243 

reduced more than wind speed) is shown with a dashed line. The dot-dash line represents a solar dominant scenario (wind 244 

speed reduced more than solar radiation). 245 

3.2 Response of stratification duration and strength to FPV 246 

 Stratification duration 247 

When reductions to the forcing variables were 1:1 and did not exceed 45 %, stratification duration 248 

was similar (± three days) to that of Windermere without FPV (Figure 3). Reductions in excess of this 249 

threshold decreased stratification duration by ~39 days for every additional 10 % reduction to the 250 

forcing variables (Table S3a). However, when the reductions to the forcing variables were not 1:1, 251 

stratification duration was modified even with small reductions. A solar dominant scenario, for 252 

example, increased stratification duration for all scenarios up to a 52 % solar reduction, ranging from 253 

3 to 13 days increase. The opposite was true when wind dominated, with stratification duration 254 
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decreasing for all scenarios by a minimum of 29 days, up to a maximum of 214 days. Solar radiation 255 

reductions tended to dominate over wind speed reductions in determining stratification duration. 256 

 257 

Figure 3 - Stratification duration for each scenario. The unmodified system was stratified for 214 days. The solid black line 258 

represents an equal wind speed and solar radiation reduction approximating floating solar coverage (1:1). A wind dominant 259 

scenario (solar radiation reduced more than wind speed) is shown with a dashed line. The dot-dash line represents a solar 260 

dominant scenario (wind speed reduced more than solar radiation). 261 

 Stratification Onset & Overturn 262 

FPV deployment shifted the stratified period to later in the year, with delayed onset and overturn 263 

(Table S3a, b). Wind dominant scenarios typically delayed stratification, where wind speeds 264 

remained proportionally higher than solar radiation (dashed-line Figure 4a). However, in scenarios 265 

where the wind speed was reduced by at least 30 %, but solar radiation remained little changed, 266 

onset occurred earlier in the year. Overturn was delayed by up to 10 days as a consequence of 267 

reduced wind speed when 1:1 forcing variable reductions were less than 72 %. Above 72 %, the 268 

dominant forcing variable switched, with reduced solar radiation advancing overturn timing 269 

(Figure 4b). 270 
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 271 

Figure 4 - Stratification onset and overturn. Change in day of year shown for (a) onset and (b) overturn of thermal 272 

stratification with modified wind speed and solar radiation. A negative value indicates an earlier day of the year 273 

(advancement), while a positive value indicates a later day of the year (postponement). Stratification onset and overturn 274 

occurred at day 102 and 315 respectively. The solid black line represents an equal wind speed and solar radiation reduction 275 

approximating floating solar coverage (1:1). A wind dominant scenario (solar radiation reduced more than wind speed) is 276 

shown with a dashed line. The dot-dash line represents a solar dominant scenario (wind speed reduced more than solar 277 

radiation). 278 

 Stability 279 

Forcing variable reductions of up to 13 % modified Schmidt stability by a relatively modest ±10 J m-2, 280 

within 3 % of the unmodified system. Scenarios where FPV reduced forcing variables by more than 281 

13 % reduced Schmidt stability substantially (Figure S4). The stability of the water body only 282 

increased in instances when wind speed was reduced considerably, with solar radiation reduced by 283 

no more than 20 %. A 10 % solar radiation reduction and a 50 % wind speed reduction, for example, 284 

increased mean annual Schmidt stability by 59 J m-2. When each forcing variable was reduced by 285 

50 %, Schmidt stability was reduced by 126 J m-2. Solar radiation changes were generally the 286 

dominant factor determining Schmidt stability, seen by the vertical bands in Figure S4; changing the 287 

wind speed had less influence, especially at higher reductions of solar radiation. 288 

3.3 Mixed Depth 289 

Annual mean mixed depth shallowed with 1:1 forcing variable reductions of up to 60 % (1:1) 290 

(Table S4a), indicated by the negative mixed depth difference. Reductions greater than 60 % (1:1) 291 

deepened the annual mean mixed depth, with the water body remaining mixed all year when 292 

reductions exceeded 94 % (1:1) (Figure 5a, b). Mixed depth was shallowed by 0.58 m for every 10 % 293 

reduction to the forcing variables up to 40 % (1:1).   294 

These changes in annual mixed depth were, in part, caused by the changes in stratification duration. 295 

Excluding this effect by focussing only on the stratified period, each scenario demonstrated a 296 

(a) (b) 
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shallowing of mean summertime mixed depth for all 1:1 reductions (Figure 5c, d). Reductions in 297 

excess of 81 % were highly non-linear (1:1), while smaller reductions were relatively proportional to 298 

the forcing variable reduction. The effect of FPV on mixed depth was considerable, with 85 % of all 299 

scenarios shallowing for the stratified period (Table S4b). Net summertime deepening occurred for 300 

the remaining scenarios, typically when very large changes to solar radiation were coupled with only 301 

small changes to wind speed.  Mixed depth was at least halved for 29 % of all scenarios. 302 

 303 

Figure 5 - Annual and stratified period mixed depths for each scenario. Results shown for (a) annual mean mixed depth, (b) 304 

difference from the baseline for annual mean mixed depth, (c) mean mixed depth for the stratified period and (d) the 305 

difference in mean mixed depth for the stratified period of each scenario with modified wind speed and solar radiation. A 306 

negative value on (b) or (d) indicates mixed depth has shallowed, i.e. has moved closer to the surface of the water body. A 307 

positive value on (b) or (d) indicates a deepening of mixed depth, i.e. mixed depth has shifted towards the bottom of the 308 

water body. Annual and stratified period mean mixed layer depth were 24.7 m and 12.4 m, respectively. The solid black line 309 

represents an equal wind speed and solar radiation reduction approximating floating solar coverage (1:1). A wind dominant 310 

scenario (solar radiation reduced more than wind speed) is shown with a dashed line. The dot-dash line represents a solar 311 

dominant scenario (wind speed reduced more than solar radiation). 312 

There were strong seasonal dynamics in mixed depth, with progressive deepening throughout the 313 

summer months for scenarios where forcing variables were reduced by up to 75 % (1:1) (Table S5; 314 
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Figure 6). Daily mixed depths, for scenarios with forcing variable reductions of 5, 10, 25, 50 and 75 % 315 

(1:1) were initially closely aligned to the mixed layer depth of the unmodified system (Figure 6). At 316 

day 175 (24/06/09) the mixed depth of each scenario diverged from the unmodified system before 317 

converging again at day 325 (21/11/09). During the diverged period, scenarios with forcing variable 318 

reductions of 10 % or greater differed substantially from the unmodified system, with mean mixed 319 

depths differing by more than 2 m. Although the trend remained consistent, the magnitude did vary. 320 

The difference in mixed depth peaked at 15.4 m for the 75 % scenario on day 305 (01/11/09). A 321 

100 % (1:1) reduction to the forcing variables kept the water body fully mixed throughout the 322 

entire year. 323 

 324 

Figure 6 - Daily mixed depth. The scenarios shown have equal wind speed and solar radiation reductions approximating 325 

floating solar coverage (1:1). 326 

4 Discussion 327 

Lake thermal structure is dependent on a range of factors, including weather conditions, lake 328 

morphology and geographical location (Kalff, 2002). Although FPV deployments will alter net wind 329 

speed and solar radiation at the lake surface, the simulations here did not assume a specific extent 330 

of coverage or system design. Instead, we considered the effects of varying the scale of the forcing 331 

variables. For this discussion, we use only the assumption that surface coverage is negatively 332 

correlated with the forcing variables, i.e. that higher surface coverages cause a greater reduction in 333 

wind speed and solar radiation. 334 

Thermal responses to differing reductions in wind speed and solar radiation varied enormously, from 335 

the negligible to the very large. Proportionate increases in alteration of driving forces resulted in 336 

highly non-linear responses. Both positive and negative responses were possible, depending on the 337 
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changes to the driving variables, reflecting the opposite effects that wind speed and solar radiation 338 

typically have on lake thermal structure. The responses most commonly seen, though, were for 339 

temperatures to reduce, stratification to shorten, but mixed depths to become shallower. In the 340 

small number of instances when water temperature increased or stratification duration lengthened, 341 

an FPV system would need to cause substantial wind speed reductions and minimal solar radiation 342 

reductions. Conversely, the rare instance of mixed depth deepening (when considered during the 343 

stratified period only) occurred when substantial solar radiation reductions were coupled with 344 

minimal wind speed reductions. 345 

4.1 The sensitivity of lake thermal structure to FPV 346 

 Cooling effect on water temperature  347 

Water temperature changes were minor for small coverages of FPV, while more extensive FPV 348 

coverages drove major decreases (Figure 1). As many metabolic processes are highly temperature-349 

dependent, the deployment of FPV at large coverages has the potential to change the functioning of 350 

lentic ecosystems by modifying animal behaviour, food web dynamics, life histories, species 351 

interactions and carbon cycling (Kraemer et al., 2017; Tranvik et al., 2009). Reduced water 352 

temperatures may also present operational challenges, particularly to networks comprised of cast 353 

iron distribution mains. During the colder winter months, increased tensile stresses from reduced 354 

water temperatures may lead to pipe fractures and an increased incidence of pipe 355 

bursts (Jesson et al., 2010).  356 

Cooler water temperatures and greatly reduced wind speeds permitted the formation of ice at high 357 

surface coverages (Figure S3), shifting the lake from a monomictic to a dimictic stratification regime. 358 

This considerable temporal shift in ice cover regime may have implications for cyanobacterial 359 

community composition (Ozkundakci et al., 2016) and fish behaviour (Jurvelius and Marjomki, 2008) 360 

while enhancing cultural ecosystem service provisioning (Knoll et al., 2019). In water bodies where 361 

FPV deployment could induce ice-cover, consideration would need to be given in the FPV design to 362 

mitigate the possibilities of compression forces and the restriction of array movement due to 363 

ice cover. 364 

 Changes to stratification length 365 

Typically, the interception of incoming solar radiation by FPV extended the period of water column 366 

heating required in the spring before a density gradient established, postponing thermal 367 

stratification onset (Figure 4). Delayed epilimnion formation has been shown to shift the timing of 368 

spring phytoplankton blooms to later in the year (Meis et al., 2009), a phenological 369 
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desynchronization which could lead to trophic mismatch, affecting the wider food web hierarchy 370 

(Thackeray et al., 2013; Visser and Both, 2005).  371 

At low to moderate FPV coverages, stratification duration increased a little, and more so when wind 372 

reductions were substantially greater than solar radiation reductions (Figure 3), increasing the 373 

likelihood of hypolimnetic anoxia and the increased regeneration of soluble phosphorus and metals 374 

from the lake sediment (Beutel et al., 2008; Forsberg, 1989). The regeneration of heavy metals from 375 

lakebed sediment degrades water quality, necessitating enhanced water treatment, although the 376 

postponement of overturn may mean extra nutrient releases occur at periods of lower light 377 

availability when conditions are less suitable for phytoplankton growth (Butcher et al., 2015). At 378 

higher FPV coverages and scenarios with enhanced solar reduction, stratification duration 379 

shortened, which would tend to have the opposite effect of reducing anoxia and internal loading of 380 

nutrients and metals. The possibility of either outcome, increase or decrease, for such critical 381 

components of water quality emphasises the need for astute system design. 382 

 Alteration of mixed layer depth 383 

While it was more common in the model results that water temperature was lowered, stability 384 

reduced and stratification shortened, mixed layers typically were shallowed, not deepened 385 

(Figure 5). Thus, reductions in solar radiation seemed to be more influential than wind speed 386 

reductions on water temperature and stratification, but the reduction in wind speed more influential 387 

on the depth of the epilimnion. As a fundamental driver of the chemistry and biology of lake 388 

ecosystems, the modification of mixed layer depth by FPV is of considerable importance for water 389 

quality (Kraemer et al., 2015; North et al., 2014; Yankova et al., 2017). FPV deployments will reduce 390 

photosynthetically active radiation (PAR) directly under array structures as well as mixed depth, so 391 

the ratio of epilimnetic depth to euphotic depth will alter, impacting phytoplankton growth 392 

(Huisman et al., 1999). Individual phytoplankton species with adaptations well suited to the modified 393 

epilimnetic depth to euphotic depth ratio beneath an FPV array will thrive, so changes in biomass 394 

and species composition should be expected. Non-continuous FPV deployments that allow a mosaic 395 

of light availability will complicate alterations to the phytoplankton community further. In particular, 396 

and of concern for water body managers, toxic cyanobacteria are well adapted to such conditions, 397 

utilising gas vesicles to regulate their buoyancy (Walsby et al., 1997). Simulations by Haas et al. 398 

(2020) found FPV systems that reduced light attenuation by 40 %, or more, greatly reduced algal 399 

biomass, although they did not consider the effects of reduced wind speed, which may improve 400 

conditions for phytoplankton growth. The use of semi-transparent PV modules which provide 401 

specific transmittance windows to control light intensities have been proposed as a means to 402 

regulate phytoplankton growth (Zhang et al., 2020). 403 
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4.2 FPV and lake management in the context of a changing climate 404 

The deployment of FPV is a direct response to the need to decarbonise the global energy supply in 405 

order to avert catastrophic climate change. Simulations here demonstrate that the effects on lake 406 

thermal structure of certain combinations of forcing variable reduction can be as, or more 407 

influential, than effects induced by climate change, and could either mitigate or exacerbate the 408 

impact. Numerous studies have identified increasing lake temperatures due to climate change, 409 

which are predicted to disturb both ecological and biogeochemical processes (e.g. O'Neil et al., 2012; 410 

Paerl and Paul, 2012; Thackeray et al., 2008). Woolway et al. (2019) found the average annual 411 

minimum surface-warming rate of eight lakes to be 0.35 °C decade-1, while O'Reilly et al. (2015) 412 

found 235 globally distributed lakes’ summer surface water temperatures were warming at a mean 413 

trend of 0.34 °C decade-1. Thus, FPV may provide a useful tool for water body managers in mitigating 414 

against lake warming. For example, a decade of lake surface temperature warming could be 415 

mitigated with the deployment of an FPV array at a surface coverage that reduces lake-average wind 416 

speed and solar radiation by approximately 10 % (Figure 1). 417 

A further example of climate change mitigation, and of particular relevance to water-scarce 418 

locations, is the reduction in evaporation achieved by increasing FPV coverage (Figure 2). Cooler 419 

surface water temperatures weaken the water-to-air vapour pressure difference (Oke, 2002) while 420 

the FPV array intercepts incoming radiative energy, reducing the latent heat flux (Aminzadeh et al., 421 

2018). Although research has previously identified that FPV will reduce evaporative losses (e.g. 422 

Ferrer-Gisbert et al., 2013; Redón-Santafé et al., 2014; Taboada et al., 2017), here it is also shown 423 

that the cooler surface water under FPV relative to the warmer, moist air above the water body 424 

permits dew deposition (Oke, 2002). At coverages greater than 74 % (1:1 forcing variable reduction) 425 

a tipping point is crossed, resulting in a net gain of water to the lake.  426 

However, while FPV could be an effective tool to mitigate against lake warming, FPV facilitated 427 

prolonged stratification duration and delayed overturn for some scenarios simulated in this study, 428 

with the potential consequences similar to those of climate warming (e.g. Adrian et al., 1995; 429 

Woolway and Merchant, 2019). Foley et al. (2012) examined long-term changes in stratification 430 

dynamics for a lake close to Windermere between 1968 and 2008; they found climate warming led 431 

to onset occurring 28 days earlier, overturn 18 days later, and the duration of stratification increased 432 

by 38 days. While FPV may be able to lessen the earlier onset of stratification brought about by 433 

climate change, the simulations show FPV deployment at lower coverages may also exacerbate the 434 

effects of climate change, potentially lengthening stratification duration and postponing 435 

overturn further. 436 
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4.3 FPV deployment best practice 437 

These simulations show impacts on water body process and function in response to the deployment 438 

of FPV, with results which are relevant for other monomictic and mesotrophic deep lakes in the 439 

temperate zone, although variations in local climate may constrain or exacerbate many of the 440 

effects identified in this study. Any wider extrapolation of these impacts needs to take into 441 

consideration geographical and morphological factors that affect lake-atmosphere interactions. For 442 

example, ice cover, which occurred with high FPV coverage rates, would not occur in tropical regions 443 

due to higher air temperatures. Lakes in tropical regions also undergo different mixing regimes and 444 

tend to have less vertical temperature difference than temperate lakes (Lewis, 1987), so may 445 

respond differently to a temperate system. As latitude also influences turbulent surface heat fluxes 446 

(Woolway et al., 2018) and atmospheric stability above lakes (Woolway, et al., 2017), geographical 447 

location is likely to be a key contributor to the overall effect of FPV on lake thermal structure. The 448 

response of lakes with differing morphometric characteristics must also be considered; lake surface 449 

area, volume and mean depth are pertinent drivers of lake thermal structure (Kraemer et al., 2015; 450 

Lerman et al., 1995; Talling, 2001; Wetzel, 2001). In smaller lakes, convection is the dominant driver 451 

of mixed-layer turbulence, while wind shear is the primary driver for larger lakes (Read et al., 2012). 452 

Lakes of a smaller surface area have broader diel temperature ranges than larger lake-systems 453 

making them more prone to disturbance (Woolway et al., 2016). The temporal variation in these 454 

drivers will further modify the response between individual systems.  455 

The number of water bodies hosting FPV arrays will increase with the sustained global drive to 456 

decarbonise energy supplies; therefore, we anticipate an urgent need for further understanding on 457 

the effects of FPV. Critically the model simulations demonstrate a high sensitivity to extent and 458 

design of deployments with highly non-linear thermal responses and both increases or decreases in 459 

temperature and stratification being possible. The model simulations suggest only a few percent 460 

cover (< 10 %) of FPV typically only induces minor changes, but more significant covers (> ~50 %) 461 

result in large temperature changes and very extensive modifications to stratification timing. The 462 

effects of FPV at larger coverages are of a similar magnitude to that of climate change. This 463 

considerable variation in possible response provides those deploying FPVs an opportunity to utilise 464 

deployments for actively enhancing water quality benefits as well as decarbonising electricity 465 

production. 466 

5 Conclusion  467 

By simulating the response of a lake to FPV deployed at varying extent, this study has demonstrated 468 

patterns of increased impact with increased perturbation, ranging from negligible to very large. 469 
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Based on these findings, future FPV designs should consider the following to maximise ecosystem 470 

co-benefits and limit potential harm: 471 

• Reductions in wind speed and solar radiation as an average across the lake cause a non-472 

linear, complex response with the direction of these effects dependent on FPV array design, 473 

including coverage density 474 

• Low FPV surface coverages had a negligible effect on the thermal structure of the test 475 

system, while high coverages were a major disruptor of the archetypal thermal structure 476 

• FPV deployments may have impacts that are as, or more, influential than catastrophic 477 

climate change, therefore providing an opportunity to manage the effects of climate change 478 

on lake systems actively 479 

• Appropriate design and deployment of FPV will be required to mitigate the likelihood of 480 

hypolimnetic anoxia and to optimise changes in the composition of phytoplankton 481 

communities as FPV modifies lake thermal structure and light climate 482 

FPV is a substantial perturbation to water body process and function. Deployment with minor 483 

impact is possible, but the infancy of knowledge on FPV necessitates planning and impact 484 

assessment on a system-by-system basis. 485 

  486 
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