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Abstract
An absorbing boundary condition is necessary in seismic wave simulation for eliminating the
unwanted artificial reflections frommodel boundaries. Existing boundary condition methods
often have a trade-off between numerical accuracy and computational efficiency. We proposed a
local absorbing boundary condition for frequency-domain finite-difference modelling. The
proposed method benefits from exact local plane-wave solution of the acoustic wave equation
along predefined directions that effectively reduces the dispersion in other directions. This
method has three features: simplicity, accuracy and efficiency. Numerical simulation
demonstrated that the proposed method has higher efficiency than the conventional methods
such as the second-order absorbing boundary condition and the perfectly matched layer (PML)
method. Meanwhile, the proposed method shared the same low-cost feature as the first-order
absorbing boundary condition method.

Keywords: absorbing boundary condition, acoustic wave equation, frequency-domain
finite-difference, perfectly matched layer

1. Introduction

Finite-difference solution of acoustic wave equation is an en-
gine of advanced imaging technologies such as full waveform
inversion (FWI) and reverse time migration. Frequency-
domain finite-difference (FDFD) methods are of special
interest, as they offer advantages over the time-domain
counterparts. The advantages include simultaneous multi-
source implementation (Wang 2011), easier modelling of
absorptive media (Rao & Wang 2009; Amini & Javaherian
2011) and selective control over the frequencies ( Jo et al.
1996; Wang & Rao 2009).

Because of limited computer memory available, an un-
bounded domain needs to be trimmed for numerical seismic
wave simulation. As a result, it is imperative to design an
absorbing boundary condition to absorb incoming waves

toward the numerical boundaries (Zhao et al. 2019). Three
commonly used absorbing boundary conditions in seismic
wave simulation are: one-way wave equation absorbing
boundary condition (ABC), absorbing sponge layer (ASL)
and perfectly matched layer (PML).

The conventional ABC method is a low-order approx-
imation of a one-way wave equation (Clayton & Engquist
1977; Higdon 1986). A two-way wave equation may be
decomposed into two one-way wave equations in two op-
posite directions, called upgoing and downgoing directions.
Because the ABC method is a local boundary condition,
it is computationally the most efficient absorbing bound-
ary method. However, the ABC shows good performance
only when the outgoing wave propagation angle is nearly
normal to the boundary. Addressing this drawback requires
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employing high-order approximations (Xu & McMechan
2012; Ren& Liu 2013; Liu & Sen 2018). Then, a high-order
ABC method requires high-order spatial derivatives, which
are inconvenient in practical implementations (Givoli 2004;
Rabinovich et al. 2010; Song et al. 2015).

TheASLmethod attempts to eliminate the incidentwaves
by introducing attenuation inside a padded layer. The atten-
uation is realised through a gradually boosted damping func-
tion inside the padded layer (Cerjan et al. 1985; Shin 1995;
Hall & Wang 2012). Two challenges of the ASL method
are finding an optimum width of the padded layer and a
proper damping function. The ASL method can be more
effective than a low-order ABCmethod, if the damping layer
is relatively thick with optimal attenuation parameters in the
damping function (Sochacki et al. 1987; Zhou 1988). How-
ever, too thick a padded layerwill lead to extra cost in running
time.

The PML method, like the ASL method, introduces the
attenuation inside a padded layer to the model. However, a
PML method incorporates the attenuation via a physically
consistent approach (Berenger 1994; Collino & Tsogka
2001; Hustedt et al. 2004; Rao et al. 2016; He et al. 2020).
The basic idea is to modify the partial derivatives in the
wave equation through coordinate stretching (Abarbanel &
Gottlieb 1997). In a continuous domain, the PML method
is proved to be effective with completely free of boundary
reflections. However, a finite length of the padded layer and
the discretisation downgrade its effectiveness and result
in angle and frequency dependencies (Collino & Tsogka
2001). The phenomena are manifested as unwanted reflec-
tions from boundaries particularly for low-frequency waves,
the evanescent waves and the nearly grazing incident waves
(Gao et al. 2017). An unsplit convolutional PML method
could tackle these drawbacks in the classic PML method
(Komatitsch &Martin 2007; Martin & Komatitsch 2009).

The PML method has been widely used in seismic wave
simulation, but the computational cost becomes prohibitive
in the large-scale 3D applications, in which cases the cost
is increased exponentially as the number of grids increases
(Amini & Javaherian 2011). In this paper, we develop an
efficient and low-cost ABC for large-scale modelling applica-
tions. Our development is inspired by the local plane-wave
solution of the wave equation, which is an accurate and
cost-effective FDFD scheme for solving the acoustic wave
equation (Izadian et al. 2019). The basic idea of the local
plane-wave solution is to force the dispersion to be zero
in number of predefined directions that results in a more
accurate finite-difference (FD) scheme. Our contribution
here is to explore this idea for the ABC.We use a plane-wave
solution of the acoustic wave equation to interpolate its dis-
persion relation in half of the directions available (between
±𝜋∕2) and leave the rest of directions to be zero. This
automatically gives a dispersion relation equivalent to that
of the one-way wave equation.

In this paper, we first review the theory of the plane-wave
interpolation for acoustic wave modelling, and then design
a local ABC. We examine the performance of the proposed
absorbing boundary condition against representatives of the
ABC and PMLmethod via various numerical examples.

2. The dispersion relation and approximations

To design an absorbing boundary condition based on plane-
wave interpolation, it is inspirational to look at the ABC
method. The 2D acoustic wave equation in the frequency
domain is

𝜕2P (x, z,𝜔)
𝜕x2

+
𝜕2P (x, z,𝜔)

𝜕z2
+ 𝜔2

v2
P (x, z,𝜔) = 0,

(1)
where P(x, z, 𝜔) is the pressure wavefield, and 𝜔 is the
angular frequency. Taking the spatial Fourier transform
of equation (1) yields the following dispersion relation:

k2x + k2z =
𝜔2

v2
, (2)

where kx and kz are the horizontal and vertical wavenum-
bers, respectively. Equation (2) may be decomposed into
two parts (Clayton & Engquist 1977):

vkz
𝜔

= ±

√
1 −

(
vkx
𝜔

)2

, (3)

where the positive sign denotes the downgoing wave (pos-
itive z direction points downward), and the negative sign
denotes the upgoing wave. Thus, for the top boundary, we
have the following equation:

vkz
𝜔

=

√
1 −

(
vkx
𝜔

)2

. (4)

The ABC method for the top boundary is an approxi-
mation to equation (4). The first- and second-order Taylor
expansions are (Clayton & Engquist 1977)

vkz
𝜔

= 1, (5)

vkz
𝜔

= 1 − 1
2

(
vkx
𝜔

)2

. (6)

The third-order Padé approximation is (Clayton &
Engquist 1977)

vkz
𝜔

=
1 − 3

4

(
vkx
𝜔

)2

1 − 1
4

(
vkx
𝜔

)2 . (7)

As discussed, the decomposition of the dispersion relation
of acoustic wave equation has removed a half of the wavefield
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Figure 1. Four-point stencil of the top-left corner (red dot), six-point
stencil of the top boundary and nine-point stencil of the interior domain.

and, then, the ABCmethod designs the absorbing boundary
condition by approximating the remaining half of wavefield.
In this paper, we propose a fundamentally different way to
directly approximate the dispersion relation of the one-way
wave equation (e.g. only the upgoing direction) by a plane-
wave interpolation (PWI) solution. In the next section, we
describe interpolation of the full dispersion relation which
gives a highly accurate FD scheme to solve the acoustic wave
equation. After that, we extend the concept to design a local
ABC.

3. Wavemodelling using plane-wave interpolation

The wave equation (1) may be rewritten in a general form of
the Laplacian operator as ( Jo et al. 1996):

a∇2
0P + (1 − a)∇2

45P + k2P (x, z,𝜔) = 0, (8)

where ∇2
0 and ∇2

45 denote the Cartesian and 45° rotated
Laplacian operators, respectively (figure 1). Assuming
Pm,n = P(mh, nh) and h is the grid interval and considering
the general form of the FD approximations of the Cartesian
and rotated Laplacian operators:

∇2
0P ≈

a1
h2
Pm,n +

a2
h2

(
Pm,n+1 + Pm,n−1 + Pm+1,n + Pm−1,n

)
,

(9)

∇2
45P ≈

a3
2h2

Pm,n +
a4
2h2

(Pm+1,n+1 + Pm+1,n−1

+ Pm−1,n+1 + Pm−1,n−1). (10)

Plugging equations (9) and (10) into equation (8) gives

C1Pm,n +
C2

h2
(
Pm,n+1 + Pm,n−1 + Pm+1,n + Pm−1,n

)
+
C3

2h2
(
Pm+1,n+1 + Pm+1,n−1 + Pm−1,n+1 + Pm−1,n−1

)
= 0,

(11)

with

C1 =
aa1
h2

+
(1 − a) a3

2h2
+ k2, C2 = aa2,

C3 = (1 − a) a4. (12)

For any arbitrary direction, the plane-wave solution is
P = eik(x sin 𝜃+zcos𝜃) , where i is the imaginary symbol, and 𝜃
is the propagation angle with respect to the z-axis. Substitut-
ing the solution into equation (11) gives

C1 + 2 [cos (kh sin 𝜃) + cos (kh cos𝜃)]
C2

h2

+ 2[cos (kh sin 𝜃 + kh cos 𝜃)

+ cos (kh sin𝜃 − kh cos𝜃)]
C3

2h2
= 0. (13)

For the nine-point scheme, equation (13) is used for
waves propagating along the Cartesian coordinate direc-
tions (𝜃 = 0, ±𝜋

2
, 𝜋) as well as a 450 rotated direction

(𝜃 = ±𝜋

4
, ± 3𝜋

4
). In this way, dispersion errors along these

directions becomes zero.

C1 + 2[1 + cos(kh)]C2

h2
+ 4 cos(kh) C3

2h2
= 0,

C1 + 4 cos(krh)C2

h2
+ 2[1 + cos(2krh)] C3

2h2
= 0,

(14)

where r = cos(𝜋
4
) . From these two equations, we obtain

coefficients C1 and C2 as follows:

C1 =
{
−2 [1 + cos (kh)]

1 + cos (2krh) − 2cos (kh)
1 + cos (kh) − 2cos (krh)

−2 cos (kh)
}

C3

h2
, (15)

C2 =
1 + cos (2krh) − 2cos (kh)
1 + cos (kh) − 2cos (krh)

C3. (16)

Finally, we substitute the coefficients into equation (13) and
obtain a new nine-point scheme:

1
h2

[
−2[1 + cos(kh)]

1 + cos(2krh) − 2 cos(kh)
1 + cos(kh) − 2 cos(krh)

−2 cos(kh)
]
Pm,n +

1
h2

[
1 + cos(2krh) − 2 cos(kh)
1 + cos(kh) − 2 cos(krh)

]
× (Pm,n+1 + Pm,n−1 + Pm+1,n + Pm−1,n)

+ 1
2h2

(Pm+1,n+1 + Pm+1,n−1 + Pm−1,n+1 + Pm−1,n−1) = 0.

(17)

This is an improved version of the standard nine-point
scheme with more accuracy. The improvement is achieved
by taking advantage of smoothness of the dispersion func-
tion and zeroing out dispersion along predefined directions,
which consequently reduces error along other directions
(Izadian et al. 2019). Figure 2 compares dispersion curves of
the optimisednine-point ( Jo et al. 1996), optimised25-point
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(a)

(c)

(b)

Figure 2. Dispersion curves for different propagation angles. (a) Optimal nine-point, (b) optimal 25-point and (c) PWI schemes, respectively. Numer-
ical phase velocity (Vph) is normalised with respect to true velocity (V0) and plotted versus reciprocal of grid-points per wavelength (G).

(Shin & Sohn 1998) and PWI schemes for different prop-
agation angles (𝜃 = 0, 𝜋

12
, 𝜋
6
, 𝜋
4
). It is evident that the PWI

method outperforms than 25-point scheme in terms of nu-
merical dispersion. PWI has constrained the dispersion error
to be less than 0.4% for 2.5 grids per minimumwavelength.

4. Local absorbing boundary condition

We insert plane waves with a limited range of directions into
a proper general form of a FD scheme for the ABC. This
process will automatically interpolate only a limited range
of directions and will keep the rest of the directions to zero.
Therefore, the resulting FD scheme will propagate the waves
only in that range of directions. In the following, we describe
theABCs for the top boundary and the top-left corner. These
boundary conditions may be extended straightforwardly to
other edges and corners.

For the top boundary where x ≠ 0, z = 0, the general
six-point FD scheme of the one-way wave is as follows:

c1Pm,n + c2
(
Pm+1,n + Pm−1,n

)
+ c3

(
Pm+1,n+1 + Pm−1,n+1

)
+ c4 Pm,n+1 = 0. (18)

Inserting an outgoing plane-wave with an arbitrary propaga-
tion angle 𝜃, eik(sin(𝜃)x+cos(𝜃)z), into equation (18), yields:

c1 + 2c2 cos [kh sin (𝜃)] + 2c3 cos [kh sin (𝜃)] eikh cos(𝜃)

+ c4 eikh cos(𝜃) = 0. (19)

Considering outgoing characteristics of the six-point stencil
we satisfy equation (19) for 𝜃 = (0, ±𝜋

4
, ±𝜋

2
) with respect

to the z-axis. By doing so, we arrive at the following system
of linear equations:

c1 + 2c2 + 2eikhc3 + eikhc4 = 0,

c1 + 2 cos(kh)c2 + 2 cos(kh)c3 + c4 = 0,

c1 + 2 cos(krh)c2 + 2 cos(krh)eikrhc3 + eikrhc4 = 0,

(20)

where r = cos(𝜋
4
). Following the same process of solv-

ing equation (14), we get c1 = 𝛼c4, c2 = 𝛽c4 and c3 = 𝛾c4,
where

𝛾 = 1
2

(eikrh−eikh)[cos(kh)−1]−[cos(krh)−1](1−eikh)

[cos(krh)eikrh−eikh][cos(kh)−1]−[cos(krh)−1][cos(kh)−eikh]
,

𝛽 =
2[cos(kh) − eikh]𝛾 + (1 − eikh)

2[cos(kh) − 1]
,

𝛼 = −(2𝛽 + 2eikh + eikh). (21)

Substituting the coefficients into equation (19) gives the
desired FD scheme for the top boundary:

𝛼Pm,n + 𝛽
(
Pm+1,n + Pm−1,n

)
+ 𝛾

(
Pm+1,n+1 + Pm−1,n+1

)
+ Pm,n+1 = 0. (22)

For the point located at the top-left corner (red dot in fig-
ure 1) where z = 0, the general FD scheme is a four-point
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Figure 3. Comparison of ABC, PML and the proposed method. (a–c) The real part of the wavefields with ABC, PML, and proposed boundary condi-
tions, respectively. Small distortions (indicated by arrow) are visible in ABC’s result, whereas the two others show no sign of distortion. (d–f)Wavefields
in the time-domain. The proposed method outperforms of ABC and PML in suppressing artificial reflections.

scheme as following:

c1Pm,n + c2Pm+1,n + c3Pm,n+1 + c4 Pm+1,n+1 = 0. (23)

Applying equation (18) along 𝜃 = (0, 𝜋
4
, 𝜋
2
), we obtain

corresponding equations for this stencil:

c1 + c2 + eikhc3 + eikhc4 = 0,

c1 + eikhc2 + c3 + eikhc4 = 0,

c1 + ejkrhc2 + ejkrhc3 + e2jkrhc4 = 0, (24)

where r = cos(𝜋
4
) . Solving this system of equations in the

sameway as solving equation (20), we arrive to the following
scheme:

𝛼Pm,n + 𝛽Pm+1,n + 𝛾Pm,n+1 + Pm+1,n+1 = 0, (25)

where

𝛾 =
(e2jkrh − eikh)(eikh − 1) − (ejkrh − 1)(eikh − eikh)
(ejkrh − eikh)(eikh − 1) − (ejkrh − 1)(1 − eikh)

,

𝛽 =
(1 − eikh)𝛾 + (eikh − eikh)

(eikh − 1)
,

𝛼 = −(𝛽 + eikh𝛾 + eikh). (26)

Note that equations (22) and (25) came out of a funda-
mentally different approach as an ABC method. We started
with a FD scheme and forced it to follow the exact two-
way dispersion relation in some directions. This method
exploits the smoothness of the dispersion function and tries
to suppress the error along other directions (Izadian et al.
2019). By doing so, we not only managed to approximate
the dispersion relation of a one-way wave equation, but
also reduced the discretisation error of FD approximations.
However, the FD equation (25) is just like the FD schemes
of ABCs. Therefore, the proposed method is considered as a
local semi-exact solution.

5. Numerical modelling

We compare the proposed boundary conditionmethod with
the second-order ABC (Clayton&Engquist 1977) and PML
(Hustedt et al. 2004) methods, using different numerical
examples. For all the following examples, we use the FD
equation (17). We use a Ricker wavelet with a dominant fre-
quency of 20 Hz (Wang 2015) and maximum frequency of
60 Hz in the numerical examples.Note that a gain is applied
to all the following figures to boost up small amplitudes of
the reflections that could not be seen otherwise.
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Figure 4. The energy of the propagating wavefield versus time of propa-
gation. The proposed absorbing boundary condition performs better than
the PMLmethod with 10 nodes (PML-10).

5.1. Homogeneous media

The first example is a velocity model with 1.5 km × 1.5 km
dimensions. A source wavelet is located at the centre of the

model. To prevent numerical dispersion error be present
in the modelling, we set the grid interval to be 5m (six
nodes per minimum wavelength). The thickness of the
PML layer is set to be 10 nodes. The P-wave velocity
is 2000 m s−1.

Figure 3 parts a–c show the real part of wavefields at
20 Hz, using the ABC, PML and the proposed boundary
condition method, respectively. Three images were plotted
with the same colour scale. The ABC result contains radial
fringes associated to the reflections from boundaries (fig-
ure 3a), while the PML and the proposed method are free
of these artificial reflections. Figure 3 parts d–f show the
snapshots of the wavefields in time-domain at 0.5 s. The
proposed method shows an acceptable performance for
absorbing the boundary reflections.

To have a better quantitative evaluation of the perfor-
mance of the methods, figure 4 compares the energy of
wavefields (L2-norm of the wavefields) while propagating

Figure 5. Snapshot of the simulated wavefield. (a) PML with 10 nodes. (b) PML with 20 nodes. (c) PML with 30 nodes. (d) The proposed method.
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Figure 6. The energy of the propagated wavefield versus time. PML with
10 nodes (red), PML with 20 nodes (blue), PML with 30 nodes (violet)
and the proposed method (green).

in time, which again shows that the proposed method is
performing better than the PMLmethod.

The homogenous model test shows the efficiency of
the proposed method in comparison with the ABC and
PML methods. To evaluate the performance of the PML
method with different thicknesses against the proposed
absorbing condition, we performed another test similar to
figures 3 and 4. We run the simulation with three PML layer
thicknesses (10, 20 and 30 nodes), and show the results in
figures 5 and 6. The results demonstrate that the proposed
method performance is comparable with PML-30. In com-
putationally expensive applications, padding boundaries of a
model with extra 30 nodes requires more memory and extra
calculations, which is not desirable. In contrast, our proposed
method does not add new complexity to the problem.

5.2. A rectangular-shaped model

In the second example, we investigate performance of the
proposed absorbing boundary method for wide angle re-
flections. For this purpose, we use a rectangular model with
dimensions of 1.25 km × 3.25 km. Model velocity and
simulation parameters are same as the previous example.
The source is located at (1150 m, 1625 m), 100 m above

the bottom edge of the model. Figure 7 parts a–c show the
snapshots of wavefield at 0.6 s. The proposed method shows
a better performance in suppressing unwanted reflections
from the bottom boundary of the model.

A shot gather of the propagating wavefield at a depth of
1150 m captured reflections with incident angles of approx-
imately 850 (figure 8). Following the primary wavefront, we
see small reflections from the bottom edge. The ABC’s result
is the worst one as the reflection is obviously visible. PML’s
result (with 20 nodes) is showing the typical behaviour of
this family, i.e. small low-frequency reflections (Gao et al.
2017). Finally, our proposed method indicates a higher
absorbing performance as almost no tail is visible.

5.3. Anticline model

The third example is a layered model. The velocity increases
with depth from 1500 to 2800 m s−1 (figure 9a). The
grid spacing is 5 m. The source location is at the surface
at x = 1375 m. In this simulation, we considered a free
boundary condition for the top boundary and absorbing
boundaries for other boundaries.

The snapshots of the simulated wavefield are shown for
three different absorbing boundary methods in figure 9b–d.
Artificial reflections are highlighted by black arrows in these
figures and are more visible for the second-order ABC case.
According to this figure, the proposed method could atten-
uate artificial reflections from all of boundaries effectively.
Comparison of the results reveals that the proposed method
has a better performance than the 10-point thickness PML
in attenuating strong reflection from bottom boundary.

Figure 10 shows shot gathers in which the receivers are
located at top boundary for different absorbing boundary
approaches. The proposed absorbing boundary method can
attenuate boundary reflections effectively even better than a
10-point standard PML.

For better comparison, a trace located at x = 1150 m is
extracted from the shot record (figure 11). There is no sig-
nificant difference between two results except the reflection
from bottom of PML layer that is successfully suppressed by
the proposed method.

Figure 7. Snapshots at 0.6s with (a) ABC, (b) PML20 and (c) the proposed absorbing condition method. The proposed method shows higher perfor-
mance in suppressing artificial reflection from the bottom edge of the model.
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Figure 8. The shot record of simulation. (a) ABC, (b) PML20 and (c) the proposed method.

1.6 1.8 2 2.2 2.4 2.6 2.8

Figure 9. The snapshots of the simulated wavefields at 1s for the anticline velocity model in (a) with (b) ABC, (c) PML and (d) proposed boundary
conditions. Following the black arrows, we can see visible improvement in performance by moving from ABC to PML to proposed method.
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Figure 10. The shot gathers for the anticline model with (a) ABC, (b) PML and (c) the proposedmethod. Black arrows show artificial reflections from
the bottom boundary.

Figure 11. A trace located at x = 1150 m extracted from the shot record. The amplitude of the artificial reflections from the bottom of the model in
the PML case is higher than the proposed method.

5.4. Marmousi model

The last example deals with a highly complex velocitymodel,
a part of theMarmousi model (figure 12a). The grid interval
is 8 m. By looking at the black arrows in the snapshots of the
propagated wavefield in figure 12b–d, we can see a similar
pattern of artificial boundary reflections from ABC and
almost no reflection from PML20 and proposed method. In
figure 13, the recorded data at the surface are shown. Black
arrows in this figure highlight the boundary reflections.

6. Discussion on the computational efficiency

As described, we used only one layer of neighbour grids
in the FD schemes for both the computational domain’s

grids and boundary grids. Therefore, the structure of the
impedance matrix will not be altered and, consequently,
the computational cost will not be increased compared to
the low-order ABCs. Figure 14 parts a–c show the struc-
ture of the impedance matrix of a 5 × 5 grid model for
the conventional first, second-order and the proposed
ABC methods at all edges. The blue points in figure 14c
are the additional nonzero entries corresponding to the
proposed in which all the blue points fall in the same
three-band structure of the impedance matrix of the
conventional ABCs. Hence, the computational cost of
the proposed method is almost equal to a second-order
ABC, which is almost the cheapest boundary condition
available.
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2 2.5 3 3.5 4

Figure 12. The snapshots of the propagated wavefield at 0.65 s for the velocity model in (a) with (b) ABC, (c) PML and (d) the proposed absorbing
boundaries. There are some artificial reflections in ABC indicated by black arrows. At the same locations, PML and proposedmethod showno reflection.

Figure 13. The shot gathers for theMarmousi model. (a) ABC, (b) PML and (c) the proposed method.

This very high performance of the proposed method will
have a significant impact on the efficient frequency-domain
FD modelling in sensitive imaging applications such as
FWI where an accurate ABC is crucial. In a 3D application,
a model with the size of 4 × 4 × 10 km, discretised with

20 m grid interval, will end up with 200 × 200 × 500 grids.
Adding PML layers with thicknesses of 10, 20, and 30 grids
will increase the number of grids by 20, 42 and 67%, respec-
tively, whereas the proposed method, as a local absorbing
boundary, increases the number of grids by a mere 1.9%.
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Figure 14. Structure of the impedance matrix for a 5 × 5 grid model with a nine-point FD scheme for the interior domain grids and the first-order
ABC (a), the second-order ABC (b) and the proposed method (c) as the boundary condition at all of edges.

7. Conclusions

We have proposed a local absorbing boundary condition for
the seismic wave simulation using the FDFD solution of the
acoustic wave equation. The observations from numerical
analyses have confirmed the following:

(1) The proposed method performs even better than the
standard PML in a wide range of incident angles.

(2) The proposed method performs as well as the PML
method having 30 nodes thickness with the difference
that our boundary condition does not put the extra
computational burden to the problem.

(3) Despite being a local boundary condition, the perfor-
mance of the suggested method was preserved even
in a complex structured model such as the Marmousi
model.

(4) Furthermore, the local characteristics of this method
makes it computationally efficient, which makes it an
ideal choice for a broad application prospect of FWI.
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