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Abstract

This thesis considers a real, massless, conformally coupled scalar field propa-
gating on the covering space of four-dimensional anti-de Sitter space (CadS)
and on four-dimensional Schwarzschild-anti de Sitter space (SadS).

Numerical results for the vacuum polarisation are obtained in CadS with
Robin conditions imposed at the boundary. A proof is given to demonstrate
that results approach the same finite limit at the boundary unless Dirichlet
conditions are imposed.

Numerical results for the vacuum polarisation are obtained in SadS with
Dirichlet conditions imposed at the boundary, using the extended coordi-
nates method of renormalisation. These results are then extended for Robin
boundary conditions, where we see qualitatively similar behaviour to that
observed in CadS.
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Chapter 1

Quantum field theory in flat and
curved spacetimes

This introductory chapter contains background material on quantum field theory (QFT)
necessary for the calculations of expectation values that we present in later chapters. We
begin in section 1.1 with a brief introduction to quantum field theory in flat (Minkowski)
spacetime, including an overview of the canonical commutation relations and Green’s
functions. In section 1.2, we extend this to curved spacetimes, where we begin with a
brief discussion of the Einstein field equations, before looking at the properties of the
stress-energy tensor. In section 1.2.1, we introduce the concept of a Cauchy surface and
explain why the existence of Cauchy surfaces is vital for a well-defined QFT. We look
at the Unruh effect and the existence of multiple vacuum states in curved spacetimes
in section 1.2.2, considering Schwarzschild spacetime as an example in section 1.2.3.
Finally, in section 1.3, we look at various renormalisation schemes that allow us to
calculate expectation values, and weigh the merits of the various methods against each
other.

We will always work in 4-dimensional spacetime with Lorentzian signature (− + ++)
unless otherwise stated (some examples in section 1.2 are set in conformally flat 2-
dimensional spacetimes where calculations are much simpler). We set all constants
c = G = ~ = kB = 1.

1.1 Quantum field theory in Minkowski spacetime

QFT is our best description of small scale physics. In quantum mechanics (QM) we take
measurable quantities, such as position, velocity or angular momentum, and promote
these to operators acting on a Hilbert space of states. In QFT, we promote classical
fields to operators. As a result, an operator is assigned to every point (t,x) in spacetime,
giving us an infinite number of degrees of freedom. A set of such operators φ̂(t,x) is
then referred to as a quantum field, and particles are defined by excited states of these

2
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underlying fields. The following discussion of quantum fields in Minkowski space is
taken from [14–19].

The dynamics of classical fields φ are governed by the Lagrangian L,

L(t) =

∫
M
L(φ) d3x (1.1)

where L is the Lagrangian density, defined by

L(φ) = −1

2

(
∂µφ∂µφ+m2φ2

)
(1.2)

for m the field mass, and M is the entire space. For the purposes of this thesis, we
shall consider φ to be a real scalar field, which associates a real scalar value to every
point in space and is invariant under Lorentz transformations. Scalar fields describe
spin-0 particles, and real scalar fields describe particles that are uncharged.

The action S is defined by taking the integral of L over all spacetime, that is

S(φ) =

∫ ∞
−∞

∫
M
L(φ) d3x dt (1.3)

and then we can use the principle of least action to derive the equations of motion, i.e.
by insisting that

δS = 0 (1.4)

for varying φ. This gives us the Klein-Gordon equation(
∂µ∂µ −m2

)
φ = 0. (1.5)

A set of solutions to (1.5) is given by plane waves

φp(t,x) = φ0e
−iωteip·x (1.6)

for frequency ω and 3-momentum p, where ω2 − |p|2 = m2, the field mass. We shall
only consider the case where ω > 0, and thus refer to φp as positive frequency modes.
This step is taken to ensure the modes have positive norm, and thus allow us to define
an inner product. The negative frequency modes can then be obtained by taking the
complex conjugate, φ∗p. The constant φ0 is defined such that the modes are normalised
to 1. In order to determine this, we must define an inner product

〈φ1, φ2〉 = −i
∫
M

(φ∗1
←→
∂t φ2)d3x (1.7)

where φ1, φ2 satisfy (1.5). In (1.7), we have used the notation

φ∗1
←→
∂t φ2 = φ2∂tφ

∗
1 − φ∗1∂tφ2. (1.8)

If we define
φ1(t,x) = φ01e

−iω1teip1·x, φ2(t,x) = φ02e
−iω2teip2·x (1.9)
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then the inner product is

〈φ1, φ2〉 = −i
∫
M
d3x φ∗01φ02i(ω1 + ω2)e−i(ω2−ω1)te−i(p1−p2)·x

= φ∗01φ02(ω1 + ω2)δ3(p1 − p2)(2π)3e−i(ω2−ω1)t. (1.10)

Therefore, we must set

φ0 = (2π)−3/2(2ω)−1/2 (1.11)

for modes to be normalised.

The quantised field operator φ̂ must obey the equal time commutation relations

[φ̂(t,x), π̂(t,y)] = iδ3(x− y), [φ̂(t,x), φ̂(t,y)] = 0 = [π̂(t,x), π̂(t,y)] (1.12)

where

π̂(t,x) = ∂tφ̂(t,x) (1.13)

is the conjugate momentum. The quantised field can be expanded in terms of the
modes (1.6),

φ̂(t,x) =

∫
(âpφp(t,x) + â†pφ

∗
p(t,x))d3p (1.14)

where âp, â
†
p are annihilation and creation operators respectively. The integral in

(1.14) is taken over all momenta. The annihilation and creation operators must obey
the canonical commutation relations (CCR):

[âp, â
†
p′ ] = δ(p− p′), [âp, âp′ ] = 0 = [â†p, â

†
p′ ]. (1.15)

These can be derived from (1.12). We use the annihilation operators to define the
ground state |0〉:

âp|0〉 = 0. (1.16)

We shall refer to the ground state |0〉 as the “vacuum state” throughout. It carries zero
momentum, and, näıvely, one may expect it to also carry zero energy, as the state is
“empty”, i.e. there are no field quanta present. However, a brief calculation of energy
density in the vacuum state (see [14]) gives

〈0|H|0〉 =
1

2

∑
p

ω (1.17)

which is not only non-zero, but also appears to be divergent. This comes from the fact
that, since there is no upper bound on ω, the zero-point energy can become arbitrarily
large. Since this energy is not measurable in non-gravitational physics, we can renor-
malise this quantity by simply throwing away the 1

2

∑
p ω. Renormalisation is not so

simple in curved spacetime, where divergent parts of the energy density have a more
complicated form (see section 1.3).
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Vacuum expectation values of various products of field operators φ̂ can be identified
with different Green’s functions that satisfy the inhomogeneous scalar field equation(

∂µ∂µ −m2
)
G(x, x′) = −δ4(x− x′) (1.18)

where x = (t,x) are spacetime coordinates and G is used to represent a number of
Green’s functions, which we shall now introduce. The four-dimensional Dirac delta
function δ4(x − x′) is defined to be infinite at x′ = x, and zero everywhere else. It
satisfies the identity ∫ ∞

−∞
δ4(x) d4x = 1. (1.19)

We define the Schwinger and Hadamard function respectively:

iG(x, x′) = 〈0|[φ̂(x), φ̂(x′)]|0〉, (1.20)

G(1)(x, x′) = 〈0|{φ̂(x), φ̂(x′)}|0〉. (1.21)

We can split these into positive and negative frequency parts

iG(x, x′) = G+(x, x′)−G−(x, x′), (1.22)

G(1)(x, x′) = G+(x, x′) +G−(x, x′), (1.23)

where G±(x, x′) are the Wightman functions

G+(x, x′) = 〈0|φ̂(x)φ̂(x′)|0〉, (1.24)

G−(x, x′) = 〈0|φ̂(x′)φ̂(x)|0〉. (1.25)

The Wightman functions are not Green’s functions of the scalar field equation. The
Feynman propagator can be defined by introducing the time-ordering operator T ,

T [φ̂(x)φ̂(x′)] =

{
φ̂(x)φ̂(x′) if x is in the future of x′

φ̂(x′)φ̂(x) if x′ is in the future of x.
(1.26)

Then the Feynman propagator is

iGF (x, x′) = 〈0|T [φ̂(x)φ̂(x′)]|0〉 = Θ(t− t′)G+(x, x′) + Θ(t′ − t)G−(x, x′) (1.27)

for Θ(t − t′) the Heaviside step function. Finally, we can define the retarded and
advanced Green’s functions in the following way:

GRet(x, x
′) = −Θ(t− t′)G(x, x′) (1.28)

GAdv(x, x
′) = Θ(t′ − t)G(x, x′). (1.29)

We can then write the Feynman propagator as

GF (x, x′) = −Ḡ(x, x′)− 1

2
iG(1)(x, x′) (1.30)



6

where Ḡ(x, x′) is the average of the retarded and advanced Green’s functions

Ḡ(x, x′) =
1

2
[GRet(x, x

′) +GAdv(x, x
′)]. (1.31)

If we write G to represent any of the Green’s functions in the set
{iGF , GRet, GAdv}, then these can be written as

G(x, x′) =

∫
d4k

(2π)4

eik·(x−x
′)+ik0(t−t′)

−k2
0 + k2 +m2

(1.32)

where k2 = k2
1 + k2

2 + k2
3. The integral has poles at k2

0 = k2 +m2. The integral can be
evaluated as a contour integral. The choice of Green’s function depends on the choice
of contour that we use. These contours are shown in Figure 1.1.

Equivalently, the Feynman Green’s function GF (x, x′) can be found by employing the
iε-prescription, which involves writing the Green’s function in the following way:

iGF (x, x′) = lim
ε→0

∫
d4k

(2π)4

eik·(x−x
′)+ik0(t−t′)

−k2
0 + k2 +m2 + iε

. (1.33)

The addition of the iε term shifts the integral so that we do not pass directly through
the poles.

We can define thermal Green’s functions with inverse temperature β by simply replacing
the vacuum expectation values with thermal expectation values, i.e. for the Wightman
functions

G+
β (x, x′) = 〈β|φ̂(x)φ̂(x′)|β〉, G−β (x, x′) = 〈β|φ̂(x′)φ̂(x)|β〉. (1.34)

These satisfy the periodicity condition

G±β (t,x; t′,x′) = G∓β (t+ iβ,x; t′,x′). (1.35)

From (1.23), we must also have

G
(1)
β (t,x; t′,x′) = G

(1)
β (t+ iβ,x; t′,x′). (1.36)

Now, the Schwinger function iG(x, x′) is an expectation value of the commutator, which
is itself a c-number (a scalar multiple of the identity operator). Therefore, the vacuum
and thermal expectation values of the Schwinger function are equal [14], i.e.

iGβ(x, x′) = iG(x, x′). (1.37)

We can write

iG(x, x′) =
1

2π

∫ ∞
−∞

dω c(ω; x,x′)e−iω∆t (1.38)

where c(ω; x,x′) is calculated by using the appropriate contour in (1.32), and then
taking the Fourier transform of the result. We have used ∆t = t− t′. Similarly, we can
write the thermal Wightman functions as

G±β (x, x′) =
1

2π

∫ ∞
−∞

dω g±(ω; x,x′)e−iω∆t (1.39)
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X X

X X

X X

X X

iG− iG+

G

iG(1)

GR

GA

GF

Figure 1.1: Possible contours for the k0 integral in (1.33). A different choice of contour
corresponds to a different choice of Green’s function. Figure taken from [14].
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where g±(ω; x,x′) is determined by again using the appropriate contour in (1.33) and
taking the Fourier transform. Using the relation (1.35), we find

g+(ω; x,x′) = eβωg−(ω; x,x′) (1.40)

and from (1.22), we can see that

c(ω; x,x′) = g+(ω; x,x′)− g−(ω; x,x′). (1.41)

Combining these two relations, we can show

g±(ω; x,x′) = ±c(ω; x,x′)
1− e∓βω (1.42)

and so

G±β (x, x′) = ± 1

2π

∫ ∞
−∞

dω
c(ω; x,x′)
1− e∓βω e

−iω∆t. (1.43)

The thermal Hadamard function is then given by

G
(1)
β (x, x′) =

1

2π

∫ ∞
−∞

dω c(ω; x,x′)
{

1

1− e−βω −
1

1− eβω
}
e−iω∆t

=
1

2π

∫ ∞
−∞

dω c(ω; x,x′) coth

(
βω

2

)
e−iω∆t. (1.44)

By studying the contour for the Feynman Green’s function GF , we notice that the con-
tour does not pass through any poles if we perform an anti-clockwise rotation through
π/2 to take it along the imaginary axis. Thus the Feynman Green’s function would
remain unchanged (modulo a factor of −i) after this rotation. This type of rotation is
called a Wick rotation, and involves replacing the time coordinate t with an imaginary
time coordinate τ i.e.

τ = it. (1.45)

Then the metric has signature (+ + + +) and this corresponds to considering the
field φ̂ in the Euclidean background. The wave equation (1.18) is a hyperbolic PDE in
the Lorentzian background, which leads to different possible Green’s functions. In the
Euclidean background, the wave equation (1.18) becomes elliptic, and so the Euclidean
Green’s function GE is unique (if it exists) once appropriate boundary conditions have
been specified. The Euclidean Green’s function GE is related to the Feynman Green’s
function by

GF (t,x; t′,x′) = −iGE(iτ,x; iτ ′,x′). (1.46)

In the next section, we generalise the theory to a curved spacetime (CST) background.
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1.2 Quantum field theory in curved spacetime

QFT in CST is a semi-classical approximation to quantum gravity. We begin with the
Einstein Field Equations (EFEs),

Gµν + Λgµν = 8πTµν . (1.47)

These equations relate the curvature of spacetime, described by the Einstein tensor
Gµν , to the matter within the spacetime, described by the stress-energy tensor (SET)
Tµν .

The Einstein tensor is constructed from the spacetime metric gµν in the following way

Gµν = Rµν −
1

2
Rgµν (1.48)

where Rµν is the Ricci tensor, and R = Rµµ is the curvature scalar.

The SET describes the energy and momentum densities and fluxes on the spacetime.
The components of the SET can be thought of in the following way:

Tµν =


u px py pz
px Pxx σxy σxz
py σyx Pyy σyz
pz σzx σzy Pzz

 (1.49)

where u is the energy density, the p’s are momentum densities, the P ’s are pressures
and the σ’s are shear stresses [20]. The SET is symmetric, i.e.

Tµν = Tνµ (1.50)

and conserved
∇µTµν = 0. (1.51)

The SET of a Klein-Gordon field φ is given by [21]

Tµν = ∇µφ∇νφ−
1

2
gµν(∇σ∇σφ+ (m2 + ξR)φ2). (1.52)

The cosmological constant Λ is a measure of the vacuum energy density and has di-
mensions of length−2. It was originally introduced by Einstein to achieve a static
universe [22]. However, the idea was abandoned when the universe was found to be
expanding [23]. In 1998, observations of supernovae found that the expansion of the
universe was accelerating, and it is now widely accepted that there exists a small,
nonzero, positive cosmological constant [24,25].

The EFEs were first postulated by Einstein in 1915, and have been tested in the century
since by many different experiments [26], including measurements of the perihelion of
Mercury, the redshift of light from Sirius B, and more recently direct detections of
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gravitational waves by the LIGO collaboration [27,28] and of black holes by the Event
Horizon Telescope [29].

In order to use the EFEs at a quantum scale, we would need to quantise gravity, but,
to date, no full theory of quantum gravity has been developed. Instead, we can form a
semi-classical approximation by quantising the RHS of (1.47), that is, promoting Tµν
to an operator and taking its expectation value,

Gµν + Λgµν = 8π〈T̂µν〉. (1.53)

This semi-classical approach allows us to study the backreaction effect of particle cre-
ation close to a black hole [30], for example. The equation (1.53) is only an approx-
imation of the true dynamics of spacetime, and can only be taken seriously if the
characteristic radii of curvature of the spacetime are much greater than the Planck
length [31].

1.2.1 General formalism

In CST, the Lagrangian density for a scalar field φ, which we shall denote Lg, is defined
by

Lg(φ) = −1

2
(gµν∇µφ∇νφ+ (m2 + ξR)φ2). (1.54)

There are two notable differences between (1.54) and the formula for the Lagrangian
density in Minkowski space (1.2). First, we have included the spacetime metric to allow
us to raise indices, and we have replaced partial derivatives with covariant derivatives
(although of course this reduces to a partial derivative in the case of a scalar field).
Second, we have an extra “ξR” term which is included for a couple of reasons, the first
of which is simply because it has the correct dimensions. The second reason is due to
the fact that the special value ξ = 1/6 allows the action to have conformal invariance
in the massless m = 0 case [32]. This means that the Lagrangian density remains the
same under the transformation

gµν → Ω2gµν , φ→ Ω−1φ (1.55)

for any smooth positive function Ω.

The Klein-Gordon equation in curved spacetime takes the form(
2−m2 − ξR

)
φ = 0 (1.56)

where
2 = gµν∇µ∇ν (1.57)

is the D’Alembertian. Similarly, the Green’s functions G(x, x′) satisfy the inhomoge-
neous form of the Klein-Gordon equation,(

2−m2 − ξR
)
G(x, x′) = −δ

4(x− x′)√
|g|

. (1.58)
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We must define an inner product in order to normalise the field φ. In flat spacetime,
the inner product is defined by (1.7). The definition of an inner product in curved
spacetime is a little more involved, because we must define this over a Cauchy surface
of the spacetime.

Cauchy surfaces exist in globally hyperbolic spacetimes. They allow initial data to
propagate uniquely into the future without the need for any additional boundary con-
ditions. For a more rigorous mathematical definition [21], we must first define the
future and past domains of dependence for a surface Σ in a manifold M:

D+(Σ) =

{
p ∈M

∣∣∣∣∣Every past inextensible causal curve

through p intersects Σ

}
(1.59)

D−(Σ) =

{
p ∈M

∣∣∣∣∣Every future inextensible causal curve

through p intersects Σ

}
. (1.60)

We can then define the full domain of dependence as being

D(Σ) = D+(Σ) ∪D−(Σ). (1.61)

The surface Σ is a Cauchy surface when

D(Σ) =M. (1.62)

For now, we shall assume that the spacetime we are working in is globally hyperbolic,
i.e. assume that there exists some hypersurface Σ for which (1.62) holds, and define a
scalar product between two solutions φ1, φ2 of the Klein-Gordon equation (1.56) to be

〈φ1, φ2〉 = i

∫
Σ

(φ∗1
←→∇µφ2)

√−g dσµ (1.63)

where g = det(gµν) and dσµ = nµd3x for nµ future-pointing unit normal to Σ. This
scalar product must be independent of the choice of Cauchy surface, i.e. for two Cauchy
surfaces Σ1,Σ2 we must have (see Figure 1.2):

i

∫
Σ1

(φ∗1
←→∇µφ2)

√−g dσµ1 = i

∫
Σ2

(φ∗1
←→∇µφ2)

√−g dσµ2 . (1.64)

In order to prove that the above statement (1.64) holds, we use Stokes’ theorem (taken
from [32, eq.E14]): ∫

R
d4x
√
|g|∇µVµ =

∫
∂R

d3x
√
|γ|n̄µVµ. (1.65)

The volume integral is taken over a region R of the manifold M, where ∂R is the
boundary of R and n̄µ is the outward-pointing unit normal to the boundary. The
induced volume element on the hypersurface ∂R is

√
|γ|d3x.



12

R
Σ1

Σ2

n1
n2

n̄2

n̄1

Figure 1.2: A globally hyperbolic space with two Cauchy surfaces Σ1,Σ2. The future-
pointing unit normals n1 and n2 are shown, as are the outward-pointing unit normals
n̄1, n̄2 to region R.

We let R be the region between the two Cauchy surfaces, so that ∂R = Σ1 ∪ Σ2. We

define Vµ = φ∗1
←→∇µφ2, where we assume φ1 and φ2 are solutions of (1.56). Then we can

say

∇µVµ = ∇µ [(∇µφ∗1)φ2 − φ∗1(∇µφ2)]

= (∇µ∇µφ∗1)φ2 + (∇µφ∗1)(∇µφ2)− φ∗1(∇µ∇µφ2)− (∇µφ∗1)(∇µφ2)

= (2φ∗1)φ2 − φ∗1(2φ2)

= (m2 + ξR)φ∗1φ2 − φ∗1(m2 + ξR)φ2 = 0 (1.66)

and thus ∫
R
d4x
√
|g|∇µVµ = 0. (1.67)

The right hand side of (1.65) can be written∫
∂R

d3x n̄µVµ
√
|γ| =

∫
Σ1

d3x(φ∗1
←→∇µφ2)

√−gn̄µ1 +

∫
Σ2

d3x(φ∗1
←→∇µφ2)

√−gn̄µ2 = 0, (1.68)

where n̄µ1 and n̄µ2 are the outward pointing unit normals to Σ1 and Σ2 respectively.
With these Cauchy surfaces as in Figure 1.2, we can see that n̄µ1 will point in the same
direction as nµ1 whereas n̄µ2 will point in the opposite direction to nµ2 . Thus,∫

∂R
d3x n̄µVµ

√
|γ| =

∫
Σ1

d3x(φ∗1
←→∇µφ2)

√−gnµ1 −
∫

Σ2

d3x(φ∗1
←→∇µφ2)

√−gnµ2 = 0 (1.69)

and so (1.64) holds. This proof is taken from [33, pg.9].
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1.2.2 The Unruh effect

The Unruh effect [34–36] is the idea that the notion of a “particle” detected by an
observer will depend on the frame in which the observer is moving. This means that
an observer accelerating in the Minkowski vacuum will see a thermal bath of Rindler
particles where an inertial observer will see none. We refer to Rindler particles as
those associated with the positive energy modes as defined by accelerating (or Rindler)
observers, and Minkowski particles as those associated with positive energy modes as
defined by inertial observers.

To demonstrate this idea, we work in 1 + 1-dimensional Minkowski spacetime for sim-
plicity, as the wave equation is conformally invariant in two dimensions. Consider
two observers. One observer is in an inertial frame, defined by Minkowski coordinates
(t, x), and the other observer is in an accelerating frame, defined by Rindler coordi-
nates (ξ0, ξ1). Firstly, it would be useful to define our Rindler coordinates in terms of
Minkowski coordinates [16]. To do this, we introduce null coordinates

uM = t− x, vM = t+ x, uR = ξ0 − ξ1, vR = ξ0 + ξ1. (1.70)

A trajectory xα of an uniformly accelerated observer in the inertial frame is described
by Minkowski coordinates,

xα(τ) = (uM (τ), vM (τ)) (1.71)

where τ is the proper time. The trajectory xα(τ) satisfies the normalisation condition

gαβẋ
α(τ)ẋβ(τ) = −1, (1.72)

where gαβ is the spacetime metric and ẋ = dx
dτ . The trajectory xα(τ) has constant

acceleration a, given by
gαβẍ

α(τ)ẍβ(τ) = a2, (1.73)

where ẍ = d2x
dτ2

. In terms of Minkowski coordinates (uM , vM ), these conditions give

u̇M (τ)v̇M (τ) = 1, üM (τ)v̈M (τ) = −a2. (1.74)

The equations (1.74) can be solved simultaneously to give

uM (τ) = −1

a
e−aτ , vM (τ) =

1

a
eaτ (1.75)

where the integration constants are made to vanish by shifting the origin of the inertial
frame. Now, since proper time is independent of coordinate system, this means that in
Rindler coordinates, the observer’s worldline is described by

ξ0(τ) = τ, ξ1(τ) = 0 (1.76)

and so the Rindler coordinates on the worldline are

uR = vR = τ. (1.77)
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Substituting (1.77) into (1.75) gives a relation between (uM , vM ) and (uR, vR), i.e.

uM = −1

a
e−auR , vM =

1

a
eavR . (1.78)

Using the definition of the null coordinates (1.70), we can see

t =
1

a
eaξ

1
sinh(aξ0), x =

1

a
eaξ

1
cosh(aξ0). (1.79)

Since the wave equation is invariant in two dimensions, we can write it in both coordi-
nate systems in the same way:

∂2

∂uM∂vM
φ = 0,

∂2

∂uR∂vR
φ = 0. (1.80)

Solving (1.80), we find two sets of modes

φ = Aωe
−iωuM +Bωe

−iωvM , φ = AΩe
−iΩuR +BΩe

−iΩvR (1.81)

for normalisation constants Aω, Bω, AΩ, BΩ. We fix ω,Ω > 0 and consider only positive
frequency modes. Hence we can define the field operator in two different ways

φ̂ =

∫ ∞
0

dω
{
Aωe

−iωuM âω +Bωe
−iωvM b̂ω +A∗ωe

iωuM â†ω +B∗ωe
iωvM b̂†ω

}
=

∫ ∞
0

dΩ
{
AΩe

−iΩuR âΩ +BΩe
−iΩvR b̂Ω +A∗Ωe

iΩuR â†Ω +B∗Ωe
iΩvR b̂†Ω

}
, (1.82)

where âω, b̂ω, âΩ, b̂Ω are annihilation operators, and â†ω, b̂
†
ω, â
†
Ω, b̂
†
Ω are creation operators.

The annihilation and creation operators are related by Bogoliubov transformations

âΩ =

∫ ∞
0

dω[αΩωâω − βΩωâ
†
ω] (1.83)

where αΩω, βΩω are Bogoliubov coefficients satisfying the normalisation condition∫ ∞
0

dω (αΩωα
∗
Ω′ω − βΩωβ

∗
Ω′ω) = δ(Ω− Ω′). (1.84)

The Bogoliubov coefficients are non-zero, and defined in [14, eq. 3.36]. The Bogoli-

ubov transform for the creation operator â†Ω is found simply by taking the Hermitian

conjugate of (1.83). Similar transformations to (1.83) exist for b̂Ω, b̂
†
Ω.

The different annihilation operators define different vacuum states. The Minkowski
vacuum |M〉 is the zero eigenvector of the annihilation operators âω, b̂ω, i.e.

âω|M〉 = b̂ω|M〉 = 0. (1.85)

The Rindler vacuum |R〉 is defined as the zero eigenvector of the annhilation operators
âΩ, b̂Ω, i.e.

âΩ|R〉 = b̂Ω|R〉 = 0. (1.86)
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The vacua |M〉 and |R〉 are different. We can see this by computing the number of
Rindler particles in the Minkowski vacuum and showing that this is nonzero. This is
done by calculating the expectation value of the number operator N̂Ω ≡ â†ΩâΩ in the
Minkowski vacuum:

〈N̂Ω〉 =〈M |â†ΩâΩ|M〉

=〈M |
(∫

dω[α∗Ωωâ
†
ω − β∗Ωωâω]

)(∫
dω′[αΩω′ âω′ − βΩω′ â

†
ω′ ]

)
|M〉

=

∫
dω|βΩω|2. (1.87)

Thus, an accelerated observer will detect particles in |M〉 and, similarly, an inertial
observer will detect particles in |R〉.
This is the Unruh effect. When spacetime is curved, two observers will have different
notions of “time”. This choice of time leads to two different definitions of positive
frequency, and thus two different definitions of vacuum state. Therefore, different
choices of time lead to different vacua.

When we have a black hole, we can find three different types of vacuum state - the
Boulware vacuum |B〉 [37], the Hartle-Hawking vacuum |H〉 [38], and the Unruh vac-
uum |U〉 [35] (see the introduction of [39] for a brief comparison of the three states).
To explain these a little more, it is easiest to consider the example of 2-dimensional
Schwarzschild spacetime.

1.2.3 Vacuum states on two-dimensional Schwarzschild

Schwarzschild spacetime is one of the simplest solutions of Einstein’s equations to con-
tain a black hole. We consider it here to demonstrate the existence of multiple vacua,
and to allow us to elaborate on the properties of these vacua. In two-dimensions, the
metric is conformally flat:

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2, (1.88)

where M is the black hole mass. The spacetime is globally hyperbolic and has an event
horizon at rh = 2M . A conformal diagram for the spacetime is shown in Figure 1.3.

We shall refer to the coordinates (t, r) used in (1.88) as the Schwarzschild coordinates.
We transform to null coordinates (u, v) by writing

u = t− r∗, v = t+ r∗ (1.89)

where r∗ is the tortoise coordinate defined by

dr∗

dr
=

1

1− 2M
r

⇒ r∗ = r + 2M ln
( r

2M
− 1
)
. (1.90)
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V
= −∞

U
=
∞

r h
=

2M
,
U

=
0

r
h =

2M
,
V

=
0

V
=∞

U
=
−∞

Σ

I +
I

I −
I

i+

i−

i0

I +
IV

I −
IV

H+
I

H−
I

H+
IV

H−
IV

r = 0

r = 0

IIV

II

III

Figure 1.3: The conformal diagram for Schwarzschild spacetime. Region I corresponds
to the spacetime exterior, whilst region II corresponds to the black hole interior, region
III the white hole interior, and region IV a parallel universe. The horizon rh and the
singularity r = 0 are labelled. The values of the Kruskal coordinates (U, V ) are given
along the horizons and null infinities. The spacetime is globally hyperbolic - a Cauchy
surface Σ is shown.

The metric is then given by

ds2 = −
(

1− 2M

r

)
du dv (1.91)

where r can now be treated as a function of u and v. These coordinates only cover the
black hole exterior (region I in Figure 1.3). We can cover the whole spacetime with the
Kruskal coordinates (U, V ), defined by

U = −4Me−u/4M , V = 4Mev/4M . (1.92)

The metric in the Kruskal coordinate system is then given by

ds2 = −2M

r
e−r/2MdUdV (1.93)

and we can define temporal and spatial Kruskal coordinates by

T =
U + V

2
, X =

V − U
2

. (1.94)

The wave equation for a massless scalar field is conformally invariant in two dimensions,
which means in both coordinate systems we have(

∂2

∂t2
− ∂2

∂r∗2

)
φ = 0, (1.95)(

∂2

∂T 2
− ∂2

∂X2

)
φ = 0. (1.96)
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H+
I

H−I

I +
I

I −
I

(a) “In”-Schwarzschild modes

H+
I

H−I

I +
I

I −
I

(b) “Up”-Schwarzschild modes

Figure 1.4: The “in”-Schwarzschild modes start at past null infinity I −I and travel
inwards towards the future horizon H+

I , whilst the “up”-Schwarzschild modes begin at
the past horizon H−I and travel upwards towards the future null infinity I +

I . Note
that this is only true in two dimensions - in higher dimensions, modes get scattered,
and “in”- and “up”-modes can end on both H+

I and I +
I .

Note that this is not true in four-dimensions; the wave equation can be solved in both
coordinate systems, but is not conformally invariant, so analysis of both is a little more
involved. The two-dimensional case is considered here to make our analysis as simple
as possible.

The Boulware state

We shall begin by solving (1.95) to find the following mode solutions (which we shall
call Schwarzschild modes),

φupS = Aupω exp[−iωu], (1.97)

φinS = Ainω exp[−iωv], (1.98)

for ω ∈ R>0 and Aupω , Ainω normalisation constants. We use the subscript S since
the modes are written in terms of Schwarzschild coordinates. We call φupS the “up”-
Schwarzschild modes because these travel upwards from the past horizon H−I and to-
wards future null infinity I +

I . Similarly, the φinS are referred to as “in”-Schwarzschild
modes because they travel inwards towards the black hole (see Figure 1.4).

Now, to calculate normalisation constants Aupω and Ainω , we need to integrate over a
Cauchy surface for region I. The actual values of these normalisation constants is not
so important for the discussion here, but the calculation of them provides a useful
example of evaluating scalar products. We can approximate our Cauchy surface by
integrating over Σ = H−I ∪I −I - strictly speaking, the Cauchy surface will be spacelike
and arbitrarily close to Σ. Each part of this surface has a different normal attached
to it. The normal to H−I points in the V -direction and the normal to I −I points in
the U -direction. The scalar product (1.63) requires unit normals, but H−I and I −I are
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both null, implying that their normals must also be null. This means that we cannot
define a unit normal, because any normal nµ to Σ will have nµnµ = 0.

So how do we integrate over a null surface? We follow the working in [40] and define a
hypersurface Σ by putting a restriction on the coordinates

f(xα) = 0. (1.99)

The unit normal nα is then defined by

nα =
εf,α

|gµνf,µf,ν |1/2
(1.100)

where ε = −1 if Σ is spacelike, and ε = +1 if Σ is timelike. The inclusion of ε ensures
that nα points in the direction of increasing f [40]. When Σ is null, then gµνf,µf,ν = 0,
and the unit normal is undefined, as expected.

For a non-null surface, the line element is then defined by

dΣµ =
√−geµdy (1.101)

where y are intrinsic coordinates on Σ and

eµ =
∂xµ

∂y
(1.102)

is a vector tangent to curves contained in Σ.

For a null surface, we define eα = −f,α to be the unit normal, where a negative sign is
used to ensure that eα is future pointing when f is increasing towards the future. The
choice of f does not affect our work here; whilst it is possible, for example, to rescale
f , it is the choice of orthonormal basis that defines the integrals in (1.108) rather than
the choice of f [40].

It is useful to write our Schwarzschild modes in terms of Kruskal coordinates (U, V ):

φupS =Aupω e
−iω(−4M) ln(−U/4M)Θ(−U), (1.103)

φinS =Ainω e
−iω(4M) ln(V/4M)Θ(V ), (1.104)

where we have used the Heaviside function to help specify the regions on which the
modes are non-trivial. To make the algebra a little easier to deal with, we let

Ũ = U/4M, Ṽ = V/4M, ω̂ = 4Mω (1.105)

so that

φupS =Aupω e
iω̂ ln(−Ũ)Θ(−Ũ) (1.106)

φinS =Ainω e
−iω̂ ln(Ṽ )Θ(Ṽ ). (1.107)
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The integral is taken over Σ = H−I ∪I −I ,

〈φupS (x;ω), φupS (x;ω′)〉 =i

∫
I−I

(φup∗S (x;ω)
←→
∂µφ

up
S (x;ω′))eµ1

√−g dy

+ i

∫
H−I

(φup∗S (x;ω)
←→
∂µφ

up
S (x;ω′))eµ2

√−g dy (1.108)

where eµ1 and eµ2 are unit normals to I −I and H−I respectively and coordinate y =
{Ũ , Ṽ }. On I −I , we have φupS = 0 so we can ignore the first integral in (1.108). The
unit normal (n2)µ = −f,µ where, on H−I , f(Ũ , Ṽ ) = Ṽ = 0, so

(n2)Ṽ = −1
(n2)Ũ = 0

}
⇒ (n2)Ṽ = 0

(n2)Ũ = − r
M e

r/2M .
(1.109)

The scalar product (1.108) therefore becomes

〈φupS (x;ω), φupS (x;ω′)〉 = −i
∫ 0

−∞
(φup∗S (x;ω)

←→
∂Ũφ

up
S (x;ω′))

(
− r

2M
er/2M

)√−g dŨ .
(1.110)

After some rearranging, and making the replacement X = ln(−Ũ), we find

〈φupS (x;ω), φupS (x;ω′)〉 =

∫ ∞
−∞

Aup∗ω Aupω′ (ω̂ + ω̂′)e−i(ω̂−ω̂
′)XdX

= 2πAup∗ω Aupω′ (ω + ω′)δ(ω′ − ω). (1.111)

For modes to be normalised, we therefore need to set

Aupω =
1√
4πω

. (1.112)

The norm of the “in”-Schwarzschild modes is calculated in a similar way. The Cauchy
surface can be chosen as before, but now φinS = 0 on H−I , and we have to consider the
unit normal (n1)µ, where

(n1)Ṽ = − r

M
er/2M , (n1)Ũ = 0. (1.113)

The integration over I −I proceeds in a very similar way to the previous case, and we
find

Ainω =
1√
4πω

. (1.114)

We can use the “up”- and “in”-Schwarzschild modes (1.97-1.98) to build field operators:

φ̂S =

∫ ∞
0

dω{âupω φupS + âinω φ
in
S + âup†ω φup∗S + âin†ω φin∗S }. (1.115)
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The annihilation operators âupω , âinω define the Boulware vacuum state [37],

âupω |B〉 = 0, âinω |B〉 = 0. (1.116)

We can calculate Wightman function in the Boulware state by noting that

φ̂S |B〉 =

∫ ∞
0

dω
{
âup†ω φup∗S + âin†ω φin∗S

}
|B〉, (1.117)

〈B|φ̂S =

∫ ∞
0

dω〈B|
{
âupω φ

up
S + âinω φ

in
S

}
, (1.118)

and so

GB(x, x′) = 〈B|φ̂S(x)φ̂S(x′)|B〉

=

∫ ∞
0

dω

∫ ∞
0

dω′〈B|
{
âupω φ

up
S (x;ω) + âinω φ

in
S (x;ω)

}
×
{
âup†ω′ φ

up∗
S (x′;ω′) + âin†ω′ φ

in∗
S (x′;ω′)

}
|B〉. (1.119)

We can use the CCR (1.15) to commute the annihilation and creation operators and
thus obtain

GB(x, x′) =

∫ ∞
0

dω

∫ ∞
0

dω′〈B|B〉δ(ω−ω′)
{
φupS (x;ω)φup∗S (x′;ω′) + φinS (x;ω)φin∗S (x′;ω′)

}
.

(1.120)
The Boulware state is normalised such that 〈B|B〉 = 1, and we obtain a mode expression
for the Boulware Wightman function GB(x, x′):

GB(x, x′) =

∫ ∞
0

dω
{
φupS (x)φup∗S (x′) + φinS (x)φin∗S (x′)

}
. (1.121)

Substituting in (1.97-1.98) we obtain the Wightman function in the Boulware state

GB(x, x′) =

∫ ∞
0

dω
1

4πω

{
e−iω(u−u′) + e−iω(v−v′)

}
. (1.122)

From the point of view of a far away observer, the Boulware vacuum contains no
particles, and is as empty as possible at infinity [41]. As a result, 〈B|Tµν |B〉 → 0 as
r →∞. This is not the case on the horizon. The expectation value of the SET in the
Boulware state diverges as r → rh [1]. The state is appropriate for the description of
vacuum polarisation around a cold star with radius larger than the event horizon [42].
The Boulware vacuum is invariant under time reversal.

The Hartle-Hawking state

We now solve the wave equation in Kruskal coordinates (1.96), to find a different set
of mode functions,

φupK = Bup
Ω exp[−iΩU ] (1.123)

φinK = Bin
Ω exp[−iΩV ]. (1.124)
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Figure 1.5: The “in”-Kruskal modes and “up”-Kruskal modes cover the entire space-
time.

We refer to these mode solutions as the “up” and “in”-Kruskal modes, labelled with a
subscript K. We fix the frequency Ω > 0, and consider only positive frequency modes.
These modes are defined over the entire spacetime (see Figure 1.5).

The normalisation constants Bup
Ω , Bin

Ω are determined by taking a scalar product over
a Cauchy surface in a similar way to the calculation performed in the previous section.
Since the modes are defined over the entire spacetime, the Cauchy surface is now
approximated by a null hypersurface Σ = I −I ∪H−I ∪I −IV ∪H−IV . The normalisation
constants are found to be

Bin
Ω =

1√
4πΩ

, Bup
Ω =

1√
4πΩ

. (1.125)

We can write the Kruskal modes (1.123-1.124) in terms of a linear combination of
“up”- and “in”-Schwarzschild modes φupS , φ

in
S , as well as unphysical “down”- and “out”-

Schwarzschild modes φdown∗S , φout∗S defined on region IV. These unphysical modes are
defined by taking the time reverse complex conjugates of (1.103-1.104):

φdownS = (AupΩ )∗e−4MiΩ ln(U/4M)Θ(U), (1.126)

φoutS = (AinΩ )∗e4MiΩ ln(−V/4M)Θ(−V ). (1.127)
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(b) “Down”-Schwarzschild modes

Figure 1.6: The “out”-Schwarzschild modes start at future null infinity I +
IV and travel

into the white hole horizon H−IV , whilst the “down”-Schwarzschild modes begin at the
black hole horizon H+

IV and travel towards the past null infinity I −IV .

The “down”-Schwarzschild modes travel from the black hole horizon H+
IV to past null

infinity I −IV , whilst the “out”-Schwarzschild modes travel from future null infinity I +
IV

into the white hole, passing through H−IV (see Figure 1.6).

The Kruskal modes can then be defined via

φupK =Dup
Ω (φupS + e−4MπΩφdown∗S ), (1.128)

φinK =Din
Ω (φinS + e−4MπΩφout∗S ) (1.129)

for some constants Dup
Ω , Din

Ω where φupS , φ
in
S are defined as in (1.103, 1.104) but with

ω → Ω. These modes are positive frequency for all Ω ∈ R. This fact is evident
from [43, App. H], which proves the following:

∫ ∞
−∞

dU e−ipU
[
e−iq lnUΘ(U) + e−πqe−iq ln(−U)Θ(−U)

]
= 0, (1.130)

for all p > 0, q ∈ R, where Θ(U) is the Heaviside step function. This means that

e−iq lnUΘ(U) + e−πqe−iq ln(−U)Θ(−U) (1.131)

has positive frequency with respect to U for all q ∈ R. Comparing (1.128, 1.129) with
(1.130), we can see that this means both φupK , φ

in
K are also both positive frequency with

respect to Kruskal time for all Ω ∈ R.

The normalisation constants Dup
Ω are determined by taking the scalar product of the
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positive frequency “up”-Kruskal modes, that is

〈φupK (x; Ω), φupK (x; Ω′)〉
= Dup

Ω Dup
Ω′ 〈φ

up
S (x; Ω) + e−4MπΩφdown∗S (x; Ω), φupS (x; Ω′) + e−4MπΩ′φdown∗S (x; Ω)〉

= Dup
Ω Dup

Ω′

{
〈φupS (x; Ω), φupS (x; Ω′)〉+ e−4MπΩ〈φdown∗S (x; Ω), φupS (x; Ω′)〉

+e−4MπΩ′〈φupS (x; Ω), φdown∗S (x; Ω′)〉+ e−4Mπ(Ω+Ω′)〈φdown∗S (x; Ω), φdown∗S (x; Ω′)〉
}

= Dup
Ω Dup

Ω′

{
δ(Ω− Ω′)− e−4Mπ(Ω+Ω′)δ(Ω− Ω′)

}
, (1.132)

where we have used the fact that the scalar product is linear, and also the fact that both
the “up”- and “down”-Schwarzschild modes are normalised (that is, φupS are normalised
to +1, and φdown∗S are normalised to −1). To normalise the “up”-Kruskal modes, we
set

Dup
Ω = (e8MπΩ − 1)−1/2 =

e−2MπΩ

(2 sinh(4MπΩ))1/2
. (1.133)

A similar calculation for φinK gives

Din
Ω = (1− e−8MπΩ)−1/2 =

e2MπΩ

(2 sinh(4MπΩ))1/2
. (1.134)

Using the Kruskal modes (1.128, 1.129) to define a field operator, we find

φ̂K =

∫ ∞
−∞

dΩ {b̂upΩ φupK + b̂inΩ φ
in
K + b̂up†Ω φup∗K + b̂in†Ω φin∗K } (1.135)

where the annihilation operators b̂upΩ , b̂inΩ define the Hartle-Hawking vacuum state [38],

b̂upΩ |H〉 = 0, b̂inΩ |H〉 = 0. (1.136)

The construction of the Wightman function in the Hartle-Hawking state follows that
of the previous calculation (1.119 - 1.121), except this time we take the expectation of
the Kruskal modes (1.128, 1.129) rather than the Schwarzschild modes:

GH(x, x′) = 〈H|φ̂K(x)φ̂K(x′)|H〉 =

∫ ∞
−∞

dΩ
{
φupK (x)φup∗K (x′) + φinK (x)φin∗K (x′)

}
.

(1.137)

We now substitute the representations for the Kruskal modes in terms of Schwarzschild
modes (1.128-1.129). We are only interested in the Wightman function in region I,
where φdownS , φoutS are zero. The Wightman function can therefore be written as

GH(x, x′) =

∫ ∞
−∞

dΩ

{
e−4MπΩ

2 sinh(4MπΩ)
φup∗S (x)φupS (x′) +

e4MπΩ

2 sinh(4MπΩ)
φin∗S (x)φinS (x′)

}
(1.138)
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which matches [1, eq.5] (see also (1.149)), although note that Candelas works in four-
dimensions, and so there are extra terms involving the angular coordinates.

In the coincidence limit, we can write

GH(x, x) =

∫ ∞
0

dΩ coth(4MπΩ)
{
|φupS |2 + |φinS |2

}
, (1.139)

where we recover the thermal factor coth(4MπΩ), which corresponds to the coth factor
in the thermal Green’s function (1.44). This thermal factor shows that the Hartle-
Hawking state is not a vacuum state in the Lorentzian background.

The Hartle-Hawking vacuum state is defined across the entire spacetime, and has an
ingoing and outgoing thermal flux at null infinity [1]. Closer examination shows that
the ingoing flux is equal to the outgoing flux. This means that the Hartle-Hawking
state models a black hole in unstable thermal equilibrium. It is regular on the horizon
and is therefore the relevant state for black hole thermodynamics. Like the Boulware
vacuum, the Hartle-Hawking vacuum is also invariant under time reversal [44].

Thermality and regularity on the horizon is vital when it comes to performing calcu-
lations on Euclidean black holes. Once we Euclideanise, the only state that we can
perform calculations on is the Hartle-Hawking state. The Euclidean Schwarzschild
metric is found by performing a Wick rotation (1.45),

ds2 =

(
1− 2M

r

)
dτ2 +

(
1− 2M

r

)−1

dr2. (1.140)

To avoid a conical singularity on the horizon, we need to impose periodicity in imaginary
time τ . To see why this is, near the horizon we write

(
1− 2M

r

)
= f(r) = (r− rh)f ′(rh)

and the Euclidean metric becomes

ds2 = (r − rh)f ′(rh)dτ2 +
1

(r − rh)f ′(rh)
dr2. (1.141)

Setting x = 2(r − rh)1/2(f ′(rh))−1/2, with dx = ((r − rh)f ′(rh))−1/2dr, the Euclidean
metric is

ds2 =
1

4
(f ′(rh))2x2dτ2 + dx2. (1.142)

Now we let T = 1
2f
′(rh)τ = κτ , where

κ =
1

2
f ′(rh) (1.143)

is the surface gravity, and so
ds2 = x2dT 2 + dx2. (1.144)

To avoid any conical singularities, we must have T periodic with period 2π. This means
that we impose periodicity in imaginary time τ , so that τ ∈ (0, 2π

κ ), and therefore we
are in a thermal state with inverse temperature T−1 = 2π

κ . This is the Hartle-Hawking
state.
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The Unruh state

In order to define the Unruh vacuum state |U〉 [35], we build a new field operator, φ̂U
by taking a linear combination of the Schwarzschild and Kruskal field modes written in
Kruskal coordinates, given by (1.103, 1.104) and (1.128, 1.129) respectively. Our new
field operator is therefore defined by

φ̂U =

∫ ∞
0

dω {d̂inω φinS + d̂in†ω φin∗S }+

∫ ∞
−∞

dω {d̂upω φupK + d̂up†ω φup∗K } (1.145)

which can now be written entirely in terms of Schwarzschild modes using (1.128, 1.129).
The associated annihilation operators define the Unruh vacuum state,

d̂inω |U〉 = 0, d̂upω |U〉 = 0. (1.146)

The Wightman function in the Unruh state is

GU (x, x′) =

∫ ∞
−∞

dω
{

Θ(ω)φinS (x)φin∗S (x′) + φupK (x)φup∗K (x′)
}

=

∫ ∞
0

dω

{
φinS (x)φin∗S (x′) +

e−4Mπω

2 sinh(4Mπω)
φupS (x)φup∗S (x′)

}
, (1.147)

where the Heaviside function Θ(ω) is used because the “in”-Schwarzschild modes are
not defined for ω < 0. The Wightman function (1.147) matches [1, eq.5] (see also
(1.150)), albeit in two-dimensions.

The Unruh state has no incoming flux in the past but exhibits Hawking radiation at
future infinity [3]. Due to this emission of radiation, we say that the black hole is
“evaporating”. We assume, however, that despite the radiation escaping, the black
hole remains the same size. This is a good approximation, especially for large black
holes where the hole decreases in size at such a slow rate that the change is virtually
insignificant. Unlike the Boulware and Hartle-Hawking vacua, the Unruh vacuum is
not invariant under time reversal.

One may notice that we could construct a fourth vacuum state using the φupS , φ
in
K

modes. This state (sometimes referred to as the future Unruh state) assumes an influx
of radiation at past infinity. This means that the radiation is effectively coming from
“nowhere”, and can be thought of as the white hole analogue of Hawking radiation.
This is an unphysical process, and so we do not consider this state any further in this
thesis. The flux of radiation in the external region of Schwarzschild spacetime for all
types of vacuum state is shown in Figure 1.7.

1.2.4 Results in four-dimensions

We now extend this analysis of Green’s functions to four-dimensions, quoting results
for the vacuum polarisation (see section 1.3.1) taken from [1] and results for the SET
taken from [3].
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Figure 1.7: The external region of Schwarzschild. The Hartle-Hawking state has
ingoing and outgoing radiation at null infinity (red arrows). The Unruh state has
outgoing radiation at future infinity (blue arrow). The future Unruh state has ingoing
radiation at past infinity, and is therefore unphysical (green arrow).

In four-dimensional Schwarzschild spacetime, the Wightman functions for massless,
conformally coupled scalar fields are given by [1]

GB(x, x′) = i
∑
`m

∫ ∞
0

dω

4πω
e−iω∆tY`m(θ, ϕ)Y ∗`m(θ′, ϕ′)

[−→
X `ω(r)

−→
X ∗`ω(r′)

+
←−
X `ω(r)

←−
X ∗`ω(r′)

]
, (1.148)

GH(x, x′) = i
∑
`m

∫ ∞
−∞

dΩ

4πΩ

[
e−iΩ∆tY`m(θ, ϕ)Y ∗`m(θ′, ϕ′)

−→
X `Ω(r)

−→
X ∗`Ω(r′)

1− e−4MπΩ

+e+iΩ∆tY ∗`m(θ, ϕ)Y`m(θ′, ϕ′)
←−
X `Ω(r)

←−
X ∗`Ω(r′)

1− e−4MπΩ

]
, (1.149)

GU (x, x′) = i
∑
`m

∫ ∞
−∞

dω

4πω
e−iω∆tY`m(θ, ϕ)Y ∗`m(θ′, ϕ′)

[−→
X `ω(r)

−→
X ∗`ω(r′)

1− e−4Mπω

+Θ(ω)
←−
X `ω(r)

←−
X ∗`ω(r′)

]
,

(1.150)

where Y`m(θ, ϕ) are spherical harmonics and the radial functions cannot be calculated
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analytically but have the asymptotic forms

−→
X `ω(r) ∼

{
r−1eiωr

∗
+
−→
A `ωr

−1e−iωr
∗
, r → 2M,

B`ωr
−1eiωr

∗
, r →∞, (1.151)

←−
X `ω(r) ∼

{
B`ωr

−1e−iωr
∗
, r → 2M,

r−1e−iωr
∗

+
←−
A `ωr

−1eiωr
∗
, r →∞, (1.152)

for constants
−→
A `ω,

←−
A `ω, B`ω. The tortoise coordinate r∗ is given in (1.90). Candelas

calculates the renormalised vacuum polarisation by keeping temporal coordinates split
and subtracting the Hadamard parametrix (this renormalisation scheme is explained in
greater detail in section 1.3.3). After renormalisation, the vacuum polarisation in each
of the three cases is given by [1]:

〈B|φ̂2|B〉ren =
1

16π2

∫ ∞
0

dω

ω

[ ∞∑
`=0

(2`+ 1)

[∣∣∣−→X `ω(r)
∣∣∣2 +

∣∣∣←−X `ω(r)
∣∣∣2]

− 4ω2

1− 2M/r

]
− M2

48π2r4(1− 2M/r)
,

(1.153)

〈H|φ̂2|H〉ren =
1

16π2

∫ ∞
0

dω

ω

[
coth(2Mπω)

∞∑
`=0

(2`+ 1)

[∣∣∣−→X `ω(r)
∣∣∣2 +

∣∣∣←−X `ω(r)
∣∣∣2]

− 4ω2

1− 2M/r

]
− M2

48π2r4(1− 2M/r)
,

(1.154)

〈U |φ̂2|U〉ren =
1

16π2

∫ ∞
0

dω

ω

[ ∞∑
`=0

(2`+ 1)

[
coth(2Mπω)

∣∣∣−→X `ω(r)
∣∣∣2 +

∣∣∣←−X `ω(r)
∣∣∣2]

− 4ω2

1− 2M/r

]
− M2

48π2r4(1− 2M/r)
.

(1.155)

Candelas claims [1] that, at infinity, the leading order behaviour of (1.153) is determined
by the “finite” term, that is

〈B|φ̂2|B〉ren → −
M2

48π2r4(1− 2M/r)
as r →∞. (1.156)

This tells us that, far from the black hole, the Boulware vacuum behaves like the
Minkowski vacuum, where

〈M |φ̂2|M〉 = 0. (1.157)

Similarly, for the Hartle-Hawking state [1],

〈H|φ̂2|H〉ren →
1

192π2M2
as r → 2M (1.158)

〈H|φ̂2|H〉ren →
T 2
H

12
as r →∞ (1.159)
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which corresponds to a black hole in thermal equilibrium at Hawking temperature
TH = 1/8πM .

Christensen and Fulling [3] calculate the renormalised SET on Schwarzschild space-
time. Rather than using Hadamard renormalisation (see section 1.3.2) and subtracting
renormalisation terms, they solve the conservation equations (1.51), making assump-
tions about symmetry of the spacetime. From (1.53), it is clear that 〈T̂µν〉 must satisfy
(1.51). This method allows Christensen and Fulling to find the SET without the need
to do a full computation. They write the SET as [3]

T νµ = T (1)ν
µ + T (2)ν

µ + T (3)ν
µ + T (4)ν

µ . (1.160)

The tensors T
(i)ν
µ can be written, in coordinates (t, r∗, θ, ϕ), where r∗ is the tortoise

coordinate (1.90),

T (1)ν
µ =


− 1
r2

(
1− 2M

r

)−1
H(r) + 1

2T
α
α (r) 0 0 0

0 1
r2

(
1− 2M

r

)−1
H(r) 0 0

0 0 1
4T

α
α (r) 0

0 0 0 1
4T

α
α (r)


(1.161)

T (2)ν
µ =

K

M2r2

(
1− 2M

r

)−1


1 −1 0 0
1 −1 0 0
0 0 0 0
0 0 0 0

 (1.162)

T (3)ν
µ =


− 1
r2

(
1− 2M

r

)−1
G(r)− 2Θ(r) 0 0 0

0 1
r2

(
1− 2M

r

)−1
G(r) 0 0

0 0 Θ(r) 0
0 0 0 Θ(r)


(1.163)

T (4)ν
µ =

Q

M2r2

(
1− 2M

r

)−1


−1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 (1.164)

with functions

Θ(r) = T θθ (r)− 1

4
Tαα (r) (1.165)

H(r) =
1

2

∫ r

2M
(r′ −M)Tαα (r′)dr′ (1.166)

G(r) = 2

∫ r

2M
(r′ − 3M)Θ(r′)dr′. (1.167)

The parameters Q and K are constants of integration. The results given in equations
(1.161 - 1.167) are for a general field theory. The trace Tαα (r) is fixed when we specialise
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to a particular field theory. Whilst the trace of a classical SET for a conformally
invariant field theory should be zero, we obtain a trace anomaly through renormalisation
since we discard direction-dependent terms [3].

In four-dimensions, trace anomalies take the general form [45]

Tαα = k1C
2 + k2

(
RαβRαβ −

1

3
R2

)
+ k32R+ k4R

2 (1.168)

where C2 = CαβγδCαβγδ is the Weyl tensor, and constants ki are determined once the
type of field theory is fixed. For a massless, conformally coupled scalar field, we set [3]

k1 = k2 = k3 =
1

2880π2
, k4 = 0 (1.169)

and so, for a Schwarzschild black hole,

Tαα =
1

60π2

M2

r6
. (1.170)

The Boulware vacuum |B〉 should represent essentially empty space for large radius,
so we therefore expect the components of T νµ to vanish as r →∞, prompting us to set
K = 0, i.e. [3]

〈B|T νµ |B〉 = T (1)ν
µ + T̃ (3)ν

µ + T (4)ν
µ . (1.171)

The component T̃
(3)ν
µ is identical to T

(3)ν
µ except we have replaced G(r) with G̃(r),

where

G̃(r) = 2

∫ r

∞
(r′ − 3M)Θ(r′)dr′. (1.172)

This change in the limits of the integral amounts merely to a redefinition of the constant
Q, but is necessary to ensure that the Boulware state vanishes as r →∞.

The Hartle-Hawking vacuum |H〉 is regular on the horizon and invariant under time
reversal, prompting us to set Q = K = 0 and thus [3]

〈H|T νµ |H〉 = T (1)ν
µ + T (3)ν

µ . (1.173)

Finally, in the Unruh vacuum |U〉, the expectation of the SET is of the form [3]

〈U |T νµ |U〉 = T (1)ν
µ + T (2)ν

µ + T (3)ν
µ (1.174)

since the state is regular at the future horizon, implying Q = 0. We need K 6= 0 for
outgoing Hawking flux.
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1.3 Renormalisation schemes

1.3.1 Expectation values

In this section, we look at various renormalisation schemes that can be used to calculate
the vacuum polarisation (VP) 〈φ̂2〉 and the SET 〈T̂µν〉. The VP can be thought of as a
building block for the SET (it has been referred to in the literature as the “poor man’s
stress-energy tensor” [1]). It can be calculated as the limit

〈φ̂(x)2〉 = lim
x′→x
〈φ̂(x)φ̂(x′)〉. (1.175)

The product of two operators at the same spacetime point is divergent, whereas if we
keep points separated (i.e. without taking the limit x′ → x) we find that the quantity
is regular. In fact, we can see from (1.27) that

〈φ̂(x)2〉 = i lim
x′→x

GF (x, x′) (1.176)

where GF (x, x′) is the Feynman Green’s function of the Klein-Gordon equation.

The SET can be found by acting on the Feynman Green’s function by a second order
differential operator Tµν(x, x′) and then taking the coincidence limit [4], i.e.

〈T̂µν〉 = i lim
x′→x

Tµν(x, x′)[GF (x, x′)]. (1.177)

In order to obtain a finite answer from the calculation of VP (or SET), we have to
renormalise. This involves performing some sort of subtraction scheme which allows us
to cancel out any divergences and leave us with something from which we can glean
physical information. There exist many different regularisation schemes, and it is often
difficult to know which schemes are consistent and give an identical answer. In 1977,
Wald [31,46] gave a list of axioms which must be satisfied by the renormalised SET (the
original sources give five axioms, one of which was later dropped from the list [47]):

• Conservation. ∇µ〈T̂µν〉ren = 0.

• Casuality holds. For a fixed “in” state, 〈T̂µν〉ren at a point p depends only on
the causal past of p. Similarly, for a fixed “out” state, 〈T̂µν〉ren depends only on
the future of p.

• Consistency with the formalism. For a pair of orthogonal states 〈A|B〉 = 0,
the matrix element 〈A|T̂µν |B〉ren agrees with the formal expression.

• Normal ordering on Minkowski. The renormalised SET 〈T̂µν〉ren should
coincide the normal ordered vacuum expectation value of the SET on Minkowski,
i.e. 〈T̂µν〉ren = : 〈T̂µν〉 :.
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The first axiom is satisfied by the classical SET (1.51). If this condition were not
satisfied, then (1.53) would not be consistent. The second axiom simply demands
that causality follows the usual rules expected in relativity (basically, an event occur-
ring in the past cannot depend on something that happens in the future). The third
of these axioms is important since it is necessary that the renormalised SET bears
some resemblance to the unrenormalised SET. The matrix element 〈A|T̂µν |B〉 gives
a straightforward, unambiguous answer if 〈A|B〉 = 0, and so it is only reasonable to
assume that 〈A|T̂µν |B〉ren gives the same answer. The final axiom ensures that renor-
malisation carries over to Minkowski space, where normal ordering gives a sensible,
physically reasonable prescription for 〈T̂µν〉.
These axioms led to a uniqueness theorem [31]:

Wald’s Uniqueness Theorem Let T̂µν , T̂
(1)
µν be defined such that their expectation

values satisfy Wald’s axioms. Define

Ξ̂µν = T̂µν − T̂ (1)
µν . (1.178)

Then

(i) Ξ̂µν is a multiple of the identity operator.

(ii) ∇µ〈Ξ̂µν〉 = 0.

(iii) 〈Ξ̂µν〉 depends only on the metric and its derivatives at the spacetime point x.

The above uniqueness theorem shows that any renormalisation scheme applied to 〈T̂µν〉
will be unique only up to the addition of a locally conserved geometric tensor.

1.3.2 Hadamard renormalisation

Hadamard renormalisation [4,48–56] involves subtracting the singular part of the Hadamard
form of the Green’s function from the unrenormalised Green’s function. Hadamard
renormalisation can be applied to Green’s functions in both the Euclidean and Lorentzian
backgrounds. In this thesis, we shall apply Hadamard renormalisation to the Euclidean
Green’s function GE(x, x′) (1.46) in four-dimensions. The Hadamard form for an arbi-
trary number of dimensions is explored in [4]. An object is said to satisfy the Hadamard
condition if it can be written in the form of a Hadamard parametrix GS(x, x′) when
points x and x′ are in a normal neighbourhood. Thus, GS(x, x′) will capture all the
divergences of the original object in the limit x′ → x. In order to fully appreciate the
Hadamard form, we first introduce two important geometrical quantities, Synge’s world
function σ(x, x′) and the van Vleck-Morette determinant ∆(x, x′).

Synge’s world function σ(x, x′) is half the square of geodesic length between two points
x and x′. Here, we must assume that x and x′ belong to a normal neighbourhood. Then,
there exists a unique geodesic z(λ), where λ is an affine parameter, that connects x to
x′. The geodesic z(λ) must lie within the same normal neighbourhood as x and x′. We
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suppose z(λ0) = x and z(λ1) = x′ and define the world function as

σ(x, x′) =
1

2
(λ1 − λ0)

∫ λ1

λ0

gµν ż
µżνdλ (1.179)

where żµ refers to differentiation with respect to affine parameter λ. The world function
σ(x, x′) satisfies [4, 57]

2σ = σ;µσ;µ. (1.180)

We also note that if x and x′ are timelike separated, then σ(x, x′) < 0, if x and x′

are null separated then σ(x, x′) = 0 and if x and x′ are spacelike separated, then
σ(x, x′) > 0.

The van Vleck-Morette determinant ∆(x, x′) was introduced by van Vleck in 1928 to aid
the evaluation of the classical limit of quantum mechanics [58]. This determinant was
then developed by Morette in [59] for use in the approximation of Feynman integrals.
It gives us a measure of the rate at which geodesics that start at x′ diverge away from,
or converge toward, each other [60]. It is defined by [60]

∆(x, x′) = g−1/2(x) det{∇xµ∇x
′
ν σ(x, x′)}g−1/2(x′) (1.181)

where g(x) = det{gµν(x)} and ∇xµ refers to the covariant derivative taken with respect
to xµ. It satisfies the boundary condition

lim
x′→x

∆(x, x′) = 1 (1.182)

and the differential equation
∆−1(∆σ;µ);µ = 4. (1.183)

From (1.183), we can derive

2σ = 4− 2∆−1/2(∆1/2);µσ
;µ (1.184)

which will prove a useful defining equation for ∆.

The Hadamard form of the Feynman Green’s function is

GF (x, x′) = − i

4π2

(
U(x, x′)

σ(x, x′) + iε
+ V (x, x′) ln[σ(x, x′) + iε] +W (x, x′)

)
(1.185)

where U(x, x′), V (x, x′) and W (x, x′) are symmetric biscalars. To determine these
biscalars, we must substitute (1.185) into (1.58). This is done in Appendix A. We find

U(x, x′) = ∆1/2(x, x′), (1.186)

V (x, x′) =
∞∑
n=0

Vn(x, x′)σn(x, x′), (1.187)

W (x, x′) =

∞∑
n=0

Wn(x, x′)σn(x, x′) (1.188)
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where the Vn satisfy the recurrence relation

0 = 2(n+ 1)Vn+1;µσ
;µ + 2(n+ 1)(n+ 2)Vn+1

− 2(n+ 1)Vn+1∆−1/2(∆1/2);µσ
;µ + (2−m2 − ξR)Vn, (1.189)

with V0 given by

(2−m2 − ξR)∆1/2 + 2V0;µσ
;µ + 2V0 − 2V0∆−1/2(∆1/2);µσ

;µ = 0. (1.190)

For the Wn we have the recurrence relation

(2−m2 − ξR)Wn + 2(n+ 1)Wn+1;µσ
;µ + 2(n+ 1)(n+ 2)Wn+1

−2(n+ 1)Wn+1∆−1/2(∆1/2);µσ
;µ + 2Vn+1;µσ

;µ

+(4n+ 6)Vn+1 − 2Vn+1∆−1/2(∆1/2);µσ
;µ = 0 (1.191)

with W0 unrestrained by the recursion relations [4]. The freedom to choose W0 corre-
sponds to the freedom to add solutions of the homogeneous wave equation to GF (by
changing the boundary conditions that prescribe GF ) [61].

It can be noted, therefore, that the Vn(x, x′) can be determined uniquely and are purely
geometric objects whilst the Wn(x, x′) cannot be uniquely defined and are not purely
geometric. In particular, this means that the Hadamard expansion (1.185) is made up
of two parts, a purely geometric part that diverges in the coincidence limit, given by

GS(x, x′) =
1

4π2

(
∆1/2(x, x′)
σ(x, x′) + iε

+ V (x, x′) ln
[
`20σ(x, x′) + iε

])
(1.192)

where the subscript S stands for “singular” and we have added an arbitrary length
scale `0 to make the term inside the logarithm dimensionless, and a regular part given
by

GR(x, x′) =
1

4π2
W (x, x′). (1.193)

We call GS the Hadamard parametrix; this encapsulates all of the divergences in
〈φ̂2〉. The Hadamard parametrix can be divided into two parts, the direct part of
the Hadamard parametrix, given by

∆1/2(x, x′)
σ(x, x′) + iε

, (1.194)

and the tail of the Hadamard parametrix, given by

V (x, x′) ln[`20σ(x, x′) + iε]. (1.195)

The renormalised VP can then be calculated by subtracting the Hadamard parametrix
from the Feynman Green’s function

〈φ̂2〉ren = lim
x′→x

{iGF −GS} (1.196)
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or, equivalently, in the Euclidean background

〈φ̂2〉ren = lim
x′→x
{GE −GS}. (1.197)

In the case of a massless, conformally coupled scalar field (m = 0, ξ = 1
6), perform-

ing a short-distance expansion reveals V ∼ O(∆x4), meaning that the log term in
(1.192) does not contribute in the coincidence limit [4]. In chapter 5, when we employ
Hadamard renormalisation on an anti-de Sitter black hole spacetime, we only consider
massless, conformally coupled scalar fields, and so do not have to worry about calculat-
ing the tail of the Hadamard parametrix. This term must be considered when looking
at a scalar field of general coupling or trying to extend the VP to the calculation of the
renormalised SET.

When we use the Hadamard parametrix GS to renormalise the SET, ambiguities
are introduced thanks to the arbitrary lengthscale `0 [4]. Replacing iGF (x, x′) by
iGF (x, x′)−GS(x, x′) in (1.177), we obtain

〈T̂µν〉ren = lim
x′→x

Tµν(x, x′)[iGF (x, x′)−GS(x, x′)]. (1.198)

An ambiguity arises from the tail of the Hadamard parametrix, since this contains an
arbitrary lengthscale `0. To extract this ambiguity, we treat GS(x, x′) as a function of
`0 (and therefore write GS(x, x′) = GS(x, x′; `0)) and write

GS(x, x′; `0) = GS(x, x′; `1) + δGS(x, x′; `0, `1) (1.199)

where

δGS(x, x′; `0, `1) =
1

4π2
V (x, x′) ln

[
`20σ(x, x′) + iε

`21σ(x, x′) + iε

]
. (1.200)

Then the renormalised SET is

〈T̂µν〉ren = lim
x′→x

Tµν(x, x′)[iGF (x, x′)−GS(x, x′; `1)− δGS(x, x′; `0, `1)]

= lim
x′→x

{
Tµν(x, x′)[iGF (x, x′)−GS(x, x′; `1)] + Υµν(x, x′; `0, `1)

}
, (1.201)

where Υµν(x, x′; `0, `1) = −TµνδGS(x, x′; `0, `1). In accordance with Wald’s uniqueness
theorem (1.178), Υµν is a local, conserved, geometric tensor, and hence the definition
of the renormalised SET is unique only up to the addition of such a tensor. It is
important to note that this ambiguity will still play a role in the four-dimensional,
massless, conformally coupled case since, although V (x, x′) vanishes at low orders and
we do not need to consider it in our calculations, it is not identically zero and so there
is still a need to introduce an arbitrary lengthscale.

In (pure) anti-de Sitter (adS) spacetime, it is found that [62] V (x, x′) = 0 identically
for four-dimensional, massless, conformally coupled scalar fields. This means that there
is no renormalisation ambiguity in adS spacetime, which can be explained by the fact
that the spacetime is maximally symmetric. Note that this will not be the case for
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asymptotically adS black hole spacetimes, such as Schwarzschild-adS considered in
part III.

The subtraction in (1.196) is by no means a trivial matter, and there have been various
methods devised to ease this computation. We present a few of these methods here
and compare their advantages and shortcomings.

1.3.3 The Candelas and Howard method

Candelas and Howard [1,2,63,64] were among the first to implement Hadamard renor-
malisation in their calculation of the VP for the Schwarzschild black hole. They use
a special case of Hadamard renormalisation, referred to in the literature as DeWitt-
Schwinger renormalisation [65, 66], which writes the Hadamard parametrix and Feyn-
man Green’s function in a representation that allows for divergences to be captured by
“DeWitt-Schwinger” terms GDS . These terms arise from a particular (non-zero) choice
of the biscalar W (x, x′) [67]. The Candelas-Howard method was extended to general
spherically symmetric black holes by Anderson, Hiscock and Samuel [68,69].

The Candelas-Howard method works in the Euclidean background and keeps coordi-
nates split, writing

GE(τ, r, θ, ϕ; τ ′, r′, θ′, ϕ′) =
κ

8π2

∞∑
n=−∞

einκ∆τGn(r, θ, ϕ; r′, θ′, ϕ′) (1.202)

where ∆τ = τ−τ ′, the parameter κ is associated with the temperature T of the thermal
state via κ = 2πT and Gn is given by

Gn(r, θ, ϕ; r′, θ′, ϕ′) =
∞∑
`=0

gn`(r, r
′)h`(θ, ϕ; θ′ϕ′). (1.203)

The function h`(θ, ϕ; θ′, ϕ′) is an angular function that will be determined based on the
background geometry of the spacetime. In a spherically symmetric spacetime, this will
usually take the form of spherical harmonics. The form of h`(θ, ϕ; θ′, ϕ′) is unimportant
for this discussion, however.

The function Gn is a three-dimensional Green’s function of the scalar field equation
with associated 3-dimensional metric of signature (+ + +). This means that Gn can
be written in Hadamard form in three-dimensions (see [4] for more information on the
three-dimensional Hadamard form), i.e.

Gn(x,x′) =
1

2π

(
U(x,x′)

(2σ(x,x′))1/2
+W (x,x′)

)
(1.204)

where x = (r, θ, ϕ). In three-dimensions, the biscalar U(x,x′) is written

U(x,x′) =
∞∑
n=0

Un(x,x′)σn(x,x′) (1.205)
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where
U0(x,x′) = ∆1/2(x,x′) (1.206)

and the Un(x,x′) satisfy the recurrence relation

(n+ 1)(2n+ 1)Un+1 + (2n+ 1)Un+1;µσ
;µ − (2n+ 1)Un+1∆−1/2∆1/2

;µ σ;µ

+(2−m2 − ξR)Un = 0, (1.207)

whilst the Wn(x,x′) satisfies the recurrence relation

(n+ 1)(2n+ 3)Wn+1 + 2(n+ 1)Wn+1;µσ
;µ − 2(n+ 1)Wn+1∆−1/2∆1/2

;µ σ;µ

+(2−m2 − ξR)Wn = 0.
(1.208)

The freedom to choose W0 corresponds to the freedom to add solutions of the three-
dimensional homogeneous wave equation to Gn.

The Hadamard parametrix is formed the same way as in four-dimensions - the non-
geometric W (x,x′) can be ignored. The limits r′ → r, ϕ′ → ϕ are taken, and points
remain split in the angular coordinate θ. Provided the metric is spherically symmetric,
we can set θ′ = 0 without loss of generality, and write both Gn and the Hadamard
parametrix GS as a series in θ:

Gn(r, θ, ϕ; r, 0, ϕ) =
X(r, ϕ)

θ
+O(1), (1.209)

GS(r, θ, ϕ; r, 0, ϕ) =
U(r, θ, ϕ; r, 0, ϕ)

2π(2σ(r, θ, ϕ; r, 0, ϕ))1/2
=
X(r, ϕ)

θ
+O(1), (1.210)

for some function X(r, ϕ). Both Gn and GS have the same coefficients at order θ−1,
and so, performing the subtraction

Gn(r, θ, ϕ; r, 0, ϕ)−GS(r, θ, ϕ; r, 0, ϕ) = O(1) (1.211)

leaves us with a finite result in the coincidence limit θ → 0. This cancels the divergences
in the `-sum, but Candelas and Howard are not quite finished yet, because they pick
up further divergences from the n-sum. To cancel these divergences out, they subtract
more terms,

〈φ̂2〉ren =
κ

8π2
lim

∆τ→0

( ∞∑
n=−∞

einκ∆τ (Gn −GS)−GDS
)
. (1.212)

These terms, GDS , were found by Christensen [41] using the DeWitt-Schwinger expan-
sion for the Green’s function [65,66]. The difficulty arises in performing the subtraction∑

n e
inκ∆τ (Gn − GS) − GDS , since

∑
n e

inκ∆τ (Gn − GS) and GDS are both divergent
in the limit ∆τ → 0. We assume GDS can be split into two parts (this decomposi-
tion is not a guarantee but can be shown to hold for spherically symmetric, black hole
spacetimes [1]):

GDS = G∆τ +Gr. (1.213)
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The first part G∆τ captures all the terms in GDS that have a dependence on ∆τ , and
so must be kept within the limit. The terms in Gr do not depend on ∆τ and so can
be considered separately. Note that G∆τ may also depend on r.

This means that the renormalised VP can be separated into two parts,

〈φ̂2〉ren = 〈φ̂2〉numeric + 〈φ̂2〉analytic (1.214)

where

〈φ̂2〉numeric =
κ

8π2
lim

∆τ→0

( ∞∑
n=−∞

einκ∆τ (Gn −GS)−G∆τ

)
, (1.215)

〈φ̂2〉analytic =− κ

8π2
Gr. (1.216)

The 〈φ̂2〉analytic has a fairly simple form and so can be computed relatively easily. The

〈φ̂2〉numeric can only be computed numerically, as the name suggests. We do this by
writing G∆τ as a mode sum over n, i.e.

G∆τ =

∞∑
n=−∞

einκ∆τG∆τ,n, (1.217)

which leaves us with

〈φ̂2〉numeric =
κ

8π2
lim

∆τ→0

( ∞∑
n=−∞

einκ∆τ (Gn −GS −G∆τ,n)

)
. (1.218)

The sum in (1.218) can be approximated using a WKB expansion which gives rapid
convergence in the large n limit [70]. Unfortunately, the WKB approximation suffers
near the event horizon due to nonuniformity in r. In this case, more modes near the
horizon would be required to achieve a good level of accuracy, and this can be compu-
tationally expensive. If we are working in a black hole spacetime, this approximation
is useful when we are considering regions in the far field, but fails to capture correct
behaviour close to the horizon.

Breen and Ottewill [71] tried to rectify this by using Green-Liouville (G-L) asymptotics.
The G-L approximation allows us to write 〈φ̂2〉 as a sum of terms that are manifestly
finite on the horizon. This provides us with better accuracy close to the horizon,
although it is very complicated. Due to this complexity, Breen and Ottewill use the
G-L approximation for the n = 0 mode only, and the WKB expansion for all other
modes. This allows for the calculation of not only the renormalised VP, but also the
renormalised SET [72,73].

The Candelas-Howard method has been applied to asymptotically flat Schwarzschild
black hole spacetimes [2,63,74–76], to a charged, rotating black hole [77], and to asymp-
totically adS black holes [10,78].
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1.3.4 The extended coordinates method

More recently, Breen and Taylor [11, 12] developed a mode-by-mode renormalisation
prescription for the VP on a spherically symmetric black hole spacetime. This prescrip-
tion allows for much quicker convergence, and is known as the “extended coordinates”
method. This method makes several significant departures from the Candelas-Howard
method. The method is developed for a general spherically symmetric spacetime, de-
scribed by the metric

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dθ2 + sin2 θ dϕ2), (1.219)

for some function f(r). Breen and Taylor use the four-dimensional Hadamard form (see
section 1.3.2) and renormalise by taking the Hadamard parametrix from the Euclidean
Green’s function whilst keeping points split in multiple directions. Even with this
point-splitting, the subtraction remains difficult. Breen and Taylor overcome this by
writing the world function σ (1.179) as [11,12],

σ =
∑
ijk

σijk(r)w
i∆rjsk (1.220)

where w and s are the “extended coordinates” defined by

w2 =
2

κ2
(1− cosκ∆τ), s2 = f(r)w2 + 2r2(1− cos γ), (1.221)

where κ is the surface gravity (1.143) and f(r) appears in the metric (1.219). The
parameter γ is the geodesic distance on a sphere, defined by

cos γ = cos θ cos θ′ + sin θ sin θ′ cos ∆ϕ. (1.222)

The extended coordinates are treated as O(ε) ∼ O(∆x). The coefficients σijk can then
be determined by substituting (1.220) into (1.180) and equating powers of ε.

The van Vleck-Morette determinant (1.181) can be expanded in the extended coordi-
nates in a similar way

∆1/2(x, x′) =
∑
ijk

uijk(r)w
i∆rjsk. (1.223)

The coefficients uijk are found by substituting (1.223) into (1.184).

Bringing radial coordinates together i.e. ∆r → 0, the direct part of the Hadamard
parametrix can then be expanded in the following way:

∆1/2

σ
=

m∑
i=0

i∑
j=−i
Dij(r)

w2i+2j

s2j+2
+O(ε2m) (1.224)

where the coefficients Dij(r) are determined by expanding in terms of extended co-
ordinates (w, s) and comparing coefficients. We split the sum into coefficients with
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non-negative j, which we call D(+)
ij (r), and coefficients with negative j, which we call

D(−)
ij (r), and so write

∆1/2

σ
=

m∑
i=0

i∑
j=0

D(+)
ij (r)

w2i+2j

s2j+2
+

m∑
i=0

i∑
j=1

D(−)
ij (r)

w2i−2j

s−2j+2
+O(ε2m). (1.225)

The coefficients of D(−)
ij (r) are polynomial in s2, w2, except for D(−)

11 (r). Since these

terms will vanish at coincidence, when s2 → 0 and w2 → 0, we can ignore these terms
and simply write

∆1/2

σ
=

m∑
i=0

i∑
j=0

D(+)
ij (r)

w2i+2j

s2j+2
+D(−)

11 (r) +O(ε2m). (1.226)

The reason for writing the Hadamard parametrix in this way is that we can assume the
terms w2i+2j

s2j+2 have a mode-sum representation corresponding to GE (1.202, 1.203), i.e.

w2i+2j

s2j+2
=

∞∑
n=−∞

einκ∆τ
∞∑
`=0

h`(θ, ϕ; θ′, ϕ′)Ψn`(i, j|r) (1.227)

where Ψn`(i, j|r) are regularisation parameters that can be determined by inverting
(1.227) using our definitions for (w, s) in (1.221). The tail of the Hadamard parametrix,
given by V (x, x′) ln[`20σ(x, x′)], can be rearranged in a similar way. Using our extended
coordinates (w, s), we can write

V (x, x′) log(`20σ(x, x′)) = log(`20s
2)
m−1∑
i=0

i∑
j=0

T (l)
ij (r)s2i−2jw2j

+
m−1∑
i=1

i∑
j=0

T (p)
ij (r)s2i−2jw2j

+

m−1∑
i=1

m−1−i∑
j=0

T (r)
ij (r)s−2j−2w2i+2j+2 +O(ε2m log ε) (1.228)

where the coefficients Tij(r) are divided into three types: T (l)
ij (r) are terms in the

expansion of the tail that contain a logarithm, T (p)
ij are terms in the expansion of the

tail that are polynomial in s2 and w2 and T (r)
ij (r) are terms in the expansion of the tail

that are rational in s2 and w2. Note that there is a factor of log(`20)T (l)
ij (r) related to

the renormalisation ambiguity that is absorbed into the T (p)
ij (r) coefficients.

As before, terms polynomial in s2 and w2 will vanish at coincidence, and so can be
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ignored, leaving us with

V (x, x′) log(`20σ(x, x′)) = log(`20s
2)
m−1∑
i=0

i∑
j=0

T (l)
ij (r)s2i−2jw2j

+ T (r)
10 (r)s−2w4 +O(ε2m log ε). (1.229)

We assume that logarithmic terms have a mode-sum representation corresponding to
(1.202, 1.203), i.e.

log(`20s
2)s2i−2jw2j =

∞∑
n=−∞

einκ∆τ
∞∑
`=0

h`(θ, ϕ; θ′, ϕ′)χn`(i, j|r) (1.230)

where the regularisation parameters χn`(i, j|r) are found by inverting (1.230). Putting
everything together, the Hadamard parametrix (1.192) can be written

GS(x, x′) =
1

4π2

 ∞∑
n=−∞

einκ∆τ
∞∑
`=0

h`(θ, ϕ; θ′, ϕ′)


m∑
i=0

i∑
j=0

D(+)
ij (r)Ψn`(i, j|r)

+

m−1∑
i=0

i∑
j=0

T (l)
ij (r)χn`(i, j|r)

+D(−)
11 (r) + T (r)

10 (r)Ψn`(2, 0|r)

 . (1.231)

Then the renormalised VP can be calculated by

〈φ̂2〉ren =
1

4π2
lim
x′→x

( ∞∑
n=−∞

einκ∆τ
∞∑
`=0

h`(θ, ϕ; θ′, ϕ′)

×

κ2 gn`(r, r′)−
m∑
i=0

i∑
j=0

D(+)
ij (r)Ψn`(i, j|r)−

m−1∑
i=0

i∑
j=0

T (l)
ij (r)χn`(i, j|r)




− 1

4π2
D(−)

11 (r)− 1

4π2
T (r)

10 (r)Ψn`(2, 0|r). (1.232)

Divergences can now be subtracted mode-by-mode, where every term in the sum is man-
ifestly finite. This allows for much quicker convergence than in the Candelas/Howard
method, because there is no need to rely on high-order WKB expansions, and no diffi-
culties in adding numerical terms to analytical terms.

The extended coordinates method can be applied to arbitrary dimensions very nicely.
This method has been applied to higher-dimensional black holes, namely the Schwarzschild-
Tangherlini spacetime in [11,12]. A similar method has been developed by Freitas and
Casals [79], which involves splitting in multiple directions and writing the Hadamard
parametrix as a mode-sum, although this method works in the Lorentzian background.
This method was applied to Bertotti-Robinson spacetime to calculate the vacuum po-
larisation in the Boulware vacuum state [79].
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In chapter 5, we will use the extended coordinates method to renormalise VP on anti-de
Sitter topological black holes for massless, conformally coupled scalar fields. Since the
logarithmic terms in (1.192) do not contribute in the coincidence limit for massless,
conformally coupled scalar fields, we therefore do not need to calculate the regulari-
sation parameters χn`(i, j|r) in order to arrive at the results presented in section 5.6.
When we try to extend this to consider scalar fields with general coupling constant, we
run into problems with the calculation of the parameters χn`(i, j|r) - see section 5.7 for
a description of these difficulties.

1.3.5 The Levi and Ori method

The Candelas-Howard and extended coordinates renormalisation schemes are only vi-
able on the Euclidean background. Levi, Ori and collaborators [80–85] developed a
renormalisation scheme on the Lorentzian background, since time-dependent back-
grounds do not always admit a Euclidean sector, and the Candelas-Howard method can-
not always be used. Attempts to use the Candelas-Howard method on the Lorentzian
background introduce some difficulties. For large n modes, there exists a turning point
at r = rturn(n). Below this turning point, r < rturn(n), the radial function grows expo-
nentially and above this turning point, r > rturn(n), the radial function is essentially
oscillatory. Therefore, in these two different regions, i.e. r < rturn(n) and r > rturn(n),
we must use different WKB approximations. These WKB approximations break down
and diverge at r → rturn, and so we must use another intermediate approximation to
bridge between these [80]. This matching is manageable at low order, but becomes
increasingly difficult as we move to higher-order WKB.

Levi and Ori’s method does not encounter these problems as they do not use a WKB ap-
proximation. They renormalise by point-splitting and subtract the DeWitt-Schwinger
terms. They consider two different types of point-splitting methods: t-splitting, which
involves splitting in the time-direction and requires invariance under time translation,
and angular splitting, splitting in the θ-direction, which requires axial symmetry. Both
variants can be used to renormalise the VP, but t-splitting is insufficient in renormali-
sation of the SET [81].

We begin with the t-splitting method, where r′ → r, θ′ → θ, ϕ′ → ϕ and the points
are split in the temporal direction only. In the Lorentzian background, the two-point
function looks like

〈φ̂(t, r, θ, ϕ), φ̂(t′, r, θ, ϕ)〉 =

∫ ∞
0

F (ω, r)eiω∆tdω (1.233)

where F (ω, r) is the result of computing the sum over ` andmmodes. In the coincidence
limit ∆τ → 0, the integral of F (ω, r) over ω diverges, but it is regularised in (1.233)
by the eiω∆t factor. To renormalise, Levi and Ori [80] subtract the DeWitt-Schwinger
terms GDS as in the Candelas-Howard method:

〈φ̂2〉ren = lim
∆t→0

[∫ ∞
0

F (ω, r)eiω∆tdω −GDS(∆t)

]
. (1.234)
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With this point-splitting, the DeWitt-Schwinger terms can be written in the form

GDS(∆t) = a(r)∆t−2 + b(r) ln(∆t) + c(r) +O(∆t) (1.235)

for some functions a(r), b(r), c(r) that are not important for this brief description of
the method. The Laplace transform is used to write

∆t−2 = −
∫ ∞

0
ωeiω∆tdω, (1.236)

ln(∆t) = −
∫ ∞

0

1

1 + ω
eiω∆tdω + const.+O(∆t ln ∆t). (1.237)

The constant terms in the above equation can simply be absorbed into c(r), and we
can then write

〈φ̂2〉ren = lim
∆t→0

∫ ∞
0

Freg(ω, r)e
iω∆tdω − c(r) (1.238)

where

Freg(ω, r) = F (ω, r)− a(r)ω − b(r)

1 + ω
. (1.239)

Since the singular piece of F (ω, r) has been removed, one can assume that the inte-
gral over Freg(ω, r) will converge (Levi and Ori show that this is exactly the case for
Schwarzschild, but are unable to prove this in a general sense [80]), and thus

〈φ̂2〉ren =

∫ ∞
0

Freg(ω, r)dω − c(r). (1.240)

It is important to note that throughout this t-splitting regime, spherical symmetry has
not been assumed, and if the spacetime were not spherically symmetric, everything
would carry over as before, with the added possibility that F (ω, r) (and thus a(r), b(r)
and c(r)) may also depend on θ, ϕ.

The angular-splitting method is done in the limit t′ → t, r′ → r, ϕ′ → ϕ. Levi and
Ori [81] keep the angular coordinate θ split by writing θ′ → θ + ε for some ε > 0.
Spherical symmetry is now assumed, and the two-point function is written as

〈φ̂(t, r, θ, ϕ), φ̂(t, r, θ+ε, ϕ)〉 =
∞∑
`=0

∫ ∞
0

dω
∑̀
m=−`

Y`m(θ, ϕ)Y ∗`m(θ+ε, ϕ)|ψω`(r)|2, (1.241)

where Y`m are spherical harmonics (obtained thanks to spherical symmetry) and ψω`
are radial functions. The order of summation over ` and integration over ω is not
important. They evaluate the sum over m first,

∑̀
m=−`

Y`m(θ, ϕ)Y ∗`m(θ + ε, ϕ) =
2l + 1

4π
P`(cos ε) (1.242)

and hence

〈φ̂(t, r, θ, ϕ), φ̂(t, r, θ + ε, ϕ)〉 =

∞∑
`=0

2l + 1

4π
P`(cos ε)

∫ ∞
0
|ψω`(r)|2dω. (1.243)
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Now, some care must be taken with the integral over ω. This is not affected at all by
the splitting in θ, and so actually diverges. Levi and Ori [81] regularise by introducing a
further point-splitting in t, then adding and subtracting the ` = 0 modes, which results
in two integrals that turn out to be finite as t′ → t. After this rather complicated
process, they are left with [81]

〈φ̂2〉ren = lim
ε→0

{ ∞∑
`=0

2`+ 1

4π
P`(cos ε)F (`, r)−GDS(ε)

}
(1.244)

where F (`, r) is the result from the regularised integral over ω and they have subtracted
the DeWitt-Schwinger counter-terms as before. They now use a Legendre decomposi-
tion to bring these terms inside the `-sum, writing

GDS(ε) =
∞∑
`=0

2`+ 1

4π
P`(cos ε)Fsing(`, r) +W (r) (1.245)

where W (r) is some function independent of ` (the actual form of W (r) is unimportant
for this brief discussion). The VP is then

〈φ̂2〉ren = lim
ε→0

{ ∞∑
`=0

2`+ 1

4π
P`(cos ε)Freg(`, r)−W (r)

}
(1.246)

where
Freg(`, r) = F (`, r)− Fsing(`, r). (1.247)

In order to perform the sum over `, they write Freg as

Freg(`, r) = A(`, r) +B(`, r) (1.248)

where B(`, r) is defined such that∑
`=0

(2`+ 1)B(`, r)P`(cos ε) = 0 for small ε, and
∑
`=0

(2`+ 1)B(`, r) diverges. (1.249)

Then the renormalised VP can be written

〈φ̂2〉ren =

∞∑
`=0

2`+ 1

4π
A(`, r)−W (r) (1.250)

where the summation over ` should now be finite. Levi and Ori show that (1.240) and
(1.250) are equivalent when applied to Schwarzschild spacetime [81].

The Levi-Ori method is very important, as it allows one to calculate VP for a variety
of different states (the Euclidean background automatically fixes the vacuum state to
be Hartle-Hawking). However, the integrals performed over ω in (1.243) are extremely
subtle - they diverge due to oscillatory behaviour at large ω. This is dealt with by
multiplying by an exponentially-decaying prefactor, which damps the oscillations. We
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then take the prefactor to zero, leaving everything convergent. This method works well
for the calculations that Levi and Ori perform in Schwarzschild spacetime, and has
also been generalised for Reissner-Nordström spacetime, where the method allows for
calculations to be performed inside the horizon [84]. The method has also been applied
to Kerr spacetime [83], where calculations in the Euclidean background are often very
complicated.

1.4 Summary

In this chapter, we have introduced various concepts that are very important in building
a QFT in a non-flat spacetime. We began in section 1.1 with a discussion of QFT in
Minkowski, where scalar field modes satisfy the homogeneous wave equation (1.5). We
then defined various Green’s functions of the inhomogeneous wave equation (1.18) on
the Lorentzian background (1.20 - 1.29), associated with vacuum expectation values.
Thermal expectation values are associated with thermal Green’s functions (1.34), and
are periodic in time (1.35, 1.36). By performing a Wick rotation (1.45), we are able to
also find a Green’s function in the Euclidean background (1.46). All of these concepts
carry over to curved spacetime, as we saw in section 1.2.

In section 1.2, we considered field modes that satisfied the homogeneous Klein-Gordon
equation (1.56), and Green’s functions that satisfied the inhomogeneous Klein-Gordon
equation (1.58). We defined the notion of a Cauchy surface (1.62), and why the exis-
tence of a Cauchy surface is needed to allow us to calculate scalar products (1.63). It
therefore seems impossible to quantise in a spacetime that is not globally hyperbolic.
We shall see in chapter 3 that we can quantise in spacetimes that do not admit Cauchy
surfaces (such as anti-de Sitter space).

In section 1.2.2, we explored the Unruh effect, showing that there exist different types
of vacua in curved spacetime. In Schwarzschild spacetime, there exist three different
types of vacuum state, known as the Boulware vacuum, the Hartle-Hawking vacuum
and the Unruh vacuum. In two-dimensional Schwarzschild, we calculated the Green’s
functions in all three vacuum states, and used these calculations to discuss the quali-
tative differences between the vacua.

To calculate the VP and SET, we need to use renormalisation schemes to remove diver-
gent terms. In section 1.3, we discussed three of these schemes. The Candelas-Howard
scheme (section 1.3.3) is applied on the Euclidean background using a WKB approxima-
tion for the radial parts of the field modes. The extended coordinates method of Breen
and Taylor (section 1.3.4) uses a mode-by-mode regularisation scheme that allows for
much quicker convergence, since there is no reliance on high-order WKB expansions.
The Levi and Ori method (section 1.3.5) is applied on the Lorentzian background,
which is beneficial when it comes to the study of multiple vacuum states. In chapter 5,
we shall use the extended coordinates method to calculate vacuum expectation values
on anti-de Sitter black holes. This is because the extended coordinates method is well-
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adapted to exploit all of the symmetries of the spacetime, and overall, a more elegant
method than the renormalisation scheme of Levi and Ori.



Part II

Anti-de Sitter spacetime
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Chapter 2

Anti-de Sitter spacetime

Anti-de Sitter spacetime (see [86–90]) is characterised by negative cosmological constant
(Λ < 0). This means that the expansion of spacetime is decelerating, and null rays can
reach the boundary of the spacetime in a finite affine parameter. As a result, we must
impose conditions on the timelike boundary.

In this thesis, we shall refer to “pure” anti-de Sitter spacetime as “adS”, the covering
space as “CadS” and the Poincaré domain of adS as “PadS”. Black hole adS spacetimes
are discussed in chapter 5, and shall be referred to as “SadS” (Schwarzschild-adS, con-
taining an uncharged black hole) and “RNadS” (Reissner-Nordström-adS, containing
a black hole with electric charge). In this chapter we shall look at the geometry of
adS, CadS and PadS, and their conformal diagrams. We shall save any comments on
quantization until the following chapters.

2.1 (Pure) adS

AdS can be visualised as a 4-dimensional hyperboloid in a 5-dimensional flat spacetime
E(2,3), a Euclidean space with two timelike coordinates. The equation for the four-
dimensional hyperboloid is

− (ξ0)2 + (ξ1)2 + (ξ2)2 + (ξ3)2 − (ξ4)2 = −L2 (2.1)

where ξ0, ξ4 are timelike coordinates, ξ1, ξ2, ξ3 are spacelike coordinates and L is the
adS lengthscale related to the cosmological constant by L2 = − 3

Λ . This spacetime is
shown in Figure 2.1 with two space dimensions suppressed.

The metric for the embedding space is [5, 86]:

ds2 = −(dξ0)2 + (dξ1)2 + (dξ2)2 + (dξ3)2 − (dξ4)2. (2.2)

47
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ξ4

ξ0

ξi

Figure 2.1: AdS space with two spatial dimensions suppressed. Worldlines around the
waist of the hyperboloid form closed timelike curves.

We can perform the following coordinate transformation:

ξ0 = L cos t sec ρ,

ξ1 = L tan ρ cos θ,

ξ2 = L tan ρ sin θ cosϕ, (2.3)

ξ3 = L tan ρ sin θ sinϕ,

ξ4 = L sin t sec ρ

where 0 ≤ ρ ≤ π
2 , 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. The time coordinate t ∈ (−π, π] is periodic

with period 2π, which means that we have closed timelike curves. These are timelike
worldlines that run in a loop, with the future leading into the past. Differentiating each
of the above expressions, we obtain

dξ0 = L(sin t sec ρ dt+ cos t sec ρ tan ρ dρ),

dξ1 = L(sec2 ρ cos θ dρ− tan ρ sin θ dθ),

dξ2 = L(sec2 ρ sin θ cosϕ dρ+ tan ρ cos θ cosϕ dθ − tan ρ sin θ sinϕ dϕ), (2.4)

dξ3 = L(sec2 ρ sin θ sinϕ dρ+ tan ρ cos θ sinϕ dθ + tan ρ sin θ cosϕ dϕ),

dξ4 = L(cos t sec ρ dt+ sin t sec ρ tan ρ dρ).

Substituting these into the metric (2.2) and using basic trigonometric identities, we
obtain

ds2 = L2 sec2 ρ[−dt2 + dρ2 + sin2 ρ(dθ2 + sin2 θ dϕ2)]. (2.5)
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The Penrose diagram for adS is shown in Figure 2.2a. A spacelike hypersurface Σ is
shown. The full domain of dependence D(Σ) (1.61) is not equal to the entire mani-
fold - in Figure 2.2a, D(Σ) is contained within the diamond-shaped wedges. In other
words, Σ is not a Cauchy surface, and adS is not globally hyperbolic [86]. Placing initial
conditions on Σ is not enough to make sure everything is uniquely defined across space-
time; we must also impose boundary conditions on I ,I ′. We shall discuss boundary
conditions in more detail when we look at quantisation in adS in chapter 3.

2.2 The covering space - CadS

The existence of closed timelike curves is very unappealing classically, but can also
cause us problems when attempting to quantise fields on adS (see chapter 3) as it can
be difficult to impose timelike periodicity on mode solutions. Therefore, it is often
useful to remove this periodicity. This amounts to “opening up” or “unwrapping” the
adS hyperboloid, which leaves us with the covering space, CadS (Figure 2.2b).

Further problems arise from the fact that CadS remains non-globally hyperbolic. We
will see in the next chapter that we can bypass this problem by mapping to the Einstein
Static Universe (ESU).

The ESU can be visualised as a 4-dimensional cylinder embedded in a 5-dimensional
Minkowski space [86], written

(η1)2 + (η2)2 + (η3)2 + (η4)2 = L2 (2.6)

where L is the radius of the cylinder. The metric for the embedding space is the
standard 5-dimensional Minkowski metric,

ds2 = −(dη0)2 + (dη1)2 + (dη2)2 + (dη3)2 + (dη4)2. (2.7)

Suppressing two spatial dimensions, ESU can be represented as the cylinder (η1)2 +
(η2)2 = L2. This visualisation is shown in Figure 2.3a, along with a Cauchy surface
Σ. Now, initial data can be uniquely evolved throughout the spacetime - the ESU
is globally hyperbolic. This will make our quantisation procedure in chapter 3 much
simpler.

To see the connection with CadS, we perform the following coordinate transformation:

η0 = Lt,

η1 = L sin ρ cos θ,

η2 = L sin ρ sin θ cosϕ, (2.8)

η3 = L sin ρ sin θ sinϕ,

η4 = L cos ρ,
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II ′

ρ = 0ρ = −π
2

ρ = π
2

t = −π

t = −π
2

t = 0

t = π
2

t = π

Σ

(a) Conformal diagram for adS

II ′

ρ = 0ρ = −π
2

ρ = π
2

t = −π

t = −π
2

t = 0

t = π
2

t = π

t = 3π
2

t = − 3π
2

(b) Conformal diagram for CadS

Figure 2.2: The conformal diagrams for (pure) adS and CadS. In adS, the time coor-
dinate t is periodic, with the lines t = π and t = −π being identified. The red curve
shows a possible closed timelike worldine. In CadS, periodicity is removed from the
time coordinate, and closed timelike curves no longer exist. Null rays are shown in blue.
A spacelike surface Σ is shown in adS and the domain of dependence D(Σ) (1.61) is
given by the surrounding diamond region. Boundary data must be specified at I ,I ′

to allow initial data specified on Σ to propagate uniquely into the future. The same
must also happen in CadS.
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ρ = 0

ρ = π

t = 2π

t = 0

t = −2π

Σ

(a) ESU cylinder

ρ = −π ρ = −π
2 ρ = 0 ρ = π

2
ρ = π

t = π

t = π
2

t = 0

t = π
2

t = π

(b) Conformal diagram for ESU

Figure 2.3: ESU is a globally hyperbolic spacetime [86], with Cauchy surface Σ. The
coordinate ρ is periodic with period 2π. The conformal diagram demonstrates the
mapping between ESU, CadS (red region) and adS (blue region). The arrows indicate
that ρ = −π is identified with ρ = π.
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where t ∈ (−∞,∞), ρ ∈ (−π, π], θ ∈ [0, π], ϕ ∈ (0, 2π]. The radial coordinate ρ is
periodic, as can be seen in Figure 2.3. In this coordinate system, the line element (2.7)
becomes

ds2 = L2[−dt2 + dρ2 + sin2 ρ (dθ2 + sin2 θ dϕ2)]. (2.9)

Comparing with the line element for adS (2.5), we can see that there exists a conformal
transformation between the two metrics:

gadSµν = Ω2gESUµν , Ω = sec ρ. (2.10)

This means that we can map from one spacetime to the other, provided that we also
alter the prescribed domains for each coordinate, i.e. we remove periodicity on the
radial coordinate ρ and alter the range of ρ such that ρ ∈ (−π/2, π/2) to pass to CadS
(note that the boundary of CadS is not part of the spacetime), and further impose
periodicity on time coordinate t to pass to adS. This is illustrated in Figure 2.3b.

The fact that ESU and CadS are conformally related will become very important once
we start to quantise. It is much more difficult to build a QFT in a spacetime that is
not globally hyperbolic, so in chapter 3, we shall begin by defining our QFT in ESU,
and then use our conformal transformation to map our classical field modes into adS.

2.3 The Poincaré patch - PadS

The Poincaré domain of adS (PadS) covers half of the full adS spacetime [91] and is
used extensively in the adS/CFT correspondence (see section 2.4).

To transform the embedding space metric (2.2) to suitable coordinates for the Poincaré
patch, we write [91]

ξ0 =
1

2z
(z2 + L2 + x̄2 − t2)

ξ1 = Lx1/z

ξ2 = Lx2/z (2.11)

ξ3 =
1

2z
(z2 − L2 + x̄2 − t2)

ξ4 = Lt/z

where x̄2 = (x1)2 + (x2)2. The metric for the Poincaré patch is then given by

ds2 =
L2

z2
(−dt2 + (dx1)2 + (dx2)2 + dz2). (2.12)

The Poincaré patch is conformally related to Minkowski space with conformal factor
Ω2 = L2/z2. The coordinate z is a radial coordinate and effectively splits the adS
spacetime into two regions (see Figure 2.4). We can write

1

z
=
ξ0 − ξ3

L2
. (2.13)
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z
=

0

z > 0

t > 0

t < 0

z > 0

z = +∞
t = −∞

z = +∞
t = +∞

Figure 2.4: The conformal diagram for the Poincaré domain of adS, PadS. The space-
time is divided into two regions, where radial coordinate z > 0 (the inner wedge) and
z < 0 (the outer triangles). The plane at z = 0 is a conformal timelike boundary [6].

Then the two regions are characterised by z > 0, i.e. ξ0 > ξ3, and z < 0, i.e. ξ0 < ξ3.
Each of these regions corresponds to half of the adS hyperboloid. The Poincaré patch
of adS refers to exactly one of these regions (usually the z > 0 patch is chosen).

There is a conformal, timelike boundary at z = 0. An obvious family of isometries
are those which transform {t, x1, x2} by an isometry of Minkowski space, but leave the
coordinate z invariant. These isometries form the Poincaré group and exactly give the
Poincaré symmetry on the boundary conformal field theory. This makes it the desirable
setting for the adS/CFT correspondence.

The construction of a quantum field theory on PadS therefore also requires boundary
conditions to be imposed on solutions to the Klein-Gordon equation (see, for example,
[6]). Boundary conditions are discussed in more detail in section 3.1.

2.4 Why is adS important? - The adS/CFT correspon-
dence

AdS spacetime has gained much interest in the literature in recent years, thanks to
its crucial role in the adS/CFT (conformal field theory) correspondence [92–98]. The
adS/CFT correspondence claims that supersymmetric Yang-Mills theory (SYM) in 4-
dimensional Minkowski is equivalent to a Type IIB closed superstring theory on adS5×
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S5 [97]. This means that there should exist some dictionary allowing us to translate
objects from one theory into the other. This potentially has huge consequences for
gravitational theories, since it may be easier to formulate certain quantities in one
theory and then translate to the other, allowing us to perform calculations that would
be too difficult or maybe even impossible otherwise.

To try to understand this correspondence a little more, we must first look at Yang-
Mills theories and supersymmetric theories [99]. Yang-Mills theories are theories of
interacting gauge fields. A gauge field is simply one that is invariant under gauge
transformations. These theories are used in the description of the standard model of
particle physics. We label Yang-Mills theories by their symmetry groups. For example,
U(N) Yang-Mills theory has gauge parameters which are elements of the group U(N),
N ×N matrices. SU(2)× U(1) Yang-Mills theory is equivalent to electroweak theory
which contains four gauge bosons: the photon γ and the massive gauge bosons W+,W−

and Z0 [98]. We can give three of these four bosons a mass by performing symmetry
breaking [100].

For a more realistic theory, we must include fermions as well. Fermions are matter
particles (electrons, protons, neutrons, etc.) with half-integer spin. Supersymmetry
is a symmetry that relates bosons to fermions. It offers us a way of unifying matter
and forces. It matches each particle with a superpartner whose spin differs by a half-
integer. For instance, an electron is matched with a selectron, which is a bosonic version
of the electron with the same mass. None of these superpartners have been observed in
experiments, and so it is believed that supersymmetry must be spontaneously broken
so that superpartners are allowed different masses.

It should be noted that these theories do not naturally include gravity. We instead
must put in gravity by hand, by assuming there exists a massless particle of spin-2,
called a graviton.

The fundamental objects of string theory are one-dimensional strings (see [101–104]
for overviews of string theory concepts). Vibrations of these strings at different res-
onant frequencies lead to different fundamental particles. Strings can be “open” or
“closed” [102]. An open string is a string with loose ends, whereas a closed string is
one where the loose ends are connected. A consistent open string theory must nec-
essarily include closed strings too, as it is possible for the two ends to join together
to form a closed string, and then separate again. On the other hand, a closed string
theory does not have to include open strings. Among excitations of closed strings,
there are massless states with spin two - gravitons [104]. Thus, gravity arises naturally
in string theory. A string theory with quantum states representing both bosons and
fermions is called a “superstring theory” [101]. In superstring theories, it is possible
to obtain unphysical states with negative norm, called ghosts. These ghosts decouple
from the string spectrum when two conditions are satisfied: (i) the number of spacetime
dimensions is 10, and (ii) the theory is supersymmetric [101].

In order to understand the differences between different types of superstring theories,
we must first introduce the idea of orientation and handedness. A string is described
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θ1 θ2

Momentum

Spin

String

(a) Superspace coordinates (θ1, θ2) have the same handedness.

θ1 θ2

Momentum

Spin

String

(b) Superspace coordinates (θ1, θ2) have opposite handedness.

Figure 2.5: Superspace coordinates have the property of handedness [102].

as oriented if it is possible to tell which way around the string you are travelling [102].
A string is unoriented if it is impossible to tell. The notion of handedness is a bit more
difficult to grasp.

We can describe the path of a string using a two-dimensional surface called a world-
sheet. This worldsheet is parametrised by coordinates τ , the proper time, and σ, a
lengthscale related to the length of the string. Coordinates (τ, σ) on the worldsheet are
mapped onto spacetime by functions Xµ(τ, σ). These functions (referred to as “string
coordinates”) are often not enough to describe the paths that our strings take. We
must also use “superspace coordinates” θA, where A runs from 1 to 2. The superspace
coordinates behave like spin-1

2 particles and can spin one of two ways - either with the
spin axis in the same direction as the string momentum, or with the spin axis in the
opposite direction to the string momentum.

Coordinates θ1 and θ2 have the property of handedness [102]. We say that they have
the same handedness if they spin in the same direction, and opposite handedness if
they spin in opposite directions (see Figure 2.5). When superspace coordinates have
opposite handedness, we can determine the direction of string momentum, and so the
string is oriented. When superspace coordinates have the same handedness, we cannot
use this to determine the direction of string momentum, and so the string can be either
oriented or unoriented. Due to boundary conditions, the only consistent open string
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theory has unoriented strings, meaning that superspace coordinates must have the same
handedness [102].

The types of string theories we find are [101,102]:

Name Open/Closed? Oriented? Handedness
Type I Open (+ closed) No Same
Type IIA Closed Yes Opposite
Type IIB Closed Yes Same

We previously claimed that Type IIB superstring theory on adS5 × S5 was equivalent
to SYM on four-dimensional Minkowski spacetime. However, since all superstring the-
ories are 10-dimensional, for this equivalence to work, those 10-dimensions must take
a particular form: five dimensions form a sphere S5, whilst the other five dimensions
form a non-compact adS spacetime, adS5. The 4-d Minkowski space of the CFT can
be thought of as the boundary of adS5 of the superstring theory [105].

The adS/CFT correspondence can be better understood from the perspective of the
holographic principle. This principle, conjectured by t’Hooft [106] and subsequently
developed by Susskind [105], claims that the total information content in a region of
spacetime is equivalent to a theory that lives on the surrounding surface. This principle
can be applied directly to adS since it is a spacetime with a boundary. Therefore a
theory of gravity in the bulk of adS is equivalent to a theory on the boundary.

The adS/CFT correspondence was proposed by Maldacena [92]. The theory is still un-
proven but has so far stood up to all theoretical work in this area. The correspondence
works both ways - the CFT in Minkowski tells us about gravity in adS, and vice versa.
It is very difficult to calculate thermal states in SYM, but black holes in the bulk of adS
have a temperature [107], and this is why analysis of black holes in adS (see chapter 5)
is particularly important.

2.5 Summary

In this chapter, we have introduced the concept of anti-de Sitter spacetimes - that
is, spacetimes with a negative cosmological constant Λ < 0. These spacetimes have
a timelike boundary, on which we must impose conditions to allow information to
propagate into the future.

In section 2.1, we saw that adS possesses closed timelike curves. By removing the
periodicity in the time coordinate, we obtain the covering space of adS, CadS. CadS is
conformally related to the Einstein Static Universe (see section 2.2), a fact which will
become important when we quantise in CadS.

We also discussed the Poincaré domain, PadS, which is the desired setting for the
adS/CFT correspondence. This is due to the fact that PadS is conformally related to
Minkowski space and therefore possesses many symmetries.
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We concluded with a brief discussion of the adS/CFT correspondence (section 2.4),
which related a conformal field theory on the boundary of adS to a theory of gravity
in the bulk.

In the following chapters, we will look at quantum field theory in adS. In chapter 3, we
will focus on CadS, whilst in chapters 5 and 6 we will look at black hole adS spacetimes,
introduced in chapter 4.



Chapter 3

Quantum field theory in adS

In this chapter, we look at quantization in adS. As discussed in section 2.1, adS is a
non globally hyperbolic spacetime which makes quantization rather difficult. Instead,
we quantize in ESU and map our scalar field modes to adS using a conformal trans-
formation. Recall that boundary conditions must be imposed on field modes to ensure
that data propagates uniquely into the future. As we shall see, there are different types
of boundary condition we can impose. Whilst Dirichlet boundary conditions are the
most popular in the literature, we choose to impose more general Robin boundary con-
ditions. The main aim of this chapter will be to explore the effect of Robin boundary
conditions on both vacuum and thermal expectation values in CadS. The work done in
this chapter is based on [7].

3.1 Previous work

Quantization in adS was first explored in [5], where they introduced the concepts of
reflective and transparent boundary conditions (see Section 3.2). We can choose to
impose reflective conditions using Dirichlet, Neumann or Robin boundary conditions.
Certain restrictions must be placed on the mass of scalar fields to ensure that mode
solutions are stable. We find that, for mode solutions to be stable, we must have

m2 > −d2/4, (3.1)

where d is the number of dimensions. Note that mode solutions can still be unstable
even when this bound is satisfied, depending on the conditions imposed at the boundary
i.e. this is a necessary but not sufficient condition for mode solutions to be stable. The
condition 3.1 is known as the Breitenlohner-Freedman bound [108,109]. It is important
to note that negative m2 solutions are allowed in adS (provided (3.1) is satisfied) since
adS includes a gravitational potential that gives negative m2 eigenstates a positive
energy. The Breitenlohner-Freedman bound (3.1) is automatically satisfied for massless,
conformally coupled scalar fields.

58
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Initial work following on from [5] focused on imposing Dirichlet conditions only (see
(3.12) for a definition of Dirichlet conditions). Vacuum expectation values are calcu-
lated in [110,111], where it is found that

〈φ̂2
D〉ren = − 1

48π2L2
(3.2)

for a massless, conformally coupled scalar field φ̂D with Dirichlet conditions imposed at
the boundary. The quantity is found to be constant, which is to be expected since the
scalar field respects the maximal symmetry of adS. Similarly, for Neumann conditions
(again, see (3.12) for a definition), the VP is given by [110]

〈φ̂2
N 〉ren =

5

48π2L2
. (3.3)

In this thesis, we would like to explore the effect of imposing Robin boundary conditions.
This breaks the maximal symmetry and so the calculation of vacuum expectation values
is more involved. Robin boundary conditions have been considered in the Poincaré
patch of adS (PadS) in [6,112,113]. PadS is conformally related to Minkowski space with
a boundary (see section 2.3), so the behaviour of expectation values in PadS is expected
to be similar to the behaviour of expectation values in the Casimir effect. However,
whilst the two-point functions for a scalar field are shown to be of Hadamard form
for all boundary conditions in PadS, it is found that, upon imposing Robin boundary
conditions, there exist bound state solutions to the Klein-Gordon equation; that is,
mode solutions that exponentially decay as we approach the boundary.

Robin conditions for the Casimir effect are considered in [114,115]. Suppose we impose
a boundary in Minkowski spacetime at some constant value of r given by r = r∞. It is
then found [115] that bound state solutions of the Klein-Gordon equation exist, as in
PadS. The renormalised Green’s functions with Dirichlet and Robin conditions imposed
(denoted GDCas and GRCas respectively) can be written in the form [114]

GDCas(x,x
′) = GD∞(x,x′) +O(r − r∞), (3.4)

GRCas(x,x
′) = GN∞(x,x′) +O(r − r∞), (3.5)

where GD∞, G
N
∞ are the Green’s functions evaluated on the boundary with Dirichlet

and Neumann conditions imposed respectively. As r → r∞, the two-point functions
approach the Neumann solution for all boundary conditions that are not Dirichlet.
Later, in section 3.6, we shall see that this is also the case in CadS.

Some work has already been carried out by imposing Robin boundary conditions in
adS and CadS. In [116], Dappiaggi, Ferreira and Marta show that CadS does not admit
bound state solutions, and so for massive scalar fields they are able to construct a 2-
point function for the vacuum state satisfying all Robin boundary conditions for which
the Hadamard condition is fulfilled. In adS, however, the presence of closed timelike
curves hinders the quantization scheme, and no two-point function exists, except for
one special value of mass, provided we use Neumann boundary conditions.
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Barroso and Pitelli [117] manage to avoid these difficulties by applying Robin boundary
conditions to just the ` = 0 mode. According to rules set out by Ishibashi and Wald
[118], this is allowed, but the physical relevance is not clear. Dirichlet conditions are
applied to all other modes, and then the VP and expectation values for the stress-
energy tensor are calculated. As we approach the boundary, these expectation values
tend towards the results obtained when Dirichlet conditions are imposed on all of the
field modes. This behaviour occurs for all Robin conditions except those equivalent to
Neumann.

Finally, in [119], the effect of Wick rotations on quantization in CadS is explored. This
is done for massive scalar fields only, with Dirichlet and Neumann boundary conditions
imposed. The results here seem to suggest that the long range behaviours (r →∞) of
Euclidean and Lorentzian theories differ drastically for sufficiently large mass. However,
it is not thought that the behaviours should be different for massless scalar fields, which
is all that is considered in this thesis.

3.2 Classical scalar field on CadS

In this section, we solve the wave equation (1.56) in ESU and then perform a conformal
transformation to find mode solutions in CadS (section 3.2.1). We must impose bound-
ary conditions on the mode solutions since CadS is not globally hyperbolic. These
boundary conditions can take the form of transparent or reflective conditions (section
3.2.2). For reflective conditions, we can impose Dirichlet, Neumann or Robin condi-
tions. In section 3.2.3, we consider Robin conditions, where some choices of Robin
parameter α (see (3.21)) result in unstable modes (section 3.2.4).

3.2.1 Mode solutions

We consider a massless, conformally coupled scalar field φ̂ satisfying the Klein-Gordon
equation (1.56). We must apply boundary conditions to the field modes to ensure
unique evolution. It is difficult to do this in CadS, since the boundary is not physically
part of the spacetime. Instead, we solve the Klein-Gordon equation in ESU, and apply
boundary conditions to field modes φESUω`m , before using the conformal transformation
(2.10),

φω`m = cos ρ φESUω`m (3.6)

where ρ is a radial coordinate going around the circumference of the ESU cylinder (see
Figure 2.3a). The field modes φω`m are solutions in CadS. Boundary conditions are
imposed at ρ = π/2. The ESU metric is given in (2.9). The Klein-Gordon equation in
ESU is (

2ESU − 1

6
RESU

)
φESUω`m =

(
2ESU − 1

L2

)
φESUω`m = 0 (3.7)
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which can be written(
− ∂2

∂t2
+

1

sin2 ρ

[
∂

∂ρ

(
sin2 ρ

∂

∂ρ

)
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
− 1

)
φESUω`m = 0. (3.8)

Solving by separation of variables (for more details, see Appendix B), we find

φESUω`m = Cω`e−iωt(sin ρ)−1/2Q
`+ 1

2

ω− 1
2

(cos ρ)Y`m(θ, ϕ) (3.9)

where ` ≥ |m|, ω ∈ R and Cω` is a normalisation constant. The Qµ
ν are Olver’s definition

of Legendre functions [120] (see equation B.17) and the Y`m are spherical harmonics.

3.2.2 Transparent and reflective boundary conditions

We now must impose boundary conditions. Avis, Isham and Storey [5] distinguish
between transparent and reflective boundary conditions. A discussion of these different
boundary conditions in the context of adS/CFT is given in [121].

Transparent conditions allow modes to pass through the boundary ρ = π/2 as though
it were not there. In ESU, this is acceptable provided the modes are finite at this point.
From an adS perspective, we must imagine the modes travelling “round the back” of
the ESU cylinder, and entering at the other side (see Figure 3.1).

We first note that, up to a multiplicative constant,

Q
`+ 1

2

ω− 1
2

(cos ρ) ∼ C`+1
ω−`−1(cos ρ) (3.10)

where Cµν are Gegenbauer functions (this can be derived from [120, eq. 14.9.9]). This
representation makes it easier for us to compare our solutions with [5]. These modes
are only finite at ρ = π/2 when they are polynomial, i.e. ω − ` − 1 is a non-negative
integer. Since ` is defined to be an integer, this means that ω must also be an integer.
Hence, the mode solutions are periodic in t with period 2π, which is necessary for the
solutions to “wrap around” the ESU cylinder. Therefore, we write

φT,ESUω`m = Cω`e−iωt(sin ρ)`C`+1
ω−`−1(cos ρ)Y`m(θ, ϕ), ω ∈ Z, ω ≥ `+ 1, (3.11)

where we write the superscript “T” to stand for “transparent”.

Reflective boundary conditions require the field modes to be zero, or their derivatives
to be zero, on the boundary. This amounts to field modes being “reflected” back into
the spacetime (see Figure 3.1). We refer to these two types of reflective boundary
conditions as Dirichlet and Neumann respectively, i.e.

Dirichlet : lim
ρ→π

2

φD,ESUω`m = 0, Neumann : lim
ρ→π

2

∂

∂ρ
φN,ESUω`m = 0. (3.12)
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To impose reflective Dirichlet conditions, we must have

lim
ρ→π

2

C`+1
ω−`−1(cos ρ) = 0. (3.13)

This is only true if ω − ` − 1 is a positive odd integer, i.e. ω = ` + 2n + 2 for n some
non-negative integer. We can therefore write

φD,ESUn`m = Cn`e−i(`+2n+2)t(sin ρ)`C`+1
2n+1(cos ρ)Y`m(θ, ϕ), n = 0, 1, ... (3.14)

where the superscript “D” stands for “Dirichlet”. Reflective Neumann conditions can
only hold if

lim
ρ→π

2

∂

∂ρ
[C`+1
ω−`−1(cos ρ)] = lim

ρ→π
2

[2(1 + `) sin ρ C`+2
ω−`−2(cos ρ)] = 0 (3.15)

where the derivative has been performed by using [120, eq. 18.9.19] along with the
chain rule. This implies that we require

lim
ρ→π

2

[C`+2
ω−`−2(cos ρ)] = 0. (3.16)

This can only happen if ω−`−2 is a positive odd integer, so we now write ω = `+2n+1
and the modes satisfying Neumann boundary conditions are

φN,ESUn`m = Cn`e−i(`+2n+1)t(sin ρ)`C`+1
2n Y`m(θ, ϕ), n = 0, 1, .... (3.17)

Using the conformal transformation (3.6), the positive frequency modes in CadS are

φTω`m = Cω`e−iωt cos ρ(sin ρ)`C`+1
ω−`−1(cos ρ)Y`m(θ, ϕ), ω ∈ Z, ω ≥ `+ 1 (3.18)

φDn`m = Cn`e−i(`+2n+2)t cos ρ(sin ρ)`C`+1
2n+1(cos ρ)Y`m(θ, ϕ), n = 0, 1, ... (3.19)

φNn`m = Cn`e−i(`+2n+1)t cos ρ(sin ρ)`C`+1
2n (cos ρ)Y`m(θ, ϕ), n = 0, 1, .... (3.20)

It is important to note here that ω ∈ Z, and so solutions are periodic in time with
period 2π.

The positive frequency modes with Dirichlet and Neumann reflective boundary con-
ditions appear as special cases of the positive frequency modes with transparent con-
ditions imposed. In the following section, we generalise reflective conditions to be
governed by Robin boundary conditions instead of simply Dirichlet and Neumann. In
this case, modes obeying Dirichlet and Neumann conditions still arise as special cases of
those obeying Robin boundary conditions, but modes obeying transparent conditions
do not. This is due to the fact that the frequency does not necessarily take integer values
when general Robin conditions are imposed (see, for example, (3.24) and the discussion
that follows). For the remainder of this thesis, we will no longer consider imposing
transparent boundary conditions, instead focusing on reflective boundary conditions -
that is, Robin boundary conditions, with Dirichlet and Neumann boundary conditions
as special cases.
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ρ = π ρ = π
2 ρ = 0 ρ = π

2
ρ = π

t = 2π

t = π

t = 0

t = π

t = 2π

Figure 3.1: The ESU cylinder, containing CadS (see Figure 2.3b). The blue null lines
obey transparent boundary conditions, whereas the magenta null lines obey reflective
boundary conditions.

3.2.3 Robin boundary conditions

We define reflective modes using Robin boundary conditions by introducing a Robin
parameter α and writing

lim
ρ→π

2

{
cosα φα,ESUω`m + sinα

∂

∂ρ
φα,ESUω`m

}
= 0. (3.21)

We have α ∈ [0, π) where Dirichlet conditions are recovered for α = 0 and Neumann
conditions for α = π/2.

From (3.9), using [120, Eq. 14.5.3, 14.5.4], we have

lim
ρ→π

2

φα,ESUω`m = Cn`e−iωt
(
−2`−

1
2π

1
2 sin

(
1
2(`+ ω)π

)
Γ
(
ω+`+1

2

)
Γ
(
ω−`+1

2

)
Γ (ω + `+ 1)

)
Y`m(θ, ϕ), (3.22)

lim
ρ→π

2

∂

∂ρ
φα,ESUω`m = Cn`e−iωt

(
−2`+

1
2π

1
2 cos

(
1
2(`+ ω)π

)
Γ
(
ω+`+2

2

)
Γ
(
ω−`

2

)
Γ(ω + `+ 1)

)
Y`m(θ, ϕ). (3.23)
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Figure 3.2: The left-hand-side of (3.24) plotted as a function of frequency ω for ` = 0, 1.
The function crosses the x-axis when ω+` is an even integer, and diverges when ω+` is
an odd integer. For 0 < ω < `+1, the function never crosses the x-axis. The maximum
in this interval occurs at ω = 0, and is greater than or equal to −π for all `.

From substituting (3.22, 3.23) in (3.21), we obtain the following quantization condition
on the mode frequency ω:

− tan

(
1

2
[`+ ω]π

)
Γ
(
ω−`

2

)
Γ
(
ω+`+1

2

)
Γ
(
ω+`+2

2

)
Γ
(
ω−`+1

2

) = 2 tanα. (3.24)

This means we have a discrete set of ω for each value of `. We shall label these as ωn`,
where n = 1, 2, .... It is impossible to give an explicit representation for these ωn` for
general α, but in the Dirichlet and Neumann cases, (3.24) reduces to ωn` = 2n− ` and
ωn` = 2n + 1 − ` respectively. This is equivalent to the conditions that were imposed
on the Gegenbauer functions in (3.14, 3.17) previously.

In the general Robin case (α 6= 0, π/2), the frequencies ωn` will not be integers. Indeed,
we can see that when ωn`+` is an even integer, the left-hand-side of (3.24) will be zero,
and when ωn` + ` is an odd integer, the left-hand-side of (3.24) will diverge. Therefore,
solutions of (3.24) for α 6= 0, π/2 must lie in the interval ` + 2n − 1 ≤ ω ≤ ` + 2n + 1
(see Figure 3.2). Note that there will be no solutions in the region 0 < ω < `+ 1 unless
tanα < −π

2 . This is because the maximum of the left-hand-side of (3.24) (which occurs
at ω = 0) is greater than or equal to −π.

The mode solutions with general Robin conditions imposed are therefore

φαn`m = Cn`e−iωn`t cos ρ (sin ρ)−1/2Q
`+1/2
ωn`−1/2(cos ρ)Y`m(θ, ϕ) (3.25)

where ωn` satisfies (3.24). It will be easier for us to consider φαn`m in general, and then
reduce to the Dirichlet and Neumann cases when necessary.
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3.2.4 Unstable modes

Despite the fact that a massless, conformally coupled scalar field satisfies the Breiten-
lohner-Freedman bound [108], we find that there will still exist unstable modes for
certain values of the Robin parameter α. Mode instability is equivalent to finding
solutions of the wave equation with imaginary frequency ω.

One may question whether or not ω could be set to be complex rather than purely
imaginary, and whether this situation would give rise to unstable modes as well. Fol-
lowing the work of Ishibashi and Wald [118], we write the Klein-Gordon equation (3.8)
in the form

∂2

∂t2
φESUω`m = −ÂφESUω`m (3.26)

for some spatial operator Â. The operator A must have positive self-adjoint extensions.
For this to happen, one requires ω2 ∈ R [118], and therefore only purely imaginary ω
needs to be considered.

We set ω = iΩ with Ω ∈ R, and write the quantization condition (3.24) as

−
∣∣Γ ( iΩ+`+1

2

)∣∣2∣∣Γ ( iΩ+`+2
2

)∣∣2 = 2 tanα (3.27)

where |Γ(x+iy)|2 = Γ(x+iy)Γ(x−iy) and we have used the following relations, derived
from [120, 5.5.3]

Γ

(
iΩ− `

2

)
Γ

(−iΩ + `+ 2

2

)
=

π

sin
(
π
2 (iΩ− `)

) (3.28)

Γ

(
iΩ− `+ 1

2

)
Γ

(−iΩ + `+ 1

2

)
=

π

cos
(
π
2 (iΩ− `)

) . (3.29)

Unstable modes will exist whenever (3.27) can be satisfied with Ω ∈ R. In fact, we
require Ω ∈ R>0. If this were not the case, then mode solutions would be exponentially
decaying rather than exponentially growing, and we would obtain instabilities in the
past rather than in the future. For Dirichlet (α = 0) and Neumann conditions (α = π/2)
there are no solutions to (3.27) and so no unstable modes. In fact, it is clear that there
are no unstable modes provided 0 < α < π

2 .

Unstable modes exist for some α such that tanα < 0. The left-hand-side of (3.27) is an
increasing function of `, with minimum for fixed ` occurring at Ω = 0. This is apparent
for ` = 0, 1, 2 from studying Figure 3.3, and can be seen for general ` by studying the
derivative of the left-hand-side of (3.27)

∂

∂Ω

(
−
∣∣Γ ( iΩ+`+1

2

)∣∣2∣∣Γ ( iΩ+`+2
2

)∣∣2
)

= − i
∣∣Γ ( iΩ+`+1

2

)∣∣2
2
∣∣Γ ( iΩ+`+2

2

)∣∣2
[
ψ

(
1 + `− iΩ

2

)
− ψ

(
2 + `− iΩ

2

)
−ψ

(
1 + `+ iΩ

2

)
+ ψ

(
2 + `+ iΩ

2

)]
.

(3.30)
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Figure 3.3: The left-hand-side of (3.27) plotted as a function of frequency Ω for
` = 0, 1, 2.

The fact that there is a stationary point at Ω = 0 is immediately apparent. The fact
that (3.30) is positive for all nonzero Ω can be seen by using [122, eq. 44:11:1] to
rearrange the digamma functions. Most importantly, the smallest possible value of the
left-hand-side of (3.27) occurs at ` = 0,Ω = 0, and so

−
∣∣Γ ( iΩ+`+1

2

)∣∣2∣∣Γ ( iΩ+`+2
2

)∣∣2 ≥ −π ∀ ` ∈ Z>0,Ω ∈ R>0. (3.31)

It is trivial to show that, for any fixed value of `, the left-hand-side of (3.27) approaches
0 as Ω→∞. Therefore, we must obtain unstable modes if −π < 2 tanα < 0, that is

αcrit < α < π (3.32)

where
αcrit = − tan−1

(π
2

)
' 0.68π. (3.33)

If α ∈ (αcrit, π), then it makes no sense to attempt to calculate quantities such as the
VP or SET, since there exist unstable modes and solutions are unphysical. Therefore,
for the remainder of this chapter, we shall consider the Robin parameter to be in the
range α ∈ [0, αcrit).

3.2.5 Normalisation constants

In this section, we calculate the constants Cn` by insisting that the modes are orthonor-
mal. In section 1.2 we showed that the scalar product of two scalar field modes was
independent of the choice of Cauchy surface, but this proof was only valid in a globally
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nµ

ñµ

rµR

Figure 3.4: Diagram showing the volume R bounded by ∂R = I0 ∪Iπ/2 ∪ Σ ∪ Σ̃.

hyperbolic spacetime. We now perform a similar proof to show that scalar products
are not just independent of the spacelike hypersurface on which they are defined, but
also independent of the value of Robin parameter α when we impose general Robin
conditions on the field modes at the boundary.

As before, we use Stokes’ Theorem to prove this, where now we let R be the region
enclosed by ∂R = I0 ∪ Iπ/2 ∪ Σ ∪ Σ̃, where I0 is the boundary at ρ = 0, Iπ/2 is

the boundary at ρ = π/2 and Σ, Σ̃ are spacelike hypersurfaces. See Figure 3.4 for a
visualisation of this region.

Stokes’ Theorem now gives us∫
∂R

(φ∗1∂µφ2 − φ2∂µφ
∗
1)dσµ =

∫
R
∇µ(φ∗1∂µφ2 − φ2∂µφ

∗
1)dV, (3.34)

where φ1, φ2 are adS field modes satisfying both the Klein-Gordon equation and Robin
boundary conditions and dσµ = nµ

√
|γ|d3x for nµ the relevant unit normal (see Figure

3.4). The equation (3.34) is effectively the same as (1.65), except in this case the
boundary ∂R is made up of four parts rather than two (this can be seen by comparing
Figures 1.2 and 3.4). The right-hand-side of (3.34) vanishes due to the Klein-Gordon
equation.

The radial parts of φ1, φ2 can be written (see Appendix B)

X(ρ) = cos ρ (sin ρ)1/2Q
`+1/2
ωn`−1/2(cos ρ) =

(−1)`+1π

2`+3/2Γ(`+ 3/2)Γ(ωn` − `)
ρ` +O(ρ`+2)

(3.35)
which vanishes on I0 unless ` = 0. However, the derivative of the ` = 0 mode will
vanish at ρ = 0, and so the integrand in (3.34) on I0 will be zero. Stokes’ theorem
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(3.34) gives∫
Iπ/2

(φ∗1∂µφ2 − φ2∂µφ
∗
1)rµdIπ/2 +

∫
Σ̃

(φ∗1∂µφ2 − φ2∂µφ
∗
1)ñµdΣ̃

−
∫

Σ
(φ∗1∂µφ2 − φ2∂µφ

∗
1)nµdΣ = 0. (3.36)

Now, on Iπ/2, we impose Robin boundary conditions (3.21), and so we have

φ∗1∂µφ2 = φ2∂µφ
∗
1 = −(cotα+ tan ρ)φ∗1φ2. (3.37)

Note that the factor of tan ρ comes from imposing Robin boundary conditions (3.21)
in ESU and then applying the conformal transform (3.6). Hence the integral on the
boundary Iπ/2 also vanishes. Hence, we find∫

Σ
(φ∗1∂µφ2 − φ2∂µφ

∗
1)nµdΣ =

∫
Σ̃

(φ∗1∂µφ2 − φ2∂µφ
∗
1)ñµdΣ̃ (3.38)

and conclude that the scalar product is independent of choice of hypersurface Σ and
the parameter α.

Taking the scalar product over the hypersurface Σ0 defined where t = 0, we have

〈φαn`m(x), φαn′`′m′(x)〉 = i

∫
Σ0

(
φα,∗n`m(x)∂tφ

α
n′`′m′(x)− φαn′`′m′(x)∂tφ

α,∗
n`m(x)

)
dΣ0 (3.39)

where dΣ0 = L2 tan2 ρ sin θ dρ dθ dϕ. Applying the orthonormality of the spherical
harmonics, we find

〈φαn`m(x), φαn′`′m′(x)〉 = L2(ωn` + ωn′`′)C∗n`Cn′`′
∫ π/2

0
tan2 ρ Xn`(ρ)Xn′`′(ρ) dρ

×
∫ 2π

0

∫ π

0
Y ∗`m(θ, ϕ)Y`′m′(θ, ϕ) sin θ dθ dϕ

= L2δ``′δmm′(ωn` + ωn′`)C∗n`Cn′`
∫ π/2

0
tan2 ρ Xn`(ρ)Xn′`(ρ) dρ.

(3.40)

The integral here is evaluated in Appendix C, where we show that∫ π/2

0
tan2 ρ Xn`(ρ)Xn′`(ρ)dρ = δnn′

π[π − sin(π(ωn` + `)){ζ(`+ ωn` + 1) + ζ(ωn` − `)}]
8ωn`Γ(`+ ωn` + 1)Γ(ωn` − `)

(3.41)
with

ζ(z) =
1

2

[
ψ

(
z + 1

2

)
− ψ

(z
2

)]
. (3.42)

By insisting that the modes are orthonormal, i.e.

〈φαn`m(x), φαn′`′m′(x)〉 = δnn′δ``′δmm′ (3.43)

we must set

|Cn`|2 =
4Γ(`+ ωn` + 1)Γ(ωn` − `)

L2π[π − sin(π(ωn` + `)) {ζ(`+ ωn` + 1) + ζ(ωn` − `)}]
. (3.44)
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3.3 Quantum scalar field on adS

We quantize as usual by promoting the field to an operator φ → φ̂ and imposing
canonical quantization conditions (1.12). The field operator can be written as a sum
over the field modes in the following way:

φ̂α =

∞∑
`=0

∞∑
n=1

∑̀
m=−`

{
b̂ω`mφ

α
n`m + b̂†ω`mφ

α,∗
n`m

}
. (3.45)

In this section, we work in the Lorentzian background, beginning with an analysis of
the Wightman function G+ with Robin boundary conditions imposed in section 3.3.1.
In section 3.3.2, we focus on the cases where Dirichlet and Neumann conditions are
imposed, where the mode-sums can be evaluated with relative ease due to the fact
that the frequency ω ∈ Z. Results for the renormalised VP are compared with results
given in [110]. In section 3.3.3, we extend our analysis to Robin conditions, where the
mode-sums cannot be evaluated analytically, and discuss why numerical computation
of these modes is far from straightforward.

3.3.1 Wightman function and regularisation

The Wightman function G+(x, x′) (1.24) is given by

G+
α (x, x′) =

∞∑
`=0

∞∑
n=1

∑̀
m=−`

φαn`m(x)φα,∗n`m(x′) (3.46)

where the superscript α reminds us that the field modes φαn`m(x), φαn`m(x′) satisfy Robin
boundary conditions (3.21) with parameter α at ρ = π/2. The Wightman function can
then be expressed as

G+
α (x, x′) =

4

L2π

cos ρ cos ρ′√
sin ρ sin ρ′

×
∞∑
`=0

∞∑
n=1

e−iωn`∆t
Γ(`+ ωn` + 1)Γ(ωn` − `)Q`+1/2

ωn`−1/2(cos ρ)Q
`+1/2
ωn`−1/2(cos ρ′)

[π − sin(π(ωn` + `)) {ζ(`+ ωn` + 1) + ζ(ωn` − `)}]

×
∑̀
m=−`

Y`m(θ, ϕ)Y ∗`m(θ′, ϕ′), (3.47)

for ∆t = t − t′. The sum over frequencies (the n sum) must be performed before the
` sum since ω depends on `. We can use a standard addition theorem for spherical
harmonics to perform the sum over m, [120, eq. 14.30.9]:

P`(cos γ) =
4π

2`+ 1

∑̀
m=−`

Y`m(θ, ϕ)Y ∗`m(θ′, ϕ′), (3.48)
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where P`(x) is a Legendre polynomial and γ is the geodesic distance on a sphere, given
in (1.222). The Wightman function is then

G+
α (x, x′) =

1

L2π2

cos ρ cos ρ′√
sin ρ sin ρ′

∞∑
`=0

(2`+ 1)P`(cos γ)

×
∞∑
n=1

e−iωn`∆t
Γ(`+ ωn` + 1)Γ(ωn` − `)Q`+1/2

ωn`−1/2(cos ρ)Q
`+1/2
ωn`−1/2(cos ρ′)

[π − sin(π(ωn` + `)) {ζ(`+ ωn` + 1) + ζ(ωn` − `)}]
. (3.49)

The anticommutator G
(1)
α (x, x′) can be calculated from the Wightman function via

(1.23), and we obtain

G(1)
α (x, x′) =

2

L2π2

cos ρ cos ρ′√
sin ρ sin ρ′

∞∑
`=0

(2`+ 1)P`(cos γ)

×
∞∑
n=1

e−iωn`∆t
Γ(`+ ωn` + 1)Γ(ωn` − `)Q`+1/2

ωn`−1/2(cos ρ)Q
`+1/2
ωn`−1/2(cos ρ′)

[π − sin(π(ωn` + `)) {ζ(`+ ωn` + 1) + ζ(ωn` − `)}]
. (3.50)

The thermal Green’s function is then

G
(1)
β,α(x, x′) =

2

L2π2

cos ρ cos ρ′√
sin ρ sin ρ′

∞∑
`=0

(2`+ 1)P`(cos γ)

×
∞∑
n=1

e−iωn`∆t coth

(
βωn`

2

) Γ(`+ ωn` + 1)Γ(ωn` − `)Q`+1/2
ωn`−1/2(cos ρ)Q

`+1/2
ωn`−1/2(cos ρ′)

[π − sin(π(ωn` + `)) {ζ(`+ ωn` + 1) + ζ(ωn` − `)}]
,

(3.51)

where β is the inverse temperature and the coth term is a result of using (1.44).

To calculate the VP, we must bring the points together x′ → x. As described in Section
1.3 we need to renormalise. We do this by subtracting the Hadamard parametrix
GS(x, x′) (1.192) from the Feynman Green’s function GF (x, x′) (1.30), as in (1.196).
The Wightman function G+ (3.49) can be related to the Feynman Green’s function GF
using the definitions (1.23) and (1.30).

For the Hadamard parametrix (1.192), we note that, for timelike separation,

2σ = −L2(cos−1 Z)2, Z = (cos ∆t− sin2 ρ) sec2 ρ, (3.52)

where σ is Synge’s world function (1.179) (see Appendix D for further details). Evalu-
ating at ρ = 0, we have

Z = cos ∆t ⇒ 2σ = −L2∆t2. (3.53)

The van Vleck-Morette determinant (1.181) is

∆1/2 = (∆t)3/2 csc3/2 ∆t (3.54)
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and hence
∆1/2

2σ
= − 1

L2

(
1

∆t2
+

1

4

)
+O(∆t2) as ρ→ 0. (3.55)

Therefore, the Hadamard parametrix is

GS(ρ = ρ′ = 0; ∆t) =
i

4π2L2

(
1

∆t2
+

1

4

)
+O(∆t2). (3.56)

3.3.2 Dirichlet and Neumann boundary conditions

When Dirichlet and Neumann conditions are imposed at the boundary, we have sin(π(ω+
`)) = 0, and so the Wightman function for vacuum states (3.49) simplifies to

G+
D(x, x′) =

1

L2π3

cos ρ cos ρ′√
sin ρ sin ρ′

∞∑
`=0

(2`+ 1)P`(cos γ)

×
∞∑
n=1

e−i(2n−`)∆tΓ(2n+ 1)Γ(2n− 2`)Q
`+1/2
2n−`−1/2(cos ρ)Q

`+1/2
2n−`−1/2(cos ρ′), (3.57)

and

G+
N (x, x′) =

1

L2π3

cos ρ cos ρ′√
sin ρ sin ρ′

∞∑
`=0

(2`+ 1)P`(cos γ)

×
∞∑
n=0

e−i(2n+1−`)∆tΓ(2n+ 2)Γ(2n+ 1− 2`)Q
`+1/2
2n−`+1/2(cos ρ)Q

`+1/2
2n−`+1/2(cos ρ′) (3.58)

respectively. The main point to note here is that the frequencies are now integers,
each individual mode is periodic in t with period 2π, and so the Wightman functions
(3.57, 3.58) are periodic in t, despite the fact that we removed periodicity in t in the
transition from adS to CadS. This implies that, when Dirichlet or Neumann conditions
are imposed, the vacuum states in CadS are the same as those in adS. This is not true
for general Robin conditions - whilst each individual mode is periodic in time for general
α, this periodicity is dependent on ωn, and after taking the sum over n, the result is not
periodic in time at all. This can be seen from looking at the anticommutators (3.50,
3.51), which are not periodic in time unless α = 0, π/2. Hence, the equivalence between
adS and CadS vacuum states only holds for Dirichlet and Neumann conditions.

The renormalised VP in CadS for vacuum states when Dirichlet and Neumann con-
ditions are imposed is well-known and given in (3.2-3.3), but it is useful to calculate
these results using (3.57, 3.58) in order to verify our representation of the Wightman
function. In the following calculation, we make use of the fact that the vacuum states
are maximally symmetric when Dirichlet or Neumann conditions are imposed [5], and
hence the choice of origin is irrelevant. Therefore, computing the VP at ρ = 0 will give
the correct answer throughout the spacetime.
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Considering the Dirichlet case first, when ρ→ 0, using [120, eq. 14.8.5] we have

Q
`+1/2
2n−`−1/2(cos ρ)
√

sin ρ
∼ (−1)`+1π sin` ρ

2`+3/2Γ(`+ 3/2)Γ(2n− 2`)
as ρ→ 0. (3.59)

Therefore, near the origin, only the ` = 0 mode contributes, as observed in [123]. We
then have

Q
1/2
2n−1/2(cos ρ)
√

sin ρ
∼ −

√
π

2

1

Γ(2n)
as ρ→ 0. (3.60)

At the origin, the Wightman function (3.57) becomes

G+
D(ρ = ρ′ = 0; ∆t) =

1

π2L2

∞∑
n=1

n e−2ni∆t (3.61)

where we note that P0(cos γ) = 1 and, as expected, there is no dependence on the angles
θ and ϕ. The Gamma functions cancel using standard definitions [120, eq. 5.4.1].

The sum in (3.61) is not convergent, so we use an iε-prescription, replacing ∆t with
∆t− iε, where the sum

∞∑
n=1

ne−2ni(∆t−iε) (3.62)

converges very rapidly provided ε > 0. To evaluate the sum in (3.62), we first note the
following relation using geometric series:

∞∑
n=1

e−2in(∆t−iε) =
e−2i(∆t−iε)

1− e−2i(∆t−iε) . (3.63)

We can differentiate both sides of (3.63) with respect to ∆t to obtain

∞∑
n=1

(−2in)e−2in(∆t−iε) =
−2ie−2i(∆t−iε)

(1− e−2i(∆t−iε))2
. (3.64)

The Wightman function (3.61) is then

G+
D(ρ = ρ′ = 0; ∆t) =

1

π2L2
lim
ε→0

e−2i(∆t−iε)

(1− e−2i(∆t−iε))2
= − 1

4π2L2
lim
ε→0

1

sin2(∆t− iε) .
(3.65)

The anticommutator G(1) can be calculated from the Wightman function via (1.23),
and so we obtain

G
(1)
D (ρ = ρ′ = 0; ∆t) = − 1

2π2L2 sin2 ∆t
. (3.66)

To calculate the renormalised VP (1.196) we need to start with the Feynman Green’s
function GF (x, x′), which can be obtained from the Wightman function via (1.30). The
average of the advanced and retarded Green’s functions Ḡ(x, x′) can be ignored if we
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assume that x and x′ are not connected by a null geodesic (which is the case since we
are considering temporal point-splitting). Then we have

GF (x, x′) = −1

2
iG(1)(x, x′). (3.67)

Writing this as a series in ∆t, we find

GF,D(ρ = ρ′ = 0; ∆t) =
i

4π2L2

(
1

∆t2
+

1

3

)
+O(∆t2). (3.68)

The VP for a scalar field with Dirichlet conditions is then (1.196)

〈0|φ̂2
D|0〉ren = i lim

x′→x
[GF,D(x, x′)−GS(x, x′)] = − 1

48π2L2
. (3.69)

This is to be expected from (3.2).

For Neumann boundary conditions we find

Q
`+1/2
2n−`+1/2(cos ρ)
√

sin ρ
∼ (−1)`+1π sin` ρ

2`+3/2Γ(`+ 3/2)Γ(2n− 2`+ 1)
as ρ→ 0 (3.70)

and, as before, only the ` = 0 mode contributes near the origin, so we only need to
concern ourselves with the term

Q
1/2
2n+1/2(cos ρ)
√

sin ρ
∼ −

√
π

2

1

Γ(2n+ 1)
as ρ→ 0. (3.71)

The Wightman function (3.58) with Neumann boundary conditions imposed is therefore

G+
N (ρ = ρ′ = 0; ∆t) =

1

2L2π2

∞∑
n=0

(2n+ 1)e−i(2n+1)∆t, (3.72)

and, using the fact that,

∞∑
n=0

(2n+ 1)e−(2n+1)i∆t =
e−i∆t + e−3i∆t

(1− e−2i∆t)2
, (3.73)

we obtain

G+
N (ρ = ρ′ = 0; ∆t) = − ei∆t + e−i∆t

8L2π2 sin2 ∆t
= − cos ∆t

4L2π2 sin2 ∆t
. (3.74)

The anti-commutator is then

G
(1)
N (ρ = ρ′ = 0; ∆t) = − cos ∆t

2L2π2 sin2 ∆t
. (3.75)

We write the Feynman propagator as a series in ∆t,

GF,N (ρ = ρ′ = 0; ∆t) =
i

4π2L2

(
1

∆t2
− 1

6

)
+O(∆t2), (3.76)
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and, subtracting the Hadamard parametrix (3.56) and taking the limit ∆t → 0, the
renormalised VP is

〈0|φ̂2
N |0〉ren =

5

48π2L2
. (3.77)

This matches (3.3).

Anti-commutators for thermal states with Dirichlet and Neumann boundary conditions
applied are given in [110, eq 2.10],

G
(1)
β,±(x, x′) = − 1

4L2π2

[
1

1− Z ±
1

1 + Z
− 4 cos ρ cos ρ′

×
∞∑
k=1

(
sin kη+

sin η+
± (−1)k

sin kη−
sin η−

)
cos k∆t

ekβ − 1

]
(3.78)

where G
(1)
β,+ ≡ G

(1)
β,D is the Green’s function with Dirichlet conditions imposed, G

(1)
β,− ≡

G
(1)
β,N is the Green’s function with Neumann conditions imposed, and

η± = cos−1(cos ρ cos ρ′ ± sin ρ sin ρ′ cos γ), (3.79)

Z =
cos ∆t− sin ρ sin ρ′ cos γ

cos ρ cos ρ′
. (3.80)

The results (3.78) are obtained by making use of the fact that both G
(1)
β,D and G

(1)
β,N

are doubly periodic functions of imaginary time τ . That is, the functions are periodic
with period 2π (as can be seen from (3.80)) and also periodic with period β, which is
imposed when we perform a Wick rotation and demand that thermal states are held

at temperature 1/β. Hence, both G
(1)
β,D and G

(1)
β,N are meromorphic functions, which

allows one to use properties of elliptic functions to derive the appropriate closed form
expression [110]. This double-periodicity is broken when we impose Robin conditions
(as opposed to Dirichlet or Neumann conditions) and so the same method cannot be
used to derive Green’s functions or expectation values with Robin conditions imposed
on fields.

After taking the coincidence limit x′ → x and using Hadamard renormalisation, Allen,
Folacci and Gibbons [110] obtain the following closed form expressions for the renor-
malised VP with Dirichlet (+) and Neumann (−) conditions imposed on fields at the
boundary:

〈β|φ̂2|β〉±,ren =
1

8L2π2

{[
1

3
+ 4 cos2 ρ f1(β)

]
±
[
−1

2
+ 2 cot ρ S0(β, ρ)

]}
, (3.81)

where

f1(β) =
∞∑
n=1

n

enβ/L − 1
, S0(β, ρ) =

∞∑
n=1

(−1)n
sin 2nρ

enβ/L − 1
. (3.82)

It can be verified that at the boundary of the spacetime ρ → π/2, the results (3.81)
approach the vacuum expectation values (3.69, 3.77).



CHAPTER 3. QUANTUM FIELD THEORY IN ADS 75

The formula (3.78) should be equivalent to (3.51) with α = 0 for G
(1)
β,D and α = π/2

for G
(1)
β,N . It has proven very difficult to show this equivalence algebraically, but it has

been verified numerically. In Figure 3.5 we compare the results (3.78) and (3.51) in the
Neumann case. We find good agreement between both sets of results, which gives us
confidence that our results for α = 0, π/2 are correct.

3.3.3 Robin boundary conditions

It now remains to consider scalar field modes with Robin boundary conditions imposed.
Maximal symmetry is broken when we impose Robin boundary conditions [6, 113], so
we cannot simply calculate the VP at ρ = 0 as we did in the previous case. Instead, we
expect expectation values to be dependent on ρ. The calculation is further complicated
since it is impossible to express the anticommutator (3.50) in closed form for general
α. Instead we must compute the VP by regularising mode-by-mode. Although several
methods have been developed to achieve this type of regularisation on the Lorentzian
background (see [80, 81] and section 1.3.5), these cannot be employed in this case.
This is because the Hadamard parametrix GS(x, x′) remains insensitive to boundary
conditions, and so the decomposition of frequencies will not be the same as that for the
Hadamard function G(1)(x, x′).

Barroso and Pitelli [117] avoid this problem by applying Robin conditions to the ` = 0
modes only, with all other modes satisfying Dirichlet boundary conditions. Their results
suggest that expectation values with Robin conditions applied to the ` = 0 modes
approach the same limit at the boundary for all α ∈ (0, αcrit). This limit is equivalent
to the expectation value when Dirichlet conditions are applied to all modes, given by
(3.2).

In this section, we seek to calculate the difference between the vacuum and thermal
expectation values when Robin boundary conditions are imposed, that is the difference
between (3.50) and (3.51) in the coincidence limit. Both (3.50) and (3.51) involve sums
over the same frequencies, meaning that we do not encounter the same problems faced
by Barroso and Pitelli [117]. Therefore, the mode-sums can be combined to give

〈β|φ̂2|β〉α − 〈0|φ̂2|0〉α = lim
x′→x
{G(1)

α (x, x′)−G(1)
β,α(x, x′)}

=
4

L2π2

cos2 ρ

sin ρ

∞∑
`=0

(2`+ 1)
∞∑
n=1

1

eβωn` − 1

×
Γ(`+ ωn` + 1)Γ(ωn` − `)

[
Q
`+1/2
ωn`−1/2(cos ρ)

]2

[π − sin(π(ωn` + `)) {ζ(`+ ωn` + 1) + ζ(ωn` − `)}]
. (3.83)

This is by no means a straightforward calculation, but it lacks the numerical complexity
of renormalising with the Hadamard parametrix where mode-sums cannot be combined.

We perform this calculation in the case L = 1 and κ = 1, where temperature T = κ/2π.
First, since we know that ` can only take integer values, we must solve the quantization
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AFG results Mode sum results
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ρ
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Figure 3.5: Results for the difference in vacuum and thermal expectation values with
Neumann conditions applied, 〈β|φ̂(x)|β〉N − 〈0|φ̂(x)|0〉N . This is a direct comparison
of differences calculated using the results from [110] (3.78), and the mode sum (3.83).
The temperature T = κ/2π is varied in each case, with the value of κ given. In all
cases, the difference between the results is 10−22 and therefore cannot be seen on the
scale of these plots. This verifies that the mode-sum (3.83) matches results in [110].
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condition (3.24) to find the values of ωn` that we are then to sum over. For κ = 1, we
find all the values of ωn` < 100 for ` ∈ [0, 50]. We then calculate all summands in (3.83)
to 20 digits. This is a rather time-consuming numerical calculation, since each mode
has to be calculated over a grid of values of ρ and each individual calculation requires
the evaluation of Legendre functions. We create a grid over the radial coordinate ρ by
writing

ρ = tan−1

(
10−2+3i/100

L

)
(3.84)

and consider values of i ranging from 1 up to 100. Note that as ρ → π/2, the sum
converges more slowly and we require more ` or n modes to obtain convergence.

These results are shown in Figure 3.6(a) as a three-dimensional plot over radius ρ and
Robin parameter α. The difference between thermal and vacuum expectation values
appears to be smooth in α and diverges as α → αcrit. This divergence indicates the
breakdown of the semiclassical approximation as α → αcrit, which is to be expected
due to the presence of unstable modes when αcrit < α < π.

As we increase the value of κ, thus increasing the temperature of the thermal state, we
begin to see different behaviour in our results. Note that we do not vary the value of
the adS lengthscale L as this just amounts to a rescaling of the solutions. In Figures
3.6(b), 3.6(c), we present results for κ = 2π and κ = 10 respectively, both calculated
with the same number of modes and to the same number of digits of precision as in the
κ = 1 calculation. We see an apparent discontinuity as we pass through the Neumann
value α = π/2, despite the fact that we expect there to be a smooth transition across
all α ∈ [0, αcrit). Since we know from Figure 3.5 that numerical results when α = π/2
are correct, this leads us to suspect that there is some error in the calculation of the
difference with Robin parameter α 6= π/2 (and that results in Figure 3.6(a) are likely
to be incorrect too).

The errors can therefore be attributed to a fundamental issue with the representation of
the Green’s function. One of these issues is that Robin conditions can only be imposed
on CadS and not on adS. In CadS, null geodesics are reflected at the boundary. As
explained in [82] (see also [124, 125]), the Hadamard parametrix will diverge for any
pair of points connected by a null geodesic, even if they are far from each other. This
long-distance divergence leads to undamped oscillations in the mode contributions at
large frequency. Levi and Ori [82] use a generalised integral to ensure these oscillations
are properly damped. This divergence suggests that the ‘iε’ prescription employed in
this section is not correct.

These issues do not arise in the Euclidean background, which we consider in the next
section. The Euclidean Green’s function GE(x,x′) is unique and gives us a well-defined
distribution without the need for an ‘iε’ prescription. Since our spacetime is static,
there exists a unique correspondence between the Euclidean Green’s function and the
Feynman Green’s function defined on the Lorentzian section.
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(a) κ = 1

(b) κ = 2π
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(c) κ = 10

Figure 3.6: Plots of the difference in thermal and vacuum expectation values with Robin
boundary conditions imposed, 〈β|φ̂(x)|β〉α − 〈0|φ̂(x)|0〉α. The temperature T = κ/2π
is fixed in each case, with the value of κ given. The results are functions of the radius
ρ and Robin parameter α. In all cases, the difference diverges as α→ αcrit. For small
κ, the results are smooth in α, but for larger κ, there appears to be a discontinuity
at the Neumann value α = π/2. This discontinuity is due to the representation of the
Green’s function as discussed in the text.
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3.4 Quantization on Euclidean section

In this section, we perform a Wick rotation (1.45) and consider scalar fields on the
Euclidean background, where the Green’s function is unique. In section 3.4.1, we solve
the Klein-Gordon equation (1.58) in Euclidean ESU and then perform the conformal
transformation (3.6) to find the Euclidean Green’s function in CadS. We apply Robin
boundary conditions to the Euclidean Green’s function. In section 3.4.2 we focus on
Dirichlet and Neumann boundary conditions in order to demonstrate that results for
the thermal Green’s function in the Euclidean background correspond to similar results
in the Lorentzian background. Finally, in section 3.4.3, we find thermal and vacuum
expectation values with Robin boundary conditions imposed on the fields, and renor-
malise using the Hadamard prescription.

3.4.1 The Euclidean Green’s function

Computing vacuum and thermal expectation values on the Euclidean background signif-
icantly simplifies our calculations. We perform a Wick rotation (1.45) on the Lorentzian
CadS metric (2.5) and obtain the Euclidean CadS metric

ds2 = L2 sec2 ρ
(
dτ2 + dρ2 + sin2 ρ (dθ2 + sin2 θ dϕ2)

)
. (3.85)

We can evaluate the VP by computing

〈0|φ̂2
α|0〉ren = lim

x′→x
[GEα (x, x′)−GS(x, x′)] (3.86)

where the Euclidean Green’s function can be found by solving the inhomogeneous wave
equation (1.58) in ESU, applying appropriate boundary conditions and then performing
a conformal transformation (3.6). In ESU, the Euclidean Green’s function GEESU (x, x′)
satisfies(

2̃− 1

L2

)
GEα,ESU (τ, ρ, θ, ϕ; τ ′, ρ′, θ′, ϕ′) = − 1

L4 sin2 ρ
δ(τ−τ ′)δ(ρ−ρ′)δ(Ω,Ω′) (3.87)

where 2̃ is the d’Alembertian on Euclidean ESU and δ(Ω,Ω′) is the angular delta
function defined by

δ(Ω,Ω′) =
1

sin θ
δ(θ − θ′)δ(ϕ− ϕ′). (3.88)

Using the d’Alembertian in Euclidean ESU, (3.87) can be written(
∂2

∂τ2
+

1

sin2 ρ

[
∂

∂ρ

(
sin2 ρ

∂

∂ρ

)
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
− 1

)
GEα,ESU

= − 1

L2 sin2 ρ
δ(τ − τ ′)δ(ρ− ρ′)δ(Ω,Ω′). (3.89)
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The delta function δ(τ − τ ′) can be written as an integral representation

δ(τ − τ ′) =
1

2π

∫ ∞
−∞

eiω∆τdω (3.90)

so it makes sense to search for a Green’s function of the form

GEα,ESU (x, x′) =
1

2π

∫ ∞
−∞

eiω∆τGω(ρ, θ, ϕ; ρ′, θ′, ϕ′)dω (3.91)

where Gω(ρ, θ, ϕ; ρ′, θ′, ϕ′) is the three-dimensional Green’s function satisfying(
−ω2 +

1

sin2 ρ

[
∂

∂ρ

(
sin2 ρ

∂

∂ρ

)
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
− 1

)
Gω

= − 1

L2 sin2 ρ
δ(ρ− ρ′)δ(Ω,Ω′). (3.92)

The equation for Gω (3.92) can be found by substituting (3.91) into the wave equation
(3.89). The angular delta function can be written as a series representation [1],

δ(Ω,Ω′) =
1

4π

∞∑
`=0

(2`+ 1)P`(cos γ) (3.93)

where γ is the geodesic distance on the sphere (1.222). We write

Gω(ρ, θ, ϕ; ρ′, θ′, ϕ′) =
1

4π

∞∑
`=0

(2`+ 1)P`(cos γ)gESUω` (ρ; ρ′) (3.94)

where gESUω` (ρ; ρ′) is the radial Green’s function in Euclidean ESU. Substituting (3.94)
in (3.92) gives the defining equation for the radial function(

−ω2 +
1

sin2 ρ

∂

∂ρ

(
sin2 ρ

∂

∂ρ

)
− 1

sin2 ρ
`(`+ 1)− 1

)
gESUω` = − 1

L2 sin2 ρ
δ(ρ− ρ′).

(3.95)
The radial Green’s function gESUω` (ρ; ρ′) can be constructed as follows:

gESUω` (ρ; ρ′) = Nω`pESUω` (ρ<)qESUω` (ρ>) (3.96)

where pESUω` , qESUω` are solutions of the homogeneous version of (3.95), ρ< = min{ρ, ρ′},
ρ> = max{ρ, ρ′} and Nω` is a normalisation constant obtained from taking the Wron-
skian of the two homogeneous solutions - see equation (3.114). The function pESUω`

has regularity imposed at the origin, whilst qESUω` has Robin conditions imposed at the
boundary ρ = π/2.

The general solution of the homogeneous version of (3.95) can be expressed in terms of
Mehler (conical) functions

pESUω` (ρ; ρ′) = (sin ρ)−1/2

[
C1P

−`− 1
2

iω− 1
2

(cos ρ) + C2P
−`− 1

2

iω− 1
2

(− cos ρ)

]
, (3.97)

qESUω` (ρ; ρ′) = (sin ρ)−1/2

[
C3P

−`− 1
2

iω− 1
2

(cos ρ) + C4P
−`− 1

2

iω− 1
2

(− cos ρ)

]
, (3.98)
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where C1, C2, C3, C4 are constants of integration. To impose regularity at the origin in
(3.97), we must set C2 = 0. The constant C1 can then be absorbed into the normalisa-
tion constant Nω`, and therefore we have

pESUω` = (sin ρ)−1/2P
−`− 1

2

iω− 1
2

(cos ρ). (3.99)

We impose Robin boundary conditions on qESUω` by using the Robin parameter α as
before, that is

cosα qESUω`

(π
2

)
+ sinα

∂

∂ρ
qESUω`

(π
2

)
= 0. (3.100)

Using [120, 14.5.1, 14.5.2], we find that we must have

C3 + C4

C4 − C3
=

2 tanα |Γ
(

1
2(iω + `+ 2)

)
|2

|Γ(1
2(iω + `+ 1))|2 . (3.101)

We can set C4 = 1 without loss of generality, and then we find

C3 =
2 tanα |Γ

(
1
2(iω + `+ 2)

)
|2 − |Γ

(
1
2(iω + `+ 1)

)
|2

2 tanα |Γ
(

1
2(iω + `+ 2)

)
|2 + |Γ

(
1
2(iω + `+ 1)

)
|2 . (3.102)

The constant C3 is therefore undefined when

2 tanα = −|Γ
(

1
2(iω + `+ 1)

)
|2

|Γ
(

1
2(iω + `+ 2)

)
|2 . (3.103)

This is exactly the same as the quantization condition for unstable modes (3.27). Note
that when we impose Dirichlet boundary conditions (α = 0) then C3 = −1 and when
we impose Neumann boundary conditions (α = π

2 ) then C3 = 1.

Since we have imposed boundary conditions, we can now perform the conformal trans-
formation (3.6) to arrive at the radial Green’s function in CadS, that is

gCadSω` (ρ; ρ′) = Nω`(cos ρ cos ρ′)pESUω` (ρ<)qESUω` (ρ>) = Nω`pCadSω` (ρ<)qCadSω` (ρ>) (3.104)

where

pCadSω` (ρ; ρ′) =
cos ρ

(sin ρ)1/2
P
−`− 1

2

iω− 1
2

(cos ρ), (3.105)

qCadSω` (ρ; ρ′) =
cos ρ

(sin ρ)1/2

[
C3P

−`− 1
2

iω− 1
2

(cos ρ) + P
−`− 1

2

iω− 1
2

(− cos ρ)

]
. (3.106)

It now just remains to calculate the normalisation constant Nω`. To determine this, we
multiply both sides of (3.95) by sin2 ρ and then integrate with respect to ρ between ρ′−δ
and ρ′ + δ for some small, positive δ [69]. We then take the limit δ → 0. Integrating
the right-hand-side of (3.95) is straightforward:

− lim
δ→0

1

L2

∫ ρ′+δ

ρ′−δ
δ(ρ− ρ′)dρ = − 1

L2
. (3.107)
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Integrating and taking δ → 0 on the left-hand-side of (3.95) gives us

lim
δ→0

∫ ρ′+δ

ρ′−δ

{[
−ω2 sin2 ρ− `(`+ 1)− sin2 ρ

]
gESUω` +

∂

∂ρ

[
sin2 ρ

∂gESUω`

∂ρ

]}
dρ

= lim
δ→0

[
sin2 ρ

∂gESUω`

∂ρ

]ρ′+δ
ρ′−δ

. (3.108)

The radial Green’s function gESUω` is continuous, and hence bounded. Therefore, we
have ∣∣∣∣∣

∫ ρ′+δ

ρ′−δ

[
−ω2 sin2 ρ− `(`+ 1)− sin2 ρ

]
gESUω` dρ

∣∣∣∣∣
≤
∫ ρ′+δ

ρ′−δ

∣∣[−ω2 sin2 ρ− `(`+ 1)− sin2 ρ
]
gESUω`

∣∣ dρ
≤
∫ ρ′+δ

ρ′−δ
max

{[
−ω2 sin2 ρ− `(`+ 1)− sin2 ρ

]
gESUω`

}
dρ

≤
∫ ρ′+δ

ρ′−δ
M dρ = 2δM (3.109)

where M is some positive constant. The first integral in (3.108) therefore vanishes in
the limit δ → 0. Thus, from (3.107, 3.108), we obtain

− 1

L2
= sin2 ρ lim

δ→0

[
∂gESUω`

∂ρ

∣∣∣∣
ρ′+δ
− ∂gESUω`

∂ρ

∣∣∣∣
ρ′−δ

]
. (3.110)

Defining the radial Green’s function using (3.96), this becomes

− 1

L2
= sin2 ρ Nω`W{pESUω` , qESUω` } (3.111)

where W{pESUω` , qESUω` } is the Wronskian, defined by

W{pESUω` , qESUω` } = pESUω`

∂qESUω`

∂ρ
− ∂pESUω`

∂ρ
qESUω` . (3.112)

The normalisation constant Nω` in ESU is therefore given by

Nω` = − 1

L2 sin2 ρ W{pESUω` , qESUω` }
. (3.113)

The normalisation constant in CadS is found by applying the conformal transformation
(3.6) to (3.113) to obtain

Nω` = − cot2 ρ

L2W{pCadSω` , qCadSω` } . (3.114)
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The normalisation constant is found to be the same in both cases, as we would expect
from (3.104). The Wronskian is

W{pCadSω` , qCadSω` } = pCadSω`

∂qCadSω`

∂ρ
− ∂pCadSω`

∂ρ
qCadSω` = − 2 cot2 ρ

|Γ(iω + `+ 1)|2 . (3.115)

The normalisation constant is therefore

Nω` =
1

2L2
|Γ(iω + `+ 1)|2. (3.116)

Putting everything together, the Euclidean Green’s function in CadS is

GEα,CadS(x, x′) =
1

16π2L2

cos ρ cos ρ′√
sin ρ sin ρ′

∫ ∞
−∞

dω eiω∆τ
∞∑
`=0

(2`+ 1)P`(cos γ)

× |Γ(iω + `+ 1)|2P−`−
1
2

iω− 1
2

(cos ρ<)

[
C3P

−`− 1
2

iω− 1
2

(cos ρ>) + P
−`− 1

2

iω− 1
2

(− cos ρ>)

]
. (3.117)

The integral over ω in (3.117) does not depend on α, unlike the sum over ω in the
Lorentzian background where values of ω depended on α implicitly via the quantization
condition (3.24). This makes the representation in the Euclidean background highly
preferable to the Lorentzian background, and implies that calculations of the VP for a
range of α can be computed more easily.

From now on, we shall work entirely in CadS, and so drop the subscript “CadS” on
the Euclidean Green’s function. In the Euclidean background, we can also compute
the Euclidean Green’s function for thermal states by assuming that the imaginary time
coordinate τ is periodic with periodicity 2π/T , where T is some arbitrary temperature
- see (1.35). There exist thermal states on CadS satisfying the Hadamard condition at
any temperature (in black hole spacetimes, explored in chapters 4-6, we shall see that
there is a natural temperature associated to states, defined by surface gravity κ = 2πT
(1.143)). We impose this periodicity in τ by using a different representation of the delta
function in (3.89), that is

δ(τ − τ ′) =
κ

2π

∞∑
n=−∞

einκ∆τ , (3.118)

which is valid for any κ > 0. Then, the derivation of the thermal Green’s function is
very similar to that for the vacuum Green’s function, and we find

GEβ,α(x, x′) =
κ

16π2L2

cos ρ cos ρ′√
sin ρ sin ρ′

∞∑
n=−∞

einκ∆τ
∞∑
`=0

(2`+ 1)P`(cos γ)

× |Γ(inκ+ `+ 1)|2P−`−
1
2

inκ− 1
2

(cos ρ<)

[
C3P

−`− 1
2

inκ− 1
2

(cos ρ>) + P
−`− 1

2

inκ− 1
2

(− cos ρ>)

]
(3.119)

where C3 is given by (3.102) and the frequency is given by ω = nκ.
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The Dirichlet Green’s functions for vacuum and thermal states are then given by

GED(x, x′) =
1

16π2L2

cos ρ cos ρ′√
sin ρ sin ρ′

∫ ∞
−∞

dω eiω∆τ
∞∑
`=0

(2`+ 1)P`(cos γ)

× |Γ(iω + `+ 1)|2P−`−
1
2

iω− 1
2

(cos ρ<)

[
−P−`−

1
2

iω− 1
2

(cos ρ>) + P
−`− 1

2

iω− 1
2

(− cos ρ>)

]
, (3.120)

GEβ,D(x, x′) =
κ

16π2L2

cos ρ cos ρ′√
sin ρ sin ρ′

∞∑
n=−∞

einκ∆τ
∞∑
`=0

(2`+ 1)P`(cos γ)

× |Γ(inκ+ `+ 1)|2P−`−
1
2

inκ− 1
2

(cos ρ<)

[
−P−`−

1
2

inκ− 1
2

(cos ρ>) + P
−`− 1

2

inκ− 1
2

(− cos ρ>)

]
. (3.121)

The Neumann Green’s functions are given by

GEN (x, x′) =
1

16π2L2

cos ρ cos ρ′√
sin ρ sin ρ′

∫ ∞
−∞

dω eiω∆τ
∞∑
`=0

(2`+ 1)P`(cos γ)

× |Γ(iω + `+ 1)|2P−`−
1
2

iω− 1
2

(cos ρ<)

[
P
−`− 1

2

iω− 1
2

(cos ρ>) + P
−`− 1

2

iω− 1
2

(− cos ρ>)

]
, (3.122)

GEβ,N (x, x′) =
κ

16π2L2

cos ρ cos ρ′√
sin ρ sin ρ′

∞∑
n=−∞

einκ∆τ
∞∑
`=0

(2`+ 1)P`(cos γ)

× |Γ(inκ+ `+ 1)|2P−`−
1
2

inκ− 1
2

(cos ρ<)

[
P
−`− 1

2

inκ− 1
2

(cos ρ>) + P
−`− 1

2

inκ− 1
2

(− cos ρ>)

]
. (3.123)

We can write the Robin Green’s functions as a linear combination of Dirichlet and
Neumann Green’s functions along with an additional regular part,

GEα (x, x′) = cos2 α GED(x, x′) + sin2 α GEN (x, x′) + sin 2α GER(x, x′), (3.124)

GEβ,α(x, x′) = cos2 α GEβ,D(x, x′) + sin2 α GEβ,N (x, x′) + sin 2α GEβ,R(x, x′), (3.125)

where

GER(x, x′) =
1

16π2L2

cos ρ cos ρ′√
sin ρ sin ρ′

∫ ∞
−∞

dω eiω∆τ
∞∑
`=0

(2`+ 1)P`(cos γ)|Γ(iω + `+ 1)|2

×
[

2 cosα|Γ(1
2(iω + `+ 2))|2 − sinα|Γ(1

2(iω + `+ 1))|2
2 sinα|Γ(1

2(iω + `+ 2))|2 + cosα|Γ(1
2(iω + `+ 1))|2

]
× P−`−

1
2

iω− 1
2

(cos ρ)P
−`− 1

2

iω− 1
2

(cos ρ′), (3.126)
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GEβ,R(x, x′) =
κ

16π2L2

cos ρ cos ρ′√
sin ρ sin ρ′

∞∑
n=−∞

einκ∆τ
∞∑
`=0

(2`+ 1)P`(cos γ)|Γ(inκ+ `+ 1)|2

×
[

2 cosα|Γ(1
2(inκ+ `+ 2))|2 − sinα|Γ(1

2(inκ+ `+ 1))|2
2 sinα|Γ(1

2(inκ+ `+ 2))|2 + cosα|Γ(1
2(inκ+ `+ 1))|2

]
× P−`−

1
2

inκ− 1
2

(cos ρ)P
−`− 1

2

inκ− 1
2

(cos ρ′). (3.127)

It should be noted that GER and GEβ,R are not Green’s functions, but rather arise as
regular contributions to the Green’s function with general Robin conditions imposed.
These do not contribute when Dirichlet or Neumann conditions are imposed due to
the factor of sin 2α in (3.124, 3.125). The fact that the contributions are regular is
apparent when we consider that the Dirichlet and Neumann’s Green’s functions both
satisfy the Hadamard condition, and so all singularities must be contained in the first
two terms in (3.124, 3.125).

In order to evaluate (3.124, 3.125), we must first consider the Dirichlet and Neumann
Green’s functions. In the next section, we show that (3.120, 3.122) give the same results
for the renormalised VP in the Euclidean background as they do in the Lorentzian back-
ground (3.2, 3.3), and use these to calculate the thermal Green’s function in Euclidean
space.

3.4.2 Euclidean Green’s functions for Dirichlet and Neumann bound-
ary conditions

The representations (3.124, 3.125) allow us to employ known results for the Dirichlet
and Neumann Green’s functions in order to calculate the effect on the VP of imposing
Robin boundary conditions on both vacuum and thermal states. The thermal Green’s
functions for Dirichlet and Neumann conditions can be obtained as infinite image sums
over the vacuum Green’s function on the Lorentzian background [110]. In this section
we derive the results from [110] using our representations (3.121, 3.123).

We can evaluate the sums in (3.121, 3.123) to give us

GEβ,D(x, x′) =
cos ρ cos ρ′

8π2L2

{
1

cosh ∆τ + cosψ
− 1

cosh ∆τ + cosψ∗

−4

∞∑
k=1

(−1)k cosh(k∆τ)

e2kπ/κ − 1

(
sin kψ

sinψ
− sin kψ∗

sinψ∗

)}
, (3.128)

and

GEβ,N (x, x′) =
cos ρ cos ρ′

8π2L2

{
1

cosh ∆τ + cosψ
+

1

cosh ∆τ + cosψ∗

−4
∞∑
k=1

(−1)k cosh(k∆τ)

e2kπ/κ − 1

(
sin kψ

sinψ
+

sin kψ∗

sinψ∗

)}
(3.129)
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where

ψ = cos−1(− cos ρ cos ρ′ − cos γ sin ρ sin ρ′) (3.130)

ψ∗ = π + cos−1(− cos ρ cos ρ′ + cos γ sin ρ sin ρ′). (3.131)

For more details of this calculation, see Appendix E. It is useful to compare this with
results on the Lorentzian background in [110, eq 2.10], given in (3.78). We define
β = 2π/κ to be the inverse temperature. We can note that η± is related to ψ,ψ∗ as
follows:

η+ = ψ + π, η− = ψ∗. (3.132)

With some rearranging, (3.78) becomes

G
(1)
β,±(x, x′) =

cos ρ cos ρ′

4π2L2

{
1

cos ∆t+ cosψ
∓ 1

cos ∆t+ cosψ∗

−4

∞∑
k=1

(−1)k cos(k∆t)

e2kπ/κ − 1

(
sin kψ

sinψ
∓ sin kψ∗

sinψ∗

)}
. (3.133)

Making the replacement t → iτ , we recover our representation on the Euclidean sec-
tion given by (3.128, 3.129). Thus, the results that we have found in the Euclidean
background match those found in the Lorentzian background in [110].

By taking the zero temperature limit κ→ 0 in (3.128, 3.129) we can derive closed-form
expressions for the vacuum Euclidean Green’s functions for Dirichlet and Neumann
boundary conditions imposed on the fields. The limit and summation can be inter-
changed, since the sums over k are uniformly convergent for 2π/κ > ∆τ , and our
results are

GED(x, x′) =
cos ρ cos ρ′

8π2L2

{
1

cosh ∆τ + cosψ
− 1

cosh ∆τ + cosψ∗

}
, (3.134)

GEN (x, x′) =
cos ρ cos ρ′

8π2L2

{
1

cosh ∆τ + cosψ
+

1

cosh ∆τ + cosψ∗

}
. (3.135)

All divergences as x′ → x are contained within the first term.

3.4.3 Renormalised vacuum polarisation with Robin conditions

Using the expression (3.124) together with (3.134, 3.135) we obtain the following result
for the vacuum Green’s function with Robin boundary conditions imposed

GEα (x, x′) =
cos ρ cos ρ′

8π2L2

{
1

cosh ∆τ + cosψ
− cos 2α

cosh ∆τ + cosψ∗

}
+ sin 2α GER(x, x′)

(3.136)

where GER is given by (3.126).
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Using (3.125) together with (3.128, 3.129), we obtain the following result for the thermal
Green’s function with Robin conditions imposed

GEβ,α(x, x′) =
cos ρ cos ρ′

8π2L2

{
1

cosh ∆τ + cosψ
− cos 2α

cosh ∆τ + cosψ∗

−4

∞∑
k=1

(−1)k cosh(k∆τ)

e2kπ/κ − 1

(
sin kψ

sinψ
− cos 2α

sin kψ∗

sinψ∗

)}
+ sin 2α GEβ,R(x, x′) (3.137)

where GEβ,R is given by (3.127).

To renormalise the expectation values, we must look at the Hadamard parametrix.
In Euclideanised CadS space, the van Vleck-Morette determinant and Synge world
function are given by [126]

∆1/2(x, x′) =

(
2σ(x, x′)

L2

)3/4

cosech3/2

(√
2σ(x, x′)

L2

)
(3.138)

2σ(x, x′) = L2

[
cos−1

(
cosh ∆τ − cos γ sin ρ sin ρ′

cos ρ cos ρ′

)]2

. (3.139)

Here, we have used the results of Appendix D with t→ iτ . We bring spatial coordinates
together and keep temporal coordinates split, to give us

∆1/2 =

(
cos−1 ζ(∆τ, ρ)

sinh (cos−1 ζ(∆τ, ρ))

)3/2

, (3.140)

2σ/L2 =
[
cos−1 ζ(∆τ, ρ)

]2
, (3.141)

where

ζ(∆τ, ρ) =
cosh ∆τ − sin2 ρ

cos2 ρ
. (3.142)

The Hadamard parametrix (1.192) is then

GS(∆τ ; ρ) =
1

4π2L2

[
cos−1 ζ(∆τ, ρ)

]−1/2
[sinh ζ(∆τ, ρ)]−3/2

=
cos2 ρ

4π2L2∆τ2
− 1

48π2L2
(2 + cos2 ρ) +O(∆τ2). (3.143)

To bring spatial coordinates together in the Euclidean Green’s function (3.136, 3.137),
we first note that, in the limit ρ′ → ρ, cos γ → 1, we obtain

cosψ = −1, cosψ∗ = cos 2ρ, (3.144)

where ψ,ψ∗ are given by (3.130, 3.131). Then we set ψ = π, ψ∗ = 2ρ in the coincidence
limit and write

GEβ,α(∆τ ; ρ) =
cos2 ρ

8π2L2

{
1

cosh ∆τ − 1
− cos 2α

cosh ∆τ + cos 2ρ

−4
∞∑
k=1

(−1)k cosh k∆τ

e2kπ/κ − 1

(
(−1)k+1k − cos 2α

sin 2kρ

sin 2ρ

)}
+ sin 2α GEβ,R(∆τ ; ρ) (3.145)
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where we note that

lim
ψ→π

sin kψ

sinψ
= lim

ψ→π
k cos kψ

cosψ
= (−1)k+1k (3.146)

using L’Hopital’s rule. We now consider each part of (3.145) separately, writing the
first part as

1

cosh ∆τ − 1
− cos 2α

cosh ∆τ + cos 2ρ
=

2

∆τ2
− 1

6

(
1 +

3 cos 2α

cos2 ρ

)
+O(∆τ). (3.147)

The second part of (3.145) can be written as

− 4
∞∑
k=1

(−1)k cosh k∆τ

e2kπ/κ − 1

(
(−1)k+1k − cos 2α

sin 2kρ

sin 2ρ

)

= −4
∞∑
k=1

(−1)k

e2kπ/κ − 1

(
(−1)k+1k − cos 2α

sin 2kρ

sin 2ρ

)
+O(∆τ2) (3.148)

and the regular Robin function has the form

GEβ,R(∆τ ; ρ) =
κ

16π2L2

cos2 ρ

sin ρ

∞∑
n=−∞

einκ∆τ
∞∑
`=0

(2`+1)|Γ(`+1+inκ)|2Cαn`
[
P
−`− 1

2

inκ− 1
2

(cos ρ)

]2

(3.149)
where

Cαn` =
2 cosα|Γ(1

2(inκ+ `+ 2))|2 − sinα|Γ(1
2(inκ+ `+ 1))|2

2 sinα|Γ(1
2(inκ+ `+ 2))|2 + cosα|Γ(1

2(inκ+ `+ 1))|2 . (3.150)

Expanding GEβ,R(∆τ ; ρ) as a series in ∆τ , we find

GEβ,R(∆τ ; ρ) =
κ

16π2L2

cos2 ρ

sin ρ

∞∑
n=−∞

(1 + iκn∆τ)

∞∑
`=0

(2`+ 1)|Γ(`+ 1 + inκ)|2

× Cαn`
[
P
−`− 1

2

inκ− 1
2

(cos ρ)

]2

+O(∆τ2)

=
κ

16π2L2

cos2 ρ

sin ρ

∞∑
n=−∞

∞∑
`=0

(2`+ 1)|Γ(`+ 1 + inκ)|2

× Cαn`
[
P
−`− 1

2

inκ− 1
2

(cos ρ)

]2

+O(∆τ2) (3.151)

where in the second line we have used the fact that terms linear in ∆τ sum to zero.
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The Euclidean Green’s function for thermal states (3.145) can then be written as

GEβ,α(∆τ ; ρ) =
cos2 ρ

4π2L2∆τ2
− 1

48π2L2

(
cos2 ρ+ 3 cos 2α

)
(3.152)

− cos2 ρ

2π2L2

∞∑
k=1

(−1)k

e2kπ/κ − 1

(
(−1)k+1k − cos 2α

sin 2kρ

sin 2ρ

)
(3.153)

+
κ sin 2α

16π2L2

cos2 ρ

sin ρ

∞∑
n=−∞

∞∑
`=0

(2`+ 1)|Γ(`+ 1 + inκ)|2

× Cαn`
[
P
−`− 1

2

inκ− 1
2

(cos ρ)

]2

+O(∆τ2). (3.154)

Subtracting the Hadamard parametrix (3.143) and taking the limit ∆τ → 0 gives us
the thermal expectation values with Robin conditions imposed,

〈β|φ̂2
α|β〉 = − 1

48π2L2
(3 cos 2α− 2)

− cos2 ρ

2π2L2

∞∑
k=1

(−1)k

e2kπ/κ − 1

(
(−1)k+1k − cos 2α

sin 2kρ

sin 2ρ

)

+
κ sin 2α

16π2L2

cos2 ρ

sin ρ

∞∑
n=−∞

∞∑
`=0

(2`+ 1)|Γ(`+ 1 + inκ)|2

× Cαn`
[
P
−`− 1

2

inκ− 1
2

(cos ρ)

]2

. (3.155)

When Dirichlet and Neumann conditions are imposed, the final term in (3.155) vanishes
due to the sin 2α term and, with some rearranging and making the replacement 2π/κ =
β/L, we can recover the results from [110], given in (3.81).

The vacuum expectation values are found in a similar way,

〈0|φ̂2
α|0〉 = − 1

48π2L2
(3 cos 2α− 2)

+
sin 2α

16π2L2

cos2 ρ

sin ρ

∫ ∞
ω=−∞

dω
∞∑
`=0

(2`+ 1)|Γ(`+ 1 + iω)|2

× Cαω`
[
P
−`− 1

2

iω− 1
2

(cos ρ)

]2

, (3.156)

where constants Cαω` are given by replacing nκ → ω in (3.150). For Dirichlet and
Neumann conditions, the second term in (3.156) vanishes due to the sin 2α term, and
we recover the results that we found in Lorentzian CadS (3.69, 3.77). Equations (3.155,
3.156) are new results.
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3.5 Numerical results

In this section we present the numerical results for vacuum expectation values (3.156)
and thermal expectation values (3.155) in CadS with Robin conditions imposed on the
boundary.

To calculate (3.156) numerically, we first swap the order of sum and integral. The
integral over ω can be calculated relatively quickly by fixing α and ` and using the
NIntegrate function in Mathematica between ω = −∞ and ω = ∞. The working
precision is set at 10, and we calculate the integral for ` = 0, ..., 20. The sum over
` is then truncated at ` = 20, as contributions from larger ` values are found to be
negligible.

In Figure 3.7(a), we show the vacuum expectation value as a function of Robin param-
eter α and radial coordinate ρ, whilst in Figure 3.7(b) we consider a set of values of α
and show the vacuum expectation values as functions of ρ only.

For Dirichlet (α = 0) and Neumann (α = π/2), the vacuum expectation values are
constant, as shown in (3.69, 3.77). For α ∈ [αcrit, π), there exist unstable modes (see
section 3.2.4). For this reason, we restrict our plot in Figure 3.7(a) to values of α for
which there are no unstable modes. For α ∈ (0, π/2), the vacuum expectation value
is monotonically increasing from the origin (ρ = 0) to the boundary (ρ = π/2), and
is monotonically decreasing for α ∈ (π/2, αcrit). We can see from Figure 3.7(a) that
values at the origin increase monotonically as α increases. Expectation values diverge
as α → αcrit, which is indicative of the breakdown of the semiclassical approximation
that we use (due to the presence of classical instabilities for α > αcrit).

We also notice that, at the boundary, all results approach the Neumann constant value
5/48π2L2, apart from when Dirichlet conditions are used. This is most evident in
Figure 3.7(b). This point is discussed further in section 3.6.

We now look at thermal expectation values, calculated for κ = 1/2, 2 and 2π from
(3.155). The temperature T is related to κ via T = κ/2π. Thermal expectation values
(3.155) are a little more straightforward to calculate, since we have a summation over
values of n rather than an integral. We truncate the sum over ` at ` = 100 and the
sum over n at n = 100, with each value calculated to 100 digits of precision.

To check that this number of terms is satisfactory, we can compare with the results given
in Allen, Folacci and Gibbons (AFG) [110], which are easier to calculate but do not
allow for the extension to Robin boundary conditions. The AFG thermal expectation
values with Dirichlet and Neumann boundary conditions imposed are given in (3.81),
where we note that the sums over n in f1(β), S0(β, ρ) can be performed to a high value
of n very quickly. We take one away from the other, and then take the coincidence
limit, that is

〈β|φ̂2
N |β〉 − 〈β|φ̂2

D|β〉. (3.157)

To compare, we plot the difference in Dirichlet and Neumann results using both our
mode-sum representation (3.155) and AFG’s representation (3.81). Although both are
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Figure 3.7: Plots of vacuum expectation values 〈0|φ̂α|0〉 calculated from (3.156). The
upper plot shows these values as a function of the radial coordinate ρ and the Robin
parameter α. The magenta line marks the VP for Neumann conditions (α = π/2), for
which vacuum expectation values are constant. The lower plot considers a set of values
of α and presents the vacuum expectation values as functions of ρ only. We use units
in which the adS radius L = 1.
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Figure 3.8: We plot the difference between Dirichlet and Neumann results for thermal
expectation values using both our representation (3.155) and AFG’s representation
(3.81). Our representation is a mode-sum which requires a lot more computation time
to calculate compared to AFG’s representation. We use 100 terms in both the n- and
`-sums. To increase the accuracy of our results for larger values of r, we would need to
increase the number of terms in each sum.
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equivalent when we consider α = 0, π/2, the AFG results provide better accuracy, since
the sums can be computed with better numerical precision. Plotting the difference
allows us to test the accuracy of our numerical computations.

Comparison plots between (3.155) and (3.81) are shown in Figure 3.8. To plot, we use
the radial coordinate r, defined by

ρ = tan−1
( r
L

)
, (3.158)

so that the boundary ρ = π/2 is at r = ∞, whilst the origin is still placed at r = 0.
This allows us to see more clearly where our numerical computations break down as
we approach the boundary (r → ∞). In Figure 3.8(a), we see that our computation
breaks down for relatively small r when we have small temperature (κ = 1/2). As the
temperature increases (κ = 2 in Figure 3.8(b) and κ = 2π in Figure 3.8(c)) then we
find that our results do not break down until we reach larger values of r. In all cases,
we still capture the fact that results converge to the expected difference 6/48π2L2 as
we increase r. This is regardless of the value of r for which our numerical computations
break down. This implies that our results have been calculated to a satisfactory value
of r in order to obtain the correct behaviour close to the boundary.

In Figures 3.9(a), (c), (e) we show the thermal expectation values for three different
temperatures as functions of the radial coordinate ρ and Robin parameter α. As we did
for the vacuum expectation values, in Figures 3.9(b), (d), (f) we show the results for
specific values of α. To generate the surface plots, we calculate the expectation values
for α = iπ/100, where i = 0, 1, ..., n such that n > 50 and nπ/100 ∼ αcrit.
When we have small temperature, κ = 1/2, the plot in Figure 3.9(b) looks very similar
to that in Figure 3.7(b) - the differences between the two are indistinguishable at
this scale. However, it is important to note that in the thermal case, the expectation
values with Neumann and Dirichlet boundary conditions are no longer constant. At
the boundary, both results approach the constant vacuum expectation values - that is,
−1/48π2L2 for Dirichlet conditions and 5/48π2L2 for Neumann conditions.

The surface plot in Figure 3.9(a) uses a different scale to that in Figure 3.7(a). The
monotonically increasing behaviour at the origin can be clearly seen. When Dirichlet
boundary conditions are applied, the thermal expectation values have their maximum
at the origin, and monotonically decrease as we approach the boundary. For α ∈
(0, π/2), thermal expectation values are monotonically increasing as ρ increases, and
are monotonically decreasing for α ∈ [π/2, αcrit).

As we increase the temperature from κ = 1/2 to κ = 2 and again to κ = 2π, we see
that the thermal expectation value at the origin increases regardless of the boundary
condition imposed. In addition, the thermal expectation value at the origin is mono-
tonically increasing as α increases, and appears to be diverging as α → αcrit. Away
from the origin, the behaviour is not so straightforward to describe, as it depends on
the value of α and κ. For Dirichlet and Neumann conditions, the thermal expectation
value is always monotonically decreasing as we move towards the boundary, regardless
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Figure 3.9: Plots of thermal expectation values 〈β|φ̂α|β〉 calculated from (3.155). Plots
(a), (c), (e) show these values as functions of the radial coordinate ρ and the Robin
parameter α. Plots (b), (d), (f) show a selection of values of α and present the thermal
expectation values as functions of ρ only. We use units in which the adS radius L = 1.
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of the value of κ. When κ is small, we find that the expectation values monotonically
increase for sufficiently small α, and monotonically decrease for sufficiently large α.
When κ = 2π, it appears that the results monotonically decrease for all α, although it
is possible that there exist some small values of α for which this is not true.

As we saw in the case of vacuum expectation values, thermal expectation values ap-
proach the limit 5/48π2L2 for all values of α except α = 0. This is discussed in further
detail in section 3.6. For all values of temperature T and parameter α, we can see that
thermal expectation values are larger than vacuum expectation values for all ρ. This
difference tends to zero as we approach the spacetime boundary. This property can be
interpreted as the thermal radiation “clumping” close to the origin due to the infinite
gravitational potential at the boundary [62].

3.6 Vacuum polarisation at the boundary

In the previous section, our numerical results showed that the expectation values at
the boundary approached 5/48π2L2 for all values of α ∈ (0, αcrit). This behaviour is
noticeably different from the behaviour observed in [117] where Robin conditions were
only applied to the ` = 0 terms. In the latter case, all vacuum expectation values
tended to the Dirichlet limit −1/48π2L2 as ρ approached the boundary.

In this section, we look at the values of (3.155, 3.156) on the boundary to try to derive
the fact that these expectation values approach 5/48π2L2 for all α ∈ (0, αcrit). The
sum over k in (3.155) converges uniformly for all ρ, and thanks to the factor of cos2 ρ,
this will vanish on the boundary. Therefore, it is the final double sum (or sum and
integral combination in (3.156)) that we need to evaluate on the boundary. This is
a difficult task, however, since the sums are not uniformly convergent in ρ. We test
this convergence in Figure 3.10, where we swap the order of the sums, perform the
n-sum and plot the `-summand. For each fixed value of ρ, the `-sum is convergent, but
the rate of this convergence gets worse as ρ increases towards the spacetime boundary,
meaning that we cannot naively interchange sum and limit.

When deriving equations (3.155, 3.156), we used the representations (3.124, 3.125).
From studying our numerical results, we choose instead to write the Green’s functions
in the following way:

GEα (x, x′) = GEN (x, x′) + [GED(x, x′)−GEN (x, x′)] cos2 α+ sin 2α GER(x, x′), (3.159)

GEβ,α(x, x′) = GEβ,N (x, x′) + [Gβ,ED (x, x′)−GEβ,N (x, x′)] cos2 α+ sin 2α GEβ,R(x, x′).
(3.160)

Using equations (3.120 - 3.123, 3.126, 3.127), we can write the vacuum and thermal



CHAPTER 3. QUANTUM FIELD THEORY IN ADS 101

ρ= π
4

ρ= 3π
8

ρ= 49π
100

20 40 60 80
ℓ

10

10-20

10-40

10-60

Figure 3.10: Log-log plot of the `-summand in the final term in (3.155). We have
swapped the sums in this equation, fixed α = π/4 and performed the n-sum, for various
values of ρ.

expectation values in the following alternative form

〈0|φ̂2
α|0〉 = 〈0|φ̂2

N |0〉

− sin 2α

16π2L2

cos2 ρ

sin ρ

∫ ∞
ω=−∞

dω

∞∑
`=0

(2`+ 1)|Γ(`+ 1 + iω)|2Dα
ω`

[
P
−`− 1

2

iω− 1
2

(cos ρ)

]2

, (3.161)

and

〈β|φ̂2
α|β〉 = 〈β|φ̂2

N |β〉

− κ sin 2α

16π2L2

cos2 ρ

sin ρ

∞∑
n=−∞

∞∑
`=0

(2`+ 1)|Γ(`+ 1 + inκ)|2Dα
n`

[
P
−`− 1

2

inκ− 1
2

(cos ρ)

]2

. (3.162)

Our new constants Dα
ω` are defined by

Dα
ω` = cotα− Cαω` =

|Γ( iω+`+2
2 )|2 cscα

2|Γ( iω+`+2
2 )|2 sinα+ |Γ( iω+`+1

2 )|2 cosα
(3.163)

where the constants Cαω` are defined in (3.150). As before, the constants Dα
n` are

obtained by taking ω → nκ in (3.163). Using our expression for 〈β|φ̂2
N |β〉 from (3.155),
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we can write

〈β|φ̂2
α|β〉 = 〈0|φ̂2

N |0〉 −
cos2 ρ

2π2L2

∞∑
k=1

(−1)k

e2kπ/κ − 1

(
(−1)k+1k − sin 2kρ

sin 2ρ

)

− κ sin 2α

16π2L2

cos2 ρ

sin ρ

∞∑
n=−∞

∞∑
`=0

(2`+ 1)|Γ(`+ 1 + inκ)|2Dα
n`

[
P
−`− 1

2

inκ− 1
2

(cos ρ)

]2

. (3.164)

As `→∞, we can use asymptotic properties of Γ functions [120, 5.11.12] to show

Cαn` =
2 cosα

|Γ( 1
2

(inκ+`+2))|2
|Γ( 1

2
(inκ+`+1))|2 − sinα

2 sinα
|Γ( 1

2
(inκ+`+2))|2

|Γ( 1
2

(inκ+`+1))|2 + cosα
∼ ` cosα− sinα

` sinα+ cosα
∼ cotα as `→∞ (3.165)

and so
Dα
n` → 0 as `→∞. (3.166)

On the boundary, numerical investigations suggest that these sums in (3.161, 3.162)
diverge. This is complicated, however, by the presence of a factor of cos2 ρ which
vanishes on the boundary. The question remains whether the additional contributions
in (3.161, 3.162) vanish on the boundary.

Attempting to address this question on CadS is complicated since ρ = π/2 is not part
of the spacetime. Instead, we can consider the Euclidean background of ESU, discussed
in the early part of section 3.4. Divergences close to a boundary are studied in [114],
and we follow their method here by applying Stokes’ Theorem to the vacuum Euclidean
Green’s functions GEESU,N (x, x′) and GEESU,α(x, x′) on the region V ⊂ ESU defined by
ρ ∈ [0, π/2]. If S = ∂V , the boundary of the region V , then we find∫

S

[
GEN,ESU (x, y)∇̃µGEα,ESU (y, x′)−GEα,ESU (x, y)∇̃µGEN,ESU (y, x′)

]
dSµ

=

∫
V
∇̃µ
[
GEN,ESU (x, y)∇̃µGEα,ESU (y, x′)−GEα,ESU (x, y)∇̃µGEN,ESU (y, x′)

]
dV

=

∫
V

[
GEN,ESU (x, y)2̃GEα,ESU (y, x′)−GEα,ESU (x, y)2̃GEN,ESU (y, x′)

]
dV (3.167)

where covariant derivatives ∇̃ and the D’Alembertian 2̃ = ∇̃µ∇̃µ are defined with
respect to the Euclidean ESU metric, and all integrals are taken over spacetime points
y. Using the wave equation on Euclidean ESU (3.87), we can write the right-hand side
of (3.167) as∫

V

[
GEN,ESU (x, y)2̃GEα,ESU (y, x′)−GEα,ESU (x, y)2̃GEN,ESU (y, x′)

]
dV

=

∫
V

{
GEN,ESU (x, y)

[
− 1√

g
δ(4)(y, x′) +

1

L2
GEα,ESU (y, x′)

]
−GEα,ESU (x, y)

[
− 1√

g
δ(4)(y, x′) +

1

L2
GEN,ESU (y, x′)

]}
dV

= −GEN,ESU (x, x′) +GEα,ESU (x, x′), (3.168)
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where δ4(x, x′) is defined in (1.19). To evaluate the surface integral on the left-hand
side of (3.167), we note that the boundary S consists of two surfaces I0 ∪Iπ/2, where
I0 is the timelike hypersurface in ESU at ρ = 0 and Iπ/2 is the timelike hypersurface in
ESU at ρ = π/2. The contribution from the integral over I0 is zero. This is explained
in CadS in section 3.2.5 - we can write the Green’s functions as sums over modes (3.35)
which were shown to vanish on I0. The analysis from section 3.2.5 carries over to ESU
since the conformal factor cos ρ = 1 on I0. Imposing Robin conditions on Iπ/2, we
find∫

S

[
GEN,ESU (x, y)∇̃µGEα,ESU (y, x′)−GEα,ESU (x, y)∇̃µGEN,ESU (y, x′)

]
dSµ

= −L−1 cotα

∫
Iπ/2

GEN,ESU (x, y)GEα,ESU (y, x′) dS. (3.169)

Combining (3.168) and (3.169) and rearranging, we have

GEα,ESU (x, x′) = GEN,ESU (x, x′)− L−1 cotα

∫
Iπ/2

GEN,ESU (x, y)GEα,ESU (y, x′) dS.

(3.170)
Since GEN,ESU (x, x′) satisfies the Hadamard condition, in general all singularities in

GEα,ESU (x, x′) are contained within the first term of (3.170), and the integral will be
finite in the limit x′ → x (except, possibly, if x lies on the boundary). Note that the
factor of cotα indicates that this expansion is valid for all 0 < α < π, but not for
Dirichlet conditions when α = 0.

Following [114], we can substitute the expression for GEα,ESU (x, x′) given in (3.170)
into the integral on the right-hand-side of (3.170). This procedure forms the basis of an
iterative expression for the Euclidean Green’s function with Robin boundary conditions,
that is

GEα,ESU (x, x′) = GEN,ESU (x, x′)−L−1 cotα G
E,(1)
α,ESU (x, x′)+L−2 cot2 α G

E,(2)
α,ESU (x, x′)+...

(3.171)
where

G
E,(1)
α,ESU (x, x′) =

∫
Iπ/2

GEN,ESU (x, y)GEN,ESU (y, x′) dS, (3.172)

G
E,(2)
α,ESU (x, x′) =

∫
Iπ/2

GEN,ESU (x, y)

[∫
Iπ/2

GEN,ESU (y, z)GEN,ESU (z, x′) dS

]
dS.

(3.173)

In (3.172), we take the integral over spacetime point y, whilst in (3.173), we take the
scalar integral over z and the outer integral over y. Further terms in (3.171) will contain
additional integrals over Iπ/2.
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We now note that GEN,ESU (x, x′) can be written in closed form by applying the confor-
mal transformation (3.6) to (3.135):

GEN,ESU (x, x′) =
1

8π2L2

{
1

cosh ∆τ + cosψ
+

1

cosh ∆τ + cosψ∗

}
. (3.174)

If we take the partial coincidence limit and keep points split in the τ -direction, then
we have cosψ = −1 and cosψ∗ = cos 2ρ and thus

GEN,ESU (∆τ, ρ, θ, ϕ) =
1

8π2L2

{
1

cosh ∆τ − 1
+

1

cosh ∆τ + cos 2ρ

}
=

1

8π2L2

{
2

∆τ2
+

(
1

1 + cos 2ρ
− 1

6

)}
+O(∆τ2). (3.175)

We need to renormalise this by subtracting the Hadamard parametrix GS,ESU (x, x′).
With points split in the temporal direction, the world function is given by 2σ = L2∆τ2

and the van Vleck-Morette determinant is ∆1/2 = 1 +O(∆τ3) (see Appendix F), and
therefore

GS,ESU (∆τ, ρ, θ, ϕ) =
∆1/2

8π2σ
=

1

4π2L2∆τ2
+O(∆τ). (3.176)

The renormalised VP on ESU with Neumann boundary conditions is therefore

〈0|φ̂2
N |0〉ESU = lim

∆τ→0

{
GEN,ESU (∆τ, ρ, θ, ϕ)−GS,ESU (∆τ, ρ, θ, ϕ)

}
=

5− cos 2ρ

48π2L2(1 + cos 2ρ)
. (3.177)

It should be noted that, whilst the vacuum expectation value with Neumann boundary
conditions on CadS is a constant, this is not the case on ESU. This is because, although
the Green’s functions on CadS and ESU are conformally related, the Hadamard para-
metrices GS,ESU (x, x′) and GS(x, x′) are not. This can be seen by comparing (3.176)
with (3.143).

The vacuum expectation value (3.177) is finite for all 0 ≤ ρ < π/2, but diverges as ρ
approaches π/2. If we write ρ = π/2− ε, then we can see that in the limit ε→ 0,

〈0|φ̂2
N |0〉ESU =

1

16π2L2ε2
+O(ε2). (3.178)

This divergence as O(ε2) agrees with analysis performed in [114]. In [114], it is shown

that G
E,(1)
α,ESU (x, x′) (3.172) is expected to diverge as O(ε−1) on the boundary, whilst

all other terms are expected to be finite on the boundary. We can test this with an
explicit evaluation of the integral (3.172) using the closed-form representation (3.174).

To perform this integral, we fix ρ′ = π/2 so that cosψ = cosψ∗ = − cos γ sin ρ. Then
(3.174) becomes

GEN,ESU (τ, ρ, θ, ϕ; τ ′, π/2, θ′, ϕ′) =
1

4π2L2

1

cosh ∆τ − cos γ sin ρ
. (3.179)
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Since G
E,(1)
α,ESU (x, x′) is finite in the limit x′ → x, we set x′ = x and then

G
E,(1)
α,ESU (x, x) =

1

16π4L4

∫
Iπ/2

1

(cosh ∆τ − cos γ sin ρ)2
dS (3.180)

where x is a general point in ESU with coordinates (τ, ρ, θ, ϕ) and we take the integral
over y = (τy, π/2, θy, ϕy), where ∆τ = τy − τ and γ is the geodesic distance (1.222)
with θ′ = θy and ∆ϕ = ϕy − ϕ. Without loss of generality, we can set θ = 0, ϕ = 0
and then cos γ = cos θy. Noting that dS = L3 sin θy d∆τ dθy dϕy, the integral becomes

G
E,(1)
α,ESU (x, x′) =

1

16π4L

∫ ∞
−∞

d∆τ

∫ π

0
dθy

∫ 2π

0
dϕy

sin θy
(cosh ∆τ − cos θy sin ρ)2

=
1

8π3L

∫ ∞
−∞

d∆τ

∫ π

0
dθy

sin θy
(cosh ∆τ − cos θy sin ρ)2

=
1

4π3L

∫ ∞
−∞

d∆τ
1

cosh2 ∆τ − sin2 ρ
. (3.181)

The integral (3.181) is regular for all ∆τ when 0 ≤ ρ < π/2, but if ρ = π/2 then the
integral is singular at ∆τ = 0. We can perform the integral for 0 < ρ < π/2 by making
the substitution z → coth ∆τ . Then

dz = − cosech2 ∆τ = (1− coth2 ∆τ) d∆τ = (1− z2) d∆τ. (3.182)

The integral becomes∫ ∞
−∞

d∆τ

cosh2 ∆τ − sin2 ρ
= 2

∫ ∞
1

dz

(z2 − 1)(cosh2 ∆τ − sin2 ρ)
(3.183)

where we have used the fact that the integrand is an even function to allow us to only
consider half the integration region. From standard hyperbolic identities, we can write

cosh2 ∆τ =
z2

z2 − 1
(3.184)

and therefore, after some rearranging,

2

∫ ∞
1

dz

(z2 − 1)
(

z2

z2−1
− sin2 ρ

) =
2

cos2 ρ

∫ ∞
1

dz

z2 + tan2 ρ
. (3.185)

Performing the integral,

2

cos2 ρ

∫ ∞
1

dz

z2 + tan2 ρ
=

2

cos ρ sin ρ

[
tan−1

(
z

tan ρ

)]∞
1

=
2

cos ρ sin ρ

[
π

2
− tan−1

(
1

tan ρ

)]
. (3.186)
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Using the fact that tan−1(x) = π
2 − cot−1(x), we find

G
E,(1)
α,ESU (x, x) =

1

2π3L

ρ

sin ρ cos ρ
. (3.187)

As we approach the boundary, we write ρ = π/2− ε, and then

G
E,(1)
α,ESU (x, x) =

1

4π2Lε
+O(1) (3.188)

as ε→ 0. The divergence as O(ε−1) is as expected. Higher-order terms in (3.171) will
be finite so we do not need to consider these terms in great detail. Using the conformal
transformation (3.6) along with (3.171), we find in CadS

GEα (x, x′) = GEN (x, x′)− L−1 cos ρ cos ρ′ cotα

∫
Iπ/2

GEN,ESU (x, y)GEN,ESU (y, x′) dS + ...

(3.189)
Renormalising and taking the limit x′ → x, we have

〈0|φ̂2
α|0〉 = 〈0|φ̂2

N |0〉−L−1 cos2 ρ cotα

∫
Iπ/2

GEN,ESU (x, y)GEN,ESU (y, x) dS+ ... (3.190)

Subsequent terms in the expansion are finite on the boundary and are multiplied by
the conformal factor cos2 ρ, which means that we do not need to consider these terms
when looking in the limit ρ→ π/2. The integral in (3.190) will diverge as O(ε−1) from
(3.188). In (3.190), we multiply this integral by the conformal factor cos2 ρ. Writing
ρ = π/2− ε, we obtain cos2 ρ = ε2 +O(ε3), and so, on the boundary,

lim
ρ→π

2

〈0|φ̂2
α|0〉 = lim

ρ→π
2

〈0|φ̂2
N |0〉 =

5

48π2L2
. (3.191)

This completes the justification that, for all values of Robin parameter α ∈ (0, αcrit),
the vacuum expectation values approach those for Neumann boundary conditions as
ρ→ π/2. This is in agreement with our numerical results (see Figure 3.7).

It remains to show that we obtain similar behaviour at the boundary for thermal
expectation values. We can use the method of [114] for thermal Euclidean Green’s
functions in ESU to write

GEβ,α,ESU (x, x′) = GEN,ESU (x, x′)− L−1 cotα

∫
Iπ/2

GEN,ESU (x, y)GEβ,α,ESU (y, x′) dS.

(3.192)
This is obtained by using the same method as in equations (3.167-3.169), this time
applied to GEβ,α,ESU (x, x′) instead of GEα,ESU (x, x′). The similarities between (3.192)
and (3.170) can be noted. The main point to notice is that the first term on the left-
hand-side of (3.192) is the vacuum Green’s function with Neumann boundary conditions
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imposed, rather than the thermal Green’s function. Substituting GEβ,α,ESU (y, x′) in the
integral, we obtain

GEβ,α,ESU (x, x′) = GEN,ESU (x, x′)− L−1 cotα

∫
Iπ/2

GEN,ESU (x, y)GEN,ESU (y, x′) dS

+ L−2 cotα

∫
Iπ/2

GEN,ESU (x, y)

[∫
Iπ/2

GEN,ESU (y, z)GEβ,α,ESU (z, x′) dS

]
dS (3.193)

and repeating this, we again form an iterative expression similar to that given for the
vacuum Green’s function (3.170). We obtain the thermal Green’s function in CadS by
again performing the conformal transform (3.6), which gives us

GEβ,α(x, x′) = GEN (x, x′)−L−1 cos ρ cos ρ′ cotα

∫
Iπ/2

GEN,ESU (x, y)GEN,ESU (y, x′) dS+ ...

(3.194)

Comparing the expression (3.194) with (3.189), we see that both have equivalent leading
order terms. Other terms in the sum will vanish as ρ→ π/2 according to a similar argu-
ment as presented for the vacuum case, meaning that, as the boundary is approached,
thermal expectation values will approach the same limit as vacuum expectation values.
The first integral in (3.194) will not contribute at the boundary due to the conformal
factor which vanishes when ρ→ π/2. This means that for thermal expectation values
in CadS

lim
ρ→π

2

〈β|φ̂2
α|β〉 = lim

ρ→π
2

〈0|φ̂2
N |0〉 =

5

48π2L2
. (3.195)

This result again matches the behaviour we have observed in our numerical results (see
Figures 3.9(b), (d) and (f)).

3.7 Summary

In this chapter, we have explored the effect of imposing Robin boundary conditions on
the VP in the covering space of adS. The work covered in this chapter was based on [7].
We began by considering the classical field, with a brief look at transparent boundary
conditions (3.18), before focusing our efforts on reflective boundary conditions (3.19-
3.20).

When imposing Robin boundary conditions on these reflective modes (3.25), we found
that some modes were unstable, depending on the value of the Robin parameter α.
This can be seen by considering values of α in the quantization condition (3.24) that
allow for imaginary frequency ω. This prompted us to only consider values of α which
did not admit unstable modes, that is α ∈ [0, αcrit), where αcrit = − tan−1 (π/2).

In section 3.3, we quantized our scalar field by promoting it to an operator (3.45),
and then calculated the Wightman function G+ with Robin boundary conditions im-
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posed (3.49). We attempted to regularise by taking differences (see section 3.3.3), but
problems arose due to the fact that the correct iε prescription had not been employed.

The Wightman function simplified greatly for the cases of Dirichlet and Neumann
conditions (see section 3.3.2), where results for the vacuum expectation values were
found to be 〈0|φ̂2

D|0〉ren = −1/48π2L2 and 〈0|φ̂2
N |0〉ren = 5/48π2L2.

To evaluate the VP for Robin conditions, we moved to the Euclidean sector (see section
3.4), which involved transforming to the imaginary time coordinate t→ iτ (1.45). We
began by looking at the Euclidean Green’s functions with Dirichlet and Neumann
boundary conditions imposed (3.120-3.123) to verify that results in the Lorentzian and
Euclidean backgrounds are equivalent (see section 3.4.2).

We imposed Robin boundary conditions on the Euclidean Green’s function via (3.117).
To regularise our results, we subtracted the Euclidean Green’s function with Dirichlet
conditions imposed. Performing this subtraction in the Lorentzian background was
difficult since both mode-sums have different frequency decomposition, but in the Eu-
clidean section, the mode sums are the same (3.156).

The thermal Euclidean Green’s function is found by imposing periodicity on τ (3.127).
The thermal expectation values are renormalised by subtracting the Hadamard parametrix
from the thermal Green’s function and taking the coincidence limit, which leaves us
with a finite value (3.155).

In section 3.5, we presented numerical results for the vacuum (Figure 3.7) and thermal
(Figure 3.9) expectation values with Robin conditions imposed. From our numerical
results, it appeared that all results approached the so-called “Neumann limit” 5/48π2L2

at the boundary, apart from in the case when Dirichlet conditions were imposed.

In section 3.6, we showed analytically that all expectation values with α 6= 0 did
indeed approach the Neumann limit at the boundary. This was done by evaluating the
vacuum expectation values on the boundary of CadS. To do this, we had to consider
expectation values on ESU (3.170), since the boundary is not part of CadS. We used
an iterative procedure to write the Euclidean vacuum Green’s function with Robin
boundary conditions imposed as a series of terms involving integrals over Euclidean
vacuum Green’s functions with Neumann boundary conditions imposed (3.171-3.173).
After a conformal transformation to find the equivalent representation for the Euclidean
Green’s function at the boundary in CadS, we performed Hadamard renormalisation
and took the coincidence limit to find vacuum expectation values (3.190). We were then
able to show that, as the boundary was approached, all terms in the expansion vanished
except the expectation values with Neumann conditions imposed. This allowed us to
draw the conclusion that vacuum expectation values with Robin conditions imposed
must approach the “Neumann limit” at the boundary (3.191). This conclusion agrees
with numerical results given in Figure 3.7.

A similar calculation for thermal states resulted in us being able to write the ther-
mal Euclidean Green’s function with Robin boundary conditions imposed as a series of
integrals over the vacuum Euclidean Green’s function with Neumann boundary condi-
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tions imposed (3.192). Performing Hadamard renormalisation, taking the coincidence
limit and looking close to the boundary, we were able to draw the same conclusions
- that thermal expectation values with Robin conditions imposed must also approach
the “Neumann limit” at the boundary (3.195). This matches numerical results given
in Figure 3.9.
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Chapter 4

Topological black holes

In the second half of this thesis, we turn our attention to adS spacetimes with black
holes. In this chapter, we introduce the concept of topological black holes along with
conformal diagrams for the various black hole spacetimes.

4.1 Topological black hole spacetimes

The Schwarzschild-adS (SadS) and Reissner-Nordström-adS (RNadS) spacetimes are
asymptotically adS spacetimes with black holes [107,127–136]. In this section, we shall
mainly discuss RNadS, but everything can be reduced to SadS by setting the charge
parameter Q = 0. The metric in four dimensions is given by [127]

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
k (4.1)

where

f(r) = k − 2M

r
+
Q2

r2
+
r2

L2
. (4.2)

The parameter k is discrete and can take the values +1,−1 or 0, M is the black hole
mass, Q is the charge parameter and L is the adS lengthscale. The metric dΩ2

k is the
two-dimensional metric given by

dΩ2
k = dθ2 + F2

k (θ)dϕ2, Fk(θ) =


sin θ, k = 1
θ, k = 0
sinh θ, k = −1.

(4.3)

For all k, the azimuthal coordinate ϕ ∈ [0, 2π), whilst θ ∈ [0, π] when k = 1 and
θ ∈ [0,∞) when k = 0,−1.

Throughout the literature [107, 127–136], SadS (or RNadS) only refers to the k = 1
solution, with the k = 0 and k = −1 solutions seen as extensions to this solution.
Throughout this thesis, however, we shall use the terminology “SadS” and “RNadS”
to mean the entire set of k = 1, 0,−1 solutions rather than just the latter.
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M

rh

Mmin

Figure 4.1: The quartic M (4.4) plotted against rh. When we fix M at a value
M > Mmin (red line), we have two distinct real roots of f(r) (4.2). When we fix
M = Mmin (blue line), we have one repeated real root, and when M < Mmin (green
line) we have no real roots.

For all positive Q, L and all real M , we have a coordinate singularity at r = 0.

The black hole horizon is defined as the two-surface on which r = rh, where f(rh) = 0
for rh ∈ R. Since the polynomial f(r) (4.2) is a quartic, we must have four roots. These
roots cannot all be real as there is no r3 term, but we can have two distinct real roots,
two repeated real roots, or no real roots.

Rearranging (4.2) allows us to write M as a function of rh, i.e.

M =
rhk

2
+
Q2

2rh
+

r3
h

2L2
. (4.4)

By looking at the first and second derivatives, that is

dM

drh
=
k

2
− Q2

2r2
h

+
3r2
h

2L2
(4.5)

d2M

dr2
h

=
3rh
L2

+
Q2

r3
h

(4.6)

we can see that M must have a minimum value at

r2
h min =

L2

6

√k2 + 12

(
Q

L

)2

− k

 (4.7)

where we choose the positive root since r2
h > 0. Then the minimum mass is

Mmin =
L

3
√

6

√k2 + 12

(
Q

L

)2

+ 2k

√k2 + 12

(
Q

L

)2

− k

1/2

(4.8)
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Figure 4.2: Conformal diagrams for RNadS black holes. All three cases have a cur-
vature singularity at r = 0. The non-extremal black hole has inner horizon r = r−
and outer horizon r+, allowing for observers to pass through to another universe. The
extremal black hole only has one horizon, and all observers that pass through it are
lost to the singularity. In the final case, there is no horizon, and the singularity is
naked. In (a) and (b), past and future timelike infinity are shown, denoted by i− and
i+ respectively. The spacelike and null infinity coincide and is denoted by I . In (c),
spacelike, timelike and null infinity coincide on I .

which is positive for k = 1, 0 but can be negative for k = −1. Therefore, in the case
where k = −1, it is possible to have black holes of negative mass [135], whilst in k = 1, 0
we must have positive mass for all horizon radius values.

We now consider the following three cases: M > Mmin (see the red line in Figure 4.1),
M = Mmin (blue line) and M < Mmin (green line). When M > Mmin, we can find two
real distinct roots to equation (4.2), and hence two horizons, the inner horizon r− and
outer horizon r+. The conformal diagram in this case is shown in Figure 4.2a. As in
adS and CadS, the spacetime is not globally hyperbolic.
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M

rh

(a) Sketch of M against rh in the cases
k = 1, 0. In these cases we must have
M > 0. The point rh = 0 is a stationary
point when k = 0 but not when k = 1.
For all M > 0, we always find exactly one
horizon (red line, for example).

0

M

rh

Mmin

(b) Sketch of M against rh in the case
k = −1. In this case, we can have nega-
tive mass. For M > 0, we find exactly
one root of f(r) = 0 (e.g. red line).
When Mmin < M < 0, where Mmin

is given in (4.12), we find two distinct
roots (e.g. green line). For M = Mmin

(blue line), we have one repeated root,
and when M < Mmin (magenta line),
then we have no roots.

Figure 4.3: Plots of M against rh.

For M = Mmin, there is only one real repeated root to (4.2). In this case, the inner and
outer horizons coincide i.e. r− = r+ = rh. This case describes an extremal black hole -
it is the smallest possible black hole that can exist for a given charge. A horizon does
not exist in the case where M < Mmin and we have a naked singularity. The conformal
diagrams for these two cases are given in Figure 4.2b and 4.2c respectively.

We now consider the event horizons in SadS, that is, when Q = 0. Now f(r) is a cubic,
and, in similar fashion to before, we write M as a function of rh, i.e.

M(rh) =
r3
h

2L2
+
krh
2
. (4.9)

Differentiating and setting equal to zero we find that stationary points are given by

r2
h = −kL

2

3
. (4.10)

Then, when k = 1, we do not have any stationary points, and when k = 0, we have a
point of inflection at rh = 0. This means that, in these two cases, we have exactly one
solution to f(rh) = 0 for all M > 0, i.e. we have exactly one horizon (see Figure 4.3a).
The conformal diagram is then given by Figure 4.4.

Things are a little different for the case k = −1. Now we have a stationary point
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(minimum) at

rh min =
L√
3
, (4.11)

where we assume rh > 0. This corresponds to

Mmin = − L

3
√

3
. (4.12)

This gives us four different cases (see Figure 4.3b). These are as follows:

• M < Mmin. Here, f(r) = 0 has no roots, so we have a naked singularity. The
conformal diagram is given in Figure 4.2c.

• M = Mmin. Now f(r) = 0 has one repeated root, so we have an extremal black
hole, with conformal diagram given by Figure 4.2b.

• Mmin < M < 0. We have two distinct real roots to f(r) = 0, and hence the
conformal diagram is given by Figure 4.2a.

• M > 0. The equation f(r) = 0 has only one non-degenerate root, so we have the
same conformal diagram as for the k = 0, 1 SadS black holes, shown in Figure
4.4.

In [135], it is shown that hyperbolic black holes of negative mass can still admit an event
horizon and have positive temperature, which means that regions of negative energy
can still undergo gravitational collapse to a black hole. From here on, we shall only
consider SadS black holes of positive mass, with conformal diagram shown in Figure
4.4.

One of the earliest discussions of asymptotically adS black holes was in [137], where
Hawking and Page considered thermodynamical properties of black holes with a neg-
ative cosmological constant. They showed that asymptotically adS black holes have a
natural temperature T associated with the surface gravity κ, where

T =
κ

2π
, κ =

1

2
f ′(rh) =

M

r2
h

+
rh
L2

=
kL2 + 3r2

h

2rhL2
, (4.13)

where we have used (4.9). The analysis of [137] is concerned only with the k = 1 case,
where they show that there exists a minimum temperature

T k=1
min =

√
3

2πL
(4.14)

when the event horizon rh = r0 = 3−1/2L. For rh > r0, the temperature increases with
mass.

We now turn our attention to the geometry of the event horizon in order to understand
exactly what happens to the black holes when we vary the parameter k. These black
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Figure 4.4: The conformal diagram for the SadS black hole with positive mass. There
exists an event horizon at r = rh, and a curvature singularity at r = 0. The regions
are labelled I-IV. Region I is the exterior spacetime, II the black hole interior, III the
white hole interior, and IV the parallel universe. Future and past timelike infinities
are denoted by i+ and i− respectively. Null and spacelike infinities coincide and are
denoted by I .

holes are often referred to in the literature as “topological” black holes [107], and from
the following discussion, it is easy to understand why. The horizon geometry can be
determined by looking at the induced metric on the r = const., t = const. hypersurface
(which we shall denote by Σk.) In RNadS/SadS, this induced metric is given by dΩk

(4.1). For each value of k, the metric dΩk leads to a different topology for Σk.

For the k = 1 case, Σ1 has the local isometry group SO(3), i.e. spherical rotational
symmetry. The event horizon is the two-sphere S2 with the round metric [127] and
bears close resemblance to the standard Schwarzschild black hole. For the k = 0 case,
Σ0 has local isometry group E2, i.e. flat translation and rotational symmetry. The
horizon in this case is R2 with the flat metric. This is a flat plane. For the k = −1
case, Σ−1 has local isometry group SOc(2, 1). This is the connected space of hyperbolic
Lorentz transforms. The horizon topology is that of the hyperbolic plane, H2.

The correspondence between spherical adS black holes and CFT is discussed in [94],
where Witten uses adS/CFT to give a holographic explanation for the Bekenstein-
Hawking entropy of these black holes. This is extended to topological black holes
in [107], where the entropy scales holographically in the correct manner, again providing
holographic interpretations of the entropy formula.

We can compactify event horizons in the k = 0,−1 cases [138]. Let us begin with
the k = 0 case, the flat black hole. We can form compact surfaces by tessellating the
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Euclidean plane, taking a region of the plane (which we call the fundamental domain)
and imposing periodic boundary conditions. This effectively “glues” the edges of the
fundamental domain together to create different surfaces. In the Euclidean plane,
geodesics are straight lines, and so the plane becomes a grid of quadrilaterals (see
Figure 4.5). We select two non-parallel shifts that generate the geodesics, and identify
all points connected by these discrete translations (this is our fundamental domain). We
can glue the opposite edges of this domain together to form our compact surface. In this
way, we can form a cylinder, torus, Klein bottle or Möbius strip [128,130,131,139,140].
However, in order for our integrals in the scalar product to be defined, we must have
an orientable spacetime, so we cannot quantize over the Klein bottle or Möbius strip
using our usual conventions.

There are infinitely many different types of fundamental domain for the hyperbolic
plane. The periodic structure can be thought of as a crystal lattice, and the fundamen-
tal domains that we form will be polygons. In order for us to “glue” the sides together
suitably, our polygons must be 2n-gons. The simplest case is the octagon (see Figure
4.6). By setting periodic boundary conditions so that opposite sides are “glued” to-
gether, we can form a two-hole torus, which is a compact, hyperbolic surface (see [136]
for a visual representation of this compactification). We can form higher genus surfaces
by looking at 2n-gons for higher n.

In chapter 5, we shall quantise on these topological black holes, to see how horizon
topology affects quantum modes throughout the spacetime, but we shall not consider
compactifications for k = 0,−1.

4.2 Classical scalar field on topological black holes

A scalar field φ satisfies the homogeneous Klein-Gordon equation (1.56). We consider
scalar fields of mass m = 0 and coupling ξ = 1/6.

Mode solutions of this equation take the form

φω`m(t, r, θ, ϕ) = eiωtNω`Xω`(r)Z`m(θ, ϕ) (4.15)

where ω is the frequency, ` is a separation constant and m is an integer. The angular
function Z`m(θ, ϕ) is

Z`m(θ, ϕ) =


Y`m(θ, ϕ), k = 1,
Jm(`θ)eimϕ, k = 0,

P
|m|
− 1

2
+i`

(cosh θ)eimϕ, k = −1.
(4.16)

The separation constant ` is a discrete variable when k = 1, taking any non-negative
integer value. When k = 1, the angular function Z`m(θ, ϕ) is the spherical harmonics
Y`m(θ, ϕ). For k = 0,−1, the separation constant ` is a continuous variable and takes
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Figure 4.5: Geodesics in the Euclidean plane are straight lines. Two discrete non-
parallel shifts are shown by the arrows, and these determine a fundamental domain,
shown in blue.

any value in the interval [0,∞). We obtain Bessel functions Jm(`θ) when k = 0 and

conical functions P
|m|
− 1

2
+i`

(cosh θ) when k = −1.

The radial function Xω`(r) satisfies the equation{
d

dr

(
r2f(r)

d

dr

)
− ω2r2

f(r)
− ν(k)

` −
r2

6
R

}
Xω`(r, r

′) = 0 (4.17)

for

ν
(k)
` =

[
`+

1

4
k(k + 1)

]2

− 1

4
k. (4.18)

The radial function Xω`(r) must have boundary conditions imposed at r →∞ in order
for the quantum field theory to be well-defined. In chapter 5, we impose Dirichlet
boundary conditions on Xω`(r) (5.29). In chapter 6, we extend this to general Robin
boundary conditions (6.1).

The constant Nω` is determined by normalising the modes.

To quantise, we promote the scalar field φ to an operator φ̂. Quantization on SadS black
holes was first explored in [10]. Flachi and Tanaka focus on the calculation of the VP
〈φ̂2〉 in the spherical black hole case, performing renormalisation via the point-splitting
procedure of Christensen [3, 41]. In their analysis, they impose Dirichlet boundary
conditions at the spacetime boundary. Their numerical results show that, for spherical
black holes, the VP is monotonically decreasing as radius r increases, and approaches
the CadS vacuum expectation value −1/48π2L2 (3.2) at the boundary.

In chapter 5, we shall use the extended coordinates method [11,12] to renormalise the
VP with Dirichlet boundary conditions applied. This is then extended to include Robin
boundary conditions in chapter 6.
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Figure 4.6: A regular octagon formed in the Poincaré disc. When opposite sides are
identified as demonstrated, a two-hole torus is formed.



Chapter 5

Quantum field theory on
topological black holes

In this chapter we discuss quantum field theory on topological black holes , or Schwarzschild-
adS (SadS). These were discussed in chapter 4, where we described three different types
of solutions, spherical, flat and hyperbolic. These solutions were distinguished via the
parameter k, which can take the values k = 1, 0 and −1, corresponding to the spherical,
flat and hyperbolic black holes respectively.

In this chapter, we calculate the renormalised VP for conformally coupled, massless
scalar fields on all three backgrounds. We begin in section 5.1 by reparametrising
the metric. The reparametrisation will prove useful when we plot the results of the
renormalised VP. We also discuss (section 5.2) the scaling symmetries present in the
k = 0 metric, which will make calculations on the flat black hole background much
simpler.

In section 5.3, we solve the wave equation to find the Euclidean Green’s function in
SadS. This has a different form depending on the event horizon topology. We impose
Dirichlet boundary conditions on the scalar field modes. This is extended to general
Robin boundary conditions in chapter 6.

We calculate the renormalised VP (section 5.4) on each of these backgrounds using the
extended coordinates method, first discussed in section 1.3.4. This involves writing the
Hadamard parametrix in a mode-sum representation that is similar to the Euclidean
Green’s function, to allow us to perform the subtraction mode-by-mode. This means
that we must find three different representations for the Hadamard parametrix, each
corresponding to a different value of k.

Details of the numerical procedures carried out in Mathematica are given in section
5.5. In section 5.6, we present numerical results for all three cases, with varying black
hole temperature and event horizon radius. The work in this chapter is based on [8].

This work was recently extended [13] to include scalar fields of varying mass and cou-

120
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pling on adS black holes with spherical horizon. This work is discussed in section 5.7,
where we also discuss how one may extend this to include adS black holes with flat and
hyperbolic horizons.

5.1 Reparametrisation of the metric

Our analysis in this chapter will take place on the Euclideanised background of SadS.
The vacuum state is therefore the Hartle-Hawking state. On the Euclidean background,
the wave equation (1.58) is elliptic, and so its solutions are unique once appropriate
boundary conditions have been imposed. The Euclideanised metric for SadS is

ds2 = f(r)dτ2 + f(r)−1dr2 + r2dΩ2
k (5.1)

where

f(r) = k − 2M

r
+
r2

L2
(5.2)

and dΩ2
k is given by (4.3). The parameter k can take the value +1, 0,−1, corresponding

to positive, zero or negative event horizon curvature, as discussed in chapter 4.

It is helpful to reparametrise the metric using the dimensionless coordinate η, where

η =
4χ2 + k

M
r − 1 (5.3)

for χ defined implicitly via
χL(4χ2 + k) = M. (5.4)

Note that, in the k = −1 case, since L,M > 0, we must have χ > 1/2. The metric
(5.1) now takes the form

ds2 = f̄(η)dτ2 +
χ2L2dη2

f̄(η)
+ χ2L2(η + 1)2dΩ2

k, (5.5)

where

f̄(η) = f(r) =
η − 1

η + 1
h(η), h(η) = k + χ2(η2 + 4η + 7). (5.6)

The event horizon radius r = rh is then fixed at η = 1 regardless of the values of
k,M and L. The curvature singularity at r = 0 is located at η = −1. For k = 1, 0
the function h(η) has no real roots. For k = −1, the function h(η) has no real roots
provided χ2 > 1/4, so we restrict to χ2 ∈ (1/4,∞) in this case.

We can now parametrise our black holes by (k, χ,M) rather than (k, L,M). In terms
of χ, the surface gravity and Ricci scalar can be written

κ =
1

2
f ′(rh) =

1

4M
(12χ2 + k)(4χ2 + k), (5.7)

R = − 12

L2
= −12χ2(4χ2 + k)2

M2
. (5.8)

This reparametrisation will be useful when we calculate numerical results for the renor-
malised VP in section 5.6.
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5.2 Scaling symmetries of the k = 0 metric

When k = 1 or k = −1, the metric has two natural length scales. These are the radius
of curvature of adS and the curvature of the horizon. We can fix one and vary the other
to give different solutions.

This is not the case when k = 0 due to vanishing event horizon curvature. Here, we only
have one length scale - the cosmological constant. We cannot keep the horizon radius
fixed and vary the cosmological constant since changing one automatically affects the
other (this can be seen from (5.4), by fixing χ and varying L).

We look at the following scaling symmetries of the k = 0 metric. In the first case, we
fix χ (5.4) and vary M using an arbitrary scaling constant ρ̃1, which is equivalent to

η → η, L→ ρ̃1L, M → ρ̃1M, χ→ χ, τ → ρ̃1τ. (5.9)

From this, we find
f(η)→ f(η) (5.10)

and then the line element
ds2 → ρ̃2

1ds
2 (5.11)

supposing θ → θ, ϕ→ ϕ. We find that

κ→ ρ̃−1
1 κ, R→ ρ̃−2

1 R. (5.12)

The second scaling we look at involves fixing M and varying χ, again using an arbitrary
scaling constant ρ̃2, i.e.

η → η, L→ ρ̃−3
2 L, M →M, χ→ ρ̃2χ. (5.13)

In this case, we have
f(η)→ f(η) (5.14)

and the metric is invariant if we have

τ → ρ̃−4
2 τ, θ → ρ̃−1

2 θ, ϕ→ ϕ. (5.15)

With this rescaling, we find
κ→ ρ̃4

2κ, R→ ρ̃6
2R. (5.16)

5.3 Quantum scalar fields on SadS

In this section we find the Euclidean Green’s function GE in SadS. The Euclidean
Green’s function for a massless, conformally coupled scalar field satisfies the inhomo-
genenous Klein-Gordon equation(

2− 1

6
R

)
GE(τ, r, θ, ϕ; τ ′, r′, θ′, ϕ′) = − 1

r2
δ(τ − τ ′)δ(r − r′)δ(Ωk,Ω

′
k) (5.17)
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where

δ(Ωk,Ω
′
k) =

1

Fk(θ)
δ(θ − θ′)δ(ϕ− ϕ′) (5.18)

and Fk(θ) is given by (4.3). We incorporate periodicity in τ by setting, for any κ > 0,

δ(τ − τ ′) =
κ

2π

∞∑
n=−∞

einκ∆τ , (5.19)

where ∆τ = τ − τ ′. It then makes sense to search for solutions of (5.17) of the form

GE(τ, r, θ, ϕ; τ ′, r′, θ′, ϕ′) =
κ

2π

∞∑
n=−∞

einκ∆τG(k)
n (r, θ, ϕ; r′, θ′, ϕ′). (5.20)

From the analysis performed in Appendix G, we find G(k)
n to have the following form

in each case:

G(1)
n =

1

4π

∞∑
`=0

(2`+ 1)P`(cos γS)X
(k)
n` (r, r′), (5.21)

G(0)
n =

1

2π

∫ ∞
`=0

`J0(`γR)X
(k)
n` (r, r′) d`, (5.22)

G(−1)
n =

1

2π

∫ ∞
`=0

` tanh(`π)P− 1
2

+i`(cosh γH)X
(k)
n` (r, r′) d`, (5.23)

where X
(k)
n` (r, r′) is the radial Green’s function satisfying{
d

dr

(
r2f(r)

d

dr

)
− n2κ2r2

f(r)
− ν(k)

` −
r2

6
R

}
X

(k)
n` (r, r′) = −δ(r − r′) (5.24)

where ν
(k)
` is defined in (4.18). The quantity {γS , γR, γH} is the geodesic distance on

the sphere, flat plane and hyperbolic plane, defined by

cos γS = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′), (5.25)

γ2
R =

1

2

(
θ2 + θ′2 − 2θθ′ cos(ϕ− ϕ′)

)
, (5.26)

cosh γH = cosh θ cosh θ′ − sinh θ sinh θ′ cos(ϕ− ϕ′). (5.27)

Note that we have already met γS before, defined in (1.222). In order to numerically
solve this ODE (5.24), we can write the radial function in the same way as we did in
ESU (3.96), that is

X
(k)
n` (r, r′) = Nn`pn`(r<)qn`(r>) (5.28)

for r< = min{r, r′}, r> = max{r, r′}. The functions pn` and qn` are both solutions
of the homogeneous version of (5.24), although pn` has regularity conditions imposed
on the horizon, and qn` has appropriate conditions imposed on the boundary. In this
chapter, we shall only consider Dirichlet conditions imposed on qn` as r → ∞, but in
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the next chapter, we shall extend this to Neumann and Robin conditions. As r →∞,
we insist

Ω qn`(r, r
′) = 0, (5.29)

where Ω is the conformal factor relating SadS to ESU. Note that this is not equivalent
to (2.10), which is the conformal factor relating CadS to ESU. The conformal factor
relating SadS to ESU is not known in closed form but is known in certain limits -
see equation (6.2). The inclusion of the conformal factor in (5.29) is due to imposing
the boundary conditions in ESU and then performing a conformal transform to obtain
mode solutions in SadS, as we did in CadS in section 3.2.

The normalisation constant Nn` is determined by the Wronskian relation,

Nn` = − 1

r2f(r)W{pn`(r), qn`(r)}
. (5.30)

This can be seen by integrating the radial equation (5.24) over r for r ∈ [r′ − δ, r′ + δ]
for some δ > 0. We then take the limit δ → 0. This is very similar to the method used
in section 3.4.1. Performing this procedure on the right-hand-side of (5.24) we obtain

− lim
δ→0

∫ r′+δ

r′−δ
δ(r − r′)dr = −1. (5.31)

Performing this procedure on the left-hand-side of (5.24), we obtain

lim
δ′→0

∫ r′+δ

r′−δ

{[
−n

2κ2r2

f(r)
− ν(k)

` −
r2

6
R

]
X

(k)
n` +

d

dr

(
r2f(r)

dX
(k)
n`

dr

)}
dr

= lim
δ→0

[
r2f(r)

dX
(k)
n`

dr

]r′+δ
r′−δ

, (5.32)

where the first terms in the integral vanish in the limit following a similar procedure
to (3.109). Putting (5.31, 5.32) together, we find

− 1 = r2f(r)Nn`W{pn`(r)qn`(r)} (5.33)

which gives us the desired definition of the normalisation constant (5.30).

Under the first scaling symmetry (5.9), the radial equation (5.24), and thus the radial
functions pn`, qn` remain unchanged. The normalisation constant (5.30) scales as

Nn` → ρ̃−2
1 Nn`. (5.34)

Under the second scaling symmetry (5.13), the radial equation (5.24) again remains
unchanged, as does the normalisation constant (5.30), that is

Nn` → Nn`. (5.35)
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5.4 Renormalisation of vacuum polarisation

We perform Hadamard renormalisation on the Euclidean Green’s function by subtract-
ing the Hadamard parametrix (1.192) and then taking the coincidence limit. This
method of renormalisation is described in section 1.3.2. In order to perform this renor-
malisation quickly and efficiently, we use the extended coordinates method (see section
1.3.4 as well as [11, 12]). Since we are working in the massless, conformally coupled
case, we can ignore the tail terms of the Hadamard parametrix (given by V (x, x′) in
equation (1.192)). In section 5.7, we shall comment on the complexities involved with
finding the correct representation for V (x, x′) on topological black hole backgrounds.

The extended coordinates method (section 1.3.4) requires us to write the direct part of
the Hadamard parametrix as a series in “extended coordinates” (w, s). In order to do
this, we must write both the world function σ(x, x′) and the van Vleck-Morette deter-
minant ∆(x, x′) as a series in (w, s), as in equations (1.220) and (1.223) respectively.
The definitions of (w, s), given in (1.221), will be slightly different depending on the
curvature of the background.

Writing the direct part of the Hadamard parametrix in this way allows us to find a
mode-sum representation for the Hadamard parametrix that matches the mode-sum
representation for the Green’s function (5.20-5.23). Then the subtraction (1.232) can
be carried out mode-by-mode, where each individual mode is manifestly finite, making
for much faster convergence of numerical results.

In this section, we first focus on writing the world function σ(x, x′) and the van-Vleck
Morette determinant ∆(x, x′) as a series in (w, s), before finding closed-form expressions
for the regularisation parameters Ψn`(i, j|r) that allow us to write GS as a mode-sum
of the same form as GE .

We write the world function σ(x, x′) (1.179) as a series in our “extended coordinates”
(w, s), i.e.

σ(x, x′) =

∞∑
i,j,k=0

σijk(r)w
i∆rjsk (5.36)

where

w2 =
2

κ2
(1− cosκ∆τ), s2 =


f(r)w2 + 2r2(1− cos γS), k = 1
f(r)w2 + 2r2γ2

R, k = 0
f(r)w2 + 2r2(cosh γH − 1), k = −1.

(5.37)

The extended coordinates are formally treated as O(ε) ∼ O(∆x) quantities. To leading
order,

σ(x, x′) =
1

2
ε2(s2 + (∆r)2/f) +O(ε3). (5.38)

This means we can set σ000 = σ100 = σ010 = σ001 = 0. We can then substitute the
expansion (5.36) into the defining equation (1.180) and equate coefficients of powers of
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ε in order to find the σijk(r). We expand the van Vleck-Morette determinant ∆(x, x′)
in a similar way,

∆1/2(x, x′) =
∑
ijk

uijk(r)w
i∆rjsk (5.39)

and substitute into (1.184) to find the coefficients uijk. To do this, we must calculate
2σ - see Appendix H. From calculations in Mathematica, we find that, for all cases of
k, to leading order,

GS(x, x′) =
1

8π2

(
2

s2 + f(r)−1(∆r)2
+
w2∆r(2f(r)− rf ′(r))
r(s2 + f(r)−1(∆r)2)2

+
(∆r)3(2f(r) + rf ′(r))

rf(r)2(s2 + f(r)−1(∆r)2)2
− 2∆r

r(s2 + f(r)−1(∆r)2)

)
+O(1). (5.40)

We now point-split in temporal and angular directions, taking ∆r → 0. The direct
part of the Hadamard parametrix can now be expanded in the following way:

∆1/2

σ
=

m∑
i=0

i∑
j=−i
Dij(r)

w2i+2j

s2j+2
+O(ε2m) (5.41)

where the coefficients Dij(r) are listed in Table 5.1 for i = 0, 1, 2. We require our
Hadamard parametrix to have a mode-sum representation corresponding to the appro-
priate representation for the Euclidean Green’s function. This will allow us to perform
our subtraction mode-by-mode when calculating 〈φ̂2〉ren.

In the direct part of the parametrix, when j < 0, all terms are polynomial in w and
s and so vanish when the coincidence limit is taken. It is not necessary to look for
mode-sum expansions for these terms. For j ≥ 0, there exist some terms that are
distributionally subtle at coincidence. For example, w6/s4 is O(ε2) which tends to 0
when ∆x → 0. However, we must include these terms to speed up the convergence
of the mode-sum. This is because these terms capture more of the high frequency
behaviour of the Green’s function. We now find a mode-sum representation for the
direct part of the Hadamard parametrix, considering each type of horizon one at a
time.

5.4.1 Spherical horizons

To find a mode-sum representation of the Hadamard parametrix in the spherical k = 1
case, we assume the terms w2i+2j

s2j+2 have a mode-sum representation corresponding to
(5.20, 5.21), i.e.

w2i+2j

s2j+2
=

∞∑
n=−∞

einκ∆τ
∞∑
`=0

(2`+ 1)P`(cos γS)Ψn`(i, j|r) (5.42)

for some regularisation parameters Ψn`(i, j|r). We need to invert (5.42) to obtain an ex-
pression for these regularisation parameters. We multiply both sides by e−in

′κ∆τP`′(cos γS)
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and integrate over cos γS and ∆τ . Using the orthogonality relation for the Legendre
functions [120, eq. 14.17.6] and standard completeness relations for exponentials, we
obtain

Ψn`(i, j|r) =
κ

4π

∫ 2π/κ

∆τ=0

∫ 1

cos γS=−1
e−inκ∆τP`(cos γS)

w2i+2j

s2+2j
d(cos γS) d∆τ (5.43)

where it should be noted that

s2 = 2r2(z − cos γS), z = 1 +
f(r)

r2κ2
(1− cosκ∆τ). (5.44)

We calculate the integral over cos γS first. Using Neumann’s integral [120, eq. 14.12.13]
we can write

Q`(z) =
1

2

∫ 1

cos γS=−1

P`(cos γS)

z − cos γS
d(cos γS). (5.45)

Differentiating with respect to z,

d

dz
Q`(z) = −1

2

∫ 1

cos γS=−1

P`(cos γS)

(z − cos γS)2
d(cos γS). (5.46)

We can repeat this step j times to obtain

dj

dzj
Q`(z) =

(−1)jj!

2

∫ 1

cos γS−1

P`(cos γS)

(z − cos γS)1+j
d(cos γS). (5.47)

Using (5.47) in (5.43), and substituting in our expression for w (5.37), we find

Ψn`(i, j|r) =
κ

4π

2i(−1)j

κ2i+2jr2+2jj!

∫ 2π/κ

∆τ=0
einκ∆τ (1−cosκ∆τ)i+j

(
d

dz

)j
Q`(z) d∆τ. (5.48)

We set

µ1 =

√
1 +

f(r)

κ2r2
, (5.49)

so that
z = µ2

1(1− cosκ∆τ)− cosκ∆τ (5.50)

and therefore
d

dz
=

1

2(1− cosκ∆τ)

(
1

µ1

∂

∂µ1

)
. (5.51)

The ordinary derivatives become partial derivatives since z depends on both µ1 and
∆τ . Using (5.51), the regularisation parameters (5.48) become

Ψn`(i, j|r) =
κ

4π

2i−j(−1)j

κ2i+2jr2+2jj!

(
1

µ1

∂

∂µ1

)j ∫ 2π/κ

0
e−inκ∆τ (1− cosκ∆τ)iQ`(z) d∆τ

(5.52)
where we can differentiate with respect to µ1 after performing the integral, since µ1

and ∆τ are independent. The problem that we now have is that z depends on both µ1
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and ∆τ , so in order to integrate over ∆τ , we need to separate out the dependence in
Q`(z). We do this by using [120, eq. 14.18.5],

Qν(cosh ξ1 cosh ξ2 − sinh ξ1 sinh ξ2 cosφ)

= Pν(cosh ξ1)Qν(cosh ξ2) + 2

∞∑
m=1

(−1)mP−mν (cosh ξ1)Qmν (cosh ξ2) cos(mφ) (5.53)

where ξ1, ξ2 ∈ R>0 and φ, ν ∈ R. By replacing cosh ξ1, cosh ξ2 → µ1, φ→ κ∆τ , ν → `,
this allows us to write (5.52) as

Ψn`(i, j|r) =
κ

4π

2i−j(−1)j

κ2i+2jr2+2jj!

(
1

µ1

∂

∂µ1

)j ∫ 2π/κ

0
e−inκ∆τ (1− cosκ∆τ)i

×
[
P`(µ1)Q`(µ1) + 2

∞∑
m=1

(−1)mP−m` (µ1)Qm` (µ1) cos(mκ∆τ)

]
d∆τ. (5.54)

We now evaluate the integral over ∆τ ,

I =

∫ 2π/κ

0
e−inκ∆τ (1− cosκ∆τ)i cos(mκ∆τ) d∆τ

=
1

κ

∫ 2π

0
e−inx(1− cosx)i cos(mx) dx

=
1

κ

∫ 2π

0
e−inx

(
2 sin2 x

2

)i
cos(mx) dx

=
2i

κ

∫ 2π

0
e−inx

(
eix/2 − e−ix/2

2i

)2i
eimx + e−imx

2
dx

=
(−1)i

2i+1κ

∫ 2π

0
e−inx

2i∑
p=0

(eix/2)p(−e−ix/2)2i−p
(

2i

p

)
[eimx + e−imx] dx

=
1

2i+1κ

2i∑
p=0

(
2i

p

)
(−1)i−p

[∫ 2π

0
ei[−i+p−n+m]x dx+

∫ 2π

0
ei[−i+p−n−m]x dx

]

=
π

2iκ

2i∑
p=0

(
2i

p

)
(−1)i−p[δp,i+n−mΘ(i+ n−m)Θ(i− n+m)

+ δp,i+n+mΘ(i+ n+m)Θ(i− n−m)] (5.55)

where we have used the Binomial Theorem in the third line, and in the final line we
have introduced the Heaviside function Θ to ensure that we remain within the limits
of the summation. Performing the summation, we obtain

I =
π

2iκ

[
(−1)−n+m

(
2i

i+ n−m

)
Θ(i+ n−m)Θ(i− n+m)

+(−1)−n−m
(

2i

i+ n+m

)
Θ(i+ n+m)Θ(i− n−m)

]
. (5.56)
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Using the definition of the binomial coefficients, and some standard relations for Gamma
functions [120, eq. 5.5.5], we arrive at

I =

√
π

κ
i! 2i Γ

(
i+

1

2

)[
(−1)n−m

Θ(i+ n−m)Θ(i− n+m)

(i− n+m)!(i+ n−m)!

+(−1)n+mΘ(i+ n+m)Θ(i− n−m)

(i− n−m)!(i+ n+m)!

]
. (5.57)

Note that the first integral in (5.54) is simply given by (5.57) with m→ 0. Substituting
(5.57) into (5.54), we have

Ψn`(i, j|r) =
22i−j−1i!Γ

(
i+ 1

2

)
(−1)n+j

√
πκ2i+2jr2+2jj!

(
1

µ1

∂

∂µ1

)j [ P`(µ1)Q`(µ1)

(i− n)!(i+ n)!

+
i+n∑

m=max{1,n−i}

P−m` (µ1)Qm` (µ1)

(i− n+m)!(i+ n−m)!
+

i−n∑
m=max{1,−i−n}

P−m` (µ1)Qm` (µ1)

(i− n−m)!(i+ n+m)!

 .
(5.58)

Rearranging the summations and using formulae for Gamma functions, we obtain

Ψn`(i, j|r) =
2i−ji!(2i− 1)!!(−1)n+j

κ2i+2jr2j+2j!

n+i∑
m=n−i

(
1

µ1

∂

∂µ1

)j P
−|m|
` (µ1)Q

|m|
` (µ1)

(i− n+m)!(i+ n−m)!

(5.59)
where the double factorial is defined by [120, eq. 5.4.2]

x!! =

{
2n/2Γ(1

2n+ 1), n even,

π−1/22(n+1)/2Γ(1
2n+ 1), n odd.

(5.60)

We arrive at this result by taking m→ −m in the second summation in (5.58).

5.4.2 Flat horizons

In the flat k = 0 case, we assume the following mode-sum representation, corresponding
to (5.20, 5.22):

w2i+2j

s2+2j
=

∞∑
n=−∞

einκ∆τ

∫ ∞
`=0

`J0(`γR)Ψn`(i, j|r) d` (5.61)

where Ψn`(i, j|r) are again regularisation parameters for which we seek an analytic
representation. We invert (5.61) to write Ψn`(i, j|r) in closed form. We multiply both
sides by e−in

′κ∆τγRJ0(`′γR) and integrate over γR and ∆τ using the completeness
relation [120, eq. 1.17.13]. We obtain

Ψn`(i, j|r) =
κ

2π

∫ 2π/κ

∆τ=0

∫ ∞
γR=0

γRe
−inκ∆τJ0(`γR)

w2i+2j

s2+2j
dγR d∆τ (5.62)
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where we note

s2 = 2r2(z2 + γ2
R), z2 =

f(r)

κ2r2
(1− cosκ∆τ). (5.63)

The integral over γR can be performed using [141, eq. 6.532(4)],∫ ∞
0

γRJ0(`γR)

(z2 + γ2
R)

dγR = K0(`z) (5.64)

where K0 is the modified Bessel function. Differentiating this statement j times with
respect to z, we have ∫ ∞

0

(−1)jj!γRJ0(`γR)

(z2 + γ2
R)j+1

dγR =
dj

dzj
K0(`z). (5.65)

With

µ0 =

√
f(r)

κ2r2
, (5.66)

we can write
z2 = 2µ2

0(1− cosκ∆τ). (5.67)

It is helpful to write z as z = lim
µ′0→µ0

[
µ2

0 + µ′20 − 2µ0µ
′
0 cosκ∆τ

]
, which then allows us

to use [142, eq. 11.3.8] to write

K0(`
√
µ2

0 + µ′20 − 2µ0µ′0 cosκ∆τ) =

∞∑
m=−∞

Im(`µ0)Km(`µ′0) cos(mκ∆τ). (5.68)

Taking the limit µ′0 → µ0, we obtain

K0(`z) =
∞∑

m=−∞
Im(`µ0)Km(`µ0) cos(mκ∆τ). (5.69)

Finally, we can note
d

dz
=

1

2(1− cosκ∆τ)

(
1

µ0

∂

∂µ0

)
. (5.70)

Using (5.65, 5.69, 5.70) in (5.62), we obtain

Ψn`(i, j|r) =
κ

4π

2i−j(−1)j

κ2i+2jr2+2jj!

(
1

µ0

∂

∂µ0

)j ∫ 2π/κ

0
e−inκ∆τ (1− cosκ∆τ)i

×
∞∑

m=−∞
Im(`µ0)Km(`µ0) cos(mκ∆τ)d∆τ. (5.71)

The integral over ∆τ is then exactly the same as in (5.55). Evaluating this integral
and then using standard relations for Gamma functions as before, we obtain

Ψn`(i, j|r) =
2i−j−1i!(2i− 1)!!(−1)n+j

κ2i+2jr2j+2j!

n+i∑
m=n−i

(
1

µ0

∂

∂µ0

)j (−1)mIm(`µ0)Km(`µ0)

(i− n+m)!(i+ n−m)!
.

(5.72)
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Under the first scaling symmetry (5.9), it is important to note that the regularisation
parameters (5.72) scale as

Dij(r)→ ρ̃−2i
1 Dij(r), Ψn`(i, j|r)→ ρ̃2i−2

1 Ψn`(i, j|r), (5.73)

whilst under the second scaling symmetry (5.13), the regularisation parameters (5.72)
scale as

Dij(r)→ ρ̃8i+2j
2 Dij(r), Ψn`(i, j|r)→ ρ̃4−2j−8i

2 Ψn`(i, j|r). (5.74)

5.4.3 Hyperbolic horizons

We now consider the hyperbolic k = −1 case, where we assume the extended coordinates
have the mode-sum representation

w2i+2j

s2+2j
=

∞∑
n=−∞

einκ∆τ

∫ ∞
`=0

` tanh(`π)P− 1
2

+i`(cosh γH)Ψn`(i, j|r) d` (5.75)

corresponding to (5.20, 5.23). To invert the above equation, we multiply both sides by
e−in

′κ∆τP− 1
2

+i`′(cosh γH), and integrate over cosh γH and ∆τ using the completeness

relation that we derived in (G.41). We obtain

Ψn`(i, j|r) =
κ

2π

∫ 2π/κ

∆τ=0

∫ ∞
cosh γH=1

e−inκ∆τP− 1
2

+i`(cosh γH)
w2i+2j

s2+2j
d(cosh γH) d∆τ

(5.76)
where

s2 = 2r2(z + cosh γH), z = −1 +
f(r)

κ2r2
(1− cosκ∆τ). (5.77)

The range of z is z ∈ [−1, 2f(r)
r2κ2

− 1]. We integrate over cosh γH first. From [120, eq.
14.20.13], we can write

P− 1
2

+i`(z) =
cosh(`π)

π

∫ ∞
1

P− 1
2

+i`(cosh γH)

z + cosh γH
d(cosh γH) (5.78)

which is valid for z ≥ −1. Differentiating (5.78) j times with respect to z, we find

dj

dzj
P− 1

2
+i`(z) =

cosh(`π)

π
j!(−1)j

∫ ∞
1

P− 1
2

+i`(cosh γH)

(z + cosh γH)j+1
d(cosh γH). (5.79)

We define

µ−1 =

√
1− f(r)

κ2r2
, (5.80)

so that
d

dz
= − 1

2(1− cosκ∆τ)

(
1

µ−1

∂

∂µ−1

)
. (5.81)
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The regularisation parameters (5.76) can then be written as

Ψn`(i, j|r) =
κ

4

2i−j

κ2i+2jr2+2jj! cosh(π`)

(
1

µ−1

∂

∂µ−1

)j
×
∫ 2π/κ

0
e−inκ∆τ (1− cosκ∆τ)iP− 1

2
+i`(z) d∆τ. (5.82)

The parameter z depends on both ∆τ and µ−1, so we need to factor out the time-
dependence in order to perform the integral. We can use the addition theorem [120, eq.
14.18.1] to write

Pν(− cosψ cosψ′ − sinψ sinψ′ cosκ∆τ) =

∞∑
m=−∞

P−mν (− cosψ)Pmν (cosψ′) cos(mκ∆τ).

(5.83)
To use this relation in (5.82), we need to set cosψ = cosψ′ = µ. The addition theorem
above assumes 0 < ψ′ < ψ < π and does not converge in the limit ψ′ → ψ. This
is different from the k = 1, 0 cases where the addition theorems involved convergent
sums. The convergence properties turn out to be irrelevant, however, since the time
integral makes all terms in the infinite sum vanish except for the finite range where
m ∈ {n− i, ..., n+ i}. If we were to approach this calculation rigorously, we would have
to keep ψ′ distinct from ψ and not take the limit until after the time integral has been
performed. However, the result is the same if we set ψ′ = ψ immediately after applying
the addition theorem. Following this method gives

Ψn`(i, j|r) =
κ

4

2i−j

κ2i+2jr2+2jj! cosh(π`)

(
1

µ−1

∂

∂µ−1

)j ∞∑
m=−∞

P−m− 1
2

+i`
(−µ−1)Pm− 1

2
+i`

(µ−1)

×
∫ 2π/κ

0
e−inκ∆τ (1− cosκ∆τ)i cos(mκ∆τ) d∆τ. (5.84)

The time integral is then identical to (5.55), and so

Ψn`(i, j|r) =
π2i−j−1i!(2i− 1)!!(−1)n

κ2i+2jr2+2jj! cosh(π`)

n+i∑
m=n−i

(
1

µ−1

∂

∂µ−1

)j

×
(−1)mP−m− 1

2
+i`

(−µ−1)Pm− 1
2

+i`
(µ−1)

(i− n+m)!(i+ n−m)!
. (5.85)

5.4.4 General result

Here we summarise the results obtained in the previous subsections 5.4.1 - 5.4.3. For
each type of event horizon topology that we consider, the Hadamard parametrix can
be written as a mode-sum representation of the form

GS(∆τ, γ, r) =
1

8π2

∞∑
n=−∞

einκ∆τ

∫ ∞
0

d` P`(γ)

2∑
i=0

i∑
j=0

Dij(r)Ψn`(i, j|r)−
f ′(r)
48π2r

(5.86)
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where the coefficients Dij(r) are given in Table 5.1, γ is taken to be either {γS , γR, γH}
depending on the case under consideration, and we have

P`(γ) =


(`+ 1

2)P`(cos γS), k = 1,
`J0(`γR), k = 0,
` tanh(π`)P− 1

2
+i`(cosh γH), k = −1.

(5.87)

In the k = 1 case, the integral over the ` modes is understood to be a summation over
non-negative integer `. The regularisation parameters are given by

Ψn`(i, j|r) =
2i−ji!(2i− 1)!!(−1)n

κ2i+2jr2j+2j!

n+i∑
m=n−i

(
1

µk

∂

∂µk

)j Rm`(µk)
(i− n+m)!(i+ n−m)!

(5.88)

with

Rm`(µk) =



(−1)jP
−|m|
` (µ1)Q

|m|
` (µ1), k = 1,

1

2
(−1)j+mIm(`µ0)Km(`µ0), k = 0,

π

2 cosh(π`)
(−1)n+mP−m− 1

2
+i`

(−µ−1)Pm− 1
2

+i`
(µ−1), k = −1,

(5.89)

and, from (5.49, 5.66, 5.80), µk is defined by

µk =

√∣∣∣∣k +
f(r)

κ2r2

∣∣∣∣. (5.90)

5.5 Numerical calculation

In this section, we discuss the process of numerically calculating both the radial func-
tions pn`, qn` (5.28) and the regularisation parameters Ψn`(i, j|r) (5.88) in the Hadamard
parametrix.

The radial functions pn`, qn` (5.28) are found by solving the homogeneous version of
(5.24). These solutions cannot be found analytically, so we use Mathematica’s NDSolve
function to find them numerically. We approximate both pn` and qn` using Frobenius
series solutions to give us appropriate initial conditions for this numerical integration.

Beginning near the regular singular point r = rh, we can rewrite (5.24) as

d2

dr2
pn`(r) + uh(r)

d

dr
pn`(r)− vh(r)pn`(r) = 0 (5.91)

where

uh(r) =
2

r
+
f ′(r)
f(r)

, vh(r) =
R

6f(r)
+
n2κ2

f(r)2
− ν`
r2f(r)

. (5.92)
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We search for a Frobenius series solution of the form

pn`(r ∼ rh) '
∞∑
j=0

aj(r − rh)α1+j , (5.93)

where α1, aj are constants. From Appendix I, we find

α1 = ±n
2
. (5.94)

Since pn` must be regular on the horizon, we must have α1 > 0, so we set

α1 =
∣∣∣n
2

∣∣∣ . (5.95)

Near the boundary, it is useful to write r = s−1, so that s ∈ (0, r−1
h ) and s → 0 as

r →∞. The radial equation (5.24) can now be written in the form

d2

ds2
qn`(s) + u∞(s)

d

ds
qn`(s)− v∞(s)qn`(s) = 0 (5.96)

where

u∞(s) =
1

f(s)

df

ds
, v∞(s) =

R

6f(s)s4
+

n2κ2

f(s)2s4
− ν`
f(s)s2

. (5.97)

We now search for a Frobenius series solution in s, that is

qn`(s ∼ 0) '
∞∑
j=0

bjs
α2+j (5.98)

where α2, bj are constants. From Appendix I, we find

α2 =
3

2
± 1

2

√
9 +

2L2

3
R. (5.99)

In SadS, the Ricci curvature scalar is given by

R = − 12

L2
(5.100)

and so

α2 =
3

2
± 1

2
. (5.101)

Therefore, both values of α2 are positive, and hence both solutions will be regular at the
boundary. The + sign corresponds to imposing Dirichlet boundary conditions, whilst
the − sign corresponds to Neumann boundary conditions.

With the Frobenius solutions (5.93, 5.98) for pn` and qn` as initial conditions, we use
the NDSolve function from Mathematica with the “Stiffness Switching” method to find
numerical solutions for both radial functions. It is useful to write pn` = (r − rh)n/2p̄n`
and then solve the ODE for p̄n`. This results in a faster calculation.
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The normalisation constant Nn` can be found from the Wronskian relation (5.30). We
calculate this using different values of pn` and qn` for a range of r values. Regardless of
the value of r, the value of Nn` should remain constant. We can use this fact to check
the accuracy of our solutions. This check is performed by calculating the relative error

max{Nn`(r)} −min{Nn`(r)}
min{Nn`(r)}

(5.102)

which, for each calculation performed in both this chapter and the next, for varying
Λ and event horizon topology, ranges from ∼ 10−47 to ∼ 10−50. This gives us a great
deal of confidence in the numerical integration performed.

To calculate the radial modes numerically, we reintroduce the dimensionless parameter
η (5.3). This dimensionless parameter fixes the event horizon radius at η = 1 in all cases
of event horizon topology, making comparison between the cases easier. The Frobenius
series (5.93, 5.98) can then be written

pn`(η ∼ 1) '
∞∑
j=0

aj(η − 1)
n
2

+j (5.103)

qn`(
1

η
∼ 0) '

∞∑
j=0

bj

(
1

η

) 3
2
± 1

2
+j

. (5.104)

We then evaluate the modes over a grid in η, by setting η = 1 + 10−2+3i/100 for
i ∈ [1, 100], so that η − 1 ∈ (0, 10]. However, calculating the modes in this way results
in some numerical errors near the horizon. This is because η depends on L, which in
turn depends on the cosmological constant Λ, and therefore in some cases it is difficult
to define which values of η are appropriately “close to” or “far from” the horizon. It is
actually more useful to calculate the modes using the coordinate r, and then to export
these results using the grid in η, which we choose to be

η = 1 + 10−2+3i/100 ⇒ r =
M

4χ2 + k
(2 + 10−2+3i/100) for i ∈ [1, 100]. (5.105)

For the regularisation parameters Ψn`(i, j|r), we can straightforwardly substitute for r
in (5.88) and export over the same grid in η. To perform these numerical calculations in
Mathematica, it is useful to perform the derivatives explicitly by hand. Mathematica

is able to perform these derivatives itself, but this increases computation time and can
introduce some numerical errors. Mathematica also does not recognise various relations
for Legendre, Bessel and conical functions that help to simplify these expressions. Since
we only calculate regularisation parameters up to j = 2 (for j > 2, regularisation
parameters vanish in the coincidence limit), we only need to simplify expressions for the
first and second derivatives in µk. These simplified expressions are found by using [120,
eq. 14.7.8, 14.7.9] in the k = ±1 cases, and using [120, eq. 10.29.4] in the k = 0 cases.
We note that
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k = 1

(
1

µ

∂

∂µ

)
Rm`(µ) =

(−1)j

µ(1− µ2)

[
(`− |m|)P−|m|`−1 (µ)Q

|m|
` (µ)

+(`+ |m|)P−|m|` (µ)Q
|m|
`−1(µ)− 2`µP

−|m|
` (µ)Q

|m|
` (µ)

]
, (5.106)

(
1

µ

∂

∂µ

)2

Rm`(µ) =
(−1)j

µ2(1− µ2)2

[(
4(1− `)µ− 1

µ

)[
(`− |m|)P−|m|`−1 (µ)Q

|m|
` (µ)

+(`+ |m|)P−|m|` (µ)Q
|m|
`−1(µ)

]
+ 2(`− |m|)(`+ |m|)P−|m|`−1 (µ)Q

|m|
`−1(µ)

+4(`− 1)`µ2P
−|m|
` (µ)Q

|m|
` (µ) + (`− |m|)(`− |m| − 1)P

−|m|
`−2 (µ)Q

|m|
` (µ)

+(`+ |m|)(`+ |m| − 1)P
−|m|
` (µ)Q

|m|
`−2(µ)

]
(5.107)

k = 0

(
1

µ

∂

∂µ

)
Rm`(µ) =

(−1)j+m

2µ

[
`Im−1(`µ)Km(`µ) + `e−πiIm(`µ)Km−1(`µ)

−2m

µ
Im(`µ)Km(`µ)

]
(5.108)

(
1

µ

∂

∂µ

)2

Rm`(µ) =
(−1)j+m

2µ3

[
`2µ (Im−2(`µ)Km(`µ) + Im(`µ)Km−2(`µ)

+2e−πiIm−1(`µ)Km−1(`µ)
)
− 4m`

{
Im−1(`µ)Km(`µ) + e−πiIm(`µ)Km−1(`µ)

}
+

4m(1 +m)

µ
Im(`µ)Km(`µ)

]
(5.109)

k = −1

(
1

µ

∂

∂µ

)
Rm`(µ) =

π(−1)n+m

2µ(1− µ2) cosh(π`)

[
−
(
−1

2
+ i`−m

)
P−m− 3

2
+i`

(−µ)Pm− 1
2

+i`
(µ)

+

(
−1

2
+ i`+m

)
P−m− 1

2
+i`

(−µ)Pm− 3
2

+i`
(µ)− 2

(
−1

2
+ i`

)
µP−m− 1

2
+i`

(−µ)Pm− 1
2

+i`
(µ)

]
(5.110)
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(
1

µ

∂

∂µ

)2

Rm`(µ) =
π(−1)n+m

2µ2(1− µ2)2 cosh(π`)

[(
1

µ
+ 4

(
−3

2
+ i`

)
µ

)
×
[(
−1

2
+ i`−m

)
P−m− 3

2
+i`

(−µ)Pm− 1
2

+i`
(µ)−

(
−1

2
+ i`+m

)
P−m− 1

2
+i`

(−µ)Pm− 3
2

+i`
(µ)

]
+

(
−1

2
+ i`−m

)(
−3

2
+ i`−m

)
P−m− 5

2
+i`

(−µ)Pm− 1
2

+i`
(µ)

+

(
−1

2
+ i`+m

)(
−3

2
+ i`+m

)
P−m− 1

2
+i`

(−µ)Pm− 5
2

+i`
(µ)

−2

(
−1

2
+ i`+m

)(
−1

2
+ i`−m

)
P−m− 3

2
+i`

(−µ)Pm− 3
2

+i`
(µ)

+4

(
−1

2
+ i`

)(
−3

2
+ i`

)
µ2P−m− 1

2
+i`

(−µ)Pm− 1
2

+i`
(µ)

]
. (5.111)

It is also useful to redefine the Legendre functions in terms of hypergeometric functions
to ensure more precise results, that is, [120, eq. 14.3.1, 14.3.2]

Pµν (x) =

(
1 + x

1− x

)µ/2 1

Γ(1− µ)
F (ν + 1,−ν; 1− µ, 1

2
− 1

2
x), (5.112)

Qµν (x) =
π

2 sin(µπ)

(
cos(µπ)

(
1 + x

1− x

)µ/2 1

Γ(1− µ)
F (ν + 1,−ν; 1− µ;

1

2
− 1

2
x)

−Γ(ν + µ+ 1)

Γ(ν − µ+ 1)

(
1− x
1 + x

)µ/2 1

Γ(1 + µ)
F (ν + 1,−ν; 1 + µ;

1

2
− 1

2
x)

)
. (5.113)

To increase computation speed, we also ask Mathematica to focus on the real part only
in the Mehler functions (Mehler functions are, of course, real functions, but numerical
computation gives us an incredibly small, non-zero imaginary part).

5.6 Numerical results

In this section we present the numerical results for the VP in all three cases of topo-
logical black hole. The VP is calculated by subtracting the Hadamard parametrix
(5.86) from the Euclidean Green’s function (5.20) and then bringing points together.
Thanks to our mode-sum representation for the Hadamard parametrix, this can be
done mode-by-mode, leaving us with

〈φ̂2〉ren = lim
x′→x

{
1

4π2

∞∑
n=−∞

einκ∆τ

∫ ∞
`=0

d` P`(γ)
[
κX

(k)
n` (r, r′)

−1

2

2∑
i=0

i∑
j=0

Dij(r)Ψn`(i, j|r)

− f ′(r)
48π2r

 (5.114)
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where P`(γ) is given in (5.87), X
(k)
n` is the radial Green’s function satisfying (5.24),

the coefficients Dij are given in Table 5.1 and the regularisation parameters Ψn`(i, j|r)
are given in (5.88). The integral over ` is understood to be a sum over non-negative
integers in the k = 1 case. In the coincidence limit, the expansion variables s and w
(5.37) both tend to 0. It makes sense to take w → 0 before s→ 0, since s depends on w.
This means taking temporal coordinates to coincidence prior to angular coordinates,
which corresponds to performing the n-sum first, and then the `-integral [11]. In the
coincidence limit, we find

〈φ̂2〉ren =
1

4π2

∫ ∞
`=0

d`

∞∑
n=−∞

P`(0)

κX(k)
n` (r)− 1

2

2∑
i=0

i∑
j=0

Dij(r)Ψn`(i, j|r)

− f ′(r)
48π2r

.

(5.115)

In the k = 0 case, we can use our scaling symmetries to simplify numerical calculations.
Under the first scaling, using (5.9-5.12) as well as (5.34) and (5.73), the VP scales as

〈φ̂2〉ren → ρ̃−2
1 〈φ̂2〉ren. (5.116)

Under the second scaling, using (5.13-5.16) as well as (5.35) and (5.74), the VP scales
as

〈φ̂2〉ren → ρ̃6
2〈φ̂2〉ren. (5.117)

Applying both scalings at the same time, the VP therefore scales as

〈φ̂2〉ren → ρ̃−2
1 ρ̃6

2〈φ̂2〉ren. (5.118)

The convergence of the sum over n in (5.115) can be shown numerically to be [11,12],

κX
(k)
n` (r)−D00(r)Ψn`(0, 0|r) ∼ O(n−3), (5.119)

κX
(k)
n` (r)−

1∑
i=0

i∑
j=0

Dij(r)Ψn`(i, j|r) ∼ O(n−5). (5.120)

κX
(k)
n` (r)−

2∑
i=0

i∑
j=0

Dij(r)Ψn`(i, j|r) ∼ O(n−7). (5.121)

These facts provide us with a good check for the convergence of the summations, as we
shall see later on.

We now present the results, alongside an analysis of convergence and accuracy, for each
case of topological event horizon, starting with k = 1.
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5.6.1 Numerical results for spherical horizons

We calculate the renormalised VP on SadS black holes with spherical event horizon for
black hole mass M = 1, cosmological constant Λ = −3 and horizon radius rh = 2. This
choice was made so that results matched [10], allowing us to compare results before
repeating the calculation for different values of Λ. We calculate the modes as described
in section 5.5, with all calculations performed to 100 digits of precision.

In Figure 5.1, we examine the convergence of sums over n by constructing the following
log plots:

Blue line : log
(
n3|κ Nn`pn`(r)qn`(r)−D00(r)Ψn`(0, 0|r)|

)
(5.122)

Orange line : log

n5|κ Nn`pn`(r)qn`(r)−
1∑
i=0

i∑
j=0

D(+)
ij (r)Ψn`(i, j|r)|

 (5.123)

Green line : log

n7|κ Nn`pn`(r)qn`(r)−
2∑
i=0

i∑
j=0

D(+)
ij (r)Ψn`(i, j|r)|

 . (5.124)

Each plot is constructed for a specific value of r and `. In all cases, we find that the
plot converges to a constant value, meaning that the summand has the appropriate
order in n predicted by (5.119-5.121).

The results take more time to converge to the expected order when ` is large. This is
simply because the individual modes get smaller, and in fact become negligible, as we
increase `. To improve convergence in these modes with larger `, we would need more
digits of precision, but this is not actually necessary, because the large ` terms are so
small that disregarding them will not affect our final answer (as can be seen in Figure
5.2).

In Figure 5.2, we construct a three-dimensional plot to examine the convergence of the
sum over `. We plot the summand

P`(0)
70∑

n=−70

κNn`pn`qn` − 2∑
i=0

2∑
j=0

DijΨn`(i, j|r)

 . (5.125)

The summand converges sufficiently quickly to zero for each fixed η as we increase `,
but this convergence is not uniform in η. Furthermore, the convergence depends on the
value of χ. As we shall see in section 5.6.1, increasing χ requires us to include more
terms in the `-sum and truncate at a higher value in order to see convergence to zero
in (5.125). This convergence to zero implies a rapid convergence in the calculation of
the renormalised VP (5.115).

Convergence of the `-summand also drops off as we get further from the event horizon.
This is to be expected, since individual terms in the n and ` sums are larger for larger
r, and so we require more terms in n and ` to obtain convergence further from the
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Figure 5.2: The `-summand (5.125) in the case of a SadS black hole with spherical
horizon, M = 5, Λ = −3. This converges quickly to zero as ` increases, but this
convergence is not uniform in η. The convergence is more rapid for small values of η.

event horizon. We would find that, were we to attempt to increase the value of r (or,
equivalently, η), we would lose convergence. For our purposes, we find that using 70
n-modes and 50 `-modes is enough to obtain good convergence up to η = 11.

Our results for the renormalised VP in SadS with a spherical event horizon and Dirich-
let conditions imposed on the fields at the boundary are shown in Figure 5.3. The
VP approaches the value −1/48π2, the value found in CadS with Dirichlet conditions
imposed (3.2). This plot matches exactly the plot given in [10], although it is important
to note that here we have used a renormalisation method that allows for much quicker
computation and much faster convergence. The “extended coordinates” method also al-
lows for the extension to other black hole topologies. It is not clear how straightforward
the extension to other topologies would be when using the method of [10].

Accuracy tests for k = 1

In the case of a spherical black hole horizon, errors arise in the calculation of 〈φ̂2〉ren
from truncating both the n-sum and the `-sum. We can quantify the errors introduced
by these truncations by increasing/decreasing the number of terms in each sum and
then comparing with previous results. This gives us an idea of how many digits of
accuracy have been obtained.

We perform the same calculation but truncate the n-sum at n = ±60. The relative error
between these two values of 〈φ̂2〉ren is given in Table 5.4. We can see that truncating
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〈ϕ
2
〉ren -1/48π2

2 4 6 8 10
η-1

-0.0018

-0.0019

-0.0020

-0.0021

〈ϕ
2
〉ren

k = 1, χ = 1, L=1

Figure 5.3: The behaviour of 〈φ̂2〉ren with Dirichlet boundary conditions imposed for
an adS black hole with spherical horizon, M = 5, Λ = −3, calcuated using 50 terms in
the `-sum and 70 terms in the n-sum. The VP was calculated over a grid of values in
η and then these points were interpolated over - each individual point is displayed on
the plot. The VP is a monotonically decreasing function of η, approaching the CadS
value −1/48π2. This value is shown with a dashed black line.

i Relative error

10 2.2071× 10−12

20 1.5212× 10−11

30 9.1696× 10−11

40 4.3125× 10−10

50 1.3169× 10−9

60 2.0321× 10−9

70 1.1755× 10−9

80 8.1475× 10−11

90 −1.3759× 10−10

100 −7.1015× 10−11

Table 5.4

i Relative error

10 2.4354× 10−7

20 2.2430× 10−7

30 1.9008× 10−7

40 1.3546× 10−7

50 6.4015× 10−8

60 −1.1402× 10−9

70 −3.0364× 10−8

80 −2.2630× 10−8

90 6.6137× 10−6

100 0.001859

Table 5.5
Relative errors for k = 1, M = 5,Λ = −3. The radial coordinate is given by r =
rh + 10−2+3i/100, where the value of i is given in the left-hand column.

Table 5.4: The relative error 〈φ̂
2〉70−〈φ2〉60
〈φ̂2〉60

, where 〈φ̂2〉y is the VP calculated with the

n-sum truncated at ±y.

Table 5.5: The relative error 〈φ̂
2〉60−〈φ̂2〉50
〈φ̂2〉50

, where 〈φ̂2〉y is the VP calculated with the

`-sum truncated at y.
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the n-sum at ±60 instead of at ±70 leaves us with a small relative error, suggesting that
this truncation does not contribute a huge error in the overall calculation. Similarly,
we truncate the `-sum at ` = 60 instead of 50 and again calculate the relative error.
The error here is greater, especially far from the horizon (see Table 5.5).

Far from the horizon, we can compare our results with analytical results found in CadS,
given in (3.2). By comparing our numerical results with this analytical result, we see
that, far from the horizon, our results at η = 11 agrees with (3.2) to 6 significant figures
when we truncate the `-sum at ` = 50, and to 7 significant figures when we truncate
the `-sum at ` = 70.

Varying Λ

In order to compare the results in Figure 5.3 with different values of the cosmological
constant, we introduce the coordinate η (5.3) and the parameter χ (5.4). By looking at
(5.4), we see that we can consider a variety of values of Λ by fixing M = 1

2 and varying
χ.

We look at three different values of χ. The first of these is χ = 0.5, which corresponds
to Λ = −12. The renormalised VP in this case is shown in Figure 5.6. This is calculated
with 50 terms in the `-sum and 70 terms in the n-sum. The behaviour is very similar
to the previous case (note that Λ is of the same order of magnitude in both cases, so
we do not expect to see a huge difference). We can then test accuracy in a similar
way to before, by increasing and decreasing the number of modes. The relative errors
are given in Tables 5.7 (where we compare different truncations of the n-sum) and 5.8
(where we vary the number of terms in the `-sum). This suggests that truncating the
n-sum at n = 70 and truncating the `-sum at ` = 50 secures a satisfactory convergence
in the VP in the region η ∈ [1, 11]. We expect that, according to the results in CadS
(3.2), far from the horizon,

〈φ̂2〉χ=0.5 → −
1

12π2
∼ −0.00844 as r →∞. (5.126)

At η = 11, our results, calculated with 50 terms in the `-sum and 70 terms in the
n-sum, differ from this by 10−6, which is the same as the previous case. The relative
difference will decrease if we increase the number of terms in either of the sums.

The second case we look at is χ = 0.05, which corresponds to Λ = − 30603
1002001 ≈ −0.03054.

The VP in this case is shown in Figure 5.9. Now, Λ is much smaller, and we see that we
have to travel a little further from the horizon to see the VP converge to the expected
value,

〈φ̂2〉χ=0.05 → −
10201

48096048π2
≈ −2× 10−5 as r →∞. (5.127)

We also notice that at the horizon, the VP has a positive value, before becoming
negative as we move towards the boundary. This is in contrast to other cases, where
the VP remains negative throughout the spacetime. This could be explained by the
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Figure 5.6: The behaviour of 〈φ̂2〉ren with Dirichlet boundary conditions imposed on
an adS black hole with spherical horizon, M = 0.5, χ = 0.5, calculated with 50 `-
modes and 70 n-modes. The VP is a monotonically decreasing function, approaching
the CadS limit −1/48π2L2. This limit is shown by a black dashed line. The VP is
always negative throughout the spacetime.

i Relative error

10 1.9196× 10−11

20 1.2087× 10−10

30 6.1249× 10−10

40 2.0794× 10−9

50 3.4255× 10−9

60 8.9518× 10−10

70 −2.4493× 10−9

80 −2.1851× 10−9

90 −9.4595× 10−10

100 −3.0556× 10−10

Table 5.7

i Relative error

10 −1.4710× 10−7

20 −1.3168× 10−7

30 −1.0532× 10−7

40 −6.6146× 10−8

50 −2.1129× 10−8

60 1.1427× 10−8

70 1.9785× 10−8

80 1.2985× 10−8

90 3.9253× 10−9

100 −0.00001659

Table 5.8

Relative errors for χ = 0.5. The radial coordinate is given by η = 1 + 10−2+3i/100,
where the value of i is given in the left-hand column.

Table 5.7: The relative error 〈φ̂
2〉70−〈φ̂2〉60
〈φ̂2〉60

, where 〈φ̂2〉y is the VP calculated with the

n-sum truncated at ±y.

Table 5.8: The relative error 〈φ̂
2〉60−〈φ̂2〉50
〈φ̂2〉50

, where 〈φ̂2〉y is the VP calculated with the

`-sum truncated at y.
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fact that this black hole is thermodynamically unstable, whilst other spherical black
holes are thermodynamically stable [137]. The black holes that we consider with flat or
hyperbolic horizon curvature are also thermodynamically stable [127]. It could be the
case that the sign of the VP on the horizon is governed by whether or not the black
hole is thermodynamically stable. If this is the case, it must only be true for Dirichlet
boundary conditions - we shall see in the next chapter that the same does not hold for
Neumann or Robin conditions.

At η = 11, our results agree with (5.127) to three significant figures, whereas at η = 21,
we find agreement to four significant figures. In this case, however, truncating the n-
sum at n = 70 and the `-sum at ` = 50 results in a much higher accuracy, as can be seen
in Tables 5.10 and 5.11 respectively. This suggests that when Λ is small (i.e. Λ � 1),
we do not require as many terms in in the n- or `-sums to achieve good convergence,
but we do need a greater range of η.

The final case we consider is χ = 5, which corresponds to Λ = −3060300. The results
for the renormalised VP in this case are shown in Figure 5.12. Now we find that the
convergence to the expected value occurs much closer to the horizon, but that accuracy
breaks down much sooner as well. We can see that increasing the number of terms
in the n-sum makes no difference (see Table 5.13 for relative errors), suggesting that,
in order to improve accuracy far from the horizon, we need to increase the number of
terms in the `-sum (the relative errors gained from the `-sum truncation are given in
Table 5.14 - note that errors are large far from the horizon and in order to obtain any
sensible results past η ∼ 5, we would require more terms in the `-sum). The expected
value far from the horizon is

〈φ̂2〉χ=5 → −
255025

12π2
≈ −2153 as r →∞. (5.128)

We get closest to this value around η = 4, and then lose accuracy as we increase η.
More `-sum terms would have to be calculated to get closer to the expected value.

To conclude, in order to obtain accurate answers for 〈φ̂2〉ren, we do not require as
many `-sum terms for small Λ, but we must travel a little further away from the
horizon. Conversely, for large Λ, we need more `-sum terms, and then find that 〈φ̂2〉ren
converges pretty close to the horizon.

5.6.2 Numerical results for flat horizons

The calculation for the flat horizon was originally performed for black hole mass M = 4,
cosmological constant Λ = −3 and horizon radius rh = 2. These values were chosen
to allow us to compare easily with the spherical case where rh = 2,Λ = −3, as both
results are expected to approach the value −1/48π2L2, with radius of curvature L the
same in both cases.

We examine convergence over the n-sum by constructing log plots given by (5.122-
5.124). These convergence plots are given in Figure 5.15. The log plots approach a
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Figure 5.9: The behaviour of 〈φ̂2〉ren with Dirichlet boundary conditions imposed on an
adS black hole with spherical horizon, M = 0.5, χ = 0.05, calculated with 50 `-modes
and 70 n-modes. Unlike in the previous cases, the VP is positive rather than negative
at the event horizon, and then monotonically decreases to the CadS limit −1/48π2L2.
This limit is shown by a black dashed line.

i Relative error

10 −4.0217× 10−11

20 −1.7359× 10−10

30 −3.2805× 10−10

40 8.3909× 10−10

50 4.0553× 10−9

60 4.0424× 10−9

70 2.1122× 10−9

80 3.3803× 10−9

90 4.6563× 10−9

100 3.1707× 10−9

Table 5.10

i Relative error

10 2.0674× 10−10

20 6.8776× 10−10

30 1.4848× 10−9

40 2.1253× 10−9

50 2.1750× 10−9

60 4.0823× 10−9

70 5.5413× 10−9

80 2.6347× 10−9

90 −1.1794× 10−10

100 −5.2882× 10−10

Table 5.11

Relative errors for χ = 0.05. The radial coordinate is given by η = 1 + 10−2+3i/100,
where the value of i is given in the left-hand column.

Table 5.10: The relative error 〈φ̂
2〉70−〈φ̂2〉60
〈φ̂2〉60

where 〈φ̂2〉y is the VP calculated with the

n-sum truncated at ±y.

Table 5.11: The relative error 〈φ̂
2〉60−〈φ̂2〉50
〈φ̂2〉50

, where 〈φ̂2〉y is the VP calculated with the

`-sum truncated at y.
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Figure 5.12: The behaviour of 〈φ̂2〉ren with Dirichlet boundary conditions imposed on
an adS black hole with spherical horizon, M = 0.5, χ = 5, calculated with 130 `-modes
and 70 n-modes. The VP is always negative and monotonically decreasing. The CadS
limit −1/48π2L2 is shown as a black dashed line to demonstrate convergence near
η = 4. Accuracy is lost for η > 4 - in order to increase this accuracy, we would need to
calculate more terms in the `-sum.

i Relative error

10 4.3154× 10−13

20 3.0520× 10−12

30 1.9325× 10−11

40 9.9498× 10−11

50 3.5532× 10−10

60 7.0550× 10−10

70 6.2295× 10−10

80 2.1759× 10−10

90 2.6822× 10−11

100 −3.6506× 10−12

Table 5.13

i Relative error

10 1.5668× 10−6

20 1.4525× 10−6

30 1.2476× 10−6

40 9.1572× 10−7

50 4.7103× 10−7

60 8.6794× 10−8

70 2.3266× 10−6

80 0.0001464

90 0.004320

100 0.04398

Table 5.14

Relative errors for χ = 5. The radial coordinate is given by η = 1 + 10−2+3i/100, where
the value of i is given in the left-hand column.

Table 5.13: The relative error 〈φ̂
2〉70−〈φ̂2〉60
〈φ̂2〉60

, where 〈φ̂2〉y is the VP calculated with the

n-sum truncated at ±y.

Table 5.14: The relative error 〈φ̂
2〉60−〈φ̂2〉50
〈φ̂2〉50

, where 〈φ̂2〉y is the VP calculated with the

`-sum truncated at y.
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constant value as n increases, suggesting good convergence in the n-sum for all values
of ` and r.

In order for us to obtain rapid convergence in 〈φ̂2〉ren, we expect the `-integrand to
converge quickly to zero. In this case, we find that convergence becomes faster as we
move away from the event horizon (see Figure 5.16). This is in contrast to the k = 1
case, where we saw faster convergence for small η.

The convergence plots (Figure 5.15) suggest that truncating the n-sum at n = 70,
with each individual term calculated to 100 digits of precision, is enough to obtain
good convergence. For the `-integral, we must calculate a grid over the `s and then
interpolate between these values to create an interpolation function in ` that we can
integrate over. We calculate the integrand for every half-integer ` ∈ [4, 50], and every
1/10-integer ` ∈ (0, 4]. This is due to the fact that behaviour in ` is more interesting
close to ` = 0, and we must use a finer grid to correctly capture all information.

The integral over ` is performed by interpolating between the `-modes using built-in
interpolation methods in Mathematica. We then execute a numerical integration, and
cut off the integral at `1 = 50. The resulting plot of VP with Dirichlet conditions
imposed at the boundary is shown in Figure 5.17, in terms of the coordinate η. The
VP is a monotonically decreasing function of η, approaching the value −1/48π2, the
value of the VP found on CadS when Dirichlet conditions are imposed. Comparing
this result to the k = 1 case, we can see that the value of the VP is smaller, but still
negative, at the horizon. The approach to the CadS limit is slower in the k = 0 case,
with convergence not occurring until around η = 10. For a comparison plot, see Figure
5.30.

Accuracy tests for k = 0

In the calculation of 〈φ̂2〉ren in the k = 0 case, we have made three different approxi-
mations which could lead to errors. These errors could arise from truncating the n-sum
at n = 50, from cutting off the `-integral at ` = `1, and from the density of the grid
used to perform the `-integration.

We can test accuracy in the n-sum by decreasing the number of terms in the n-sum
and calculating the relative error, similar to the way in which we tested accuracy in the
k = 1 case. The relative error between 〈φ̂2〉ren calculated with 70 terms in the n-sum
and 60 terms in the n-sum is given in Table 5.18.

As the integration over ` cannot be performed analytically, we calculate the integrand
over a discrete number of `s and then form an interpolating function over which we then
integrate. The size of the steps between these `s can be varied to check our accuracy.
We can calculate the relative error between the VP when the step size close to ` = 0 is
1/20 and when the step size is 1/10. In both cases, we only use half-integer steps in `
for ` > 4. The relative errors for varying radius are given in Table 5.19.

The interval of integration over ` is infinite, but we cut it off at `1 = 50. To check that
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Figure 5.16: The `-integrand (5.125) in the case of an adS black hole with flat horizon,
M = 4, Λ = −3. This converges quickly to zero as ` increases, but this convergence is
not uniform. The convergence is more rapid as η increases.
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Figure 5.17: The behaviour of 〈φ̂2〉ren with Dirichlet boundary conditions imposed
in the case of an adS black hole with flat horizon, M = 4, Λ = −3. The VP is
calculated by integrating over a grid of `-modes up to `1 = 50 and then summing
over 70 n-modes. The resulting function is negative throughout the spacetime, and
monotonically decreasing, approaching the CadS limit −1/48π2 at the boundary. This
limit is shown by the dashed black line.
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this does not affect our accuracy as much, we can approximate the tail of the integrand
by assuming it takes the form a × `−(1+ε), for some constants a, ε. We can find these
values by using the Mathematica function FindFit. The constant a will depend on the
value of r (or, equivalently, η). The values of ε are all found to be close to 4 (we lose
some accuracy far from the horizon), and so the integrand is ∼ O(`−5), which matches
the order of the `-summand in the k = 1 case. The tail of the integrand can then be
approximated as ∫ ∞

`1

a`−(1+ε)d` =
a

ε
`−ε1 . (5.129)

The various values of the tail of the integral are given in Table 5.20.

The largest error comes from the density of the grid over the `-integral. Comparing
numerical results far from the horizon with the CadS limit, we find that our result is
correct to 5 significant figures.

Varying Λ

In section 5.2, we saw that there were two scaling symmetries associated with the k = 0
metric. This means that varying both M and χ simply results in a rescaling of the VP
according to (5.118), where M → ρ̃1M and χ→ ρ̃2χ.

In the k = 1 case, we fixed M = 0.5 and varied χ in order to see how the cosmological
constant affects the VP. We do the same in the k = 0 case, keeping M = 0.5 fixed
and varying χ. We first look at χ = 0.5, which corresponds to Λ = −3. To apply this
rescaling, we set ρ̃1 = 1/8 and ρ̃2 = 1/2 in (5.118). We find that there is, in fact, no
change in the VP in this case, and we obtain exactly the same plot as given in Figure
5.17. Note that η is a dimensionless quantity and does not get scaled as we alter χ.
Instead of plotting in terms of χ, it is more beneficial to plot in terms of r, as this
allows us to see the difference between the cases more clearly. The plot of the VP when
χ = 0.5 is given as a function of η in Figure 5.21a and as a function of r in Figure
5.22a.

Next we look at χ = 0.05, which corresponds to Λ = −3× 10−6. We apply the scaling
(5.118) by setting ρ̃1 = 1/8 and ρ̃2 = 1/20. We find the VP in this case by multiplying
our original results in Figure 5.17 by a factor 10−6 (see Figure 5.21b for the plot as a
function of η, and Figure 5.22b for the plot as a function of r).

Finally we look at χ = 5, which corresponds to Λ = −3 × 106. We apply the scaling
(5.118) by setting ρ̃1 = 1/8 and ρ̃2 = 5. We find the VP in this case by multiplying
our original results in Figure 5.17 by a factor of 106 (see Figure 5.21c for the plot as a
function of η, and Figure 5.22c for the plot as a function of r).

When we plot as a function of η (Figure 5.21), it is much harder to compare the rate
of convergence, since the coordinate η is invariant under the rescaling, and so all cases
seem to converge to the CadS limit at the same rate as we move away from the horizon.
The only difference appears to be in the value of the VP on the horizon - for smaller
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i Relative error

10 −2.0206× 10−12

20 −1.3913× 10−11

30 −8.3753× 10−11

40 −3.9353× 10−10

50 −1.2049× 10−9

60 −1.8857× 10−9

70 −1.1476× 10−9

80 −1.3174× 10−10

90 1.0697× 10−10

100 6.1048× 10−11

Table 5.18

i Relative error

10 −0.005981

20 −0.005806

30 −0.005489

40 −0.004959

50 −0.004168

60 −0.003139

70 −0.002011

80 −0.001043

90 −0.0004368

100 −0.0001541

Table 5.19
Relative errors in the case M = 4, Λ = −3. The radial coordinate is given by r =
rh + 10−2+3i/100, where the value of i is given in the left-hand column.

Table 5.18: The relative error 〈φ̂
2〉70−〈φ̂2〉60
〈φ̂2〉60

, where 〈φ̂2〉y is the VP calculated with the

n-sum truncated at ±y.

Table 5.19: The relative error
〈φ̂2〉1/20−〈φ̂2〉1/10

〈φ̂2〉1/10
, where 〈φ̂2〉y is the VP calculated with y

steps between `-modes when ` < 4, and half-integer steps for ` > 4.

i Approximate value of integral tail

10 −2.2717× 10−8

20 −2.1166× 10−8

30 −1.8351× 10−8

40 −1.3689× 10−8

50 −7.2016× 10−9

60 −6.9139× 10−10

70 2.7660× 10−9

80 −6.4986× 10−10

90 −2.2453× 10−6

100 −0.0004390

Table 5.20: The approximate value of
the tail of the `-integral in the case of a
black hole with flat event horizon, M =
4, Λ = −3. The radial coordinate is
given by r = rh + 10−2+3i/100, where
the value of i is given in the left-hand
column.
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Figure 5.21: The behaviour of 〈φ̂2〉ren with Dirichlet boundary conditions imposed on
an adS black hole with flat horizon, where we fix M = 0.5 and vary the value of χ. All
plots are as functions of η. The VP was calculated with 70 terms in the n-sum and a
grid of terms over ` up to `1 = 50. All plots are formed by rescaling the original data
used in Figure 5.17. The resulting functions all approach the CadS limit −1/48π2L2,
shown as a dashed black line in each plot.
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Figure 5.22: The behaviour of 〈φ̂2〉ren with Dirichlet boundary conditions imposed on
an adS black hole with flat horizon, this time plotted as functions of r. The difference
in behaviour as we vary χ is now more noticeable, with the convergence to the CadS
limit (the black dashed line) slower for larger χ.
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χ, there is only a very small difference between the horizon value and the CadS limit
(around 10−9 when χ = 0.05), whilst for large values of χ, the difference is much greater
(around 600 for χ = 5).

Varying χ does of course alter the rate of convergence to the CadS limit, which can
be clearly seen when we look at the plots as functions of r in Figure 5.22. Now we
can see that convergence is much slower for large values of χ, with convergence to the
CadS limit not occurring until r ∼ 500 for χ = 5. The convergence is much quicker for
smaller values of χ (we can see convergence to the CadS limit occurring for r ∼ 5 when
χ = 0.5). It is important to remember that all of these results are calculated simply by
rescaling the original calculation, so there is no change in the number of terms in the
n-sum or the density of the grid in the `-integral required to obtain accurate results.

5.6.3 Numerical results for hyperbolic horizons

The VP is calculated in the case of black hole with hyperbolic horizon for mass M = 3,
cosmological constant Λ = −3 and horizon radius rh = 2. These values are chosen to
allow us to compare with the cases in the k = 1, 0 cases with rh = 2,Λ = −3, where,
since L = 1, all results are expected to converge to the CadS limit −1/48π2 (3.2).

We test convergence for the n-sum by constructing the log plots (5.122-5.124). These
plots are shown in Figure 5.23. We truncate the n-sum at n = 70, and calculate each
term with 100 digits of precision. As we saw previously in the k = 1, 0 cases, the log
plots approach a constant value for large n, suggesting good convergence in the n-sum.
This convergence is not as rapid for large ` and r. This is not necessarily a problem
for large ` since the individual terms in the sum become incredibly small as ` increases
and so should not affect the accuracy of our final result. For large r, we would need to
use more terms in the n-sum to accurately capture results this far from the horizon.

The convergence of the `-integrand is shown in Figure 5.24. Again, this converges
quickly to zero, with quicker convergence occurring close to the horizon. It is possible
that an increase in the number of terms in the n-sum would allow for faster convergence
far from the horizon. We integrate over a grid in `, by calculating a discrete number
of terms in the integral, and then creating an interpolation function over these terms.
As in the k = 0 case, we are forced to use a denser grid in ` close to ` = 0 in order
to properly capture the behaviour of the integrand in our interpolation function. We
calculate every half-integer ` for ` ∈ [4, 50] and every 1/20-integer ` for ` ∈ (0, 4]. We
cut off the integral at `1 = 50.

The integral is performed as in the k = 0 case, by calculating the n-sum and then
interpolating over ` to get a smooth function in ` across a grid in η. The integral is
performed numerically. The resulting plot is shown in Figure 5.25 in terms of coordinate
η, where the horizon is located at η = 1. As in all previous cases, the VP approaches
the value −1/48π2. In fact, this approach occurs at a much quicker rate than in the
k = 1, 0 cases, with convergence occurring at η − 1 ∼ 7 (see Figure 5.30 for a direct
comparison between all three event horizon topologies). In fact, our results were found
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to quickly lose accuracy after this point, due to the truncation of the n-sum and `-
integral. In the next subsection, we shall look at various accuracy tests, and see how
we can improve these results close to the boundary.

Accuracy tests for k = −1

Errors arise in the calculation of the VP in the hyperbolic horizon case in a similar
way to the flat horizon case. We introduce errors by truncating the n-sum at n = 50,
by cutting off the `-integral at `1 = 50 and by using a discrete grid of ` values for the
integrand.

Thus, accuracy tests are very similar to the previous k = 0 case. To test for errors
arising from the truncation of the n-sum, we calculate the relative error between the
case where we truncate the sum at n = 60 and the case where we truncate the sum
at n = 70. These values can be seen in Table 5.26. This introduces the smallest error
in the calculation, which matches results found in previous cases (see Tables 5.4, 5.7,
5.10, 5.13, 5.18).

Errors also arise from the grid we use in the `-integrand. In our calculation, we evaluate
the integrand at every half-integer ` for ` > 4, and at every 1/20-integer for ` < 2. We
can compare this with the same calculation performed with the `-integrand evaluated
at every 1/10-integrand for ` < 4. Relative errors are given in Table 5.27. We find that
these errors are larger close to the horizon, and smaller further away.

We approximate the tail of the integral as in the k = 0 case, by assuming it has
the form a × `−(1+ε) for some values of a and ε, where a will depend on the value of
r. Using FindFit in Mathematica, we find that the value of ε is close to 4 near the
horizon (as we would expect) but far from the horizon, this value begins to increase.
This is because we lose accuracy far from the horizon. As mentioned in the previous
subsection, convergence to the CadS limit is lost above η− 1 ∼ 8. This means that the
error from the cut-off of the integral gets bigger the further we get from the horizon
(see Table 5.28). Therefore, to increase accuracy further from the horizon, and allow
us to accurately plot results for larger values of η we must shift the value of `1 and not
cut off the integral so soon. However, when Λ = −3 and rh = 2, we see convergence to
the CadS limit (3.2) for the values of η that we have considered, so there is no need, in
this case, to increase `1.

For small values of η, we conclude, as in the k = 0 case, that the largest errors are
introduced via the density of the grid in ` that is used.

Varying Λ

We look at different values of Λ by fixing M = 0.5 and then varying the value of χ
(5.4). We choose to look at three different values of χ, which each give us different
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Figure 5.24: The `-integrand (5.125) on an adS black hole with hyperbolic horizon,
M = 3, Λ = −3. This converges quickly to zero as ` increases, but this convergence is
not uniform. The convergence is more rapid for small values of η.
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Figure 5.25: The behaviour of 〈φ̂2〉ren with Dirichlet boundary conditions imposed on
an adS black hole with hyperbolic horizon, M = 5, Λ = −3. The VP is calculated by
truncating the n-sum at n = 70, and then integrating over a grid of ` up to `1 = 50. The
resulting function is negative throughout the spacetime, and monotonically decreasing
as η increases, approaching the CadS limit −1/48π2 (3.2) at the boundary. This limit
is shown by the dashed black line.
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i Relative error

10 −3.7973× 10−14

20 −2.7260× 10−13

30 −1.7764× 10−12

40 −9.6470× 10−12

50 −3.7827× 10−11

60 −8.7374× 10−11

70 −9.6884× 10−11

80 −4.8292× 10−11

90 −1.2847× 10−11

100 −2.5689× 10−12

Table 5.26

i Relative error

10 0.0002767

20 0.0002709

30 0.0002600

40 0.0002403

50 0.0002076

60 0.0001607

70 0.0001060

80 0.00005724

90 0.00002511

100 9.2392× 10−6

Table 5.27
Relative errors in the case M = 3,Λ = −3. The radial coordinate is given by r =
rh + 10−2+3i/100, where the value of i is given in the left-hand column.

Table 5.26: The relative error 〈φ̂
2〉70−〈φ̂2〉60
〈φ̂2〉60

, where 〈φ̂2〉y is the VP calculated with the

n-sum truncated at ±y.

Table 5.27: The relative error
〈φ̂2〉1/20−〈φ̂2〉1/10

〈φ̂2〉1/10
, where 〈φ̂2〉y is the VP calculated with y

steps between `-modes when ` < 4, and half-integer steps for ` > 4.

i Approximate value of integral tail

10 −1.2831× 10−8

20 −1.1985× 10−8

30 −1.0302× 10−8

40 −6.5160× 10−9

50 −8.1413× 10−10

60 3.9646× 10−8

70 8.6364× 10−8

80 9.2432× 10−8

90 −2.1769× 10−6

100 −0.0004357

Table 5.28: The approximate value of
the tail of the `-integral in the case of a
black hole with hyperbolic event hori-
zon, M = 3, Λ = −3. The radial coor-
dinate is given by r = rh + 10−2+3i/100,
where the value of i is given in the left-
hand column.
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Figure 5.29: The behaviour of 〈φ̂2〉ren with Dirichlet boundary conditions imposed on
an adS black hole with hyperbolic horizon, where we fix M = 0.5 and vary the value
of χ. All plots are as functions of η. The VP was calculated by truncating the n-sum
at n = 70 and truncating the `-integral at ` = `1, where `1 = 50 when χ = 0.75, 0.525
and `1 = 130 when α = 10. A denser grid in ` is required close to ` = 0 when χ = 0.75.
All cases approach the CadS limit (3.2), shown by the dotted black line.
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magnitudes of Λ. It should be noted that we must have χ > 0.5 for the black hole to
exist.

The first case we look at is χ = 0.75 (see Figure 5.29a for results of renormalised VP)
which corresponds to Λ = −675

64 ∼ −10. This case is similar to the initial k = −1 case
considered, as Λ is similar in size. We truncate the n-sum at n = 70, and truncate the
`-integral at `1 = 50, using a half-integer grid in ` for ` ∈ [2, 50] and a 1/10-integral
grid in ` for ` < 2. As before, the results approach the CadS value −1/48π2L2 (3.2). In
this case, the convergence to the CadS limit occurs at η − 1 ∼ 7, similar to the initial
case, although here the accuracy far from the horizon is better, meaning that we do
not lose convergence until η− 1 > 10. This can be seen by performing similar accuracy
tests to the previous case. The difference between the expected asymptotic value (3.2)
and the results at η = 11 differ by ∼ 10−6.

The second case we consider is χ = 0.525 (see Figure 5.29b for the results of renor-
malised VP), which corresponds to Λ ∼ −3.4749 × 10−2. Due to the nature of the
integrand, we need to calculate a denser grid of `-modes closer to 0 in order to properly
capture its behaviour. We use a half-integer grid in ` for ` ∈ [4, 50] and a 1/20-integer
grid in ` for ` < 4. This denser grid means that we obtain good convergence far from
the horizon. The results for the VP again converge to the expected CadS limit as η
increases, and the VP remains negative throughout the spacetime.

The final case involves a large cosmological constant, where we choose χ = 5 (see
Figure 5.29c for results of renormalised VP), which corresponds to Λ ∼ −2.94 × 106.
The convergence of the VP to the CadS value (3.2) now occurs much closer to the event
horizon. Due to the nature of the integrand, we cut-off the `-integral at `1 = 130, but
find that we do not require such a fine grid close to ` = 0. We use a 1/2-integer grid
for all values of `. We can see that convergence to the CadS limit occurs at η − 1 ∼ 3.
To obtain accurate results for larger values of η, we would need to cut-off the integral
at a much larger value of `1.

To summarise, for small Λ, we can afford to cut off the integral at a smaller value of
`1, but we must use a denser grid over `. For a larger value of Λ, we must use a larger
`1, but the grid does not have to be as dense.

A comparison of VP results for all three types of event horizon topology is given in Fig-
ure 5.30, for L = 1, χ = 1. This allows us to directly compare the speed of convergence
across all three cases, as well as the value of VP on the event horizon η = 1.

5.7 Extension to general coupling

In this section, we discuss the extension of the theory presented in sections 5.3-5.6 to
include scalar fields of nonzero mass or general coupling.

When m = 0 and ξ = 1/6, the tail of the Hadamard parametrix (1.187), V (x, x′),
vanishes at leading order and so we do not need to calculate it in order to renormalise



CHAPTER 5. QUANTUM FIELD THEORY ON TOPOLOGICAL
BLACK HOLES 163

k=1 k=0 k=-1 -1/48π2

2 4 6 8 10
η-1

-0.0014

-0.0016

-0.0018

-0.0020

〈ϕ
2
〉ren

χ = 1, L = 1

Figure 5.30: The behaviour of 〈φ̂2〉ren with Dirichlet boundary conditions imposed
on an adS black hole with varying black hole topology. In each case, L = 1, χ = 1,
which means that the event horizon radius is the same in each case, as is the CadS
limit approached at the boundary. This case allows us to directly compare speed of
convergence across all three cases considered.

the VP.

For general coupling, the tail does not vanish at leading order, and in particular, we
have to write it in the form (1.229) in order to use the extended coordinates method.
The tail coefficients Tij can be found by substituting (1.220, 1.223) into (1.189, 1.190)
and comparing coefficients at each order of ε, where the extended coordinates (s, w) are
treated as O(ε). This procedure can be carried out in Mathematica, and the results
are given in Table 5.31.

The terms in the tail, that is, terms of the form log(`20s
2)s2i−2jw2j (1.230), are then

written in the same mode-sum representation as the Euclidean Green’s function (5.20-
5.23) and the direct part of the Hadamard parametrix (5.42, 5.61, 5.75).

This is done in the k = 1 case in [13]. This work is presented in section 5.7.1. We seek
to extend this work to the k = 0 and k = −1 cases in sections 5.7.2, 5.7.3 respectively.

5.7.1 Spherical horizons

In the k = 1 case, we write the tail terms (1.230) in the same form as the Euclidean
Green’s function (5.20, 5.21), that is,

s2i−2jw2j log(`20s
2) =

∞∑
`=0

(2`+ 1)P`(cos γS)
∞∑

n=−∞
einκ∆τχn`(i, j|r) (5.130)
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for some regularisation parameters χn`. These can be determined by inverting (5.130).
This is done by multiplying both sides by e−in

′κ∆τ
`′ (cos γS) and integrating over cos γS

and ∆τ using [120, eq. 14.17.6]. This inversion procedure is that same as that used in
section 5.4.1 (in fact, much of the calculation here mirrors that in section 5.4.1). We
obtain

χn`(i, j|r) =
κ

4π

∫ 2π/κ

∆τ=0

∫ 1

cos γS=−1
e−inκ∆τP`(cos γS)s2i−2jw2j log(`20s

2) d(cos γS) d∆τ.

(5.131)
We use expressions for s and z in (5.44) to write

χn`(i, j|r) =
κ

4π
(2r2)i−j

∫ 2π/κ

∆τ=0
e−inκ∆τw2j

∫ 1

cos γS=−1
P`(cos γS)(z − cos γS)i−j

×
[
log(2`20r

2) + log(z − cos γS)
]
d(cos γS) d∆τ. (5.132)

The integral over cos γS can be performed by using the identity [120, eq. 14.7.10]

P`(x) =
(−1)`

2``!

(
d

dx

)`
(1− x2)` (5.133)

so that the first integral that we want to evaluate is given by

I1 =

∫ 1

cos γS=−1
(z − cos γS)i−j

(
d

d cos γS

)`
(1− cos2 γS)` d(cos γS). (5.134)

Integrating by parts, we obtain

I1 =

[
(z − cos γS)i−j

(
d

d cos γS

)`−1

(1− cos2 γS)`

]1

cos γS=−1

− (−1)i−j(i− j)
∫ 1

cos γS=−1

(
d

d cos γS

)`−1

(1− cos2 γS)`(z − cos γS)i−j−1 d(cos γS).

(5.135)

The first term in (5.135) vanishes, and we integrate the second term by parts again. In
total, we integrate (5.134) by parts ` times to obtain

I1 = (i− j − `+ 1)`

∫ 1

cos γS=−1
(1− cos2 γS)`(z − cos γS)i−j−` d(cos γS) (5.136)

where (a)` is the Pochhammer symbol defined by [120, eq. 5.2.4]

(a)0 = 1, (a)` = a(a+ 1)(a+ 2)...(a+ `− 1). (5.137)

If ` > i− j, then (5.136) is zero.
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The integral over the logarithm is also calculated using (5.133) and then integrating `
times by parts. We find

I2 =

∫ 1

cos γS=−1
log(z − cos γS)(z − cos γS)i−j

(
d

d cos γS

)`
(1− cos2 γS)` d(cos γS)

=

∫ 1

cos γS=−1
B`ij(z, cos γS)(1− cos2 γS)` d(cos γS) (5.138)

where

B`ij(z, cos γS) =


(−1)i−j−`+1(i− j)!(`− i+ j − 1)!(z − cos γS)i−j−`, for ` > i− j,
(z − cos γS)i−j−`(i− j − `+ 1)` [log(z − cos γS)

+ψ(i− j + 1)− ψ(i− j + 1− `)] , for ` ≤ i− j.
(5.139)

We consider the case where ` > i− j first. Substituting (5.136, 5.138) into (5.132), we
obtain

χn`(i, j|r) =
κ(−1)i−j+1(i− j)!(`− i+ j − 1)!(2r2)i−j

2`+2π `!

∫ 1

∆τ=−1
e−inκ∆τw2j

×
∫ 1

cos γS=−1
(z − cos γS)i−j−`(1− cos2 γS)` d(cos γS). (5.140)

The integral over cos γS can now be performed using [120, eq. 14.12.11], and so we find

χn`(i, j|r) =
κ(i− j)!(2r2)i−j

2π

∫ 2π/κ

∆τ=0
e−inκ∆τw2j(z2 − 1)

i−j+1
2 Q−i+j−1

` (z)d∆τ. (5.141)

Using the relation [12, eq. 36],

(z2 − 1)j/2Q−jν (z) =

j∑
k=0

(−1)k

2j+1

(
j

k

)
(2ν + 2j − 4k + 1)

(ν − k + 1
2)j+1

Qν+j−2k(z), (5.142)

the regularisation parameters for the tail can be written

χn`(i, j|r) =
κ(i− j)!r2i−2j

4π

i−j+1∑
k=0

(−1)k
(
i− j + 1

k

)
(`+ i− j − 2k + 3

2)

(`− k + 1
2)i−j+2

×
∫ 2π/κ

0
e−inκ∆τw2jQ`+i−j+1−2k(z)d∆τ. (5.143)

The parameter z depends on ∆τ . We factor out this time dependence in the same way
as in section 5.4.1, by defining µ1 via (5.49) and using the addition theorem (5.53).
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The regularisation parameters are therefore given by

χn`(i, j|r) =
κ(i− j)!r2i−2j

4π

i−j+1∑
k=0

(−1)k
(
i− j + 1

k

)
(`+ i− j − 2k + 3

2)

(`− k + 1
2)i−j+2

×
∫ 2π/κ

0
e−inκ∆τw2j

[
P`+i−j+1−2k(µ1)Q`+i−j−1−2k(µ1)

+2
∞∑
m=1

(−1)mP−m`+i−j+1−2k(µ1)Qm`+i−j+1−2k(µ1) cos(mκ∆τ)

]
d∆τ.

(5.144)

The integral over ∆τ , after substituting w with our definition in (5.37), is then equiv-
alent to that evaluated in (5.55). Evaluating this integral gives

χn`(i, j|r) =
(−1)n

2κ2j
(i− j)!(2j)!r2i−2j

i−j+1∑
k=0

(−1)k
(
i− j + 1

k

)
(`+ i− j − 2k + 3

2)

(`− k + 1
2)i−j+2

×
[
P`+i−j+1−2k(µ1)Q`+i−j+1−2k(µ1)

(j + n)!(j − n)!

+

n+j∑
m=max{1,n−j}

P−m`+i−j+1−2k(µ1)Qm`+i−j+1−2k(µ1)

(j + n−m)!(j − n+m)!

+

j−n∑
m=max{1,−n−j}

P−m`+i−j+1−2k(µ1)Qm`+i−j+1−2k(µ1)

(j + n+m)!(j − n−m)!

 (5.145)

for ` > i− j.
We now look at the case where ` ≤ i − j. We begin by näıvely substituting (5.136,
5.138) into (5.132) to obtain

χn`(i, j|r) =
(−1)lκ(2r2)i−j(i− j − `+ 1)l

2`+2π l!

∫ 2π/κ

∆τ=0
e−inκ∆τw2j

×
∫ 1

cos γS=−1
(z − cos γS)i−j−`(1− cos2 γS)` [log(z − cos γS)

+ψ(i− j + 1)− ψ(i− j + 1− `) + log
(
2`20r

2
)]

d(cos γS) d∆τ. (5.146)

The integral over cos γS in (5.146) is not easily performed in terms of known functions.
It is easier to return to (5.132) and look at the integral over cos γS , which is

I3 =

∫ 1

cos γS=−1
log
(
2`20r

2(z − cos γS)
)

(z − cos γS)i−jP`(cos γS) d(cos γS). (5.147)

We can write

(z − cos γS)λ =
d

dλ

(
(z − cos γS)λ

log(z − cos γS)

)
(5.148)
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and so

(z − cos γS)i−j =
(
2`20r

2
)−i+j [ d

dλ

( [
2`20r

2(z − cos γS)
]λ

log
(
2`20r

2(z − cos γS)
))]

λ=i−j
. (5.149)

The integral (5.147) can then be written

I3 =

[
d

dλ

∫ 1

cos γS=−1

(
2`20r

2
)λ−i+j

(z − cos γS)λP`(|cosγS) d(cos γS)

]
λ=i−j

. (5.150)

The integral in (5.150) is the same as (5.136), and so the regularisation parameters
(5.132) can be written

χn`(i, j|r) =
κ

4π

(
2

κ2

)j (−1)`

2``!
(2r2)i−j

∫ 2π/κ

∆τ=0
e−inκ∆τ (1− cosκ∆τ)j

×
[
d

dλ

∫ 1

−1

(
2`20r

2
)λ−i+j

(λ− `+ 1)`(z − cos γS)λ−`(1− cos2 γS)` d(cos γS)

]
λ=i−j

d∆τ

(5.151)

where we have now used the definition of w from (5.37). The integral over cos γS can
be evaluated using [120, eq. 14.12.11],∫ 1

cos γS=−1
(z − cos γS)λ−l(1− cos2 γS)l d(cos γS) = 2`+1`!(z2 − 1)(λ+1)/2Q−λ−1

` (z)

(5.152)
where the functions Qµ

ν are Olver’s definition of Legendre functions [120] (see equation
B.17). Note that (5.152) only holds in the case ` 6= 0. The regularisation parameters
for ` ≤ i− j, ` 6= 0 are therefore given by

χn`(i, j|r) =
κ

2π

(
2

κ2

)j
(2r2)i−j(−1)`

∫ 2π/κ

∆τ=0
e−inκ∆τ (1− cosκ∆τ)j

×
[
d

dλ

(
2`20r

2
)λ−i+j

(λ− `+ 1)`(z
2 − 1)(λ+1)/2Q−λ−1

` (z)

]
λ=i−j

d∆τ.

(5.153)

When ` = 0, the integral over cos γS is much more straightforward:∫ 1

cos γS=−1
(z − cos γS)λ d(cos γS) =

(z + 1)1+λ − (z − 1)1+λ

1 + λ
. (5.154)

The regularisation parameters for ` = 0 are therefore given by

χn0(i, j|r) =
κ

4π

(
2

κ2

)j
(2r2)i−j

∫ 2π/κ

0
e−inκ∆τ (1− cosκ∆τ)j

×
[
d

dλ

(
2`20r

2
)λ−i+j (z + 1)1+λ − (z − 1)1+λ

1 + λ

]
λ=i−j

d∆τ. (5.155)
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The regularisation parameters for the tail on an adS black hole with spherical event
horizon are therefore given by (5.145, 5.153, 5.155). The integrals over ∆τ in the latter
two cases must be computed numerically. This numerical calculation is out of the
scope of this thesis, which primarily focuses on massless, conformally coupled scalar
fields. The numerical calculation of the renormalised VP on an adS black hole with
spherical horizon was carried out by Breen and Taylor in [13] for a variety of scalar
field mass, with both minimal (ξ = 0) and conformal (ξ = 1/6) coupling. They extend
the work presented in this section to arbitrary dimensions, with numerical results for
d = 4, 5, 6, 7, 8, 9.

5.7.2 Flat horizons

In the k = 0 case, we assume that the tail terms (1.230) can be written in the same
form as the Euclidean Green’s function (5.20,5.22), that is,

s2i−2jw2j log(`20s
2) =

∞∑
n=−∞

einκ∆τ

∫ ∞
`=0

`J0(`γR)χn`(i, j|r) d`. (5.156)

We invert (5.156) as in section 5.4.2, that is by multiplying both sides by e−in
′κ∆τγRJ0(`′γR),

integrating over γR and ∆τ , and employing the completeness relation [120, eq. 1.17.13].
We find

χn`(i, j|r) =
κ

2π

∫ 2π/κ

∆τ=0
e−inκ∆τw2j

∫ ∞
γR=0

γRJ0(`γR)s2i−2j log(`20s
2) dγR d∆τ. (5.157)

We can write

s2i−2j log(`20s
2) = lim

µ→i−j
`−2µ
0

∂

∂µ

[
(`20s

2)µ
]
, (5.158)

where µ is an arbitrary complex parameter and the limit is understood in the sense of
analytic continuation. The integral over γR then looks like∫ ∞

γR=0
γRJ0(`γR)s2i−2j log(`20s

2) dγR

= lim
µ→i−j

`−2µ
0

∂

∂µ

[
(2`20r

2)µ
∫ ∞
γR=0

γRJ0(`γR)(z2 + γ2
R)µ dγR

]
, (5.159)

where we have written s and z as in (5.63). The integral over γR can be performed
using [141, eq. 6.565.4], which assumes Re(µ) < −1. We obtain∫ ∞

γR=0
γRJ0(`γR)s2i−2j log(`20s

2) dγR

= lim
µ→i−j

`−2µ
0

∂

∂µ

[
(2`20r

2)µ2µ+1zµ+1

`µ+1Γ(−µ)
Kµ+1(`z)

]
. (5.160)
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This step is a little questionable, since in the limit µ→ i−j we have Re(µ) > −1, which
seems to invalidate the use of [141, eq. 6.565.4]. One can see that, should one take the
limit µ→ i− j prior to taking the derivative with respect to µ, the right-hand-side of
(5.160) would be zero due to the 1/Γ(−µ) term. After taking the derivative, we are, in
fact, left with a convergent, non-zero quantity. All terms in (5.160) vanish in the limit
µ→ i− j except when the derivative acts on Γ(−µ). We note that

lim
µ→i−j

∂

∂µ

1

Γ(−µ)
= lim

µ→i−j
−ψ(−µ)

Γ(−µ)
= (i− j)!. (5.161)

Assuming that the above steps are valid, the regularisation parameters can then be
written

χn`(i, j|r) =
κ(2r)2(i−j)zi−j+1(i− j)!

π`i−j+1

∫ 2π/κ

∆τ=0
e−inκ∆τw2jKi−j+1(`z) d∆τ. (5.162)

The parameter z depends on both r and ∆τ . We factor out the ∆τ dependence by
using [142, eq. 11.3.8] to write

Ki−j+1(`z) =
∞∑

m=−∞
Ki−j+1+m(`µ0)Im(`µ0) cos(mκ∆τ) sec

(
(i− j + 1)

(
π − κ∆τ

2

))
(5.163)

with µ0 defined in (5.66). Substituting (5.163) into (5.162), we obtain

χn`(i, j|r) =
κ(2r)2(i−j)zi−j+1(i− j)!

π`i−j+1

(
2

κ2

)j ∞∑
m=−∞

Ki−j+1+m(`µ0)Im(`µ0)

×
∫ 2π/κ

∆τ=0
e−inκ∆τ (1− cosκ∆τ)j cos(mκ∆τ) sec

(
(i− j + 1)

(
π − κ∆τ

2

))
d∆τ

(5.164)

using the definition of w from (5.37). To evaluate the integral over ∆τ , we split the
calculation into two cases. When i− j + 1 is even, that is, if i− j + 1 = 2a for a ∈ N,
then

sec

(
(i− j + 1)

(
π − κ∆τ

2

))
= (−1)a sec

(
κ∆τ

2

)
. (5.165)

The integral over ∆τ is then, after some rearranging using the binomial theorem,

1

2jκ

2j∑
p=0

(−1)a+3j−p
(

2j
p

)∫ 2π

0

ei(−n+p−j+m)x + ei(−n+p+j−m)x

eix/2 + e−ix/2
dx (5.166)

where we have performed the substitution x = κ∆τ .

When i = j + 1 is odd, that is, if i = j + 1 = 2a+ 1 for a ∈ N, then

sec

(
(i− j + 1)

(
π − κ∆τ

2

))
= (−1)a+1 csc

(
κ∆τ

2

)
(5.167)
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and the integral over ∆τ is

1

2jκ

2j∑
p=0

(−1)a+1+3j−p
(

2j
p

)∫ 2π

0

ei(−n+p−j+m)x + ei(−n+p+j−m)x

eix/2 − e−ix/2 dx. (5.168)

This integral can then be performed numerically to allow us to determine regularisation
parameters for the tail in the case of a planar horizon. This calculation depends on
the fact that the integration performed in (5.160) is valid. This step is yet to be
verified. Should the integration not be valid, the best course of action would be to
return to (5.159) and perform the integration over γR numerically. This would be
computationally expensive, as one would then have to numerically integrate over ∆τ
as well.

5.7.3 Hyperbolic horizons

Finally, we consider the hyperbolic k = −1 case, where we assume the tail terms (1.230)
can be written in the same form as the Euclidean Green’s function (5.20,5.23), that is,

s2i−2jw2j log(`20s
2) =

∞∑
n=−∞

einκ∆τ

∫ ∞
`=0

` tanh(`π)P− 1
2

+i`(cosh γH)χn`(i, j|r) d`.

(5.169)
We invert this as we did in section 5.4.3, that is, by multiplying both sides by
e−in

′κ∆τP− 1
2

+i`′(cosh γH), and integrating over cosh γH and ∆τ via the completeness

relation derived in (G.41). We obtain

χn`(i, j|r) =
κ

2π

∫ 2π/κ

∆τ=0
e−inκ∆τw2j

∫ ∞
cosh γH=1

P− 1
2

+i`(cosh γH)s2i−2j

× log(`20s
2) d(cosh γH) d∆τ. (5.170)

If we write s2i−2j log(`20s
2) using (5.158), then the integral over cosh γH becomes

∫ ∞
cosh γH=1

P− 1
2
−i`(cosh γHs

2i−2j log(`20s
2) d(cosh γH) =

lim
µ→i−j

`−2µ
0

∂

∂µ

[
(2`20r

2)µ
∫ ∞

cosh γH=0
P− 1

2
+i`(cosh γH)(z + cosh γH)µ d(cosh γH)

]
(5.171)

where z is defined in (5.77). The integral over cosh γH cannot be performed in terms
of known functions. The best course of action would be to calculate this numerically,
but this would be computationally intensive, as one would then need to calculate the
integral over ∆τ numerically as well. This is left as an open problem.
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5.8 Summary

In this chapter, we have calculated the VP in SadS using the extended coordinates
method. This calculation was performed for three distinct topological black holes -
spherical, flat and hyperbolic. The extended coordinates method can only be applied
in the Euclidean background, forcing our calculation to be performed with respect to
the Hartle-Hawking vacuum state.

We began our calculation in section 5.3 by finding a mode-sum representation for the
Euclidean Green’s function. This mode-sum representation has a different form depend-
ing on the event horizon topology. The radial equation cannot be solved analytically,
so we use a numerical method implemented in Mathematica.

In section 5.4, we renormalise the vacuum expectation values by writing the Hadamard
parametrix in terms of extended coordinates (s, w). This allows us to subtract the
Hadamard parametrix from the Euclidean Green’s function mode-by-mode, giving us
a much quicker convergence compared to previous renormalisation methods.

From studying our numerical results in section 5.6, we find that the qualitative be-
haviour of the VP is similar across all cases of event horizon topology. In all situations
considered, the VP was found to be a monotonically decreasing function, approach-
ing the CadS limit −1/48π2L2 at the boundary. This mirrors the results in CadS for
thermal states, which approach the same limit when Dirichlet conditions are imposed.

The rate of convergence differs across the different topological cases. The size of the
VP on the event horizon is also different in each case, with the majority of cases
considered always being negative on the horizon, except the case corresponding to k =
1, χ = 0.05,M = 0.5. We noted that in this case, the black hole is thermodynamically
unstable (unlike in all the other cases considered), and conjectured that the sign of
the VP on the event horizon with Dirichlet conditions imposed may depend on the
thermodynamic stability.

In the case of a black hole with flat horizon topology, we could rescale the solution to
alter the value of Λ, whereas in the other cases, we have to repeat the calculation from
scratch. Through analysis of accuracy of solutions, we noted how the number of modes
used (or the grid of modes over the integral in the k = −1 case) must change as we
alter the value of Λ.



Chapter 6

Quantum field theory on
topological black holes with
Robin boundary conditions

In this chapter, we extend the calculation of VP in chapter 5 to include scalar fields
that satisfy Robin boundary conditions in SadS. The results in this chapter can be
compared with the results given in chapter 3, where the VP was calculated in CadS with
Robin conditions imposed. In section 6.1, we find the values of the Robin parameter
α that allow for stable mode solutions. In section 6.2, we give details of the numerical
calculations performed. The results are then given in section 6.3.

6.1 Stability of classical scalar fields

In section 4.2, we solved the homogeneous Klein-Gordon equation (1.56) on SadS for a
massless, conformally coupled classical scalar field mode φω`m. The mode solution φω`m
takes the form (4.15), where the radial function Xω`(r) satisfies the radial equation
(4.17) together with boundary conditions imposed at r → ∞. In this chapter, we
impose Robin conditions, that is

[Ω Xω`(r)] cosα+
d

dρ
[Ω Xω`(r)] sinα = 0 (6.1)

where Ω is the conformal factor relating ESU to SadS - this is not the same as the
conformal factor (2.10) relating ESU to CadS. The coordinate ρ is the dimensionless
radial coordinate defined on ESU (2.9). There is no simple relationship between the
ESU radial coordinate ρ and the SadS radial coordinate r, but near to the boundary
r →∞, we can write

Ω ∼ r

L
,
dρ

dr
∼ 1

L

dr∗

dr
(6.2)
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where r∗ is the tortoise coordinate defined by

dr∗

dr
=

1

f(r)
. (6.3)

The approximation (6.2) can be found by comparing the ESU metric (2.9) and the
SadS metric (5.1) as r → ∞ (ρ → π/2). The Robin parameter α is analogous to the
Robin parameter introduced in chapter 3, and defined such that α ∈ [0, π). Dirichlet
boundary conditions are recovered when α = 0 and Neumann boundary conditions are
recovered when α = π/2.

It is useful to rewrite the boundary condition (6.1) in terms of the tortoise coordinate r∗,
defined by (6.3). The tortoise coordinate r∗ takes values in (−∞, 0), where r∗ → −∞
as we approach the event horizon r → rh and r∗ → 0 as we approach the boundary
r →∞.

Using (6.2) and applying the chain rule, we obtain, as r∗ → 0,

d

dρ
=
dr

dρ

dr∗

dr

d

dr∗
∼ L d

dr∗
. (6.4)

Therefore, the boundary conditions (6.1) as r∗ → 0 can be written

X̃ω` cosα+ L
dX̃ω`

dr∗
sinα = 0 (6.5)

where

X̃ω`(r) = rXω`(r). (6.6)

When we imposed Robin boundary conditions in CadS, we found that there existed a
critical value α = αcrit. For α > αcrit, there exist unstable modes; that is, modes which
grow exponentially in time (see section 3.2.4).

In SadS, we see a similar picture. If we impose Dirichlet or Neumann boundary condi-
tions, a massless, conformally coupled scalar field φ does not have any unstable modes.
For Robin conditions, the situation is not as straightforward. In SadS with a spherical
horizon, it is shown in [143,144] that unstable dynamics exist for α ∈ (αcrit, π), despite
the initial value problem being well-defined for all values of α [118, 145]. The value of
αcrit is not the same as in chapter 3; indeed, the value of αcrit in SadS depends on the
event horizon radius rh.

We begin in section 6.1.1 by proving the existence of αcrit in SadS using a variational
method [146]. This follows the method of [144], which we extend to cover the k =
0,−1 cases of topological black holes. In section 6.1.2, we determine the value of αcrit
numerically, using the methods of [143].
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6.1.1 Existence of αcrit

We prove the existence of αcrit by using a variational method [146]. We consider the
Hamiltonian H with a discrete spectrum of eigenvalues E, that is

H|Ψ〉 = E|Ψ〉 (6.7)

for some eigenvector |Ψ〉. Then we have

〈Ψ|H|Ψ〉 = E〈Ψ|Ψ〉. (6.8)

Rearranging, we can write the eigenvalues E as

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 . (6.9)

Equation (6.9) holds for any eigenvector |Ψ〉. We now extend this for any test function
|Ψ〉, and the right-hand-side of (6.9) becomes a functional. The variational principle
[146] states that the minimum of the right-hand-side of (6.9) is equal to the minimum
eigenvalue, that is

min{E} = min

{〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

}
. (6.10)

This means that, if the right-hand-side of (6.10) is negative, for any test function |Ψ〉,
then there exists a negative eigenvalue.

We apply this method to the radial equation (4.17). In terms of the tortoise coordinate
r∗ (6.3), the radial equation (4.17) is written

− d2X̃ω`

dr∗2
+ V`(r)X̃ω` = ω2X̃ω` (6.11)

where X̃ω` is given by (6.6), the potential V`(r) is given by

V`(r) = f(r)

(
ν

(k)
`

r2
+

2M

r3

)
(6.12)

and ν
(k)
` is defined by (4.18). We note that V`(r) ≥ 0 for all r ∈ [rh,∞). Unstable

modes occur when ω2 < 0.

One may ask whether complex values of ω need to be considered to obtain all regions
of instability, rather than just purely imaginary ω. Holzegel and Warnick [143] show
that we require ω2 < 0 to allow us to obtain positive self-adjoint expectations of the
operator Â, where Â is given by

Âφ = ∇̃†i (aij∇̃jφ) + V φ (6.13)

for ∇̃ “twisted” derivatives and V the potential. These “twisted” derivatives are defined
by differentiating in ESU and then performing a conformal transform to SadS [143].
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This is only proven for spherical asymptotically-adS black holes. We assume here that
this holds for topological black holes (k = 0,−1) but this remains unproven.

We use the variational principle (6.10) with E replaced by ω2 and the Hamiltonian H
replaced by the radial operator − d2

dr∗2 + V`(r) to show that there exist certain cases
where ω2 < 0.

We multiply both sides of (6.11) by X̃∗ω` and then integrate over r∗ to give∫ 0

−∞

[
−d

2X̃ω`

dr∗2
X̃∗ω` + V`(r)|X̃ω`|2

]
dr∗ = ω2

∫ 0

−∞
|X̃ω`|2dr∗. (6.14)

The integration on the left-hand-side can be performed using integration by parts,[
−X̃∗ω`

dX̃ω`

dr∗

]0

−∞
+

∫ 0

−∞

∣∣∣∣∣dX̃ω`

dr∗

∣∣∣∣∣
2

+ V`(r)|X̃ω`|2
 dr∗ = ω2

∫ 0

−∞
|X̃ω`|2dr∗. (6.15)

The first term on the left-hand-side disappears when Neumann and Dirichlet boundary
conditions are imposed on the radial function. The remaining integrals must both be
positive, so in this case, we must have ω2 > 0 and therefore all classical scalar field
modes must be stable. This is just as we expected.

When Robin boundary conditions are imposed on X̃ω`(r), the first term on the left-
hand-side of (6.15) is not zero. We assume that cosα 6= 0 and, using (6.5), we write,

L tanα

 lim
r∗→0

∣∣∣∣∣dX̃ω`

dr∗

∣∣∣∣∣
2
+ J = ω2

∫ 0

−∞
|X̃ω`|2dr∗ (6.16)

where

J =

∫ 0

−∞

V`(r)|X̃ω`|2 +

∣∣∣∣∣dX̃ω`

dr∗

∣∣∣∣∣
2
 dr∗ > 0. (6.17)

The derivative in the first term on the left-hand-side of (6.16) is evaluated at the
boundary, that is r∗ → 0. The first thing we notice is that, when α ∈ [0, π/2], then
tanα ≥ 0 and, from (6.16), we must have ω2 > 0. In these cases, all modes are stable.

However, when α ∈ (π/2, π), the left-hand-side of (6.16) is not necessarily positive. We
use Proposition 1 from [144] to show that this results in the existence of unstable modes.
We evaluate the left-hand-side of (6.16) for a test function X̃ω`(r

∗) = exp
(
− r∗
L tanα

)
.

The left-hand-side of (6.16) becomes

1

L
tan3 α+

∫ 0

−∞
V`(r)e

− 2r∗
L

tanαdr∗ +

[
− 1

2L
tanα e−

2r∗
L

tanα

]0

−∞
. (6.18)

If this is negative, then the right-hand-side of (6.16) must also be negative. Since
the integral on the right-hand-side of (6.16) must be positive, this means that there
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must exist a spectrum of negative eigenvalues ω2 < 0. These negative eigenvalues will
correspond to unstable scalar field modes.

Equation (6.18) can be negative when tanα < 0. In this case, (6.18) becomes

1

L

(
tan2 α− 1

2

)
tanα+

∫ 0

−∞
V`(r)e

− 2r∗
L

tanαdr∗. (6.19)

The potential V`(r) is continuous for r ∈ [rh,∞) and is therefore bounded on any closed
interval. We can also note that V`(r)→ 0 as r → rh and that the potential approaches
a finite limit as r →∞. Then there must exist a maximum for V`(r), that is

V`(r) ≤ Vmax. (6.20)

Then we must have

1

L

(
tan2 α− 1

2

)
tanα+

∫ 0

−∞
V`(r)e

− 2r∗
L

tanαdr∗

≤ 1

L

(
tan2 α− 1

2

)
tanα+

∫ 0

−∞
Vmaxe

− 2r∗
L

tanαdr∗

=
1

L

(
tan2 α− 1

2

)
tanα− L Vmax

2 tanα
(6.21)

which is negative provided

Vmax <
1

L2
(2 tan2 α− 1) tan2 α. (6.22)

This holds for a range of tanα regardless of the value of Vmax. This can be seen from
the fact that the right-hand-side of (6.22) is quadratic in tan2 α and is unbounded as
α→ π/2, implying that there exists some values of α close to α = π/2 for which (6.22)
holds.

Hence the Schrödinger operator on the left-hand-side of (6.11) has a spectrum contain-
ing negative eigenvalues ω2. These negative values correspond to unstable scalar field
modes, thus proving that for some values of α ∈ (π/2, π), there exist unstable modes.

6.1.2 Numerical evaluation of αcrit

We now want to determine the critical value π/2 < αcrit < π for which unstable field
modes exist when α ∈ (αcrit, π). We can determine this critical value using the method
of [143]. In [143], this calculation is performed only for black holes of spherical event
horizon topology. Here, we extend this calculation to black holes of flat and hyperbolic
event horizon topology.

To determine αcrit, we seek solutions of (6.11) when ω2 crosses zero. For each event
horizon topology, the potential V`(r) satisfies V`(r) > V0(r) for r ∈ [rh,∞). It is
therefore sufficient to consider modes for which ` = 0.
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Setting ` = 0 = ω2, the radial equation (4.17) has the form

d

dr

{[
r2k −

(
krh +

r3
h

L2

)
r +

r4

L2

]
dX00

dr

}
+

[
−ν(k)

0 +
2r2

L2

]
X00 = 0, (6.23)

where we have written the black hole mass M in terms of the horizon radius rh. When
k = 1, 0, we have ν

(k)
0 = 0 and when k = −1, we have ν

(−1)
0 = 1

2 . Using dimensionless
variables R = r/L,Rh = rh/L, the radial equation becomes

d

dR

{
[R2k − (kRh +R3

h)R+R4]
dX00

dR

}
+ [−ν(k)

0 + 2R2]X00 = 0. (6.24)

This is greatly simplified in the k = 0 case, leaving us with

d

dR

{
[−R3

hR+R4]
dX00

dR

}
+ 2R2X00 = 0. (6.25)

We can reduce this to a single perturbation equation by defining R̄ = R/Rh, and
obtaining

d

dR̄

{[
R̄4 − R̄

] dX00

dR̄

}
+ 2R̄2X00 = 0. (6.26)

The fact that the perturbation equation now appears to be independent of horizon
radius is due to the scaling symmetries of the k = 0 metric (see section 5.2). In section
5.2, we discussed the two different scaling symmetries, the ρ̃1-scaling (5.9) and the
ρ̃2-scaling (5.13). The ρ̃1-scaling leaves both R and Rh invariant, and therefore R̄ is
also unchanged. Under the ρ̃2-scaling, we have R→ ρ̃2R and Rh → ρ̃2Rh, and so R̄ is
again unchanged. This means that in the k = 0 case, the value of αcrit will not change
under these scalings. Note that this is not reflected in Figure 6.1 since varying rh/L
does affect the value of αcrit.

To find αcrit, we first solve (6.24) by numerically integrating outwards from the horizon
towards the boundary. Appropriate initial conditions for the numerical integration can
be derived by defining a new independent variable x = R − Rh and writing (6.24) in
the approximate form{

d2

dx2
+

1

x

d

dx
+

2R2
h − ν

(k)
0

(Rhk + 3R3
h)x

}
Xinit.

00 = 0 (6.27)

where higher order terms in x can be ignored close to the horizon. Solutions of (6.27)
are Bessel functions,

Xinit.
00 = C1J0(2

√
Ax) + C2Y0(2

√
Ax) (6.28)

where C1, C2 are constants of integration and

A =
2R2

h − ν
(k)
0

kRh + 3R3
h

. (6.29)
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Figure 6.1: Plot of αcrit as a function of rh/L for black holes with spherical (k = 1, blue
curve), flat (k = 0, red curve) and hyperbolic (k = −1, orange curve) event horizon.
When α > αcrit, unstable classical scalar field modes exist.

Since Y0(2
√
Ax) is divergent at the horizon as x → 0, we set C2 = 0 and, without

loss of generality, C1 = 1. We then use (6.28) as the initial condition in the numerical
integration of (6.24), integrating from R = Rh + ε, where ε = 10−5, to R = 1000.

We then use the boundary conditions (6.5) to determine αcrit. In terms of R and X00,
these boundary conditions are written

X00(R) cosαcrit +R
d

dR
[RX00(R)] sinαcrit = 0 (6.30)

as R→∞. We substitute in our numerical solution X00 and rearrange to find cotαcrit,
evaluating the numerical solution at R = 1000.

This procedure is performed over a grid in Rh, for Rh = 1
25 ,

2
25 , ..., 5. We can then

interpolate over this grid in Rh. Our results are plotted in Figure 6.1. The blue curve
for black holes with event horizon of positive curvature (k = 1) agrees with the results
given in [143, Fig. 2]. As rh → 0, the value of αcrit in the k = 1 case approaches the
value in CadS (3.33).

In the k = 0 case, the graph of cotαcrit as a function of Rh is a straight line. This is to
be expected since the scaling symmetries (5.9, 5.13) means that cotαcrit scales linearly
with Rh.

The orange curve for hyperbolic black holes in Figure 6.1 begins at the minimum event
horizon radius (4.11). Above this value, the line lies very close to the curve for planar
black holes (the red curve).

The curves for k = 0,−1 are monotonically increasing as we increase Rh, whilst the k =
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1 curve decreases for small Rh, reaches a minimum, and then monotonically increases as
Rh →∞. As Rh grows, the three curves merge, suggesting that αcrit is approximately
the same for all black hole solutions with large event horizon radius.

In the next section, we use the interpolation functions plotted in Figure 6.1 to determine
the values of αcrit for the various values of black hole mass M , surface gravity κ and
event horizon radius rh for which we calculate the renormalised VP.

6.2 Numerical calculation of renormalised vacuum polar-
isation with Robin boundary conditions

The renormalised VP is calculated in the Euclidean background using the extended
coordinates method. This calculation is an extension of the calculation performed in
section 5.5. The main difference is that we impose Robin boundary conditions (rather

than Dirichlet boundary conditions) on the radial Green’s function X
(k),α
n` (r, r′), which

satisfies the radial equation (5.24). The superscript α is now used to remind us that
Robin conditions have been imposed.

We write X
(k),α
n` (r, r′) in the same form as in (5.28), that is

X
(k),α
n` (r, r′) = Nα

n`pn`(r<)qn`(r>) (6.31)

for r< = min{r, r′}, r> = max{r, r′}. The functions pn` and qn` are both solutions of the
homogeneous version of (5.24). The function pn` has regularity conditions imposed on
the horizon, and qαn` has Robin conditions imposed on the boundary. The normalisation
constant Nα

n`, which is given by the Wronskian relation (5.30), must then also depend
on the Robin parameter α.

Since the radial functions satisfying Dirichlet and Neumann boundary conditions, that

is q0
n`(r), q

π
2
n`(r) respectively, are linearly independent, we may write, for any α ∈

[0, αcrit),

qαn`(r) = Aαn`q0
n`(r) + Bαn`q

π
2
n`(r) (6.32)

where Aαn`,Bαn` are constants defined such that A0
n` = 1,B0

n` = 0 when α = 0 and

Aπ/2n` = 0,Bπ/2n` = 1 when α = π/2.

To leading order, we can write

q0
n`(r) =

1

r2
+O(r−3), q

π
2
n`(r) =

1

r
+O(r−3). (6.33)

This can be seen from the Frobenius approximation (5.98) used in chapter 5. Substi-
tuting (6.32-6.33) into (6.5), we obtain

r
(
Aαn`q0

n`(r) + Bαn`q
π
2
n`(r)

)
cosα+ Lf(r)

d

dr

[
r
(
Aαn`q0

n`(r) + Bαn`q
π
2
n`(r)

)]
sinα (6.34)

= Bαn` cosα− A
α
n`

L
sinα+O(r−1) = 0 as r →∞. (6.35)
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This implies
Aαn`
Bαn`

= L cotα. (6.36)

Without loss of generality, we can set Aαn` = L cosα,Bαn` = sinα and then

qαn`(r) = q0
n`(r)L cosα+ q

π
2
n`(r) sinα. (6.37)

The Wronskian relation (5.30) then fixes the normalisation constant as

Nα
n` =

N 0
n`N

π
2
n`

N
π
2
n`L cosα+N 0

n` sinα
(6.38)

where N 0
n` are the normalisation constants determined when Dirichlet conditions are

applied to the radial function, and N
π
2
n` are the normalisation constants determined

when Neumann conditions are applied to the radial function.

The VP is renormalised using the extended coordinates method, which involves writing
the Hadamard parametrix in a mode-sum representation matching that of the Euclidean
Green’s function. The Hadamard parametrix is unaffected by boundary conditions
imposed on the Euclidean Green’s function, and so we can use the results from the
previous chapter. The renormalised VP is then written as

〈φ̂2〉αren =
1

4π2

∫ ∞
`=0

d`
∞∑

n=−∞
P`(0)

κX(k),α
n` (η)− 1

2

2∑
i=0

i∑
j=0

Dij(r)Ψn`(i, j|r)

− f ′(r)
48π2r

(6.39)
where P`(γ) is given by (5.87), the regularisation parameters Ψn`(i, j|r) are given by
(5.88) and the regularisation coefficients Dij(r) are given in Table 5.1. The integral
over ` is understood to be a sum when k = 1. The equation (6.39) can be compared
with the renormalised VP when Dirichlet conditions are imposed (5.115).

As in section 5.5, we calculate each term in the ` and n sum in (6.39) individually.
In the k = 0,−1 cases, we have an integral over ` and must compute the terms over
a grid of values of `. This grid is usually chosen to be denser close to ` = 0 to
properly capture the behaviour of the integrand. The pn` terms are not affected by
Robin boundary conditions, so we can use results from the previous chapter. For the

qαn` terms, we only need to calculate q0
n` and q

π
2
n`. All other qαn` can be determined by

taking a linear combination of q0
n` and q

π
2
n` using (6.37). This greatly simplifies our

numerical calculations and reduces computation time. We calculate q
π
2
n` using NDSolve

in Mathematica to numerically solve the radial equation (5.96), using the Frobenius
series (5.98) as initial condition, this time with α2 = 1 to give us the radial function
satisfying Neumann boundary conditions.

The radial function is calculated over a grid in dimensionless coordinate η, given in



182

(5.3), where

X
(k),α
n` (η) = lim

r′→r
X

(k),α
n` (r, r′) =

pn`(r)N 0
n`N

π
2
n`

N
π
2
n`L cosα+N 0

n` sinα

[
q0
n`(r) cosα+ q

π
2
n`(r)L sinα

]
.

(6.40)
We calculate over a grid of every π/10-integer α for α ∈ [0, αcrit).

6.3 Numerical results

In section 5.6, we fixed χ and L and varied the value of k, where the parameter χ is
given by (5.4). This allowed us to easily compare between different cases, since the
event horizon radius and the asymptotic CadS value (3.2) at the boundary were the
same for all k. In this section, we find it more useful to fix the surface gravity κ and L
as this allows us to compare with our thermal results from CadS given in section 3.5.

Since the k = −1 case is the most expensive in terms of computation time, we choose
values of κ and L that match those used in section 5.6.3. We must extend these results to
include Neumann conditions, which requires us to calculate another set of radial modes

q
π
2
n`. The grid over ` is kept the same as in the Dirichlet case, as is the truncation of the
`-integrand and the n-sum. Both the n-sum and the `-integral converge rapidly, with
convergence tests giving qualitatively similar results to those found in section 5.6. The
Hadamard parametrix is unaffected by boundary conditions, so we can use the results
calculated previously. The major source of error in our final results with Neumann
conditions imposed is the grid over ` used to evaluate the integrand. This is the same
as the error obtained in section 5.6.3 with Dirichlet conditions imposed.

In the k = 0 case, scaling symmetries (section 5.2) mean that we only need to calculate
for one value of κ and L, and then rescale to give results for values of κ and L that

match the k = −1 case. We still need to calculate an extra set of radial modes q
π
2
n`. This

is done to match the original set of radial modes q0
n` that were calculated in section

5.6.2, where κ = 3 and L = 1. The grid over ` is the same as the grid used for the
Dirichlet calculation, and the `-integral and n-sum are truncated at the same values.
The convergence in the n-sum and `-integral in the Neumann case are qualitatively the
same as in the Dirichlet case.

A linear combination of q0
n` and q

π
2
n` is then taken to allow us to calculate results on

the planar background for a range of Robin boundary conditions. Again, we calculate
for every 1/10-integer α for α ∈ [0, αcrit). Once we have calculated all results for the
κ = 3, L = 1 case, we can then use our scaling symmetries to give results for values of
κ, L that allow for comparison with the k = −1 case.

In the k = 1 case, we must begin our calculation from scratch to allow us to match
values of κ and L to those considered in the k = −1, 0 cases. This includes a complete

calculation of radial modes pn`, q
0
n` and q

π
2
n` as well as the regularisation parameters
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Ψn`(i, j|r) in each of the cases that we consider. This is not as computationally ex-
pensive as it would be to calculate a completely new set of results in the k = −1 case,
since we have a sum over ` in the k = 1 case rather than an integral, meaning that we
have significantly fewer values of ` to consider.

The values of κ (to four decimal places) and L that we consider are given in Table 6.1.
We split these into three cases, that is (L = 8000/861, κ = 0.1183), (L = 8/15, κ =
3.5938) and (L = 1/990, κ = 14800.5). There is a fourth case that we consider where
we fix L and rh across all topological black holes, that is (L = 1, rh = 2). This matches
the results given in Figure 5.30. We also find it convenient to define a parameter β,
related to the Robin parameter α by

cotβ = L cotα. (6.41)

Dirichlet and Neumann conditions are still recovered for β = 0 and β = π
2 respectively.

The value of βcrit in each case is also given to four decimal places in Table 6.1.

When (L = 8000/861, κ = 0.1183), there do not exist any black holes with spherical
horizon, whereas when (L = 8/15, κ = 3.5938), there exist two possible black hole
solutions with spherical event horizon. We label these two solutions k = 1(+) and
k = 1(−), with k = 1(+) being the black hole with the larger event horizon radius rh.
When L = 1, rh = 2, there exists only one solution with spherical horizon topology.
The existence of these solutions can be seen by plotting the black hole temperature
against horizon radius, where

T =
κ

2π
=
kL2 + 3r2

h

4πrhL2
. (6.42)

The plot of the temperature can be seen in Figure 6.2.

For k = 0,−1 the temperature is a monotonically increasing function of horizon radius.
Planar black holes exist for all temperatures due to the scaling symmetries (section
5.2). Under ρ̃1-scaling (5.9), T → ρ̃−1

1 T , whilst under ρ̃2-scaling (5.13), T → ρ̃2T .
Hyperbolic black holes have a minimum event horizon radius (4.11) which corresponds
to T = 0.

When k = 1, there exists a minimum temperature. This minimum temperature occurs
at rh = rh min (4.11), and is given by

Tmin =

√
3

2πL
. (6.43)

When rh > rh min, the black holes are thermodynamically stable, whereas when rh <
rh min, the black holes are thermodynamically unstable [137]. Thus, when T > Tmin,
we obtain two black holes with spherical horizon radius, whereas when T < Tmin, there
are no black hole solutions with spherical horizon radius.

The results for the renormalised VP are given in Figures 6.3 – 6.8. We first consider
topological black holes with L = 1 and rh = 2. This corresponds to the case where
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M rh κ βcrit

L = 1
k = 1 5 2 3.25 2.3166

k = 0 4 2 3 2.2301

k = −1 3 2 2.75 2.2412

L = 8000
861

k = 0 1.8262 6.8064 0.1183 2.2300

k = −1 0.5 9.7561 0.1183 2.9018

L = 8
15

k = 1(−) 0.1104 0.1948 3.5938 1.8833

k = 1(+) 0.1104 0.4866 3.5938 1.8998

k = 0 0.5563 0.6815 3.5938 2.2301

k = −1 0.5 0.8 3.5938 1.8829

L = 1
990

k = 1(−) 0.00002 0.00003 14800.5 1.5714

k = 1(+) 0.00002 0.0101 14800.5 1.5747

k = 0 0.5000 0.0101 14800.5 2.2302

k = −1 0.5 0.0101 14800.5 1.5747

Table 6.1: The values of L, κ, M and rh for which we present numerical results for the
renormalised VP. We also give the critical value of the parameter β, related to αcrit
by (6.41). For values of β greater than the critical value, there exist unstable classical
scalar field modes.
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L = 1

(a) Temperature T as a function of horizon radius rh when L = 1. The
dotted line represents rh = 2. The intersection of the dotted line with the
three curves corresponds to the three black holes considered in Figure 6.4.
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(b) Temperature T as a function of horizon radius rh when L = 8000/861.
The dotted line represents T = 37843/640000π, that is κ = 0.1183 (four
decimal places). The intersection of the dotted line with the k = 0,−1
curves corresponds to the two black holes considered in Figure 6.5. This line
does not intersect with the curve corresponding to k = 1, meaning there are
no black holes with spherical event horizon in this case.
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k=1 k=0 k=-1

0.0 0.2 0.4 0.6 0.8 1.0
rh0.0

0.5

1.0

1.5

T

L = 8/15

(c) Temperature T as a function of horizon radius rh when L = 8/15. The
dotted line represents T = 115/64π, that is κ = 3.5938 (four decimal places).
The intersection of the dotted line with the three curves corresponds to the
black holes considered in Figure 6.7. This line intersects with the curve cor-
responding to k = 1 twice, meaning there are two black holes with spherical
event horizon in this case.
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L = 1/990

(d) Temperature T as a function of horizon radius rh when L = 1/990. The
dotted line represents T = 29601/2π, that is κ = 14800.5. The intersection
of the dotted line with the three curves corresponds to the black holes con-
sidered in Figure 6.8. This line intersects with the curve corresponding to
k = 1 twice, meaning there are two black holes with spherical event horizon
in this case.

Figure 6.2: Black hole temperature T (6.42) as a function of event horizon radius rh
for varying values of adS radius of curvature L. In each plot, blue lines represent black
holes with spherical horizon (k = 1), red lines represent black holes with planar horizon
(k = 0) and orange lines represent black holes with hyperbolic horizon (k = −1). The
dotted lines in each plot correspond to the value of rh or T considered in this section
(see Table 6.1). In all four plots, the curves are qualitatively the same.
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k=1 k=0 k=-1 5/48π2

2 4 6 8 10
η-1

0.0110

0.0115

0.0120

〈ϕ
2
〉ren

χ = 1, L = 1

Figure 6.3: The behaviour of 〈φ̂2〉ren with Neumann boundary conditions imposed on
an adS black hole with varying black hole topology. We fix L = 1, χ = 1, which means
that the event horizon radius is the same in each case, as is the CadS limit approached
at the boundary. This case allows us to directly compare rate of convergence across all
three cases considered. This can also be compared with results with Dirichlet boundary
conditions imposed, given in Figure 5.30.
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χ = 1 (5.4). In Figure 6.3, we present results for the VP when Neumann conditions
are imposed. These results can be directly compared with the results when Dirichlet
conditions are imposed (Figure 5.30). In both Dirichlet and Neumann cases, and for
all values of k, the VP is a monotonically decreasing function of radius η. At the
boundary, the VP approaches the Neumann CadS limit 5/48π2L2 (3.3) when Neumann
conditions are imposed on the scalar field. This is similar to the Dirichlet case, where
the VP approached the Dirichlet limit −1/48π2L2 (3.2). The order of the lines changes
depending on whether Dirichlet or Neumann conditions are imposed. For Dirichlet
boundary conditions (Figure 5.30), the VP for k = −1 black holes is smaller than the
VP for k = 1 black holes, which is smaller than the VP for k = 0 black holes. For
Neumann conditions (Figure 6.3), the VP for k = 0 black holes is again the smallest
of the three, but the result for k = 1 is now the largest. This suggests that for some
intermediate value of β, the ordering of the k = 0, k = 1 results swaps positions.

In Figure 6.4, we impose general Robin boundary conditions on scalar field modes with
L = 1, χ = 1. In Figures 6.4(a), (c), (e), we present surface plots of the VP as a
function of radial coordinate η (5.3) and Robin parameter β (6.41). In Figures 6.4(b),
(d), (f), we give plots of the VP as a function of η for a variety of values of β. Figures
6.4(a), (b), give results for black holes with spherical event horizon (k = 1), Figures
6.4(c), (d), give results for black holes with planar event horizon (k = 0) and Figures
6.4(e), (f), give results for black holes with hyperbolic event horizon (k = −1).

In all cases in Figure 6.4, the value of the VP on the event horizon (η = 1) increases
as β increases, and diverges as β → βcrit. Note that βcrit changes as we vary the value
of k; the value of βcrit in each case is given below each figure. Similar behaviour was
observed in CadS (see section 3.5), where the value of the VP at the origin increased
as we increased Robin parameter α, and diverged as α → αcrit. This divergence as
β → βcrit is to be expected, since the black hole becomes classically unstable for
β > βcrit.

The line plots in Figures 6.4(b), (d), (f), clearly demonstrate that for all β 6= 0, the
VP approaches the Neumann CadS limit 5/48π2L2 (3.3) at the boundary η → ∞.
When β = 0, the VP approaches the Dirichlet CadS limit −1/48π2L2 (3.2). This is
similar to the behaviour observed for both vacuum and thermal states in section 3.5,
and discussed in detail in section 3.6. We therefore deduce that the VP on a topological
SadS black hole approaches its vacuum value on CadS spacetime as the adS boundary
is approached.

We can see from Figure 6.4 that, although the VP is always a monotonically decreasing
function of η when Dirichlet and Neumann boundary conditions are imposed (although
these appear constant in Figure 6.4, this is simply due to the scale used - see Figures
5.30, 6.3), there is a range of values of β ∈ (0, π/2) for which the VP is monotonically
increasing in η and has a maximum on the boundary. This is again similar to behaviour
observed in CadS in section 3.5.

In Figure 6.5, we look at the VP for temperature below Tmin (6.43), for which there
exist no spherical black holes. In this case, we fix the adS radius of curvature L =
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8000/861 ≈ 9.29 and the surface gravity κ ≈ 0.12. The VP takes very small values
since the temperature is very small, however the qualitative behaviour is very similar to
that in Figure 6.4. On the event horizon, the value of the VP increases with β, and on
the boundary, all results approach the Neumann CadS limit (3.3) except when β = 0.
The VP is a monotonically decreasing function of η for all β, except for those values of
β within an interval contained in (0, π/2).

In the final two cases that we consider, we increase the temperature so that we obtain
two black holes with spherical horizons, one which we denote k = 1(+), with the
larger event horizon radius, and one which we denote k = 1(−), with the smaller
event horizon radius. In Figures 6.6, 6.7 the temperature is still fairly close to Tmin,
and the difference between event horizon radius for k = 1(+) and k = 1(−) is not
that great. Here we consider black holes with adS radius of curvature L ≈ 0.53 and
surface gravity κ ≈ 3.59. Figure 6.6 shows the results for the VP for Dirichlet (Figure
6.6(a)) and Neumann (Figure 6.6(b)) boundary conditions. In both cases, the VP is
a monotonically decreasing function of η, approaching the CadS value (3.2, 3.3) at
the boundary. The VP for the thermodynamically unstable k = 1(−) black hole (the
light blue curve in Figure 6.6) is significantly larger than the results for the other three
black holes. The order of the curves does not change as we vary between Dirichlet and
Neumann boundary conditions, unlike in Figures 5.30, 6.4. This shows that the relative
order of the results for the VP must depend on the temperature of the black holes as
well as the Robin parameter β.

Figure 6.7 shows the VP for general Robin boundary conditions for the same black
holes as in Figure 6.6. The VP again converges to the CadS value of the spacetime
boundary (3.2, 3.3), but this convergence appears to be slower than for the black holes
in Figure 6.4.

Finally, in Figure 6.8, we give results for the renormalised VP for black holes with high
temperature, where the adS radius of curvature L ≈ 0.001 is relatively small, and the
surface gravity κ ≈ 14801 is very large. In this case, the VP for thermodynamically
unstable black holes with k = 1(−) is many times larger than the VP for the other
black holes (k = 1(+), 0,−1). It is also much more difficult to calculate numerically,
as convergence to the CadS limit as η increases is a lot slower than in other cases,
requiring a grid in η to extend to much higher values. We would also need to truncate
the `- and n-sums at much higher values than in the k = 1(+) case. For these reasons,
we do not show the results for k = 1(−), and instead focus on the other three cases.
The behaviour is qualitatively the same as in all the other cases. The VP approaches
the Neumann CadS limit (3.3) for all β 6= 0, and the Dirichlet CadS limit (3.2) for
β = 0. The value of the VP on the event horizon increases as we increase β, diverging
as β → βcrit.
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(a) k = 1,M = 5, βcrit = 2.3166
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(c) k = 0,M = 4, βcrit = 2.2301
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(e) k = −1,M = 3, βcrit = 2.2411
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Figure 6.4: Renormalised VP for topological black holes with adS radius of curvature
L = 1 and event horizon radius rh = 2. In figures (a), (c), (e), the results are given
as a function of the radial coordinate η and the Robin parameter β for β ∈ [0, βcrit).
Figures (b), (d), (f), show line plots of the renormalised VP for a selection of values of
β.
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(a) k = 0, rh = 6.8064, βcrit = 2.2300
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(c) k = −1, rh = 9.7561, βcrit = 2.9018
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Figure 6.5: Renormalised VP for topological black holes with adS radius of curvature
L = 8000/861 ≈ 9.29 and surface gravity κ = 37843/320000 ≈ 0.12. In figures (a), (c),
the results are given as a function of the radial coordinate η and the Robin parameter β
for β ∈ [0, βcrit). Figures (b), (d), show line plots of the renormalised VP for a selection
of values of β.
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(a) Renormalised VP with Dirichlet boundary conditions imposed.
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(b) Renormalised VP with Neumann boundary conditions imposed.

Figure 6.6: Renormalised VP for topological black holes with adS radius of curvature
L = 8/15 ≈ 0.53 and surface gravity κ = 115/32 ≈ 3.59. In Figure (a), Dirichlet
conditions are applied to the scalar field, whilst in Figure (b), Neumann conditions are
applied to the scalar field.
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(a) k = 1(+), rh = 0.1948, βcrit = 1.8833
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(c) k = 1(−), rh = 0.4866, βcrit = 1.8998
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(e) k = 0, rh = 0.6815, βcrit = 2.2301
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(g) k = −1, rh = 0.8, βcrit = 1.8829
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Figure 6.7: Renormalised VP for topological black holes with adS radius of curvature
L = 8/15 ≈ 0.53 and surface gravity κ = 115/32 ≈ 3.59. In figures (a), (c), (e), (g),
the results are given as a function of the radial coordinate η and the Robin parameter
β for β ∈ [0, βcrit). Figures (b), (d), (f), (h), show line plots of the renormalised VP
for a selection of values of β.
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(a) k = 1(+), rh = 0.0101, βcrit = 1.5747
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(c) k = 0, rh = 0.0101, βcrit = 2.2302
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(e) k = −1, rh = 0.0101, βcrit = 1.5747
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Figure 6.8: Renormalised VP for topological black holes with adS radius of curvature
L = 1/990 ≈ 0.001 and surface gravity κ = 29601/2 ≈ 14801. In figures (a), (c), (e),
the results are given as a function of the radial coordinate η and the Robin parameter
β for β ∈ [0, βcrit). Figures (b), (d), (f), show line plots of the renormalised VP for a
selection of values of β.
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6.4 Summary

In this chapter, we have explored the effects of imposing Robin boundary conditions
on scalar fields in topological black hole spacetimes.

In section 6.1, we showed that there exists a critical value of Robin parameter α such
that π/2 < αcrit < π. For α > αcrit there exist unstable modes and the scalar fields are
classically unstable. This is similar to the behaviour in CadS. However, in SadS, the
value of αcrit depends on the adS radius of curvature L and the event horizon radius
rh, whilst in CadS, the value of αcrit is the same for all values of L.

We calculate the renormalised VP using the extended coordinates method, first dis-
cussed in section 1.3.4. The details of the numerical calculation are discussed in section
6.2. The numerical calculation builds on the calculation performed in chapter 5 rather
straightforwardly, as we find that all Robin conditions can be applied simply via a
linear combination of radial modes with Neumann and Dirichlet conditions imposed
(6.37). The Hadamard parametrix is not affected by boundary conditions, and results
from chapter 5 are used again.

The results for the renormalised VP, given in section 6.3, demonstrates similar be-
haviour to the results found in CadS in chapter 3. The value of the VP on the event
horizon r = rh increases as we increase the value of the Robin parameter β (6.41). The
VP approaches the CadS Dirichlet limit (3.2) when β = 0 and the CadS Neumann
limit (3.3) for β 6= 0. The VP is a monotonically decreasing function of radius η for all
Robin parameter β except for when β lies in an interval contained in (0, π/2), where
the VP is a monotonically increasing function in η.
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Chapter 7

Conclusions and outlook

This thesis covers recent research into scalar field theory on anti-de Sitter spacetime,
with a focus on the calculation of the renormalised vacuum polarisation on both the
covering space (CadS) and topological black hole spacetimes (SadS). The main goals
of this thesis were to

• Calculate the renormalised vacuum polarisation 〈φ̂2〉ren on CadS for a range of
Robin boundary conditions imposed on scalar fields,

• Calculate the renormalised vacuum polarisation on SadS for black holes with
positive, negative and zero horizon curvature,

• Calculate the renormalised vacuum polarisation on SadS for a range of Robin
boundary conditions imposed on scalar fields.

Numerical results for all of these calculations have been obtained via computation in
Mathematica. See Figures 3.7 - 3.9 for results in CadS, Figures 5.3 - 5.30 for results
in SadS with Dirichlet boundary conditions imposed on scalar fields, and Figures 6.4 -
6.8 for results in SadS with Robin conditions imposed on scalar fields.

The quantum state is global, and so the boundary conditions and the topology of the
event horizon affect the global properties of expectation values. The effects of Robin
conditions on the vacuum polarisation are qualitatively similar in both CadS and SadS.
For Robin parameter α ∈ [0, π), there exists a critcal value αcrit ∈ (π/2, π) such that
mode solutions are found to be unstable for α ∈ [αcrit, π). For α ∈ (0, αcrit), the
vacuum polarisation approaches the CadS Neumann limit 〈φ̂2

N 〉ren = 5
48π2L2 as r →∞,

and only approaches the CadS Dirichlet limit 〈φ̂2
D〉ren = − 1

48π2L2 when α = 0.

In CadS, we derived αcrit = − tan−1(π/2). In SadS, the value of αcrit depends on the
event horizon radius rh and the curvature of the event horizon. The values of αcrit in
SadS are given in Figure 6.1 as a function of rh/L, where L is the adS lengthscale.
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We first considered CadS in the Lorentzian background, attempting to calculate differ-
ences between vacuum and thermal states, which would give rise to regularised results.
When Robin conditions were imposed, these results suffered from errors (see Figure 3.6)
due to the representation of the Green’s function and the ‘iε’ prescription employed in
section 3.3.2.

We then looked at CadS in the Euclidean background, where an ‘iε’ prescription is
not required due to the uniqueness of the Euclidean Green’s function GE . Here, we
calculated results with Robin conditions by taking a linear combination of Neumann
and Dirichlet results along with a regular contribution GER (see equations (3.124) -
(3.127).

In SadS, we considered three different topological black hole solutions, namely the k = 1
case, where the event horizon has positive curvature, the k = 0 case, where the event
horizon has zero curvature, and the k = −1 case, where the event horizon has negative
curvature. In all cases, the vacuum polarisation was seen to be qualitatively the same.
The magnitude of the vacuum polarisation on the event horizon was different in each
case, but converges to the relevant limit as we approach the boundary. With Dirichlet
and Neumann conditions imposed, the vacuum polarisation was always found to be a
monotonically decreasing function, but this was not always the case when more general
Robin conditions are imposed.

We implemented Hadamard renormalisation in SadS by using the extended coordinates
method, which involves writing the Hadamard parametrix as a mode sum and perform-
ing the subtraction mode-by-mode. This method was found to converge very quickly.
For more analysis on rates of convergence and accuracy of results, see sections 5.6.1,
5.6.2 and 5.6.3. This calculation was performed separately for Neumann and Dirichlet
conditions. To consider Robin conditions, we were able to take a linear combination of
radial modes, using equation (6.37) to save on computation time.

There are several ways to extend this work. The first is to employ results derived here in
the calculation of the stress-energy tensor (SET) in both CadS and SadS spacetimes.
This is more straightforward in CadS, where results already exist for the SET with
Neumann and Dirichlet boundary conditions imposed [110]. To calculate the SET, one
would simply need to apply the SET operator (1.177) to GEα , using a linear combination
of GEN , G

E
D (3.124). This amounts to a linear combination of 〈T̂µν〉N , 〈T̂µν〉D, given

in [110], together with an additional regular part, which would need to be calculated.

The extension of the VP to the SET in SadS is more complicated since there do not
exist any known closed-form results for the SET with Dirichlet or Neumann results
imposed. In order to calculate the SET in SadS, we would require results for the VP to
be calculated to a high enough order in r that would allow us to take derivatives. We
would also need to calculate derivatives of the tail of the Hadamard parametrix, which
cannot be found in suitable mode-sum form in the k = 0,−1 cases (see section 5.7).

Results for the VP are yet to be found for topological black holes with compact event
horizons in the k = 0,−1 cases. These black holes were discussed briefly in section
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4.1. The mode-sums in these cases are expected to be summations over ` rather than
the integrals found in (5.115), so numerical computation of these results should be less
intensive since a dense grid of modes is not required. The difficulty with this extension
is finding a useful coordinate system that allows for the compactification of the event
horizon.

All work presented in this thesis has been for a massless, conformally coupled scalar
field. This could be extended for general mass and coupling, a subject which was gently
touched on in section 5.7. The work could also be extended to Reissner-Nordström-adS
(RNadS), where Q 6= 0 in (4.2). The extension from SadS to RNadS is thought to be
fairly straightforward as many of the calculations are performed analytically without
specifying f(r).
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Appendix A

Hadamard form of Green’s
function

In this appendix, we determine the form of biscalars U(x, x′), V (x, x′),W (x, x′) in the
Hadamard form of the Green’s function (1.185), keeping points separated. These results
are rederived from [4]. We substitute (1.185) in the Klein-Gordon equation (1.58). This
gives us

(2−m2 − ξR)

(
U

σ
+ V lnσ +W

)
= −δ

4(x− x′)√
−g(x)

(A.1)

where we have suppressed the iε terms for convenience. We can calculate

2
U

σ
= ∇µ∇µ

U

σ
= (∇µ∇µU)

1

σ
+ 2(∇µU)

(
∇µ 1

σ

)
+ U

(
∇µ∇µ

1

σ

)
= (2U)

1

σ
+ 2U;µ(−σ−2)σ;µ + U∇µ(−σ−2∇µσ)

=
1

σ
2U − 2

σ2
U;µσ

;µ + U

(
2

σ3
∇µσ∇µσ −

1

σ2
2σ
)

=
1

σ
2U − 2

σ2
U;µσ

;µ +
2U

σ2
∆−1/2(∆1/2);µσ

;µ (A.2)

where we have used (1.180, 1.184) between the third and final lines to allow us to
rearrange, and we use the shorthand U;µ = ∇µU . We also have

2[V lnσ] = ∇µ∇µ[V lnσ] = (∇µ∇µV ) lnσ + 2(∇µV )(∇µ lnσ) + V (∇µ∇µ lnσ)

= (2V ) lnσ + 2V;µ
1

σ
σ;µ + V∇µ

(
1

σ
∇µσ

)
= (2V ) lnσ +

2

σ
V;µσ

;µ + V

(
− 1

σ2

)
∇µσ∇µσ +

V

σ
2σ

= (2V ) lnσ +
2

σ
V;µσ

;µ +
2V

σ
− 2V

σ
∆−1/2(∆1/2);µσ

;µ (A.3)
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using the same identities as before. Substituting into (A.1) and rearranging, we find,
when x′ 6= x,

(2−m2 − ξR)W =− 1

σ
(2−m2 − ξR)U +

2

σ2
U;µσ

;µ − 2U

σ2
∆−1/2(∆1/2);µσ

;µ

− (2−m2 − ξR)V lnσ − 2

σ
V;µσ

;µ − 2V

σ

+
2V

σ
∆−1/2(∆1/2);µσ

;µ. (A.4)

Since logarithmic terms must vanish independently of other terms, we must have

(2−m2 − ξR)V = 0. (A.5)

Using the series expansion (1.187) for V (x, x′), (A.5) gives us

(2−m2 − ξR)

∞∑
n=0

Vnσ
n =

∞∑
n=0

[
(2Vn)σn + 2Vn;µnσ

n−1σ;µ

+n(n− 1)σn−2Vnσ
;µσ;µ + nVnσ

n−12σ − (m2 + ξR)Vnσ
n
]

=
∞∑
n=0

[
2Vn;µnσ

n−1σ;µ + 2n(n+ 1)σn−1Vn

−2nVnσ
n−1∆−1/2(∆1/2);µ + (2−m2 − ξR)Vnσ

n
]

= 0

(A.6)

from which we can derive the recurrence relation (1.189).

Equation (A.4) now takes the form

σ2(2−m2 − ξR)W =− σ(2−m2 − ξR)U + 2U;µσ
;µ − 2U∆−1/2(∆1/2);µσ

;µ

− 2σV;µσ
;µ − 2σV + 2σV∆−1/2(∆1/2);µσ

;µ. (A.7)

Comparing coefficients of σ0, we must have

2U;µσ
;µ − 2U∆−1/2(∆1/2);µσ

;µ = 0. (A.8)

Solving this allows us to obtain (1.186). Substituting the series solution (1.187) for V
and (1.188) for W into (A.7), we have

σ(2−m2 − ξR)

∞∑
n=0

Wnσ
n + (2−m2 − ξR)∆1/2 + 2

( ∞∑
n=0

Vnσ
n

)
;µ

σ;µ

+2
∞∑
n=0

Vnσ
n − 2

∞∑
n=0

Vnσ
n∆−1/2(∆1/2);µσ

;µ = 0. (A.9)

We can note

(Vnσ
n);µσ

;µ = σnVn;µσ
;µ + nVnσ

n−1σ;µσ
;µ = σnVn;µσ

;µ + 2nσnVn (A.10)
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using (1.180), and

σ(2−m2 − ξR)(Wnσ
n) =σn+1(2−m2 − ξR)Wn + 2nσnWn;µσ

;µ

+ 2n(n+ 1)σnWn − 2nσnWn∆−1/2(∆1/2);µσ
;µ (A.11)

using (1.184). Substitution of (A.10, A.11) into (A.9) and comparing coefficients of σ0,
we obtain (1.190) as our defining equation for V0. Comparing coefficients of σn+1 we
obtain the recurrence relation (1.191) for the Wn.



Appendix B

Solving the wave equation in ESU

In this appendix, we solve the wave equation (3.8) using separation of variables. We
begin by writing

φESU (t, ρ, θ, ϕ) = A(t)B(ρ, θ, ϕ). (B.1)

The equation can then be rearranged as follows:

1

A
d2A
dt2

=
1

B

{
1

sin2 ρ

[
∂

∂ρ

(
sin2 ρ

∂B
∂ρ

)
+

1

sin θ

∂

∂θ

(
sin θ

∂B
∂θ

)
+

1

sin2 θ

∂2B
∂ϕ2

]
− B

}
(B.2)

where the left-hand side now depends solely on t, and the right-hand side depends on
ρ, θ, ϕ. This means we can set both sides equal to a constant. We have

A′′(t) = −ω2A (B.3)

for ω ∈ R, where we note that the separation constant must be negative in order to
give us time-periodic solutions. We find our solutions to be

A(t) = C1e
−iωt + C2e

iωt (B.4)

where for positive frequency modes we simply set C2 = 0 and ω > 0. Looking at
B(ρ, θ, ϕ), we have

(1− ω2)B =
1

sin2 ρ

[
∂

∂ρ

(
sin2 ρ

∂B
∂ρ

)
+

1

sin θ

∂

∂θ

(
sin θ

∂B
∂θ

)
+

1

sin2 θ

∂2B
∂ϕ2

]
. (B.5)

We write

B(ρ, θ, ϕ) = X(ρ)Y (θ, ϕ) (B.6)

and hence find

1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂ϕ2

]
= (1− ω2) sin2 ρ− 1

X

d

dρ

(
sin2 ρ

dX

dρ

)
. (B.7)
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The left-hand side of this PDE depends on θ, ϕ whilst the right-hand side depends only
on ρ, so we can set both sides equal to a constant. The left-hand side evaluated gives

Y (θ, ϕ) = Y`m(θ, ϕ), (B.8)

the spherical harmonics, provided the separation constant has the form −`(`+ 1) [120,
eq. 14.30.11]. Then the radial equation has the form[

d

dρ

(
sin2 ρ

d

dρ

)
− (1− ω2) sin2 ρ− `(`+ 1)

]
X = 0. (B.9)

We write

X(ρ) = (sin ρ)AH(ρ) (B.10)

for some constant A that we will determine. Substituting in the radial equation (B.9),
we find

sin2 ρ
d2H

dρ2
+ (2A+ 2) sin ρ cos ρ

dH

dρ

+
[
A(A+ 1) cos2 ρ− (A+ 1− ω2) sin2 ρ− `(`+ 1)

]
H(ρ) = 0. (B.11)

Making the substitution x = cos ρ, we now find

(1−x2)
d2H

dx2
−(2A+3)x

dH

dx
+

[
ω2 − (A+ 1)2 +

A(A+ 1)− `(`+ 1)

1− x2

]
H(x) = 0. (B.12)

To make this look like the Legendre differential equation [120, eq. 14.2.2], we want
2A+ 3 = 2, and so we set A = −1

2 . The ODE (B.12) now takes the form

(1− x2)H ′′(x)− 2xH ′(x) +

[
ν(ν + 1)− µ2

1− x2

]
H(x) = 0 (B.13)

where ν = ω − 1
2 and µ2 = (`+ 1

2)2. The solutions can therefore be written

H(x) = B1P
`+ 1

2

ω− 1
2

(x) +B2Q
`+ 1

2

ω− 1
2

(x) (B.14)

for constants B1, B2, where P νµ (x) and Qνµ(x) are the Legendre functions of the first
and second kind respectively. Then the full radial function X(ρ) is

X(ρ) =(sin ρ)−1/2

(
B1P

`+ 1
2

ω− 1
2

(cos ρ) +B2Q
`+ 1

2

ω− 1
2

(cos ρ)

)
. (B.15)

We need the solution to be regular at the origin ρ = 0. Using [120, eq. 14.8.1], we find

P
`+ 1

2

ω− 1
2

(cos ρ) ∼ (1− cos ρ)−
(2`+1)

4 as ρ→ 0. (B.16)
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The P
`+ 1

2

ω− 1
2

terms in the radial function (B.15) are therefore not regular at the origin,

so we must set B1 = 0. The Q
`+ 1

2

ω− 1
2

terms are in general ill-defined whenever ` + ω

is a negative integer (this can be seen by substituting µ → ` + 1
2 and ν → ω − 1

2
in [120, eq. 14.3.2] and looking at where the arguments of the Gamma functions are
negative integers and hence undefined). We introduce Olver’s definition of the Legendre
function of the second kind [120, eq. 14.3.10],

Q
`+ 1

2

ω− 1
2

(cos ρ) =
Q
`+ 1

2

ω− 1
2

(cos ρ)

Γ(ω + `+ 1)
(B.17)

which is valid for all ` and ω. In fact, for ω < ` we find Q
`+ 1

2

ω− 1
2

(cos ρ) = 0 (this can be

seen from the expansion [120, eq. 14.3.2], which has a factor cos((`+ 1
2)π) in the first

term, which is zero for all integer `, and a factor 1
Γ(ω−`) in the second term, which is

zero for ω < ` and ω ∈ Z). To check that (B.15) is regular near the origin, we can note
that [120, eq. 14.8.5]

Q
`+ 1

2

ω− 1
2

(cos ρ) ∼ (1− cos ρ)
2`+1

4 as ρ→ 0. (B.18)

Then, expanding using Taylor series, we find that

(1− cos ρ)
2`+1

4

(sin ρ)1/2
∼ ρ`

2
2`+1

4

+O(ρ2`+ 1
2 ), (B.19)

implying, for ` 6= 0

lim
ρ→0

(1− cos ρ)
2`+1

4

(sin ρ)1/2
= 0 (B.20)

and for ` = 0

lim
ρ→0

(1− cos ρ)
1
4

(sin ρ)1/2
= 2−1/4. (B.21)

The important thing here is that the solution (B.15) is always regular as ρ→ 0.

Absorbing other constants into the normalisation constant Cω`, our positive frequency
modes are given by

φESUω`m =Cω`e−iωt(sin ρ)−1/2Q
`+ 1

2

ω− 1
2

(cos ρ)Y`m(θ, ϕ). (B.22)



Appendix C

Evaluation of (3.41)

In this appendix we give details of the evaluation of the integral in (3.41):

I =

∫ π/2

0
tan2 ρXn`(ρ)Xn′`(ρ) dρ

=

∫ π/2

0
sin ρQ

`+1/2
ω−1/2(cos ρ)Q

`+1/2
ω′−1/2(cos ρ) dρ

=
1

Γ(`+ ω + 1)Γ(`+ ω′ + 1)

∫ 1

0
Q
`+1/2
ω−1/2(x)Q

`+1/2
ω′−1/2(x) dx. (C.1)

From the ODE satisfied by the Legendre functions, we have

d

dx

(1− x2)

Q`+1/2
ω′−1/2(x)

dQ
`+1/2
ω−1/2

dx
−Q`+1/2

ω−1/2(x)
dQ

`+1/2
ω′−1/2

dx


= (ω′ 2 − ω2)Q

`+1/2
ω−1/2(x)Q

`+1/2
ω′−1/2(x). (C.2)

Integrating both sides from A to B, for B > A, gives

(ω′ 2 − ω2)

∫ B

A
Q
`+1/2
ω−1/2(x)Q

`+1/2
ω′−1/2(x) dx

= (1−B2)

Q`+1/2
ω′−1/2(B)

dQ
`+1/2
ω−1/2

dx
(B)−Q`+1/2

ω−1/2(B)
dQ

`+1/2
ω′−1/2

dx
(B)


− (1−A2)

Q`+1/2
ω′−1/2(A)

dQ
`+1/2
ω−1/2

dx
(A)−Q`+1/2

ω−1/2(A)
dQ

`+1/2
ω′−1/2

dx
(A)

 . (C.3)

From standard properties of Legendre functions [120], we find that, in the limit B → 1,

(1−B2)Q
`+1/2
ω−1/2(B)

dQ
`+1/2
ω′−1/2

dx
(B) ∝ (1−B2)`+1/2 → 0 (C.4)
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and so

(ω′ 2 − ω2)

∫ 1

A
Q
`+1/2
ω−1/2(x)Q

`+1/2
ω′−1/2(x) dx

= (1−A2)

Q`+1/2
ω−1/2(A)

dQ
`+1/2
ω′−1/2

dx
(A)−Q`+1/2

ω′−1/2(A)
dQ

`+1/2
ω−1/2

dx
(A)

 . (C.5)

Considering the case ω 6= ω′, on taking the limit A → 0 the right-hand-side of (C.5)
is zero due to the boundary conditions (3.21). When ω′ → ω, we use properties of
Legendre functions close to the origin [120, eq. 14.5.3, 14.5.4] to give

(ω′ 2 − ω2)

∫ 1

0
Q
`+1/2
ω−1/2(x)Q

`+1/2
ω′−1/2(x) dx

=22`−1π sin

(
1

2
(ω + ω′ + 2`)π

)
×
[

Γ(1
2(ω + `+ 2))Γ(1

2(ω′ + `+ 1))

Γ(1
2(ω − `))Γ(1

2(ω′ − `+ 1))
− Γ(1

2(ω + `+ 1))Γ(1
2(ω′ + `+ 2))

Γ(1
2(ω − `+ 1))Γ(1

2(ω′ − `))

]

+ 22`−1π sin

(
1

2
(ω − ω′)π

)
×
[

Γ(1
2(ω + `+ 2))Γ(1

2(ω′ + `+ 1))

Γ(1
2(ω − `))Γ(1

2(ω′ − `+ 1))
+

Γ(1
2(ω + `+ 1))Γ(1

2(ω′ + `+ 2))

Γ(1
2(ω − `+ 1))Γ(1

2(ω′ − `))

]
. (C.6)

We now divide both sides by (ω′ 2−ω2) and evaluate the limit ω′ → ω using L’Hopital’s
rule to obtain∫ 1

0
Q
`+1/2
ω−1/2(x)Q

`+1/2
ω′−1/2(x) dx =

22`−2πΓ(1
2(`+ ω + 1))Γ(1

2(`+ ω + 2))

ωΓ(1
2(ω − `+ 1))Γ(1

2(ω − `))
× [sin((ω + `)π)(−ζ(ω − `+ 1)− ζ(ω − `)) + π] δωω′ , (C.7)

where ζ(z) is defined in (3.42). Noting the dependence of ω on n by writing ω = ωn`,
then, using relations for Gamma functions [120, eq. 5.5.5], we recover the result (3.41)
for the integral I:

I = δnn′
π
[
π − sin(π(ωn` + `))

(
ζ(`+ ωn` + 1) + ζ(ωn` − `)

)]
8ωn` Γ(`+ ωn` + 1)Γ(ωn` − `)

. (C.8)



Appendix D

The Hadamard parametrix in
CadS

The singular part of the Green’s function GS(x, x′), referred to as the Hadamard
parametrix, is formed from Synge’s world function σ(x, x′) and the van Vleck-Morette
determinant ∆(x, x′) (see Section 1.3.2). The Hadamard parametrix is then given by
(1.192). In four-dimensions, for massless, conformally coupled scalar fields, the lowest
order term in V (x, x′) vanishes [4], and so we can just consider the direct part of the
Hadamard parametrix for the purposes of our calculation. In adS, Kent and Win-
stanley [111] found that the tail of the Hadamard parametrix vanishes identically in
four-dimensions for massless, conformally coupled scalar fields.

In this appendix, we calculate the world function and the van Vleck-Morette determi-
nant in CadS to allow us to find the Hadamard parametrix. The world function σ(x, x′)
is given by

2σ(x, x′) = s(x, x′)2 (D.1)

where s(x, x′) is the geodesic distance between two points x, x′. Following work done
in [5,123,126] we consider two points ξ, ξ′ on E(2,3) and parametrise the geodesic between
these two points by a parameter p, such that ξ(0) = ξ, ξ(1) = ξ′. We will calculate the
world function on E(2,3) and then perform a transformation to find the world function
in the embedded space (which is adS space - see Section 2.1). The world function in
E(2,3) is

σE(ξ, ξ′) =
1

2
ηµν(ξµ − ξ′µ)(ξν − ξ′ν) (D.2)

where ηµν is the metric over E(2,3) given in (2.1). Restricting to the hyperboloid with
radius L and using the coordinate parametrisation given in (2.3) we can write

ηµνξ
µξν = L2

[
η00 cos2 t sec2 ρ+ η11 tan2 ρ cos2 θ + η22 tan2 ρ sin2 θ cos2 ϕ

+η33 tan2 ρ sin2 θ sin2 ϕ+ η44 sin2 t sec2 ρ
]

(D.3)
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and hence
ηµνξ

µξν = ηµνξ
′µξ′ν = −L2. (D.4)

We also find

ηµνξ
µξ′ν = L2

[
η00 cos t cos t′ sec ρ sec ρ′ + η11 tan ρ tan ρ′ cos θ cos θ′

+η22 tan ρ tan ρ′ sin θ sin θ′ cosϕ cosϕ′

+η33 tan ρ tan ρ′ sin θ sin θ′ sinϕ sinϕ′ + η44 sin t sin t′ sec ρ sec ρ′
]

= L2
[
−(cos t cos t′ + sin t sin t′) sec ρ sec ρ′ + tan ρ tan ρ′ cos θ cos θ′

+ tan ρ tan ρ′ sin θ sin θ′(sinϕ sinϕ′ + cosϕ cosϕ′)
]

= L2
[
− cos ∆t sec ρ sec ρ′ + tan ρ tan ρ′(cos θ cos θ′ + sin θ sin θ′ cos ∆ϕ)

]
(D.5)

and so we conclude

ηµνξ
′µξν = ηµνξ

µξ′ν =
L2[− cos ∆t+ sin ρ sin ρ′ cos γ]

cos ρ cos ρ′
(D.6)

where γ is the geodesic distance on the sphere given in (1.222). Then the world function
on E(2,3) restricted to the hyperboloid of radius L is given by

σE,L(ξ, ξ′) = L2

[
−1 +

cos ∆t− sin ρ sin ρ′ cos γ

cos ρ cos ρ′

]
. (D.7)

Now, σE,L is related to the world function σ on adS via [126, eq. 2.73]

cos

(√
2σ

L

)
= 1 +

σE,L
L2

(D.8)

which, when rearranged, leaves us with

σ(x, x′) = 2L2

[
cos−1

(
cos ∆t− sin ρ sin ρ′ cos γ

cos ρ cos ρ′

)]2

. (D.9)

We now turn our attention to the van Vleck-Morette determinant, which can be cal-
culated from the world function via (1.184). We shall begin by considering 2s. To
calculate this, we fix ξ′ such that the geodesic distance is only measured in the direc-
tion of the polar coordinate, i.e s = θ. Then we obtain [111,147]

2s =
3

L
cot
( s
L

)
. (D.10)

We can also write
2s = gµνs

;µν =
√

2gµν(
√
σ);µν (D.11)

using (D.1). Performing the derivatives,

2s =
√

2

(
1

2
σ−1/2σ;µ

);µ

=
√

2

(
−1

4
σ−3/2σ;µσ;µ +

1

2
σ−1/2σ;µ

;µ

)
. (D.12)
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Using (1.180), we can write

2s =
1√
2σ

(2σ − 1). (D.13)

Substituting into (1.184), and using (D.11) on the left-hand-side, we find

3
√

2σ

L
cot

(√
2σ

L

)
= 3− 2∆−1/2∆1/2

;µ σ;µ. (D.14)

Since adS is maximally symmetric, we can note the following:

∆−1/2(∆1/2);µσ
;µ = ∆−1/2d∆1/2

dσ
σ;µσ

;µ

=
σ

∆

d∆

dσ
= σ

d ln ∆

dσ
(D.15)

where we have used (1.180) between the first and second lines. Substituting into (D.14)
and rearranging, we obtain the straightforward ODE

d ln ∆

dσ
= 3

(
1

2σ
− 1

L
√

2σ
cot

(√
2σ

L

))
. (D.16)

Integrating both sides with respect to σ, we have

ln ∆ =
3

2
lnσ − 3 ln

(
sin

(√
2σ

L

))
+ c

= ln

[
σ3/2 csc3

(√
2σ

L

)]
+ c (D.17)

where c is an integration constant. We can determine the integration constant using
the boundary condition (1.182) and thus find

∆(x, x′) =

[√
2σ

L
csc

(√
2σ

L

)]3

. (D.18)



Appendix E

Evaluating the sums in (3.121,
3.123)

In this appendix, we focus on the evaluation of the sums in (3.121, 3.123), the Euclidean
thermal Green’s functions with Dirichlet and Neumann conditions imposed. We shall
begin by writing (3.121, 3.123) in the form

GEβ,D(x,x′) =
κ

16π2L2
cos ρ cos ρ′

∞∑
n=−∞

einκ∆τ{S − S′} (E.1)

GEβ,N (x,x′) =
κ

16π2L2
cos ρ cos ρ′

∞∑
n=−∞

einκ∆τ{S + S′} (E.2)

where

S =
1√

sin ρ sin ρ′

∞∑
`=0

(2`+ 1)P`(cos γ)|Γ(inκ+ `+ 1)|2P−`−
1
2

inκ− 1
2

(cos ρ<)P
−`− 1

2

inκ− 1
2

(− cos ρ>),

(E.3)

S′ =
1√

sin ρ sin ρ′

∞∑
`=0

(2`+ 1)P`(cos γ)|Γ(inκ+ `+ 1)|2P−`−
1
2

inκ− 1
2

(cos ρ)P
−`− 1

2

inκ− 1
2

(cos ρ′).

(E.4)

It is important to note that the order of ρ, ρ′ is not important when used in S′, but is
important in S. To evaluate these sums, we use the generalised addition theorem for
Gegenbauer functions [148],

Cαλ (xx′ − z(1− x2)1/2(1− x′2)1/2) =
Γ(2α− 1)

[Γ(α)]2

∞∑
`=0

(−1)`4`Γ(λ− `+ 1)Γ(`+ α)2

Γ(λ+ 2α+ `)

× (2`+ 2α− 1)(1− x2)`/2(1− x′2)`/2Cα+`
λ−` (x)Cα+`

λ−` (x′)Cα−1/2
` (z), (E.5)
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which is valid for all complex λ, α provided∣∣∣z + (z2 + 1)1/2
∣∣∣ < ∣∣(x+ 1)(x′ + 1)/(x− 1)(x′ − 1)

∣∣ . (E.6)

Replacing α → 1, λ → inκ − 1, z → cos γ and {x, x′} → {cos ρ,− cos ρ′} if ρ′ < ρ or
{x, x′} → {− cos ρ, cos ρ′} if ρ > ρ′, we obtain

C1
inκ−1(cosψ) =

∞∑
`=0

(−1)`4`Γ(inκ− `)Γ(`+ 1)2

Γ(inκ+ `+ 1)
(2`+ 1)(sin ρ)`(sin ρ′)`

× C`+1
inκ−`−1(cos ρ<)C`+1

inκ−`−1(− cos ρ>)C
1/2
` (cos γ) (E.7)

where ψ is defined by (3.130). Using the relationship between Gegenbauer and Legendre
functions [120, 14.3.21], we can write

P
− 1

2
−`

inκ− 1
2

(cos ρ) =
2−

1
2
−`Γ(2 + 2`)Γ(inκ− `)

Γ(inκ+ `+ 1)Γ(`+ 3
2)(sin ρ)−

1
2
−`C

`+1
inκ−`−1(cos ρ) (E.8)

P`(cos γ) = C
1
2
` (cos γ) (E.9)

and so (E.7) becomes

C1
inκ−1(cosψ) =

∞∑
`=0

(2`+ 1)√
sin ρ sin ρ′

24`+1[Γ(`+ 1)]2[Γ(`+ 3
2)]2Γ(inκ+ `+ 1)

[Γ(2`+ 2)]2Γ(inκ− `)

× P−
1
2
−`

inκ− 1
2

(cos ρ<)P
− 1

2
−`

inκ− 1
2

(− cos ρ>)P`(cos γ). (E.10)

Using standard results for the Gamma function [120, eq. 5.5.3, 5.5.5], we obtain

24`−1[Γ(`+ 1)]2[Γ(`+ 3
2)]2Γ(inκ+ `+ 1)

[Γ(2`+ 2)]2Γ(inκ− `) =
i sinh(nπκ)

2
|Γ(inκ+ `+ 1)|2. (E.11)

Then we can say

C1
inκ−1(cosψ) =

i sinh(nπκ)

2
S. (E.12)

Converting to Legendre functions on the left-hand-side of (E.12), we find

S =

√
2πnκ

sinh(nπκ)
√

sinψ
P
− 1

2

inκ− 1
2

(cosψ). (E.13)

Using [120, 14.5.12] allows us to write

P
− 1

2

inκ− 1
2

(cosψ)
√

sinψ
=

√
2

π

sinh(nκψ)

nκ sinψ
, (E.14)
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and so

S =
2 sinh(nκψ)

sinh(nκπ) sinψ
. (E.15)

To evaluate S′, we use the addition theorem for Gegenbauer functions (E.5) again, but
this time with {x, x′} = {cos ρ, cos ρ′}, and α, λ, z unchanged, so that

C1
inκ−1(cosψ∗) =

∞∑
`=0

(−1)`4`Γ(inκ− `)[Γ(`+ 1)]2

Γ(inκ+ `+ 1)
(2`+ 1)(sin ρ)`(sin ρ′)`

× C`+1
inκ−`−1(cos ρ)C`+1

inκ−`−1(cos ρ′)C1/2
` (cos γ), (E.16)

with ψ∗ defined by (3.131). We restrict the inverse cosine function to [0, π] so that
ψ∗ ∈ [π, 2π]. Rearranging as before, we find

S′ =
2 sinh(nκψ∗)

sinh(nκπ) sinψ∗
. (E.17)

Substituting (E.15, E.17) into (E.1, E.2), we arrive at

GED,T =
κ

16π2L2
cos ρ cos ρ′ {X − Y } (E.18)

GEN,T =
κ

16π2L2
cos ρ cos ρ′ {X + Y } (E.19)

where

X =
2

sinψ

∞∑
n=−∞

einκ∆τ sinh(nκψ)

sinh(nκπ)
(E.20)

Y =
2

sinψ∗

∞∑
n=−∞

einκ∆τ sinh(nκψ∗)
sinh(nκπ)

. (E.21)

Using [141, 1.445.4], we can write

X =
4

π sinψ

∞∑
k=1

(−1)k−1k sin(kψ)

∞∑
n=−∞

einκ∆τ

k2 + n2κ2
(E.22)

where we have swapped the order of summation since we have a uniformly convergent
double sum. Now, the sum over n can be rearranged as follows:

∞∑
n=−∞

einκ∆τ

k2 + n2κ2
=

1

k2
+ 2

∞∑
n=1

cos(nκ∆τ)

k2 + n2κ2
. (E.23)

Substituting in (E.22), we have

X =
4

π sinψ

∞∑
k=1

(−1)k−1

k
sin(kψ) +

8

π sinψ

∞∑
k=1

(−1)k−1k sin(kψ)

∞∑
n=1

cos(nκ∆τ)

k2 + n2κ2
.

(E.24)
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In the second sum, we use [141, 1.445.2] to evaluate the sum over n, which leaves us
with

X =
4

π sinψ

∞∑
k=1

(−1)k−1

k
sin(kψ)

+
8

π sinψ

∞∑
k=1

(−1)k−1k sin(kψ)

(
π cosh k(πκ −∆τ)

2κk sinh(kπκ )
− 1

2k2

)
. (E.25)

Rearranging, we see that the final term in the sum cancels with the term at the front,
leaving us with

X =
4

κ sinψ

∞∑
k=1

(−1)k−1 sin(kψ)
cosh k(πκ −∆τ)

sinh(kπκ )
. (E.26)

The hyperbolic functions can be rearranged to give

X = − 4

k sinψ

∞∑
k=1

sin k(ψ − π)e−k∆τ +
8

κ sinψ

∞∑
k=1

(−1)k−1 sin(kψ)
cosh(k∆τ)

e2kπ/κ − 1
. (E.27)

Using [141, 1.461.1], we can evaluate the first sum to arrive at

X =− 4 sin(ψ − π)

κ sinψ(cosh ∆τ − cos(ψ − π))
+

8

κ sinψ

∞∑
k=1

(−1)k−1 sin(kψ)
cosh k∆τ

e2kπ/κ − 1

=
2

κ(cosh ∆τ + cosψ)
− 8

κ sinψ

∞∑
k=1

(−1)k sin(kψ)
cosh k∆τ

e2kπ/κ − 1
. (E.28)

Similarly for Y , we find

Y =
2

κ(cosh ∆τ + cosψ∗)
− 8

κ sinψ∗

∞∑
k=1

(−1)k sin(kψ∗)
cosh k∆τ

e2kπ/κ − 1
. (E.29)

Substituting (E.28, E.29) into (E.18, E.19), we arrive at our desired results (3.128,
3.129).



Appendix F

The Hadamard parametrix in
ESU

In this appendix, we calculate the Hadamard parametrix in the Euclidean background
of ESU, following a very similar method to Appendix D. Using the Euclidean ESU
metric (2.7) and coordinates (2.8), we obtain

ηµνξ
µξν = (ξ0)2 + (ξ1)2 + (ξ2)2 + (ξ3)2 + (ξ4)2

= L2
[
τ2 + sin2 ρ cos2 θ + sin2 ρ sin2 θ cos2 ϕ+ sin2 ρ sin2 θ sin2 ϕ+ cos2 ρ

]
= L2

[
τ2 + 1

]
, (F.1)

and similarly
ηµνξ

′µξ′ν = L2
[
τ ′2 + 1

]
. (F.2)

We also find

ηµνξ
µξ′ν = L2

[
ττ ′ + sin ρ sin ρ′ cos θ cos θ′

+ sin ρ sin ρ′ sin θ sin θ′ cosϕ cosϕ′

+ sin ρ sin ρ′ sin θ sin θ′ sinϕ sinϕ′ + cos ρ cos ρ′
]
, (F.3)

and, after rearranging,

ηµνξ
µξ′ν = ηµνξ

′µξν = L2
[
ττ ′ + sin ρ sin ρ′ cos γ + cos ρ cos ρ′

]
(F.4)

where γ is the geodesic distance on the sphere given in (1.222).

The world function in ESU is then given by

σESU (ξ, ξ′) = L2

[
1

2
τ2 +

1

2
τ ′2 − ττ ′ + 1− sin ρ sin ρ′ cos γ − cos ρ cos ρ′

]
. (F.5)

In section 3.6, we require the ESU world function in the partial limit ρ′ → ρ, θ′ →
θ, ϕ′ → ϕ. In this case the world function (F.5) becomes

lim
x′→x

σESU =
1

2
L2∆τ2 (F.6)
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where ∆τ = τ − τ ′.
The van Vleck-Morette determinant ∆(x, x′) is given in [4, eq. 53] as a series in σ by

∆1/2(x, x′) = 1 +
1

12
Rµνσ

;µσ;ν +O(σ3/2). (F.7)

In ESU, the Ricci tensor is

Rµν =


0 0 0 0
0 2 0 0
0 0 2 sin2 ρ 0
0 0 0 2 sin2 ρ sin2 θ

 , (F.8)

and so we find

1

12
Rµνσ

;µσ;ν =
L2

6

[
sin ρ cos ρ′ − cos ρ sin ρ′ cos γ

+ sin3 ρ sin ρ′(sin θ cos θ′ − cos θ sin θ′ cos ∆ϕ+ sin3 θ sin θ′ sin ∆ϕ)
]
.

(F.9)

Therefore, in the partial limit ρ′ → ρ, θ′ → θ, ϕ′ → ϕ, the term 1
12Rµνσ

;µσ;ν vanishes
and (F.7) becomes

lim
x′→x

∆1/2 = 1 +O(∆τ3). (F.10)



Appendix G

The Euclidean Green’s function
in SadS

In this appendix, we solve the Euclidean Klein-Gordon equation on SadS (5.17) by
writing the Green’s functionGE in the form (5.20). The D’Alembertian of the Euclidean
Green’s function on SadS can be written

2GE =
1√
g
∂µ(
√
ggµν∂νG

E)

=
κ

2πr2Fk(θ)
∂µ

(
r2Fk(θ)gµν∂ν

∞∑
n=−∞

einκ∆τG(k)
n

)

=
κ

2πr2Fk(θ)

[
∂τ

(
r2Fk(θ)gττ∂τ

∞∑
n=−∞

einκ∆τG(k)
n

)
+ ∂i

(
r2Fk(θ)gij∂j

∞∑
n=−∞

einκ∆τG(k)
n

)]

=
κ

2πr2Fk(θ)

[ ∞∑
n=−∞

∂i

(
r2Fk(θ)gij∂jeinκ∆τG(k)

n

)
− n2κ2r2Fk(θ)f(r)−1einκ∆τG(k)

n

]
(G.1)

where Greek indices run over all four coordinates, whilst Roman indices run over the
spatial coordinates (r, θ, ϕ). The wave equation (5.17) becomes

∞∑
n=−∞

κeinκ∆τ

2πr2Fk(θ)

(
−n2κ2r2Fk(θ)

f(r)
G(k)
n + ∂i(r

2Fk(θ)gij∂jG(k)
n )− 1

6
Rr2Fk(θ)G(k)

n

)

= −
∞∑

n=−∞

κeinκ∆τ

2πr2
δ(r − r′)δ(Ωk,Ω

′
k). (G.2)

Taking everything over to the left-hand side, we obtain

∞∑
n=−∞

einκ∆τM(k)
n = 0 (G.3)
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where

M(k)
n =

κ

2πr2Fk(θ)

(
−n2κ2r2Fk(θ)

f(r)
G(k)
n + ∂i(r

2Fk(θ)gij∂jG(k)
n )

−1

6
Rr2Fk(θ)G(k)

n + Fk(θ)δ(r − r′)δ(Ωk,Ω
′
k)

)
. (G.4)

We multiply (G.3) by e−imκ∆τ and then integrate over ∆τ , i.e.∫ 2π/κ

∆τ=0
e−inκ∆τ

∞∑
n=−∞

einκ∆τM(k)
n d∆τ = 0. (G.5)

Swapping the sum and integral, and then performing the integral, we can see

∞∑
n=−∞

2π

κ
δmnM(k)

n = 0 ⇒ M(k)
m = 0. (G.6)

In other words,

− 1

r2
δ(r − r′)δ(Ωk,Ω

′
k) =

1

r2Fk(θ)
∂i(r

2Fk(θ)gij∂jG(k)
n )−

(
1

6
R+

n2κ2

f(r)

)
G(k)
n

=
1

r2Fk(θ)
[∂r(r

2Fk(θ)f(r)∂rG(k)
n ) + ∂a(Fk(θ)hab∂bG(k)

n )]

−
(

1

6
R+

n2κ2

f(r)

)
G(k)
n (G.7)

where hab is the two-metric over the topological horizon, that is

hab =

(
1 0
0 F2

k (θ)

)
. (G.8)

We must now consider each topological event horizon separately.

G.1 Spherical horizon

First, we look at the spherical case, where k = 1 and F1(θ) = sin θ. The eigenfunctions
of the Laplacian on the 2-sphere are Legendre polynomials [147],

1

sin θ
∂a(sin θ h

ab∂bP`(cos γS)) = −`(`+ 1)P`(cos γS) (G.9)

for integer `, where γS is the geodesic distance on the sphere defined in (5.25). We can
write δ(Ω1,Ω

′
1) as a sum over Legendre polynomials via [1, eq. 10]

δ(Ω1,Ω
′
1) =

∞∑
`=0

2`+ 1

4π
P`(cos γS). (G.10)
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We can then write Gn as

G(1)
n (r, θ, ϕ; r′, θ′, ϕ′) =

∞∑
`=0

(2`+ 1)

4π
P`(cos γS)X

(1)
n` (r, r′) (G.11)

for some radial Green’s function X
(1)
n` (r, r′). Substituting this into (G.7), we find

−
∞∑
`=0

1

r2
δ(r − r′)2`+ 1

4π
P`(cos γS)

=
∞∑
`=0

2`+ 1

4π
P`(cos γS)

[
1

r2
∂r(r

2f(r)∂rX
(1)
n` )−

(
`(`+ 1)

r2
+

1

6
R+

n2κ2

f(r)

)
X

(1)
n`

]
.

(G.12)

Taking everything over to one side, we can write

∞∑
`=0

(2`+ 1)

2
P`(cos γS)P

(1)
n` = 0 (G.13)

where

P
(1)
n` =

1

2π

[
1

r2
∂r(r

2f(r)∂rX
(1)
n` )−

(
`(`+ 1)

r2
+

1

6
R+

n2κ2

f(r)

)
X

(1)
n` +

1

r2
δ(r − r′)

]
.

(G.14)
We multiply (G.13) by Pm(cos γS) and integrate over cos γS , i.e.∫ 1

cos γS=−1
Pm(cos γS)

∞∑
`=0

(2`+ 1)

2
P`(cos γS)P

(1)
n` d(cos γS) = 0. (G.15)

Swapping the summation and integral, and performing the integral using the orthogo-
nality relation for Legendre polynomials [120, eq. 14.17.6], we can see that

∞∑
`=0

δm`P
(1)
n` = 0 ⇒ P(1)

nm = 0. (G.16)

This relation gives us the radial equation (5.24) for k = 1.

G.2 Flat horizon

The eigenfunctions of the Laplacian on R2 are Bessel functions [147],

1

θ
∂a(θh

ab∂bJ0(`γR)) = −`2J0(`γR) (G.17)



APPENDIX G. THE EUCLIDEAN GREEN’S FUNCTION IN SADS 229

for all real, non-negative `, where γR is the geodesic distance in the Euclidean plane
(5.26). In this case, the spectrum of eigenvalues is continuous. From [120, eq. 1.17.13,
1.17.21], we can write

δ(Ω0,Ω
′
0) =

1

2π

∫ ∞
`=0

`
∞∑

m=−∞
Jm(`θ)Jm(`θ′) exp(im∆ϕ) d`

=
1

2π

∫ ∞
`=0

`J0(`γR) d` (G.18)

where we have used [120, eq. 10.23.7]. We can then write G(0)
n in the form

G(0)
n (r, θ, ϕ; r′, θ′, ϕ′) =

1

2π

∫ ∞
`=0

`J0(`γR)X
(0)
n` (r, r′) d`. (G.19)

Substituting into (G.7), we obtain

− 1

2r2π
δ(r − r′)

∫ ∞
`=0

`J0(`γR) d`

=
1

2π

∫ ∞
`=0

`J0(`γR)

[
1

r2
∂r(r

2f(r)∂rXn`)−
(
`2

r2
+

1

6
R+

n2κ2

f(r)

)
X

(0)
n`

]
d`. (G.20)

We bring everything over to one side to write∫ ∞
`=0

`J0(`γR)P
(0)
n` d` = 0 (G.21)

where

P
(0)
n` =

1

2π

[
1

r2
∂r(r

2f(r)∂rX
(0)
n` )−

(
`2

r2
+

1

6
R+

n2κ2

f(r)

)
X

(0)
n` +

1

r2
δ(r − r′)

]
. (G.22)

We multiply (G.21) by γRJ0(mγR) and integrate over γR, i.e.∫ ∞
γR=0

γRJ0(mγR)

∫ ∞
`=0

`J0(`γR)P
(0)
n` d` dγR = 0. (G.23)

Interchanging the order of integration,∫ ∞
`=0

`

(∫ ∞
γR=0

γRJ0(mγR)J0(`γR)dγR

)
P

(0)
n` d` = 0 (G.24)

where the integral over γR can now be performed using [120, eq. 1.17.13], and hence∫ ∞
`=0

δ(`−m)P
(0)
n` d` = 0 ⇒ P(0)

nm = 0. (G.25)

The relation gives us the radial equation (5.24) for k = 0.
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G.3 Hyperbolic horizon

From [147], the eigenfunctions of the Laplacian on the hyperbolic background are con-
ical (Mehler) functions,

1

sinh θ
∂a

(
sinh θ hab∂bP− 1

2
+i`(cosh γH)

)
= −

(
1

4
+ `2

)
P− 1

2
+i`(cosh γH) (G.26)

where ` ∈ R>0 and γH is the geodesic distance on the hyperbolic background (5.27).
As in the previous case, the spectrum of eigenvalues is again continuous. We therefore
require a representation of the delta function involving an integral over conical func-
tions. One of the main results for the conical functions is the generalised Mehler-Fock
transform [120, sec. 14.20(vi)] , which says that for some function F (`), we can write

F (`) =
`

π
sinh(`π)

∣∣∣∣Γ(1

2
− µ+ i`

)∣∣∣∣2 ∫ ∞
x=1

Pµ− 1
2

+i`
(x)G (x) dx (G.27)

where

G (x) =

∫ ∞
0

Pµ− 1
2

+i`
(x)F (`)d` (G.28)

for µ ≥ 0. Rearranging (G.27), we can say

G (x) =

∫ ∞
`=0

Pµ− 1
2

+i`
(x)

`

π
sinh(`π)

∣∣∣∣Γ(1

2
− µ+ i`

)∣∣∣∣2
×
∫ ∞
x′=1

Pµ− 1
2

+i`
(x)Pµ− 1

2
+i`

(x′)G (x′) dx′ d` (G.29)

which, after interchanging the order of integration, implies that we can write the delta
function

δ(x− x′) =

∫ ∞
`=0

`

π
sinh(`π)

∣∣∣∣Γ(1

2
− µ+ i`

)∣∣∣∣2 Pµ− 1
2

+i`
(x)Pµ− 1

2
+i`

(x′) d`. (G.30)

Substituting x = cosh θ and using the exponential representation of the delta function
[120, eq. 1.17.21], we find

δ(Ω−1,Ω
′
−1) = δ(cosh θ − cosh θ′)δ(ϕ− ϕ′)

=
1

2π2

∫ ∞
`=0

` sinh(`π)

[ ∞∑
µ=−∞

∣∣∣∣Γ(1

2
− µ+ i`

)∣∣∣∣2 Pµ− 1
2

+i`
(cosh θ)Pµ− 1

2
+i`

(cosh θ′)eiµ∆ϕ

]
d`.

(G.31)

From [120, eq. 14.18.4], we can write

P− 1
2

+i`(cosh γH) =

∞∑
µ=−∞

(−1)µP−µ− 1
2

+i`
(cosh θ)Pµ− 1

2
+i`

(cosh θ′)eiµ∆ϕ

=

∞∑
µ=−∞

(−1)µ
Γ(1

2 − µ+ i`)

Γ(1
2 + µ+ i`)

Pµ− 1
2

+i`
(cosh θ)Pµ− 1

2
+i`

(cosh θ′)eiµ∆ϕ

(G.32)
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where we have used [120, eq. 14.9.13] between the first and second lines. Now, using
standard relations for Gamma functions [120, eq. 5.5.3], we can write

Γ(1
2 − µ+ i`)

Γ(1
2 + µ+ i`)

=
(−1)µ

π
cosh(`π)

∣∣∣∣Γ(1

2
− µ+ i`

)∣∣∣∣2 (G.33)

and therefore

P− 1
2

+i`(cosh γH) =
cosh(`π)

π

∞∑
µ=−∞

∣∣∣∣Γ(1

2
− µ+ i`

)∣∣∣∣2
× Pµ− 1

2
+i`

(cosh θ)Pµ− 1
2

+i`
(cosh θ′)eiµ∆ϕ. (G.34)

Substituting into (G.31), our delta function can be written

δ(Ω−1,Ω
′
−1) =

1

2π

∫ ∞
`=0

` tanh(`π)P− 1
2

+i`(cosh γH) d`. (G.35)

We therefore let our Green’s function take the form

G(−1)
n (r, θ, ϕ; r′, θ′, ϕ′) =

1

2π

∫ ∞
`=0

` tanh(`π)P− 1
2

+i`(cosh γH)X
(−1)
n` (r, r′) d`. (G.36)

Substituting into (G.7), we obtain

− 1

2r2π
δ(r − r′)

∫ ∞
`=0

` tanh(`π)P− 1
2

+i`(cosh γH)d`

=
1

2π

∫ ∞
`=0

` tanh(`π)P− 1
2

+i`(cosh γH)

[
1

r2
∂r(r

2f(r)∂rX
(−1)
n` )

−
(

1

4r2
+
`2

r2
+

1

6
R+

n2κ2

f(r)

)
X

(−1)
n`

]
d`. (G.37)

Bringing everything over to one side, we find∫ ∞
`=0

` tanh(`π)P− 1
2

+i`(cosh γH)P
(−1)
n` d` = 0 (G.38)

where

P
(−1)
n` =

1

2π

[
1

r2
∂r(r

2f(r)∂rX
(−1)
n` )−

(
1

4r2
+
`2

r2
+

1

6
R+

n2κ2

f(r)

)
X

(−1)
n` +

1

r2
δ(r − r′)

]
.

(G.39)
Returning to (G.27-G.28), we can rearrange in a different way to obtain

F (`) =

∫ ∞
m=0

`

π
sinh(`π)

∣∣∣∣Γ(1

2
− µ+ i`

)∣∣∣∣2 ∫ ∞
x=1

Pµ− 1
2

+i`
(x)Pµ− 1

2
+im

(x)dx F (m) dm

(G.40)
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and so derive

δ(`−m) =
`

π
sinh(`π)

∣∣∣∣Γ(1

2
− µ+ i`

)∣∣∣∣2 ∫ ∞
x=1

Pµ− 1
2

+i`
(x)Pµ− 1

2
+im

(x) dx. (G.41)

Substituting (G.34) into (G.38), we find∫ ∞
`=0

`

π
sinh(`π)

∞∑
µ=−∞

∣∣∣∣Γ(1

2
− µ+ i`

)∣∣∣∣2 Pµ− 1
2

+i`
(cosh θ)Pµ− 1

2
+i`

(cosh θ′)eiµ∆ϕP
(−1)
n` d` = 0.

(G.42)
We multiply both sides by Pµ− 1

2
+im

(cosh θ)Pµ− 1
2

+im
(cosh θ′) and integrate over cosh θ

and cosh θ′ from 1 to ∞. Interchanging the order of the integral and the sum, and
using (G.41), we find∫ ∞

`=0

π

`
cosech(`π)

∞∑
µ=−∞

1

|Γ(1
2 − µ+ i`)|2 δ(`−m)eiµ∆ϕP

(−1)
n` d` = 0. (G.43)

We can now multiply by e−iν∆ϕ and then integrate over ∆ϕ,∫ ∞
`=0

π

`
cosech(`π)

∞∑
µ=−∞

1

|Γ(1
2 − µ+ i`)|2 δ(µ− ν)δ(`−m) P

(−1)
n` d` = 0. (G.44)

Finally, performing the integral over ` and the sum over µ, we find

π

m

cosech(mπ)

|Γ(1
2 − ν + im)|2 P(−1)

nm = 0 ⇒ P(−1)
nm = 0. (G.45)

This final relation gives the relevant radial ODE (5.24) for k = −1.



Appendix H

Calculating 2σ

In this appendix, we calculate 2σ in SadS spacetime, given by the metric (5.1). This
is required for the calculation of the van Vleck-Morette determinant from (1.184). By
definition, we have

2σ = gµν(∂µ∂νσ − Γλµνσ,λ). (H.1)

For the remainder of this appendix, we shall use the indices (i, j) to refer to coordinates
(τ, r), whilst indices (a, b) will refer to angular coordinates. By writing σ = σ(t, r, γ)
where γ = γ(θ, ϕ) is the geodesic distance, this means

σ,a = σ,γγ,a (H.2)

via the chain rule, and so the second derivatives of σ are

σ,ab = [σ,γγ,a],b = σ,γγγ,aγ,b + σ,γγ,ab. (H.3)

We have the following results for the Christoffel symbols:

Γaij =
1

2
gab[∂igbj + ∂jgib − ∂bgij ] = 0 (H.4)

Γiab = −1

2
gir∂rgab = −rgirhab (H.5)

Γcab =
1

2
r−2hcd[r2∂ahdb + r2∂bhda − ∂dhabr2] ≡ Γ̃kij (H.6)

where hab is the 2-metric that determines the geometry of the black hole event horizon
(G.8). Using (H.2-H.6) we find

2σ = gijσ,ij − gijΓkijσ,k + r−2habγ,aγ,bσ,γγ + r−2habγ,abσ,γ

+ r−2habrgirσ,ihab − r−2habΓ̃cabγ,cσ,γ

= gijσ,ij − gijΓkijσ,k + r−2habγ,aγ,bσ,γγ +
2

r
grrσ,r +

1

r2
σγ2̂γ (H.7)
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where
2̂γ = hab[γ,ab − Γ̃cabγ,c]. (H.8)

Our method for calculating 2̂γ follows that in [147]. In S2, the D’Alembertian is given
by

2 = (sin θ)−1 d

dθ

(
sin θ

d

dθ

)
+ (sin θ)−2 d2

dϕ2
. (H.9)

If we fix the point x′ at the North pole (i.e. θ′ = 0), then the geodesic distance between
the points x = (θ, ϕ) and x′ is given by γS = θ and so

2̂γS = (sin γS)−1 d

dγS
(sin γS) = (sin γS)−1 cos γS = cot γS . (H.10)

In R2, the D’Alembertian is given by

2 =
1

θ

d

dθ

(
θ
d

dθ

)
+

1

θ2

d2

dϕ2
. (H.11)

When we have coordinates centred about x′, the geodesic distance between x = (θ, ϕ)
and x′ is γR = θ and so

2̂γR =
1

γR

d

dγR
γR = γ−1

R . (H.12)

Finally, in the hyperbolic plane, the D’Alembertian is

2 = (sinh θ)−1 d

dθ

(
sinh θ

d

dθ

)
+ (sinh θ)−2 d2

dϕ2
. (H.13)

The geodesic distance between x and x′ is γH = θ for coordinates centred about x′,
and hence

2̂γH = (sinh γH)−1 d

dγH
(sinh γH) = (sinh γH)−1 cosh γH = coth γH . (H.14)



Appendix I

Frobenius series approximation
to radial function

In this appendix, we find the indices α1, α2 in the Frobenius series approximations
(5.93, 5.98) of solutions of the homogeneous version of (5.24). We shall begin near the
horizon. Substituting (5.93) into (5.91) gives

∞∑
j=0

aj

[
(α1 + j)(α1 + j − 1) + (α1 + j)− n2κ2

f1(r)2

]
(r − rh)α1+j−2

+
∞∑
j=0

aj

[(
2

r
+
f ′1(r)

f1(r)

)
(α1 + j)− 1

6f1(r)
R+

ν`
r2f1(r)

]
(r − rh)α1+j−1 = 0 (I.1)

where we have now defined f(r) = (r − rh)f1(r) for some function f1(r) that is finite
and non-zero at r = rh. At leading order, we find

a0

[
α1(α1 − 1) + α1 −

n2κ2

f1(rh)2

]
= 0 (I.2)

where f1(rh) = 2κ. Since a0 must be non-zero for non-trivial solutions, we find

α1 = ±n
2
. (I.3)

The coefficients aj for j ≥ 0 are found via a recurrence relation that can easily be
computed in Mathematica.

We now turn our attention to the radial function qn`, which satisfies boundary condi-
tions at infinity. We search for a Frobenius series of the form (5.98). Substituting this
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into (5.96), we obtain

∞∑
j=0

bj

[
(α2 + j)(α2 + j − 1)− 2(α2 + j)− 6

6f2(s)

]
sα2+j−2

+
∞∑
j=0

bj
f ′2(s)

f2(s)
(α2 + j)sα2+j−1 +

∞∑
j=0

bj

[
ν`

f2(s)
− n2κ2

f2(s)

]
sα2+j = 0 (I.4)

where we have written f(s) = f2(s)/s2. At leading order, noting that f2(0) = L−2, we
find

α2(α2 − 1)− 2α2 −
L2R

6
= 0. (I.5)

Solving this quadratic, we find

α2 =
3

2
± 1

2

√
9 +

2L2

3
R. (I.6)

As before, the coefficients bj can be found by using Mathematica to evaluate the recur-
rence relation.
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