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O-GlcNAcylation is an essential post-translational modifi-
cation that has been implicated in neurodevelopmental and
neurodegenerative disorders. O-GlcNAcase (OGA), the sole
enzyme catalyzing the removal of O-GlcNAc from proteins, has
emerged as a potential drug target. OGA consists of an N-
terminal OGA catalytic domain and a C-terminal pseudo his-
tone acetyltransferase (HAT) domain with unknown function.
To investigate phenotypes specific to loss of OGA catalytic
activity and dissect the role of the HAT domain, we generated a
constitutive knock-in mouse line, carrying a mutation of a
catalytic aspartic acid to alanine. These mice showed perinatal
lethality and abnormal embryonic growth with skewed Men-
delian ratios after day E18.5. We observed tissue-specific
changes in O-GlcNAc homeostasis regulation to compensate
for loss of OGA activity. Using X-ray microcomputed tomog-
raphy on late gestation embryos, we identified defects in the
kidney, brain, liver, and stomach. Taken together, our data
suggest that developmental defects during gestation may arise
upon prolonged OGA inhibition specifically because of loss of
OGA catalytic activity and independent of the function of the
HAT domain.

O-GlcNAcylation is a dynamic co-/post-translational
modification of serine/threonine residues with N-acetyl-D-
glucosamine, responsible for modulating cellular functions,
such as translation (1), protein stability (2, 3), and subcellular
localization of proteins (4, 5). O-GlcNAcylation is dependent
on the nutrient flux through the hexosamine biosynthetic
pathway and coordinates transcription (6–9) and differentia-
tion (10–12) according to the metabolic status of the cell and
organism. The entire O-GlcNAcome, over 4000 proteins, is
established by O-GlcNAc transferase (OGT) (13) that catalyzes
the addition of N-acetylglucosamine and O-GlcNAcase (OGA)
that mediates the removal of the modification (14).

O-GlcNAcylation and the O-GlcNAc cycling enzymes are
critical for normal development in several organisms. In
Drosophila, ogt, also known as super sex combs (sxc), is
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essential for viability and correct segment identity specification
(15, 16). Ogt KO leads to impaired embryonic growth and cell
viability in zebrafish (17). Deletion of either Ogt or Oga is le-
thal in mice (18–20). In mammals, OGT and OGA are ubiq-
uitously expressed, and they regulate the development of
several tissues (21–23). O-GlcNAcylation modification is
particularly abundant in the mammalian brain (24–26), and
both O-GlcNAc cycling enzymes are important for normal
development and function of the central nervous system
(27–29). Very recently, missense OGT mutations have been
identified and characterized in patients affected with intellec-
tual disability (ID) in association with developmental delay and
brain anomalies (30). ID is a neurodevelopmental disorder that
affects 1 to 2% of the population and is characterized by
impaired cognitive function and adaptive behavior (31).
Phenotypic characterization of several OGT variants gave rise
to a new syndrome of congenital disorder of glycosylation
named OGT-CDG; however, the mechanisms underlying the
patient brain phenotypes remain unknown (30). Interestingly,
a reduction of OGA expression was observed in several mouse
embryonic stem cell (mESC) lines carrying OGT-CDG muta-
tions (32–35), suggesting that altered OGA expression may be
associated with reduced OGT activity in some mutations and
might contribute in part to the neuronal phenotype in these
patients. OGA has been shown to contribute to proper brain
function using several animal models. In flies, loss of OGA
activity affects cognition and synaptic morphology (36). Viable
heterozygous Oga+/− mice exhibit learning and memory
impairment (29). In addition, a genome-wide association study
using 14 independent epidemiological human cohorts has
associated SNPs in OGA with intelligence and cognitive
function (37), suggesting a role of OGA in human cognitive
function.

Deregulation of O-GlcNAcylation has also been linked to
neurodegenerative disease. However, it appears difficult to
define a general neuroprotective or neurodegenerative role for
O-GlcNAcylation. O-GlcNAc protein levels are found reduced
in Alzheimer’s disease (AD) while being increased in Parkin-
son’s disease postmortem human brain tissues (38, 39). Many
proteins associated with these diseases are O-GlcNAcylated,
including tau, α-synuclein, and β-amyloid precursor proteins
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Figure 1. Generation of the O-GlcNAcase catalytically dead OgaD285A knock-in mouse line. A, schematic representation of OGA protein; purple glycosyl
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Loss of OGA activity leads to defects in mouse embryogenesis
(40). Several studies have shown that reduction of O-GlcNAc
levels leads to neurodegeneration. For example, the reduction
of O-GlcNAcylation in forebrain excitatory neurons leads to
progressive neurodegeneration associated with neuronal cell
death, neuroinflammation, increased levels of hyper-
phosphorylated tau, and β-amyloid peptides in mice (41).
Moreover, it has been shown that O-GlcNAc at specific sites
reduced α-synuclein aggregation and cell toxicity using syn-
thetic protein methodology (42). However, other studies have
also suggested a role of increased O-GlcNAcylation in neu-
rodegeneration. Increase of O-GlcNAc modification in the
mouse hippocampus and neuronal precursor cells is associated
with neuronal apoptosis (24, 43). In addition, elevation of O-
GlcNAc levels through pharmacological OGA inhibition cau-
ses an increase of α-synuclein accumulation and a decrease of
autophagic flux prior to neuronal cell death in rat primary
neurons (38). Considering the number of O-GlcNAc-modified
proteins in the brain, it is likely that the role of this protein
modification depends on each specific substrate and the
cellular, tissue, and disease contexts.

Nevertheless, emerging evidence suggests that elevation of
O-GlcNAc levels through pharmacological inhibition of OGA
may be a relevant therapeutic strategy for the treatment of AD.
OGA inhibition through chronic treatment with OGA in-
hibitors reduces tauopathy phenotypes in several mouse AD
models (44–47). It has been hypothesized that O-GlcNAcyla-
tion of tau could prevent its phosphorylation and aggregation
(48). Although a reduction in tau hyperphosphorylation and
aggregation have been observed after OGA inhibition, it re-
mains uncertain whether it is mediated directly through O-
GlcNAcylation as increase in tau O-GlcNAcylation in vivo has
only been observed in one study (44). It may be possible that
the observed benefits are mediated through other O-GlcNA-
cylated substrates as global elevation of O-GlcNAcylation is
achieved upon OGA inhibition. Considering that O-GlcNA-
cylation is important in regulating several biological functions,
it is imperative to understand the molecular mechanisms and
physiological consequences of prolonged OGA inhibition.

Despite the critical role of OGA, our understanding about
how OGA activity participates in development and patholog-
ical process remains limited. OGA is a 103 kDa multidomain
protein (Fig. 1A); it consists of an N-terminal O-GlcNAc hy-
drolase catalytic domain with sequence homology to glycoside
hydrolase family 84, a middle, mostly disordered, “stalk”
domain and a C-terminal domain showing sequence homology
to GCN5-related histone acetyltransferases (HATs) (49).
Initially, OGA was reported to possess HAT activity (50), but
other studies failed to reproduce this observation (51–53).
OGA most likely contains a pseudo-HAT domain because it
lacks key amino acids required for acetyl coenzyme A binding
(52) required for histone acetylation. Thus, it has been estab-
lished that OGA only possesses OGA catalytic activity (52).
Phenotypic comparison of OgaKO and catalytically dead
and four targeted mESC clones shows insertion of the point mutation in all targ
is indicated. F, sequencing of genomic DNA from knock in OgaD285A/D285A and W
animal. FRT, flippase recognition target; OGA, O-GlcNAcase.
OgaD133N Drosophila alleles, however, revealed differences in
behavior and neuronal phenotypes that suggest nonenzymatic
functions of the OGA protein backbone (36). These additional
functions could be potentially dependent on the HAT domain
whose function still remains unknown.

OGA is indispensable for late embryonic development in
mammals (19, 54). In two Oga KO (OgaKO) mouse models,
embryos exhibited a reduction in size, and neonates died
within 48 h after birth (19, 54). Although the precise causes of
death remain unknown, the lethal phenotype was associated
with abnormal lung histology marked with a reduction in
prealveolar space in 18.5 dpc embryos (19), hypoglycemia, and
impaired glycogen deposition in the liver of neonates (54).
Mouse OgaKO studies using mouse embryonic fibroblasts or
liver tissues from homozygous animals assigned these phe-
notypes to different cellular defects, specifically to mitotic
abnormalities, cytokinesis failure (19), and altered metabolic
signaling (54, 55). However, it remains unknown if these
phenotypes are specifically because of the loss of OGA enzy-
matic activity or loss of the OGA protein.

To investigate the role of OGA catalytic activity in devel-
opment and disease, we generated a knock-in Oga mouse
model (OgaD285A), where a key residue for catalytic activity,
D285, responsible for O-GlcNAc moiety binding and hydro-
lysis, is mutated to alanine (56). Therefore, the OgaD285A ani-
mals lack OGA activity while still expressing full-length OGA
protein. This genetic strategy can model chronic inhibition of
OGA activity in mouse, allowing the evaluation of the long-
term effects of OGA inhibition and the investigation of the
potential role of the HAT domain of OGA in vivo. We show
that loss of OGA activity leads to perinatal lethality, organ
defects, and tissue-specific disruption in O-GlcNAcylation
homeostasis in embryos. These results highlight the essential
role of the OGA domain during development independently of
the HAT domain. Although the use of this model in adult
animals is limited because of the lethality observed at the
homozygous level, a similar strategy could be used to generate
inducible mouse model carrying the OgaD285A mutation that
will allow the future investigation of long-term adverse effects
of prolonged OGA inhibition during adulthood in vivo.

Results

Loss of OGA catalytic activity leads to perinatal lethality

To dissect the role of OGA catalytic activity in mammalian
development, we designed an Oga constitutive knock-in
mouse model where OGA enzymatic activity is abolished
(Fig. 1, A and B). Previous studies have shown that OGA
Asp285 (D285) is essential for both O-GlcNAc hydrolysis and
O-GlcNAc binding (56–58), whereas mutation to alanine
causes nearly 100% loss of catalytic efficiency in vitro (59). We
introduced the OGA D285A mutation into mESCs by ho-
mologous recombination (Fig. 1C). Correct single integration
eted clones. The expected molecular weight band for the targeted (T) allele
T confirms the presence of single D285A point mutation (in red) in knock in

J. Biol. Chem. (2021) 296 100439 3



Loss of OGA activity leads to defects in mouse embryogenesis
of the point mutation into mESCs was determined by South-
ern blotting (Fig. 1D) and PCR genotyping (Fig. 1E). Clones
positive for the mutation were used for blastocyst injections to
generate an OgaD285A mouse line lacking OGA enzymatic
activity. DNA from positive offspring was sequenced to
confirm the presence of the D285A mutation (Fig. 1F).

Previous studies have revealed that mice deficient in OGA
protein (OgaKO) showed developmental delay and die perina-
tally (19, 54). Thus, we first tested the viability of homozygous
OgaD285A animals by monitoring progeny of heterozygous
breeding parents. No deviation from the expected Mendelian
inheritance ratio of WT (25%), heterozygous (50%), and ho-
mozygous (25%) embryos at 15.5 and 18.5 dpc was observed,
yet only a single homozygous animal (0.5% of 198 pups gen-
otyped) survived to weaning stage (23–37 days after birth)
(Fig. 2A). Homozygous OgaD285A embryos at 18.5 dpc showed
no obvious anatomical defects, although they appeared smaller
than their littermates (Fig. 2B). The weight and volume of
homozygous OgaD285A 18.5 dpc embryos (weight: 1023 ±
175 mg, n = 15; volume: 887 ± 86 mm3, n = 8) were signifi-
cantly reduced compared with WT (weight: 1197 ± 107.1 mg,
n = 16; volume: 1020 ± 62 mm3, n = 8) and heterozygous
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embryos (weight: 1176 ± 124 mg, n = 50; volume: 1038 ±
88 mm3, n = 8) (Fig. 2, C and D). Taken together, these ex-
periments show that catalytic deficiency of OGA leads to
perinatal lethality and reduced growth.

O-GlcNAc homeostasis is altered in OgaD285A mice in a tissue-
specific manner

Although homozygous OgaD285A mice are not viable, the
heterozygous OgaD285A/+ animals survived to adulthood. Pre-
vious studies have revealed increased protein O-GlcNAcyla-
tion in heterozygous OgaKO/+ hippocampus (29) and liver (54).
We tested O-GlcNAc levels in the OgaD285A/+ mice to assess
O-GlcNAc homeostasis. Mouse brain tissue obtained from 55-
to 63-day-old WT and heterozygous OgaD285A/+ adult animals
(n = 6 per group) were analyzed using an antibody specific for
O-GlcNAcylated proteins. Protein O-GlcNAcylation was
comparable in WT (mean ± SD fold change to WT, 1.1 ± 0.5
fold change) and heterozygous OgaD285A/+ samples (0.9 ± 0.7
fold change) (Fig. 3A). It has been established that OGT and
OGA protein levels are sensitive to changes in protein O-
GlcNAcylation in mammalian cells (34, 60). We next investi-
gated such possible compensatory mechanisms by assessing
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Loss of OGA activity leads to defects in mouse embryogenesis
OGA and OGT protein levels. Western blot revealed an in-
crease of OGA protein level in heterozygous OgaD285A/+ ani-
mals (OGA: 1.5 ± 0.4 fold change) compared with WT animals
(OGA: 1.0 ± 0.3 fold change). A decrease of OGT protein level
in OgaD285A/+ (OGT: 0.6 ± 0.2 fold change) compared with
WT (OGT: 1.0 ± 0.7 fold change) did not reach statistical
significance (t test, p = 0.164). Our data indicate that hetero-
zygous loss of OGA catalytic activity is compensated by altered
OGA protein levels in adult heterozygous OgaD285A/+ animals
to maintain normal level of protein O-GlcNAcylation (Fig. 3, B
and C).

Next, we investigated the effect of the D285A mutation on
protein O-GlcNAcylation in homozygous OgaD285A embryos.
Previous mouse OgaKO studies showed global elevation of O-
GlcNAc level defects in brain and liver (54, 55). Thus, brain
and liver samples isolated from OgaD285A 15.5 dpc mouse
embryos (n = 4 per group) were subjected to Western blotting.
This revealed an increase of O-GlcNAcylation in brain tissues
from homozygous OgaD285A/D285A embryos (3.3 ± 1.0 fold
change), whereas O-GlcNAcylation levels were similar in WT
(1.0 ± 0.2 fold change) and heterozygous OgaD285A/+ samples
(1.3 ± 0.3 fold change) (Fig. 4A). Similarly, an increase of
O-GlcNAc levels was observed in liver samples from homo-
zygous OgaD285A/D285A embryos (2.0 ± 0.2 fold change),
whereas O-GlcNAcylation was similar to WT level (1.0 ± 0.2
fold change) in heterozygous OgaD285A/+ liver samples (1.3 ±
0.2 fold change) (Fig. 4A). In the brain, a twofold increase of
OGA protein levels and an approximately threefold reduction
of OGT protein levels were detected in homozygous
OgaD285A/D285A samples (OGA: 1.9 ± 0.4, OGT: 0.3 ± 0.03 fold
change) compared with WT brain samples (Fig. 4, B and C).
OGT and OGA protein levels appeared similar in WT samples
(OGA: 1.0 ± 0.1, OGT: 1.0 ± 0.3 fold change) and heterozygous
OgaD285A/+ samples (OGA: 1.1 ± 0.1, OGT: 0.7 ± 0.1 fold
change). Next, we investigated Oga and Ogt mRNA levels. No
detectable differences in brain Oga mRNA levels were
observed between the three genotypes (Oga+/+: 1.0 ± 0.8,
OgaD285A/+: 0.8 ± 0.4, and OgaD285A/D285A: 0.8 ± 0.3 fold
change) (Fig. 4D). However, reductions of Ogt mRNA levels
were apparent in homozygous OgaD285A/D285A (0.5 ± 0.1 fold
change) and heterozygous OgaD285A/+ (0.6 ± 0.2 fold change)
embryos, respectively, compared with WT samples (1.0 ± 0.3
fold change), although the differences between heterozygous
and WT samples did not reach statistical significance (p = 0.35,
Kruskal–Wallis multiple comparisons test) (Fig. 4D). In the
embryo liver, an increase in OGA protein level was detected in
homozygous OgaD285A/D285A samples (OGA: 2.2 ± 0.98)
compared with WT liver samples. Although a reduction in
OGT protein level (OGT: 0.6 ± 0.2) was apparent, the differ-
ence did not reach statistical significance (p = 0.51, Kruskal–
Wallis multiple comparisons test). No difference in OGA
and OGT protein levels was observed between heterozygous
(OGA: 0.7 ± 0.2, OGT: 0.5 ± 1.1) and WT embryos (OGA:
1.0 ± 0.5, OGT: 1.0 ± 0.7) (Fig. 4, B and C). An increase of Oga
mRNA levels was apparent in homozygous OgaD285A/D285A

(3.0 ± 1.0) compared with WT samples (1.0 ± 0.2) and het-
erozygous OgaD285A/+ embryos (0.8 ± 0.2). No detectable dif-
ferences in liver Ogt mRNA levels were observed between the
three genotypes (Oga+/+: 1.0 ± 0.3, OgaD285A/+: 0.7 ± 0.2, and
OgaD285A/D285A: 0.7 ± 0.3 fold change) (Fig. 4D). Taken
together, these results suggest that loss of OGA catalytic
J. Biol. Chem. (2021) 296 100439 5
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Figure 4. O-GlcNAc homeostasis is altered in 15.5 dpc OgaD285A/D285A embryos. Data were analyzed using one-way ANOVA with Kruskal–Wallis multiple
comparisons test, n = 4 for all genotypes. A, western blot probed with the RL2 monoclonal antibody. The signal is specific to O-GlcNAc–modified proteins, as
clostridium perfringens O-GlcNAcase treatment removed most of the signal. Quantification of O-GlcNAcylated proteins in brain and liver tissues revealing
that homozygous OgaD285A/D285A embryos show increased O-GlcNAc levels compared with WT samples in both tissues (brain: 3.3-fold increase, *p = 0.018;
liver: twofold increase, *p = 0.043) and heterozygous OgaD285A/+ samples (brain: 2.5-fold, p = 0.15; liver: twofold, p = 0.073). B, western blot probed with anti-
OGA and actin antibodies. Quantification of OGA protein levels in brain and liver tissues indicates that homozygous OgaD285A/D285A samples have increased
levels of OGA protein compared with WT control (brain: 1.9-fold increase, *p = 0.024; liver: 2.2-fold increase, p = 0.424) and heterozygous OgaD285A/+ samples
(brain: 1.8-fold increase, p = 0.1186; liver: 3.3-fold increase, p = 0.056). C, western blot probed with anti-OGT and actin antibodies. Quantification of OGT
protein levels in brain and tissues indicated that homozygous OgaD285A/D285A samples show a decrease in OGT protein levels compared with WT control
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Table 1
List of abnormalities found in heterozygous OgaD285A/+ and homozygous OgaD285A/D285A embryos

The number of affected embryos (n = 8 per genotype) for each abnormality is reported. Green indicates no defects found, and yellow–red gradient indicates that abnormal features
were detected.

Loss of OGA activity leads to defects in mouse embryogenesis
activity leads to altered O-GlcNAc homeostasis in OgaD285A

mice.

Microcomputed tomography reveals widespread organ
defects in OgaD285A embryos

We next performed an unbiased in-depth analysis of
growth and morphology on 18.5 dpc mouse embryos to
identify organ defects that could explain perinatal lethality
specific to loss of OGA catalytic activity. We employed X-ray
microcomputed tomography (microCT) to capture the anat-
omy of intact whole embryos. In total, 70 anatomical struc-
tures were scored in WT, heterozygous, and homozygous
embryos (n = 8 per group). Analysis of microCT imaging
revealed anatomical abnormalities in 26 regions across all
(brain: threefold reduction, **p = 0.01; liver: twofold reduction, p = 0.51) and he
fold reduction, p > 0.999). D, quantification of Oga mRNA levels indicated no
levels are increased in homozygous OgaD285A/D285A sample compared with WT
(3.8-fold increase, *p = 0.013). Quantification of Ogt mRNA levels indicated th
zygous OgaD285A/+ (1.5-fold reduction, p = 0.35) samples show a decrease in
ferences in Ogt mRNA levels were observed between all genotypes in the live
genotypes (Table S1). Two WT embryos showed a single
abnormality, one in the brain and one in the heart. Three
heterozygous OgaD285A/+ embryos exhibited morphological
defects in eight regions, including heart, stomach, and kidney
(Table S1). The majority of the abnormalities were observed
in homozygous OgaD285A/D285A embryos with seven samples
revealing defects in 21 areas (Table 1). For these regions, all
WT Oga+/+ embryos appeared normal, whereas morphology
of the stomach lumen (two cases) and kidney (one case) was
affected in heterozygous OgaD285A/+ embryos. We decided to
focus on essential organs that were affected in at least four
OgaD285A/D285A samples, namely the kidneys, liver, stomach,
and brain ventricles. Half of the embryos showed abnormal-
ities in the kidneys exhibiting dilated renal pelvis that
terozygous OgaD285A/+ samples (brain: 2.2-fold reduction, p = 0.233; liver: 1.8-
differences for all genotypes in the brain, whereas in the liver, Oga mRNA
control (threefold increase, p = 0.188) and heterozygous OgaD285A/+ samples
at homozygous OgaD285A/D285A (twofold reduction, *p = 0.033) and hetero-
Ogt mRNA levels compared with WT control in the brain, whereas no dif-
r. OGA, O-GlcNAcase; OGT, O-GlcNAc transferase.
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Figure 5. Microcomputed tomography (microCT) reveals widespread developmental defects in 18.5 dpc OgaD285A embryos. Data were analyzed
using one-way ANOVA with Tukey’s multiple comparisons test, n = 8 for all genotypes. The scale bars for the grayscale sections are represented. A,
representative microCT images of axial sections of the abdomen region and 3D volume renderings of the right kidney (in red) from a WT, heterozygous
OgaD285A/+, and homozygous OgaD285A/D285A 18.5 dpc embryos. The renal pelvis appeared dilated in the OgaD285A/D285A embryos (yellow arrow) and is
associated with advanced unilateral hydronephrosis in two animals (yellow asterisk). Quantification of the volume of the right kidney showed no difference
in kidney volume between all genotypes after normalization to whole embryo body. B, representative microCT images of axial sections and 3D volume
renderings (in red) of the liver from a WT, heterozygous OgaD285A/+, and homozygous OgaD285A/D285A 18.5 dpc embryos. The intralobular spaces from the
homozygous OgaD285A/D285A appeared enlarged as shown with yellow arrow compared with WT control. Quantification of the volume of the liver showed no
difference in liver size between all genotypes after normalization to whole embryo body. C, representative microCT images of axial sections of the abdomen
region and 3D volume renderings of the stomach lumen (in red) from WT, heterozygous OgaD285A/+, and homozygous OgaD285A/D285A 18.5 dpc embryos. The
stomach lumen from the homozygous OgaD285A/D285A mice appeared reduced as shown with yellow arrow compared with WT and heterozygous OgaD285A/+

embryos. Quantification of the volume of the stomach lumen showed a possible reduced size of the lumen in homozygous OgaD285A/D285A compared with
heterozygous OgaD285A/+ (p = 0.102) and WT (p = 0.243) embryos after normalization to whole embryo body although this did not reach statistical
significance.

Loss of OGA activity leads to defects in mouse embryogenesis
developed to advanced unilateral hydronephrosis in two
OgaD285A/D285A embryos (Fig. 5A). Enlarged intralobular
space in the liver was observed in 75% of OgaD285A/D285A

animals, whereas in the two most severe cases, it was asso-
ciated with reduced left/right and caudal lobes (Fig. 5B). The
lumina of the stomach appeared reduced in half of the
8 J. Biol. Chem. (2021) 296 100439
OgaD285A/D285A embryos (Fig. 5C). In addition, there were
abnormalities in the fourth brain ventricles in five cases
suggesting developmental defects in the brain (Fig. 6A).

To explore possible volume differences in the affected organs,
3D segmentation was performed. We detected a reduction of
volume for the liver, kidney, stomach lumen, and brain in the
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Figure 6. OgaD285A/D285A embryos show enlarged brain ventricles. Data
were analyzed using one-way ANOVA with Tukey’s multiple comparisons
test, n = 8 for all genotypes. The scale bars for the grayscale sections are
represented. A, representative microcomputed tomography images of axial
sections of the brain and 3D volume renderings of the ventricular system
from a WT, heterozygous OgaD285A/+, and homozygous OgaD285A/D285A 18.5
dpc embryos. B, quantification of the volume of the brain showed no dif-
ferences between all embryo genotypes after normalization to whole em-
bryo body. C, quantification of the volume of the brain ventricles showing
possible increases of the ventricular system in heterozygous OgaD285A/+ (p =
0.281) and homozygous OgaD285A/D285A embryos (p = 0.210) compared with
WT control embryos after normalization to brain volume. A Dixon’s Q test
identified the smallest value (circled) in homozygous OgaD285A/D285A group
as an outlier. Once this value is excluded from the analysis, the difference
between OgaD285A/D285A and the WT control becomes statistically significant
(**p = 0.002) using one-way ANOVA with Tukey’s multiple comparisons test.

Loss of OGA activity leads to defects in mouse embryogenesis
OgaD285A/D285A animals and an increase of volume in brain
ventricles (Figs. 5 and 6). To compensate for the reduced body
size of the OgaD285A/D285A animals, the volumes of these organs
were then normalized to the volume of the whole embryo or to
the volume of the brain in case of ventricle size analysis. No
difference in kidney volume normalized to the embryo’s whole-
body volume was observed between genotypes (Oga+/+: 0.36 ±
0.06%, OgaD285A/+: 0.34 ± 0.04%, and OgaD285A/D285A: 0.36 ±
0.05% of whole-body volume) (Fig. 5A). Despite the apparent
enlarged interlobular space, the relative size of the liver was not
affected inOgaD285A/D285Amice (Oga+/+: 5.0 ± 0.3%,OgaD285A/+:
5.1 ± 0.4%, and OgaD285A/D285A: 5.2 ± 0.6% of whole-body vol-
ume) (Fig. 5B). However, a possible reduction in stomach
lumina volume was observed in OgaD285A/D285A mice (Oga+/+:
0.32 ± 0.08%, OgaD285A/+: 0.34 ± 0.13%, and OgaD285A/D285A:
0.24 ± 0.07% of whole-body volume), although this did not reach
statistical significance (Oga+/+ versus OgaD285A/D285A: p = 0.243)
(Fig. 5C). Similarly, no difference in normalized brain volume
was observed between genotypes (Oga+/+: 6.6 ± 0.6%,OgaD285A/
+: 6.4 ± 0.4%, and OgaD285A/D285A: 6.9 ± 0.7% of whole-body
volume) (Fig. 6B). These volumetric measurements suggested
that the gross development of the liver, kidneys, stomach, and
brain was proportional to the development of the whole in
OgaD285A/D285A embryos. Next, we measured the volume of the
brain ventricles, where a mild increase in OgaD285A/+ and
OgaD285A/D285A embryos compared with WT animals was
detected (Oga+/+: 8.8 ± 0.8%, OgaD285A/+: 9.8 ± 1.2%, and
OgaD285A/D285A: 10.01 ± 2.4% of whole-brain volume), although
the difference did not reach statistical significance
(Oga+/+ versus OgaD285A/+: p = 0.281, Oga+/+ versus OgaD285A/
D285A: p = 0.210) (Fig. 6C). In the OgaD285A/D285A group, one
embryo showed very low ventricle volumes (circled value in
Fig. 6C). This animal (identified as HOM1) appeared very small
with a 24.1% reduction of body volume compared with the other
OgaD285A/D285A embryos, and it displayed the most severe
phenotypes within 16 anatomical regions (Table S1). This em-
bryo also exhibited an overall underdeveloped state with
reduced volume of the kidney, stomach, and brain. A Dixon’s Q
test on the ventricle unnormalized volume value of this embryo
indicated that this data point may be considered as an outlier.
Therefore, we performed the analysis on the data set where this
embryo was excluded. Interestingly, the analysis indicated an
enlargement of the brain ventricles in OgaD285A/D285A animals
compared with WT animals with a difference reaching statis-
tical significance (Oga+/+ versus OgaD285A/D285A: p = 0.002)
suggesting abnormal neurodevelopment in OgaD285A/D285A

embryos. Taken together, these results reveal widespread organ
defects albeit with incomplete penetrance arisen in OgaD285A/
D285A embryos as a consequence of catalytic deficiency of OGA.
Discussion

Previous studies have established that Oga is essential for
mammalian development (19, 54). However, it is not known
whether this is linked to OGA activity or functions of the other
OGA domains. Similar to the OgaKO mouse models, the loss of
OGA catalytic activity leads to reduced growth and perinatal
lethality in our OGA catalytic-deficient model, suggesting that
it is the loss of OGA enzymatic function that causes lethality
and alteration in mouse embryonic development. In the OgaKO
J. Biol. Chem. (2021) 296 100439 9
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models, defects in lungs and liver tissues were observed in the
homozygous embryos using classic histological techniques.
Here, we used microCT to investigate whether other organ
defects could arise from loss of OGA activity. We showed that
OgaD285A/D285A pups, from the same mouse strain used for the
OgaKO models, display various organ-specific defects with
varying penetrance among the embryos that were not previ-
ously described. The most prominent abnormalities were
found in the kidney exhibiting dilatation of the renal pelvis and
advanced hydronephritis, the latter is associated with kidney
infection and kidney failure (61) posing a significant risk of
postnatal death (62). Defects in the liver, stomach, and brain
were observed in parallel, and accumulation of abnormalities
in several organs could contribute to perinatal lethality in the
OgaD285A/D285A mice.

Loss of OGA activity resulted in increased global O-GlcNAc
levels in homozygous OgaD285A/D285A embryos supporting that
the D285A mutation impairs OGA activity in mouse. Increased
protein O-GlcNAcylation has been associated with several
chronic pathologies, including cancers, osteoarthritis, diabetes,
diabetic vascular dysfunction, and diabetic nephropathy (63–67).
Hyperglycemia is a hallmark of diabetes, and high glucose levels
induce elevation of global O-GlcNAcylation by increased flux
through the hexosamine biosynthetic pathway. Raised O-
GlcNAc levels were found in tissues from diabetic animals and
humans (68–70) as well as in pups of diabetic female mice (71).
Several studies showed that O-GlcNAcylation contributes to
hyperglycemia-induced tissue damage in heart and kidney of
adult patients (69). Furthermore, maternal hyperglycemia causes
developmental delay associated with congenital defects, also
called as diabetic embryopathy, affecting the kidneys, central
nervous system, heart, and skeletal system among others (72, 73).
Inhibition ofOGT blocked the negative impact of hyperglycemia
or glucosamine supplementation on blastocyst formation, cell
number, and apoptosis during mouse embryogenesis (74).
Reductionof globalO-GlcNAcylation throughOGT inhibition in
diabetic pregnant mice in vivo reduced neural tube defects in
embryos (75). In ourOgaD285Amodel, elevatedO-GlcNAc levels
independent of hyperglycemia were also associated with anom-
alies during mouse development, demonstrating a direct link
between excess of O-GlcNAcylation and developmental defects.

Interestingly, we observed mild enlargement in the brain
ventricles of both OgaD285A/+ and OgaD285A/D285A embryos
indicating that the phenotypes observed previously in brain-
specific OgaKO mice (55) are caused by the loss of catalytic
activity of OGA. Ventricle enlargement, frequently associated
with neurodevelopmental conditions including ID, originates
from defects in neurogenesis, proliferation, or ciliary devel-
opment (76–78). In the brain-specific OgaKO model, an
imbalance between neuronal proliferation and disturbed neu-
rogenesis was detected in neonates (55) that can be linked to
hippocampal-dependent spatial learning and memory defects
observed in adult heterozygous OgaKO/+−. A common hall-
mark in OGT-CDG mutations associated with ID is the
reduction in OGA expression, suggesting a possible mecha-
nism that might contribute in part to the pathogenesis of ID
(30, 32–35). Our model could be used to further examine the
10 J. Biol. Chem. (2021) 296 100439
role of OGA and its activity in neurodevelopment and OGT-
CDG pathogenesis.

Loss of OGA activity resulted in increased global O-GlcNAc
levels accompanied with an increase in OGA protein levels and a
decrease in OGT protein levels, providing further evidence for a
compensatory molecular response to maintain O-GlcNAc ho-
meostasis in the brain in both OgaD285A/+ adults and OgaD285A/
D285A embryos. Although similar upregulation was observed for
O-GlcNAc and OGA levels in the liver of embryos, OGT
expression remained unchanged suggesting a tissue-specific
response. Previous reports have shown that pharmacological
inhibition of OGA activity led to an increase of Oga mRNA
expression and OGA protein levels (60, 79, 80). Similarly, we
detected increased Oga mRNA and OGA protein levels in liver
samples from OgaD285A/D285A embryos. The primer set used to
detectOgamRNA levels flank exon 1, allowing the evaluation of
mature OgamRNA levels. The data suggest that transcriptional
upregulation of Oga mRNA levels occurs to produce more pro-
teins to compensate for loss of catalytic activity. However, the
levels of Oga mRNA remained unchanged in the brain of
OgaD285A/D285A embryos suggesting that OGA regulation in this
tissue may occur at the post-transcriptional level. Interestingly,
OGA is itself O-GlcNAcylated, which could provide a mecha-
nism for such post-transcriptional regulation (81, 82).

The levels of OGT protein were reduced in the brain. Similarly,
OGT protein levels were found decreased in association with
reduction of OGA protein expression in models of two OGT-
CDG mutations (32, 33). We showed that reduction of OGT
protein levels was also associated with a reduction of OgtmRNA
levels. Taken together, these data indicate possible transcriptional
control of OGT expression influenced by OGA activity. OGA-
mediated regulation of Ogt transcription through cooperation
with the HAT p300 and transcription factor CCAAT/enhancer-
binding protein β has been described in vitro in WT primary
mouse hepatocytes (83). In addition, elevatedO-GlcNAc because
of pharmacological inhibition of OGA promotes the retention of
Ogt RNA intron 4 through the Ogt intronic splicing silencer
leading toOgtmRNAdegradation (84). The primer set we used to
evaluate the levels of Ogt mRNA levels flank exons 4/5, allowing
the detection of the mature form of OgtmRNA (85). Further ex-
periments will be needed to evaluate whether the reduction of
matureOgtmRNAlevelsweobserved in thebrain is due to lessOgt
mRNA produced or because of an increase in intronic retention
leading to OgtmRNA degradation. Together with our data, these
studies suggest that loss of OGA activity induces alteration ofOgt
transcription to maintain in vivo O-GlcNAc homeostasis in the
brain but not in the liver during gestation. Although the precise
mechanisms associated with OGA/OGT regulation in the
OgaD285A mice remain to be explored, our results indicate that
mechanisms for O-GlcNAc homeostasis maintenance may differ
fromone tissue to another or only occur in some tissues. A similar
strategy could be used to generate a mouse model carrying an
inducible OgaD285A allele to investigate the physiological conse-
quences of prolonged OGA inhibition during adulthood.

A number of studies suggest that elevation of O-GlcNAcy-
lation through pharmacological inhibition of OGA could
provide therapeutic benefit for chronic neurological
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conditions, such as temporal lobe epilepsy (86), AD (44–47),
and amyotrophic lateral sclerosis (87). The degree of OGA
inhibition needed to achieve the desired biological response
while minimizing any potential side effects is an important
consideration. In the brain, at least 80% of OGA inhibition is
necessary to achieve global protein O-GlcNAcylation elevation
in vivo (44). This is in accordance with our results showing
that heterozygous OgaD285A/+ mice displayed unchanged
global O-GlcNAc levels. Although heterozygous OgaD285A/+

mice are viable and do not develop overt developmental
phenotypes, complete loss of OGA activity in homozygous
OgaD285A/D285A mice led to elevated O-GlcNAc levels, peri-
natal lethality, and abnormal development. The phenotypes
observed in the OgaD285A/D285A mice suggest the possibility of
adverse on-target side effects upon prolonged inhibition of
OGA. Although the use of adult and embryo tissues is a
different context and no apparent toxic effects have been re-
ported to date because of prolonged exposure of OGA in-
hibitors in adult animals, the investigations are mainly limited
to the brain (44, 47, 88), and the effects of long-term OGA
inhibition in other tissues remain unclear.

Two splice variants of human OGA exist: (1) a full-length
nucleocytoplasmic isoform that contains the N-terminal glyco-
side hydrolase domain together with the C-terminal HAT
domain and (2) a short nuclear isoform that lacks the HAT
domain and shows lower OGA activity compared with the full-
length isoform (89, 90). OGA undergoes caspase-3 cleavage
giving rise to two fragments that individually lack OGA catalytic
activity. However, the two fragments can reassemble and restore
fully functional OGA in cells (51). This suggests that the C-ter-
minal part of OGA that includes the HAT domain may be
important for catalytic activity. Although it remains unknown
whether this domain possesses any additional functions,
phenotypic comparison of OgaD285A and OgaKO mouse models
reveals that the OGA domain is essential for late embryonic
development and perinatal survival.

In summary, we generated a mouse model lacking OGA
catalytic activity, providing a genetic model for prolonged in-
hibition of OGA in vivo. This model will be useful to study the
role of O-GlcNAcylation in development and to understand the
potential function of the noncatalytic OGA domains. We
showed that loss of OGA activity leads to perinatal lethality,
organ defects, and tissue-specific disruption in O-GlcNAcyla-
tion homeostasis in mice.
Experimental procedures

Generation of OgaD285A knock-in mice

OgaD285A knock-in (C57BL/6NTac-Mgea5tm3592(D285A)Arte)
mice were generated by Taconic Artemis GmbH via insertion of
the constitutive knock-in allele and subsequent Flpe-mediated
deletion of a puromycin resistance cassette (Fig. 1C). First,
OgaD285A mESCs were created via insertion of the knock-in
allele via homologous recombination in C57BL/6NTac (Art
B6 3.6) mESCs. The targeting vector coding for a �10-kb-
sequence spanning exon 4 to 8 of the Oga gene was electro-
porated into mESCs. The construct also contained a flippase
recognition target–flanked puromycin resistance cassette in the
intronic region between intron 6 and 7 allowing for subsequent
isolation of recombinant clones (Fig. 1C). Correct homologous
recombination and single integration at both 5’ and 3’ sides in
mESCs clones was validated using the cag probe that detects a
region located within the puromycin selection cassette. The
genomic DNA was digested with either SphI for the 5’ side or
EcoRV for the 3’ side and analyzed by Southern blot. The
presence of the D285A mutation and the single integration was
determined by PCR using 10328_1 and 10328_2 primers fol-
lowed by sequencing using the 10610_135 primer.

Then, 10 to 15 cells from three selectedmESCcolonies bearing
theD285Amutationwere injected into 3.5-days blastocysts from
BALB/c female mice (BALB/cAnNTac; Taconic Artemis
GmbH) in Dulbecco’s modified Eagle’s medium supplemented
with 15% fetal calf serum under mineral oil. After recovery, 48 to
51 blastocysts were transplanted into nine pseudopregnant
NMRI females (BomTac:NMRI; Taconic Artemis GmbH). Ten
highly chimeric progenies (>50%) were selected based on their
coat color and bred with flippase (Flp) deleter C57BL/6 mice
(C57BL/6-Tg(CAG-Flpe)2Arte; Taconic Artemis GmbH) to
eliminate the puromycin cassette. Eight pups heterozygous for
the D285Amutationwere used as colony founders. Primers used
for genotyping and validation are listed in Table S2.

Animal husbandry and genotyping

Founder OgaD285A/+ heterozygous mice were crossed to
C57BL/6JWT animals (Charles River UK Limited) inhouse. The
line was initially bred by intercrossing heterozygous animals,
then maintained by backcrossing to C57BL/6J background for
two generations. Animals were housed in standard holding cages
with water and food available ad libitum and 12/12 h light/dark
cycles throughout the study. All animal studies and breeding
were performed in accordance with the Animal (Scientific Pro-
cedures) Act of 1986 for the care and use of laboratory animals.
Procedures were carried under United Kingdom Home Office
Regulation with approval by the Welfare and Ethical Use of
Animals Committee of University of Dundee.

Genotyping was performed by diagnostic PCR using Ther-
mococcus kodakaraensis Hot Start DNA polymerase (EMD
Millipore) on genomic DNA isolated from ear-notch biopsy
with 10609_129 and 10609_130 primers (Table S2) that
amplified 395 base pair fragment of the knock-in and 320 base
pair fragment of the WT allele. Animals were genotyped after
weaning at 23 to 37 days old.

Weight measurement

Weights of the embryos were determined after fixation on
analytical scale. Excess liquid from the surface of the embryos
was removed with paper towels prior to measurement. Sta-
tistical significance was calculated using one-way ANOVA
with Tukey’s post hoc test.

Western blotting

Tissues were rapidly dissected, rinsed in cold PBS, snap frozen
in liquid nitrogen, and stored at −80 �C. For immunoblotting,
J. Biol. Chem. (2021) 296 100439 11
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tissue was lysed in 50 mM Tris–HCl (pH 7.4), 0.1 mM EGTA,
1 mM EDTA, 1% Triton X-100, 1 mM sodium orthovanadate,
50 mM sodium fluoride, 5 mM sodium pyrophosphate, 0.27 M
sucrose, 0.1% 2-mercaptoethanol supplemented with protease
inhibitors (1 mM benzamidine, 0.2 mM PMSF, and 5 μM leu-
peptin), and 10 μMGlcNAcstatin G. Lysates were centrifuged at
14,000 rpm for 20min at 4 �C, and the protein concentration was
determinedwith Pierce 660nmprotein assay (ThermoScientific).
About 20 to 30 μg of protein was denatured in SDS loading buffer
containing 1% 2-mercaptoethanol. Proteins were separated on
precast 4 to 12% NuPAGE Bis–Tris Acrylamide gels (Invitrogen)
and transferred to nitrocellulose membrane. Membranes were
incubated with primary antibodies in blocking buffer and 5%
bovine serum albumin in Tris-buffered saline with 0.1% Tween-
20 overnight at 4 �C. Anti-OGA (1:500 dilution; catalog no.
HPA036141; Sigma), anti-O-GlcNAc (RL2) (1:500 dilution;
NB300-524, Lot# A-2; Novus Biologicals), anti-OGT (F-12)
(1:1000 dilution; sc-74546; Santa Cruz), and antiactin (1:2000
dilution; A2066; Sigma) antibodies were used. Next, the mem-
branes were incubated with IR680/800-labeled secondary anti-
bodies (Licor) at room temperature for 1 h. Blots were imaged
using a Li-Cor Odyssey infrared imaging system (Li-Cor), and
signals were quantified using Image Studio Lite software (Licor).
Results were normalized to the mean of each correspondingWT
replicates set and represented as a fold change relative to WT.
Significance was calculated using one-way ANOVAwith Tukey’s
multiple comparisons test or Student’s t test.

CpOGA treatment

Mouse embryo brain and liver lysates lacking GlcNAcstatin
G were treated with recombinant clostridium perfringens
O-GlcNAcase (CpOGA) to test the specificity of the anti-O-
GlcNAc antibody (RL2). Recombinant glutathione-S-trans-
ferase–tagged CpOGA was expressed and purified as described
earlier (91). Lysates containing 60 μg protein at 0.85 μg/ml
concentration were incubated with 10 μg recombinant WT
CpOGA for 60 min at 30 �C. The reaction was stopped by
addition of SDS loading buffer containing 1% 2-
mercaptoethanol and boiling the samples for 5 min.

Real-time quantitative PCR

Total RNA was purified using RNAeasy Kit (Qiagen), and
then 1000 ng of sample RNA was used for reverse transcrip-
tion with the qScript cDNA Synthesis Kit (Quantabio).
Quantitative PCR reactions were performed using the
PerfeCTa SYBR Green FastMix for iQ (Quantabio) reagent, in
the CFX Connect Real-Time PCR Detection System (BioRad),
employing a thermocycle of one cycle at 95 �C for 30 s and
then 40 cycles at 95 �C for 5 s, 60 �C for 15 s, and 68 �C for
10 s. Data analysis was performed using CFX Manager soft-
ware (BioRad). Samples were assayed in biological quadrupli-
cates with technical triplicates using the comparative Ct
method. The threshold-crossing value was normalized to in-
ternal control transcripts (Gapdh, Actb, and Pgk1). Primers
used are listed in Table S3. Results were normalized to the
mean of each corresponding WT replicates set and
12 J. Biol. Chem. (2021) 296 100439
represented as a fold change relative to WT. Statistical sig-
nificance was evaluated using one-way ANOVA with Kruskal–
Wallis multiple comparisons test on ΔCt values obtained for
each biological replicate.

Sample preparation and imaging parameters for X-ray
microCT

Crosses between heterozygous OgaD285A/+ female and
OgaD285A/+ male mice were set up, and plug formation in the
females was monitored to determine day 0.5 after fertilization.
Pregnant females were sacrificed 18 days after plug formation
with increasing concentration of carbon dioxide, and the
femoral artery was severed. Embryos of 18.5 dpc were dissected
into 6-well plate containing ice-cold PBS (pH 8). Embryos were
washed twice with ice-cold PBS, and small tail samples were
collected for genotyping. Embryos were fixed in ice-cold 4%
paraformaldehyde in phosphate buffer solution for 7 days on
roller at 4 �C. Fixed embryos were stored in 1% para-
formaldehyde in phosphate buffer until shipment and further
processing. At MRC Harwell, samples were rinsed in distilled
water, then placed in �15 ml 50% Lugol’s solution prepared in
MilliQ distilled water, and kept at room temperature on the
rocker, in vials wrapped in tinfoil. About 50% Lugol’s solution
was changed every other day for 14 days to achieve contrasting.
Embryos were rinsed with MilliQ distilled water for a minimum
of 1 h before they were embedded in 1% w/v Iberose-High
Specification Agarose (AGR-500) made in MilliQ distilled wa-
ter and left at room temperature to set for 2 h. 3D imaging of
samples was performed using a Skyscan 1172 microCT scanner
(Bruker) with aluminium filter setting, scanning with 70 kV, the
image pixel size set to 5 μm, employing a rotation step 0.25�

while achieving 180� rotation along the anterior–posterior axis.

Image processing

Acquired images were reconstructed using NRecon Recon-
struction (Bruker) software. Datawere further cropped, andTIFF
stacks were generated using Harwell Automated Recon Proces-
sor (HARP; Harwell) software. Image series were converted into
.nrrd file format and viewed using open-source Fiji-based 3D
Viewer and on 3DSlicer (version 4.10.1; https://www.slicer.org/),
an open-source medical image processing and visualization
system. Segmentation and 3D volume rendering for detailed
morphological analysis were performed with the ITK-SNAP
medical image segmentation tool (version 3.6.0 (92)). To elimi-
nate bias, image stacks were renamed, and the genotype was
blinded for the analysis. Statistical significance was calculated
using one-way ANOVAwith Tukey’s multiple comparisons test.
TheDixon’s Q test was performed for outlier identification in the
sample groups according to Rorabacher (93). The experimental
Q value (Qexp) was calculated from raw data using Qexp = (x2 −
x1)/(xn − x1), where x1 is the value of interest, x2, the closest value
to x1 in the data set, and xn the highest value in the data set. Qexp

was next compared with the Q critical value (Qcrit) of 0.526 for
n = 8 for a confidence level of 95% using the Q-table. Data that
displayed aQexp higher than theQcrit of 0.526 were considered as
an outlier at a confidence level of 95%.

https://www.slicer.org/
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