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A Bayesian approach is proposed that unifies Gaussian Bayesian network con-

structions and comparisons between two networks (identical or differential) for

data with graph ordering unknown. When sampling graph ordering, to escape

from local maximums, an adjusted single queue equi-energy algorithm is applied.

The conditional posterior probability mass function for network differentiation is

derived and its asymptotic proposition is theoretically assessed. Simulations are

used to demonstrate the approach and compare with existing methods. Based

on epigenetic data at a set of DNA methylation sites (CpG sites), the proposed

approach is further examined on its ability to detect network differentiations.

Findings from theoretical assessment, simulations, and real data applications

support the efficacy and efficiency of the proposed method for network compar-

isons. 
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1. Introduction

1.1. An epigenetic epidemiological study

Our work was motivated by a recent epidemiological study aiming to exam-

ine joint activities of some epigenetic sites on certain genes. Epigenetics reflects

memories of past exposure or physical changes in life and regulates gene func-5

tionalities without changing the DNA sequence. DNA methylation at Cytosine-

phosphate-Guanine (CpG) sites is one of the most widely studied epigenetic

mechanisms and its role is of particular interest due to its known responsiveness

to environmental exposures (Felix et al., 2017; Joubert et al., 2016).

In our epidemiological study, the goal is to find out whether the joint ac-10

tivities of certain CpG sites are different between subjects exposed to in utero

smoking and those not exposed. Consequently, if they are different, then what

are the possible driving DNA methylation sites? Epigenetic changes due to in

utero exposure to smoke have been detected at certain CpG sites (Joubert et al.,

2012, 2016). However, existing studies have been focusing on effects of individ-15

ual CpG sites and joint activities among the sites are completely overlooked.

Thus, a novel route to appropriately answer the study questions needs to be

explored.

Joint activities among genetic or epigenetic factors are commonly described

by networks. In general, two types of networks are commonly applied, directed20

and undirected networks. To identify potential driving epigenetic factors leading

to network differentiation, as the goal in our epigenetic epidemiological study,

directed networks are of great interest. To examine the impact of environmental

exposures, such as in utero exposure to smoke, on gene activities, differences

between networks under different conditions are of greater interest than a par-25

ticular network. There exist methods to infer multiple directed networks under

different conditions, e.g., Wang et al. (2018). However, because of the com-

plexity in the process of learning networks, constructed networks are subject
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to large variability. Thus, observed differences in networks under different con-

ditions can be simply due to random variability, leading to false discovery of30

markers. Rigorously comparing networks under different conditions via statis-

tical testing will potentially reduce such false discoveries. In the next session,

we briefly review the literature in network construction and network testing.

1.2. Literature review

Networks can be inferred by use of graphical models. Practically, the in-35

ferred networks enable a depiction of concrete connections between different

variables. Networks or graphs can be directed, that is, one epigenetic site can

be a probabilistic stimulus (“parent node”) of the other (“child node”). In our

study, the benefit of directed networks is that they allow us to identify potential

driving epigenetic sites that potentially cause changes of other sites, a unique40

property of directed networks. Bayesian networks, also noted as probabilistic

directed acyclic graphs (DAGs), are directed networks and DAGs accompanied

by probabilistic connections between edges. A graph is a DAG if all the links

(edges) have directions, but none of the nodes is directly go to itself or through

a path to itself (a circle). Gaussian Bayesian networks are the focus of our work45

such that the association between parents and a child can be described using

linear regressions. Graphs can also be undirected, in which case two nodes are

associated but one is not a potential predictor of the other. Some other graphs

are the mixture of the two (Andersson et al., 1997; Chickering, 2002). Ni et al.

(2018) has a comprehensive summary on definitions of different types of graphs.50

In Bayesian networks, a range of studies focus on methods dealing with or-

dered data (i.e., ordering of graph is known) when constructing networks. An

ordering of a graph informs possible “parents” of each node. In many applica-

tions, data come with a natural ordering. For instance, in gene transcription

process, the direction of information flow (graph ordering) is known. Assum-55

ing the ordering is known, Shojaie and Michailidis (2010) proposed an efficient

penalized likelihood method to estimate adjacent matrices of directed graphs,

and Altomare et al. (2013) proposed an objective method for Bayesian net-
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work inference. Cao et al. (2019) suggested a class of priors for the purpose

of inferring Bayesian networks for ordered data, and Park and Klabjan (2017)

proposed a mixed integer programming model and iterative algorithms based on

given topological ordering to infer Bayesian networks. Some other works in this

area for Gaussian Bayesian network inferences, such as Ben-David et al. (2011);

Consonni et al. (2017), are noted and discussed in Cao et al. (2019, 2020). 

In other situations, however, graph ordering is unknown as in our moti- 

vating example, or partially known as noted in Rahman et al. (2019). Many

algorithms and approaches have been proposed to infer Bayesian networks un-

der such a circumstance, including greedy local search (Heckerman et al., 1995),

Optimal Reinsertion search (Moore and Wong, 2003), Max-Min Hill-Climbing

(Tsamardinos et al., 2006), genetic algorithm (Larranaga˜ et al., 1996; Lee et al.,

2010), dynamic programming (Eaton and Murphy, 2012), branch-and-bound 

algorithm (Campos and Ji, 2011), likelihood approach with L1-penalty (Fu and 

Zhou, 2013), penalized marginal likelihood approach (Oates et al., 2016), and 

Markov Chain Monte Carlo (MCMC) approaches (Madigan et al., 1995, 1996;

Giudici et al., 1999; Ellis and Wong, 2008; Zhou, 2011; Han et al., 2014; Kuipers

and Moffa, 2017). Some other works, e.g., Friedman and Koller (2003); Han

et al. (2016), infer Bayesian networks by introducing graph ordering MCMC.

Permutations have also been used to infer graphs, e.g., the work by Squires et al.

(2020). This type of methods is not sensitive to Gaussian assumptions and thus

their applications are not limited to Gaussian Bayesian networks. Some network

construction methods can be applied to both ordered or unordered data. One

example in this direction is the maximum penalized likelihood algorithm pro-

posed by Li and Zhou (2019). However, when ordering unknown, this approach

is not able to infer direction of connections and a constructed network reflects 

underlying correlations between nodes. 
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Regardless of the status of ordering, most existing works focus on inferring

networks. Effort on network comparisons was relatively limited, especially in

the area of Bayesian networks. Gill et al. (2010) proposed a procedure to glob-

ally test differential undirected graphs particularly applied to genes, based on
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strength of genetic associations or interaction between genes. Jacob et al. (2012)

tested multivariate two-sample means on known graphs utilizing Hotelling’s T 2- 

tests. Zhao et al. (2014) developed a method to estimate the differences in pre-

cision matrices between two differential undirected networks, which was later

extended with the ability to globally test differentiation of undirected graphs

(Xia et al., 2015). The work by Städler et al. (2017) was under a similar frame-

work, that is, testing differentiation of undirected graphs based on precision

matrices. Methods built upon associations of undirected networks with a fea-

ture of interest have been proposed as well (Durante et al., 2018). Undirected

graphs focus on associations between nodes and do not have the ability to infer

causal-effects relationships. On the other hand, Bayesian networks are suitable

for experimental data resulted from causal-effects relationships as well as for

observational data such that causal relations are unknown. For network test-

ing, Canonne et al. (2017) discussed approaches to test for identity (whether

an estimated Bayesian network is equal to a given network) and for closeness

(whether two networks are identical or differential). For both types of testing,

their proposed algorithms have a probability of 2/3 to detect the underlying

truth. Following our motivating example, we aim to compare Bayesian net-

works constructed under two different conditions, e.g., exposed or not-exposed

to smoking in utero, with respect to network structure, direction of node con-

nection, and strength of connection. Thus, we aim at network construction with

ordering unknown as well as network testing for closeness between two inferred

graphs. Almudevar (2010) proposed an approach to compare two Bayesian net-

works based on likelihood ratios. Each graph is constructed using minimum

spanning trees and utilizes permutations to calculate an empirical p-value for

decision-making. However, this approach assumes joint density of two nodes

is at least as large as the multiplication of their individual density, which is

a relatively strong assumption, implying a potential impossibility of inferring

networks correctly (up to Markov equivalence) if using one group of data. With

ordering unknown, approaches that can both construct Bayesian networks and

test for differentiation between Bayesian networks are lacking. The work pre- 
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sented in this article is an attempt to address this gap.

In this article, we propose an approach targeted at data with unknown graph

ordering. It has the ability of constructing and statistically comparing Bayesian

networks under two conditions. Bayesian network constructions and compar-

isons for ordered data is a special case of the proposed method. Specifically, we125

consider data from two populations and present a Bayesian method to build

Bayesian networks, and make an inference on whether the two populations

share the same network (i.e., an identical network) or the networks are dif-

ferential. To achieve the goal of efficient network comparison, we investigated

the conditional posterior probability mass function for network differentiation130

and approximated the conditional posterior to ensure efficient convergence. The

remaining of the article is organized as follows. We introduce in Section 2 the

statistical model, likelihood function, prior distributions, and posterior com-

puting. The property of a penalty-incorporated posterior probability is also

discussed in this section. Simulations are discussed in Section 3. We present135

several real data applications to demonstrate the method in Section 4, and

summarize our work in Section 5.

2. Methodology

To infer whether two networks are differential or identical, we start from the

definition of Bayesian networks in two populations.140

2.1. The model

Let Xnx×p = (X1,X2, · · · ,Xp) and Y ny×p = (Y1,Y2, · · · ,Yp) denote mea-

sures of a set of variables, e.g., DNA methylation levels at a set of CpG sites,

in two samples from two populations (e.g., exposed vs. non-exposed to smoke

in utero) for the same set of p CpG sites (or p nodes in general), respectively,145

where nx and ny are the numbers of observations with n = nx + ny.

For a given graph ordering O, conditional on the parents, each node is re-
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gressed on its parents as

Xj =

j−1
∑

i=1

β
(1)
ij Xi + ǫ

(x)
j (1)

and

Yj =

j−1
∑

i=1

β
(2)
ij Yi + ǫ

(y)
j , (2)

where ǫ
(x)
j and ǫ

(y)
j , j = 2, · · · , p, are random noise following normal distribu-

tions ǫ
(x)
j ∼ N(0, σ2

x(j)I) and ǫ
(y)
j ∼ N(0, σ2

y(j)I), respectively, with I being the

identity matrix.

If two networks are identical, then they have the same structure as well as the

same strength of connection between nodes. In this case, we have β
(1)
ij = β

(2)
ij =

β
(c)
ij , and consequently we can combine the data to infer a unified network,





Xj

Yj



 =

j−1
∑

i=1

β
(c)
ij





Xj

Yj



+ ǫ
(c)
j ,

where ǫ
(c)
j =





ǫ
(x)
j

ǫ
(y)
j



. On the other hand, if the two networks are differential,150

then each network has its own structure or its own set of coefficients describing

the relations between parents and a child. We denote β
(1)
ij = β

(x)
ij and β

(2)
ij = β

(y)
ij

as the set of coefficients based on samplesX and Y , respectively, and β
(x)
ij 6= β

(y)
ij

for at least one node j, j = 1, · · · , p.

Linking the above two settings together, we re-define β
(1)
ij and β

(2)
ij as155

β
(1)
ij = ηβ

(c)
ij + (1− η)β

(x)
ij

and

β
(2)
ij = ηβ

(c)
ij + (1− η)β

(y)
ij , (3)

where η is an indicator with η = 1 denoting that the two networks are identical

and parameters β
(1)
ij and β

(2)
ij carry information on network structures as well
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as strength of links between nodes. With the re-defined βij
(1) 

and βij
(2)

, (1) and

(2) can be generalized to the following, 

∑

j−1 

Zj |(Zi)1≤i<j = (ηβij
c + (1 − η)βij

(z)
)Zi + ǫ

(
j
z)
, 

i=1 

where i : 1 ≤ i ≤ j − 1 is the candidate parent set of nodes, Zj = Xj , or Yj , 

and correspondingly, z is x or y. To infer whether the two networks are identical 

(η = 1) or not, we apply a Bayesian method discussed in the next sections. 

2.2. Prior distributions160

For the parameter η that determines whether two networks are identical,

we assume no prior knowledge on its preference and choose Bernoulli Ber(0.5)

for its prior distribution. In practice, sparse networks are preferred, defined as

|E0| = O(p) with |E0| being the number of edges of a graph (Preiss, 2008). To

determine the parents of a node, we adopt the concept of variable selection when

selecting prior distributions for β
(c)
ij , β

(x)
ij , and β

(y)
ij in β

(1)
ij and β

(2)
ij . Various

options are available. Here we choose a mixture of a Normal distribution and

a point mass, also known as a spike and slab model (Mitchell and Beauchamp,

1988; Ishwaran and Rao, 2005). Conditional on η and O,

β
(c)
ij |η = 1,O, r

(c)
ij ∼ r

(c)
ij N(0, Vc) + (1− r

(c)
ij )I

{β
(c)
ij

=0}
,

β
(x)
ij |η = 0,O, r

(x)
ij ∼ r

(x)
ij N(0, Vx) + (1− r

(x)
ij )I

{β
(x)
ij

=0}

and

β
(y)
ij |η = 0,O, r

(y)
ij ∼ r

(y)
ij N(0, Vy) + (1− r

(y)
ij )I

{β
(y)
ij

=0}
,

where r
(c)
ij , r

(x)
ij , r

(y)
ij are indicators denoting the inclusion of node i as a parent

of node j, i = 1, 2, · · · , j − 1, in a given graph ordering O. Note that the same

ordering between the two populations is assumed. This assumption is driven

by the motivation example of different joint activities of DNA methylation sites

due to different exposures such as in utero exposure to smoke. Given the func-165

tionality of genes and epigenetic sites, at least the ordering between the two
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populations is expected to be the same to ensure meaningful underlying biolog- 

ical mechanism for the same species (although each population has its unique 

feature, e.g., different status of smoke exposure). If node i is one of the parents 

of node j, then the coefficients follow a normal distribution with mean zero and 

a known large variance (Vc, Vx, or Vy). Otherwise, they have a point mass at 

zero. Although not the focus of the present work, other prior distributions for 

βij
(1) 

and βij
(2) 

can be used as well, for instance, the g-prior (Zellner, 1986; Smith 

and Kohn, 1996; Fernández et al., 2001; Lee et al., 2003), or the two-component 

G-prior (Zhang et al., 2016). 

Bernoulli Ber(0.5) are chosen for the indicator variables, rj
(c) 

= (rj1
(c)

, rj2
(c)

, · · · , rj(j−1)),
(c) 

rj
(x) 

= (rj1
(x)

, rj2
(x)

, · · · , rj(j−1)),
(x) 

and rj
(y) 

= (rj1
(y)

, rj2
(y)

, · · · , rj(j−1)).
(y) 

With Ber(0.5), 

we assume no prior knowledge on the inclusion of a parent node and inference 

on parental nodes selection relies on information in the data. In the situation 

of available prior knowledge on network structures, instead of 0.5 in Ber(0.5), 

nodes with low probabilities of being parents can take a value smaller than 

0.5. For variance components, we choose vague prior distributions for σx(j)
2 and 

σy(j),
2 in particular, an inverse gamma distributions with small shape and scale 

parameters. As seen in the above definitions, for a given η and ordering O, 

all the definitions of prior and hyper-prior distributions of the parameters are 

independent. 

170

175

180

185

So far, the specification of network structures as well as prior distributions

on edges such as the regression coefficients are conditional on a given ordering

O, and O needs to be inferred. We assume its prior distribution is uniform

among all possible permutations of p nodes, and propose an efficient posterior190

sampling approach in the next session to infer O.

2.3. The joint posterior distribution and its computing

For a given graph ordering O, to estimate β
(1)
ij and β

(2)
ij , a set of prior and

hyper-prior parameters need to be inferred, including parameters when η = 0:195

β
(x)
j = (β

(x)
j1 , β

(x)
j2 , · · · , β

(x)
j(j−1)), r

(x)
j , β

(y)
j = (β

(y)
j1 , β

(y)
j2 , · · · , β

(y)
j(j−1)), r

(y)
j , pa-

9



rameters when η = 1: β
(c)
j = (β

(c)
j1 , β

(c)
j2 , · · · , β

(c)
j(j−1)), r

(c)
j , as well as the vari-

ance components σ2
x(j) and σ2

y(j). Under the context of Bayesian inferences via

Markov chain Monte Carlo (MCMC) simulations, we combine these parameters

along with the ordering of nodes O into a collection of parameters that fit into200

different states of η, θ = (O,β
(x)
j , r

(x)
j ,β

(y)
j , r

(y)
j , η,β

(c)
j , r

(c)
j , σ2

x(j), σ
2
y(j), j =

1, · · · , p). Inference on this collection of parameters will produce an estimate of

the networks and assess the probability of having identical networks. The joint

likelihood of θ is

L(θ|X,Y ) = p(X,Y |θ)

∝

p
∏

j=1

{

(σ2
x(i))

−nx
2 exp

[

−
(Xj −

∑j−1
i=1 β

(1)
ij Xi)

T (Xj −
∑j−1

i=1 β
(1)
ij Xi)

2σ2
x(j)

]

× (σ2
y(j))

−
ny

2 exp

[

−
(Yj −

∑j−1
i=1 β

(2)
ij Yi)

T (Yj −
∑j−1

i=1 β
(2)
ij Yi)

2σ2
y(j)

]}

,

with β
(1)
ij and β

(2)
ij defined in (3).205

The joint posterior distribution of θ is,

p(θ|X,Y )

∝

p
∏

j=1

{

(σ2
x(j))

−nx
2 exp

[

−
(Xj −

∑j−1
i=1 β

(1)
ij Xi)

T (Xj −
∑j−1

i=1 β
(1)
ij Xi)

2σ2
x(j)

]

× (σ2
y(j))

−
ny

2 exp

[

−
(Yj −

∑j−1
i=1 β

(2)
ij Yj)

T (Yj −
∑j−1

i=1 β
(2)
ij Yi)

2σ2
y(j)

]

×

j−1
∏

i=1

[

p(β
(c)
ij |η = 1,O, r

(c)
ij )p(β

(x)
ij |η = 0,O, r

(x)
ij )

× p(β
(y)
ij |η = 0,O, r

(y)
ij )p(r

(c)
ij |η = 1)p(r

(x)
ij |η = 0)p(r

(y)
ij |η = 0)p(σ2

x(j))p(σ
2
y(j))

]}

× p(η)p(O). (4)

The Gibbs sampler is applied to full conditional posterior distributions of

each parameter in θ to sequentially draw posterior samples, based on which we

infer η, graph structure determined by r
(c)
ij if η = 1 or r

(x)
ij and r

(y)
ij if η = 0,

10



where n = nx + ny. In the above, |E|, |Ex|, and |Ey| denote numbers of edges

in inferred identical and differential networks, respectively, and 

aη 

∝

= p

∏

p

(X
{

, 

(σx(j))
−2 n

2 exp 

[ 

−
x (Xj − 

∑j−1
i=1 βij

(c)
Xi)

T (Xj − 
∑j−1

i=1 βij
(c)

Xi)

Y |(·), η = 1) 

and β
(1)
ij and β

(2)
ij describing the strength of connections between nodes. In the

following subsections, we present and discuss conditional posterior distributions210

of the parameters.

2.3.1. Conditional posterior probability of η

Since the decision on whether two networks are differential or not is critical

to the estimates of network structure and corresponding parameters, we start

from presenting the conditional posterior of η. Denoted by (·) a collection of all215

conditional parameters, based on (4), we have

p(η = 1|(·),X,Y ) ∝ p(X,Y |η = 1, r(c),σ2
x,σ

2
y,O)p(η = 1),

where σ2
x = {σ2

x(j), j = 1, · · · , p} and σ2
y = {σ2

y(j), j = 1, · · · , p}.

It can be shown that, when nx and ny large, the full conditional posterior

probability, p(η = 1|(·),X,Y ), can be approximated by the following (Appendix

I),220

p(η = 1|(·),X,Y ) ≈
[

1 + exp{log(bη)− log(aη) + λ(n)}
]−1

,

λ(n) = 1/2(|E| log n− |Ex| log nx − |Ey| log ny),

j=1
2σ2

x(j)

]

×(σ2
y(j))

−
ny

2 exp

[

−
(Yj −

∑j−1
i=1 β

(c)
ij Yi)

T (Yj −
∑j−1

i=1 β
(c)
ij Yi)

2σ2
y(j)

]}

, (5)

bη = p(X,Y |(·), η = 0)

∝

p
∏

j=1

{

(σ2
x(j))

−nx
2 exp

[

−
(Xj −

∑j−1
i=1 β

(x)
ij Xi)

T (Xj −
∑j−1

i=1 β
(x)
ij Xi)

2σ2
x(j)

]

×(σ2
y(j))

−
ny

2 exp

[

−
(Yj −

∑j−1
i=1 β

(y)
ij Yi)

T (Yj −
∑j−1

i=1 β
(y)
ij Yi)

2σ2
y(j)

]}

. (6)

11



The proof of the Proposition is in Appendix II. This Proposition indicates 

that, with pλ(η = 1|(·), X, Y ), the underlying truth of η will be identified

asymptotically. In addition, for network constructions, pλ(η = 1|(·), X, Y ) has 

a potential to penalize large numbers of edges as indicated by the definition of

λ(n). In genetic and epigenetic studies, this property benefits marker detection

and is practically informative to clinicians and health researchers. In the context 

of network comparisons, the definition of λ(n) in pλ(η = 1|(·), X, Y ) implies a 

preference for identical networks over differential networks. The Proposition

holds for other choices of prior distributions of the parameters as long as the 

conditional priors of βij
(1) 

and βij
(2) 

are non-informative for parental node i, i.e., 

nodes such that rij
(·) 

= 1. Although not the situation in our proposed method as 

seen from the Proposition of pλ(η = 1|(·), X, Y ), the Jeffreys−Lindley paradox 

suggests that a caution should be made in any hypothesis testing conducted

under the Bayesian framework, since non-informative prior distributions can

possibly lead to rather strong but useless decision, e.g., rejection of null with 

We denote this approximated conditional posterior probability as pλ(η =

1|(·),X,Y ) and it has the following Proposition.

Proposition: Assume 1) sparse networks with |E|, |Ex|, and |Ey| in the225

order of O(p), 2) nx → ∞ and ny → ∞ in the same speed, and 3)

lognx/p → ∞ as nx, p → ∞, and similar assumptions applied to ny.

Then limnx,ny→∞ pλ(η = 1|(·),X,Y ) = 1 if the underlying η = 1, and

limnx,ny→∞ pλ(η = 1|(·),X,Y ) = 0 if the underlying η = 0.

230

235

240

245

probability 1 regardless of data (Robert, 2007).

2.3.2. Conditional posterior distributions of other parameters

Below, we list the conditional posterior distributions for the remaining pa-

rameters. For the parameters to select a parent node k at a child node j, when

η = 1,250
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p(r
(c)
jk = 1|(·),X,Y , η = 1) =

ac
ac + bc

,

where ac and bc are proportional to the conditional posterior distributions of

r
(c)
jk = 1 and r

(c)
jk = 0, respectively,

ac = exp

{

−
(β

(c)
jk )2

2Vc
−

(Xj −
∑j−1

i=1 β
(c)
ij Xi)

T (Xj −
∑j−1

i=1 β
(c)
ij Xi)

2σ2
x(j)

−
(Yj −

∑j−1
i=1 β

(c)
ij Yi)

T (Yj −
∑j−1

i=1 β
(c)
ij Yi)

2σ2
y(j)

}

× p(r
(c)
jk = 1),

and

bc = exp

{

−
(Xj −

∑i−1
i=1,j 6=k β

(c)
ij Xj)

T (Xi −
∑i−1

j=1,j 6=k β
(c)
ij Xj)

2σ2
x(i)

−
(Yj −

∑j−1
i=1,i 6=k β

(c)
ij Yi)

T (Yj −
∑j−1

i=1,i 6=k β
(c)
ij Yi)

2σ2
y(j)

}

× p(r
(c)
jk = 0).

When η = 0, each population holds its own network and the conditional

posterior distribution of r
(x)
jk is defined as

p(r
(x)
jk = 1|(·),X,Y , η = 0) =

ax
ax + bx

,

with ax = exp

{

−
β
(x)
jk

2Vx
−

(Xj−
∑j−1

i=1 β
(x)
ij

Xi)
T (Xj−

∑j−1
i=1 β

(x)
ij

Xi)

2σ2
x(j)

}

× p(r
(x)
jk = 1),

and bx = exp

{

−
(Xj−

∑j−1
i=1,i 6=k

β
(x)
ij

Xi)
T (Xi−

∑j−1
i=1,i 6=k

β
(x)
ij

Xi)

2σ2
x(j)

}

× p(r
(x)
jk = 0). The

conditional posterior of r
(y)
jk is in a similar form.255

Turning to the regression coefficients, if r
(·)
jk = 0, then β

(·)
jk = 0. Oth-

erwise, the conditional posterior distribution of β
(c)
jk is univariate normal,

N(µ
β
(c)
jk

, σ2

β
(c)
jk

), with µ
β
(c)
jk

= (Vcσ
2
y(j)C

T
1 Xk + Vcσ

2
x(j)C

T
2 Yk)/(σ

2
x(j)σ

2
y(j) +

Vcσ
2
y(j)X

T
k Xk + Vcσ

2
x(j)Y

T
k Yk), σ2

β
(c)
jk

= (σ2
x(j)σ

2
y(j)Vc)/(σ

2
x(j)σ

2
y(j) +

Vcσ
2
y(j)X

T
k Xk + Vcσ

2
x(j)Y

T
k Yk), where C1 = (Xj −

∑j−1
i=1,i 6=k β

(c)
ij Xi) and260

C2 = (Yj −
∑j−1

i=1,i 6=k β
(c)
ij Yi). The conditional posterior distributions of

β
(x)
jk |(·),X,Y and β

(y)
jk |(·),X,Y are defined in a similar way.
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Finally, we discuss the conditional posterior distribution of O, ordering of

the nodes, and its sampling. From the joint posterior distribution of θ given in

(4), derivation of the conditional posterior distribution of O is straightforward,265

which is,

p(O|(·),X,Y )

∝

p
∏

j=1

{

(σ2
x(j))

−nx
2 exp

[

−
(Xj −

∑j−1
i=1 β

(1)
ij Xi)

T (Xj −
∑j−1

i=1 β
(1)
ij Xi)

2σ2
x(j)

]

× (σ2
y(j))

−
ny

2 exp

[

−
(Yj −

∑j−1
i=1 β

(2)
ij Yi)

T (Yj −
∑j−1

i=1 β
(2)
ij Yi)

2σ2
y(j)

]

×

j−1
∏

i=1

[

p(β
(1)
ij |η,O, r

(·)
ij )p(β

(2)
ij |η,O, r

(·)
ij )

]}

,

where r
(·)
ij is r

(x)
ij , r

(y)
ij , or r

(c)
ij .

2.3.3. Sampling of graph ordering

Since the number of nodes p can be large, an efficient sampling of O that has

the ability to escape from traps of local maximum is critical in practice. Energy-270

driven sampling has been used often to diminish this type of concern (Ellis and

Wong, 2008; Van den Bergh et al., 2012). We adopt the sampling scheme sug-

gested in Han et al. (2016), the Adjusted Single Queue Equi-Energy algorithm

(ASQEE), which is adapted from the SQEE sampling method proposed by Ellis

and Wong (2008).275

Basically, the SQEE approach utilizes energy and energy rings with mini-

mum energy suggested by the range of H(O) = − log(p(O|(·),X,Y )), allowing

energy upper bound to be ∞, and energy rings formed by dividing the range

of energy into groups (or “chains” as in Ellis and Wong (2008)). Energy levels

increase from lower to upper rings, and within each ring, the probability den-280

sity function is πl(O) = exp(−max{H(O),Hl}
Tl

), l = 1, 2, · · · ,W , with l indexing

groups or chains and in total W groups (thus W rings), Hl is lower bound en-

ergy level for chain l, and Tl is the lower temperature of that chain such that
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1 = T1 < T2 < · · · < TW . A ring in group l, Dl, is a collection of different

orderings such that their energy is bounded by corresponding lower and upper285

bound energy levels, Dl = {O|H(O) ∈ [Hl, Hl+1), l = 1, · · · ,W} with HW+1

set at ∞. In our study (both simulations and real data applications), we take

W = 5 to allow Markov Chain Monte Carlo (MCMC) sampling between rings

for the purpose of fast convergence to the global maximum. This construc-

tion shows that when l = 1, π1(O) is the target distribution. Furthermore, as290

the value of l increases, the distribution in the lth group is more flatten, en-

hancing the ability of the chain jumping across different modes to avoid being

trapped at local maximums. To perform the sampling, we follow the “cylindri-

cal shift” operation suggested in Ellis and Wong (2008) to propose an ordering.

Then a Metropolis-Hastings (Hastings, 1970) algorithms is applied to determine295

whether the newly proposed ordering will be accepted or not, which is the stan-

dard local Metropolis-Hastings move. The sampling starts from the chain with

the highest energy level, which is associated with a flatten distribution. This

allows the chains to move more quickly through the space to collect samples for

later communications with lower-temperature chains.300

For the sampling scheme ASQEE in Han et al. (2016), when evaluating the

conditional probability of a sampled ordering, instead of utilizing all possible

graphs for that order, it estimated the probability based on a graph showing

the highest probability for a given graph ordering aiming to improve sampling

efficiency. Readers are referred to Ellis and Wong (2008) and Han et al. (2016)305

for detailed discussions on the ASQEE sampler construction and its related

algorithms.

3. Numerical Analysis

Via simulations, we demonstrate finite sample properties of the proposed

method under different scenarios and compare the findings with those from310

existing methods that can be applied to test network differentiation.
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3.1. Simulation scenarios

Generating Monte Carlo (MC) replicates: We consider DNA methylation

measures, X and Y , from two populations (e.g., exposed vs. non-exposed to in

utero smoking) and each with nx = ny observations. Each data set is generated315

from an underlying network structure with p CpG sites (or p nodes) and |E0x|

and |E0y| edges, respectively, based on linear regressions. We assume each

node can have up to four parents corresponding to regression coefficients of β =

{1.5, 2, 2, 2.5} in order. The root node is an experimental node and does not have

any parents. Two types of underlying networks are considered. The first is that320

the two populations share the same networks (i.e., identical networks) and the

other situation is that each population has its unique network (i.e., differential

networks). In our simulations, we take p = 10, 20 and nx = ny = 50, 100, 200.

For identical networks, we choose |E0x| = |E0y| = |E0c| = 10, 20, and for

differential networks, we consider two sets of |E0x| and |E0y|, |E0x| = 5, |E0y| =325

10 and |E0x| = 20, |E0y| = 10. For each graph, a level of sparsity is defined as

the ratio between the true number of edges and the possible number of edges,

S = 2|E·|/(p(p − 1)), where |E·| represents |E0x|, |E0y|, or |E0c|. For instance,

a graph with 10 nodes and 10 edges has a level of sparsity 10/45 = 0.222. The

connection of each edge is randomly selected based on a prespecified ordering330

of all the nodes. The random error when generating each node is assumed to

be normally distributed with mean 0 and variance 1. For each combination of

the settings of nx = ny, p, E0x and E0y, we generated 100 MC replicates.

Posterior sampling: For each MC replicate, we utilize the Gibbs sampler

to sequentially draw samples of each parameter from its conditional posterior335

probability density (or mass) function. Since one ordering can lead to a number

of graphs, when estimating conditional posterior probability of a sampled order-

ing, we run a set of iterations aiming to capture graphs with high probabilities

for that given ordering. In addition, to increase the stability of sampled order-

ing, in each energy ring, we sample a series of orderings as burn-in following the340

SQEE and ASQEE sampling technique. To get an insight on the numbers of

iterations needed for these considerations, we first run longer chains using the
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Gibbs sampler on several MC replicates and examine the quality of posterior

inferences. After observing fast convergence with respect to the inference of η

and graph structure, for each of the 100 MC replicates, we run 6,000 iterations

which includes 50 iterations for inferring conditional posterior probabilities of

each sampled ordering with 25 as burn-in iterations and 120 iterations for sam-

pling orderings with a range of 20 to 100 iterations (higher energy rings with

less iterations) as burn-in iterations across 5 energy rings. 

Summarizing statistics: Graphs and orderings of nodes are not one-to-one cor-

respondence and one graph can be a result of multiple orderings. Since our goal

is to compare graphs between two populations, our posterior inferences focus

on graphs rather than ordering of graphs. Four statistics focusing on testing

and network constructions are used to summarize the results and assess the

proposed method: 1) power of correct detection with respect to network com-

parison (identical or differential), 2) average proportion of true positives for edge

connection and directions (TPCD) in a network, 3) average proportion of false

positives (FP) of a network, and 4) average proportion of correct connections

(CC) of edges. A proportion of correct connections combines information on

sensitivity (reflected by proportions of true positives) and specificity (reflected

by proportions of false positives). For all the statistics except for power, we also

infer 95% empirical intervals. We evaluate the proposed method based on these

statistics on the various choices of sample sizes and numbers of edges noted in

the paragraph above. 

Competing methods: Approaches that not only compare networks but also infer

networks are relatively limited. To assess the proposed method, we use two

existing approaches, one focuses on comparisons in structures between two net-

works and the other on coefficients comparisons. The first competing method is

proposed by Almudevar (2010). It compares two graphs with each constructed

based on minimum spanning trees (MST) and utilizes permutations to calculate

an empirical p-value for decision-making. We denote this method as MST-based

approach. In the second comparison, we utilize an existing method in multivari-

ate testing, the Hotelling’s T-squared test. In particular, we first infer networks 

345

350

355

360

365

370
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for the two populations separately using the network construction method im-

plemented in the proposed approach, and then apply the Hotelling’s T-squared

test on the posterior samples of regression coefficients assuming unequal vari-

ances between the two populations. Posterior samples are selected to ensure

small values on autocorrelation functions. In both comparisons, we compare

the power of detecting underlying truth using each of the competing approach

with that from the proposed method. 

375

380

3.2. Results

Table 1 lists different model assessment statistics when in total 10 nodes

are considered. In the situation that the underlying networks are identical

(η = 1), overall the power of detecting the correct type of networks (identical or

differential) is reasonably high for all cases. Since the underlying networks are385

identical, the decrease in power when the sample size is large shown in the table

is a phenomenon observed in a two sample hypothesis testing when the null

(i.e., two means are equal) is true. This consequently caused other assessment

statistics being slightly inferior. We note that the false positives are influenced

by the edge sparsity of the networks. When the graphs are sparse (e.g., 10390

nodes with 10 edges with sparsity 0.222), proportions of false positives are low

but larger false positives are observed when the graphs are less sparse (e.g.,

10 nodes with 20 edges with sparsity 0.444). All these are likely due to the

inclusion of edges that are indirectly connected to a node under investigation,

for instance, by being a “parent” of this node’s “child”, a phenomenon discussed395

in Wasserman and Roeder (2009). All these lead to an overall slight decrease in

the proportions of correctness (top left panel of Figure 1) when the number of

edges is large and sparsity is low, and this type of patterns continues when the

number of nodes is 20 (top right panel of Figure 1).

On the other hand, when underlying networks are two differential networks400

(η = 0), overall the power to detect the truth is higher than the power when the

underlying networks are identical. In addition, proportions of TPCD increase

with the increase of sample size. As in the situation of η = 1, false positives
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To further evaluate the approach, we next compare the results from the 

proposed method with those from the two competing approaches, the MST-

based approach and the approach based on Hotelling’s T-squared tests. Since

the MST-based approach is designed for small sample sizes, we used the MC

replicates under the setting of p = 10 nodes and each MC replicate having 

nx = ny = 50 observations. When underlying two networks are identical, the 

power of detecting this underlying truth is 0.99. However, the proportions of 

true positives, false positives, and correct connections, along with 95% empiri-

cal intervals, are 0.40(0.10, 0.60), 0.14(0.086, 0.23), and 0.76(0.62, 0.84), respec-

tively, all inferior to the corresponding results in Table 1 (first row in the first

block of Table 1). When underlying two networks are differential, the power is

only 37%, substantially lower than the power from the proposed approach (first 

row in the third block of Table 1). 

slightly increase as sparsity level decreases (Table 1 and bottom panel of Figure

1), leading to decrease in proportions of correctness.405

Since the concept of correctness combines both sensitivity and specificity,

we examine this statistics a little further. As reflected by the patterns shown

in Figure 1, with the number of nodes and sample size fixed, sparsity seems

to play an important role in the determination of proportion of correctness,

regardless of the number of edges; the lower the sparsity (i.e., high sparsity410

values), the lower the proportion of correctness. On the other hand, smaller

numbers of nodes lead to higher proportions of correctness for similar sparsity

levels (demonstrated by results with sparsity of 0.11 shown in the two figures

at the lower panel of Figure 1).

415

420

425

For the second competing method based on Hotelling’s T-squared tests, we

present the results of power assessment using the MC replicates generated under

the settings with p = 20. Overall, when underlying two networks are identical,430

the power to detect the truth is much lower than that from the proposed ap-

proach, although the pattern is the same, i.e., the power decreases with the

increase of sample sizes (Figure 2). As expected, when two networks are truly

differential, the power of detecting the truth increases with sample sizes and is
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Table 1: Summary statistics for detecting differential networks, including estimated power of

correct detection (with respect to network types), true positives for edge connections and di-

rections (TPCD), false positives (FP), and correct connections (CC) across 100 MC replicates

along with 95% empirical intervals (EI).

Sample size Power (%) TPCD (95% EI) FP (95% EI) CC (95% EI)

(nx = ny)

Underlying networks: identical networks (p = 10 nodes, |E0c| = 10 edges)

50 94.9 0.999 (0.998, 1.0) 0.020 (0.0, 0.086) 0.984 (0.933, 1.0)

100 98.2 0.999 (0.999, 1.0) 0.021 (0.0, 0.086) 0.984 (0.932, 1.0)

200 98.9 0.999 (0.998, 1.0) 0.013 (0.0, 0.072) 0.990 (0.944, 1.0)

Underlying networks: identical networks (p = 10 nodes, |E0c| = 20 edges)

50 90.0 0.984 (0.900, 1.0) 0.199 (0.0, 0.622) 0.882 (0.644, 1.0)

100 91.7 0.996 (0.950, 1.0) 0.199 (0.0, 0.560) 0.887 (0.676, 1.0)

200 88.7 0.993 (0.965, 1.0) 0.230 (0.0, 0.640) 0.869 (0.629, 1.0)

Underlying networks: differential networks (p = 10 nodes, |E0x| = 5, |E0y| = 10 edges)

50 99.9 X : 0.998 (0.999, 1.0) 0.017 (0.00, 0.075) 0.984 (0.933, 1.0)

Y : 0.977 (0.80, 1.0) 0.047 (0.00, 0.200) 0.958 (0.844, 1.0)

100 99.9 X : 1.0 (0.999, 1.0) 0.016 (0.00, 0.088) 0.986 (0.921, 1.0)

Y : 0.992 (0.90, 1.0) 0.045 (0.00, 0.329) 0.963 (0.744, 1.0)

200 99.9 X : 1.0 (0.999, 1.0) 0.013 (0.00, 0.063) 0.988 (0.944, 1.0)

Y : 0.996 (0.998, 1.0) 0.048 (0.00, 0.287) 0.962 (0.776, 1.00)

Underlying networks: differential networks (p = 10 nodes, |E0x| = 20, |E0y| = 10 edges)

50 99.9 X : 0.979 (0.874, 1.0) 0.218 (0.0, 0.560) 0.869 (0.667, 1.0)

Y : 0.976 (0.90, 1.0) 0.039 (0.0, 0.171) 0.964 (0.867, 1.0)

100 99.9 X : 0.993 (0.950, 1.0) 0.213 (0.0, 0.600) 0.879 (0.633, 1.0)

Y : 0.991 (0.90, 1.0) 0.033 (0.0, 0.186) 0.972 (0.855, 1.0)

200 99.9 X : 0.993 (0.950, 1.0) 0.232 (0.0, 0.600) 0.868 (0.644, 1.0)

Y : 0.998 (0.997, 1.0) 0.040 (0.0, 0.230) 0.967 (0.821, 1.0)

overall high but lower than the power based on the proposed method. The find-435

ings with p = 10 follow the same trend but were deteriorate when two networks

are truly identical. The proposed approach clearly outperforms the method

built upon the Hotelling’s T-squared test.

4. Real Data Application

We apply the method to DNA methylation of 23 CpG sites in 9 genes (Table440

2) analyzed in our epigenetic epidemiological study. Each of these CpGs was
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Figure 1: Plots of proportions of correct connections with correct direction of connections.

The top panel is for identical networks and the lower panel is for differential networks.

shown to be associated with maternal smoking during pregnancy (Joubert et al.,

2012). DNA methylation data of 245 girls measured at age 18 are used in the

analysis. These 245 subjects represent a random sample from the Isle of Wight

birth cohort (Arshad et al., 2018; Quraishi et al., 2015). Among these 245 girls,445

48 were exposed to maternal smoking during pregnancy. We demonstrate the

proposed method from two aspects. Firstly, we only consider the 197 subjects

not exposed to maternal smoking during pregnancy. We disturb the data by

introducing noise to the first 97 subjects on one CpG site (cg18146737 [node 15]

on gene GFI1 ) to artificially produce two conditions, one for the first 97 subjects450

and the other for the remaining 100 subjects. This disturbance is expected
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Figure 2: Power of detecting the underlying truth of network differentiation status using a

method based on the Hotelling’s T-squared tests. Left panel: two networks are truly identical.

Right panel: two networks are truly differential.

to break the links connected to the CpG site cg18146737, which should lead

to underlying two differential networks among the CpGs. We then apply the

developed method to test whether the two networks are identical or differential.

In the second aspect, to demonstrate our approach in the real world, we apply455

the method to all 245 subjects and assess whether the network among the CpGs

for the subjects whose mother did not smoke during pregnancy is differential

compared to the network for the subjects whose mother smoked. For each

scenario, we run 84,000 MCMC iterations, which includes 200 iterations used to

calculate conditional posterior probabilities of each sampled ordering with 100460

as burn-in iterations and 4,200 iterations for sampling ordering with a range of

70 to 350 iterations as burn-in iterations across 5 energy rings.

In the first scenario with disturbance given to the first 97 subjects, the

inferred posterior probability that the two networks are differential is 0.95, im-

plying a high potential that the two networks are differential. However, there465

is a possibility that the first 97 subjects were under an unknown condition dif-

ferent from the remaining 100 subjects, and thus the underlying networks were

already differential even before we disturb the data. To test this, we use the

original data for the 197 subjects without disturbing the data but still assume

22



Table 2: The list of CpGs and their corresponding genes

Label CpG Gene Label CpG Gene

1 cg03991871 AHRR 13 cg14179389 GFI1

2 cg04180046 MYO1G 14 cg18092474 CYP1A1

3 cg04598670 ENSG00000225718 15 cg18146737 GFI1

4 cg05549655 CYP1A1 16 cg18316974 GFI1

5 cg05575921 AHRR 17 cg18655025 TTC7B

6 cg06338710 GFI1 18 cg19089201 MYO1G

7 cg10399789 GFI1 19 cg21161138 AHRR

8 cg11715943 HLA-DPB2 20 cg22132788 MYO1G

9 cg11924019 CYP1A1 21 cg22549041 CYP1A1

10 cg12477880 RUNX1 22 cg23067299 AHRR

11 cg12803068 MYO1G 23 cg25949550 CNTNAP2

12 cg12876356 GFI1

two conditions between the first 97 subjects and the remaining 100 subjects.470

After applying the method to the original data without disturbance, the pos-

terior probability of having identical networks is 0.66, indicating that the 197

subjects are likely sharing the same network.

In the second scenario, we apply the method to all the 245 subjects. The

posterior probability of having differential networks is 0.99, suggesting that sub-475

jects exposed to maternal smoking during pregnancy and subjects not exposed

are highly likely to have their unique networks. The inferred networks for both

groups are shown in Figure 3.

Comparing the two networks (smoke exposed vs. smoke non-exposed) in-

ferred based on data of 245 subjects, we observed substantially reduced con-480

nections of nodes 1 (cg03991871 on AHRR), 2 (cg04180046 on MYO1G), and 6

(cg06338710 on GFI1 ) as root nodes in the network for subjects with in utero

smoke exposure. These CpGs are potential driving factors important to the

differentiation between the two networks, and deserve further laboratory ex-
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aminations and investigations. Another node 14 with cg18092474 (CYP1A1 )485

also draws our attention. Although it is not like nodes 1, 2, and 6 such that

none of these three nodes have parent nodes, node 14 also has a large number

of connections with its children in the network for non-exposed subjects but

only one child in the other network. In a recent meta analyses (Joubert et al.,

2016), DNA methylation at these CpGs were demonstrated to be strong mark-490

ers for in utero smoke exposure. In another study, cg03991871, cg04180046, and

cg18092474, along with other CpG sites, are used to predict status of smoke ex-

posure and the accuracy is 81% (Ladd-Acosta et al., 2016). To our knowledge,

the inter-connections between these genes and DNA methylation sites have not

been examined in any other studies. The findings from this real data applica-495

tion provide a potential and necessity for future investigations on the potential

regulatory functionality of these four CpGs and the genes to which they are

mapped. Additionally, instead of examining all possible CpG sites related to

maternal smoke exposure during pregnancy, using the proposed method to as-

sess differentiation and to select CpGs potentially leading to differentiation will500

substantially reduce the laboratory burden and make the experiment easier to

manage.
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Figure 3: Estimated two differential networks . a) Subjects in utero exposed to smoke (48

subjects) b) Subjects not exposed (197 subjects)
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The proposed approach for network comparisons utilizes an indicator vari- 

able for status of network differentiation, and has the ability to estimate net- 

5. Summary and Discussion

To examine the differentiation of joint activities for a set of CpG sites be-

tween two groups (exposed vs. non-exposed to smoke in utero) and identify505

potential driving factors leading to the differentiation, we utilized Bayesian net-

works and proposed a Bayesian method built upon the concept of variable se-

lection to conclude the status of differentiation. The approximated conditional

posterior probability mass function for the decision indicator variable has the

property to converge to the underlying truth in terms of network differentiation.510

In the process of testing network differentiation, we estimated graph ordering

using the Adjusted Single Queue Equi-Energy (ASQEE) algorithm proposed by

Han et al. (2016) for the purpose to escape from local maximums. Theoreti-

cal assessment and simulations have demonstrated the effectiveness of the pro-

posed methods in assessing differential networks. Real data applications further515

demonstrated that the method is practically useful and effective. We identified

four potentially driving epigenetic factors, cg03991871, cg04180046, cg06338710

and cg18092474, such that they have the largest numbers of children.

Note that both X and Y in the proposed approach represent observational

data and no experimental data are assumed. In this case, parents of node i are520

inferred based on posterior probability of edge connection indicators (i.e., r
(c)
ik ,

r
(x)
ik , and r

(y)
ik ) conditional on other parameters. Without experimental data,

one needs to be aware that only Markov equivalent networks are constructed

for each given ordering of nodes (Andersson et al., 1997). Although this will

not affect our conclusion on network differentiation (since given an ordering the525

true graph is among all the Markov equivalent networks for that ordering), the

inferred network may not be the underlying true network. In practice, one way

to ease this uncertainty is to bring in expertise from the corresponding research

field, e.g., biologist and epigenetic epidemiologist for the study in our motivating

example, to choose a network that is most practically meaningful.530
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works as well as compare networks. If the focus is only on network comparisons,

then we may consider augmenting the data by adding a node denoting treat-

ment status, in which case no treatment effects indicate that the two networks

are identical. This type of data augmentation, however, can be challenging for

researchers in the applied fields, e.g., geneticists, since this added node is not

a stimulus or experimental node but to assist statistical modeling. In addition,

through this data augmentation, the strength and direction of connections may

have to be estimated separately, should two networks conclude to be differen-

tial. In order to infer network and do comparison together, one way is to include

interaction effects of treatment with each candidate parent. A careful design

and efficient computing algorithms, however, are desired, which surely deserves

further investigations. 

535

540

The new method is not limited to DNA methylation data and is ready to545

other types of data with ordering unknown, e.g., expression of genes. For or-

dered data, the method can be easily simplified to fit the situation. In addition,

it can be directly applied to perform pair-wise comparisons between multiple

networks (> 2 networks), in which case adjustment of multiple testing needs

to be considered. An analysis-of-variance-type network testing is desired for550

differentiation of more than two networks, although this extension maybe com-

putationally intensive. Durante et al. (2018) proposed a Bayesian approach to

test the association of undirected networks with a feature of interest, e.g., the

association of brain connectivity structures with creative reasoning. This type

of hypothesis testing has the potential to fit the needs of comparing more than555

two directed networks.
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Appendix I. The conditional posterior probability of η, p(η =

1|(·), X, Y )565

In the following, we provide a derivation of the approximated full conditional

posterior of η,

p(η = 1|(·),X,Y ) ≈
[

1 + exp{log(bη)− log(aη) + λ(n)}
]−1

λ(n) = 1/2(|E|logn− |Ex|lognx − |Ey|logny).

It is an approximation of the posterior distribution of η conditional on r(c)

and variance components, σ2
x and σ2

y, for a given graph ordering O with r(c)

being a collection of indicators representing inclusion or exclusion of parental570

nodes at each node. The justification laid out in this session follows in spirit

the justification of Bayesian Information Criterion in Neath and Cavanaugh

(2012). The conditional posterior probability of η = 1 conditional on r(c) and

the variance components for a given ordering is

p(η = 1|X,Y , r(c),σ2
x,σ

2
y,O) ∝ p(X,Y |η = 1, r(c),σ2

x,σ
2
y,O)p(η = 1)

∝ p(X,Y |η = 1, r(c),σ2
x,σ

2
y,O).

The last proportionality is due to the choice of a non-informative prior in our575

work, p(η = 1) = 0.5.

In the following, we omit the dependence on O and the variance components

for notation simplicity, but it needs to be clear that all the derivations are

conditional on O,σ2
x, and σ2

y. The distribution of X,Y conditional on η = 1

and r(c) is,580
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p(X,Y |η = 1, r(c)) = p(Z|η = 1, r(c))

=

p
∏

j=1

p(Zj |η = 1, r
(c)
j )

=

p
∏

j=1

∫

β
(c)
j

p(Zj |β
(c)
j , η = 1, r

(c)
j )p(β

(c)
j |η = 1, r

(c)
j )dβ

(c)
j

=

p
∏

j=1

∫

β
(c)
j

Lj(β
(c)
j |Zj , η = 1, r

(c)
j )p(β

(c)
j |η = 1, r

(c)
j )dβ

(c)
j ,

where Zj = (XT
j ,Y

T
j )T ,β

(c)
j = {β

(c)
ij , i = 1, · · · , j − 1} denotes regression

coefficients of connected edges at node i under η = 1, and β
(c)
j ∼ N(0, VcI) with

I an identity matrix and Vc known and large to formulate a non-informative

but proper prior distribution for β
(c)
j .

Take the natural logarithm transformation of the likelihood function585

Lj(β
(c)
j |Zj , η = 1, r

(c)
j ) and perform Taylor expansion at

ˆ
β
(c)
j , a consistent esti-

mator of β
(c)
j such that limn→∞

∂ logLj(β
(c)
j

|Zj ,η=1,r
(c)
j

)

∂β
(c)
j

∣

∣

∣

∣

∣

β
(c)
j

=
ˆ

β
(c)
j

= 0. We have,

for a large n,

logLj(β
(c)
j |Zj , η = 1, r

(c)
j ) ≈ logLj(

ˆ
β
(c)
j |Zj , η = 1, r

(c)
j )

+
(

β
(c)
j −

ˆ
β
(c)
j

)T ∂logLj(β
(c)
j |Zj , η = 1, r

(c)
j )

∂β
(c)
j

∣

∣

∣

∣

∣

β
(c)
j

=
ˆ

β
(c)
j

+1/2
(

β
(c)
j −

ˆ
β
(c)
j

)T ∂2logLj(β
(c)
j |Zj , η = 1, r

(c)
j )

∂β
(c)
j ∂β

(c)
j

T

∣

∣

∣

∣

∣

β
(c)
j

=
ˆ

β
(c)
j

×
(

β
(c)
j −

ˆ
β
(c)
j

)

≍ logLj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j )

+1/2
(

β
(c)
j −

ˆ
β
(c)
j

)T ∂2logLj(β
(c)
j |Zj , η = 1, r

(c)
j )

∂β
(c)
j ∂β

(c)
j

T

∣

∣

∣

∣

∣

β
(c)
j

=
ˆ

β
(c)
j

×
(

β
(c)
j −

ˆ
β
(c)
j

)

= logLj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j )

−1/2
(

β
(c)
j −

ˆ
β
(c)
j

)T [

nĪj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j )

](

β
(c)
j −

ˆ
β
(c)
j

)

,
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where “≍” denotes “asymptotically equal to”, and

Īj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j ) = −1/n(∂2/∂β

(c)
j ∂β

(c)
j

T
)logLj(β

(c)
j |Zj , η = 1, r

(c)
j )

∣

∣

∣

∣

∣

β
(c)
j

=
ˆ

β
(c)
j

is the sample Fisher information matrix.

Exponentiate both sides,590

Lj(β
(c)
j |Zj , η = 1, r

(c)
j ) ≈ Lj(

ˆ
β
(c)
j |Zj , η = 1, r

(c)
j )

× exp
{

− 1/2(β
(c)
j −

ˆ
β
(c)
j )T

[

nĪj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j )

]

(β
(c)
j −

ˆ
β
(c)
j )

}

,

which gives

p(X,Y |η = 1, r
(c)
j ) = p(Z|η = 1, r(c))

≈

p
∏

j=1

∫

β
(c)
j

Lj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j )

× exp
{

− 1/2
(

β
(c)
j −

ˆ
β
(c)
j

)T [

nĪj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j )

]

(

β
(c)
j −

ˆ
β
(c)
j

)}

p(β
(c)
j |η = 1, r

(c)
j )dβ

(c)
j

=

p
∏

j=1

Lj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j )

×

∫

β
(c)
j

exp
{

− 1/2
(

β
(c)
j −

ˆ
β
(c)
j

)T [

nĪj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j )

]

(

β
(c)
j −

ˆ
β
(c)
j

)}

p(β
(c)
j |η = 1, r

(c)
j )dβ

(c)
j . (7)
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For the integration in (7),

∫

β
(c)
j

exp
{

− 1/2(β
(c)
j −

ˆ
β
(c)
j )T

[

nĪj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j )

]

(β
(c)
j −

ˆ
β
(c)
j )

}

p(β
(c)
j |η = 1, r

(c)
j )dβ

(c)
j

= C0

∫

β
(c)
j

exp
{

− 1/2(β
(c)
j −

ˆ
β
(c)
j )T

[

nĪj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j )

]

(β
(c)
j −

ˆ
β
(c)
j )

}

× exp
{

− 1/2
[

β
(c)
j

T
[VcI]

−1β
(c)
j

]}

dβ
(c)
j

= C0

∫

β
(c)
j

exp
{

−
1

2

[

β
(c)
j

T(

nĪj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j ) + (VcI)

−1
)

β
(c)
j

− 2β
(c)
j

T(

nĪj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j )

) ˆ
β
(c)
j

+
ˆ

β
(c)
j

T(

nĪj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j )

) ˆ
β
(c)
j

]}

dβ
(c)
j

= C1

∫

β
(c)
j

exp
{

−
1

2

[(

β
(c)
j − Σ∗(nĪj(

ˆ
β
(c)
j |Zj , η = 1, r

(c)
j ))

ˆ
β
(c)
j

)T

Σ∗−1

×
(

β
(c)
j − Σ∗(nĪj(

ˆ
β
(c)
j |Zj , η = 1, r

(c)
j ))

ˆ
β
(c)
j

)]}

dβ
(c)
i ,

= C1

[

(2π)|Ej |/2
]

|Σ∗|1/2,

where C0 is a constant representing the normalizing constant for the prior

of β
(c)
j , C1 is a constant combining C0 and terms not involving β

(c)
j , Σ∗ =

(

nĪj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j ) + 1

Vc
I
)−1

, and |Ej | is the number of parents of node

i.595

Recall that Vc is the variance in the prior distribution of β
(c)
j and chosen

to be large to construct a non-informative but proper prior for β
(c)
j . When the

sample size n is large, information in the data dominates the priors,

|Σ∗|1/2 =
∣

∣

∣

(

nĪj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j ) +

1

Vc
I
)∣

∣

∣

−1/2

≍
∣

∣

∣nĪj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j )

∣

∣

∣

−1/2

= n−|Ej |/2
∣

∣

∣Īj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j )

∣

∣

∣

−1/2

.
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We thus have

p(X,Y |η = 1, r
(c)
j ) = p(Z|η = 1, r(c))

≈
[

(
2π

∏

p 

≍ Czn
−|E|/2 Lj (β

ˆ
j
(c)

|Zj , η = 1, rj
(c)

), 
j=1 

where 
∑p

j=1 |Ei| = |E|. Cz is a constant, since 
∣

∣

∣Ij̄
[

(β
ˆ
j
(c)

|Zj

∑p

, η = 1)
∣

∣

∣

]

−1/2 

[

con

n−

v
∑p

er

j=1 |Ej |/2 . Note that 
∏p

j=1 Lj (β
ˆ
j
(c)

|Zj , η = 1, rj
(c)

) is aη defined

j=1 |Ej |/2 ≍

in equa-

ges as n
] 

→ ∞ and based on assumption 3), (2π/n) 

tion (5) in the main text under the Bayesian context. In a Gibbs sampler, β
ˆ
i
(c) 

is represented by posterior samples of βi
(c)

. 

The same derivation applies to the calculation of p(X, Y |η = 0, rj
(x)

, rj
(y)

), 

which gives 

n
)
∑p

i=1 |Ei|/2
]

p
∏

j=1

[

Lj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j )

∣

∣

∣Īj(
ˆ

β
(c)
j |Zj , η = 1, r

(c)
j )

∣

∣

∣

−1/2]

600

605

p(X,Y |η = 0, r
(x)
j , r

(y)
j ) ≈ Cxyn

−|Ex|/2
x n−|Ey|/2

y

×

p
∏

j=1

[

Lj(
ˆ

β
(x)
j |Xj , η = 0, r

(x)
j )Lj(

ˆ
β
(y)
j |Yj , η = 0, r

(y)
j )

]

,

where Cxy is constant, and, as above,
∏p

i=j

[

Lj(
ˆ

β
(x)
j |Xj , η =

0, r
(x)
j )Lj(

ˆ
β
(y)
j |Yj , η = 0, r

(y)
j )

]

is equivalent to bη defined in equation (6)

in the main text.
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Now we have,610

p(η = 1|(·),X,Y ) =
p(X,Y |(·), η = 1)

p(X,Y |(·), η = 1) + p(X,Y |(·), η = 0)

≈
Czaη(n

−|E|/2)

where λ(n) = 1/2(|E|logn − |Ex|lognx − |Ey|logny). The last approximation

is due to Cxy/Cz being bounded as n → ∞, conditional on the following as-

sumptions, 1) |E|, |Ex|, and |Ey| are in the order of O(p) and |E| < |Ex| + |Ey|,

2) nx and ny approaches to infinity in the same speed, and 3) lognx/p → ∞

and logny/p → ∞ as nx, ny, p → ∞. We denote the approximated conditional 

posterior of η as pλ(η = 1|(·), X, Y ) with λ(n) acting like a penalty determined 

by sample size and conditional on edges of inferred graphs. 

Czaη(n−|E|/2) + Cxybη(n
−|Ex|/2
x )(n

−|Ey|/2
y )

=
[

1 + exp{log(bη)− log(aη) + 1/2(|E|logn− |Ex|lognx − |Ey|logny)

+log(Cxy/Cz)}
]−1

=
[

1 + exp{log(bη)− log(aη) + λ(n) + log(Cxy/Cz)}
]−1

≍
[

1 + exp{log(bη)− log(aη) + λ(n)}
]−1

= pλ(η = 1|(·),X,Y ),

615

Appendix II. Proof of the Proposition in Section 2.3.1

For any given ordering O, let p denote the number of nodes, |Ex| the num-

ber of edges in the network constructed based on data of sample size nx from620

population X, |Ey| the number of edges in the network based on data with size

ny from population Y , and |E| the number of edges of the identical network

constructed combining the two populations with sample size n = nx + ny.

pλ(η = 1|(·),X,Y ) ≈
[

1 + exp{log(bη)− log(aη) + λ(n)}
]−1

λ(n) = 1/2(|E| log n− |Ex| log nx − |Ey| log ny),

is the approximated conditional posterior probability for η.
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Proposition: Assume 1) sparse networks with |E|, |Ex|, and |Ey| in the625

order of O(p), 2) nx → ∞ and ny → ∞ in the same speed, and 3) lognx/p → ∞

as nx, p → ∞, and similar assumptions applied to ny. Then limnx,ny→∞ pλ(η =

1|(·),X,Y ) = 1 if the underlying η = 1, and limnx,ny→∞ pλ(η = 1|(·),X,Y ) =

0 if the underlying η = 0.

Proof. We examine the property of pλ(η = 1|(·),X,Y ) at the underlying values630

of η.

1. Underlying η = 1, i.e., the two populations share the same network.

Set nx = c1n and ny = c2n with 0 < c1, c2 < 1, we have

1/2(|Ex|lognx + |Ey|logny) = 1/2{|Ex|log(c1n) + |Ey|log(c2n)}

= 1/2(|Ex|logn+ |Ey|logn+ |Ex|logc1

+|Ey|logc2).

For any given ordering, we assume |E| < |Ex| + |Ey|. That is, the two

graphs have at least one edge in common and if an edge does not exist in

each individual network, then it is not in the combined network either. We

then have 1/2(|E|logn − |Ex|lognx − |Ey|logny) = 1/2 log n(|E| − |Ex| −

|Ey|) − logc1|Ex|/2 − logc2|Ey|/2 → −∞, as nx, ny → ∞ (so does n).

Furthermore, as nx, ny → ∞, from the definitions of logaη and logbη,

logaη − logbη → 0 as nx, ny → ∞ when the underlying η = 1. Combining

all these leads to

logbη − logaη + 1/2(|E|logn− |Ex|lognx − |Ey|logny) → −∞,

which gives pλ(η = 1|(·),X,Y ) → 1 as nx, ny → ∞ if the underlying

η = 1.635

2. Underlying η = 0, i.e., each of the two populations has its unique network
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under a given ordering. Following the definition of aη, we have

logaη =

p
∑

j=1

{

−
nx

2
logσ2

x(j) −
ny

2
logσ2

y(j)

−
(Xj −

∑j−1
i=1 β

(c)
ij Xi)

T (Xj −
∑j−1

i=1 β
(c)
ij Xi)

2σ2
x(j)

−
(Yj −

∑j−1
i=1 β

(c)
ij Yi)

T (Yj −
∑j−1

i=1 β
(c)
ij Yi)

2σ2
y(j)

}

=

p
∑

j=1

{

−
nx

2
logσ2

x(j) −
ny

2
logσ2

y(j) −

nx
∑

l1=1

ǫcl1
2

2σ2
x(j)

−

n
∑

l2=nx+1

ǫcl2
2

2σ2
y(i)

}

,

logbη =

p
∑

j=1

{

−
nx

2
logσ2

x(j) −
ny

2
logσ2

y(j)

−
(Xj −

∑j−1
i=1 β

(x)
ij Xi)

T (Xj −
∑j−1

i=1 β
(s)
ij Xi)

2σ2
x(j)

−
(Yj −

∑j−1
i=1 β

(y)
ij Yi)

T (Yj −
∑j−1

i=1 β
(y)
ij Yi)

2σ2
y(j)

}

=

p
∑

j=1

{

−
nx

2
logσ2

x(j) −
ny

2
logσ2

y(j) −

∑nx

l1=1 ǫ
x
l1
2

2σ2
x(j)

−

∑n
l2=nx+1 ǫ

y
l2

2

2σ2
y(j)

}

,

logbη − logaη =

p
∑

j=1

(

∑nx

l1=1(ǫ
c
l1
2 − ǫxl1

2)

2σ2
x(j)

+

∑n
l1=nx+1(ǫ

c
l2
2 − ǫyl2

2
)

2σ2
y(j)

)

.

In the following, property on one node is assessed and the results can be

directly applied to the sum of all p nodes. If the underlying η = 0, that is,

the relations among the nodes in the two populations are differential at640

least at one node, then, regardless of the ordering, forcing two differential

networks to unify will result in larger random errors, i.e.,

(ǫcl1
2 − ǫxl1

2)/nx → σ′2
x(j) − σ2

x(j) > 0

(ǫcl2
2 − ǫyl2

2
)/ny → σ′2

y(j) − σ2
y(j) > 0,

which lead to
∑nx

l1=1(ǫ
c
l1
2 − ǫxl1

2) → ∞ and
∑n

l1=nx+1(ǫ
c
l2
2 − ǫyl2

2
) →

∞ in an ordering of O(n) as nx, ny → ∞, that is, logbη − logaη → ∞

in an ordering of O(n).645

For λ(n) = 1/2(|E|logn−|Ex|lognx−|Ey|logny) in the definition of pλ(η =

34



1|(·),X,Y ),

1/2(|E|logn− |Ex|lognx − |Ey|logny)

= 1/2(|E| − |Ex| − |Ey|)logn

−1/2(|Ex|logc1 + |Ey|logc2)

= A log n− 1/2(|Ex|logc1 + |Ey|logc2),

where A = 1/2(|E| − |Ex| − |Ey|). Since |E| < |Ex| + |Ey|, as nx, ny →

∞, A log n → −∞ in O(logn). Based on the sparsity assumption 1),

1/2(|Ex|logc1 + |Ey|logc2) → ∞ in the order p. Following assumption 3),650

we have A log n − 1/2(|Ex|logc1 + |Ey|logc2) → ∞ in O(logn), which is

slower than logbη−logaη → ∞ in an ordering of O(n). Thus logbη−logaη+

1/2(|E|logn − |Ex|lognx − |Ey|logny) → ∞, i.e., pλ(η = 1|(·),X,Y ) → 0

as nx, ny → ∞.

In summary, pλ(η = 1|(·),X,Y ) → 0 as nx, ny → ∞ when underlying655

η = 0 for any given ordering O.

Combining results in 1. and 2. above, we have, for any given ordering O,

limnx,ny→∞ pλ(η = 1|(·),X,Y ) = 1 if underlying η = 1, and limnx,ny→∞ pλ(η =

1|(·),X,Y ) = 0 if underlying η = 0.

660
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