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Abstract — Existing risk assessment (RA) methodology used 
for autonomous vehicle (AV) development and validation is 
insufficient for future AV operations. Existing frameworks 
operate based on processes such as hazard analysis and risk 
assessment (HARA) where risk is defined based on functional 
hazardous event severity and the likelihood of occurrence. This 
is a static process performed during the development stage and 
relies on prior lessons learnt and know-how. A drawback of this 
is the omission of potential complex environments that could 
occur during real-time – especially with more stringent safety 
requirements for AV operating at higher automation levels. 
Therefore, there is a need for an additional framework to 
further enhance the safety levels of the AV, focusing on real-time 
instead of static risk assessment during development. In this 
paper, a novel real-time recursive RA framework (ReRAF) 
addresses the gap by creating a novel risk representation, 
predictive risk number (PRN), and eventual safety levels (SLs) 
in the temporal and spatial domain. This approach focuses on 
risk assessment based on AV collision to the detected hazardous 
object and controllability of the AV. A dynamic recursive RA 
continuously captures potentially hazardous events in real-time 
and compares them with past occurrences to predict future 
safety actions. ReRAF provides a continuous improvement on 
the RA and acts as an additional safety layer for AV operations. 

Keywords— Autonomous vehicle, hazard analysis, risk 
assessment, safety framework. 

I. INTRODUCTION  

Autonomous Vehicles (AV) is envisioned to be the next 
generation of transport in the future. One of the biggest 
challenges in deploying AVs on the road is safety, in particular 
when ensuring the safe operations of AV when operating in a 
new environment with full automation without driver’s 
intervention. As illustrated in TABLE I, high and full 
automation refers to SAE Level 4 and 5 [1] in which the 
Autonomous Driving System (ADS) is the de-facto 
responsible fallback in the occurrence of hazardous events. 
Unlike SAE Level 3 and below where the driver remains as 
the responsible fallback (similar to a driven vehicle), the 
safety requirements for fully automated AV with SAE Level 
4 and 5 increase exponentially in terms of (1) identifying 
hazardous events (2) making safety decision, when a 
potentially hazardous event occurs. 

TABLE I. SAE LEVELS AND FALLBACK RESPONSIBILITY 

SAE Levels 0 1 2 3 4 5 
Fallback 

responsibility Driver Driver Driver Driver ADS ADS 

Automation No ADAS Partial Conditional High Full 
Vehicle 
control 
motion 

Driver 
Driver 

and 
ADS 

ADS ADS ADS ADS 

Environment 
monitoring Driver Driver Driver ADS ADS ADS 

Traditional ISO 26262:2018 [2] standard has been used 
extensively as functional safety for Electrical/Electronics 
(E/E) functionality in road vehicles [3]. This standard adopts 
Hazard Analysis and Risk Assessment (HARA) [4] and in 
cases, for OEM suppliers to fulfil a targetted Automotive 
Safety Integrity Level (ASIL), as well as using Failure Mode 
Engineering Analysis (FMEA) [5] to ensure full conformance. 
Both HARA and FMEA results in defining safety goals for the 
AV or ADS. The safety goals aim to avoid hazardous events 
or to contain the impact of the hazard if it happens – all defined 
during iterative development lifecycle. The actions derived for 
the safety goals are important as they dictate how the vehicle 
reacts when a hazardous event occurs. In many cases, it is not 
possible to statically define all types of hazardous events in 
the development phase and  this results in the AV being 
exposed to high safety risk when it encounters a new 
hazardous event on the road. This is further exacerbated with 
the driver “out of the loop” [6] and the ADS assumes the full 
responsibility [7] as there is no driver to assess the risk in real-
time and to determine the mitigating actions.  As a result, real-
time risk and safety measurements (e.g. risk and safety aspects 
of sudden pedestrian dashing across the road) need to be 
considered. Without the driver in place, the existing HARA 
process is no longer sufficient to replace the human decision 
in detecting new hazardous events [8]. To address this gap, in 
addition to simulation and data collection during AV trials 
(which will only extend the boundaries of the static process), 
a new additional responsive framework is required to 
complement traditional methods. This will achieve better 
identification of hazardous events as well as to fulfil the 
coverage of Safety Of The Intended Function (SOTIF) [9] 
[10] by measuring the real-time operation of AV when a 
hazardous event emerges in a real-world setting.   

In this paper, we propose a novel Real-Time Risk 
Assessment Framework (ReRAF) to complement HARA and 
FMEA to enhance the safety of AV. The existing HARA is 
performed at the vehicle level while FMEA focuses on the 
modular level within an AV.  ReRAF is able to dynamically 
calculate the risk in terms of a potential collision, the 
controllability of the AV in terms of applied speed, braking 
and steering. Essentially, our framework measures the risk of 
collision in real-time, and then compute a Predicted Risk 
Number (PRN) and Safety Level (SL). The PRN is a risk 
number indicating possible collision of the AV with objects 
such as pedestrian and vehicles within its operating path, 
while SL is a classification of the safety levels that is mapped 
onto a set of recommended actions to ensure the safety of the 
AV. These improvements can be further classified into AV 
latitudinal or longitudinal control actions.   

In addition, the ReRAF keeps a history of PRNs with 
respect to time and location of the hazardous event. This 
allows for recursive learning by comparing the present PRN 



with the past to derive the most appropriate risk number, 
(known as PRNweighted) as the true reflection of the risk of 
collision and subsequently determine the SL that will trigger 
the necessary actions on the ADS to mitigate the hazardous 
event. Therefore, the ReRAF framework addresses the gap 
caused by the driver “out of the loop” and provides better RA 
clarity in a real-world, real-time setting. The contributions of 
this paper are as follows. 

• A novel framework for real-time risk assessment 
addressing higher autonomy needs. 

• A critical evaluation of existing RA methods and their 
suitability for higher autonomy of AV or ADS. 

• Illustration of the framework’s ability through an 
application use case. 

 
 This paper is organized as follows: Section II presents 
related works on AV or ADS risk assessment and Section III 
describes the ReRAF in details, followed by the application 
use case in Section IV. We conclude the paper with future 
works in Section V. 

II. RELATED WORK 

RA is conducted using various approaches such as 
process-driven, dynamic processing and modelling based. In 
terms of developing RA for AV, traditional OEM will rely on 
the existing process-driven approach while the new players 
will attempt to use a mixture of different approaches. This 
Section explains some of the existing or research approaches 
and provides some technical comparison and reasoning for its 
usage. 

HARA and FMEA are clear examples of process-driven 
RA approaches and have been used extensively for driven 
vehicle development lifecycle and AV development as well. 
HARA process focuses at the vehicle level, with proposals 
that use iterative loops to refine more dimensioning of the 
hazardous events and functional aspects [11] in a more 
organized approach. Riding on the same process, Stolte et al. 
[12] suggested an additional loop involving safety 
requirements and added clarity in describing the intended 
safety goals and safety concepts. HARA process uses severity 
levels in terms of probability of the hazardous event 
happening and controllability class to determine the ASIL 
level. This is similar to the RA approach used in our 
workplace for safety and health regulations [13] which is 
considered static and missed real-time hazardous events 
which were mentioned earlier. If the latter consists of a high 
severity rating, the desired control actions will be omitted 
which will be detrimental towards safe AV operation. In the 
same way, FMEA uses the severity of the hazardous event and 
the probability of happening to determine the value of the Risk 
Priority Number (RPN). The value of RPN is determined by 
the multiplication of the rating of the severity and probability 
of the identified hazardous event. If the RPN values exceed 
certain levels (rule-based), further control actions are required 
to refine the safety goals. These process-driven approaches 
rely heavily on existing lesson learnt and the expertise of the 
developers which can be an issue for new AV developers 
without automotive background and experiences.  

Another approach known as Dynamic processing of RA 
was reported by Wardzinski [14] where the vehicle control 
system evaluates the risk of possible actions and then selects 
the one that is the least risky in the context of the current 
situation and environmental conditions. For this method to be 

feasible, some form of real-time processing is required. 
Therefore a further enhancement was suggested in Khastgir et 
al. [15] by adding real-time detection of hazardous events and 
providing a real-time ASIL to affect the decision and control 
for AV. However, this determination of hazardous events and 
thereafter real-time ASIL do not reflect the instantaneous 
dynamic risk and safety representative of the environment at 
a specific time and location [8]. The ASIL outcome only 
reflects the severity and likelihood occurrence of hazardous 
events. 

The novel ReRAF, measures the risk tagging of the 
potential collision with the object and control tagging of the 
operational AV instead of using severity and probability of the 
hazardous event. Moreover, ReRAF occurs in real-time and 
performs analytical comparison over a spatial and temporal 
domain (which covers multiple domains of process-driven and 
modelling-based). The outcome provides a quantitative risk 
indication known as PRN and a safety representation known 
as SL. The recursive steps take place in learning the PRN over 
accumulative trips using temporal and spatial determination 
for the precise hazardous event. This temporal and spatial 
domain learning enables continuous refinement of the risk and 
safety representation of the AV. Another advantage of this 
approach entails the prevention of AV from being overly 
cautious during operations. For example, reducing the speed 
of AV operation reduces the risk figure but it must be done at 
a particular location and time of interest only. Otherwise, it 
reduces the operational level and efficiency of the AV.  

This proposed framework also aims to identify new 
hazardous events compared to a process-driven approach. 
These newly discovered hazardous events will surface in 
advance and allow AV to have sufficient time to react and 
these potential safety actions include the rate of 
increasing/decreasing speed, rate of braking and angle of 
steering without changing the basic operations of the AV. 
These adjustments are normally determined as the fine-tuning 
of AV performance. Although it may seem that this fine-
tuning is not major in terms of the AV functional aspects but 
it brings a significant difference in terms of commuter 
experience. For example, it is not desired that braking happens 
abruptly when an obstruction is detected at proximity. 
Passenger safety will be in jeopardy if the AV is a bus full of 
commuters. 

 

III. REAL-TIME RA FRAMEWORK (RERAF) 

The main objective of the ReRAF is to capture, record 
real-time hazardous events, subsequently compute a Predicted 
Risk Number (PRN) and determine the Safety Level (SL) of 
the AV with respect to the hazardous event. By knowing the 
PRN and SL in advance of the potential occurrence of the 
hazardous events, the ADS will be able to automatically plan 
for better safety goals during AV operations. 

Figure 1 shows the interaction between the proposed 
ReRAF with the other building blocks of a typical ADS which 
consists of Global Navigation Satellite System (GNSS), 
Inertial Measurement Unit (IMU), camera and/or Lidar, drive-
by-wire system and AV database. The ReRAF is an additional 
software module within the AV and it does not intervene with 
the existing design or decision making of the ADS. The 
ReRAF computes PRN and SL by processing information 
available from a standard AV on its positioning, localization, 



sensor data - such as camera and Lidar as well as information 
of the vehicle control and its database. 

 
Fig. 1. Implementation of ReRAF in an ADS 

A. ReRAF operational block diagram 
Figure 2 illustrates the detailed operational blocks of 

ReRAF. The framework operates with timestamping which 
consists of the day, month, year, hour, minutes, seconds and 
milliseconds. The location and time are obtained from the 
vehicle’s GNSS and IMU sensors. Table II denotes the 
notation to be used in ReRAF. 

TABLE II. NOTATION OF RERAF 

CT Control Tag figure 
PRN Predictive Risk Number 
PRNweighted Average PRN figure or occurrence 
RPN Risk Priority Number 
RT Risk Tag figure 
Sα Severity Level (S1 to S3) 
SL Safety Level. 
Spα Speed Levels (1.0 to 3.0) 
Trip Total number of trips that occurred at 

location x at a specific time t. 
 

 
Fig. 2. Operational blocks of the ReRAF 

ReRAF focuses on four factors, namely Severity level 
(Sα), Risk Tag figure (RT), Control Tag figure (CT) and Speed 
(Spα) to determine the PRN and SL. Sα and RT are determined 
based on AV’s sensor data such as Lidar scan or camera 
images. ReRAF uses the existing real-time object detection 
and classification methodologies to determine the Sα and the 
RT within the sensor field of view. Sα is derived based on the 
expected severity of the collision with respect to the types of 

objects involved, while RT is computed based on the distance 
of the obstructing object to the AV. For example, if a human 
is detected, Sα will be higher, while if a small piece of rock 
(that does not hinder the drivability on the pathway) is 
detected on the road, the Sα will be small. The CT represents 
the detected AV controls such as the reaction and intensity of 
braking and steering actions that took place in reacting to the 
hazardous event. While Spα of the AV is used as an 
amplification factor. Therefore, high CT represents the high 
values of uncontrolled AV behaviour. The details are further 
explained in Section III-C with an application use case 
illustrated in Section IV. 

The ReRAF determines PRN based on Sα, RT, CT and Spα 
at that particular time and location which form a tuple data to 
be stored in the AV database. To identify the occurrence of 
these hazardous events over a period of time, a weighted PRN 
is used. The PRNweighted represents the average PRN over the 
total number of trips that occurred in that particular location 
and time. This PRNweighted is also stored in the AV database 
and updated over time. The determination of PRNweighted forms 
the recursive aspect of the ReRAF. 

Therefore, during real-time ReRAF operation, the 
information is timestamped in milliseconds and the previous 
records are retrieved to perform a comparison of the present 
PRN with the PRNweighted. If a large delta exists, improvement 
of safety actions will be triggered based on SL. This will be 
further explained in Section III-E. The triggering of safety 
goals improvements can be automated based on the 
determined SL.   
 

RTFront

RTRear

RTLeft RTRight

 
Fig. 3. Segregation of 360° view for risk regions 

 

B. Ego vehicle 360° view risk tagging figure (RT) in 
segregation zones 
To cover the detection of risk and safety aspects of the 

complete environment, the AV needs to segregate its 
surrounding environment into a minimum of four critical 
zones: front, rear, left and right sensing. All four zones should 
have their individual RT. Therefore, the determination of 
PRN uses the present risk indicated in TABLE III, as the zonal 
area for RT. One of the main advantages of this approach is 
the ability to pre-determine the RT independently from the 
speed of the AV. This pre-determination of RT indicates the 
risk of collision with any identified object in the surrounding 
environment. These RT can be used for the ADS as a pre-
warning risk of collision. The segregation of zones can be 
illustrated in Fig. 3. They are represented as RTFront, RTRear, 



RTLeft and RTRight. All four regions can have their RT 
continuously tagged in real-time as shown in TABLE III.  

 
TABLE III. RISK TAG FIGURE (RT) ASSOCIATED WITH THE DIRECTION OF 

TRAVEL 

 Direction 
of travel 

Next 
intended 
direction 

Present 
risk 

Forecasted 
risk 

Background 
risk 

Forward Left turn RTFront RTLeft 
RTRight, 
RTRear 

Forward Right turn RTFront RTRight 
RTLeft, 
RTRear 

Forward 
Changing 

to next 
left lane 

RTFront 
RTFront, 
RTLeft 

RTRight, 
RTRear 

Forward 
Changing 

to next 
right lane 

RTFront 
RTFront, 
RTRight 

RTLeft, 
RTRear 

Reverse Parking RTRear 

RTRear, 
RTLeft, 
RTRight, 

 

RTFront 

Stop Stop 
All 

regions 
All regions NA 

 
When an RT level is high in a particular zone, a hazardous 

event is flagged and recorded in that specific time and 
location. This RT level (present risk) can be identified in 
which specific region the hazard occurs when the AV is in 
operation (forward, reverse, stop). For example, when the AV 
is moving forward, the present risk is RTfront while having 
RTLeft or RTRight as a background risk. If the AV approaches 
a potential hazard in the forward direction of travel, the RTfront 

will increase as it goes nearer. Likewise, when a high RTLeft 
occurs, this represents a hazardous event that has occurred at 
the left of the AV. Therefore if the ADS decides to make a 
left turn, the RTLeft can be used as an advance risk indicator. 
In another example, if RTRear is high, then it is not advisable 
for the AV to reverse until the RTRear drops. Thus the different 
RTs as shown in TABLE III act as a prediction for the next 
direction of travel. A summary of the different possible 
scenarios is provided in TABLE III. Background risk 
represents the associated RT in non-intended direction of 
travel. TABLE III shows some of the possible combinations of 
RT (in terms of zone(s)) in accordance with the intended 
travel of AV as the main consideration. 

 

C. Severity (Sα), risk tag figures (RT), speed (Spα), control 
tag figures (CT) and occurrence indicators (PRNweighted) 

 
As mentioned in Section A, the ReRAF uses Sα, RT, CT 

and Spα and occurrence indicators to obtain the PRN and SL 
while PRNweighted is obtained over accumulated occurrences of 
PRN at that particular location and time.  

RT is triggered by detected objects and provides a certain 
range of values that corresponds to the distance of the AV to 
the object. The further the object is to the AV, the lower the 
RT. The set of values indicated in TABLE IV are intended for 
illustration purpose. 

The detection method can be achieved by using any known 
deep learning vision approach. For example, YoloV3[16], 
YoloV4 [17] and EfficientDet [18] and ASFF [19] which 

provide resolutions to object detection such as bounding boxes 
and object classification.  

As shown in Fig. 4, we adopted YoloV3 to perform object 
detection. If the bounding boxes are within the region of 
detection, the RT process will start while Sα will be 
determined by the object classification method. TABLE IV 
further illustrates the potential guidance for RT and Sα  using 
a rule-based approach for object detection. The overall 
processing time of the RT depends on the frame per second of 
the capturing image sensors. In terms of image aspects, a 
typical 15 frames per second is expected and the RT 
processing will take typically 200ms.  

TABLE IV. RISK TAG FIGURE AND SEVERITY RATINGS 

Severity (Sα) Risk Tag description Risk Tag figure (RT)) 

S1 level 

(Sα = 1.0) 

Such as small non-
living objects 

Detected objects in 
the region of interest 
(RT increases when 

the object is closer to 
the AV) 

       04 (>50 meters) 

       06 (26 – 50 meters) 

       08 (11 – 25 meters) 

       10 (5-10 meters)  

       20 (< 5 meters) 

S2 level 

(Sα = 2.0) 

An object that will 
hinder the 
drivability 

Detected objects in 
the region of interest 
(RT increases when 

the object is closer to 
the AV) 

       04 (>50 meters) 

       06 (26 – 50 meters) 

       08 (11 – 25 meters) 

       10 (5-10 meters)  

       20 (< 5 meters) 

S3 level 

(Sα = 3.0) 

Such as human 
and(or) large 

object that will 
obstruct vehicle 

Detected objects in 
the region of interest 
(RT increases when 

the object is closer to 
the AV) 

       04 (>50 meters) 

       06 (26 – 50 meters) 

       08 (11 – 25 meters) 

       10 (5-10 meters)  

       20 (< 5 meters) 

 

 

 
Fig. 4: Pedestrian detection using YoloV3 achieve in 15 FPS 

The CT is a measurement of the sudden events that occur 
when an AV is in operation. This includes triggering safety 
actions from the AV. The CT gives a higher number when 
there are more sudden manoeuvres of the AV. There is an 
amplification factor in relation to Spα. This is illustrated in 
TABLE V. In terms of vehicle data, the information is available 
every 5 milliseconds via CAN data of the vehicle and the 
processing will take typically 100 milliseconds. The set of 
values indicated in TABLE V are intended for illustration 
purposes.  

 



 

TABLE V. CONTROL TAG FIGURE AND SPEED 

Spα Condition (i.e) CT 

 
Speed level 1 

(Spα =1.0) 
Speed is less 
than 40 km/h  

Gradual slowing down and/or no slight 
steer 0.2 

Low (intermittent) braking and/or no 
slight steer 0.4 

Sudden braking and/or no slight steer 0.6 

Sudden braking with steering 0.8 

Sudden brake and oversteering 1.0 

 
Speed level 2 

(Spα =2.0) 
Speed is 

between 40-80 
km/h  

Gradual slowing down and/or no slight 
steer 0.2 

Low (intermittent) braking and/or no 
slight steer 0.4 

Sudden braking and/or no slight steer 0.6 

Sudden braking with steering 0.8 

Sudden brake and oversteering 1.0 

 
Speed level 3 

(Spα =3.0) 
Speed is more 
than 80 km/h 

Gradual slowing down and/or no slight 
steer 0.2 

Low (intermittent) braking and/or no 
slight steer 0.4 

Sudden braking and/or no slight steer 0.6 

Sudden braking with steering 0.8 

Sudden brake and oversteering 1.0 

 

D. Use of database and occurrence to determine PRNweighted 
The occurrence figures that contribute to PRNweighted are 

automatically recorded by the ReRAF into the AV database. 
The determination of the PRNweighted is considered as a 
recursive process since it is continuously updated over a 
period of time with increasing occurrences. A sample of the 
described data is listed in TABLE VI. The ReRAF records are 
timestamped with location-based information to provide 
PRN, PRNweighted, SL, using Sα, RT, CT and Spα. The ReRAF 
module will determine in real-time the SL at each waypoint 
or by a fixed distance determined by the ADS. The current 
PRN determined at the time (tX) and location (latitude and 
longitude, obtained from GNSS) shall be compared with the 
previously computed PRNweighted. If the present PRN has a 
large delta compared to PRNweighted from the AV database, 
evaluation of safety goals will be triggered with the 
dependency on the calculated SL (more will be illustrated in 
Section IV). Using ReRAF, the AV will be able to know if 
more aggressive safety actions are required for the present 
operation and future runs over the same route and time.  
 In addition, during each maintenance cycle of the AV, the 
owner of the AV fleet can decide if it is necessary to improve 
the safety aspects of AV operations, by modifying the 
corresponding safety goals needed for decision making. The 
validation of this improvement can be validated via 
simulation for the specific location using scenarios recorded 
in the AV database. 

 

E. Derivation of the predictive risk number (PRN), 
weighted predictive risk number (PRNweightaged) and 
safety levels (SL) 

As part of the ReRAF, PRN is calculated as shown in 
Equation (1). The corresponding SL is then determined by the 
PRN levels as shown in TABLE VII. An average PRNweighted  as 

shown in Equation (2) is derived for comparison with the 
present PRN figure. If the present PRN is lesser than 
PRNweighted, this indicates the situation has improved against 
the hazardous event either from a better vehicle behaviour 
represented by CT or the hazardous event risk has lowered, 
represented by RT. The number of times the AV uses the 
same location and time is recorded as the number of trips. The 
overall processing time of PRN is expected to be 300 
milliseconds based on initial evaluation.  
 

TABLE VI. SAMPLE OF DATABASE INFORMATION FROM RERAF 

Time 
(HHMM

SS. 
mS) 

Location 
(latitude, 

longitude) 

S
L 

P 
R 
N 

PRN 
weighted 

Sα RT Spα CT 

113801. 
020 

1.301355, 
103.783635 

4 4.8 3.2 3 4 1 0.4 

113801. 
040 

1.301519, 
103.783514 

4 1.6 1.6 1 8 1 0.2 

113802. 
000 

1.301682, 
103.783356 

4 1.6 1.6 1 8 1 0.2 

113802. 
020 

1.301763, 
103.783291 

1 
21.
6 

3.2 3 6 2 0.6 

 
 

PRN = Sα x RT x Spα x CT   (1) 
 

PRN$%&'()%* + ∑ -./0123
45&67

45&67
8   (2) 

 
 

TABLE VII. SAFETY LEVEL RATING 

SL PRN Actions 
1 >20 Safety actions are 

immediate. 
2 10-19 Safety actions need to 

be planned. 
3 5-10 Safety actions to be 

considered. 
4 <5 No actions needed 

 

IV. APPLICATION USE CASE  

The operation of ReRAF is demonstrated in this section 
using an application use case as an example. 

 

A. First trip to Location A at specific time t  
 
Figure 5 Illustrates the hazardous event detected in real-

time at Location A, at time t (18 hours 38 minutes 10.1 
seconds). In this situation, a pedestrian (detected as a traffic 
violation) suddenly dashes across the road 10 meters away 
from the AV travelling at 60 km/hour. The AV decides to 
perform sudden braking with steering as a result of its default 
emergency handling. 

 

 
Fig. 5. Application use case for the first trip  



By applying the ReRAF framework and based on TABLE 
IV, Sα = 3, RT = 10, TABLE V, Spα = 2, CT=0.8. Using 
Equation (1), PRN = Sα x RT x Spα x CT = 48. Therefore 
based on TABLE VII, SL is classified as 1. As this is the first 
occurrence, PRNweighted = 0. Since PRN is greater than 
PRNweighted  and SL is 1, this information will be sent to the 
ADS to perform safety actions in real-time. The safety actions 
include sudden braking and steering if emergency handling 
has not been triggered prior. Subsequently, PRNweighted will be 
updated using Equation (2). PRN, PRNweighted, SL, Sα, RT, CT 
and Spα will be stored in the AV database reference to 
location A and time t, as shown in TABLE VIII. The mapping 
of safety actions to the values of PRN and SL is accomplished 
before the operations of the AV.  

 
TABLE VIII: DATABASE WITH THE RERAF VALUES AFTER THE FIRST TRIP 

Time 
(HHMM

SS. 
mS) 

Location 
(latitude, 

longitude) 

S
L 

PR
N 

PRN 
weighted 

Sα RT Spα CT 

113810. 
100 

A 1 48 48 3 10 2 0.8 

 

B. Second trip to Location A at time t   
 
With the AV navigating a second trip to Location A, 

taking into account the ReRAF values stored in the AV 
database, the AV plans a safety action by reducing the 
operating speed from 60 km/hour to 40 km/hour when it is 
close to Location A at time t (shown in Fig 6). This reduction 
in operating speed will allow more braking distance and thus 
more reaction time for the AV when a pedestrian dashes 
across Location A at the same time t again. With ReRAF 
operating in real-time recursively, the figures in the AV 
database as shown in TABLE VIII will be updated to TABLE 

IX. The new PRN of 4.8 will reflect the reduction in operating 
speed for the second trip and since it is smaller than 
PRNweighted in TABLE VIII and SL is 4, no additional safety 
actions are required. 

 

 
Fig. 6. Application use case for the second trip 

TABLE IX. DATABASED WITH THE RERAF VALUES AFTER THE SECOND TRIP 

Time 
(HHMM

SS. 
mS) 

Location 
(latitude, 

longitude) 

S
L 

PR
N 

PRN 
weighted 

Sα RT Spα CT 

113810. 
100 

A 4 4.8 26.4 3 4 2 0.2 

 
This application use case demonstrates the usability of the 

ReRAF to trigger safety actions depending on the values of 
PRN, PRNweighted and SL. PRN gives the instantaneous risk 
number at that specific location and time while PRNweighted 

provides an average PRN figure of that location over the same 
period of time. PRNweighted can be used as a reference for other 
AV vehicles as well. Since ReRAF operates real-time and at 

a precise location and specific period of time, any advance 
safety action implemented is not broadly used for all location 
and at all time, thus this optimizes the operation of the AV (to 
prevent being over-conservative) and apply safety actions 
only when it is hazardous events are identified. 

 
From utilizing ReRAF in a temporal and spatial domain 

in terms of the AV operations, over a period of time assists 
the AV in predicting advanced safety reactions to avoid 
potential hazardous events. ReRAF approach focuses on the 
risk of collision within the environment and the instantaneous 
operation of the AV while existing HARA and FMEA 
methods focus on the potential hazardous events caused by 
malfunction systems during development. Thus identifying 
the key differences in approaches and propose that ReRAF to 
be implemented in addition to existing HARA and FMEA. 
 

V. CONCLUSION 

In this paper, a novel ReRAF has been developed. The 
proposed framework acts as an additional layer of RA for 
safer AV operations. ReRAF provides PRN and SL  in the 
temporal and spatial domain in real-time situations. PRN and 
SL are uniquely formulated based on RT, Sα, Spα and CT 
determined from the framework which is stored in the AV 
database (both local and remote). These PRNs and SLs are 
used to trigger the ADS for safety action improvements while 
PRNweighted can be used to predict future safe AV operations 
via a recursive process. Unlike traditional HARA which 
focuses on functional hazardous events’ severity and the 
likelihood of occurrence for risk assessment, ReRAF uses 
real-time recursive risk assessment based on AV collision to 
the detected hazardous object and controllability of the AV. 
This paper illustrates the purpose, importance and design of 
this framework, demonstrated with an application use case. 
The next steps are to simulate, perform test trials and validate 
ReRAF in scenarios where PRN is known to be high.  
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