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Abstract 
By equipping a previously reported dynamic causal modelling of 
COVID-19 with an isolation state, we were able to model the effects of 
self-isolation consequent on testing and tracking. Specifically, we 
included a quarantine or isolation state occupied by people who 
believe they might be infected but are asymptomatic—and could only 
leave if they test negative. We recovered maximum posteriori estimates 
of the model parameters using time series of new cases, daily deaths, 
and tests for the UK. These parameters were used to simulate the 
trajectory of the outbreak in the UK over an 18-month period. Several 
clear-cut conclusions emerged from these simulations. For example, 
under plausible (graded) relaxations of social distancing, a rebound of 
infections is highly unlikely. The emergence of a second wave depends 
almost exclusively on the rate at which we lose immunity, inherited 
from the first wave. There exists no testing strategy that can attenuate 
mortality rates, other than by deferring or delaying a second wave. A 
testing and tracking policy—implemented at the present time—will 
defer any second wave beyond a time horizon of 18 months. Crucially, 
this deferment is within current testing capabilities (requiring an 
efficacy of tracing and tracking of about 20% of asymptomatic 
infected cases, with 50,000 tests per day). These conclusions are 
based upon a dynamic causal model for which we provide some 
construct and face validation—using a comparative analysis of the 
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Introduction
This is the third in a series of technical reports that use dynamic 
causal modelling to explain and predict the current outbreak 
of COVID-19. The first report described an enhanced compart-
mental model based upon a factorisation of latent or hidden states 
generating timeseries data, such as new cases and daily deaths 
(Friston et al., 2020a). This model was concerned with an 
outbreak in a single region parameterised with an effective 
population size. The second report assembled several mod-
els of a single region, coupled by population flux between 
regions, to model the pandemic in the united states of America  
(Friston et al., 2020b). The focus of this multi-region model 
was on the genesis of second waves and a key, mechanistic,  
distinction between rebounds due to premature relaxation of  
social distancing and second waves due to loss of immunity. 
The basic conclusions of this second report were that a devolved  
social distancing strategy—that was sensitive to local metrics—
predicted better outcomes than a national or federal strategy. 
In this report, we return to the model of a single region or coun-
try and look more closely at strategies in terms of surveillance;  
specifically, the role of testing, tracing, and tracking.

The efficacy of contact tracing programs are now the focus of 
several modelling initiatives (Aleta et al., 2020; Ferretti et al.,  
2020; Giordano et al., 2020; Gurdasani & Ziauddeen, 2020; 
Hellewell et al., 2020; Keeling et al., 2020), whose conclusions 
depend upon the form of the models used. Models that include 
social distancing and isolation of infected contacts suggest 
that a ‘find’, ‘track’, ‘trace’ and ‘isolate’ (FTTI) policy can amel-
iorate morbidity (Giordano et al., 2020; Kretzschmar et al., 
2020).

To address the efficacy of FTTI, we equipped the dynamic 
causal model (DCM) with a further location state; namely, a state 
of self-isolation or quarantine. People entered the state when 
experiencing symptoms or awaiting a PCR test. They remained 
isolated for seven days unless they received news that the test 
was negative. This construction accommodates the mechanis-
tic process by which FTTI operates. In other words, the agenda 
behind testing and tracking is to isolate those people who are 
infected before they become contagious. This allows one to move 
back in time and pre-empt the reproduction of the virus in the 
population. However, to do this, it is necessary to identify peo-
ple who are asymptomatic, thereby enriching or enhancing the 
probability that targeted testing will identify infected indi-
viduals. We operationalise this testing and tracking strategy in 
terms of its efficacy. Here, efficacy is defined as the probability 
that I will be offered a test by a programme of test and tracking 
if I am infected and asymptomatic. Under this parameterisation, 

an ineffective testing and tracking renders this probability zero. 
Conversely, and efficiency of 100% means that if I am infected 
and asymptomatic, I will certainly be tested. Clearly, for a large 
population, high levels of efficacy may not be attainable; 
however, lower levels may be sufficient to either suppress the 
reproduction rate of viral transmission (Aleta et al., 2020) or 
defer the emergence of any second wave until an efficacious 
programme of vaccination is in place (or effective treatments 
have been established).

To model different aspects of testing and surveillance, we 
had to carefully parameterise testing along a number of dimen-
sions. To do this, we assume that there was a small, time-dependent 
probability of being tested on any given day. This testing 
probability was modelled in terms of a constant baseline, a 
testing component sensitive to the prevalence of infection in 
the population and a sustained component following the first 
wave. This sustained component was modelled as proportional 
to the level of herd immunity acquired after successive waves 
of infection. Having parameterised the testing probability, the 
selectivity of testing was parameterised in terms of the prob-
ability of being tested if infected, relative to not being infected. 
Finally, if I am infected but asymptomatic, then the probability of 
being tested is supplemented with a test and track component— 
that could start at the beginning of the outbreak, or any subse-
quent time. This may sound a rather involved parameterisation; 
however, it is a minimal model needed to generate the number 
of positive cases reported, given the latent prevalence of 
infection. This follows because the number of positive cases 
depends not only on the probability of being tested but whether 
I am more likely to be tested if I am infected (e.g., I work in 
a care home) or not (e.g., I have been selected at random by a 
screening survey).

Please see Figure 1 and Table 1 for a brief review of the model 
(and the Methods for the parameterisation of self-isolation and 
testing). With this model and its parameters in place, one can now 
fit the model to empirical data until the present day. Crucially, 
because the parameters of this model do not change, they 
can then be used to forecast the future trajectory, under vari-
ous adjustments to the testing parameters. The following 
conclusions foreshadow the results of these simulations: 

•   �There is no plausible parameterisation of the model that 
would or could permit a flareup or rebound of the outbreak 
following a relaxation of social distancing measures. This 
is under the qualified assumption that social distancing 
continues to be operating in the way it is modelled—and 
inferred—on the basis of the empirical evidence to date. 
In short, provided there is a graded, parametric response 
to the prevalence of infection in the population, there will 
be no rebound in the weeks following the peak of the 
first wave.

•   �A second wave is inevitable. The timing of the second 
wave depends almost exclusively on the rate at which 
immunity is lost. In other words, under the assumption 
that being infected confers immunity—and that the immu-
nity lasts for a given period—the period of immunity deter-
mines the timing of the second wave. This second wave is 

          Amendments from Version 1

This updated version includes: i) some clarifications on technical 
aspects, and ii) limitations of the study are highlighted based on 
reviewers’ comments and are listed in the Conclusion section.

Any further responses from the reviewers can be found at 
the end of the article

REVISED
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Figure 1. The LIST model. This schematic summarises the LIST (location, infection symptom and testing) generative model used for the 
following simulations. This model is formally similar to that described in (Friston et al., 2020b). Here, it has been augmented with an extra 
location state (isolation) to model people who are self-isolating because they think they may be infectious. Note that in this model there are 
no absorbing states. In other words, one can leave any state within any of the four factors. For example, one only occupies the state of being 
deceased (or testing positive and negative) for a day and then moves to asymptomatic (or untested) on the following day. This ensures that 
the total population is conserved, i.e., probability mass is conserved in terms of the ensemble density. Furthermore, it enables the occupancy 
of various states to be interpreted in terms of the rate of daily expression. The blue boxes correspond to states or compartments. The states 
within any factor are mutually exclusive, where the factors embody the factorial form of this compartmental model. In other words, every 
individual in the population has to be in one of several possible states that are characterised in terms of four factors or attributes. The 
orange boxes represent the outputs that are generated by this dynamic causal model, in this instance, daily reports of positive tests, daily 
tests and deaths.

mechanistically distinct from a fluctuation of, or rebound 
from, the first wave.

•   �There is no social distancing or surveillance strategy 
that will have any material impact on the total number 
of deaths accumulated from the onset of an outbreak to an 
idealised endemic equilibrium. However, certain strate-
gies can defer waves of infection. Specifically, testing and 
tracking can defer expression of the second wave beyond a 
time horizon, after which vaccination or other therapeutic 

interventions will render it innocuous. In short, the 
mechanism by which strategic interventions operate is 
not by eliminating the infection but by slowing it down 
sufficiently, so that its pathogenicity is dissolved by viral 
mutation, vaccination, or therapeutic advances. Here, we 
assume a time horizon of 18 months.

•   �The most efficacious strategy for deferring a second 
wave is testing and tracking. Furthermore, the logistic 
requirements are within current capabilities. The same is 
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Table 1. Parameters of the epidemic (LIST) model and priors, N(η, C). (NB: prior means are for 
scale parameters θ = exp(ϑ)).

Number Parameter Mean Variance Description

1 θn 4 1 Number of initial cases

2 θr 1/3 1/16 Proportion of resistant cases

3 θN 66 0 Population size (millions)

Location

4 θout 1/3 1/256 Probability of going out

5 θsde 1/32 1/256 Social distancing threshold

6 θcap 16/100000 1/16 CCU capacity threshold (per capita)

Infection

7 θRin 4 1/256 Effective number of contacts: home

8 θRou 48 1/256 Effective number of contacts: work

9 θtrn 1/3 1/256 Transmission strength

10 1
expinf

inf

θ
τ

 
= −  

τinf = 4 1/16 Infected period (days)

11 1
expcon

con

θ
τ

 
= − 

 
τcon = 4 1/16 Infectious period (days)

12 1
expimm

imm

θ
τ

 
= − 

 
τimm = 16 0 Period of immunity (months)

Symptoms

13 1
1 expdev

inc

θ
τ

 
− = − 

 

τinc = 5 1/256 Incubation period (days)

14 θsev 1/128 1/256 Probability of ARDS

15 1
expsym

sym

θ
τ

 
= −   

τsym = 8 1/256 Symptomatic period (days)

16 1
exprds

rds

θ
τ

 
= − 

 

τrds = 10 1/256 ARDS period (days)

17 θfat 1/3 1/256 ARDS fatality rate: CCU

18 θsur 1/8 1/256 ARDS fatality rate: home

Testing

19 θttt 1/10000 1 Efficacy of testing and tracking

20 θsen 1/10000 1 Sensitivity of testing 

21 θexp 1/10000 1 Sustained testing

22 θbas 8/10000 1 Baseline testing

23 θtes 1 1 Selectivity of testing

24 1
expdel

del

θ
τ

 
= − 

 

τdel = 2 1/4 Delay in reporting test results (days)
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not true of the first wave. In other words, it would not have 
been possible to suppress the first wave with testing and 
tracking because one would have had to have identified 
nearly every infected, asymptomatic person in the coun-
try and this would have required about over a million 
tests a week.

•   �Although, in principle, it is mathematically possible to 
defer the first wave, one would require either a very small 
population or a very large testing capacity. Furthermore, 
the efficacy of testing and tracking would have to be 
implausibly high, i.e., around 80%.

•   �The differences between the United Kingdom and 
Germany are eminently explainable under a dynamic 
causal model. As might have been anticipated, Germany 
has a greater propensity to test; however, this testing is 
substantially less selective for infected individuals than 
in the UK. Furthermore, the component due to testing 
and tracking during the first wave was less evident than 
the United Kingdom. This means that pressure is put on 
other parameters to explain the remarkably low fatality 
rates in Germany. It appears that—or it looks as if— 
Germany has a population whose host factors render it 
more resistant to infection. Furthermore, the fatality rates 
in critical care are substantially lower in Germany. In 
short, the explanation for the reduced fatalities in Germany 
probably lies in clinical surveillance and management, 
not on their testing and tracking.

In what follows, we will look at the results of simulations that 
license the above conclusions and unpack these conclusions 
quantitatively, with a special emphasis on the mechanisms and 
processes leading to different outcomes.

Secondary sources (Huang et al., 2020; Kissler et al., 2020;  
Mizumoto & Chowell, 2020; Russell et al., 2020; Verity et al., 
2020; Wang et al., 2020) and: 

•����   �https://www.statista.com/chart/21105/number-of-critical-
care-beds-per-100000-inhabitants/

•����   �https://www.gov.uk/guidance/coronavirus-COVID-19- 
information-for-the-public

•����   �http://www.imperial.ac.uk/mrc-global-infectious-disease-
analysis/COVID-19/

These prior expectations should be read as the effective rates 
and time constants as they manifest in a real-world setting. For 
example, a four-day period of contagion is shorter than the 
period that someone might be infectious (Wölfel et al., 2020)1, 
on the (prior) assumption that they will self-isolate, when they 
realise they could be contagious. Although the scale parameters 
are implemented as probabilities or rates, they are estimated 
as log parameters, denoted by ϑ = ln θ.

Dynamic causal modelling
Figure 1 provides a schematic that summarises the dynamic 
causal model used for subsequent inference and simulations. This  
model can be regarded as a factorial extension of conven-
tional (compartmental) epidemiological models (Friston et al., 
2020a). The factorial aspect means that there are several attributes 
in play when trying to model the causes of mortality and 
morbidity. Specifically, it considers the location, infection sta-
tus, symptomatology, and testing status of any individual in a 
population. This means that for each factor, there is a certain 
probability of finding someone in a particular state. Movement 
from one state to another is parameterised in terms of transition 
probabilities or rate constants. For example, the probability that 
I will stay in a state of being infectious can be parameterised 
in terms of the expected number of days that I am contagious. 
Crucially, the transitions among states within each factor depend 
upon the states of other factors. These dependencies are 
denoted by the dashed lines. For example, the probability that 
I will move from a state of having no symptoms (asympto-
matic) to symptoms depends upon whether I am infected or not. 
Note that separating the latent or hidden causes of observ-
able data in this way means that it is possible to be infected but 
have no symptoms – and vice versa. This model is formally 
the same as previous models (Friston et al., 2020b); however, 
we have introduced a fifth location state called isolation. This 
state is entered whenever I have symptoms or am waiting to 
find out whether I test positive. The key mechanism—that 
compels me to enter isolation—is a testing and tracking (FTTI) 
program that alerted me to the possibility of being infected 
prior to developing symptoms. In this quarantined isolation, 
I will remain for a given period (seven days), unless I receive 
notice that I have tested negative following a PCR test. 
Please see the Methods for a formal parameterisation of these 
contingencies and how testing data are generated.

Although this model may look complicated; it is a straight for-
ward compartmental model that can be written down in terms of a  
Master Equation, describing the discrete time updates of the 
joint probability distribution over the four factors. Please see  
(Friston et al., 2020a). Updating the joint probability (i.e., prob-
ability over all tuples of different states) allows us to model  
transitions among the states of one factor that depend upon  
other factors.

With this model in place, one can use standard variational 
procedures to fit any data at hand (Friston et al., 2007). Here, we 
used the daily reports of new (positive) cases and deaths from 
Johns Hopkins University2 and supplemented this with data 
from the UK on the total number of tests performed3. The inver-
sion of this model takes about a minute on a personal computer, 
enabling one to generate posterior estimates of the param-
eters and accompanying trajectories of hidden states. Figure 2 
shows the results of this kind of analysis for timeseries data at 

1 Shedding of COVID-19 viral RNA from sputum can outlast the end of 
symptoms. Seroconversion occurs after 6–12 days but is not necessarily 
followed by a rapid decline of viral load.

2 Available from https://github.com/CSSEGISandData/COVID-19.
3 Available from https://github.com/tomwhite/covid-19-uk-data.
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Figure 2. Posterior predictive densities. The panels on the left show the posterior predictive densities over some key outcomes. Here, 
daily death rates, new positive cases and tests performed. The blue lines represent the posterior expectation and the shaded areas the 
90% Bayesian credible intervals. The black dots corresponds to empirical data used to fit the model and estimate posteriors over the model 
parameters (i.e., the transition probabilities or rate constants in Table 1). The lower right panel reports the posterior parameter densities in 
terms of their posterior expectation (blue bars) and 90% credible intervals (pink bars). The red bars correspond to the prior expectations. 
Please see Table 1 for complete specification of the prior densities. The upper right panel shows the cumulative deaths expected under 
these parameters. The two dashed lines are for reference and correspond to yearly mortality rates for seasonal influenza (from 2014/15 
and 2018)4.

outcomes over time; for example, the cumulative deaths over a 
six-month period (as shown on the upper right panel). Notice 

the point of writing (10th May 2020). The left panels show the 
data (dots) superimposed upon a posterior predictive density. 
This density is a probabilistic statement about the most likely 
outcomes under the model. Here, it is summarised in terms 
of the posterior expectation or most likely outcome and 90% 
Bayesian credible intervals (blue lines and shaded areas, respec-
tively). The parameters upon which these predictions are 
based are shown in the lower right panel. The outcomes can 
either be expressed in terms of daily rates or cumulative 

4 Public Health England estimates that on average 17,000 people have 
died from the flu in England annually between 2014/15 and 2018/19. 
However, yearly deaths vary widely, from a high of 28,330 in 2014/15 to 
a low of 1,692 in 2018/19 (dashed red lines in Figure 2). Please see 
Public Health England annual flu reports here: https://www.gov.uk/
government/statistics/annual-flu-reports
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Figure 3. Reproduction rates and herd community. This figure supplements the previous figure with posterior estimates of the 
reproduction rate (please see Methods) and the prevalence of immunity (a.k.a. herd immunity). Again, the lines represent posterior 
expectations and the shaded areas 90% credible intervals. The yellow line in the right panel depicts estimates based upon a Bayesian 
regression model. These are the kind of estimates used to inform government policy. Please see main text for further discussion.

5 Available from https://mrc-ide.github.io/covid19estimates/#/download.

that these posterior predictive densities cover the past and the 
future. In other words, they are generated from parameter 
estimates that do not change in time. This means that one can 
regard these results as a best fit to the observed data to date. 
Alternatively, they can be regarded as a forecast of the future. These 
results suggest that we are nearly halfway down the decline in 
daily death rates, following the peak (in early April). Crucially, 
because we have a generative model underneath these data, 
we can also generate data that has not yet been observed.

Figure 3 provides two examples of this, in terms of the 
effective reproduction rate (R) and the prevalence of immu-
nity in the left and right panels, respectively. The prevalence of 
immunity (a.k.a. herd immunity) is interesting because it is 
potentially measurable, if we had serological testing of suffi-
cient sensitivity and specificity (Winter & Hegde, 2020; Yong 
et al., 2020). When these data become available, they then can 
be used to improve the posterior estimates of the parameters 
and shrink uncertainty about the trajectory of seroprevalence 
(Vespignani et al., 2020) or immunity (Kissler et al., 2020).

Notice that the reproduction rate is treated as an outcome. 
This is an important conceptual point. The reproduction rate 
is not a cause of fatality—it is a measure or consequence of the 
underlying causes. These can be computed from the changes in 
the prevalence of infection and the expected duration of being 
contagious (please see Methods). Here, the reproduction rate 
starts at just under three and then falls quickly at the onset of 
social distancing to about 0.6. In the future, it will gently rise as 
herd immunity is lost and may ultimately foreshadow a second 
wave (see below). The yellow line corresponds to the best 
available estimates of the reproduction ratio based on hierarchical 
Bayesian Regression, using specific known covariates (regres-
sors) corresponding to different stages of lockdown (Flaxman 
et al., 2020).

These estimates5 are the kind of numbers used to currently 
to guide governmental policy in the UK. They can be regarded 
as the best estimates from state-of-the-art curve fitting. The 
key observation here is that they necessarily depend upon data 
that have already been observed. In other words, they summarise 
the recent past. This can be seen by comparing the yellow line 
with the blue line in Figure 3. The real-time estimates 
afforded by dynamic causal modelling (blue line) evince a more 
nuanced decline that precedes the sharp drop in conventional 
estimators (yellow line). This speaks to the potential advantage 
of using estimates of late states to furnish real-time or instan-
taneous estimates of the reproduction rate (as opposed to curve 
fitting or Bayesian regression estimators).

Figure 4 reproduces the results above (in the upper panels) and 
supplements these outcomes with the latent causes or hidden 
states that correspond to the factors in Figure 1. Here, we have 
shown the course of the pandemic over 18 months, as opposed 
to a six-month period. This illustrates the basic anatomy of 
the pandemic with an initial first wave, followed by a second 
wave some 36 weeks (nine months) later. The timing of this 
second wave depends upon the rate at which immunity is lost. 
In these simulations, a 16-month period of immunity was 
assumed.

Focusing on the initial outbreak (i.e., first wave), we can see 
the effects of social distancing as manifest in a very small 
probability of being found at work during the period of 
lockdown (blue line in the location panel). This coincides 
with a large number of people self-isolating (about 60% at its  
highest) during this period (purple line in the location panel). 
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Figure 4. Latent causes. This figure shows the same data (with dots) and posterior expectations (solid lines) as in the previous figure 
over an 18-month period. However, here, it is supplemented with the underlying latent causes or expected states in the lower four panels. 
These constitute the hidden states that generate the outcomes in the upper two panels. The solid lines are colour-coded and correspond 
to the states of the four factors in Figure 1. For example, under the location factor, the probability of being found at work declined steeply 
from about 20% to 0 at the onset of the outbreak. At this time, the probability of isolating oneself rises to about 15% during the peak of the 
pandemic. After about five weeks, the implicit social distancing starts to relax and slowly tails off, with accompanying morbidity (in terms of 
symptoms) and mortality (in terms of death rate). As herd immunity (yellow line in the infection panel) declines the prevalence of infection 
accelerates to generate a second wave that peaks at about 48 weeks.
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Under this model, we are currently experiencing the relaxation 
of social distancing, with a partial return to the pre-pandemic 
probability of being found at work. However, the world to which 
we return is differs from before the lockdown. This is because 
a substantial number of people have acquired immunity, in 
virtue of being infected (whether or not they show any subse-
quent symptoms). The acquisition of herd immunity is depicted 
by the yellow line in the infection panel. Although there are no 
data that inform these estimates, equivalent data from Germany 
is starting to appear. We will return to this later. Notice that 
a substantial proportion of the population (about 38%) 
have been estimated to be resistant. In other words, they have 
geographical or host factors that render them incapable of par-
ticipating in the pandemic. For example, they may be isolated 
geographically6 or may have genetic or developmental fac-
tors that preclude infection and viral shedding. In terms of 
symptoms, the most prevalent expression of the pandemic is in 
terms of symptoms that accompany an increase in self-isolation—
and pre-empt a small number of people who go on to develop a 
severe syndrome (e.g., acute respiratory distress) from which they 
may not recover. The testing panel shows the progressive 
increase in people waiting to be tested (blue line) that subsumes 
people who are subsequently positive and negative. Initially, 
the number of negative tests is about twice the number of posi-
tive tests, but this ratio increases as the number of infected 
people in the population declines. The question is: what would 
happen to these trajectories under different monitoring or  
testing policies over the next few months?

Figure 5 provides an analytic answer to this question in terms 
of the effects on daily death rates—as a function of time—as 
testing parameters are adjusted. Here, we enhanced the param-
eters that underwrite tracing and tracking (blue line), testing 
sensitivity (red line), testing delay (yellow line), testing selec-
tivity for infected people (purple line) and, finally, the baseline 
probability of being testing (green line). The upper panel 
shows the effect on daily deaths when each of these parameters 
is increased by a scaling factor of one natural unit (i.e., 2.72). 
The key thing to observe is that the effect of changing these 
parameters itself changes over time. Here, we considered a 
period of 18 months; under the assumption that by the end of this 
period, there will be an effective vaccination program or other 
therapeutic advances.

There are two key things to note from this sensitivity analysis. 
First, the effect of any testing parameter on the first peak 
(before the vertical blue line), relative to the second peak. This 
second peak emerges because of a loss of immunity, modelled 
here with an immune period of 16 months (see Table 1). The 
second thing to note is that the effects are biphasic in nature. 
For example, increasing baseline testing initially decreases 
death rates with both the first and second waves, but increases 
death rates after the waves peak. At first glance, this may seem 

counterintuitive; however, there is a simple explanation. This 
rests on the fact that any surveillance measure has the effect 
of delaying the spread of the virus, such that the onset of 
successive waves of infection is suppressed and the peak is 
deferred or pushed into the future. In other words, increased 
surveillance affords the opportunity to reduce the spread of 
the virus, such that successive waves of infection are delayed 
and dispersed—along the lines of the ‘curve flattening’ notion. 
Indeed, this was the primary motivation for social isolation to 
avoid excess mortality due to a saturating clinical care capac-
ity. However, in the absence of any limitations on critical 
care, surveillance, in and of itself, cannot attenuate the even-
tual spread of the virus throughout the population—it can only 
delay the spread. Metaphorically, this process can be imagined 
as rain falling from clouds. Eventually, the downfall will 
reach the sea. The only thing that one can do is to moderate the 
flow of water and mitigate against flood damage.

Quantitatively, this key point is reflected in the overall 
number of lives that will be saved by enhancing one aspect of 
surveillance or another. The lower panels in Figure 5 shows the 
cumulative number of lives saved under the five different 
parametric enhancements. As might be expected, increasing 
surveillance in various ways generally decreases the cumula-
tive deaths; however, these effects are quantitatively very small 
(in the tens for an effect after the first wave (left panel) and in 
the hundreds after the second wave (right panel). This suggests 
that the utility of enhanced surveillance (e.g., tracing and 
tracking) can only be manifest if the second wave is pushed 
sufficiently far into the future that it is rendered innocuous 
through vaccination or other therapeutic interventions.

This is illustrated in Figure 6 which simulates the trajectories 
that one might expect when increasingly efficacy of testing and 
tracking (see the Methods for how efficacy is parameterised). 
This figure uses the same format as Figure 4 but reproduces 
trajectories under increasing levels of testing and tracking. In 
brief, one can see is that there is hardly any effect on the first 
wave in terms of social distancing (location), prevalence of 
infection (infection), or morbidity (symptoms). However, the 
peak of the second wave is shifted progressively later in 
time, until it disappears beyond the 18-month time horizon 
simulated here. These simulations, as noted above, used a loss 
of immunity with a time constant of 16 months. This may be a 
somewhat pessimistic estimate of the rate at which we lose 
immunity; however, it clearly demonstrates the utility of testing 
and tracking under this (arguably worst-case) scenario. In sum-
mary, as the efficacy of testing and tracking increases, the second 
wave is progressively deferred, and the number of positive 
cases detected in the population rises. These effects are 
highlighted with the blue and orange arrows. So, what levels 
of testing and tracking would be necessary to preclude a second 
wave within a time horizon of 18 months?

Figure 7 answers this question by plotting the cumulative 
deaths and peak testing rates as a function of the efficacy of 
tracking and tracing. These posterior predictions were based on 
increasing the efficacy of testing and tracking from 0 to 1 in 

6 See https://www.esade.edu/itemsweb/wi/research/ecpol/EsadeEcPol_
Insigth6_Exit_Strategy.pf for a discussion of isolation in terms of social 
networks and green zones.
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32 steps—depicted every four steps in the previous figure. As 
the efficacy of tracking and tracing increases there is a marked 
reduction in cumulative deaths in the order of 10,000 people. 
This reflects the delay in the second wave (solid line). Quan-
titatively, it would be sufficient to have an efficacy of about 
24% to defer the second wave until 18 months. According to 
these estimates, this would entail peak testing rates of less than 

10,000 tests per day, well within the reach of current testing 
capacity.

The dotted lines show the corresponding predictions for 
a testing and tracking strategy that was instantiated prior to the 
first wave. These results are interesting in the sense they speak 
to what would have happened had the UK government pursued 

Figure 5. Sensitivity analysis. This figure illustrates the influence on death rates of various parameters that model diagnostic surveillance 
or testing. The upper panel shows the change in death rates with respect to the logarithm of the parameters controlling the efficacy of 
tracing and tracking (blue line) PCR testing in response to increasing levels of infection (red line), delay in reporting test results (yellow line), 
the selectivity for people who are infected (purple line) and baseline testing (green line). The lower panel shows the cumulative sensitivities 
or changes over time. The lower left panel sums these changes over a 20-week period prior to the onset of the outbreak, while the lower 
right panel accumulates the derivatives over a period of 18 months. The key thing to observe here is that the effect of changing testing or 
surveillance parameters is more marked during the second wave, relative to the first. Furthermore, note that the change in accumulated 
deaths, with respect to a unit change in log parameters is very small (in the hundreds as opposed to the thousands). This reflects the fact 
that the effect of these testing parameters is to shift the curve, not to attenuate its amplitude.
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Figure 6. Testing and tracking. This figure reports the results of simulations under different protocols for testing and tracking. Specifically, 
we increased the probability of testing people who were infected but asymptomatic after the first wave. This increase in efficacy was from 
0 to 1 in 32 steps. The results are shown using the format of Figure 4, for every fourth step. The key thing to take from this figure is that 
as one increases the efficacy of testing and tracking, the second wave is deferred or postponed beyond a time horizon (here, 18 months). 
At the same time, the total number of detected (positive) cases per day increases. These effects are summarised by the blue and orange 
arrows, respectively.
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Figure 7. Suppressing waves. This figure summarises the results of the previous figure in terms of cumulative deaths after an 18-month 
period, as a function of the efficacy of testing and tracking. The left panel shows the total number of deaths as a function of the efficacy of 
a FTTI protocol that starts after the first wave (solid line) or before the first wave (broken line). The equivalent results are shown in the right 
panel in terms of the requisite peak testing rates over the course of the outbreak. The important thing to note is that that many lives, in 
principle, could be saved by eluding a second wave, provided the efficacy of FTTI exceeds about 24%. This is sufficient to defer or delay the 
second wave until it can be rendered innocuous (e.g. through the deployment of an efficacious vaccine). The suppression of the second 
wave is shown by the upper blue arrow. The lower blue arrow highlights the equivalent effect on the first wave had testing and tracking been 
implemented at the onset of the outbreak—and maintained at efficacy levels of over 70%. However, the requisite number of tests per day for 
intermediate level of efficacy may well have exceeded logistic capacity. This is illustrated by the red line in the right panel (here, 250,000 tests 
per day). In short, if one had a very small country or exceedingly well developed FTTI resources, it would have been possible to eliminate the 
first wave; however, for a country like the United Kingdom, this would probably not have been a practical option.

a testing and tracking strategy at the onset of the pandemic. 
In principle, there was a potential to defer the first wave and 
thereby elude any deaths due to COVID-19. This is shown by 
the second arrow in the left panel of Figure 7. However, 
things are not quite that simple. In order to eliminate the first 
wave, it would have been necessary to have an efficacy of test-
ing and tracking of about 80% or more. In other words, nearly 
everybody who was infected but asymptomatic would have 
to have been identified. A more realistic efficacy of 50% 
would have reduced deaths in the initial phases of the outbreak; 
however, this would have required peak testing rates beyond 
the capacity of a country like the United Kingdom. This is 
illustrated by the dashed line in right panel that surpasses 
an arbitrary threshold of 250,000 tests a day. In short, 
although a suppression strategy based on testing and tracking 
is a theoretical possibility, it cannot be realised after the number 
of infected people exceeds testing capacity. It is interesting 
to speculate what this means for countries like South Korea 
and Singapore who have managed to elude a substantive first 
wave. In virtue of the fact that they have not acquired a 
meaningful herd immunity, they may have to maintain a high 
level of efficacy of FTTI, in conjunction with strict border  
controls and accompanying quarantine. From this perspective 
of the United Kingdom, the question is: do the same mechanics 
of surveillance apply to the second wave?

The answer to this question is no. This is because the con-
text in which the second wave manifests is very different from 

the first wave. This follows because of the acquisition of herd 
immunity, which means that the spread of the virus—in the 
run-up to the second wave—is substantially attenuated. 
In turn, this means that the requisite efficacy of FTTI is substan-
tially smaller. This point is illustrated in Figure 8 by evaluat-
ing the predicted outcomes at the (18-month) time horizon under 
four scenarios. The first scenario was a scenario based 
upon the posterior estimates of the testing parameters. The sec-
ond scenario entailed an enhanced baseline testing. The third 
scenario was an enhancement of selective testing; namely, 
increasing the relative probability of testing infected people. 
Finally, we consider a FTTI strategy, in which the efficacy was 
increased from near zero to 25%. The upper panels show the 
posterior predictions as a function of time (left panel) and 
as a phase-space summary of the same trajectories (right). 
This way of detecting trajectories plots one outcome against 
another: i.e., plotting the daily rates of new cases against daily 
deaths.

The resulting trajectories illustrate effects of various 
interventions. In brief, as we increase the rate or selectivity of 
testing, we shift the trajectories upwards. In other words, we 
increase the number of detected cases but with little effect on daily 
deaths. In contrast, the FTTI strategy suppresses the second 
wave and reduces daily deaths. The lower panel quantifies the 
endemic endpoint at the time horizon of 18 months. This is not 
an endemic equilibrium but stands in for the state of affairs at  
the point of a presumed vaccination or therapeutic intervention. 
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Figure 8. Different testing strategies. This figure reports simulations of what might happen under different testing or surveillance 
regimes. The upper panels show the simulated daily deaths predicted under four strategies. These include the current strategy based 
upon the posterior expectations of testing parameters. The red lines show the response to an enhanced baseline testing. The yellow lines 
simulate the outcomes under an increase in selective testing, while the green lines illustrate the impact of testing and tracking within 
efficacy of 25%. For the enhanced testing, the posterior expectations of the log parameters were increased by a value of one (i.e., the scale 
parameters were multiplied by 2.72). The FTTI parameter was increased to a value of one quarter. The upper left panel plots the predicted 
deaths as a function of time for an 18-month period. The upper right panel shows the same data but plotted as a trajectory in a phase space, 
spanned by daily deaths and reports of new cases. This illustrates the fact that, mathematically, the trajectories into the future correspond to 
flows towards an attracting orbit or set. In this instance, the systems have point attractors. However, here, we have assumed that a vaccine 
is available at 18 months, at which point the trajectories terminate in the filled circles. The lower three panels characterise this endpoint in 
terms of daily deaths, daily tests and total number of lives saved since the onset of the outbreak. It can be seen that, as might be anticipated, 
the successive enhancements of testing reduce daily deaths. The most expensive strategy, in terms of daily tests, is the enhanced testing 
strategy requiring 160,000 tests again. The remaining strategies require a more modest 70,000 tests per day. The most efficient and life-
saving strategy is the implementation of testing and tracking that could, under this model, said more than 15,000 lives. The blue dots in 
the upper panels denote the endpoints that, here, stand in for the endemic equilibria under the four strategies. Note that the testing and 
tracking strategy is the only its approach that materially decreases daily deaths, both over time and at the endpoint.

One can see that the various testing strategies progressively 
reduce the daily death rates at this endpoint. For example, with 
an FTTI efficacy of 25%, the daily deaths due to COVID-19 
are about 10 per day. This is roughly the number of people 
who are killed in road traffic accidents7. The number of tests 

at this time, are reasonably manageable (about 50,000 per day 
for the FTTI strategy). Crucially, the number of lives saved 
is reduced considerably under, and only under, FTTI. In this 
example, the elimination of the second wave would save about 
16,000 lives. Notice that simply elevating the sensitivity or 
selectivity of testing has little effect on the mortality rates. 
Only the FTTI strategy enables the early identification of infected 
individuals, their subsequent isolation and ensuing deferment 
of a putative second wave.

7 https://www.gov.uk/government/collections/road-accidents-and-safety-
statistics.
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An important (if obvious) observation, implicit in this treatment, 
is that testing can be deployed in different ways with distinct 
agendas. Crucially, the only kind of testing that matters for sav-
ing lives is identifying those individuals who are infected 
before they can spread the virus. This is the raison d’être for 
FTTI, as opposed to simply increasing test rates. Increasing 
the baseline, sensitivity or selectivity of testing provides more 
precise data for epidemiological modelling and subsequent 
policy decisions; however, in and of itself, it will not have any 
material effect on the progression of the pandemic. Similarly, 
testing people who are symptomatic is too late from the point of 
view of isolating individuals who may become contagious—even 
if it allows people to return to work early. Clearly, all three 
agendas are important; however, it may be useful to consider 
(and model) testing in terms of its distinct aims; namely, to defer 
a second wave, to enhance epidemiological surveillance and 
to ease pressure on the economy and clinical care.

A comparative analysis
The conclusions from the above modelling are clear. There 
is an imperative to instantiate (or possibly re-instantiate) 
FTTI at modest levels of efficacy in the next few months—to  
preclude a second wave by delaying it. Furthermore, trying 
to maintain an early FTTI strategy at effective levels would 
have beenlogistically difficult. This begs the question: how 
has Germany managed to suppress its mortality rates, if it  
contended with the same kind of outbreak confronting the  
United Kingdom? To answer this question—at the fairly crude 
level—we repeated the dynamic causal modelling using daily  
new cases and deaths from Germany. The trajectories of these  
outcomes and their latent causes are shown in the upper and 
lower panels of Figure 9, respectively. Because there was no  
available data on the total number of tests, we assumed a  
constant baseline testing.

The ensuing differences in the outcomes and latent states 
speak to what we already know. For example, despite having 
about the same number of people testing positive during the 
first peak, the mortality rates in Germany are about a quarter 
of those witnessed in the UK. The inferred surveillance and 
testing suggest that Germany started with a baseline testing 
rate, such that at any one time 0.1% of the population was 
waiting for their test results. The UK, conversely, accrued its 
testing capacity during the first wave and, according to 
these estimates, now exceeds the German testing rates. Despite 
increased testing in Germany, the number of people self- 
isolating was about half that in the UK (as estimated under 
this model), with less than 10% of the German population 
quarantining themselves at the peak of the pandemic. 
Furthermore, Germany’s social distancing was less stringent 
and shorter, as reflected by the blue lines in the location panel 
of Figure 9. The infection panel is telling; in the sense that 
about 38% of the UK population are estimated to be resistant. 
However, this rises to about 58% of the German population. This 
is a marked difference suggesting either geographical or host 
factors may play an important role in the differential fatality 
rates. Indeed, when one examines the underlying posterior 
parameter estimates for the trajectories depicted in Figure 9, it 
becomes clearer how Germany and the UK differ.

Figure 10 shows the parameters with the greatest difference 
between Germany and the UK, in terms of the country spe-
cific estimates (upper panels) and the differences (lower panels). 
The parameters are shown in terms of log parameters 
(left panels) and the corresponding scale parameters (right 
panels). The scale parameters are nonnegative rate constants 
and probabilities, while the log parameters are simply the log 
transformed scale parameters. For clarity, only the 12 param-
eters with the greatest posterior difference are shown. They have 
been ranked such that the parameters on the left show the great-
est difference (the parameters are labelled by the subscripts 
in Table 1). The key thing to take from this comparison is that 
there are marked differences between Germany and the UK, 
both in the testing parameters and the parameters pertain-
ing to susceptibility and clinical surveillance. Indeed, the most 
marked difference is a fivefold increase in the sensitivity of 
German testing to the prevalence of infection. This testing 
is nearly 5 times less selective for infected people than in the 
UK. This is consistent with what we know from the German 
approach relative to the U.K.’s approach. The third largest dif-
ference is the number of people infected (n) at the beginning 
of the timeseries. The inference here is that Germany started 
with about three times as many infected people as the United 
Kingdom. By virtue of the fact that Germany tested more 
sensitively but non-selectively from the onset of the 
outbreak, the sustained testing component (exp) is much 
smaller. Note also that the FTTI parameter (ttt) is also smaller. 
In other words, there is no evidence that testing and tracking in 
Germany contributed to their surveillance program. The key 
parameters to note here are the substantial (about 50%) increase 
in the proportion of the German population that were resist-
ant to infection and a (about 20%) decrease in the probability 
of fatality in critical care. This is despite Germany having 
a larger population (83 million as opposed to 66 million in 
the United Kingdom). Finally, the probability of developing 
severe symptoms when infected is slightly lower than in the  
UK.

The evidence here contradicts the hypothesis that Germany’s 
relatively low fatalities are caused by a more vigorous test-
ing programme. At one level, this hypothesis is naive because 
testing cannot cause morbidity. It can only detect the conse-
quences of morbidity. As noted above, the only way that testing 
can affect fatalities is by delaying the spread of the virus— 
and this is most effective when infected but asymptomatic indi-
viduals are identified through testing and tracking. A more 
plausible interpretation of these parameter estimates, and 
ensuing predictions is as follows:

The proportion of people testing positive who subsequently 
died in Germany is lower not because people who are infected 
are less likely to die but simply because Germany has tested 
more people. The reduced mortality rates may reflect the 
differential prevalence of infection in cohorts of the popu-
lation that are more resistant. The relative reduction in the 
probability of developing severe symptoms and subsequent 
fatality may well reflect the clinical surveillance and manage-
ment of symptomatic people. For example, anecdotal reports 
from respiratory physicians in Germany suggest a more 
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Figure 9. Germany and the UK compared. This figure shows the latent causes (lower panels) of observed and predicted outcomes 
(upper panels) for Germany and the UK. The coloured pairs of lines in each panel use the same format as Figure 4 and refer to the two  
countries in question. The generative model provides a good account of the empirical data for both countries (black dots in the upper 
panels), with formally similar fluctuations in latent epidemiological states. However, there are some key quantitative differences. For  
example, the degree of self-isolation and social distancing is attenuated by roughly one half in Germany. This pertains both to the  
percentage of people self-isolating and the duration of social distancing at a societal level. This is also reflected in the lower prevalence 
of symptomatic individuals at the first (and second) peaks of infection. These differences are, in large part, due to the number of people  
who are susceptible to infection, as reflected in the proportion of people who are resistant (about 38% for the UK and 58% for Germany). 
The parameters that underwrite these trajectories are shown in the next figure.

prospective clinical management, with lower thresholds for 
admission to critical care. In contrast, much of the disease 
burden in the UK appears to have been managed in an eld-
erly and vulnerable population in care homes. This cohort are 
unlikely to survive the rigours of intubation in an intensive 
care unit and their clinical management is necessarily more 
palliative. In short, Germany may have had to deal with a  

different kind of problem than that confronting the UK. In  
short, although German testing and clinical surveillance was  
more in evidence, only the clinical surveillance mattered in terms 
of mortality.

Clearly, this is purely speculation; however, in principle, it 
should be possible to evaluate the evidence for these speculative 
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hypotheses when more detailed data becomes available. 
This speaks to one application of dynamic causal modelling 
to compare different models in terms of their evidence (Penny 
et al., 2004); for example, comparing a model of outcomes 
in Germany and the UK with, and without, country-specific 
differences in the parameters.

Conclusion
The key conclusions from this kind of modelling are twofold. 
First, the hypothesis that a flareup or rebound of infections 
will ensue if we relax social distancing prematurely are not 
supported by the evidence at hand. A popular conception of 
this immediate (second wave) is akin to lowering the ‘flood 

gates’ too soon and being overwhelmed with a deluge of  
infections. However, this picture may be a false impression. There 
can be no flood of infections because a sufficient proportion 
of the population have already been exposed to the virus. 
These people preclude a rapid spread of the virus through the 
population by acting as a retardant or buffer that suppresses 
the effective reproduction ratio. In other words, the first wave 
cannot flareup because it has largely exhausted the necessary 
substrate of susceptible individuals it needs to disseminate itself. 
This speaks to the second key conclusion.

Over the forthcoming months any ‘flood’ will be a ‘trickle’. 
In this limited window of opportunity, FTTI protocols 

Figure 10. A parametric comparison. This figure shows the posterior expectations of the model parameters form Germany and the UK. 
The upper panels show the estimates for each country separately, while the lower panels show the differences. The left panels show the 
parameters in terms of their logarithmic form, while the right panels show the exponentiated (scale) parameters. In the upper panels, the 
UK parameters are in blue and the German parameters are in orange. The labels on the X axis correspond to the parameter subscripts in 
Table 1. The key thing to take from this figure is that the most marked (quantitative) differences between the two countries lies in the 
parameters pertaining to testing; namely, the sensitivity to the prevalence of infection, the selectivity of testing in terms of whether people 
are infected or not and the sustained testing after the first peak. Having said this, testing and tracking is actually less in Germany—as 
estimated by the model—than in the UK, while Germany looks (i.e., appears) as if it has a more sensitive testing or surveillance program 
that is less selective for people who are infected. These testing parameter differences explain why the number of positive cases reported 
is about the same for United Kingdom and Germany, while the latent number of people who are infected and subsequently die is much 
less (by a factor of roughly 4). The actual cause, according to this model, of this differential mortality lies in the clinical and management 
parameters. These include an increased number of resistant members of the population and a reduced fatality rate, when severely ill. 
Furthermore, there is a decrease probability of developing severe symptoms when infected.
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become viable, in the sense that detecting asymptomatic and 
infected individuals with a reasonable (e.g., 25%) efficacy 
would be sufficient to delay the re-emergence of the virus—a 
re-emergence that rests on, and only on, a slow loss of immu-
nity. In short, FTTI will work after the first wave, even if it was 
logistically viable before the first wave. If, collectively, we 
lose immunity over a period of many months or years, then a 
second wave can be eluded, via FTTI, saving thousands of 
lives. This is under the proviso that a second wave can be 
pushed sufficiently far into the future, where it is rendered 
innocuous by vaccination or other interventions.

Clearly, this narrative depends on the acquisition of 
(herd) immunity following the first wave and its subsequent 
loss due to population fluxes, geo-social and serological factors.  
The big question at the moment is whether the first wave 
has induced a sufficient level of herd immunity to open the 
window of opportunity for testing and tracking. Although 
there is no current data for the UK, early studies in Germany 
speak directly to this issue. Figure 11 reproduces the hid-
den states in Figure 9, with a focus on infection status. The 
prevalence of immunity is shown as a yellow line. At the peak 
of the first wave (shortly after 60 days) the inferred level of 
immunity is 15%. This is the level of immunity estimated 
empirically in provisional reports of a serological study of 
people living in a region near Bonn (Streeck et al., 2020)8. 
Results of this sort are encouraging and endorse the infer-
ences afforded by dynamic causal modelling. Perhaps more 
importantly, over the next few weeks more serological studies 
will become available and we will know with much greater 
certainty whether the above narrative is licensed by empiri-
cal data. If not, these data can be assimilated into the model to 
update our (Bayesian) beliefs about what has happened, what 
will happen and what could happen. 

This DCM does not include the influence of repeated seeding.  
For example, the UK has detected introductions of SARS-CoV-2 
cases, which is much higher than the assumed number of  
initial cases in this study (Firth et al., 2020). However, for  
simplicity, we have assumed that the community transmission 
had, quantitatively, a much greater contribution than reseeding. 
Having said this, it would be interesting to compare mod-
els with and without reseeding to test this assumption  
formally.

In this work, the model assumptions on contact patterns are  
simplified for e.g. age-stratified contact patterns are not  
considered (du Plessis et al., 2020). However, the current  
extensions of the model with eight stratification and contact 
matrices have been developed and are available in our open-
source code base (DEM_COVID_S.m). Recent work on age 
stratified models using ONS data with age demographics 
now underwrites the dashboard9 based upon the current DCM 

(DEM_COVID_UK.m). However, in the current model, we have 
simply lumped together all age groups—and have focused on  
heterogeneity in contact rates by conditioning them on different 
locations in the location factor.

Here we also note that the estimation of the true number of  
infected people from noisy timeseries data is a real challenge 
and different approaches are proposed, with very different  
outcomes (number of total cases from 2 times to 15 times the 
number of diagnosed cases), see (Bohning et al., 2020; Phipps  
et al., 2020). It is indeed the potential to estimate the true number 
of infected people (and other key latent variables) that led us 
to adopt and advocate the generative modelling approach of 
DCM, coupled with variational Bayesian inference that allows 
us to quantify and account for uncertainty in the case and  
death data. A validation of these kinds of estimates, with 
those provided by Edge Health, was recently reported in the  
Guardian10.

Methods
Modelling self-isolation
Equipped with an extra location (isolation) state enables one 
to distinguish between simply staying at home or being out and 
about (i.e., at work). These states are rough approximations 
to the different kinds of environment we find ourselves in 
and are used to differentiate the number of contacts that 
could potentially transmit the virus from one person to another. 
When considering the parameterisation of population dynam-
ics, in terms of being in a particular state, one has to parameter-
ise the time spent in that state, in relation to the probability of 
leaving or entering it. In this instance, the probability of enter-
ing self-isolation is unity when you develop symptoms or 
submit to PCR testing. You then remain in that state for seven 
days, unless you receive notification that you have tested nega-
tive. While in this state, you can neither infect nor be infected 
by anybody else. Mathematically, this can be parameterised 
as follows, where τ

iso
 is seven days (conditional on not being 

in critical care or the morgue) 

( )
( )

1

1 if sympotomatic, positiveor waiting

0 if negativeand asymptomatic

exp 1 otherwise
t t

iso

P isolation isolation
τ

+


= 
 −     

(1.1)

Clearly, the transition from one location state to another 
now depends upon the testing factor. If you are waiting for a 
test, you move into isolation and if you are negative you leave. 
It is this conditional dependency between the factors that 
mediates the efficacy of FTTI.

Modelling FTTI
The parameterisation of FTTI and other testing state 
transitions is a bit more delicate. This is because there are several 
reasons you might be tested that depend on several factors. 

8 Preliminary results from a town of about 12,500 in Heinsberg—a region 
in Germany that had been hit hard by COVID-19—suggest a seropositive 
prevalence of 14% of 1007 people assessed between March 30 and  
April 6 2020.

9 https://www.fil.ion.ucl.ac.uk/spm/covid-19/dashboard/local/

10 https://www.theguardian.com/world/ng-interactive/2021/jan/10/one-in-
five-have-had-coronavirus-in-england-new-modelling-says
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Figure 11. Herd immunity. This figure reproduces the results of Figure 9 but with a focus on infectious status. Here, the estimated 
prevalence of infected people, contagious (infectious) people and immune people are shown as a function of time since the onset of the 
outbreak (25th of January 2020). The purple bar indicates the level of estimated seroprevalence in a region in Germany as reported in streak 
et al. This matches the predictions of the model; namely, a 15% herd immunity at the peak of the infection. According to this analysis, this 
level of herd immunity is contextualised by the proportion (about 42%) of the population that are susceptible to infection and subsequent 
morbidity.

In this model, we parameterise testing by first establishing a 
time-dependent probability of being tested on any given day. If 
we now condition the probability of being tested on whether 
or not you are infected, we need to parameterise the relative 
probability of being tested when an infected, in relation to 
not being infected. This means that the total probability of 
being tested is a weighted average of two probabilities, param-
eterised as follows (Please see Table 1 for a description of the 
parameters): 

( ) ( ) ( ) ( )

( )
( ) ( )

( ) ( )

( )

1

tes tes sen

sen
tes

P tested P tested infected P infected P tested not infected P not infected

P P tested infected P

P tested
P P tested not infected

P infected P infected

θ

θ

= +

⇒

= =

= =
+ −  

(1.2)

where the probability of being tested has three components: 

( ) ( )exp( ) bas senP tested P infected P immuneθ θ θ= + +                        (1.3)

The first is a baseline probability. For the UK analyses, this 
parameter was proportional to the total number of tests up 
until the present time, and the maximum number of tests in the 
future. The second parameterises a sensitivity to the prevalence 
of infection in the community and increases with infection 
rates. The final term is a sustained response following onset 

of the first wave. Here, we use the level of immunity as a 
proxy for a gently declining function of the cumulative 
number of affected people. Each of these terms has a parameter 
enabling one to fit a time-dependent probability of being 
tested. Finally, we have to consider targeted testing of indi-
viduals who have been identified as having been in contact with 
an infected individual. This affords an enhanced probability 
of testing if, and only if, you are infected and asymptomatic. 
By adding this probability to the probability of being tested 
when infected, we supplement general screening with a FTTI 
parameter as follows: 

( ) ( ), 1tes ttt tesP tested infected asymptomatic P Pθ= + −                    (1.4)

The ensuing parameter is simply the efficacy or extra prob-
ability that I will be tested if I am infected and asymptomatic. 
If it were possible to trace and test everybody who has been 
exposed and contracted the virus prior to developing symptoms, 
this efficacy will be one. In the absence of any targeted 
testing efficacy will be zero. A priori, the efficacy was set to 
very low levels of one in 10,000 people, per day.

Effective reproduction rate
The effectively production rate is a fundamental epidemio-
logical constant that provides a useful statistic that reflects the 
exponential growth of the prevalence of infection. There are 
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several ways in which it can be formulated and estimated. For 
our purposes, we can generate an instantaneous reproduction 
rate directly from the time varying prevalence of infection as 
follows: 

( )
( )1

exp

ln 2( )
ln

( )

t t con

t
t

t d

R K

P infectedK
P infected T

τ

+

= ⋅

= =
                                                         

(1.5)

These expressions show that the reproduction rate reflects the 
growth of the (logarithm of) proportion of people infected— 
and the period of being infectious. This number is formally 
related to the doubling time T

d
. Note that the reproduction 

rate is not an estimate in this scheme: it is an outcome that 
is generated by the latent causes or hidden states inferred by 
inverting (i.e., fitting) the model to empirical timeseries.

Software note
The annotated (MATLAB/Octave) code is available as part  
of the free and open source academic software SPM (https:// 
www.fil.ion.ucl.ac.uk/spm/), released under the terms of the 
GNU General Public License version 2 or later. The routines are 
called by a demonstration script that can be invoked by  
typing DEM_COVID_T at the MATLAB prompt. For this  
technical report, we used MATLAB R2019b and SPM12 r7850  
(archived at https://doi.org/10.6084/m9.figshare.12174006.v4  
(Friston et al., 2020c)).

We recommend anyone interested in applying this model 
should use the latest version of the software available. Details 

about future developments of the software will be available from 
https://www.fil.ion.ucl.ac.uk/spm/covid-19/.

Software availability
Software is available from: https://www.fil.ion.ucl.ac.uk/spm/
covid-19/

Archived source code at time of publication: https://doi.org/ 
10.6084/m9.figshare.12174006.v4 (Friston et al., 2020c)

License: GLP 2.0+

Data availability
Source data
The data used in this technical report are available for academic 
research purposes from the COVID-19 Data Repository by the 
Center for Systems Science and Engineering (CSSE) at Johns 
Hopkins University, hosted on GitHub at https://github.com/
CSSEGISandData/COVID-19 and from the Coronavirus 
(COVID-19) UK Historical Data repository by Tom White 
hosted on GitHub at https://github.com/tomwhite/covid-19-uk- 
data and also from figshare.

Underlying data
Figshare: Dynamic Causal Modelling of COVID-19. https://doi.
org/10.6084/m9.figshare.12174006.v4 (Friston et al., 2020c)

This project contains the following underlying data: 

-   covid-19-tests-uk.csv (UK COVID-19 historical data)

Data are available alongside the source code under a 
GLP 2.0+ license.
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In this manuscript, Friston and colleagues extended their established compartmental models to 
estimate the impact of testing and tracking policies in the UK. I'm a bit confused about their 
findings and conclusions. Please see below my comments:

The authors claimed that "under plausible (graded) relaxations of social distancing, a 
rebound of infections is highly unlikely. The emergence of a second wave depends almost 
exclusively on the rate at which we lose immunity". However, it is clear that the UK is having 
the second wave for the period explored in this study. So the model may contain some 
unrealistic assumptions or parameters. 
 

1. 

In Table 1, the source of parameters is unknown. Which parameters were obtained from 
other studies? Which parameters were estimated in this study? 
 

2. 

How the model was fitted to data? Are you using MCMC? MLE? EM? 
 

3. 

The model does not include the influence of repeated seeding. For example, the UK has 
detected lots of introductions of SARS-CoV-2 cases, which is much higher than the assumed 
number of initial cases in this study.1 
 

4. 

The assumptions on contact patterns are oversimplified. Please account for age-stratified 
contact patterns.2 
 

5. 

The authors assumed that self-isolated cases could not infect others. This is somehow 
problematic. For example, if a case was isolated at home, he/she can infect household 
members.

6. 
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Dear Dr. Wang, 
 
We would like to thank you for the time and effort you have spent reviewing our 
manuscript. Below are the replies to the comments. We hope these revisions are what you 
had in mind.

The authors claimed that "under plausible (graded) relaxations of social distancing, a 
rebound of infections is highly unlikely. The emergence of a second wave depends almost 
exclusively on the rate at which we lose immunity". However, it is clear that the UK is 
having the second wave for the period explored in this study. So, the model may contain 
some unrealistic assumptions or parameters.

○

Dr Wang raises an excellent point; namely that a rebound may occur in the absence of any 
material loss in immunity. We have used the dynamic causal model in this report to address 
the distinction between secondary or rebound waves of infection due to the spread of the 
virus from the initial population to other populations or communities—and how this is 
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distinguished mechanistically from a second wave due to loss of effective immunity in the 
first population. A full treatment can be found in the following technical report and op-ed

In Table 1, the source of parameters is unknown. Which parameters were obtained from 
other studies? Which parameters were estimated in this study? 
 

○

In Table 1, we provide the list of the model parameters (second column) and their prior 
densities (their mean and variance in the 3rd and 4th column respectively). These are the 
model parameters which we infer using observed timeseries data of new cases, deaths and 
recoveries. In Bayesian inference these priors of the model parameters represent the initial 
beliefs about them which get updated (i.e., inferred) in the light of the incoming data. These 
prior values are extracted from previous studies which are given in the Table legend. We 
have copied these below for your convenience: 
 
“Secondary sources (Huang et al., 2020; Kissler et al., 2020; Mizumoto and Chowell, 2020; 
Russell et al., 2020; Verity et al., 2020; Wang et al., 2020) and:

https://www.statista.com/chart/21105/number-of-critical-care-beds-per-100000-
inhabitants/

○

https://www.gov.uk/guidance/coronavirus-COVID-19-information-for-the-public○

http://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/COVID-19/○

These prior expectations should be read as the effective rates and time constants as they 
manifest in a real-world setting. For example, a four-day period of contagion is shorter than 
the period that someone might be infectious (Wölfel et al., 2020)[1], on the (prior) 
assumption that they will self-isolate, when they realise they could be contagious.”

How was the model fitted to data? Are you using MCMC? MLE? EM?○

The data fitting procedure is based on the standard variational (Bayesian) inference 
procedures (Beal, 2003) under Laplace approximation which is very similar in spirit to the 
EM algorithm. In our implementations we use Variational Laplace to evaluate model 
evidence p(y|m) and the posterior density over model parameters p(θ|y, m). For details of 
the procedures used, please see [1]  where we applied these procedures to the brain 
imaging timeseries or [2] for an application to the epidemiological timeseries data. 
 
The EM algorithm can be thought of as a simplified version of variational Bayes, in which 
the posterior distribution is approximated with the product of two marginals (e.g., over 
parameters and hyperparameters). The ensuing two variational updates correspond to the 
E and the M steps respectively. The simplification in the EM algorithm is that one assumes 
the approximate posterior is a point mass in the M-step.

The model does not include the influence of repeated seeding. For example, the UK has 
detected lots of introductions of SARS-CoV-2 cases, which is much higher than the assumed 
number of initial cases in this study.1

○

Dr Wang is absolutely right this model does not incorporate reseeding. We have now 
included the following (towards the end of the Conclusion section): 
 
“This DCM does not include the influence of repeated seeding. For example, the UK has 
detected introductions of SARS-CoV-2 cases, which is much higher than the assumed 
number of initial cases in this study (Firth et al., 2020). However, for simplicity, we have 
assumed that the community transmission had, quantitatively, a much greater contribution 
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than reseeding. Having said this, it would be interesting to compare models with and 
without reseeding to test this assumption formally.”

The assumptions on contact patterns are oversimplified. Please account for age-stratified 
contact patterns.2

○

We have now added the reference and our explanation in toward the end of the Conclusion 
section. 
 
“In this work, the model assumptions on contact patterns are simplified for e.g. age-
stratified contact patterns are not considered (du Plessis et al., 2020). However, the current 
extensions of the model with eight stratification and contact matrices have been developed 
and are available in our open-source code base (DEM_COVID_S.m). Recent work on age 
stratified models using ONS data with age demographics now underwrites the dashboard 8 
based upon the current DCM (DEM_COVID_UK.m). However, in the current model, we have 
simply lumped together all age groups—and have focused on heterogeneity in contact 
rates by conditioning them on different locations in the location factor.”

The authors assumed that self-isolated cases could not infect others. This is somehow 
problematic. For example, if a case was isolated at home, he/she can infect household 
members.

○

We are operationally defined isolation as isolation from household members. Conversely, 
the location state ‘home’ allows for contacts with household members. In fact, the number 
of contacts at home is a free parameter of the model. This location state stands in for a low-
contact risk state, in contrast to high contact risk states (e.g., grounded workplaces, public 
transport, football matches et cetera). 
 
References: 
[1] Friston KJ, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W. Variational free energy 
and the Laplace approximation. Neuroimage. 2007 Jan 1;34(1):220-34. doi: 
10.1016/j.neuroimage.2006.08.035. Epub 2006 Oct 20. PMID: 17055746. 
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This paper presents a thorough analysis of the effects of FTTI (find, track, trace, isolate) in the 
dynamics of the pandemic in UK. The theoretical development follows one previous paper of the 
authors where a dynamic causal model of COVID-19 has been proposed. A new state (isolation 
state) is here added to model the effect of FTTI on the potential occurrence of the second wave of 
infection as a function of the rate at which immunity is lost in the first wave. A comparison 
between lethality in UK and Germany is discussed.  
  
I believe that the paper might be useful for political decision-makers in phases 2 and 3. 
Nevertheless, I ask the authors to comment on the following issues, some of them criticizing the 
final conclusions: 

The underlying epidemiological model is quite complex with four macrostates-factors 
(Infection, Location, Testing, Symptoms), each subdivided in mutually exclusive states. As far 
as I can understand, the model is a mean-field approximation (to the first moments?) of an 
“atomic” model of the hiddel Markov chain, with equal individual propensities to change the 
state.In order to fully understand the temporal evolution (Kolmogorov forward bilinear 
equation)of the marginal probabilities of the 18 states it would be nice (if space allows) to 
have the mathematical model displayed along with the transition probability 
parameters.Does the model incorporate the probability distribution of the pairs in different 
factors? 
 

1. 

In the legend of Fig. 1 it is written that one can move from the deceased state to the 
asymptomatic state, in order to preserve the probability mass (sum=1). Usually, the 
compartment of deaths is the integral of a linear combination of other states (and hence 
monotonically increasing). Could you please comment further? 
 

2. 

There are indeed no absorbing states if immunity can be lost. However (as apparent from 
the simulations) an immunity time of 16 months seems to be large enough to drive the 
marginal probabilities of the infection status to constant values (“quasi” equilibrium). Could 
you please comment on the one-step transition probability from resistant to susceptible? 
 

3. 

In standard epidemiological models (like SEIR)the effective reproduction number is the 
product between the basic reproduction number and the fraction of susceptible. Stability of 
the epidemic equilibrium can be characterized easily. I wonder how the theoretical 
development (of stability and convergence) can be done with time-varying (testing) 
parameters and Zeno-like behavior of the trajectories if other infection waves occur (in the 
absense of vaccine or effective therapies). 
 

4. 

It seems that the resistant status in the infection factor is constant over time, i.e. its 
probability not affected by other status in other factors. Its value (0.38 in UK, 0.58 in DE) 
seems to be rather high and of course enforce herd immunity (low number of suceptibles 
left). 
 

5. 

Could the model respond to the following question: who and where to test at observation 
time t+1 in order to maximize the detection of infected people? This question is motivated 
by the feeling that the second wave (small in terms of infections, and even before immunity 
loss) is the summation of very small infection clusters distributed in the territory, and a 
random network extension of an epidemiological models (endowed with node statistics ) is 
highly welcome.In the same vein, the “return infections” seems to be important after the 

6. 

 
Page 26 of 31

Wellcome Open Research 2021, 5:144 Last updated: 15 FEB 2021



international border disclosures. 
 
Estimation of the number of infectives (in the “hidden” compartment) from noisy data 
(diagnosized infective, healed, deaths, number of tests etc…) is a real challenge and 
different approaches are on stage, with very different outcomes (number of total cases 
from 2 times to 15 times the number of diagnosized cases). How the results of the present 
paper are settled in this issue?, see e.g.the recent publications:

7. 

[*] Boehning at all, “Estimating the undetected infections in the Covid-19 outbreak by harnessing 
capture–recapture methods”, J. Infection Disease, 2020.1 
[**] Philipps et al, “Estimating the true (population) infection rate for COVID-19: A Backcasting 
Approach with Monte Carlo Methods”,https://doi.org/10.1101/2020.05.12.20098889.2 
 
I strongly agree with the sentence: this narrative depends on the acquisition of herd immunity …. 
However, in my view the inferred evidence of immunity in Figure 11 (Streek et al) is overestimate, 
being based on data collected in a super spread event. The difference of lethality with Germany is 
justified by the difference of resistant host of the population, and not on the greater propensity to 
test and tracing, availability of ICU beds and excellent functioning of the territorial health system, 
as claimed in a recent guest post by L. Wieler at al, “Emerging COVID-19 success story: Germany’s 
strong enabling environment”, June 30, 2020. 
 
References 
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Backcasting Approach with Monte Carlo Methods. medRxiv. 2020. Publisher Full Text  
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ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

 
Page 27 of 31

Wellcome Open Research 2021, 5:144 Last updated: 15 FEB 2021

jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-39476-1
https://doi.org/10.1101/2020.05.12.20098889
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-39476-2
http://www.ncbi.nlm.nih.gov/pubmed/32534143
http://www.ncbi.nlm.nih.gov/pubmed/32534143
https://doi.org/10.1016/j.ijid.2020.06.009
https://doi.org/10.1101/2020.05.12.20098889


Reviewer Expertise: Infectious Diseases

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 04 Feb 2021
Adeel Razi, University College London, London, UK 

Dear Dr. Colaneri, 
 
We would like to thank you for the time and effort you have spent reviewing our 
manuscript. Below are the replies to the comments. We hope these revisions are what you 
had in mind.

The underlying epidemiological model is quite complex with four macrostates-factors 
(Infection, Location, Testing, Symptoms), each subdivided in mutually exclusive states. As 
far as I can understand, the model is a mean-field approximation (to the first moments?) 
of an “atomic” model of the hidden Markov chain, with equal individual propensities to 
change the state. In order to fully understand the temporal evolution (Kolmogorov forward 
bilinear equation) of the marginal probabilities of the 18 states it would be nice (if space 
allows) to have the mathematical model displayed along with the transition probability 
parameters. Does the model incorporate the probability distribution of the pairs in 
different factors?

○

The transition probabilities between states within a factor can indeed depend on the 
current state in more than one factor. For example, the probability of dying after developing 
acute respiratory distress syndrome (ARDS) depends on whether one is in a critical care unit 
(CCU). The transition probabilities are outlined in detail in (Friston et al., 2020a) in the 
“Transition probabilities and priors” section. Updates for the present paper that incorporate 
new Infection and Location states are available in the code as described in the software 
note. We had anticipated that interested readers would refer to the first (foundational) 
paper in this series for the mathematical details (i.e., the master equation). However, we 
have added the following (second paragraph in section “Dynamic causal modelling”) who 
just want an intuition as to the basis of the model: 
 
“Although this model may look complicated; it is a straightforward compartmental model 
that can be written down in terms of a Master Equation, describing the discrete time 
updates of the joint probability distribution over the four factors. Please see (Friston et al., 
2020a). Updating the joint probability (i.e., probability over all tuples of different states) 
allows us to model transitions among the states of one factor that depend upon other 
factors.”

In the legend of Fig. 1 it is written that one can move from the deceased state to the 
asymptomatic state, in order to preserve the probability mass (sum=1). Usually, the 
compartment of deaths is the integral of a linear combination of other states (and hence 
monotonically increasing). Could you please comment further? 
 

○

This was just for convenience. In other words, the dwell time in the deceased state can be 
read directly as the daily fatality rate (reported empirically). Transitions to the susceptible 
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state assume that the number of people dying is balanced by the number of people being 
born, which is a simplifying but plausible approximation.

There are indeed no absorbing states if immunity can be lost. However (as apparent from 
the simulations) an immunity time of 16 months seems to be large enough to drive the 
marginal probabilities of the infection status to constant values (“quasi” equilibrium). 
Could you please comment on the one-step transition probability from resistant to 
susceptible?

○

Although there are no absorbing states, having a very slow transition from the resistant 
state to the susceptible state can engender a quasi-equilibrium over short timescales. The 
slow transition from the resistant state to the susceptible state stands in for a loss of cross 
immunoreactivity, T cell memory – or indeed, an exchange of resistant individuals with 
another country (with predominantly susceptible individuals).

In standard epidemiological models (like SEIR)the effective reproduction number is the 
product between the basic reproduction number and the fraction of susceptible. Stability 
of the epidemic equilibrium can be characterized easily. I wonder how the theoretical 
development (of stability and convergence) can be done with time-varying (testing) 
parameters and Zeno-like behavior of the trajectories if other infection waves occur (in the 
absence of vaccine or effective therapies).

○

 
We agree that the stability of and convergence to equilibrium points – under different 
testing scenarios — are of great interest, and have begun to consider this question in a 
subsequent manuscript which is currently under peer review: 
https://www.medrxiv.org/content/10.1101/2020.06.11.20128611v1

It seems that the resistant status in the infection factor is constant over time, i.e. its 
probability not affected by other status in other factors. Its value (0.38 in UK, 0.58 in DE) 
seems to be rather high and of course enforce herd immunity (low number of susceptible 
left).

○

 
The resistant proportion is estimated from the data and these values, which are by 
definition higher than those in models that assume that 100% population susceptibility to a 
novel virus, offer the best account for the data under the current model structure. In 
subsequent iterations of the model (one published at 
https://wellcomeopenresearch.org/articles/5-204/v2 and another under peer review 
https://www.medrxiv.org/content/10.1101/2020.09.01.20185876v1), we separately consider 
heterogeneity of exposure, susceptibility, and transmission. This allows for the possibility 
that a subset of those we define here as “resistant” may still pick up the virus, test positive in 
PCR tests, but not (so readily) transmit the virus to others. We are also developing the 
model to allow for changes in the exposed population, for example through population 
fluxes (https://www.fil.ion.ucl.ac.uk/spm/covid-19/TR5_Second_Wave.pdf and 
https://www.fil.ion.ucl.ac.uk/spm/covid-19/TR6_DCM.pdf), but this is probably beyond the 
scope of the current report.

Could the model respond to the following question: who and where to test at observation 
time t+1 in order to maximize the detection of infected people? This question is motivated 
by the feeling that the second wave (small in terms of infections, and even before immunity 
loss) is the summation of very small infection clusters distributed in the territory, and a 
random network extension of an epidemiological models (endowed with node statistics ) is 
highly welcome. In the same vein, the “return infections” seems to be important after the 

○
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international border disclosures.
 
Local versions of the model at the level of Local Authorities in England have been 
implemented, the results of which are viewable at https://fil.ion.ucl.ac.uk/spm/covid-
19/dashboard/local/ alongside actual test result data. This kind of dashboard could in 
principle be used to guide decisions on where to focus testing resources to maximize 
detection of infection. We do not currently model connections between these regions, 
although we are considering in ongoing work the relative impact of population fluxes 
(“return infections”) versus loss of individual immunity on the development of secondary 
and second waves of infection.

Estimation of the number of infectives (in the “hidden” compartment) from noisy data 
(diagnosed infective, healed, deaths, number of tests etc.…) is a real challenge and 
different approaches are on stage, with very different outcomes (number of total cases 
from 2 times to 15 times the number of diagnosed cases). How are the results of the 
present paper settled in this issue? See e.g., the recent publications:

○

          [*] Boehning et al, “Estimating the undetected infections in the Covid-19 outbreak by 
harnessing              capture–recapture methods”, J. Infection Disease, 2020. 
          [**] Philipps et al, “Estimating the true (population) infection rate for COVID-19: A 
Backcasting                 Approach with Monte Carlo Methods” 
 
We have now included the references provided by the reviewer and added (in the 
Conclusion) 
 
“Here we also note that the estimation of the true number of infected people from noisy 
timeseries data is a real challenge and different approaches are proposed, with very 
different outcomes (number of total cases from 2 times to 15 times the number of 
diagnosed cases), see (Bohning, Rocchetti, Maruotti, & Holling, 2020; Phipps, Grafton, & 
Kompas, 2020). It is indeed the potential to estimate the true number of infected people 
(and other key latent variables) that led us to adopt and advocate the generative modelling 
approach of DCM, coupled with variational Bayesian inference that allows us to quantify and 
account for uncertainty in the case and death data. A validation of these kinds of estimates, 
with those provided by Edge Health, was recently reported in the Guardian.”

I strongly agree with the sentence: this narrative depends on the acquisition of herd 
immunity …. However, in my view the inferred evidence of immunity in Figure 11 (Streek et 
al) is overestimate, being based on data collected in a super spread event.

○

We acknowledge that seroprevalence varies considerably with the nature of the population 
and events under consideration. Furthermore, seropositive prevalence may not provide the 
complete picture, especially in the setting of heterogeneity of susceptibility to infection. We 
have pursued this in subsequent papers testing the notion of seronegative resistance as a 
potential explanation for differences between countries – much along the lines suggested 
by Dr. Colaneri. 
 

The difference of lethality with Germany is justified by the difference of resistant host of the 
population, and not on the greater propensity to test and tracing, availability of ICU beds 
and excellent functioning of the territorial health system, as claimed in a recent guest post 
by L. Wieler at al, “Emerging COVID-19 success story: Germany’s strong enabling 
environment”, June 30, 2020.

○
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We agree entirely with Dr. Colaneri’s observations, which were borne out in subsequent 
applications of this model to the unfolding trajectories in several European countries.

Further note: Y-axes in Fig. 3 are incorrect, should be something like “reproduction rate” 
and “proportion (%)”

○

Thank you for pointing this out. These typos are now corrected.  
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