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Abstract

Probabilistic meta-learning methods recently
have achieved impressive success in few-shot
image classification. However, they introduce
a huge number of random variables for neu-
ral network weights and thus severe computa-
tional and inferential challenges. In this pa-
per, we propose a novel probabilistic meta-
learning method called amortized Bayesian
prototype meta-learning. In contrast to pre-
vious methods, we introduce only a small
number of random variables for latent class
prototypes rather than a huge number for
network weights; we learn to learn the pos-
terior distributions of these latent prototypes
in an amortized inference way with no need
for an extra amortization network, such that
we can easily approximate their posteriors
conditional on few labeled samples, whenever
at meta-training or meta-testing stage. The
proposed method can be trained end-to-end
without any pre-training. Compared with
other probabilistic meta-learning methods,
our proposed approach is more interpretable
with much less random variables, while still
be able to achieve competitive performance
for few-shot image classification problems on
various benchmark datasets. Its excellent ro-
bustness and predictive uncertainty are also
demonstrated through ablation studies.

1 Introduction

Humans are able to quickly grasp new concepts from
a small number of samples in a new domain. Such a
remarkable ability was built on i) good leverage of past
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relevant experience and ii) fast adaption to novel con-
cepts. In contrast, deep learning (e.g., LeCun et al.,
2015) often requires a large amount of data to grasp
a novel concept. However, it is expensive or impos-
sible to collect a large dataset of labeled samples in
a novel domain. The challenging problem to learn a
novel concept when few examples are available in the
new domain is often referred to as few-shot learning.

Meta-learning (e.g., Bartunov and Vetrov, 2018; Ja-
mal and Qi, 2019; Finn et al., 2017; Grant et al., 2018;
Amit and Meir, 2018; Li et al., 2019; Xu et al., 2020;
Ren et al., 2019; Rusu et al., 2019; Sun et al., 2019;
Hospedales et al., 2020; Wang et al., 2019; Li et al.,
2020; Takovleva et al., 2020; Patacchiola et al., 2020),
or learning to learn, aims to develop methods that
can solve novel tasks based on experience established
through the meta-training process of previous tasks.
Meta-learning methods have achieved state-of-the-art
performance in few-shot classification on many image
datasets, e.g., mini-ImageNet (Vinyals et al., 2016)
and CUB-200-2011 (Wah et al., 2011). Built on prob-
abilistic structures over data and parameters of neural
networks and the power of Bayesian inference, prob-
abilistic meta-learning methods (Grant et al., 2018;
Gordon et al., 2019; Ravi and Beatson, 2019; Finn
et al., 2018; Yoon et al., 2018; Nguyen et al., 2020;
Patacchiola et al., 2020) are able to learn the poste-
riors of parameters and then use posterior predictive
samples to solve novel tasks.

However, these probabilistic methods treat the net-
work weights as random variables, introducing a huge
number of random variables and consequently severe
computational and inferential problems, e.g. identifia-
bility. Our aim is: can we instead introduce an em-
bedding space with much less random wvariables while
still well representing the generative process of meta-
learning? To this end, we introduce latent class proto-
types to probabilistic meta-learning, which largely re-
duce the number of random variables while achieving
competitive performance. A latent class prototype is a
latent random variable that has a distribution defining
the generative process of this class (Fig. 1).
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Figure 1: Graphical Model of Our Method. z; is a latent
random vector denoting the class prototypes (white node:
unobserved) for task T;, which contains a support set S;
(dark gray node: label observed during meta-training and
meta-testing) and a query set Q, (light gray node: label
observed only during meta-training).

To summarize, our main contributions are as follows.

First, we propose a novel and simple probabilistic
meta-learning method, amortized Bayesian prototype
meta-learning, for few-shot classification. It introduces
a new latent random vector z serving as class proto-
types and learns to learn the posterior distributions
of these latent variables whenever at meta-training or
meta-testing stage. We achieve this by carefully de-
signing the prior and variational distributions for the
latent class prototypes: Instead of using the trivial
standard Gaussian distributions as priors, we propose
to use task-dependent priors for latent class prototypes
conditional on the support set of each task and replace
the KIL divergence term in the evidence lower bound
of marginal log-likelihood of the support set with an
unbiased estimator to its expectation.

Secondly, the proposed method can be trained end-to-
end without any pre-training and achieves state-of-the-
art or competitive performance on many real-world
benchmark datasets, e.g., mini-ImageNet (Vinyals
et al., 2016), Stanford-dogs (Khosla et al., 2011) and
CUB-200-2011 (Wah et al., 2011). Inference is amor-
tized via learning a shared set of parameters such that
a few steps of gradient descent can fast generate well-
behaved approximate posteriors of latent prototypes.

Thirdly, through ablation studies, we demonstrate the
robustness of our method that it can preserve high per-
formance when altering the number of ways or shots
at meta-testing stage without the need to re-train the
whole neural network. We also demonstrate the excel-
lent quality of predictive uncertainty of our model.

2 Preliminaries

Meta-learning Given a series of tasks {T;}Z,
sampled from an environment p, meta-learning, also
called learning to learn, aims to learn an algorithm A
that has minimum transfer risk on a new task, R =

ErmpBie, yiyr  ~mr Bz gy~ (A2, vi i), {7, 1),

where [(+) is some loss function, and {z;,y;}, are n
training samples sampled from a new random task 7T
from the environment p, which is distinguished from
{T}E,, and {%,7} is a random test pair sampled
from the same task. The environment p refers to a
meta distribution of tasks 7 (Denevi et al., 2019,
2018; Baxter, 2000). To simplify notation and bridge
the gap to few-shot learning, we increase the number
of test samples to m, i.e. {Z;,7;}7;, and denote
{zi,yi}izy by S and {&;,9;}72, by Q, and we have

R = Ero,Esnr-Egrn [l (A<s>, Q)] W

The expectations are often approximated by Monte
Carlo integration. Therefore, given a new task T =
SUQ, the learned algorithm A is often further adapted
to the sampled support set S and its performance for
this task is measured by the empirical loss of a sam-
pled query set Q. The overall performance of A is the
averaged performance on tasks sampled from p.

Few-shot Image Classification When n is con-
siderably small, this corresponds to few-shot learn-
ing. To train and test a meta algorithm
A, a dataset D is divided into three parts,
namely Dtr = {{xtr,ja ytr,j}jtzrlv Ytr,j S ctr}7
Dval = {{xval,jayval,j}j;allyyval,j S Cval}a Dte =
{{% 1,3, Ve, 110 Yre,j € Cre}, where {z5,;} is the jth
image in the associated dataset; Jy., Jyq and Ji. are
the total numbers of samples in Dy,., Dyq and Dy,
respectively; and Cy., Cyq and Cy. are the three asso-
ciated label sets. In this work, as we focus on few-shot
image classification, we further require that the label
sets Cyp, Cyqr and Cye are mutually disjoint.

A task T in few-shot image classification literature of-
ten refers to a C-way K-shot problem, which is sam-
pled from an environment p. In few-shot learning
literature, p actually refers to the whole label sets
C = Cyr UCyqr U Cye, of which realisations are the sam-
ples in the whole dataset D = Dy, U Dyqr U Dye. To
generate realisations of a task 7T, firstly, we randomly
sample C classes from a set C*, where C* can be ei-
ther Cip, Cyqr Or Cie (corresponding to meta-training,
meta-validation and meta-testing stages, respectively).
Then we further sample n and m instances from these
C classes to construct a support set S and a query set
Q to construct a C-class classification problem.

To simplify notation and terms, in the following, a task
T is referred to as a dataset that contains a support
set S and a query set Q, of which instances are all
from some C classes. A C-way K-shot few-shot learn-
ing problem means that we only have n = C x K
samples in the support set for any tasks generated
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from Dy, Dyar or Die. A meta algorithm is usually
trained/tested on Dy, /D through a series of tasks
{ﬁm}tTgl / {7}67,5}?:17 following the standard meta-
training/meta-testing procedures proposed by Vinyals
et al. (2016). D, is only used for model selection, and
the overall performance on D, is reported as the gen-
eralization performance of the model, measured em-
pirically by the mean accuracy of all query sets of the
T:. tasks {ﬁe,t}tT;cl sampled from Dj,.

3 Related Work

Probabilistic Meta-learning Methods Our
method is based on MAML (Finn et al., 2017), a
gradient-based meta-learning method aiming to learn
a shared initialization of neural network’s parameters
that has excellent generalization ability to an unseen
novel task with only few steps of stochastic gradient
descent.  Probabilistic variants of MAML include
MAML-HB (Grant et al., 2018), BMAML (Yoon
et al., 2018), PLATIPUS (Finn et al., 2018), VAM-
PIRE (Nguyen et al., 2020), Meta-Mizture (Jerfel
et al., 2019) and ABML (Ravi and Beatson, 2019).
MAML-HB interprets MAML as a hierarchical Bayes
learning procedure. PLATIPUS proposes to learn
the joint posterior of meta initialization 6 and task-
specific parameters conditional on the support set of
each task 7;, while BMAML, VAMPIRE and ABML
learn the posterior distributions of the task-specific
parameters conditional on the 6 and the support
set. More specific, BMAML learns the posteriors of
task-specific parameters through Stein variational
gradient descent, which is distinct from the others.
ABML proposes to minimize the loss of the support
and query sets of a task jointly (i.e. equivalent to
maximizing E[log p(S, Q)]), which does not explicitly
encourage neural networks to maximize E[log p(Q|S)].
VAMPIRE is similar to ABML. The main difference is
that VAMPIRE only uses the loss of the query set of
a task to update the global shared parameter 6, while
ABML uses both the support and query sets. VERSA
(Gordon et al., 2019) proposes to directly maximize
logp(Q|S), which is achieved by only learning the
posteriors of parameters of the linear classifier via an
extra amortization network.

Metric-based Methods Metric-based methods for
few-shot classification (Vinyals et al., 2016; Snell et al.,
2017; Sung et al., 2018; Allen et al., 2019) employ
some metric for all tasks and learn an appropriate
feature mapping that best captures the discriminative
information for tasks, and expect the learned feature
mapping to generalize well to novel tasks from unseen
classes. Prototype Network (Snell et al., 2017) uses
Euclidean distance, which implicitly assumes features

form Gaussian class-specific distributions with iden-
tity covariance matrices. Infinite Mizture Prototype
Network (Allen et al., 2019) assumes multiple clusters
within a class through DP-means or Chinese restau-
rant process, and still employs Euclidean distance as
the evaluation metric. It also implicitly assumes that
each cluster is Gaussian distributed with shared co-
variance matrices among clusters. There are also other
non-standard similarity-based methods, e.g., Relation
Network (Sung et al., 2018), which uses a so-called
deep relation similarity measurement.

Key Difference from Previous Work Our pro-
posed approach has some key difference from previous
work in the following aspects. 1) Previous probabilis-
tic meta-learning methods (e.g., Gordon et al., 2019;
Ravi and Beatson, 2019; Finn et al., 2018; Yoon et al.,
2018; Nguyen et al., 2020; Jerfel et al., 2019) treat
weights of neural networks as random variables, while
our method introduces latent prototypes as random
variables. 2) Our approach learns to learn the poste-
rior distributions of latent class prototypes in an amor-
tized inference way with no need for an extra amorti-
zation network. 3) Assuming that support images and
query images come from same data generating process,
we replace the KIL term in the evidence lower bound
of log pg(S) with an unbiased estimator to its expecta-
tion (Eq.7), which is purely dependent on the support
set of a task. In addition, the proposed method pro-
vides us with a more interpretable and simpler way of
modelling, and achieves state-of-the-art or competitive
performance on various benchmark datasets.

4 The Proposed Method

4.1 Meta-learning via Maximizing
Expectation of Posterior Predictive
Likelihood

Suppose S and Q are two random variables represent-
ing a support set and a query set, respectively. Con-
sider a probabilistic generative model, parametrized
by 6, which defines a prior py(z) on latent variables
z and a conditional likelihood pg(S|z) on the support
set S. To approximate the posterior py(z|S), we can
use the evidence lower bound of log pg(S):

log po(S) > E.q,(2)[log pe(S|z)] — KL[%(Z)HPO(Z)(]Q-

The lower bound is tight when g4(2) = po(z|S). We
can optimize the evidence lower bound with respect
to the variational parameters ¢ to obtain the approx-
imate posterior g4(z). Given q4(z) =~ po(2|S), we can
approximate the log posterior predictive likelihood of
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Q conditional on §. That is,

log pe(Q|S)

log / po(Q12)po (=I) d

~ logE.q,(:)[Pe(2Ql2)]
Ez~q¢(z) [logpf)(Q‘Z)] . (3)

Y

This indicates that, given 6, we need to first optimize
the lower bound of the log-likelihood of S, log ps(S),
to approximate the posterior py(z|S), and then we
can optimize the lower bound of conditional likelihood
logpe(Q|S) (R.H.S. of Eq.3) w.r.t. §. Maximizing the
expectation of log py(Q|S) is equivalent to minimizing
the transfer risk defined in Eq.1 when [(A(S), Q) £
—1logpe(Q|S). The expectation of logpy(Q|S) can be
well approximated by the average of {log pg(Q;|S;)}1_,
of tasks {T;}L, when the total number T of tasks
is large, which is often the case in few-shot learning
(e.g., Vinyals et al., 2016). However, in few-shot clas-
sification, {7;}7_, arrive in a sequence, and we can-
not use Monte Carlo integration, i.e., the average, to
approximate the expectation as this requires to know
all tasks and compute all relevant terms simultane-
ously. Instead, we can iteratively update 6 through
log pg(Q;|S;), for i = 1,...,T. As the uncertainty of
the posterior of 6 is low due to a large number of tasks
generated during meta-training, a point estimate of
is reasonable, as discussed by Ravi and Beatson (2019).

Hence, learning is achieved by introducing auxiliary
latent random variables z so that we can deal with in-
tractable likelihood and posteriors. In this work, we
propose to assume that there exists a generative pro-
cess such that images can be generated from latent
random variables z = [21,...,2c|" which represent C
class prototypes for a C-way K-shot task. The inferred
posterior g (z) can then be readily used as a learnable
discriminative classifier for classification tasks.

4.2 Amortized Bayesian Prototype
Meta-learning

In this section, we first give an overview of our pro-
posed amortized Bayesian prototype meta-learning
approach and algorithm, summarize its novelty and
strength, and then present technical rationale and de-
tails of variational distributions, prior distributions
and classification loss we design for this new approach.

Overview Instead of inferring variational parame-
ters ¢; for each task 7, = S; U Q;, we can make a
global model V' learn to estimate those variational pa-
rameters dependent on the dataset S; and a shared
set of parameters 6 jointly (Marino et al., 2018), i.e.,
¢; = V(S;,0) for all i. This is referred to as amor-
tized variational inference (Kingma and Welling, 2013;

Marino et al., 2018; Ravi and Beatson, 2019). In this
work, we follow Grant et al. (2018) and Ravi and Beat-
son (2019) and set gy, (2) = N (2; pig;, X, ), where the
variational parameters ¢; = [14,, L¢,;] can be obtained
by ¢; = V(S;,0) = 6 + aVylogpy(S;) for all i. In-
ference for all tasks is amortized by the shared set of
parameters 6. To simplify notation, we drop the sub-
script ¢ in the following.

In this work, for a C-way K-shot task, we assume that
2z = [z1,--+,2¢]" is a latent random vector. Each
of its elements follows a class-specific Gaussian distri-
bution parametrized by ¢, and we set ¢ = V(S,0).
Since the first term in the evidence lower bound of
logpe(S) (R.H.S. of Eq.2) and the lower bound of
log pp(Q|S) (Eq.3) represent negative reconstruction
loss, we can reformulate them by a negative classifica-
tion loss —Lpp for classification tasks (given in Eq.9).
In this way, following Eq.2 and Eq.3 and given a task
T =8SUQ, our loss on S and our meta-loss for meta-
update of 6 can be respectively expressed as

L(S) £ Lpr(Sl|2) + KLlgs(2[S) || po(2)] . (4)
Emeta £ LPR(Q|Z) . (5)

Given that current value of 6 is ), £(S) in Eq.4
is used to optimize variational parameters ¢ which
are initialized at 0, e.g., performing certain steps
of stochastic gradient descent; and L,,etq is used to
update 6 from the current value () to 0+ con-
ditional on the current query set Q, e.g., AUT1) =
0 — BV ) Loneta- We summarize the meta-training
process of the proposed method in Alg. 1. See the sup-
plementary material for the pseudo-code of the meta-
validation/meta-testing processes.

Novelty and Strength Our method aims to learn
to learn posterior distributions pg(z|S) of the latent
class prototypes z, in an amortized variational infer-
ence way. A significant difference from previous prob-
abilistic meta-learning methods (e.g., Gordon et al.,
2019; Ravi and Beatson, 2019; Finn et al., 2018; Yoon
et al., 2018) is that we directly approximate the poste-
rior distributions of the latent class prototypes, rather
than generating stochastic classifiers via neural net-
works parametrized by random weights sampled from
their approximate posteriors. With such an approxi-
mate posterior ¢(2|S), our method is able to explic-
itly encourage better classification through the clas-
sification loss Lpr. Moreover, in contrast to previ-
ous probabilistic meta-learning work, our method re-
quires much less random variables and does not require
Monte Carlo integration to approximate expectations
of conditional likelihood E[log ps(S|z)].
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Variational Distributions We measure the uncer-
tainty of each image’s deep representation through an
embedding network fp, which consists of a convolution
neural network and a fully connected layer. More spe-
cific, we generate a feature vector fo(x) € R? for each
image x after it passes through the embedding network
fo. Then, we split this vector into two parts, u(x) € RP
and o(z) € RP. To ensure a finite o(z)?, we further
introduce two learnable scalars w € R! and b € R!,
and set o(z)? = |w| ® S(o(x)?) @ |b|, where S(-) is a
element-wise sigmoid function, and {w,b} are broad-
cast to match the dimension of S(o(z)?) € RP, and
® and @ are element-wise multiplication and element-
wise addition operators, respectively. Afterwards, an
image x can be represented by a Gaussian distribution
centred around its mean vector, i.e. N (u(x),X(x)),
where X(z) € RP*P is a diagonal matrix with diagonal
elements o(z)? € RP. To aggregate distributions of
images from the same class ¢ into one single Gaussian
N (pe, Xe), we consider a matrix-version of harmonic
average!. Letting S, denote a subset of S containing
all support images from the class ¢ € [C], we have

{ > Em)‘l}_l { > Em-)—lu(xi)},

HPe =
;€S ;€S
-1
S = . (6)
{3 e
We can set q(z.|S:) = N (z¢; pie, Ze) for all ¢ € [C].

Prior Distributions of z Since z is no longer the
weights of neural networks, it is not desirable to specify
some trivial prior distributions (e.g., standard Gaus-
sian distributions) as those in Grant et al. (2018); Gor-
don et al. (2019); Ravi and Beatson (2019); Finn et al.
(2018); Yoon et al. (2018); Nguyen et al. (2020); Jerfel
et al. (2019). In this work, we propose to use task-
dependent priors for latent random variables, which
is M(p(x),X(z)) conditional on an image 2 sampled
from the support set S of a task T, because it has al-
ready been extracted via our neural network and no
extra efforts are required. Due to the randomness in-
duced by x, we propose to replace the KIL divergence
term in Eq.4 by its expectation,

Eteyy~r |[KLgo (2S)lpo (2 (), Z(2))]| - (7)

Its unbiased estimator is given by
Se. S

e Lot KLlao (el SN (ze; (), S(a™))),

where xESC) is the ith image in the subset S.. This

is valid when K > 1. For K = 1, we may define

1Other forms of average can also be taken into account,
e.g., simple average.

a prior by using the query set and the support
set jointly. However, it is arguable to use query
images to construct prior distributions because la-
bel/information leaks during this process. Therefore,
for the 1-shot classification, we propose to use the
same aggregation rule in Eq.6 to further merge all C'
Gaussian distributions of the C' support images into
a single Gaussian distribution N (funions Zunion) tO
represent the prior distribution pg(z). This is a quite
strong prior on latent random class prototypes, which
may lead to shrinkage. But it is still reasonable if
compared with trivial standard Gaussian densities.
The estimator of the KIL term in Eq.4 then becomes

% Zf:l KL[Q¢(ZC|SC) || N(ﬂuni0n7 Zunion)}-

Classification Loss For an image z, its class mem-
bership to each of the C' classes is measured by
Pr{p(x)|ze) = N (w(x); e, Xe) , c=1,...,C.  (8)
As the sum of the above equation over C classes is not
restricted to be 1, it is vital to introduce normalization
to attain a valid loss function, which is achieved by

using log ratio of probabilities. Therefore, Lpr (in
Eq.4 or Eq.5, with 7 denoting either S or Q) becomes

fratrl?) lz[ <zP”ff§"’<£?§ﬂsc]ﬂ O

To see the connection between the classification loss
and E, [logpg(7|z)]7 firstly note that logpy(7|z) =
log (T, Po(yalns 2)) = Y7 log po(ynlan, ). We
know that the response y, is discrete (taking values
in [C] in a C-way classification task) and should have
a probability mass function, which can be achieved
by normalizing over the sum of class membership:
Po(Yn|Tn, 2) = Pr[ﬂ($n)‘zyn,]/(25:1 Prip(zn)|ze]). It
follows that logpg(7|z) = Zlnrzl log po(Yn|2n,2) =
Sy log(Prlu(en) 2y, )/ (S Prluen)|=]).  An
unblased estimator of E.[logpe(7]z)] is logpe(7|2)
when the sample size of z is one, which is a
well-behaved case in our experiments as 2z are
latent prototypes. Therefore, an unbiased esti-
mator of the reconstruction loss —IE,[logpy(7|2)]
is = oL log(Prlp(an) |2y, ] /(S Prlu(en)|z])),
which is our classification loss (scaled by a factor
of 1/|7]). Although we replace the KL term in the
evidence lower bound of logpy(S) with Eq.7 as our
proposed prior distributions of z are now dependent
on the support set S, our estimator to Eq.4 is still
an unbiased estimator to evidence lower bound of
logpg(S) (scaled by a constant).  Therefore the
proposed method still learns to learn the approximate
posteriors of latent z conditional on S properly.
Details are presented in the supplementary material.
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Algorithm 1: Meta-training for C-way K-shot

classification

Input: Model M, Optimizer, Number of
mini-batches B, Dy, C, K.

for b from 1 to B do

Generate a mini-batch of tasks 7, = S; U Q;

from Dy,., fori =1,...,T.

for each task T; from 1 to T do

Initialize ¢; < 6.

/* Approximate inference for posteriors

of z; conditional on S; */
for d from 1 to D do
L Update: ¢; < ¢; — aVy,{Lpr(Silz) +
KL[gg, (2]S:) || po(2)]}-
Compute prediction loss:
L(Qilz) = Lpr(Qil2).
/* Update globally shared parameters 0  */
Update: 0 ¢+ 0 — BV ST £(Qi]2).
Output: Return M.

5 Few-shot Image Classification

5.1 Implementation Details

Network Architecture Our network only needs a
feature embedding network. The embedding network
can be deep networks, such as VGG styled convolution
networks (Simonyan and Zisserman, 2015) or ResNet
(He et al., 2016). In this work, to make fair compar-
isons with relevant work, we use a shallow network
which consists of four convolution blocks followed by a
fully-connected linear layer as our feature extractor fy.
Each convolution block consists of 64 3-by-3 filters, fol-
lowed by batch-normalization, ReLU activation, and
2-by-2 max-pooling. The fully-connected layer maps
the flattened features from the four convolution blocks
into vectors € R'2®. Then we follow the settings in
Sec.4.2 to formulate a Gaussian distribution for deep
representation fy(z) of each image x.

Image Datasets Omniglot (Lake et al., 2011) is
widely used as a toy image dataset. It contains 1623
classes from 50 languages. Each class contains 20 sam-
ples. For Omniglot, we follow the settings of Vinyals
et al. (2016), Snell et al. (2017) and Chen et al. (2019)
to augment the classes by rotations in 90, 180 and
270 degrees, resulting in 6492 classes in total. We
also follow the settings of Snell et al. (2017) and Chen
et al. (2019) to split these classes into 4112 classes
for meta-training, 688 classes for meta-validation, and
1692 classes for meta-testing. Besides, all images are
down-sampled to 28 x 28 x 1 as a pre-processing step.

Another generic dataset used for object recognition

is mini-ImageNet (Vinyals et al., 2016), a subset of
ImageNet (Deng et al., 2009), and was firstly pro-
posed by Vinyals et al. (2016) to investigate few-shot
meta-learning problems. It contains 100 classes, and
each class has 600 images. In this work, we follow
the settings of recent work (e.g., Ravi and Larochelle,
2016; Chen et al., 2019). We randomly split the
whole dataset into 64 classes for meta-training, 16
classes for meta-validation, 20 classes for meta-testing.
We also test our method on two fine-grained image
datasets, i.e., CUB-200-2011 (Wah et al., 2011) and
Stanford-dogs (Khosla et al., 2011). CUB-200-2011
contains 11788 bird images from 200 classes. The
whole dataset is randomly split into 100 classes for
meta-training, 50 classes for meta-validation and 50
classes for meta-testing, following the settings of (Chen
et al., 2019). Stanford-dogs contains 20580 dog images
from 120 classes. We randomly split the dataset into
three mutually disjoint subsets, 60 classes for meta-
training, 30 classes for meta-validation and 30 classes
for meta-testing. All images from mini-ImageNet,
CUB-200-2011 and Stanford-dogs are down-sampled
to 84 x 84 x 3 before being fed into neural networks,
and standard data augmentation techniques are ap-
plied, i.e., random sized crop, random horizontal flip,
and image jitter.

Setup All experiments are implemented through the
episodic meta-training/meta-evaluation processes pro-
posed by Vinyals et al. (2016). An episode actu-
ally refers to a task, i.e., a C-way K-shot classifica-
tion problem. We split each datasets into three dis-
joint parts and set up three procedures, meta-training,
meta-validation and meta-testing. We select the opti-
mal number of meta-training epochs according to the
classification accuracy on the meta-validation set. At
the meta-testing stage, we randomly sample 600 novel
tasks from the meta-testing set, and report the mean
accuracy with its 95% confidence interval. We use Py-
Torch (Paszke et al., 2019) for all experiments?.

5.2 Experimental Results

Comparisons to Probabilistic Meta-learning
Methods In terms of the 5-shot experiments on
mini-ImageNet, we achieve state-of-the-art accuracy
for 5-way 5-shot tasks on mini-ImageNet with a lower
variance, as shown in Table 1. For 1-shot classification
on mini-ImageNet, the mean accuracy of our method
is slightly lower than that of BMAML (Yoon et al.,
2018), but it still falls in the 95% confidence interval
of the performance of BMAML. Although experimen-
tal results show that the proposed method slightly de-

2See the supplementary material for detailed setting of
hyper-parameters, e.g., T, D, « and  in Alg. 1.
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Table 1: Meta-testing Accuracy for 5-way Classification on Mini-ImageNet and Omniglot.

These methods all use a

comparable feature embedding, i.e. shallow convolution networks (see the supplementary material for details). The result
with * is reported by Nguyen et al. (2020) as the original paper does not give the corresponding performance. Bold text
indicates the highest mean accuracy and results that overlap with the confidence intervals of those highest mean accuracy.

Omniglot (%)

mini-ImageNet (%)

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
BMAML (Yoon et al., 2018) - - 53.80 + 1.46 64.23 + 0.69"
PLATIPUS (Finn et al., 2018) - - 50.13 + 1.86 -
ABML (Ravi and Beatson, 2019) - - 45.00 £ 0.60 -
Amortized VI (Gordon et al., 2019) 97.77 £ 0.55 98.71 £ 0.22 44.13 £1.78 55.68 + 0.91
VERSA (Gordon et al., 2019) 99.70 + 0.20 99.75 + 0.13 53.40 + 1.82 67.37 + 0.86
Meta-Mixture (Jerfel et al., 2019) - - 51.20 +1.52 65.00 + 0.96
VAMPIRE (Nguyen et al., 2020) 98.41 + 0.19 99.56 + 0.08 51.54 +0.74 64.31 +0.74
DKT (Patacchiola et al., 2020) - - 49.73 £0.07 64.00 + 0.09
Ours 98.83 £ 0.17 99.54 + 0.08 53.28 +0.91 70.44 +£0.72

Table 2: Meta-testing Accuracy for 5-way Classification on CUB-200-2011, Stanford-dogs and Mini-ImageNet. These
methods all use the same feature embedding architecture in (Chen et al., 2019), i.e. four convolution blocks. Results with

superscript * means training and testing locally.

CUB-200-2011 (%)

Stanford-dogs (%)

mini-ImageNet (%)

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
MatchingNet (Vinyals et al., 2016) 60.52 + 0.88 75.29 £ 0.75 45.65 £ 0.90*  60.87 £0.717 48.14 £0.78 63.48 + 0.66
ProtoNet (Snell et al., 2017) 50.46 + 0.88 76.39 £+ 0.64 41.07 £ 0.84%  62.47 £ 0.697 44.42 +£0.84 64.24 +0.72
RelationNet (Sung et al., 2018) 62.34 + 0.94 77.84 £ 0.68 47.20 £ 0.89F  66.12 £ 0.717 49.31 £ 0.85 66.60 £+ 0.69
Baseline++ (Chen et al., 2019) 60.53 + 0.83 79.34 £ 0.61 44.15 £0.71F  64.42 £ 0.66" 48.24 £ 0.75 66.43 £ 0.63
IMP (Allen et al., 2019) 59.50 £ 0.93"  79.50 £ 0.65° 48.29 +£0.84  68.00 + 0.67" 49.60 £ 0.80 68.10 £ 0.80
MAML (Finn et al., 2017) 56.10 + 1.01 75.41 £0.74 43.35 £ 0.85 60.55 £ 0.77 48.70 £1.84 63.11 £ 0.92
Ours 63.46 £ 0.98 80.94+0.62 54.45+094 72611064 53.281+0.91 70.44+0.72

grades on Omniglot, it still achieves comparable results
to those of recent probabilistic meta-learning methods.

Comparisons to Metric-based Methods Chen
et al. (2019) provided fair comparisons of recent
metric-based methods. Our neural network uses the
same four convolution blocks as those in Chen et al.
(2019), and our experiments are under the same set-
tings as those in Chen et al. (2019). To make fair com-
parisons here, we use the results of MatchingNet, Pro-
toNet and RelationNet reported in Chen et al. (2019).
As shown in Table 2, our method achieves state-of-the-
art performance on all three datasets.

5.3 Ablation Studies

On Robustness Our proposed method enables us
to have a luxury of varying the number of ways C
or the number of shots K without re-training the
network. To study the robustness of our method in
these scenarios, we experiment on Omniglot and mini-
ImageNet.

Ommniglot. The proposed method is first trained for
5-way 5-shot or 10-way 5-shot on the meta-training
set of Omniglot. Then, we vary the number of ways
C (Fig. 2-a) or the number of shots K (Fig. 2-b) at
meta-testing stage. As shown in Fig. 2-a, the proposed
method still has a high mean accuracy above 96% even

when C = 50 at meta-testing stage.

mini-ImageNet. We train/tune the proposed method
for 5-way 5-shot on the meta-training/meta-validation
set of mini-ImageNet, and test its performance for a
higher C-way classification problem at meta-testing
stage. In Table 3, the results show that our method
compares favorably against other metric-based meth-
ods. For instance, without re-training, it preserves a
high accuracy above 56% for 10-way 5-shot tasks.

On Effectiveness of Inference We investigate the
effectiveness of our probabilistic inference, i.e., learn-
ing the posterior distributions of latent class proto-
types for each task, by comparing with the removal of
the KL term in Eq.4. In addition, since we do not use
dropout (Kingma et al., 2015; Gal and Ghahramani,
2016) as an extra regularization (Gordon et al., 2019),
we also investigate the effectiveness of dropout. Results
of 5b-way 5-shot classification on Omniglot and mini-
ImageNet are presented in Fig. 2-c. In brief, our prob-
abilistic inference plays a vital role in meta-learning
as it boosts performance, e.g., 43.08 £ 0.62% versus
70.44 + 0.72% on mini-ImageNet. Experiments also
show that extra dropout is not effective to our method.

On Quality of Predictive Uncertainty The qual-
ity of predictive uncertainty of our model is mea-
sured by expected calibration error (ECE) and maxi-



Amortized Bayesian Prototype Meta-learning

99.6

99.2

99.0

98.8

98.6

—e— 10 way, 5 shot

—¥— 5 way, 5 shot

KL x Dropout x

100 P—
KL / Dropout v/

90

80

—e— 10 way, 5 shot

—— 5 way, 5 shot 40

z

95.6
P65 15 20 25 30 35 40 15 50

(a) Way (C)

o

5 G S 10 12 Omniglot
(b) Shot (K) (©

mini-ImageNet

Figure 2: Ablation Studies. (a)&(b): Robustness of the proposed method on Omniglot. (c): Effectiveness of our proba-
bilistic inference and extra dropout regularization. Details are presented in the supplementary material.
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Table 3: Ablation Study: Robustness on Mini-ImageNet.
All methods are trained for 5-way 5-shot at meta-training
stage and are tested for C-way 5-shot at meta-testing stage.

C-way C =5 (%) C=10 (%) C =20 (%)
MatchingNet 63.48 + 0.66 47.61 + 0.44 33.97 +0.24
ProtoNet 64.24 + 0.68 48.77 + 0.45 34.58 +0.23
RelationNet 66.60 + 0.69 47.77 £ 0.43 33.72 +0.22
Baseline++ 66.43 + 0.63 52.26 + 0.40 38.03 +0.24
Ours 70.44 +0.72 56.21 + 0.47 43.43 +0.25

mum calibration error (MCE) (Guo et al., 2017; Naeini
et al., 2015), which are presented together with relia-
bility diagrams in Fig. 3. A perfect calibration should
have its predicting probabilities identical to the true
correctness likelihood, i.e., Pr[g ylp Pl D,
where gy and p are the model’s prediction and its cor-
responding prediction confidence/probability, respec-
tively, and p € [0,1]. This implies that a well cali-
brated model should have its bars close to the diagonal
of reliability diagrams and have small values of MCE
and ECE. In Fig. 3, it is shown that our method is

Stanford-dogs: 5-way 5-shot mini-ImageNet: 5-way 1-shot mini-ImageNet: 5-way 5-shot
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on Various Image Datasets.

well calibrated among various datasets and tasks.

6 Conclusions

In this paper, we propose a new, simple yet ef-
fective probabilistic meta-learning approach, amor-
tized Bayesian prototype meta-learning. The proposed
model can be trained end-to-end without any pre-
training and learn to learn posterior distributions of
latent prototypes whenever doing meta-training or
meta-testing. Inference is amortized via learning a
shared set of parameters such that a few steps of gra-
dient descent can fast produce well-behaved approx-
imate posteriors of latent prototypes. Randomness
is considered through the learned posteriors of latent
class prototypes, which results in excellent classifica-
tion performance. With no need of extra amortiza-
tion network, our method achieves state-of-the-art or
competitive performance on various image datasets,
e.g., mini-ImageNet, CUB-200-2011 and Stanford-
dogs. Ablation studies also demonstrate its the ro-
bustness, effectiveness and generalization ability.
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Supplementary Material for the Paper:
Amortized Bayesian Prototype Meta-learning: A New Probabilistic
Meta-learning Approach to Few-shot Image Classification

1 Overview
In this document, we present details of experimental settings, including hyper-parameters (batch size, learning

rate, etc.). We also provide pseudo-code for meta-validation/meta-testing and detailed statistics in plots and
figures. All experiments are implemented with PyTorch.

2 Pseudo-code for Meta-validation/Meta-testing

Algorithm 2 Meta-validation/Meta-testing of the proposed method

Require: Input Meta-trained model M. Set D = Dyq or Die.
1: for ¢ from 1 to E do:

2: Generate a task 7; = S; U Q; from D.

3: Initialize ¢; < 6.

4: for d from 1 to D do:

5: Compute g4, (2|S;).

6: Approximate K L.

7: Update variational parameters ¢; < ¢; — aVg {Lpr(Si|z) + KL[qe,(2|Si) || p(2]0)]}.
8: Predict for an image z: § = arg max, Pr(u(z)|qe, (2.|Si.¢)), ¢ € [C].

9: Compute prediction accuracy a; for Q;.

B .
10: Output mean accuracy % > oioq @i as M'’s performance.

3 Proofs

3.1 Proof for Eq.2

In this section, we provide a detailed derivation of the evidence lower bound of log pg(S).

logpg(S) > E.ng,(2)[logpe(S|2)] — KL[g4(2) || pa(2)]
Proof:
logpe(S) = log / P (S, 2)dz

= lo z 90 (2
B lg/pe(s’ >q¢>(2)

pH(Sv Z):|
a9 (2)

~

dz

= logE, {
po(z)

0
q4(2)

= B togpa(S12)| - KL |ap(a)ln(2)

> E, {logp9(8|z) + log } , by Jensen’s inequality
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3.2 Unbiased Estimator Scaled by A Constant

Although we replace the KL term in the evidence lower bound of logpg(S) with Eq.7 as our proposed prior
distribution of z is now dependent on the support set S, our estimator to Eq.4 is still an unbiased estimator to
evidence lower bound of log py(S) in Eq.2 (scaled by a constant). Therefore the proposed method still learns to
learn the approximate posteriors of latent z conditional on S properly. To appreciate this, note that during the
inference stage 7 is the support set S (and we have || = CK). Then, after putting the unbiased estimator of
Eq.7 and Eq.9 into Eq.4, we can rewrite the loss in Eq.4 as

c K Pr | (%) |z
S er (ol L [u(xfc))}m

| )+ KLlgo (zelSo)llpo s (), £(2))])

, where S, is the subset of S and only contains all support images from the class ¢ € {1,...,C}, and (x(s ), yz(s <)

c) is the i*" image in S.. This immediately tells that —£(S) = C%Zle Zfil(logpg(ygsc)mgs ), Ze) —
KL (zc|Se)|po(ze; pe(z (SC)), S(x (SC)))]) where the terms inside the double summation is an unbiased estimator

of the evidence lower bound of log pg(y; ( C)|a:( C)) Since &z > i logpo(y; C)|:r($ )) e logpy(8), it tells that
—L(S8) is an unbiased estimator of the evidence lower bound of log pg(S) "scaled by a factor of 1/CK.

4 Experimental Details

At the meta-training stage, except that the maximum training epoch is 12000 for 1-shot classification on mini-
ImageNet, the maximum training epoch is set to be 3500 epochs for all the other experiments. We use a
mini-batch of tasks consisting T' tasks to update the shared 6 during meta-training.

We select the optimal meta-training epoch on the meta-validation set according to classification accuracy. At
the meta-testing stage, we randomly sample 600 novel tasks from the meta-testing set, and report the mean
accuracy with its 95% confidence interval, i.e., mean acc. & 1. 96\;i For C-way K-shot, a task is constructed
by sampling C' classes and then subsequently samphng K + M instances for each class, with K being the number

of support images in each class. In our experiments,

e Omniglot: M = 15 for meta-training/meta-validation/meta-testing;
o mini-ImageNet: M = 16 for meta-training and meta-validation, M = 15 for meta-testing;
e CUB-200-2011: M = 16 for meta-training and meta-validation, M = 15 for meta-testing;

e Stanford-dogs: M = 16 for meta-training and meta-validation, M = 15 for meta-testing.
The values of T, D, o and 8 in Alg. 1 and Alg. 2 are set to be

e Omniglot: T =32, D=1, a=0.1, 5 = 0.001;
e mini-ImageNet: T =4, D =5, a = 0.01, § = 0.001;
o CUB-200-2011: T =4, D =5, a =0.01, 8 =0.001;
e Stanford-dogs: T =4, D =5, a = 0.01, g = 0.001.
In addition, we use standard stochastic gradient descent to generate variational parameters ¢;, during meta-

training/meta-validation/meta-testing, for a task 7; and for all i. We use the Adam optimizer to update the
shared parameter 6 at meta-training stage.



5 Details of Figures

In this section, we present detailed statistics in Fig. 2.

Ablation study in Fig.2-a.

Meta-training conditions

C-way at meta-testing

5-way 5-shot (%)

10-way 5-shot (%)

C=5 99.45 £ 0.09 99.44 £ 0.08
=10 98.97 £0.08 99.14 £ 0.08
C=15 98.45 + 0.09 98.80 £ 0.09
C=20 98.14 +0.09 98.52 £ 0.08
C=25 97.85+0.09 98.20 £ 0.08
C =30 97.44 £ 0.09 97.87 £ 0.08
C =35 97.17+0.09 97.63 £ 0.08
C =40 96.84 + 0.08 97.34 £0.08
C =45 96.57 +0.08 97.12+£0.08
C =50 96.30 £+ 0.08 96.85 £ 0.08

Ablation study in Fig.2-b.

Meta-training conditions

K-shot at meta-testing

5-way 5-shot (%)

10-way 5-shot (%)

K=2 98.65 £ 0.27 98.38 = 0.15
K=1 99.47 +£0.11 99.00 £0.11
K=5 99.60 £ 0.10 99.17 £ 0.09
K=6 99.53 £0.11 99.19+0.10
K=38 99.59 £0.10 99.06 £ 0.13
K =10 99.61 £ 0.09 99.32 £ 0.10
K =12 99.60 £ 0.09 99.34 +0.09

e Omniglot: Dropout with a keep probability of 0.9.

e mini-ImageNet: Dropout with a keep probability of 0.5.
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Ablation study in Fig.2-c.

KL Dropout Omniglot (%) mini-ImageNet (%)
- - 96.16 = 0.28 43.08 £ 0.62
v - 99.54 £ 0.08 70.44 £0.72
v v 99.50 £ 0.08 69.92 £ 0.67

6 Comparisons of Convolution Networks

Here, we present details of shallow convolution networks used in the probabilistic meta-learning methods listed
in Table 1. CONV-X means a convolution network with X convolution blocks.

Convolution networks of methods in Table 1.

Omniglot  mini-ImageNet
BMAML CONV-5 CONV-5
PLATIPUS CONV-4 CONV-H4
VAMPIRE CONV-4 CONV-H4

ABML CONV-4 CONV-4
Amortized VI CONV-4 CONV-5
VERSA CONV-4 CONV-5
Meta-Mixture CONV-4 CONV-4
DKT CONV-4 CONV-4
Ours CONV-4 CONV-4

7 Effect of D

We also take the effect of D into account. Recall that D is the number of updates of the inner loop for the
approximate inference. We consider the cases when D =1, D = 3 and D = 5. Performance for each choice of D
is measured on the meta-testing set.

Effect of D.

mini-ImageNet D = 1(%) D =3(%) D =5(%)
5-way 1-shot 52.79+£0.94 53.294+0.89 53.28+0.91
5-way 5-shot 69.63 £0.70 70.56 = 0.70 70.44+0.72




