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Abstract.

Recent electrophysiological studies have led to the proposal of subtypes of 

GABAb receptors. In the rat hippocampus the postsynaptic GABAb receptor 

is sensitive to the weak GABAb antagonist phaclofen and to pertussis toxin 

(PTX) whereas the presynaptic receptor is insensitive to both agents. To 

investigate the presynaptic receptor further the effect of GABAb agonists was 

studied on the K+-evoked release of endogenous amino acids from rat 

hippocampal synaptosomes. (-)Baclofen (30-1 OOpM) produced a dose- 

dependent inhibition of aspartate, glutamate and GABA release evoked by 

50mM K \ 3-Aminopropyl-phosphinic acid (3-APA) (30-300pM) failed to 

inhibit amino acid release. 3-APA is reported to inhibit [3H]-GABA binding 

to GABAb sites in rat whole brain membranes more potently than the 

prototypic GABAb ligand (-)baclofen, although in biochemical assays 3-APA 

is equipotent w ith (-)baclofen and appears to behave as a partial agonist. Thus

3-APA may distinguish between subtypes of GABAb receptors.

For comparison, peripheral GABAb receptors on adrenergic nerve terminals 

were studied using the electrically stimulated rat anococcygeus muscle 

preparation. (-)Baclofen, 3-APA and its methyl derivative SKF 97541 produced 

a dose-dependent inhibition of the electrically-evoked release of preloaded 

[3H]-noradrenaline (ECS0 values of 1.4pM, 0.56pM and 1.25pM respectively). 

CGP 35348, a selective though relatively weak GABAb antagonist, was 

com pared with two new compounds for their ability to reverse the effect of 

30pM (-)baclofen. These compounds were found to antagonize the baclofen 

response more potently than CGP 35348. Schild analysis of data obtained 

using the same preparation monitoring antagonism of baclofen-induced 

inhibition of transmurally-evoked contraction of the muscle indicated the 

presence of a single receptor type. No evidence was obtained for receptor 

heterogeneity on adrenergic nerve terminals. Thus, although 3-APA failed to
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mimic the inhibitory action of (-)baclofen on transmitter release in 

hippocam pal synaptosomes it did produce the same response in the peripheral 

tissue.

Experiments were performed to determine whether 3-APA exhibited a 

differential selectivity for CNS GABAb receptors in different regions of the rat 

brain. Since any lack of affinity for hippocampal receptors m ight go 

undetected in membrane binding experiments performed in whole brain 

preparations, studies were performed using receptor autoradiography. 3-APA 

inhibited [3H]-GABA binding to GABAb sites to the same extent as (-)baclofen 

in seventeen brain regions including the hippocampus. The lack of difference 

between 3-APA and (-)baclofen in the hippocampus contrasted with the 

findings in the release experiments and the possible reasons for this 

discrepancy are discussed.

Following incubation of rat brain slices for 24 hours in PTX specific GABAb 

binding is reduced throughout the brain with the exception of the corpus 

striatum. This observation may reflect different post receptor coupling or an 

inability of the toxin to access striatal neurones. To clarify these observations 

the effect of PTX on GABAb binding was determined in membranes prepared 

from the cortices, striata, hippocampi and cerebella of adult and immature rats. 

Incubation for 30 min in pre-activated PTX reduced specific GABAb binding 

in all areas except the striatum in the adult animals (10-12 weeks), however in 

animals of 5-6 weeks or 7-9 weeks old the profile of the PTX effect was quite 

different. GABAb binding in all brain regions could be reduced by 85% by the 

inclusion of GTP7S in the incubating medium. Regional and age-related 

variations in the sensitivity of GABAb binding to PTX may therefore be due 

to the presence of GABAb receptors linked to different inhibitory G-proteins.
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A little learning is a dangerous thing;

Drink deep, or taste not the Pierian spring;

There shallow draughts intoxicate the brain,

And drinking largely sobers us again.

Fired at first sight with what the Muse imparts, 

In fearless youth we tempt the heights of Arts, 

While from the bounded level of our m ind 

Short views we take, nor see the lengths behind; 

But more advanced, behold with strange surprise 

N ew  distant scenes of endless science rise!

Alexander Pope 

(from an Essay on Criticism)

FOR MUM AND DAD
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CHAPTER 1 

INTRODUCTION



GABA - AN INHIBITORY NEUROTRANSMITTER IN THE

M AM M ALIAN NERVOUS SYSTEM.

'Simple amino acids do not show startling drug actions'

(Bergen, 1948)

At a time w hen this statement was widely believed by the scientific 

community, Eugene Roberts and Sam Frankel (1950) identified an unknow n 

ninhydrin-reactive material, present in extracts of mouse brain, as y- 

aminobutyric acid (GABA). Using two-dimensional paper chrom atography 

they were able to demonstrate the presence of relatively large amounts of this 

amino acid in brain homogenate compared with blood, urine and extracts of 

norm al or neoplastic tissue. Addition of radiolabelled glutamic acid, isolated 

from algae grown in 14C02, to fresh brain homogenates or acetone pow der 

suspensions accelerated the rate of accumulation of GABA and led to the 

incorporation of 14C into the GABA molecule. Roberts and Frankel proposed, 

therefore, that GABA was a normal constituent of the brain and that it was 

form ed from glutamic acid, probably by a-decarboxylation. Indeed it was 

know n already that GABA could be synthesized by the action of glutamic acid 

decarboxylase (GAD) in plants and bacteria (Gale, 1946; Schales et al., 1946). 

In further studies Roberts and Frankel (1951) dem onstrated that this was also 

the case in m am m alian systems.
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Despite these initial observations it was not until the m id 1960's that a role as 

a central nervous system (CNS) transmitter was seriously considered possible 

for any such 'sim ple amino acid'. The ubiquitous distribution of GABA in the 

CNS seemed, to many, to preclude an im portant neurom odulatory function 

(Curtis, 1965; Ryall, 1964). So much so that when in 1966 Krnjevic and 

Schwartz dem onstrated that iontophoretically applied GABA mimicked the 

action of the cortical inhibitory transmitter, by raising the membrane potential 

and conductance, their tentative conclusion was that in the cortex, at least, 

there was no evidence that GABA was not the main inhibitory 

neurotransm itter.

Today the evidence supporting a role for GABA as the most im portant 

inhibitory neurotransm itter substance in the mam m alian CNS is 

overwhelming. All of the criteria required for such a role have been fulfilled 

and are outlined below.

1) D istribution  of GABA in the m am m alian nervous system.

GABA is present in all regions of the mammalian CNS though its distribution 

is by no means homogenous. In rat brain GABA is most highly concentrated 

in the substantia nigra, globus pallidus, hypothalam us and tectum (Okada et 

al., 1971,; Heyden et al., 1979). Some GABA containing projections have been 

described, mainly associated with the basal ganglia (Fonnum et al., 1974; 

Jessell et al., 1978; Walaas and Fonnum, 1980) and cerebellum (Fonnum et al.,
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1970), but the majority of GABAergic neurones appear to be interneurones as 

in the cortex, hippocampus, olfactory bulb, retina and spinal cord (Graham, 

1972; Storm-Mathisen, 1972; Miyata and Otsuka, 1975; Ribak et al., 1977; 

Tappaz, 1978; Hendry and Jones, 1981).

The presence of GABA in peripheral tissues has been more difficult to 

establish as the concentration of GABA present is typically less than 1% of that 

found in the CNS (Erdo et al., 1982). However GABA has been detected in 

over 30 peripheral tissues including the myenteric plexus (Jessen et al., 1979), 

the superior cervical ganglion (Dobo et al., 1989), the female genital system 

(Erdo et al., 1982), the bladder (Kusunoki et al., 1984), the kidney (Dobo et al., 

1990), and the liver (Minuk, 1986). Evidence for a neurotransm itter role has 

only been fully established for GABA in the enteric nervous system and is not 

discussed in the following paragraphs.

2) GABA synthesis.

Glutamic acid decarboxylase (GAD; EC,4.1.1.15) catalyses the conversion of 

glutamic acid to GABA but unlike other enzymes involved in GABA synthesis 

it is found primarily in the nervous system (Baxter, 1976). Indeed GAD is 

apparently restricted to GABAergic neurones (Matsuda et al., 1973a and 1973b; 

Yu et al., 1984) not being detected in either glutamofcergic neurones or in 

astrocytes (Schousboe et al., 1977). Two genes have been identified encoding 

separate GAD isoforms that differ in their requirement for the co-factor
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pyridoxal-5'-phosphate (Bayon et al., 1977a; Bayon et alv 1977b; Erlander and 

Tobin, 1991). The functional relevance of these two forms is unclear but it is 

obviously im portant to the understanding of how a neurone regulates GABA 

production. Although GAD is the key enzyme responsible for GABA 

synthesis it is not the only one, as GABA may also be produced by the action 

of ornithine 5-aminotransferase (EC2.6.1.13). This enzyme is present in m any 

cell types, but the form detected in GABAergic neurones exhibits a lower 

affinity (Km) for GABA than is usual (Drejer and Schousboe, 1984) intim ating 

a possible contribution to overall neuronal GABA production.

3) N euronal release of GABA.

According to the 'vesicular hypothesis' of transmitter release stimulus secretion 

coupling is thought to be dependent on the presence of external calcium ions 

(Katz, 1969; Ceccarelli and Hurlbut, 1980). Accordingly a variety of 

experimental techniques have been used to demonstrate the calcium- 

dependent, evoked release of GABA from brain areas in vivo (Lehman et al., 

1983; Benveniste et al., 1984; Sandberg et al., 1986), from perfused brain slice 

preparations in vitro (Valdes and Orrego, 1978; Szerb, 1983), from 

synaptosomes (Bradford et al., 1973; DeBelleroche and Bradford, 1977) and 

from neuronal cell cultures (Pin et al., 1986). In many instances exclusion of 

Ca2+ from the external medium (with or w ithout concomitant addition of 

EGTA a n d /o r  magnesium  ions) results in a profound (Burke and N adler, 1988) 

or, more typically, a partial (Szerb, 1983; Bonanno et al., 1989) reduction in
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GABA release. Examples of calcium-independent evoked transmitter release 

have been documented - but perhaps only now do we have some insight into 

the physiological relevance of this phenomenon. In cultured hippocampal 

neurones preloaded [3H]-GABA can be released by application of the 

excitatory amino acids glutamate, N-methyl-D-aspartate (NMDA), kainate and 

by elevated external K+ or veratridine. In each case this is associated with a 

rise in intracellular Ca2+-concentration which is completely dependent on the 

presence of external Ca2+ (Harris and Miller, 1989). This suggests that in the 

hippocam pus the release of excitatory amino acids may be physiologically 

relevant in the regulation of GABAergic transmission. Surprisingly, removal 

of external Ca2+ has little effect on the ability of these agents, w ith the 

exception of NMD A, to stimulate [3H]-GABA release. However, in all cases 

[3H]-GABA release is inhibited in Na+-free m edium  or in the presence of the 

GABA uptake inhibitor nipecotic acid. Thus, it appears that Ca2+-independent 

release may be m ediated by the reversal of the GABA transport system.

Similarly, exocytotic release of vesicular glutamate is Ca2+-dependent (Nicholls 

and Shira, 1986) and energy-dependent (Sanchez-Prieto et al., 1987). However, 

under conditions in which the N a+-electrochemical gradient across the plasma 

m em brane is lowered, cytoplasmic glutamate is released by reversal of the 

glutam ate uptake system in a Ca2+-independent m anner (Nicholls et al., 1987). 

It has been suggested that separate neuronal pools of glutamate are the origin 

of Ca2+-dependent and -independent release and it is probable that different 

releasable pools of GABA also exist in nerve terminals. Using isolated growth
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cones from neonate rat forebrain it has been dem onstrated that K+-evoked 

GABA release is Ca2+-independent (Taylor and Gordon-W eeks, 1991) until 

postnatal day 5 (P5). At this stage of development growth cones contain 

neither synaptic vesicles nor do they stain for synaptic vesicle antigens. The 

Ca2+-independent K+-evoked GABA release is blocked by the uptake inhibitor 

(RS)-N-(4,4-diphenyl-3-butenyl)nipecotic acid (SKF 89978), once again implying 

that the reversal of the GABA transport mechanism is responsible for this 

phenomenon. After P5 a Ca2+-dependent component of K+-evoked GABA 

release appears, and is maximal (>50% of total) by P l l ,  coinciding w ith the 

appearance of synaptic vesicles in the growth cones (Taylor, et al., 1990).

W here Ca2+ is implicated in release mechanisms, studies to determ ine the type 

of Ca2+-channel involved have been inconclusive. There is evidence for the 

involvement of both receptor linked ion channels (Pastuszko et al., 1984; 

Lazarewicz, 1986; N^Dermott et al., 1986) and voltage-sensitive calcium 

channels (VSCC) (Dingledine, 1983). Indirect activation of VSCC's as a result 

of Ca2+-flux through receptor gated channels has also been postulated (Rivers 

and Orrego, 1986). The nature of the VSCC's has not yet been determined.
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4) Released GABA acts at specific postsvnaptic receptors to m ediate 

neuronal inhibition.

Intracellular recording combined with extracellular m icroiontophoretic drug 

application revealed that GABA hyperpolarized cortical neurones and this was 

associated w ith a rapid rise in membrane conductance. Both the evoked 

inhibitory postsynaptic potentials (i.p.s.p.'s) and responses to exogenously 

applied GABA could be reversed by injection of Cl' into the neurone (Li and 

Chou, 1962; Krnjevic et al., 1966a; Krnjevic et al., 1966b). Several inorganic 

anions and even large organic ions were able to substitute for Cl' which 

suggested that Cl"-flux occurred via unselective anion channels K+ was thought 

unlikely to contribute to the inhibitory effect of GABA as blockers of K+ 

m ovem ent did not affect the i.p.s.p. (Krnjevic et al., 1971). Since GABA was 

ineffective when injected intracellularly it was concluded that it m ust be acting 

on some cell surface receptor.

The convulsant strychnine was w ithout effect against GABA responses 

although it had been shown to antagonize the inhibitory action of glycine on 

spinal cord neurones (Curtis et al., 1968a; Curtis et al., 1968b). A range of 

other convulsant isoquinoline alkaloids were studied and it was discovered 

that the effect of GABA on feline central neurones and the strychnine-resistant 

inhibition of cortical pyram idal cells and cerebellar Purkinje cells could be 

selectively blocked by bicuculline (Curtis et al., 1970) an alkaloid derived from 

the Cordalis species (Manske, 1933; Welch and Henderson, 1934). Another
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antagonist, picrotoxin, already known to be an antagonist of GABA responses 

in crustacea (Robbins, 1959), also selectively inhibited m am m alian GABA 

receptor activation (Galindo, 1969; Curtis et al., 1971). It is now  apparent that 

bicuculline competes directly with GABA for its binding site on the receptor 

protein whereas picrotoxin binds to the Cl" ionophore and antagonizes GABA 

in a non-competitive m anner (Ticku et al., 1978; Simmonds, 1980).

Shortly after the identification of specific GABA receptor antagonists a receptor 

binding assay was devised (Zukin et al., 1974) which dem onstrated specific 

and reversible binding of [3H]-GABA to crude synaptic m em branes prepared 

from whole rat brain. This specific binding could be displaced to the same 

extent by both unlabelled GABA (IC50 O.lpM) and bicuculline (IC50 5pM). The 

density of [3H]-GABA binding was m easured in various brain regions and 

found to be highest in the cerebellum, thalamus, hippocampus, cerebral cortex; 

m oderate in the corpus striatum; and lowest in the medulla-oblongata pons 

and spinal cord. The density of GABA binding did not correspond to the 

endogenous levels of GABA.

Specific agonists for GABA receptors were also discovered. Muscimol, a 

psychotomimetic isoxazole isolated from the m ushroom  Amanita muscaria, was 

found to be more potent than GABA at activating inhibitory receptor-gated Cl" 

-flux in all tissues studied (Johnson et al., 1968; Naik et al.., 1976; Wheal and 

Kerkut, 1976). In binding assays muscimol inhibited GABA binding 

completely with a K| of 40nM (Greenlee et al., 1978) whilst [3H]-muscimol
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itself bound to GABA receptors with a KD Of 3nM (Beaumont et al., 1978; 

Snodgrass, 1978). Muscimol, and another compound, isoguvacine, were found 

to inhibit feline spinal interneurones (Curtis et al., 1971; Krogsgaard-Larsen et 

al, 1977). Both of these compounds are semi-rigid GABA analogues which 

mimic GABA selectively and are antagonized by bicuculline and picrotoxin. 

Binding of [3H]-GABA can be inhibited by isoguvacine (Enna et al., 1977) and 

specific binding of [3H]-isoguvacine can be inhibited by GABA, muscimol, 

bicuculline, but not picrotoxin.

5) GABA uptake and degradation.

Following its release into the synaptic cleft GABA is removed by a sodium- 

dependent, high affinity uptake system into neurones and glia (Iversen and 

Neal, 1968; Iversen and Kelly, 1975), and by diffusion into postsynaptic cells 

(Hyden et al., 1986). The active processes may be distinguished by 

com pounds such as 3-aminocyclohexane carboxylic acid (ACHC) and 2,4- 

diam inobutyric acid (DABA) which are selective inhibitors of neuronal GABA 

uptake and by gaboxadol and cis-4-hydroxynipecotic acid which are glial 

selective. Nipecotic acid is a non-selective GABA uptake inhibitor and, in 

common with m any of these compounds, is itself a substrate for the GABA 

carrier proteins (Bowery et al., 1976; Krogsgaard-Larsen et al., 1987). (3-

Alanine, once widely believed to be an inhibitor of glial uptake of GABA 

(Schon and Kelly, 1975), has now been shown to utilize the taurine carrier in 

both neurones and glia. Thus, (3-alanine can no longer be used as a m arker for

31



GABA uptake into glia, as has been the custom in the past (Larsson et al., 

1986). Recently developed nipecotic acid derivatives appear to inhibit GABA 

uptake without being substrates for the GABA carrier protein (Younger et al., 

1984) and may therefore be of importance in conditions which would benefit 

from  enhanced GABA function. It is interesting that selective neuronal GABA 

uptake inhibitors are apparently proconvulsant (Meldrum et al., 1982) whereas, 

presum ably by increasing the synaptic GABA pool, inhibitors of glial uptake 

are anticonvulsant (Krogsgaard-Larsen et al., 1981; Schousboe et al., 1986).

It is not surprising that a GABA transporter protein has now been cloned from 

rat brain (Guastella et al., 1991). This protein, expressed in Xenopus oocytes, 

has been shown to exhibit comparable kinetics to those of the native neuronal 

and glial proteins. ACHC and DABA were effective inhibitors of [3H]-GABA 

uptake by the carrier but as they were compared only to (3-alanine as a glial 

inhibitor in this system it is perhaps prem ature to describe the expressed 

protein as a neuronal-like GABA uptake protein.

Coexistence on nerve terminals of the uptake carriers for GABA and 

acetylcholine (Bonanno and Raiteri, 1987a; Bonanno et al., 1991) or dopamine 

(Bonanno and Raiteri, 1987b) provides evidence that major neurotransm itters 

are co-localized. Supporting evidence is provided, for example, by the 

visualization of particular neurones in the rat diagonal band which stained 

positive for both choline-acetyltransferase (ChAT) and GAD in double 

immunofluorescence studies (Brashear et al., 1986).
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Following the active uptake of GABA into nerve terminal further 

com partm entation into synaptic vesicles occurs. Fyske and Fonnum (1988) 

have shown that GABA is accumulated by isolated synaptic vesicles in a 

m agnesium -dependent, sodium -independent m anner that is inhibited by 

proton pum p inhibitors but not by neuronal or glial GABA uptake inhibitors. 

GABA is present in nerve terminals at about 50-150mM (Fonnum and 

W alberg, 1973) but much of this is probably intravesicular and so although the 

affinity of the vesicular uptake carrier for GABA is low (Km = 5.6mM) it is 

appropriate for the local GABA concentration.

The final stage of GABA metabolism is its transamination to succinic semi­

aldehyde by GABA-transaminase (GABA-T: E.C.2.6.1.19) an enzyme of both 

neuronal and glial origin (Schousboe, 1981). A consequence of GABA-T 

inhibition is the elevation of brain GABA concentrations and this is believed 

to be the mechanism by which the clinically used anti-epileptic agent y-vinyl- 

GABA mediates its effects (Schechter, 1984; Halonen et al., 1990).

By the late 1970's the pharmacology of GABA receptors appeared to be well 

defined. GABA mediated neuronal inhibition, by either hyperpolarization or 

depolarization but always by the movement of CT, and its actions were 

mimicked by muscimol and isoguvacine and antagonized by bicuculline or 

picrotoxin. However the GABA story was about to evolve further.

33



II GABA RECEPTOR MULTIPLICITY - The Pharmacology of Baclofen.

A series of GABA analogues were designed which, unlike GABA, w ould 

penetrate the CNS following oral administration. One of these com pounds 

w as p-p-chlorophenyl y-aminobutyric acid or baclofen (Keberle and Faigle, 

1972). In cats intravenous administration of baclofen was found to reduce 

mono- and polysynaptic reflexes and to lessen the spasticity induced by 

mesencephalic transection or ischaemic decerebration (Bein, 1972). Baclofen 

quickly became the drug of choice clinically for the alleviation of limb 

spasticity resulting from a variety of spinal injuries.

Electrophoretically administered baclofen depressed the firing of spinal 

interneurones, pyramidal tract neurones and Purkinje cells in the anaesthetized 

cat with no effect on Renshaw cells (but see Benecke and Meyer-Lohmann, 

1974) yet its actions were unaffected by either bicuculline or strychnine (Curtis 

et al., 1974). The precise mechanism by which baclofen relieved spasticity was 

therefore unclear but it was proposed that baclofen may inhibit the release of 

excitatory neurotransm itters within the spinal cord (Davidoff and Sears, 1974; 

Fox et al., 1978). Though both of these groups concluded that this action of 

baclofen m ust be independent of any GABA receptor interaction later studies 

indicated that baclofen was indeed 'GABA-like'. For example baclofen 

inhibited the spontaneous firing of rat nigral and ventral tegmental neurones 

as d id  GABA and mimicked the rotational behaviour induced by GABA after
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injection into the substantia nigra (Olpe et al., 1977b). Yet in all cases baclofen 

was resistant to antagonism by bicuculline. This paradox was addressed by 

a series of investigations with the following results. Baclofen was found to 

inhibit [3H]-GABA binding in membrane preparations weakly; to be ineffective 

or only a m odest inhibitor of GABA uptake into synaptosomes; to elicit a small 

release of GABA from synaptosomes and to be w ithout effect on GAD activity 

(Roberts et al., 1978; Olsen et al., 1978). The conclusion draw n from these 

studies was that, at best, baclofen was an extremely weak GABA agonist but 

that its effects were more likely to be due to some non-specific action.

The discovery that activation of peripheral bicuculline-sensitive GABA 

receptors on rat superior cervical ganglia led to the expected increase in 

chloride conductance but resulted in neuronal depolarization (Bowery and 

Brown, 1974) prom pted Bowery and co-workers to propose that the activation 

of such receptors on sympathetic nerve terminals should result in a depression 

of neurotransm itter outflow. These predictions were confirmed by the 

findings that GABA produced a dose-dependent inhibition of evoked [3H]- 

noradrenaline release from isolated rat atria, achieving a maximum inhibition 

of 50-60%. W hat was unexpected was that this GABA response was resistant 

to bicuculline and all other recognised GABA antagonists, and was not 

mimicked by the majority of recognised GABA agonists - w ith the exception 

of baclofen (Bowery and Hudson, 1979). Further studies were carried out 

using a range of peripheral, isolated tissue preparations. In all cases baclofen 

and GABA dose-dependently inhibited the electrically evoked twitch
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responses. Baclofen exhibited stereoselectivity in its effect, w ith the (-) isomer 

being approximately 100 times more potent than the (+) isomer. A lack of 

effect of baclofen on exogenously applied agonist responses indicated a 

presynaptic location for this atypical GABA receptor. That both baclofen and 

GABA were acting at the same site to reduce transmitter release was 

supported by their parallel log dose-response curves, similar m axim um  

responses (40-60% inhibition of twitch response), their cross-desensitization in 

rat atria and the inability of each to inhibit the twitch response further in the 

presence of a maximal concentration of the other (Bowery et al., 1981).

It was soon apparent that this novel GABA receptor was also present on 

central neurones. (-)Baclofen (l-100pM) inhibited the K+-evoked release of 

[3H]-noradrenaline from rat cerebellar slices, [3H]-dopamine from striatal slices 

and [3H]-5-hydroxytryptamine from cortical slices (Bowery et al., 1980). The 

attenuation of neurotransm itter release by baclofen was stereoselective and 

mimicked by GABA but not by the GABA agonist 3-aminopropane sulphonic 

acid (3-APS). At lower concentrations of K+ (<25mM) GABA enhanced [3H]- 

noradrenaline release from cerebellar slices unless bicuculline was present, in 

which case GABA reduced release. 3-APS consistently enhanced transm itter 

release never producing an inhibition, even in the presence of bicuculline. The 

conclusion draw n from these results was that two types of GABA receptor 

were present but only at the lower concentrations of K+ were both types 

functionally apparent. Baclofen was also shown to inhibit the release of 

excitatory amino acids from central neurones: endogenous aspartate and
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glutamate from slices of guinea-pig cerebral cortex (Potashner, 1979), and [3H]- 

D-aspartate from slices of rat cerebral cortex and spinal cord (Johnston et al., 

1980).

Evidence for two distinct binding sites for [3H]-GABA in brain synaptic 

m embranes provided the final proof of GABA receptor heterogeneity. It was 

found that addition of either Ca2+ or Mg2+ to the incubating m edium  increased 

the am ount of specific [3H]-GABA binding to rat whole brain membranes. 

This additional binding component was suppressed by unlabelled GABA but 

untouched by isoguvacine (Bowery et al., 1983). In the presence of 2.5mM 

CaCl2, and 40pM isoguvacine to completely inhibit bicuculline sensitive 

binding sites, [3H]-GABA and [3H]-baclofen were found to exhibit high affinity

I saturable binding that could be fully displaced by unlabelled GABA and (-)
|

baclofen w ith equal affinities. Muscimol and 3-APS were m uch weaker 

[ displacers of [3H]-baclofen binding and isoguvacine and bicuculline were

devoid of activity (Hill and Bowery, 1981).

It was at this point that Bowery and colleagues designated the classical 

bicuculline-sensitive GABA site as the GABAa receptor and the novel 

baclofen-sensitive, bicuculline-sensitive site as the GABAb receptor. A 

sum m ary of the characteristics of each of these receptor is given in Table 1.

f

i
i
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Table 1 Characteristics of GABAa and GABAp Receptors.

Selective Isoguvacine

agonists

Selective Bicuculline

antagonists

M odulators Benzodiazepines 

Barbiturates 

Bicy clophospha tes 

Steroids

Ion Channels Receptor activation 

increases Cl" 

conductance

2nd Messengers None

Dependence of 

binding on ions

None

Effect of guanyl 

nucleotides

None

(-) Baclofen

Phaclofen 

2-OH-Saclofen 

CGP 35348

None?

Receptor activation 

increases K+ or 

decreases Ca2+ 

conductance

Adenylate Cyclase 

PI Turnover

Absolute depend­

ence on C a2+ or 

Mg2+

Reduce binding 

affinity
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HI THE PHARMACOLOGY OF GABAP RECEPTORS.

1) GABAP receptor distribution in  the m am m alian CNS.

M embrane binding assays had demonstrated the existence of two distinct 

subtypes of GABA receptor in the mammalian CNS however it required 

autoradiographical studies to make clear that each of these receptors had  a 

unique pattern of distribution (Wilkin et al., 1981; Bowery et al., 1984; Bowery 

et al., 1987). Several areas have similar densities of both GABAa and GABAb 

binding sites whereas in other regions one receptor type predom inates. High 

levels of both GABAa and GABAb binding occur in cerebral cortex, 

particularly in the outer laminae (I-IV), and in some thalamic nuclei. M oderate 

levels of both sites are found in the basal ganglia, the Raphe nucleus, 

amygdala and substantia nigra and throughout hippocampal areas CA1-CA4, 

w ith the exception of the pyramidal cell layers which have very few GABAb 

receptors. There is a paucity of GABA binding, of either subtype, in the 

hypothalam us or medulla.

Striking differences in binding distribution occur in the cerebellum. In this 

brain region GABAa receptors predominate in the granule cell layer whereas 

GABAb receptors are confined to the molecular cell layer (Wilkin et al., 1981). 

Similarly in the spinal cord, GABAa receptors show a uniform  distribution 

through both dorsal and ventral laminae (I-X), while GABAb receptors are 

concentrated in the dorsal horn (laminae I-IV). GABAb receptors are
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particularly dense in the substantia gelatinosa (laminae II-III) and as GABAb 

binding is halved following neonatal capsaicin adm inistration this would 

im ply their location on prim ary afferent terminals (Price et al., 1984b). The 

globus pallidus, lateral amygdaloid nucleus, habenulae and superior colliculus 

contain m any more GABAb than GABAa receptors. Another region rich in 

GABAb binding sites is the interpeduncular nucleus. If either the intrinsic 

neurones of this structure or the afferent inputs from the habenulae are 

lesioned then GABAb binding is reduced, by 85%, by the latter procedure only. 

This provides evidence for a predom inat ly presynaptic location of GABAb 

receptors in the interpeduncular nucleus on the terminals of the habenulae 

input. Similarly, unilateral decortication results in a substantial decrease of 

GABAb binding in the caudate putam en on the lesioned side compared to the 

unlesioned side, indicating the presence of a population of GABAb receptors 

on corticostriatal terminals (Moratalla and Bowery, 1991).

2) The developm ent of GABAp receptor agonists and  antagonists.

GABAb receptors were initially described as baclofen-sensitive, bicuculline- 

insensitive GABA receptors for the good reason that, w ith the exception of 

GABA itself, no other ligands, agonist or antagonist, were know n to act at this 

novel site. In the early 1980's compounds such as muscimol and progabide 

were shown to mimic baclofen weakly but they were m uch more potent 

agonists at the classical GABAa receptor (Bowery et al., 1982). The first 

reports of antagonism of GABAb responses came in 1982. The higher
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hom ologue of GABA, 8-aminovaleric acid (5-AVA), a known agonist at 

GABAa receptors was found to antagonize the GABAB-m ediated inhibition of 

[3H]-noradrenaline released from the isolated rat anococcygeus muscle 

(M uhyaddin et al., 1982a; M uhyaddin et al., 1982b; M uhyaddin et al., 1983), to 

inhibit specific [3H]-baclofen binding in rat brain m embranes and to reverse 

the baclofen-induced reduction of population spikes evoked in the rat 

hippocam pal slice (Nakahiro et al., 1985). However, this com pound was 

extremely weak, concentrations in the low mM range being required for any 

appreciable activity at GABAb receptors. Another GABAa agonist, 3-APS, was 

also reported to competitively inhibit the baclofen depression of the evoked 

twitch response in the guinea-pig ileum, w ithout any direct effect of its own 

(Giotti et al., 1983). The authors claimed 3-APS to be more 'potent7 in this 

preparation than 5-AVA (apparent pA2 values of approximately 4 for both 

antagonists) but the extreme weakness and lack of specificity of both 

com pounds severely limited their usefulness in determining the physiological 

relevance of GABAb receptors in the mam m alian nervous system.

As far back as 1965 it had been shown that the phosphonic analogue of GABA, 

3-am inopropylphosphonic acid (3-APPA; Fig. 1), depressed the firing of feline 

spinal neurones (Curtis and Watkins, 1965). A similar effect on rat cerebral 

and cerebellar cortical neurones was bicuculline-insensitive and therefore 

presum ably not due to GABAa receptor activation (Bioulac et al., 1979). The 

corresponding derivative of baclofen, (3-(p-chlorophenyl)-3-aminopropyl 

phosphonic acid (phaclofen; Fig. 1), was synthesized and compared to 3-APPA
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in both peripheral and central GABAb preparations (Kerr et al., 1987). It was 

observed that whilst neither compound relaxed the guinea-pig ileum  nor 

depressed the transm urally evoked cholinergic twitch response, both 

antagonized the baclofen-mediated reduction in twitch. This effect was 

reversible and an apparent pA2 of approximately 4 was calculated for each 

compound. In contrast, 3-APPA weakly mimicked baclofen's ability to depress 

m onosynaptic excitation of spinal cord neurones; the action of baclofen and 3- 

APPA could be reduced by phaclofen (Kerr et al., 1987).

Phaclofen showed an appreciable improvement in selectivity for GABAb 

receptors compared to the earlier compounds, enough to make it possible to 

antagonize both the postsynaptic action of baclofen and the bicuculline- 

resistant action of GABA, and to abolish the slow i.p.s.p. in hippocampal 

pyram idal cells, thus establishing an im portant physiological role for GABAb 

receptors in the CNS (Dutar and Nicoll, 1988a). However, phaclofen lacked 

sufficient potency to make it a universally useful GABAb antagonist. The 

synthesis of sulphonic baclofen derivatives addressed this problem. 3-Amino- 

2(4-chlorophenyl)-2-hydroxy-propylsulphonic acid (2-hydroxysaclofen; 2-OH-S; 

Fig. 1) showed a ten-fold increase in potency compared to phaclofen at 

peripheral and central GABAb receptors (Curtis et al., 1988; Kerr et al., 1988; 

Lambert et al., 1989; Al-Dahan et al., 1990). The direct sulphonic acid 

derivative, 3-amino-2-(4-chlorophenyl)-propylsulphonic acid (saclofen) was 

slightly more potent with an estimated pA2 of 5.3 against baclofen responses 

in guinea-pig ileum and rat cortical neurones compared to a pA2 of 5 for 2-
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hydroxysaclofen (Kerr et al., 1989).

A new  com pound 3-aminopropylphosphinic acid (3-APA; Fig. 1), synthesized 

in 1987 (Dingwall et al., 1987) was reported to have higher affinity for GABAb 

binding sites in rat brain membranes than baclofen. This was confirmed, and 

an IC50 of l-3nM obtained in rat brain synaptic m embranes and slices for 3- 

APA com pared with 65nM and 30nM for baclofen respectively (Pratt et al.,

1989). 3-APA was also selective for GABAb receptors in this study, the IC50 

for the displacement of [3H]-GABA from GABAa receptors in m embranes and 

slices was 420nM and 20pM respectively. 3-APA was a potent GABAb agonist 

in both peripheral preparations (Hills et al., 1989) and at presynaptic GABAb 

receptors on embryonic rat hippocampal neurones in culture (Ong et al., 

1990a). The methyl derivative, 3-aminopropyl(methyl)phosphinic acid (SKF 

97541; Fig. 1) was of comparable or greater potency and more selective for 

GABAb receptors over GABAa receptors than 3-APA itself (Hills and Howson, 

1990; Seabrook et al., 1990) but its overall profile of activity was similar.

CGP 35348 (p-3-aminopropyl)-p-diethyloxymethyl-phosphinic; Fig. 1) acid 

represented a breakthrough in GABAb receptor pharmacology as it was the 

first GABAb antagonist, though still a relatively weak compound, to 

demonstrate appreciable brain penetration following peripheral administration. 

CGP 35348 was found to selectively inhibit specific [3H]-3-APA binding from 

rat cortical membranes with an IC50 of 34 pM (CGP 35348 was devoid of 

activity in eleven other receptor binding assays), to inhibit the baclofen
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potentiation of noradrenaline-stimulated cAMP accumulation in brain slices (at 

lOO-lOOOpM), to block the late i.p.s.p. and baclofen-induced hyperpolarization 

of hippocampal neurones (at 30pM), to reverse depression of spinal neurones 

by baclofen (at lOOpM), to prevent impairm ent of rotorod performance by 

baclofen (at 30-300mg/kg) and most importantly to inhibit the effect of 

iontophoretically applied baclofen, but not of the GABAa  agonist THIP, on 

cortical neurones following peripheral intravenous (10-30mg/kg), oral (600- 

lOOOmg/kg) or intraperitoneal (30-100mg/kg) administration (Olpe et al., 

1990). Whilst CGP 35348 does not show an increase in potency over saclofen 

in vitro it has the advantage of brain penetration and is w ithout activity at 

GABAa receptors.

3) GABAp receptor-linked intracellular effector systems.

A characteristic of GABAb binding uncovered by Hill and co-workers (1984) 

was that it is sensitive to guanyl nucleotides. The inclusion of either 

guanosine triphosphate (GTP) or guanosine diphosphate (GDP) reduced the 

saturable binding of [3H]-GABA or [3H]-baclofen to rat brain mem branes by 

85%. Guanosine m onophosphate (GMP) and adenosine triphosphate (ATP) 

were w ithout effect. In contrast GABAa binding in the same experiment was 

unaffected by any of these compounds. The potency of GTP to reduce GABAb 

binding was enhanced if the Tris buffer plus Ca2+ or Mg2+, which was used 

for the study, was replaced by a complete physiological saline solution. 

Rodbell (1980) suggested that an influence of guanyl nucleotides on ligand
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binding is indicative of a link between the receptor and the enzyme adenylate 

cyclase which regulates the formation of the intracellular second messenger 

adenosine 3 ',5 '-monophosphate (cyclic AMP; cAMP). We now know that this 

is not strictly correct and that an influence of guanyl nucleotides reflects an 

association of the receptor with one of a family of mem brane bound guanyl 

nucleotide-binding proteins (G proteins) through which activation of the cell 

surface receptor effects an intracellular response. The increased effectiveness 

of GTP in Krebs m edium  was therefore probably due to the presence of N a+ 

which appears to be essential for receptor-G protein interaction (Rodbell, 1980).

G proteins are trimers composed of an a-subunit (39-52kDa) which contains 

the guanyl nucleotide binding site and intrinsic GTP'ase activity, a p-subunit
f

(35-36kDa) and a y-subunit (8kDa) (see Stryer and Bourne, 1986 for review). 

Different a-subunits have been isolated and sequenced and it is this moiety 

which defines the G protein as stimulatory (Gs) or inhibitory (G^ w ith respect 

to cellular response (Itoh et al., 1986). A series of inhibitory Gia Subunits have 

been identified: Gn , Gi2, Gi3, G0 and G0* (Goldsmith et al., 1988; Neer and 

Clapham, 1988). Whereas Gsa is a substrate for ADP-ribosylation catalysed by 

cholera toxin (Cassel and Pfeuffer, 1978) the Gioc's and Goa's are ADP- 

ribosylated by pertussis toxin (PTX), an exotoxin of Bordetella pertussis (Katada 

and Ui, 1982; Codina et al., 1983). Specifically, Gi0C-GDP or Giot-GTP are the 

substrates and PTX covalently modifies a cysteine residue (residue 347) close 

to the carboxy terminus of the a  subunit which results in the loss of its ability 

to bind the activated receptor protein. The inhibition of a receptor m ediated
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effect by PTX is therefore indicative of an involvement of one or more of the 

inhibitory G proteins. Two (3-chains have been described but appear to show 

90% homology, and at least three different y-chains may exist (Gilman, 1987; 

Lochrie and Simon, 1988; Jones et al., 1990). G Proteins cycle between an 

inactive GDP-bound state and an active GTP-bound state. Conversion 

between the two is usually slow but is accelerated by the proxim ity of a 

transm itter-bound receptor protein. GTP is exchanged for the bound GDP and 

this catalyses the dissociation of the GTP-a-subunit complex from the (3y 

complex and from the excited receptor. The latter reverts to a low affinity 

state, the transmitter is then more likely to dissociate and so activation of G 

proteins is linked to the recycling of receptors. The freed a-subunit is then 

able to alter the activity of intracellular enzymes or ion channels before it is 

inactivated by its own ability to convert bound GTP to GDP (Fig. 2). Thus the 

G protein is recycled for activation by another 'excited' receptor. Receptor 

proteins can associate with many G proteins just as G proteins can be activated 

by different receptor types. Therefore this interaction represents a point of 

convergence and amplification in the physiological regulation of cell activity. 

Initially the role of the (3y complex was thought to be limited to presenting the 

Ga-GDP species to the activated receptor. However a more substantial 

involvement of (3y is likely. As (3y units are functionally interchangeable it 

may be that free (3ys can 'm op up' active Ga's and thus influence cell activity, 

this is in addition to any direct effect they may possibly possess (see Taylor, 

1990 for review). Asano and colleagues (1985) first dem onstrated that PTX 

ADP-ribosylated 39kDa and 49kDa proteins in bovine cerebral cortex
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Fig. 2 Schematic Representation of GABAp Receptor and Inhibitory

G-Protein Interaction.
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m embranes with the concomitant reduction in high affinity GABAb binding. 

Addition of either unpurified G{ or G0 to the incubation m edium  restored the 

high affinity binding. A later study, using highly purified G proteins showed 

that this occurred with added Gn , Gc and G0* but not Gi2 (Morishita et al.,

1990).

Functional evidence for the association of GABAb receptors to five different 

intracellular effector systems, all of which m ay involve G{ activation is 

discussed below:

iI Inhibition of adenylate cyclase.

Adenylate cyclase activity is regulated by both stimulatory and inhibitory G- 

proteins, activation of which leads to an increase or decrease respectively in 

intracellular cAMP formation. In brain slice preparations GABAb receptor 

agonists had either no effect on (Hill and Dolphin, 1984; Hill, 1985) or slightly 

enhanced (Karbon et al., 1984) basal adenylate cyclase activity. However, in 

crude synaptic membranes prepared from a num ber of rat brain regions, 

GABAb receptor activation resulted in an inhibition of basal adenylate cyclase 

activity (Wojcik and Neff, 1984) ranging from 5% in hypothalam us to almost 

30% in the cerebellum. Furthermore, (-)baclofen (EC50 4pM) was more potent 

than GABA (HC50 17pM), whilst (+)baclofen, muscimol and other GABAa 

agonists were effective only in the low mM range or were inactive. From 

similar experiments using membranes prepared from the cerebella of m utant
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mice lacking either Purkinje cells or granule cells, or from rats in which the 

cerebellar climbing fibres had previously been lesioned, it was apparent that 

inhibition of adenylate cyclase in cerebellum requires an intact granule cell 

layer. Since autoradiographic studies revealed that GABAg receptors 

predom inate in the cerebellar molecular cell layer rather than the granule cell 

layer these results imply that GABAg receptors are located on the terminals of 

cerebellar granule cells (parallel fibres) which are present in the molecular cell 

layer (Wojcik and Neff, 1984).

This initial study was verified by the observation that GABAg agonists 

inhibited adenylate cyclase in primary cultures of cerebellar granule cells, 

using either intact cells or cell membrane preparations (Xu and Wojcik, 1986). 

This response was attenuated by pretreatm ent of the cells for 14 hours w ith 

PTX implying that GABAg receptor mediated inhibition of adenylate cyclase 

was due to the activation of an inhibitory G protein.

iii M odulation of stimulated-adenvlate cyclase activity.

The sensitivity of GABAg binding to guanyl nucleotides intim ated a connection 

betw een GABAg receptors and adenylate cyclase. In spite of the lack of effect 

of either GABA (lOOpM) or baclofen (lOOpM) on basal adenylate cyclase 

activity in slices of rat cerebral and cerebellar cortex (but see Wojcik and Neff,
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1984) Hill (1985) found that the accumulation of cAMP triggered by 

noradrenaline (lOOpM) was more than doubled in the presence of either 

compound. This enhancement by baclofen was stereoselective, bicuculline- 

insensitive and therefore presumably GABAb receptor mediated. A lack of 

Ca2+-dependence ruled out the likelihood that this response was due to the 

synaptic release of some other mediator.

Since these early observations it has been established that activation of GABAb 

receptors will enhance cAMP accumulation stimulated by a num ber of agonists 

including isoprenaline, histamine, adenosine and vasoactive intestinal peptide 

(VIP) (Enna and Karbon, 1984; Karbon and Enna, 1985; W atling and Bristow, 

1986). The m ain effect of baclofen seems to be to increase the m agnitude of 

the response to the stimulatory agonist w ith only a modest enhancem ent of the 

agonist affinity for its receptor (Karbon et al., 1984). This is not clearly 

explained by the finding that GABAb agonists enhance the affinity of P- 

adrenoceptor agonists for both high and low affinity P-adrenergic receptors 

and, whilst the total num ber of receptors remains unchanged, the proportion 

of low affinity binding sites is increased (Scherer et al., 1989). W hatever the 

m echanism this effect of baclofen appears to be limited to intact cell 

preparations as no effect of baclofen was observed on cAMP production 

stim ulated by either noradrenaline or isoprenaline in rat cortical membranes 

(Hill and Dolphin, 1984).
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There are discrepancies in the published findings concerning some aspects of 

GABAb receptor m odulation of agonist-stimulated cAMP formation:

a) Hill (1985) claimed that the baclofen augmentation of noradrenaline 

response was Ca2+-independent. In the same year Karbon and Enna wrote 

'the  synergistic interaction between baclofen and catecholamines is a calcium- 

dependent process'.

b) Hill (1985) obtained identical results using slices of rat cerebral cortex 

and rat cerebellum. Karbon and Enna (1985) however, dem onstrated the 

baclofen augm enting response in slices of rat cerebral cortex, hippocam pus and 

striatum  but not cerebellum, spinal cord or pons-midbrain.

c) Bowery and co-workers (1989) failed to show any decrease in the 

effectiveness of baclofen on noradrenaline-stimulated cAMP formation 

following in vivo intrahippocampal administration of PTX. In contrast, 

intracerebroventricular administration of PTX did result in a reduction in the 

baclofen enhancement of isoprenaline-stimulated cAMP formation by 64% 

com pared to control tissue (Wojcik et al., 1989) and ADP-ribosylation of G 

proteins was verified by back-ribosylation showing that 40-50% of the available 

Gj had  been inactivated. These inconsistencies make it even more difficult to 

determ ine the process by which this 'synergistic interaction' occurs. One point 

on which both groups agree is that, as phosphodiesterase inhibitors are 

w ithout effect; baclofen is not mediating its response by preventing the 

breakdow n of accumulated cAMP.
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a-A drenergic agonists also potentiate agonist-stimulated cAMP accumulation 

in brain slice preparations (Duman et al., 1986) whilst in broken cell 

preparations, they like baclofen, only mediate a direct inhibition of basal 

adenylate cyclase activity (Kitamura et al., 1985). As some groups found the 

potentiating effect of GABAb and a-adrenergic agonists to be abolished by the 

Ca2+ chelator EGTA (Schwabe and Daly, 1977; Karbon and Enna, 1985; 

D um an et al., 1986) it was proposed that stimulation of both receptor types 

m ay increase intracellular Ca2+ and thereby activate Ca2+-dependent enzyme 

systems. This theory is supported by several pieces of indirect evidence. 

M epacrine, a non-selective inhibitor of phospholipase A2 (PLA2) and 

protracted administration of corticosteroids which stimulate endogenous PLA2 

inhibitors, both reduced the augmenting response of baclofen and oq agonists 

(Dum an et al., 1986). PLA2 catalyses the release of arachidonic acid from 

m em brane phospholipids and as inhibitors of cyclo-oxygenase or lipoxygenase 

were ineffective against the augmentation, it is possible that arachidonic acid 

itself, or some other direct product of PLA2 activity, is involved (Duman et al., 

1986; Schaad et al., 1989). Phorbol esters, which directly activate a second 

Ca2+-dependent enzyme protein kinase C (PKC), mimic the baclofen 

enhancem ent of agonist stimulated cAMP formation (Hollingsworth et al., 

1985; Karbon et al., 1985). Although a possible involvement of PKC has been 

proposed (Enna and Karbon, 1987) on the basis that fatty acids, including 

arachidonic acid, are able to directly stimulate PKC (Katada et al., 1985; 

M urukam i and Routtenberg, 1985), this is unlikely as the PKC inhibitor l-(5- 

isoquinolinylsulfonyl)-2-methylpiperazine (H-7) does not block the baclofen
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potentiation of VIP-stimulated cAMP accumulation (Scherer et al., 1988; Schaad 

et al., 1989).

Adenylate cyclase can be directly stimulated by the diterpine forskolin 

(Saemon and Daly, 1983). In membrane and slice preparations this response 

is attenuated by baclofen (Hill, 1985; Karbon and Enna, 1985; Xu and Wojcik, 

1986) in a PTX-sensitive m anner (Bowery et al., 1989) indicating once more an 

involvem ent of inhibitory G-proteins. Why baclofen should have two 

opposing effects, depending on the nature of the adenylate cyclase stimulus, 

has not been resolved, but is discussed later in terms of GABAb receptor 

heterogeneity.

iii) ’ GABAp receptor-mediated inhibition of calcium channels.

The effect of GAB A on calcium currents (ICa) was first observed in 1978 by 

D unlap and Fischbach. GABA decreased the duration of the calcium action 

potential evoked in cultured embryonic chick sensory neurones by inhibiting 

calcium conductance through voltage-sensitive channels (Dunlap and 

Fischbach, 1981). In 1981 Dunlap reported that GABA elicited two distinct 

responses in these cells: a reduction in resting membrane resistance a n d /o r  a 

reduction in action potential duration, but only 10% of cells showed both 

responses. The responses could be distinguished by their pharmacological 

profiles; muscimol evoked only the resistance change whereas the GABA- 

induced reduction in action potential amplitude was mimicked by baclofen.
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Only the change in resistance was sensitive to the GABAa antagonist 

bicuculline. Similar results have since been obtained from intracellular 

recordings from A5 and C primary afferents in the adult rat dorsal root 

ganglion (DRG) (Desarmenian et al., 1984), voltage clamp experiments on 

isolated cat DRG (Robertson and Taylor, 1986) and from whole cell patch 

clamp studies using cultured mouse DRG (Green and Cotrell, 1987). Given 

that Bowery and colleagues had previously described the inhibition of 

neurotransm itter release from sympathetic terminals by activation of GABAg 

receptors the mechanism involved could attractively be explained if GABAg 

receptor activation reduced calcium entry into nerve terminals as it appears to 

in the cell soma.

In prim ary cultures of embryonic chick DRG cells preincubation in PTX 

(140ng/ml) led to a reduction in the num ber of cells showing an attenuation 

of action potential duration by GABA, and the effectiveness of GABA was 

reduced in those cells still responding (Holz et al., 1986). In the same cells 

whole cell patch clamp recordings showed that PTX blocked the GABA- 

induced decrease in calcium current and this effect was specific for a receptor- 

m ediated event as PTX did not reduce the response of the cells to the 1,2- 

oleoyl acetylglycerol (OAG), an activator of protein kinase C which mimics the 

effects of GABA on DRG cells. The evidence supporting an involvem ent of G- 

proteins in GABA-mediated inhibition of calcium channels was substantiated 

by the observation that the effect of PTX was mimicked by intracellular 

administration of 5'-0-(2-thiodiphosphate) (GDP-p-S), a non-hydrolysable GDP
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analogue which competes with GTP and thereby inactivates G-proteins. This 

study provided the first direct evidence of G-protein-mediated inhibition of 

voltage-dependent calcium channels by a neurotransm itter (Holz et al., 1986). 

It is conceivable that GABAb receptor-mediated inhibition of calcium channels 

is a consequence of GABAg mediated activation of inhibitory G-proteins and 

thus a lowering of intracellular cAMP concentration. This is unlikely, 

however, as neither intracellular cAMP nor forskolin had any detrimental 

effect on the baclofen-mediated inhibition of the calcium current in cultured 

rat DRG neurones (Dolphin and Scott, 1987).

The existence of a range of pharmacological tools that distinguish between the 

know n calcium conductances has made the task of determining the type of 

calcium channel which is blocked by GABAg receptor activation possible. Two 

high threshold channels have been identified: the 'L '-type is sensitive to 

dihydropyridines and is able to open at depolarized potentials (Hess et al., 

1984); the N-channel, which has a smaller single channel conductance, gives 

rise to a transient current and is insensitive to dihydropyridines (Tsien et al., 

1988). w-Conotoxin was thought to be an inhibitor of N-channels, however it 

is more probable that this peptide blocks neuronal but not muscle calcium 

channels and inhibits both L- and N-currents (McCleskey et al., 1987). In 

cultures of rat hippocampal pyramidal neurones the calcium current evoked 

at OmV from a holding potential of -80mV is reduced by baclofen (lOpM) by 

33%, an effect blocked by the weak GABAg antagonist 2-OH-saclofen (Scholz 

and Miller, 1991). w-Conotoxin also reduced some portion of the calcium
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current (24%) but not to the same degree as baclofen, though subsequent 

application of baclofen was less effective than when previously applied alone. 

The dihydropyridine calcium channel antagonist nimodipine also reduced the 

evoked calcium conductance, however it is more effective if the voltage step 

was m ade from the more depolarized holding potential of -40mV. Under 

these conditions nimodipine inhibited 44% of ICa and partially reduced the 

response to baclofen, whereas the combination of w-conotoxin and nimodipine 

produces an almost complete abolition of the baclofen inhibition of ICa. GTP- 

y-S enhanced the effect of baclofen whilst it was attenuated by pretreatm ent 

w ith PTX (250ng/ml) (Scholz and Miller, 1991).

The inhibition of calcium conductance in hippocampal neurones paralleled the 

ability of baclofen to inhibit both excitatory and inhibitory post synaptic 

currents evoked by extracellular stimulation of neurones in rat hippocampal 

slices (Dutar and Nicoll, 1988a). This inhibition was also antagonized by 2- 

OH-saclofen and prevented by PTX pretreatment. Therefore the receptors 

m ediating presynaptic inhibition in this preparation were indistinguishable 

from those responsible for mediating inhibition of ICa (Scholtz and Miller,

1991). To some extent these findings are supported by results obtained in rat 

cultured cerebellar granule cells and DRG cells. Cerebellar neurones were 

m aintained in a calcium-free depolarizing medium (50mM K+) and [3H]- 

glutam ate release evoked by a 2-minute incubation in the same m edium  but 

containing 5mM Ca2+. Glutamate release was almost completely inhibited 

(>90%) by the dihydropyridine antagonist (-) 202-791 whereas release was
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enhanced by the agonist (+) 202-791. (-) Baclofen (100pM) reduced evoked 

release by 30-50% (Huston et al., 1990). For comparison in DRG neurones, 

again under depolarized conditions, both baclofen and (-) 202-791 inhibited the 

am plitude of the calcium channel current. In both experimental systems 

although phaclofen was able to reduce the effect of baclofen, 2-OH-saclofen 

was not, which contrasts to the previous findings. It was concluded that since 

N-channels should be inactivated at these levels of depolarization the effect of 

baclofen is probably exerted to a large extent through inactivation of L-type 

calcium channels. An indirect effect of dihydropyridines on [3H]-baclofen 

binding has been reported in which stimulation of GABAb binding is induced 

by calcium channel agonists whereas binding is inhibited by 75% by a calcium 

channel antagonist. This inhibition of binding reflects a reduction in GABAb 

binding sites rather than a change in the affinity of the receptor for baclofen 

(Al-Dahan and Thalmann, 1989).

These studies indicate that GABAb receptors may mediate the inactivation of 

calcium channels with both L- and N-type profiles. In addition it has recently 

been observed that a low threshold, transient calcium current (T-current) is 

also sensitive to baclofen (Dolphin et al., 1990) showing both an inhibition or 

an enhancement depending on the baclofen concentration. It has been 

suggested that T-currents are involved in the regulation of Ca2+ supply for 

transmitter release (Seabrook and Adams, 1989) and therefore inhibition by 

baclofen would result in a reduction in transmitter overflow. A physiological 

role for GABAb m ediated enhancement of T currents has been proposed in the
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prim ing of thalamocortical cells for burst firing excitation, as observed for 

example during slow wave sleep (Crunelli and Leresche, 1991).

A second experimental approach has involved measuring the effect of GABAb 

receptor activation on Ca2+ influx into rat brain synaptosomes using the 

fluorescent probe Quin-2. Cerebellar synaptosomes loaded w ith Quin-2 ester 

w hen depolarised produce a K+-concentration dependent increase in 

fluorescence indicating a concomitant rise in intracellular Ca2+ concentration 

(Bowery et al., 1987). This signal is reduced by sim ultaneous application of 

either (-)baclofen, GABA, or nitrendipine but not (+)baclofen or isoguvacine. 

Identical results were obtained in rat cerebral cortical synaptosomes though it 

was noted that the weak GABAb antagonist phaclofen behaved as an agonist 

(Stirling et al., 1989).

iv) GABAb receptor-mediated increase in potassium  conductance.

Baclofen induced hyperpolarizations of central neurones m ediated by an 

increase in potassium conductance have been observed in hippocam pal CA1 

(Newberry and Nicoll, 1984; Nicoll and Newberry, 1984) and CA3 cells (Inoue 

et al., 1985; Brown and Gahwiler, 1987) and in neurones of the cerebral cortex 

(Howe, 1987; Howe et al., 1987), locus coeruleus (Osmanovic and Shefner,

1988), lateral parabrachial (Christie and North, 1988) and dorsolateral septal 

(Gallagher et al., 1984) nuclei. The effect of baclofen is stereoselective, 

bicuculline-insensitive and mimicked by GABA and is therefore presum ably
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due to activation of GABAb receptors. Electrical stimulation of excitatory 

afferent pathw ays in, for example, hippocampus, thalamus and cerebral cortex 

evokes a characteristic series of post synaptic potentials consisting of an 

excitatory post synaptic potential (e.p.s.p.), a fast inhibitory post synaptic 

potential (i.p.s.p.) and a late, slow i.p.s.p. (Satou et al., 1982; N ew berry and 

Nicoll, 1984; Crunelli et al., 1987). The fast i.p.s.p. is CT- dependent, 

bicuculline-sensitive mimicked by applied GABA and muscimol and therefore 

due to activation of GABAa receptors. The late i.p.s.p. is K+-dependent, 

resistant to biculline, antagonized by phaclofen (Dutar and Nicoll, 1988; Soltesz 

et al., 1988) and has identical properties to the baclofen-induced 

hyperpolarization described above and thus it is thought to be m ediated by 

GABAb receptor activation (Newberry and Nicoll, 1985). In the hippocam pus, 

at least, the GABAb agonist-induced hyperpolarization and the electrically- 

evoked late i.p.s.p.(but not the fast i.p.s.p.) are blocked by pretreatm ent with 

PTX or by intracellular injection of GTP-y-S into post synaptic neurones 

(Andrade et al., 1986; Thalmann, 1988). This provides good evidence that 

GABAB-mediated increases in K+-conductance are activated via an inhibitory 

G-protein in the same way as previously described for GABAB-inactivation of 

Ca2+-conductance.

In addition to the direct hyperpolarization of neurones baclofen will inhibit 

postsynaptic potentials by reducing the amount of excitatory and inhibitory 

neurotransm itters available for release (Ault and Nadler, 1982). In rat 

neocortical neurones this was not associated with a shortening of the duration
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of the calcium spike (Howe et al., 1987) and therefore not due to inactivation 

of calcium channels. It is not inconceivable that hyperpolarization of 

presynaptic terminals by a GABAB-induced opening of K+-channels, reducing 

neuronal excitability might result in a reduction in transmitter release. As yet, 

however, there is no strong evidence to support this possibility.

The precise nature of the K+-channels opened by GABAb receptor activation 

is not known. The reversal potential for the baclofen-induced increase in 

m em brane conductance has been typically found to be about -85mV, close to 

that of the slow after-potential, recorded following a series of action potentials, 

which is thought to be due to a calcium-activated potassium  conductance 

(Alger and Nicoll, 1980). There is no evidence, however, that baclofen 

activates such a conductance. In hippocam pus the baclofen-induced K+- 

current was unaffected by the removal of calcium from the external m edium  

(Inoue et al., 1985) or by the injection of Ca2+-chelators directly into the cell 

(Andrade et al., 1986). Additionally, in purified synaptosomes prepared from 

rat cerebral cortex baclofen inhibited rather than enhanced K+-stimulated 

[86Rb]-efflux (a marker for Ca2+-activated potassium channels). This was 

probably due to an inhibition of voltage-sensitive calcium-channels rather than 

any direct effect on K+-channels (Ticku and Delgado, 1989).

Studies indicate that the K+ current activated by GABAb agonists is sensitive 

to low concentrations of 4-aminopyridine (4-AP), is voltage-dependent and 

therefore distinguishable from 'M ' type K+ currents, and shows inw ard
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rectification ( Inoue et al., 1985; Newberry and Nicoll, 1985). These are 

properties displayed by a novel transient K+ current, the A current, first 

described in invertebrate neurones (Connor and Stevens, 1971) but also present 

in the mammalian CNS (Gustafsson et al., 1982). In cultured rat hippocampal 

neurones A currents are almost totally inactive at resting membrane 

potentials. GABA or baclofen removes this inactivation (Saint et al., 1990). 

If A currents are present presynaptically and affected in this way by GABAb 

agonists, the resulting transient rise in K+ conductance may reduce action 

potential duration by increasing the rate of repolarization and may thus 

depress transmitter release.

This effect on A current is reportedly not sensitive to PTX and may therefore 

represent a direct effect of GABAb receptor activation on K+-channel opening. 

As discussed above a proportion of the GABAb agonist-induced increase in K+ 

conductance is PTX sensitive and these K+ channels may be linked directly to 

inhibitory G-proteins or to a second messenger system. Activation of 

phospholipase A2 (PLA2) to release arachidonic acid from membrane 

phospholipids has been implicated, because application of arachidonic acid to 

the inner surface of an inside out hippocampal neurone patch increased K+ 

conductance in a similar manner to that induced by GABAb agonists 

(Premkumar et al., 1990). However this argument is not supported by the 

observation that PLA2 inhibitors do not block the baclofen-mediated reduction 

of e.p.s.p/s in the hippocampal slice. (Dunwiddie et al., 1990).
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v) GABAg receptor-mediated modulation of phospholipid metabolism.

The evidence that GABAg receptors are linked to the metabolism of membrane 

bound phospholipids is not as conclusive as it is for the effector systems 

discussed above but it is implied by a few recent studies. Baclofen has no 

effect on basal accumulation of inositol monophosphate (IP!) in lithium-treated 

cerebral cortex slices of either rat (Crawford and Young, 1988) or mouse 

(Godfrey et al., 1988). However, baclofen potently (IC50<lpM ) inhibits IP! 

accumulation stimulated by histamine H^receptor or 5-hydroxytryptamine 5- 

HT2-receptor activation respectively. This effect is stereoselective , not 

mimicked by GABAa agonists and resistant to bicuculline. The mechanism by 

which baclofen modulates neurotransmitter-stimulated IP! formation is a 

matter for speculation at present and its determination is made more difficult 

by the fact that the mode of action of histamine itself is not well understood. 

An interesting observation was made by Michler and Erdo (1989) in cultured 

chick tectum neurones, neither GABA, baclofen nor the GABAa agonist 

tetrahydroisoxasolo-pyridinol (THIP) had any effect on IP3 accumulation but 

surprisingly phaclofen potently elevated IP3 levels. That phaclofen was 

effective at concentrations much lower than usually required to antagonize 

GABAg responses, low micromolar rather than low millimolar, suggests a 

pharmacological activity of this compound that is additional to its ability to 

block GABAg receptors.



IV GABAp RECEPTOR HETEROGENEITY.

The availability of new GABAb ligands and the use of pharmacological tools 

such as PTX has led to findings which are not easily explained in terms of our 

current knowledge of GABAb receptor pharmacology. Increasingly such 

apparently anomalous results are being put forward as evidence for GABAb 

receptor heterogeneity. In this the GABAb field trails far behind advances in 

GABAa receptor pharmacology; not only has the GABAa receptor been 

purified and partially sequenced, but the isolation of a family of clones and the 

identification of gene products makes the likelihood of multiple receptor 

subtypes almost certain. Evidence for GABAb receptor subtypes is more 

circumstantial.

1) GABAp m odulation of agonist- and forskolin-stim ulated cAMP 

form ation can be distinguished by GABAp agonists and PTX,

The observation that baclofen is able to potentiate agonist-stimulated cAMP 

formation in brain slice preparations yet in the same system it attenuates the 

stimulation of adenylate cyclase by forskolin has never been easy to explain. 

In broken cell preparations baclofen inhibits basal cAMP accumulation, 

probably through the activation of Gj or G0, and this may account for the 

reduction in forskolin response but is contradictory to the augmenting 

response. Support for the involvement of two distinct GABAb receptor 

subtypes comes from a number of sources. (-)Baclofen and a num ber of amino
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acid analogues were compared for their ability to inhibit GABAb binding in 

rat brain membranes and to modulate stimulated adenylate cyclase activity 

(Scherer et alv 1988a). Of the seven compounds tested only two, in addition 

to baclofen, had appreciable affinity for GABAb binding sites. These were 3- 

APPA and its higher homologue 4-aminobutylphosphonic acid (4-ABPA). The 

remaining four compounds, one of which was phaclofen, had no effect on 

isoprenaline- or forskolin-stimulated cAMP accumulation in rat brain cortical 

slices, in the absence or presence of (-)baclofen. However, whereas 3-APPA 

mimicked (-)baclofen's ability to inhibit the forskolin response it neither 

enhanced the isoprenaline response, nor did it inhibit the ability of baclofen 

to do so. 4-ABPA was inactive in both assays. The more potent agonist 3- 

APA also distinguished between these GABAb m ediated effects. It potently 

(EC50 3pM) inhibited forskolin-stimulated cAMP accumulation to the same 

extent as (-)baclofen yet was much less potent as an enhancer of 

noradrenaline-stimulated cAMP accumulation (EC50 25pM) and produced only 

60% of the maximal response to (-)baclofen. Antagonism of the baclofen 

response by high concentrations of 3-APA support the claim that the 

com pound may be a partial agonist in this system (Pratt et al., 1989).

The effect of PTX pretreatment on GABAb modulation of adenylate cyclase 

activity has also been investigated, with conflicting results. In hippocampal 

slices, taken from the brains of rats sacrificed 3-8 days after intrahippocampal 

administration of PTX (4pg), (-)baclofen failed to inhibit the forskolin- 

stimulated accumulation of cAMP but was still able to enhance noradrenaline-
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stimulated cAMP accumulation as in control tissue (Bowery et al., 1989). This 

would indicate that only GABAB-mediated inhibition of forskolin-stimulated 

adenylate cyclase activity is mediated via Gj/G0. However, in rat cortical 

slices in vivo PTX pretreatment reduced the baclofen enhancement of 

isoprenaline-stimulated cAMP formation. No effect on the GABAb inhibition 

of forskolin stimulated cyclase was detectable as PTX attenuated the forskolin 

response directly (Wojcik et al., 1989). To propose the involvement of both 

PTX-sensitive and PTX-insensitive GABAb receptors in the m odulation of 

stimulated adenylate cyclase activity is therefore difficult, but not 

inconceivable.

2) Central GABAp receptors located pre-and postsynapticallv exhibit 

different pharmacological characteristics.

It would be convenient if the presynaptic GABAB-mediated reduction in 

transmitter release was due to an inhibition of calcium conductance, and the 

postsynaptic hyperpolarization due solely to the opening of potassium  

channels. However there is no clear indication that pre- and postsynaptic 

GABAb receptors can be subdivided on the basis of their associated ion 

channels alone. The first evidence of receptor heterogeneity based on synaptic 

location came from the elegant study of Dutar and Nicoll (1988b). They 

reported that in the CA1 region of the rat hippocampal slice both the baclofen- 

induced hyperpolarization and the late i.p.s.p. were reduced by high 

concentrations of phaclofen or pre treatment of the animals with PTX. The

66



presynaptically mediated baclofen attenuation of evoked e.p.s.p. was 

unaffected by either agent. Subsequent investigations have confirmed this 

observation; in the hippocampus presynaptic inhibition by neuropeptide Y, or 

baclofen, was insensitive to PTX whereas the postsynaptic effects of baclofen 

and 5-hydroxytryptamine were sensitive to the toxin (Colmers and Pittman,

1989); in the dorsal raphe nucleus PTX selectively inhibited the postsynaptic 

action of baclofen w ith no effect on its presynaptic action (Colmers and 

Williams, 1988); in cortical neurones the presynaptic GABAb response, 

m easured as a paired pulse depression of the early i.p.s.p., was unresponsive 

to phaclofen, 2-OH-saclofen or CGP 35348 but the late i.p.s.p. was antagonized 

by all three (Deisz et al., 1992); in the corticostriatal slice preparation the 

presynaptic effect of endogenous GABA was bicuculline-resistant, mimicked 

by baclofen but phaclofen-insensitive (Calabresi et al., 1990). Taken together 

these results provide strong evidence that presynaptic GABAg receptors in the 

CNS m ay not be linked to G j/G0, or they are linked to an, as yet, unidentified 

G protein that is not a substrate for ADP-ribosylation by PTX. The 

pharmacological specificity of this receptor appears to differ from the 

postsynaptic GABAg site.
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3) O ther evidence.

The pharmacological profile of GABAb receptors in the cerebellum appears to 

differ from that of GABAb receptors in other brain regions. N ot only do 

GABAb agonists inhibit basal adenylate cyclase activity in the cerebellum 

(Wojcik and Neff, 1984) but there is also some disagreement as to whether or 

not cerebellar GABAb receptors mediate the facilitation of agonist-stimulated 

cAMP formation (Hill, 1985; Karbon and Enna, 1985). A recent study 

investigated the ability of GABAb ligands to inhibit specific [3H]-baclofen 

binding from rat cerebellar membranes (Drew et al., 1990). The results 

indicated that the order of potency of phaclofen, 2-OH-saclofen and saclofen 

m irrored their known potencies as GABAb antagonists. However 3-APPA and 

4-ABPA were very much more potent than expected, with IC50 values of 

1.5pM and 3.9pM respectively compared to 0.14pM for (±)baclofen. 

Contamination by 3-APA may have explained these results but 3-APA itself 

was found to be inactive at GABAb receptors on cultured cerebellar neurones. 

Ca2+-evoked glutamate release from these cells, under depolarizing conditions, 

was inhibited by (-)baclofen (100pM) but not 3APA (50pM) and the baclofen 

response was inhibited by phaclofen and PTX, but not 2-OH-saclofen (Huston 

et al., 1990). Presynaptic GABAb receptors on these neurones are therefore 

distinct from the presynaptic PTX-insensitive, phaclofen-insensitive 

hippocam pal GABAb receptors described above.

There are other individual observations which also support the hypothesis of
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GABAg receptor heterogeneity. In the rat neocortical slice, m aintained in 

Mg2+-free Krebs solution, baclofen will suppress spontaneous paroxysmal 

discharges and this effect can be antagonized by 2-OH-saclofen. 3-APA 

appears to have an additional effect in that though it produces some 

attenuation of discharge amplitude, with little effect on frequency, its main 

effect is a rapid hyperpolarization, a response only occasionally elicited by 

baclofen. Though the 3-APA diminution of amplitude was reversed by 2-OH- 

saclofen the hyperpolarization was not (Ong et al., 1990). A reason for this 

difference has yet to be determined, GABAg receptor heterogeneity is one 

possibility.

The results of a recent study persuaded Raiteri and colleagues that they had 

identified no less than three distinct presynaptic GABAg receptors on rat 

cortical synaptosomes with differing sensitivities to phaclofen and CGP 35348 

(Bonanno and Raiteri, 1992). They investigated the effect of these antagonists 

on the inhibitory effect of (-)baclofen (lOpM) on the K+-evoked release of 

endogenous GABA, accumulated [3H]-GABA, endogenous glutam ate and 

somatostatin-like immunoreactivity (SS-LI). Phaclofen inhibited baclofen 

effects on all the systems except on glutamate release, even at ImM . CGP 

35348 antagonized the baclofen inhibition of glutamate and SS-LI release, was 

less potent against the inhibition of [3H]-GABA and unable to block the 

reduction in endogenous GABA release produced by baclofen. Alone 

phaclofen increased the release of endogenous GABA but not glutam ate, the 

reverse was true for CGP 35348. From this the authors suggested the existence
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of a phaclofen-sensitive, CGP 35348-insensitive receptor present on GABAergic 

terminals; a phaclofen-insensitive, CGP 35348-sensitive receptor on 

glutamatergic terminals and a receptor sensitive to both antagonists on 

som atostatin containing neurones. They proposed to classify these receptors 

as GABAB1, GABAB2 and GABAB3 respectively. W hether such receptors have 

physiological relevance remains to be seen.

V AIM S OF THESIS.

Given the premise that GABAb receptors located presynaptically in the CNS 

exhibit a pharmacology distinct from those located postsynaptically, the first 

part of this work was devoted to an investigation of central presynaptic 

GABAb receptors using the inhibition of neurotransm itter release as an index 

of presynaptic function. A subsequent comparison was m ade w ith peripheral 

presynaptic GABAb receptors in the classical GABAb preparation, the rat 

anococcygeus muscle. In the same preparation, m onitoring both the 

antagonism  of baclofen-induced inhibition of transm urally-stim ulated [3H]- 

noradrenaline overflow and twitch contraction, the potency of two novel 

GABAb ligands was compared to that of CGP 35348. Experiments were also 

perform ed, using receptor autoradiography, to determine whether any of the 

com pounds under investigation exhibited a differential selectivity for CNS 

GABAb binding sites. It was hoped that such a study may highlight regional 

variations in the sensitivity of GABAb sites to particular com pounds that 

w ould otherwise remain undetected in membrane binding studies.
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The final part of the thesis is devoted to membrane binding experiments 

carried out following pretreatment of the tissue with PTX. Studies in this 

laboratory had previously demonstrated that in brain slices, cut from tissue 

blocks incubated in vitro with PTX, specific GABAb binding was reduced in all 

regions with the exception of the corpus striatum (Bowery et al., 1990). To 

clarify whether or not this was merely due to a particular inability of the toxin 

to access striatal neurones this study looked at the effect of PTX on GABAb 

binding in membranes prepared from rat corpus striatum  and three brain 

regions previously shown to be PTX sensitive, the cerebral cortex, the 

hippocam pus and the cerebellum.
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CHAPTER TWO: METHODS



I CHARACTERIZATION OF PRESYNAPTIC GABAF RECEPTORS IN 

THE RAT HIPPOCAMPUS.

1) T issue Preparation.

i) Preparation of rat hippocampal slices.

One male, Wistar rat (220-240g), was sacrificed for each experiment by 

stunning and decapitation. The brain was rapidly removed onto ice, halved 

and the hippocampi carefully dissected out. 350pm slices were cut using a 

McIlwain tissue chopper. The tissue was transferred to a petri-dish containing 

warm , oxygenated Krebs-Henseleit solution (NaCl, 120mM; KC1, 3mM; 

M gS04.7H20 ,  1.2mM; CaCl2, 1.8mM; N aH 2PC>4, 1.2mM; N aH C 03, 25mM; 

glucose, llm M : pH  7.4) and dispersed into individual slices with a small paint 

brush and fine forceps. A schematic representation of the preparation is

show n in Fig. 3. This procedure was used for the preparation of hippocampal

slices in all subsequent studies.

ii) Preparation of rat hippocampal synaptosomes.

Crude synaptosomes were prepared essentially as described by Gray and 

W hittaker (1962). Male, Wistar rats (220-240g) were sacrificed and hippocampi 

were removed. Tissue pooled from two animals was homogenized in 20 

volumes of ice-cold 0.32M sucrose solution using a teflon/glass homogenizer.
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The homogenate was centrifuged at lOOOg, for 10 min, at 4°C. The resulting 

P1 pellet, comprising nuclei and cell debris, was discarded and the supernatant 

(S1) centrifuged for 20 min at 12,000g. Removal of the supernatant, S2, yielded 

the crude synaptosomal pellet, P2, which was then resuspended in 20 volumes 

of oxygenated Krebs-Henseleit solution, at 37°C.

2) K+-Evoked Release of r3Hl-D-Aspartate from Rat Hippocampal Slices.

iI Determination of the time-course of accumulation of [3Hl-D-aspartate.

Prepared hippocampal slices were incubated, 4 slices per tube, in 0.5ml 

oxygenated Krebs-Henseleit solution containing 67nM [3H]-D-aspartate, at 

37°C, for up to 60 min. At t = 5, 10, 20, 30, 40 and 60 min the incubation 

m edium  was aspirated from three of the tubes, the slices were rinsed in 3 x 

lm l aliquots of normal Krebs-Henseleit solution and solubilized in 200pl 

Soluene-350 overnight. All tissue samples were neutralized with 0.5ml of 0.2M 

HC1 and their tritium content was determined by liquid scintillation counting.

n) Determination of the time required for basal release of l3Hl-D-aspartate 

to stabilize.

Hippocam pal slices were incubated in 3ml of oxygenated Krebs-Henseleit 

solution containing 67nM [3H]-D-aspartate for 40 min at 37°C. The slices were



rinsed briefly in normal Krebs-Henseleit solution and 5 slices were transferred 

to each of 4 superfusion chambers. The chambers were subm erged in a water 

bath maintained at 37°C for the duration of the experiment and the slices were 

perfused continuously with oxygenated Krebs-Henseleit (0.4ml/minute). To 

determine the time required for basal tritium release to stabilize 5 m in 

fractions were collected for 160 min. At the end of the experiment the 

hippocam pal slices from each chamber were solubilized in 200pl Soluene-350. 

The tissue was neutralized with 0.5ml of 0.2M HC1 and counted, together w ith 

the 32 fractions, for tritium content.

Released tritium was expressed as 'fractional tritium release' (FTR), i.e. the 

am ount of tritium released in each fraction expressed as a percent of the total 

tritium  content of the tissue remaining at the beginning of that fraction.

Fractional Tritium Release x 100

where nx = tritium content (dpm) of any one of the 

fractions 1-32.

t = tritium content of the solubilized slices at

the end of the experiment.
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iii) K+-Evoked release of f3Hl-D-aspartate from rat hippocampal slices.

Hippocam pal slices were incubated for 40 min in oxygenated Krebs-Henseleit 

solution containing 67nM [3H]-D-aspartate. Slices were rinsed briefly and five 

transferred to each of four superfusion chambers. The preparations were then 

perfused with oxygenated Krebs-Henseleit solution (at 37°C) for 60 m in to 

allow basal tritium release to stabilize. 5 Min perfusate fractions were 

collected over a period of 190 min. At times t=40, 90 and 140 m in the 

perfusion m edium  was changed to a 'depolarizing' Krebs-Henseleit solution 

containing 10, 20, 35 or 50mM KC1, with correspondingly lowered NaCl 

concentration, for the duration of that fraction. At the end of the experiment 

slices were solubilized in 200pl Soluene-350, neutralized with 0.2M HC1 and 

the tritium  content of tissue and collected fractions determined.

FTR was calculated as previously described (section ii). Due to the time 

required (10-15 min) for the depolarizing medium to travel from the reservoir 

to the superfusion chamber and to then reach the collection vial, elevated FTR 

elicited by increased K+ was not detected until two or three fractions after its 

introduction into the system. FTR returned to basal levels four fractions later. 

Thus the combined FTR in these four fractions represented the K+-evoked 

release of [3H]-D-aspartate. Basal release was determined by combining the 

FTR m easured in the two fractions immediately preceding with that in the two 

fractions immediately following the K+-evoked release (Fig. 4).
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Fig. 4 Schematic representation of evoked tritium overflow.

Evoked tritium overflow = evoked release (4 fractions) - {basal 1+basal 2} (4 

fractions).

Evoked tritium overflow produced by the three successive K+ pulses was 

designated Sj, S2 and S3 respectively.

78



Additional studies were carried out in nominally Ca2+-free Krebs-Henseleit 

solution with or w ithout the addition of Im M  EGTA. Values for Sl7 S2 and S3 

were compared in the absence and presence of 1.8mM CaCl2 and the portion 

of K+-evoked release dependent on the presence of external Ca2+ was 

determ ined as follows:

% evoked tritium o v e rf lo w /^  Sx (-Ca2+) ^  xlOO Sx = Sa, S2 or S2

dependent on Ca2+ \  Sx (+Ca2+)y

To determine the effect of test compounds on K+-evoked [3H]-D-aspartate 

release compounds were introduced into the perfusion m edium  2 m in prior 

to, and during, the second stimulation period. The S2/S 1 ratios were 

calculated and compared to the S2/S : ratio obtained under control conditions 

(i.e. no additions).

3) K+-Evoked Release of [SH1-D-Aspartate from Rat Hippocampal

Svnaptosomes.

i) Determination of the time-course of accumulation of r3Hl-D-aspartate.

Rat hippocampal synaptosomes were resuspended in 6ml of Krebs-Henseleit 

solution maintained at 37°C and oxygenated with 95% 02/5 % C 0 2. [3H]-D-
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A spartate (final concentration 67nM) was added to the synaptosomal 

suspension and vortexed. At t = 0.5, 2, 5, 10, 15 and 30 m in 200pl aliquots of 

the suspension were removed and filtered under m oderate vacuum  onto 

0.65pm nitrocellulose filters in a Millipore filtration unit. The experiment was 

perform ed in triplicate. The synaptosomes were washed w ith 3 x 1ml aliquots 

of norm al Krebs-Henseleit solution and counted for tritium  content by liquid 

scintillation counting.

ii) Determination of the time required for basal release of r3Hl-D-aspartate 

to stabilize.

Rat hippocampal synaptosomes were incubated for 10-15 m in in 3ml of 

oxygenated Krebs-Henseleit solution containing 67nM [3H]-D-aspartate (at 

37°C). Equal aliquots were dispensed onto W hatman G F/C  filters in each of 

four superfusion chambers, maintained at 37°C. The tissue was perfused at 

0 .4m l/m in and 2 min fractions were collected for 60 min. At the end of the 

experiment the tritium content of both the synaptosomes rem aining on the 

filters and the fractions were determined. FRT was determ ined as described 

above (I.2.ii).
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iii) K+-Evoked release of r3Hl-D-aspartate from rat hippocampal

synaptosomes.

Equal aliquots of rat hippocampal synaptosomal suspension were transferred 

to four superfusion chambers and washed for 30 min, at 0.4m l/m in, to allow 

basal release to stabilize. Two minute perfusate fractions were collected for 

a period of 70 min and the tissues were pulsed w ith Krebs-Henseleit solution 

containing either lOmM KC1 or 25mM KC1, for 2 min, at t = 10, 30 and 50 min. 

Filters holding the synaptosomes and all fractions were counted for their 

tritium  content. FTR and tritium overflow (Slr S2 and S3) were determ ined for 

both concentrations of KC1.

Experiments were repeated in nominally Ca2+-free Krebs-Henseleit solution 

w ith or w ithout addition of ImM EGTA. FTR and tritium overflow were 

calculated, and Sv  S2 and S3 values were compared in the absence and 

presence of 1.8mM CaCl2.

As in the rat hippocampal slice study, test com pounds were introduced into 

the perfusion m edium  2 min prior to, and during, the second stimulation 

period. For each compound the S2/S 1 ratio was compared to control values.
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4) K+-Evoked Release of [3H1-GABA from Rat Cortical Synaptosomes:

A C om parison w ith  the Evoked Release of f3H1-GABA and [3H1-D-Aspartate 

from  Rat Hippocam pal Synaptosomes.

To determine why (-)baclofen may fail to m odulate K+-evoked release of [3H]- 

D-aspartate from rat hippocampal preparations using the above techniques 

whilst experiments carried out by Bonanno et al. (1989) show ed that (-) 

baclofen inhibited K+-evoked release of [3H]-GABA from rat cerebrocortical 

synaptosomes the methods used by this group were first replicated and then 

repeated using hippocampal synaptosomes preloaded w ith either [3H]-GABA 

or [3H]-D-aspartate.

i) K+-Evoked f3H1-GABA release from rat cerebrocortical synaptosomes.

Rat cerebrocortical synaptosomes were incubated for 15 min, at 37°C, in 20 

volumes of oxygenated Krebs m edium  containing 50nM [3H]-GABA 

(91.5Ci/mmol, Amersham). 200pl Tissue aliquots were transferred onto 

0.65pm nitrocellulose filters in each well of an eight chamber perfusion system 

and washed for 40 min at 0.6ml/min. 50pM Amino-oxyacetic acid (AOAA) 

was present in the perfusing m edium throughout, to reduce degradation of the 

released [3H]-GABA by GABA-T. After Itf) min equilibration, six 3 min 

fractions were collected with a 90 sec period of depolarization (15mM K+) 

applied at the beginning of the second fraction. In these experiments increased 

tritium  release produced by 15mM K+ was detectable in fractions three and
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four, and returned to basal levels by fraction five. Fractional release was 

determ ined as described above (I.2.ii). Subtraction of basal FTR (fractions 2 

and 5 combined) from K+-evoked FTR (fractions 3 and 4 combined) gave a 

m easure of K+-evoked tritium overflow (S^.

Each tissue sample was stimulated only once and therefore within the eight 

chambers two acted as controls (depolarizing m edium  alone). The rem aining 

six received depolarizing m edium  to which (-)baclofen was added. Tritium 

overflow in the presence of (-)baclofen was compared to that obtained under 

control conditions by Student's 2-tailed t-test.

Ui K+-Evoked release of f3Hl-D-aspartate or T3H1-GABA from rat 

hippocam pal synaptosomes.

The experiment was repeated exactly as for cortical [3H]-GABA release (I.4.i), 

using rat hippocampal synaptosomes preloaded with either 67nM [3H]-D- 

aspartate, or batches of hippocampal synaptosomes were divided and half 

incubated in 67nM [3H]-D-aspartate and half in 50nM [3H]-GABA as before. 

The effect of (-)baclofen on [3H]-amino acid release stimulated by 15mM K+ 

was compared to control values.
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5) K^-Evoked Release of Endogenous Amino Acids from Rat

H ippocam pal Synaptosomes.

Prelim inary experiments were carried out to determine w hether it was possible 

to detect the release of endogenous amino acids from rat hippocampal 

synaptosom es using the superfusion technique outlined above (I.4.i). 

Synaptosomes were prepared and aliquots transferred to the superfusion 

chambers and washed at 0.6ml/min for 30 min. Six 3 min fractions were then 

collected and analyzed for endogenous amino acid content by high 

pressure/perform ance liquid chromatography (HPLC) as outlined below 

(I.5.iii). No amino acids were detected in these samples. Increasing the 

concentration of protein in the chambers or changing the flow rate of the 

perfusing m edium  failed to increase amino acid concentrations to levels 

detectable with the available HPLC system. It was decided therefore to use 

an alternative experimental m ethod based on that described by Neal and Shah 

(1989).

i} M easurement of basal release of endogenous amino acids.

Rat hippocampal synaptosomes were resuspended in 20 volumes of 

oxygenated Krebs-Henseleit solution and incubated for 15 min, at 37°C. 

Synaptosomes (400pl) were transferred onto 0.65pm nitrocellulose filters in a 

twelve chamber Millipore filtration unit and rinsed under moderate vacuum  

w ith 10 x 2ml aliquots of warm, oxygenated Krebs-Henseleit solution. Basal
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release was determined at this point by incubation of the tissue with 0.5ml 

Krebs-Henseleit solution for 5 min. To ensure basal release was stable this 

solution was removed by filtration and replaced, for a further 5 min, with 

0.5ml of fresh Krebs-Henseleit solution. Amino acid content of all samples 

was determined by HPLC analysis (see I.5.iii), protein content was determined 

by the Bradford assay (see IV.3) and the amounts of endogenous amino acid 

present in the samples expressed as pm oles/m g protein /5  min. The amino 

acid content of the second sample was compared to that of the first (Student's 

2-tailed t-test).

ii) K+-evoked release of endogenous amino acids.

Rat hippocampal synaptosomes were incubated and washed as outlined above 

(section I.5.i). Basal release was determined by incubation with 0.5ml Krebs- 

Henseleit solution for 5 min. This solution was removed by filtration and 

replaced for a further 5 min by 0.5ml Krebs-Henseleit solution containing 

15mM, 25mM or 50mM KC1, with appropriately lowered NaCl concentrations, 

w ith or without concomitant addition of test compounds. The endogenous 

amino acid content in basal and stimulated fractions was m easured by HPLC 

analysis and calculated as pm oles/m g p ro te in /5 min.

The experiment was repeated using nominally Ca2+-free Krebs-Henseleit 

solution throughout. Basal and stimulated levels of aspartate, glutamate and
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GABA were determined by HPLC and compared to those obtained in the 

presence of 1.8mM CaCl2.

iii) Quantification of endogenous amino acid content by HPLC.

Detection of amino acids was achieved by precolumn derivitization of each 

sample with o-phthaldialdehyde (OPA, Fluka) (Lindroth and M opper, 1979). 

OPA reacts rapidly with primary amines in the presence of 2-mercaptoethanol 

at alkaline pH  to form highly fluorescent indole derivatives which m ay be 

separated and quantified by HPLC with fluorescence detection at wavelengths 

in the range 340-455nm.

a} Instrumentation

A Gilson high pressure liquid chromatograph equipped with two piston 

pum ps, mixing unit, sample injection valve and 20pl sample loop was used in 

these experiments. A Gilson fluorometric detector was connected to the Drew 

Roseate DS4000 integration and data collection software system. Amino acids 

were identified by retention time and peak areas were m easured and stored 

on disk.
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b} Procedure.

150pl Aliquots of amino acid standards or samples were pipetted into sealed 

brow n glass vials (Anachem) and loaded into the refrigerated (4°C) 

autosam pler unit. The autosampler was program m ed to add lOOpl OPA 

(54mg O P A /lm l absolute alcohol + 10ml 0.1M sodium  tetraborate dehydrate 

+ lOOpl mercaptoethanol; 'age' for 24 hours before use) to 25pl sample aliquots 

and after 1 min reaction time to inject lOOpl of the mixture onto a 20pl 

injection loop. The amino acids were separated using a 15cm, 5pm C-18 

reversed phase Microsorb column protected by a 5pm C-18 Microsorb guard 

column (both Dynamax, Rainin Instrum ent Co.). Amino acid separation was 

achieved by gradient elution by increasing the proportion of buffer B (100% 

methanol) in buffer A (50mM NaH2P 0 4 pH 5.5:Methanol, 4:1) from 0% at t=0, 

to 35% at t=35 min (flow rate lm l/m in). The last peak of interest, GABA, was 

typically eluted at 28 min. With the inclusion of a 5 m in wash in 100% 

m ethanol analysis of each sample was eluted in 40 min (Fig. 5). All reagents 

were of HPLC grade. Solutions were filtered through 0.25pm nitrocellulose 

filters prior to use and degassed under helium throughout the run.
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System Calibration using Amino Acid Standards.

From commercially available L-amino acid standards (Sigma) solutions 

containing 2.5pM aspartic acid, glutamic acid, serine, glutamine, glycine, 

threonine, arginine, taurine, P-alanine, tyrosine, alanine and GABA were 

prepared and stored at -20°C in 1ml aliquots for up to 2 m onths w ithout 

decomposition. Working standards were prepared daily by dilution of the 

stock solutions. At the beginning of each run of experimental samples three 

or four concentrations (1.25-10pmoles on the column) of amino acid standards 

were used to calibrate the system. Fig. 6 shows a representative 

chromatogram for the lOpmole standard solution. For each amino acid there 

was a linear relationship between peak area and concentration up to 20 pmoles 

(highest concentration measured) and regression lines intercepted the origin 

(Fig. 7).

d) Quantification of Unknown Samples.

Amino acid peaks in the experimental samples were identified by retention 

time on the column. Peak areas were integrated and the concentrations of 

individual amino acids were calculated from the slopes of the standard curves.
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Fig. 7 Representative standard curves for known amino acids.

HPLC analysis of amino acid standards was performed prior to each run. The amino acid 

composition of unknown samples was determined from peak retention time and concentration 

from peak area.
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II) CHARACTERIZATION OF PRESYNAPTIC GABAp RECEPTORS IN

THE RAT ANOCOCCYGEUS MUSCLE.

XL Tissue Preparation.

i) Dissection of the rat anococcygeus muscle.

The paired anococcygeus muscles arise from either side of the upper coccygeal 

vertebrae and pass caudally, lying first behind and then each to one side of the 

colon, finally joining above the colon to form the 'ventral bar' which is found

close to the anal opening. This smooth muscle preparation has a dense

adrenergic innervation w ith no apparent cholinergic input, though cholinergic 

muscarinic receptors are located on the smooth muscle cells (Gillespie, 1972). 

Inhibitory neurones are also present which mediate powerful relaxations via 

the release of nitric oxide (Gillespie et al., 1989; Hobbs and Gibson, 1990).

The rat anococcygeus muscles were removed as described by Gillespie (1972). 

Male, W istar rats (220-240g) were stunned and exanguinated. The abdom en 

was opened and the bladder, vasa, testes and seminal vesicles removed. The 

pelvic bone was split, and the delicate connective tissue cleared from behind 

the colon until the paired anococcygeus muscles were visible. The muscles 

were freed from their points of attachment and transferred, as a single unit, 

to a petri dish. In warm, oxygenated Krebs-Henseleit solution all rem aining 

connective tissue was removed and the muscles divided at the ventral bar to
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give two separate preparations which, since they were rem oved from the same 

animal, conveniently acted as paired test and control tissues in some 

experiments.

2) The Electrically-Evoked Release of r3H1-Noradrenaline.

This m ethod is an adaptation of that used to dem onstrate the novel 

pharmacological profile of GABA receptors on the terminals of sympathetic 

neurones (Bowery et al., 1981). Anococcygeus muscles from one animal were 

incubated for 40 min, at 37°C, in 1ml of continuously oxygenated 

(95% 02/5% C 02) Krebs-Henseleit solution containing 250nM [3H]-L-

noradrenaline (38Ci/mmol, Amersham). The preparations were transferred 

to two 10ml glass organ baths, maintained at 37°C, and suspended from an 

isometric force transducer through platinum  ring electrodes (Fig. 8). A resting 

tension of 0.5-1.Og was applied to each muscle which was then washed for 90 

m in w ith warm, oxygenated Krebs-Henseleit solution by which time basal 

release had stabilized. The perfusing m edium  was allowed to 'd rip ' over the 

preparations at a constant flow rate of lm l/m inu te . Yohimbine (2.5pM) was 

added to the Krebs-Henseleit solution to prevent feedback inhibition by 

released noradrenaline acting on presynaptic a 2-adrenergic receptors. 

Pargyline and ascorbic acid were also added to the perfusion m edium , both 

at 500pM, to reduce the breakdown of released noradrenaline by monoamine 

oxidase and oxidation respectively. In some experiments the force transducer 

was connected, via an amplifier, to a flat-bed chart recorder and the response
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Fig. 8 Experimental set-up for the m easurem ent of the electrically-

evoked release of r3H1-noradrenaline from the rat anococcygeus muscle.

93



of the anococcygeus muscle to electrical stimulation was recorded 

sim ultaneously with the collection of released tritium.

At 90 m in the flow rate was reduced to 0.5m l/m in and 5min perfusate 

fractions were collected for 3 hours 20 min. The preparations were 

transm urally stimulated at time t = 30, 55, 80, 105, 130, 155 and 180 m in using 

the following stimulus parameters: one 10 sec train of 0.5 msec pulses 

delivered at variable frequencies and supramaximal voltage by a Grass S88 

stimulator.

In one study the experiment was carried out as described w ith the exception 

that one of the two preparations was maintained in Ca2+-free Krebs-Henseleit 

until after the third stimulation period. 1.8mM CaCl2 was then returned to the 

perfusion m edium  for the rem ainder of the experiment.

At the end of the experiments, tissues were solubilized in 500pl Soluene-350 

and neutralized with 0.2M HC1. Tissue and perfusate samples were added to 

10ml of scintillation fluid and counted for tritium content. FTR of [3H]- 

noradrenaline was determined as previously described for [3H]-D-aspartate 

release from rat hippocampal slices (I.2.ii). As the stimulus was applied 

directly to the muscle via the platinum  electrodes, the 'dead  space' in the 

system consisted only of the time required for the perfusate to leave the organ 

bath and reach the collection vial. Evoked [3H]-noradrenaline release was 

detectable in the fraction collected during the stimulation period with some 

small spillover into the next fraction. Thus evoked release was calculated by
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the addition of the FTR in these two samples. Basal release was determined 

by addition of the FTR in the samples either side of these two fractions. 

Subtraction of 'basal' from 'evoked' gave the am ount of tritium released above 

basal levels by electrical stimulation (tritium overflow) as a percent of tissue 

content and this was designated S! - S7 for the seven stimulation periods. Test 

agonists were introduced into the perfusion medium 90 sec prior to the third 

and sixth stimulation periods, for each preparation the effect of the same 

concentration of one compound was evaluated. S3/S 2 ratios were calculated 

and used to assess the viability of the preparation. S6/S 5 ratios were 

calculated and used to assess the effect of the test agonist. Mean S6/S 5 ratios 

were compared for each agonist concentration to control S6/S 5 ratios by 

Student's 2-tailed t-test.

The effect of three putative GABAb antagonists, CGP 35348, CGP 36742 and 

CGP 46381 (Fig. 9), was assessed against (-)baclofen and 3-APA. 

Concentrations of the test agonists producing just submaximal decreases in 

electrically-evoked [3H]-noradrenaline release were chosen; 30pM (-)baclofen 

or 3pM 3-APA. The agonists were introduced into the perfusion m edium  90 

seconds prior to the third and sixth stimulation periods as described 

previously. Each of the antagonists was introduced into the perfusion medium  

imm ediately following the fifth stimulation to allow a 20 min equilibration 

period. For the last 90 sec of this period both agonist and antagonist were 

present concomitantly. The S3/S 2 ratio was calculated to assess tissue viability. 

Results from preparations in which this ratio was significantly different from
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Fig- 9 The Structures of CGP 35348. CGP 36742 and CGP 46381.
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that obtained previously for these concentrations of agonist were discarded. 

In those preparations responding to the agonists, the S6/S 5 ratios were 

calculated and mean values compared to ratios obtained for the agonist alone 

and to ratios from control tissues. Preliminary experiments were carried out 

to determine the effect of the antagonists alone.

3) The Electrically-Evoked Twitch Response in the Rat Anococcygeus 

Muscle.

Preparations of anococcygeus muscles from three animals were set up for 

electrical field stimulation in six 3ml glass organ baths containing continuously 

oxygenated Krebs-Henseleit solution, at 37°C. Stimulation, using 1 sec trains 

of 0.5 msec pulses at 10Hz delivered every 20 sec at supramaximal voltage, 

produced powerful and reproducible contractions, measured isometrically and 

recorded in grammes of tension developed (g tension) on flat bed chart 

recorders.

Tissues were allowed to equilibrate for 60 min before exposure to sequentially 

increasing concentrations of the GABAg agonists (-)baclofen, 3-APA and SKF 

97541. Drugs were added cumulatively until no further decrease in twitch 

height was obtained and care was taken to ensure that the response to each 

concentration had stabilized before subsequent additions. The response to 

each concentration was calculated as the percent decrease in electrically-evoked
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twitch contraction compared to the control twitch height. Graphs of the 

logarithm 10 (log) of the agonist concentration plotted against % decrease in 

twitch height were constructed from which the concentration producing 50% 

of the possible maximum depression in response (EC50) was determined. 

Dose-response curves (DRC) were repeated a num ber of times and the 

geometric mean EC50 values were calculated.

To determine the potency of the putative GABAb antagonists CGP 35348, CGP 

36742 and CGP 46381 DRC's were constructed to each of the three agonists in 

the absence and presence of increasing concentrations of each antagonist. No 

more than three or four dose DRC's were constructed on any one tissue. 

Antagonists were added to the bathing m edium 15-20 min before repetition of 

the agonist DRC in the continuing presence of the antagonist. Increasing 

concentrations of antagonists produced progressive rightw ard shifts of the 

control DRC as measured by the dose ratio (EC50 in presence of 

antagonist/control EC50). The affinity of the antagonist (PKB) was then 

determ ined by the line of best fit (least squares) to the Schild regression 

(Arunlakshana and Schild, 1959) using three or more observations at each of 

three or four concentrations of antagonist. For a competitive antagonist the 

plot of log antagonist concentration against the log mean(DR-l) gives a straight 

line w ith a slope of unity, and when y=0, x=-logKB.
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Ill) DISPLACEMENT OF I3H1-GABA FROM GABA^ AND GABAp 

BINDING SITES IN WHOLE RAT BRAIN SLICES BY PUTATIVE 

GABAp LIGANDS.

1) Preparation of rat brain  sections for receptor autoradiography.

Male, W istar rats (220-240g) were anaesthetized with pentobarbitone sodium 

(Sagittal O.lml/lOOml i.p.) and the brains perfused via the right ventricle with 

250ml ice-cold 0.01M phosphate buffered saline, pH  7.4. W hen completely 

blood free the brains were carefully removed, m ounted on corks w ith a small 

quantity of Tissue Tek (Miles Diagnostics Ltd.) and frozen in isopentane which 

was cooled to -35°C in liquid nitrogen. The brains were stored at -70°C until 

required.

For receptor autoradiography, brains were equilibrated at -20°C, for 30 min, 

and 10pm sagittal sections were cut at the level of the hippocam pus (3.4mm 

lateral from midline, Paxinos and Watson, 1986) using a Frigocut 2800 cryostat, 

at -20°C. Sections were thaw mounted onto glass microscope slides and 

approximately 100 sections were obtained from each brain. Racks of m ounted 

sections were air-dried for 2 hours before storing, at -20°C, for at least 12 

hours before use.
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2) GABA Binding Assays in Rat Brain Sections.

i] GABAa binding assay.

Frozen brain sections were thawed at room tem perature and washed in 50mM 

Tris-HCl, pH  7.4, for 2 x 30 min periods (30 slides per 250ml buffer). The 

sections were thoroughly air-dried prior to the binding assay. For the 

detection of GABAa binding, sections were incubated, for 20 min, w ith lOOpl 

of Tris-HCl containing 30nM [3H]-GABA (91.5Ci/mmol) and lOOpM (-) 

baclofen to saturate GABAB sites. Non-specific binding was defined by the 

inclusion of isoguvacine (100pM). For displacement studies triplicate sections 

were incubated in the total binding m edium  containing 0.1,1,10 or lOOpM of 

each of the test compounds, (-)baclofen, 3-APA, SKF 97541, CGP 35348, CGP 

36742 and CGP 46381. After 20 min the incubation m edium  was aspirated off 

and each section was washed twice, for 3 sec, in ice-cold Tris-HCl and for 1 

sec in distilled water. Sections were added to scintillation fluid and counted 

for tritium content using a p-counter.

Non-specific binding (dpm) was subtracted from all other values. Specific 

binding remaining in the presence of the test compounds was compared to 

that in the absence of drug additions and the % decrease in specific GABAa 

calculated for each concentration of displacing ligand:
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% decrease in specific = 

GABAa binding

'specific dpm  in presence of ligand 

specific dpm  in absence of ligancL

x 100%

iil GABAp binding assay.

Detection of GABAb binding was carried out essentially as for the GABAa 

binding assay. Thawed sections were washed for 2 x 30 min periods in 50mM 

TRIS-HC1, pH 7.4, containing 2.5mM CaCl2, and then thoroughly dried before 

use. Divalent cations are essential for the detection of GABAb binding sites. 

Air-dried brain sections were incubated for 20 min with lOOpl TRIS-HC1, pH  

7.4, containing 2.5mM CaCl2, 30nM [3H]-GABA (91.5Ci/mmol) and 40pM 

isoguvacine to saturate GABAa binding sites. For the displacement studies 

increasing concentrations of the following compounds were included in the 

incubation medium; (-)baclofen, 3-APA, SKF 97541, CGP 35348, CGP 36742 and 

CGP 46381. Non-specific binding was defined by the presence of (-)baclofen 

(lOOpM). Each concentration was tested in triplicate and these sections 

apposed to tritium-sensitive film (III.3) a further duplicate was added to 

scintillation fluid and counted for tritium content to immediately determine 

the viability of the experiment. Compounds were tested in three or four 

separate experiments.
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3) Autoradiographic visualization of GABAb binding in rat brain slices.

Following incubation the sections were dried and, together w ith commercial 

tritium  standards (3H-Micro-scales Amersham), were apposed to tritium  

sensitive Hyperfilm (Amersham) in X-ray cassettes for 8 weeks at room 

tem perature. The exposed film was then immersed, emulsion side upperm ost, 

in Kodak D-19 developer until the brain images were clearly visible. After 

rinsing briefly in distilled water, the negatives were fixed in 25% sodium  

thiosulphate solution and left for double the clearing time. Films were rinsed 

in running water for 30 min and dried.

Specific GABAg binding was quantified in several brain regions by reference 

to the standards exposed to the same film using a Quantim et 970 Image 

Analyzer. Optical densities of the sections were automatically converted to 

nC i/m g  and, given the specific activity of the radioligand, this was finally 

expressed as fmoles of [3H]-GABA bound per mg of protein (fm ol/m g protein) 

for a given brain area. Triplicate values were calculated at each concentration 

of displacing ligand. The concentration of test compound which inhibited 50% 

of specific GABAg binding (IC50) was determined from graphs of log10 of the 

concentration of displacer against % specific GABAg binding.
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IV REGIONAL EFFECTS OF PERTUSSIS TOXIN ON GABA? BINDING

IN RAT BRAIN.

1) Tissue Preparation.

i} Preparation of rat brain synaptic membranes.

Male, W istar rats (5-12 weeks old; 100-320g) were sacrificed by stunning and 

decapitation and the brains rapidly removed onto ice. The cerebral cortices, 

hippocampi, corpus striata cerebella and were dissected and tissue pooled 

from 15-20 animals for each experiment. The tissue was homogenised in 40ml 

ice-cold 0.32M sucrose and centrifuged at l,000g for 10 min, at 4°C. The pellet 

was discarded and the supernatant recentrifuged at 20,000g, for 20 min. The 

resulting pellet was lysed with 40ml ice-cold distilled water and kept on ice 

for 15 m in in the refrigerator. Centrifugation at 8,000g, for 20 min, resulted in 

a pellet and supernatant with a 'buffy coat' layer at their interface. This 'buffy 

coat7 was collected with the supernatant and centrifuged at 48,000g for 20 min. 

The final pellet was washed once with water then resuspended in 4ml of 

distilled water and frozen, at -20°C, until required.
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Ml Treatment of rat brain membranes with PTX.

The prepared membrane pellets were thawed at room  temperature. PTX 

(400111, Porton Products) was preactivated by incubation in 4ml TRIS-HC1 

(lOOmM; pH  7.2), containing dithiothreitol (50mM), for 2-3 hours at 29°C. 

Meanwhile, the rat brain membrane pellets were washed three times by 

resuspending in 40ml ice-cold distilled water, followed by centrifugation at 

20,000g for 10 min. Pellets were incubated at room tem perature in TRIS-HC1 

(50mM, pH  7.4, 2.5mM CaCl2, ImM  MgCl2) for 45 m in and centrifuged at 

20,000g for 10 min to remove as m uch endogenous GABA from the 

preparations as possible . After two further 15 m inute washings at room 

tem perature followed by centrifugation, the pellets were resuspended in 2ml 

of TRIS-HC1 (lOOmM, pH  7.2) and each divided into two 1ml portions. One 

portion from each brain region was incubated w ith 1ml of preactivated PTX 

solution and 2ml of reaction buffer (lOOmM TRIS-HC1, pH  7.2 containing 

NAD, 2mM; ATP, ImM; thymidine, lOmM; EGTA, ImM; MgCl2) and the other 

portion in 1ml PTX vehicle (50% glycerol, 50% phosphate buffer , pH  7.2 

containing NaCl) and 2ml reaction buffer, for 30 min at 29°C. The ADP- 

ribosylation reaction was terminated by the addition of 40ml ice-cold TRIS-HC1 

(50mM, pH 7.4) and centrifugation, at 20,000g, for 10 min. The supernatant 

was discarded and the pellets were stored on ice in the refrigerator until 

required for assay.
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2) GABAP b inding  assay in control and PTX-treated rat brain 

m em branes.

Assay tubes were set up in triplicate. Tubes contained either lOOpl distilled 

water (total GABAb binding), lOOpl (-)baclofen (final concentration lOOpM to 

define non-specific GABAb binding) or lOOpl GTP7S (final concentration 2pM). 

The reaction was initiated by the addition of lOOpl of [3H]-GABA (final 

concentration 5nM, 91.5Ci/mmol) to all tubes. Each brain region for control 

and PTX-treated tissue was assayed individually. Pellets were resuspended 

in an appropriate volume of TRIS-HC1 (50mM. pH 7.4), containing 40pM 

isoguvacine to saturate GABAa binding sites, and 800pl was added to each 

assay tube. Samples of tissue homogenate were retained for protein assay and 

in some cases determination of the tissue GABA content. After a 10 min 

incubation period the reaction was terminated by centrifugation, at 10,000g, for 

3 min. The supernatant was carefully removed by suction, the pellets 

superficially rinsed in ice-cold distilled water and solubilized overnight in 

lOOpl Soluene-350. 0.2M HC1 (400pl) was added to neutralize the Soluene-350 

and the contents of each tube was added to 10ml scintillant and the samples 

counted for tritium content. Triplicate values were averaged and non-specific 

values subtracted from all others to give specific GABAb binding in dpm /tube . 

GABAb binding was finally expressed as fmol GABA bound per mg protein 

(fm ol/m g).
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3) Protein estim ation using the Bradford method.

This m ethod is based on the rapid binding of the azo dye Coomassie Brilliant 

Blue G-250 to protein causing an increase in the maximum absorbance of the 

dye from 465nm to 595nm. The reaction is complete in 2 m in and the colour 

change stable for 1 hour. The advantage of this m ethod is that cations, 

carbohydrates and chelating agents produce little interference (Bradford, 1976).

The Bradford reagent was prepared by dissolving lOOmg Coomassie Brilliant 

Blue G-250 in 50ml 95% ethanol, adding 100ml 85%(w/v) phosphoric acid and 

m aking this solution up to 11 with distilled water. The reagent was stirred 

continuously overnight, filtered and stored at 4°C for up to one month. 

Bovine serum albumin (BSA) standards (0-1 mg) were prepared, in triplicate, 

in 0.2M NaOH solution from a stock solution of lm g /m l BSA. The reaction 

was initiated by the addition of 1ml Bradford reagent, samples were vortexed 

and incubated for 30 min. Absorption was read at 595nm using a 

spectrophotometer (Cecil Instruments). A plot of 1/concentration vs 

1/ absorbance was constructed from which the concentrations of unknow n 

samples were calculated. 50pl Aliquots of protein samples were added to 50pl 

0.2M NaOH and 1ml Bradford reagent added. The samples were vortexed 

and the absorbance read after 30 min. Protein content in m g /m l was 

determ ined from a calibration curve (Fig. 10) which was determined in parallel 

w ith each assay.
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V) SOURCE OF NOVEL COMPOUNDS

All reagents unless otherwise stated were obtained from Sigma or BDH and 

were of Analar grade.

(-) Baclofen, (+) baclofen, 3-APA, SKF 97541, CGP 35348, CGP 36742, and CGP 

46381 were kindly donated by Ciba-Geigy, Switzerland.

107



K & -1Q Calibration curve for BSA protein standards.
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BSA standard solutions (0-lm g/m l) were prepared in 0.2M NaOH. The 

reaction was initiated by the addition of 1ml Bradford reagent, samples wre 

vortexed and incubated for 30 min. Absorption was read at 595nm and the 

reciprocal of protein concentration plotted against the reciprocal of absorbance. 

The protein concentration of unknown samples was derived from the 

regression line.
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CHAPTER THREE: RESULTS 

CHARACTERIZATION OF PRESYNAPTIC 

GABAb RECEPTORS IN RAT 

HIPPOCAMPAL PREPARATIONS
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1) GABAp-Modulation of the K+-Evoked Release of T3H1-D-Aspartate

from Rat Hippocampal Slices.

D-Aspartate is a substrate for the Na+-dependent, high affinity carrier protein 

which is responsible for the accumulation of L-aspartate and L-glutamate by 

neurones and glial cells, although, unlike these amino acids D-aspartate is not 

metabolized for several hours following uptake (Davies and Johnston, 1976). 

Therefore, D-aspartate has frequently been used as a 'm arker7 for L-glutamate 

and L-aspartate containing neurones and its evoked, Ca2+-dependent release 

has been studied in a wide range of in vitro CNS preparations including rat 

and guinea-pig cortical, striatal, hippocampal and cerebella slices (Mangano 

et al., 1991; Potashner and Gerard, 1983) and synaptosomes (Levi and Gallo, 

1981), cat spinal cord slices (Johnston et al., 1980), cultured cerebellar granule 

cells (Zhu and Chuang, 1987) and in vivo using intrahippocam pal microdialysis 

(Nielsen et al., 1989).

D-Aspartate was therefore chosen to investigate the effect of (-)baclofen on the 

K+-evoked release of excitatory amino acids from rat hippocampal 

preparations. The initial aim was to characterize the presynaptic GABAb 

receptor using release techniques and to compare the results to those of Dutar 

and Nicoll (1988b) who had investigated pre-and postsynaptic GABAg 

receptors in the rat hippocampus using electrophysiological m ethods and 

found evidence of receptor heterogeneity.
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i) Accumulation of [3Hl-D-aspartate.

The graph of accumulation of tritium with time (Fig. 11) shows that uptake of 

[3H]-D-aspartate by rat hippocampal slices was maximal at 40 min. This 

incubation period was used in all subsequent experiments.

iil Determination of the time required for basal release of r3Hl-D-aspartate 

to stabilize.

Under these experimental conditions efflux of [3H]-D-aspartate from perfused 

rat hippocampal slices fell from 2% of total tissue content per fraction to 

stabilize at approximately 0.8% after 90 min (Fig. 12). This probably represents 

the removal of tritium from non-releasable tissue compartments in addition to 

the m easurem ent of neuronal basal tritium release. During the next 70 min 

basal tritium  release declined at a much slower rate to 0.6%. A w ash period 

of 90 m in was therefore determined as sufficient to allow basal release of [3H]- 

D-aspartate from rat hippocampal slices to stabilize and was used in all 

subsequent experiments.

iii) The effect of increasing K+-concentrations on basal release.

Initial studies investigated the effect of 2 minute pulses of increasing 

concentrations of K+, lOmM, 20mM, 35mM and 50mM, on [3H]-D-aspartate 

release. The 'depolarizing' medium was introduced into the perfusion system,
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Fig. 11 Time-course of accumulation of f3Hl-D-aspartate by rat

hippocampal slices.
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Rat hippocampal slices, 4 per time point, were incubated with [3H]-D-aspartate 

(67nM) for up to 60 min. Accumulated tritium was determined, following 

tissue solubilization, by liquid scintillation counting. Accumulated tritium  

(dpm) is plotted against time. Values are the mean ± s.e.m. (n=4).
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Fig. 12 Decline of basal release of f3Hl-D-aspartate from rat hippocampal

slices with time.
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Rat hippocampal slices were incubated with [3H]-D-aspartate (67nM) for 40 

min, 5 slices transferred to each of four perfusion chambers and w ashed with 

w arm , oxygenated Krebs-Henseleit solution for 160 min. Fractional tritium  

release was determined and plotted against time (min). Values are the m ean 

± s.e.m. (n=4).
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for 2 min, at t=40, 90 and 140 min. Irrespective of whether 2 m in or 5 min 

fractions were collected, no increase in tritium release was observed above 

basal levels at any of the K+ concentrations tested (data not shown). It was 

therefore decided to apply the K+ pulses for a longer time period. In a single 

experiment preloaded and washed hippocampal slices were stim ulated for 5 

m in w ith Krebs-Henseleit solution containing either lOmM, 20mM, 35mM or 

50mM KC1 at t=40, 90 and 140 min.

The results indicated that only at the highest K+ concentration was the release 

of tritium  clearly enhanced above basal levels (Fig. 13). At this concentration 

5.4% of the tissue content was released during the first stim ulation period, 

4.81% during the second period and 2,85% during the third period (Table 2). 

Lower K+ concentrations evoked the release of between 0.12-0.5% of tissue 

tritium  content. The S2/S 1 ratios from a further 8 control experim ents using 

50mM K+ were obtained to give a mean value of 0.95 ± 0.12 (n=10; Table 5). 

These data indicate that the amount of tritium released by the second K+ pulse 

was similar to that released by the first (Fig. 15). Krebs-Henseleit solution 

containing 50mM KC1 was therefore used to evoke [3H]-D-aspartate release 

from rat hippocampal slices throughout the rem ainder of this study.

iv) Calcium-dependencv of K+-evoked release of r3Hl-D-aspartate. 

Experiments were carried out to determine to w hat extent K+-evoked release 

of [3H]-D-aspartate from rat hippocampal slices was dependent on the 

presence of calcium ions in the superfusion medium. Evoked tritium  overflow
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Fig. 13 The concentration-dependent, K+-evoked release of I~3H1-D-

aspartate from rat hippocampal slices.
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Rat hippocampal slices were pulsed at 50 min intervals (solid bars) with 

Krebs-Henseleit solution containing lOmM P), 20mM p), 35mM (A) or 50mM 

KC1 in the presence of 1.8mM CaCl2. Values of fractional tritium  release 

are single observations.
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Table 2 Tritium overflow from rat hippocampal slices evoked bv 

increasing concentrations of external K+.

Evoked Tritium Overflow (% Tissue Content)

lOmM K+ 20mM K+ 35mM K+ 50mM K+

Si 0.24 0.42 0.23 5.38

s2 0.46 0.40 0.5 4.81

S3 0.12 0.32 0.36 2.85

Tritium  overflow was compared at increasing concentrations of K+ in the 

perfusate. The values of Sv S2 and S3 were obtained from the experiment 

obtained described in Fig. 13 above.
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was determ ined for the three successive K+ pulses in nominally Ca2+-free and 

norm al (1.8mM Ca2+) Krebs-Henseleit solution. A second experiment was 

perform ed w ith the addition of the calcium chelating agent EGTA (ImM) to 

the Ca2+-free m edium  (Fig. 14).

K+-Evoked tritium  release was reduced by 22-50% in nominally Ca2+-free 

m edium  (Table 3). This value was increased to 46-70% when EGTA was 

present (Table 4). Though the basal release of [3H]-D-aspartate was lower in 

the absence of Ca2+ (Fig. 14) this is a single observation that probably reflects 

the variability in FTR measured in different perfusion chambers. All 

subsequent studies were carried out in the presence of 1.8mM CaCl2.

v} • The effect of (-)baclofen on K+-evoked release of r3Hl-D-aspartate.

(-)Baclofen (10-100pM) was added to the perfusion m edium  2 min prior to, 

and during, the second stimulation period. S2/S-L Ratios were calculated and 

com pared to the control S2/S-L obtained in (iii) above (Table 5). The results 

indicated that (-)baclofen, at concentrations up to 100pM, did not significantly 

inhibit the K+-evoked release of [3H]-D-aspartate from rat hippocampal slices. 

A decrease in evoked [3H]-D-aspartate was not obtained by increasing the time 

of exposure to (-)baclofen prior to S2 from 2 min to up to 20 min. Prolonged 

exposure (20 min) to 100pM (-)baclofen appeared to enhance [3H]-D-aspartate 

release; the S2/S 1 ratio was 1.53 ± 0.55 (n=4) compared the control value of 

0.95 ± 0.12 (n=10), although these two ratios were not significantly different.
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Fig. 14 Calcium-dependencv of the K+-evoked [3Hl-D-aspartate release

from rat hippocampal slices.
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Rat hippocam pal slices were superfused with norm al Krebs-Henseleit solution 

(1.8mM CaCl2) or nominally Ca2+-free m edium  containing Im M  EGTA. 

Preparations were stimulated for 5 min every 50 min with the appropriate 

Krebs-Henseleit containing 50mM KC1 (solid bars). Tritium efflux expressed 

as a % of tissue content (FTR) was determined over the 190 m in collection 

period. Values are from 1 experiment.
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Table 3 Evoked [3Hl-D-aspartate release in the absence of calcium ions.

Evoked Tritium Overflow % Evoked Release 

Dependent on Ca2+
+1.8mM Ca2+ +0mM Ca2+

Si 1.07 0.84 22%

s2 1.25 0.63 50%

S3 1.32 0.69 48%

Table 4 Evoked f3Hl-D-aspartate release in the absence of calcium ions 

(+EGTA).

Evoked Tritium Overflow % Evoked Release 

Dependent on Ca2+
+1.8mM Ca2+ OmM Ca2+ +EGTA

Si 1.12 0.61 46%

s2 1.56 0.48 70%

S3 0.99 0.50 50%

["H]-D-Aspartate release was evoked by 5UmM K.1 in normal u.tfmM  Oak:l2)

and nominally Ca2+-free Krebs-Henseleit solution (n=l;Table 3). The 

experiment was repeated with the addition of Im M  EGTA to the Ca2+-free 

m edium  (n=l;Table 4). The portion of K+-evoked release dependent on the 

presence of calcium ions was calculated as follows:

% Evoked Release = /sx(+Ca2+) - Sx(-Ca2+)\ xlOO Sx = S1,S2 or S3

Dependent on Ca2+ y  Sx(+Ca2+) J
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Fig. 15 K^-Evoked release of [3Hl-D-aspartate from rat hippocampal

slices: control responses to 50mM K+.
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Depolarizing Krebs-Henseleit solution containing 50mM KC1 was introduced 

into the superfusion chambers at 50 min intervals for 5 m in (solid bars). 

Values are the mean ± s.e.m. of the fractional tritium release m easured at each 

time point (n=10)
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Table 5 The effect of (-)baclofen on the K+-evoked release of f3Hl-D-

aspartate from rat hippocampal slices.

S2/S 1 n

Control 0.95 ± 0.12 10 NSD

lOpM (-)Baclofen 0.85 ± 0.07 3 NSD

30pM (-)Baclofen 0.76 ± 0.06 3 NSD

lOOpM (-)Baclofen 0.96 ± 0.16 5 NSD

(-)Baclofen (KMOOpM) was introduced into the superfusion m edium  2 min 

prior to, and during, the second stimulation period. S2 /S 1 Ratios were 

calculated in the presence of (-)baclofen and compared to the control value 

(obtained in section iii above) using Student's 2-tailed t-test. Values are the 

m ean ± s.e.m. (n=3-10).

NSD = no significant difference from control at p = 0.05
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One possible explanation for the lack of inhibitory effect of (-)baclofen on K+- 

evoked [3H]-D-aspartate from rat hippocampal slices is that 50mM K+ is too 

strong a depolarizing stimulus against which to detect subtle m odulation of 

transm itter release by (-)baclofen. However lower concentrations of K+ were 

ineffective at producing measurable increases in tritium efflux above basal 

level (Fig. 13). It was therefore decided to repeat these experiments using 

crude hippocampal synaptosomes, a preparation which m ay respond to less 

aggressive chemical stimulation and which m ay therefore be more useful for 

the detection of GABAb modulation of K+-evoked [3H]-D-aspartate release.

2) GABAF-Modulation of the K+-Evoked Release of f3Hl-D-Aspartate

from Rat Hippocampal Synaptosomes.

i} Accumulation of [~3H]-D-Aspartate.

The accumulation of [3H]-D-aspartate by rat hippocampal synaptosomes was 

maximal at 10 min (Fig. 16). An incubation period of no more than 15 m in 

was therefore used for all subsequent studies.

iil Determination of the time required for basal release to stabilize.

Efflux of [3H]-D-aspartate from rat hippocampal synaptosomes fell from 28% 

of tissue content per 5 minute fraction to approximately 1% after 25 min. As 

before this is thought to represent both the removal of tritium from non-
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Fig. 16 Time-course of accumulation of F3H1-D-aspartate by rat

hippocampal synaptosomes.
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Rat hippocampal synaptosomes were incubated with 67nM [3H]-D-aspartate, 

at 37°C, for up to 15 min. 200pl aliquots were removed at t = 0.5, 2, 5 ,10 and 

15 m in and washed under vacuum before the tissue tritium  content was 

m easured by scintillation counting. Values are mean ± s.e.m. (n=3).
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releasable tissue pools as well as basal neuronal tritium  efflux. Release was 

then stable, falling to only 0.6% of tissue content over the next 50 m in (Fig. 17). 

A w ash period of 30 min was determined to be sufficient to allow basal 

tritium  efflux to stabilize and was used for all subsequent experiments.

iii) The effect of increasing concentrations of K+ on basal release of T3H1-D- 

aspartate.

For these experiments 2 min fractions were collected to enable the detection 

of small changes in tritium overflow. The depolarizing Krebs-Henseleit 

m edium , containing either lOmM or 25mM KC1, was introduced into the 

superfusion system for 2 min at t = 10, 30 and 50 min.

Elevated K+ concentrations produced a dose-dependent increase in tritium  

release, detectable in the collected perfusate 8 min after introduction of the 

depolarizing m edium  into the system (Fig. 18). Tritium release returned to 

basal levels 2 or 3 fractions later. At lOmM K+ tritium  overflow comprised 

1.23% (Sa), 0.7% (S2) and 1.13% (S3) of tissue tritium  content, at 25mM K+ this 

was increased to 2.80% (S- ,̂ 2.78% (S2) and 1.29% (S3) (Table 6). The graph of 

FTR plotted against time for both K+ concentrations (Fig. 18) gives an example 

of the variability in basal level of FTR in these experiments. This is likely to 

be due to slight differences in the rate at which perfusion m edium  is pum ped 

through the four chambers and possibly to uneven distribution of the 

synaptosomal suspension on the nitrocellulose filters.
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Fig. 17 Decline of efflux of r3Hl-D-aspartate from rat hippocampal

svnaptosomes with time.
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Rat hippocampal synaptosomes preloaded with [3H]-D-aspartate were 

transferred to perfusion chambers and washed for 60 m in w ith warm, 

oxygenated Krebs-Henseleit solution. Perfusate samples were collected every 

2* min. Fractional tritium release was determined from the tritium  content of 

the fractions and synaptosomal aliquots and plotted against time. Values are 

the mean ± s.e.m. (n=4).
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Fig. 18 The concentration-dependent, K+-evoked release of f3Hl-D-

aspartate from rat hippocampal synaptosomes.
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Rat hippocampal synaptosomes were pulsed for 2 min, at 20 min intervals 

(solid bars), with Krebs-Henseleit solution containing either lOmM or 25mM 

KC1. Values are the mean of duplicate observations from separate 

experiments.
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Table 6 Tritium overflow from rat hippocampal synaptosomes evoked by 

increasing concentrations of external K+.

Evoked Tritium Overflow (% Tissue Content) N

lOmM K+ 25mM K+

Si 1.23 2.8

S2 0.70 2.78

S3 1.13 1.29

Evoked tritium  overflow was compared for increasing concentrations of K+ in 

the superfusion medium. Values of Slr S2 and S3 are from the experiment 

described in Fig. 18 above.
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iv) Calcium-dependencv of K+-evoked release of [3Hl-D-aspartate.

The effect of 2 min pulses of 25mM K+ Krebs-Henseleit m edium  on the release 

of [3H]-D-aspartate from rat hippocampal synaptosomes was determined in the 

absence and presence of 1.8mM CaCl2. ImM  EGTA was added to the Ca2+- 

free solution (Fig. 19). In contrast to the corresponding hippocampal slice 

experiments, evoked tritium release was not reduced in Ca2+-free medium, 

even w ith the addition of EGTA, rather it was enhanced (Table 7). This was 

unexpected and the explanation not clear.

y2 The effect of (-)baclofen on iC-evoked release of r3Hl-D-aspartate

The effect of (-)baclofen was determined against [3H]-D-aspartate release 

evoked by lOmM K+. (-)Baclofen was introduced into the superfusion m edium  

2 m in prior to, and during, S2. Calculated S2/S 1 ratios were compared to 

control values (Table 8). There was no inhibitory effect of (-) baclofen (30- 

300pM) on evoked tritium release, rather the S2/S 1 ratios were greater in the 

presence of (-)baclofen than in its absence. lOOpM (-)Baclofen was also unable 

to reduce [3H]-D-aspartate release evoked by 25mM K+ (Table 9).

vi) The effect of GABAP agonists on the K*-evoked release of 1~3H1-GABA. 

For comparison the effect of (-)baclofen was determined using rat hippocampal 

synaptosom es preloaded with [3H]-GABA (50nM; 91.5Ci/mmol). The 

experimental design was identical to that for [3H]-D-aspartate release. (-)
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Fig- 19 Lack of calcium-dependence of the K+-evoked release of f3H1-D-

aspartate from rat hippocampal synaptosomes.
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Rat hippocam pal synaptosomes were stimulated with 2 min pulses of 25mM 

K+, at 20 m in intervals (solid bars), in the absence or presence of 1.8mM CaCl2. 

Ca2+-free m edium  contained ImM EGTA. Values are duplicate observations 

from 1 experiment.
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Table 7 Tritium overflow evoked by 25mM K+ in rat hippocampal 

synaptosomes: lack of calcium-dependence.

Evoked Tritium Overflow

+ Ca2+ - Ca2+ + EGTA

Si 2.80 5.51

s2 2.78 5.59

S3 4.29 6.88

Tritium overflow, evoked by 25mM K+, was determined in the absence and 

presence of 1.8mM CaCl2. ImM  EGTA was added to the Ca2+-free medium. 

Values are from the experiment described in Fig. 19 above.
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Table 8 The effect of (-)baclofen on the release of r3Hl-D-aspartate from

rat hippocampal synaptosomes evoked by lOmM K+.

S1/ S l

Control 0.56

+ 30pM (-)Baclofen 1.07

+ lOOpM (-)Baclofen 1.19

+ 300pM (-)Baclofen 1.54

rH]-D-A spartate release was evoked by KJmM K+. (-)Bacioten (30-300pM) 

was introduced into the superfusion medium 2 min prior to, and during, S2. 

S2/S-L ratios were calculated for control and (-)baclofen treated synaptosomes. 

Values are the mean of duplicate observations.

Table 9 The effect of (-)baclofen on the release of f3Hl-D-aspartate from 

rat hippocampal synaptosomes evoked bv 25mM K+.

Control 0.99

+ lOOpM (-)Baclofen 1.37

The experiment was repeated using 25mM K+ as the depolarizing stimulus. 

(-)Baclofen (lOOpM) was introduced into the medium 2 min prior to, and 

during, S2. Values are the mean of duplicate determinations.
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Baclofen (10-100pM) appeared to enhance [3H]-GABA release evoked by lOmM 

K+, although the mean S2/S 1 ratios were not significantly different from 

control (Table 10). lOOpM GAB A and lOOpM 3-APA also produced an 

apparent enhancement of release and this was significantly different from 

control in the presence of GABA (Table 11). Therefore GABAb receptor 

m ediated inhibition of [3H]-GABA release could not be detected using this 

experimental approach.

3) GABAB Modulation of the K+-Evoked Release of T3H1-GABA from Rat

Cerebrocortical and Hippocampal Synaptosomes: a Comparison with the K+- 

Evoked Release of r3Hl-D-Aspartate from Rat Hippocampal Synaptosomes.

i) The K+-evoked release of [3H1-GABA from rat cerebrocortical

synaptosomes.

Since GABAb agonists failed to inhibit K+-evoked [3H]-amino acid release from 

rat hippocampal preparations using the above methodology a comparison w ith 

the m ethod of Bonanno et al (1989) was performed.

(-)Baclofen (l-100pM) produced a dose-dependent decrease in the release of 

[3H]-GABA evoked by 15mM K+ from rat cerebrocortical synaptosomes. A 

m aximum inhibition of 55% was produced by 30pM (-)baclofen (Fig. 20) and 

these results are comparable with those obtained by Bonanno and coworkers 

(1989).
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Table 10 The effect of (-)baclofen on K+-evoked release of f3Hl-GABA from

rat hippocampal synaptosomes.

S2/S i n

Control 0.49 ± 0.16 4

+ lOpM (-)Baclofen 1.49 ± 1.48 3 NSD

+ 30pM (-)Baclofen 0.56 ± 0.47 3 NSD

+ lOOpM (-)Baclofen 0.81 ± 0.11 4 NSD

[3H]-GABA release was evoked by 2 min pulses of lOmM K+ at 20 min 

intervals. (-)Baclofen (10-100pM) was introduced into the superfusion m edium  

2 m in prior to, and during, S2. S^S} ratios were calculated in the absence and 

presence of (-)baclofen and compared (Student's 2-tailed t-test). Values are the 

mean ± s.e.m. (n=3-4).

NSD = no significant difference from control at p = 0.05.
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Table 11 The effect of lOOuM (-)baclofen, GABA and 3-APA on K+-evoked

release of T3H1-GABA from rat hippocampal synaptosomes.

n

Control 0.49 ± 0.16 4

+ lOOpM (-)Baclofen 0.81 ± 0.11 4 NSD

+ lOOpM GABA 2.18 ± 0.21 3 p < 0.005

+ lOOpM 3-APA 0.89 ± 0.34 3 NSD

[3H]-GABA release was evoked by lOmM K+ and test agonists were introduced 

into the superfusion medium 2 min prior to, and during, S2. S2/S a ratios were 

calculated for each test agonist and compared to control (Student's 2-tailed t- 

test). Values are the mean ± s.e.m. (n=3-4).

NSD = no significant difference from control at p = 0.05.
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Fig. 20 Inhibition of the K^-evoked release of pHl-GABA by (-)baclofen

in rat cerebrocortical synaptosomes.
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[3H]-GABA release from rat cerebrocortical synaptosomes was elicited by a 90 

sec application of 15mM K+. (-)Baclofen (l-100pM) was added concomitantly 

w ith the depolarizing m edium  and its effect on evoked tritium  overflow 

compared to that produced in its absence. Values are the mean ± s.e.m. of 3-9 

observations from 6 experiments.

Student's 2-tailed t-test * p < 0.05 ** p < 0.01.
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ii  ̂ The effect of (-)baclofen on the K+-evoked release of r3Hl-D-aspartate

from rat hippocampal synaptosomes.

H aving assessed that the experimental m ethod was sufficiently sensitive to 

detect GABAB-mediated inhibition of [3H]-GABA release in cortical 

synaptosomes the experiments were repeated using rat hippocampal 

synaptosomes preloaded with [3H]-D-aspartate. As in previous experiments 

using hippocampal preparations, (-)baclofen (l-100pM) failed to significantly 

m odulate the evoked release of [3H]-D-aspartate compared to control (Fig. 21). 

A final series of experiments were carried out in which batches of 

hippocam pal synaptosomes were divided and incubated with either [3H]- 

GABA or [3H]-D-aspartate. The effect of (-)baclofen on release of both tritiated 

amino acids evoked by 15mM K+ was compared in the same experiments. As 

before, (-)baclofen (10-100pM) had no significant effect on [3H]-D-aspartate 

release (Fig. 22a). Surprisingly, compared to the cortex, (-) baclofen did not 

inhibit [3H]-GABA release in the hippocampus (Fig. 22b)

It is apparent that, irrespective of the experimental m ethod used, GABAg 

agonists did not inhibit the K+-evoked release of [3H]-D-aspartate in rat 

hippocam pal preparations. This was not due to any apparent inadequacy of 

the superfusion system or the depolarizing stimulus employed, as (-) baclofen 

did inhibit the release of [3H]-GABA from rat cortical synaptosomes. Rather 

this seems to be due to the choice of tissue preparation or to the use of the 

neuronal marker D-aspartate.
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Fig. 21 Effect of (-)baclofen on K+-evoked release of r3Hl-D-aspartate in

rat hippocampal synaptosomes.
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[3H]-D-Aspartate release from rat hippocampal synaptosomes was evoked by 

a 90 sec pulse of 15mM K+. (-)Baclofen (l-100pM) was added concomitantly 

w ith the depolarizing m edium  and its effect compared to control (Student's 2- 

tailed t-test). Values are the mean ± s.e.m. of 4-10 observations from 5 

experiments.
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Fig. 22 Lack of effect of (-)baclofen on the K+-evoked release of f3Hl-D-

aspartate or T3H1-GABA from rat hippocampal synaptosomes.
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4) The Effect of GABAP Agonists on the K+-Evoked Release of

Endogenous Amino Acids from Rat Hippocampal Synaptosomes.

i) M easurem ent of basal endogenous amino acid content.

The endogenous aspartate, glutamate and GABA content (pm oles/m g 

p ro te in /5  min) of two successive unstimulated release samples was 

determ ined and compared (Table 12). In each case the amino acid content of 

the second sample was not significantly different from the first. The wash 

procedure outlined in the methods was therefore sufficient to allow basal 

endogenous amino acid release to stabilize and was used in all further studies.

iii The effect of K* concentrations on the basal release of endogenous

amino acids: dependency on calcium ions.

The chromatogram of a typical basal sample together w ith one collected in the 

presence of 50mM K+, indicated that the principd- amino acids released 

following chemical depolarization of the hippocampal synaptosomes were 

aspartate, glutamate and GABA (Fig. 23). At this K+ concentration a small 

increase in the perfusate content of other amino acids was detected, in this 

case glutam ine and taurine. This was less apparent at lower depolarizing K+ 

concentrations. Therefore only the modulation of aspartate, glutam ate and 

GABA release was determined in subsequent studies, although any unexpected 

changes in the concentrations of other amino acids were monitored.
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Table 12 M easurement of basal endogenous amino acid content.

pm oles/m g p ro te in /5 min

Sample 1 Sample 2 n

Aspartate 452.5 ± 46.3 447.5 ± 26.3 5 NSD

Glutam ate 893.6 ± 74.4 747.0 ± 19.1 5 NSD

GABA 320.4 ± 38.5 324.5 ± 66.0 5 NSD

Rat hippocampal synaptosomes were washed with 10x2ml aliquots of warm, 

oxygenated Krebs-Henseleit solution. Basal endogenous aspartate, glutamate 

and GABA release was determined by incubation of the synaptosomes in two 

successive 500pl samples of Krebs-Henseleit solution for 5 m in each. Amino 

acid content was determined by HPLC and expressed as pm oles/m g p ro tein /5  

m in and compared in the two samples using Student's 2-tailed t-test.

NSD = no significant difference between sample 1 and sample 2 at p = 0.05.
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Increasing K+ concentrations (15mM, 25mM and 50mM) produced a dose- 

dependent increase in the amount of endogenous aspartate, glutam ate and 

GABA released into the perfusate during the 5 min incubation compared to 

basal levels. Basal samples contained 500-600 pm oles/m g p ro tein /5  m in 

aspartate, 800-900 pm oles/m g protein/5  min glutamate and 400-500 

pm oles/m g protein /5  min GABA. In the presence of 15mM, 25mM and 

50mM KC1 levels of aspartate were increased by 98%, 185% and 408% 

respectively; levels of glutamate were increased by 102%, 239% and 552% 

respectively; and levels of GABA were increased by 79%, 135% and 257% 

respectively (Table 13).

Experiments were repeated in the absence of calcium ions. Basal 

concentrations of amino acids measured in the absence of Ca2+ were not 

significantly different from those measured in the presence of 1.8mM CaCl2 

(Table 14). However, K+-evoked release of aspartate, glutamate and GABA 

was reduced in the absence of Ca2+. This was most striking for GABA release 

which was 80-85% Ca2+-dependent at each K+ concentration (Fig. 26). Evoked 

aspartate release was 45-60% Ca2+-dependent (Fig. 24) and evoked glutam ate 

release 26-43% Ca2+-dependent (Fig. 25).
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Table 13 The effect of increasing concentrations of K+ on basal levels of

endogenous aspartate, glutamate and GABA released from rat 

hippocampal synaptosomes.

15mM K+ 25mM K+ 50mM K+

Basal Stim. Basal Stim. Basal Stim.

ASP 547±50 1081±170 512±52 1457±94 588±96 2984±231

GLU 887±76 1791±158 809±64 2739±145 827±79 5396±286

GABA 394±31 707±80 391±40 919±76 490±67 1749±208

Levels of endogenous aspartate (ASP), glutamate (GLU) and GABA were 

determ ined in the absence and presence of 15mM, 25mM and 50mM K+ by 

HPLC. Amino acid concentration was expressed as the num ber of pmoles of 

amino acid released into 0.5ml incubation m edium  during a 5 min incubation 

period per mg of protein (pm ole/m g/5  min). Values are the m ean ± s.e.m. 

of 21-24 observations from 14 experiments.
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Table 14 The Ca2+-independence of basal release of endogenous aspartate,

glutamate and GABA from rat hippocampal synaptosomes.

+ 1.8mM Ca2+ (n) + OmM Ca2+ (n)

ASP 540 ± 40 (72) 461 ± 48 (23) NSD

GLU 841 ± 41 (72) 972 ± 94 (23) NSD

GABA 427 ± 29 (68) 345 ± 34 (22) NSD

Basal levels of endogenous amino acids were determined in hippocampal 

synaptosomes incubated for 5 min in warm, oxygenated Krebs-Henseleit 

solution containing either OmM CaCl2 or 1.8mM CaCl2. At each calcium 

concentration basal levels, in pm oles/ mg protein /5  min, were compared 

using Student's 2-tailed t-test. Values are the mean ± s.e.m. of 22-72 

observations from 4-14 experiments.

NSD = no significant difference at p = 0.05.
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Fig. 24 K+-Evoked release of endogenous aspartate from rat hippocampal

synaptosomes in the absence and presence of external Ca2+ ions.
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Elevated K+ concentrations in the incubating m edium  produced a dose- 

dependent increase in endogenous aspartate content (pm oles/m g p ro tein /5  

min) in the presence of 1.8mM CaCl2 G3). K+-Evoked release was attenuated 

in the absence of external calcium by 45-60% (°). Basal levels of aspartate 

release were unaffected by the removal of calcium from the Krebs-Henseleit 

solution (dashed lines). Values are the mean ± s.e.m. of 7-24 observations 

from 5-15 experiments.
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Fig. 25 K+-Evoked release of endogenous glutamate from rat

hippocampal synaptosomes in the absence and presence of

external Ca2+ ions.
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Elevated K+ concentrations in the incubating m edium  produced a dose- 

dependent increase in endogenous glutamate content (pm oles/m g p ro tein /5  

min) in the presence of 1.8mM CaCl2 (d). K+-Evoked release was attenuated 

in the absence of external calcium by 45-60% (o). Basal levels of glutam ate 

release were unaffected by the removal of calcium from the Krebs-Henseleit 

solution (dashed lines). Values are the mean ± s.e.m. of 7-24 observations 

from 5-15 experiments.
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Fig. 26 K+-Evoked release of endogenous GABA from rat hippocampal

synaptosomes in the absence and presence of external Ca2+ ions.
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Elevated K+ concentrations in the incubating m edium  produced a dose- 

dependent increase in endogenous GABA content (pm oles/m g p ro tein /5  min) 

in the presence of 1.8mM CaCl2 (P). K+-Evoked release was attenuated in the 

absence of external calcium by 45-60% (9). Basal levels of GABA release were 

unaffected by the removal of calcium from the Krebs-Henseleit solution 

(dashed lines). Values are the mean ± s.e.m. of 7-24 observations from  5-15 

experiments.
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iii) The effect of (-)baclofen and 3-APA on K+-stimulated release of

endogenous aspartate, glutamate and GABA.

(-)Baclofen (30-1 OOpM) produced a dose-dependent decrease in the release of 

endogenous aspartate (Fig 27), glutamate (Fig. 28) and GABA (Fig. 29) evoked 

by 50mM K+ with more variable effects at the lower K+ concentrations of 

15mM and 25mM. Due to the variability in absolute values of pm oles/m g 

p ro tein /5  m in between different experiments the data for this study were also 

expressed as the % increase in endogenous amino acid content above basal 

level. (-)Baclofen (lOOpM) reduced the release of aspartate evoked by 50mM 

K+ by 41% from 525±47% (n=24) to 312±70% (n= ll), the release of glutamate 

by 48% from 688±53% (n=25) to 360±48% (n= ll) and GABA release by 40% 

from 375±37% (n=23) to 225±25% (n=10). A comparable effect of lOOpM (-) 

baclofen was observed against aspartate and glutamate release evoked by 

15mM K+, w ithout any effect on GABA release. However, (-) baclofen (30- 

100pM) failed to attenuate release of all three amino acids evoked by 25mM 

K+. These results differ from those of Bonanno et al (1989) who 

observed that the inhibitory action of (-)baclofen on K+-evoked amino acid 

release from rat cortical synaptosomes decreased as the concentration of the 

K+ stimulus was increased from 9-50mM.
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Fig. 27 The effect of (-)baclofen on iC-evoked release of endogenous

aspartate from rat hippocampal synaptosomes.
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(-)Baclofen (30-1 OOpM) produced a dose-dependent decrease in aspartate 

release evoked by 15mM and 50mM K+, with no significant effect against 

25mM K+. Values are expressed as the % increase in aspartate release above 

basal levels and are the mean ± s.e.m. of 11-26 observations from 6-14 

experiments. Effects of (-)baclofen were compared to control by Student's 2- 

tailed t-test.

* p < 0.05 ** p < 0.01 * * *  p < 0.005
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Fig. 28 The effect of (-)baclofen on K+-evoked release of endogenous

glutamate from rat hippocampal synaptosomes.
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(-)Baclofen (30-1 OOpM) produced a dose-dependent decrease in glutamate 

release evoked by 15mM and 50mM K+, with no significant effect against 

25mM K+. Values are expressed as the % increase in glutamate release above 

basal levels and are the mean ± s.e.m. of 11-25 observations from 6-14 

experiments. Effects of (-)baclofen were compared to control by S tudenf s 2- 

tailed t-test.

p < 0.05 ** p < 0.01 p < 0.005
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Fig- 29 The effect of (-)baclofen on iC-evoked release of endogenous

GABA from rat hippocampal synaptosomes.
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(-)Baclofen (30-1 OOpM) produced a dose-dependent decrease in GABA release 

evoked by 50mM K+, with no significant effect against 15mM and 25mM K+. 

Values are expressed as the % increase in GABA release above basal levels and 

are the m ean ± s.e.m. of 11-25 observations from 6-14 experiments. Effects of 

(-)baclofen were compared to control by Student's 2-tailed t-test.

* p < 0.05 ** p < 0.01 *** p < 0.005
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3-APA (30-300pM) produced a dose-dependent decrease in aspartate release 

evoked with 15mM and 25mM K+. At 50mM K+ there was no inhibitory effect 

of 3-APA (30-100pM) but a significant increase in evoked aspartate release was 

produced at 300pM (Fig. 30). Glutamate release was unaffected by 3-APA 

w ith the exception of a significant increase in release evoked by 50mM K+ in 

the presence of 300pM 3-APA (Fig. 31). A similar effect was obtained for 

GABA although the enhancement of evoked GABA release was more 

profound, observed at all K+ concentrations in the presence of 100-300pM 3- 

APA (Fig. 32). 3-APA, therefore, did not mimic the inhibitory effect of (-) 

baclofen on K+-evoked release of endogenous amino acids from rat 

hippocam pal synaptosomes.

iv) ’ The effect of CGP 35348 on the inhibition of K+-evoked release of 

endogenous aspartate, glutamate and GABA by (-)baclofen.

In this study the release of endogenous aspartate, glutamate and GABA was 

elicited by 50mM K+. In some cases (-)baclofen (lOOpM), CGP 35348 (300pM) 

or both test compounds were included in the depolarizing medium. (-) 

Baclofen produced a 30% decrease in evoked amino acid release compared to 

control values, comparable with results from the earlier study (III.4.iii). CGP 

35348 had no effect on evoked endogenous amino acid release nor did it 

m odulate the (-)baclofen-mediated inhibition of aspartate or glutamate release. 

However CGP 35348 (300pM) completely antagonized the GABAB-mediated 

inhibition of endogenous GABA release in this preparation (Fig. 33).
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Fig- 30 The effect of 3-APA on the K+-evoked release of endogenous

aspartate from rat hippocampal svnaptosomes.
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3-APA (30-300pM) produced a dose-dependent decrease in aspartate release 

evoked by 15mM K+. In all other cases aspartate release was either unaffected 

or significantly increased above control levels. Values are expressed as the % 

increase in aspartate release above control levels and are the mean ± s.e.m. of 

5 observations from 2 experiments. Effects of 3-APA were compared to 

control using Student's 2-tailed t-test.

* = p < 0.05 ** = p < 0.01 *** = p < 0.005
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Fig. 31 The effect of 3-APA on the K+-evoked release of endogenous

glutamate from rat hippocampal synaptosomes.
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3-APA was w ithout effect on glutamate release except at 300pM w ith release 

evoked by 50mM K+ when a significant enhancement above control levels was 

obtained. Values are expressed as the % increase in glutamate release above 

control levels and are the mean ± s.e.m. of 5 observations from 2 experiments. 

Effects of 3-APA were compared to control using Student's 2-tailed t-test.

* = p < 0.05 ** = p < 0.01 *** = p < 0.005
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Fig. 32 The effect of 3-APA on the K+-evoked release of endogenous

GABA from rat hippocampal synaptosomes.
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of 5 observations from 2 experiments. Effects of 3-APA were compared to 

control using Student's 2-tailed t-test.

* = p < 0.05 ** = p < 0.01 *** = p < 0.005
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Fig. 33 The effect of CGP 35348 on (-)baclofen-mediated inhibition of K+-

evoked endogenous aspartate, glutamate and GABA release from

rat hippocampal svnaptosomes.
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Basal amino acid release was determined by incubation of synaptosom es in 

500pl warm  oxygenated Krebs-Henseleit solution for 5 min. This was replaced 

w ith solution containing 50mM K+ with or w ithout (-) baclofen (lOOpM), CGP 

35348 (300pM) or both compounds concomitantly. Evoked release was 

expressed as the % increase in amino acid content above basal levels and the 

effect of CGP 35348 on (-)baclofen inhibition was compared to the effect of (-) 

bclofen alone. (Student's 2-tailed t-test). * p < 0.05
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5) Discussion.

i} Modulation of neurotransmitter release by GABAE agonists.

K+-Evoked release of [3H]-D-aspartate was demonstrated in both hippocam pal 

slice and synaptosomal preparations, however only that from the tissue slices 

showed Ca2+-dependence (up to 70%). It has been suggested that Ca2+- 

independent release is derived from recently accumulated neurotransm itter 

pools whereas Ca2+-dependent release is additionally derived from 

endogenous pools. Also transmitter release from cytoplasmic stores, brought 

about by the reversal of uptake mechanisms, is thought to be Ca2+- 

independent whereas vesicular release requires an influx of calcium into the 

terminal to trigger it (see Adam-Vizi, 1992, for review). It may be possible that 

the longer incubation time used for the accumulation of [3H]-D-aspartate by 

hippocampal slices (40 min compared to 10 min in synaptosomes) was 

sufficient for the tritiated amino acid to label 'endogenous pools' and hence 

exhibit a greater degree of Ca2+-dependent release than K+-evoked 

synaptosomal release. Though it should be noted that the uptake mechanism  

at the level of the synaptic vesicle is reportedly more specific than the plasma 

membrane carrier protein, having no affinity for aspartate, only glutam ate 

(Naito and Ueda, 1985).

The inability of (-)baclofen to inhibit the K+-evoked release of [3H]-D-aspartate 

from either of these preparations contrasts with the findings of some other
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groups. (-)Baclofen-mediated inhibition of [3H]-D-aspartate release has been 

observed in guinea-pig cortical and striatal slices (Potashner and Gerard, 1983), 

rat cortical and cat spinal cord slices (Johnston et al., 1980) and cultured 

cerebellar granule cells (Zhu and Chuang, 1987). However in agreem ent with 

the current study, (-)baclofen had no effect on in vivo K+-evoked [3H]-D- 

aspartate release from rat hippocampus m onitored by intracerebral 

microdialysis, although basal release was enhanced in a Ca2+-dependent 

m anner (Nielsen et al., 1989). A similar effect on the basal release of [3H]- 

GABA from rat whole brain synaptosomes was reported by Roberts and co­

workers in 1978.

In section 3, experiments were performed exactly according to a published 

m ethod (Bonanno et al., 1989) using rat hippocampal synaptosomes. (-) 

Baclofen was shown to potently inhibit [3H]-GABA release from rat 

cerebrocortical synaptosomes yet failed to have any effect w hen the studies 

were repeated with hippocampal synaptosomes labelled w ith either [3H]- 

GABA or [3H]-D-aspartate. This would suggest that the problem  lies with the 

preparation rather than with the method or even the choice of label.

To complicate matters it was possible to use the same hippocam pal 

preparation to study the effect of (-)baclofen on the K+-evoked release of 

endogenous amino acids. In this case (-)baclofen produced a dose-dependent 

decrease in Ca2+-dependent, K+-evoked release of endogenous aspartate, 

glutamate and GABA that appeared to increase as the K+-concentration was
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increased from 15mM to 50mM. Comparable observations of GABAb- 

m ediated inhibition of endogenous aspartate and glutamate from rat cerebral 

cortical synaptosomes have recently been reported (Bonanno et al., 1992). 

These findings are not in agreement with those of Burke and Nadler (1988) 

who found no effect of (-) baclofen (lOOpM) on the release of endogenous 

aspartate, glutamate and GABA from hippocampal CA1 minislices evoked by 

50mM K+. The reason for this discrepancy is not clear, the only apparent 

difference being the use of a slice preparation in the latter study and 

synaptosomal preparations in the other two.

The lack of effect of 3-APA on evoked amino acid release from rat 

hippocam pal synaptosomes was unexpected as this compound has been 

reported to be a potent and selective inhibitor of [3H]-GABA binding to 

GABAb receptors in rat whole brain membranes (Pratt et al., 1989) and acts as 

a functional GABAb agonist in rat brain slices (Seabrook et al., 1990). 

However, in agreement with the present study discrepancies between the 

effects of (-) baclofen and 3-APA in CNS preparations have been reported by 

other workers. 3-APA (50pM) did not mimic (-) baclofen's ability to depress 

the K+-evoked release of [3H]-glutamate (prelabelled by [3H]-glutamine) from 

rat cultured cerebellar granule cells (Huston et al.,1990). In rat neocortical 

slices, maintained in Mg2+-free Krebs medium, (-)baclofen suppressed the 

spontaneous paroxysmal discharges and, occasionally, produced a slight 

hyperpolarization. Both responses were sensitive to the GABAb antagonist 2- 

OH-saclofen. The profile of activity of 3-APA was quite different. 3-APA
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produced a prompt, 2-OH-saclofen-insensitive hyperpolarization with no effect 

on discharge frequency, although some reduction in discharge am plitude was 

observed that could be reversed by the antagonist (Ong et alv 1990b). 

However this group have also shown that 3-APA mimics the (-)baclofen- 

m ediated attenuation of synaptic transmission in cultured rat hippocampal 

neurones (Ong et al., 1990a). They claim this effect is due to the activation of 

presynaptic GABAb receptors as cultured hippocampal neurones reportedly 

lack postsynaptic GABAb receptors (Harrison, 1990).

This inconsistency between receptor binding data and functional assays could 

be explained if sub-populations of GABAb receptors exist which are 

distinguished by 3-APA. Theoretically, in rat whole brain membranes a lack 

of affinity of 3-APA for a small sub-population of GABAb receptors m ay be 

m asked by the ability of the compound to displace [3H]-GABA from other 

brain regions. This theory is addressed in Chapter five.

ii) M odulation of GABAB-mediated inhibition of neurotransm itter release 

by putative GABAb antagonists.

Dutar and Nicoll (1988b) reported that postsynaptic GABAb receptors in the 

rat hippocampus were sensitive to PTX and the weak antagonist phaclofen. 

The presynaptic GABAb receptor was apparently insensitive to both agents. 

This was the first published evidence for GABAb receptor heterogeneity. 

Given the low potency of phaclofen the authors felt that the use of more
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potent GABAb antagonists, such as the recently available CGP 35348, was 

necessary to confirm their original observations.

CGP 35348 (300pM) was found to antagonize the (-)baclofen-mediated 

inhibition of K+-evoked endogenous GABA release from rat hippocampal 

synaptosomes, w ithout effect on the inhibition of aspartate and glutamate. 

This w ould suggest that this compound is selective for the GABAb 

autoreceptor present on GABAergic terminals within the hippocam pus and 

w ithout appreciable affinity for the presynaptic heteroreceptor which 

m odulates the release of aspartate and glutamate. Though these results 

support the theory of GABAb receptor heterogeneity it may be that GABAb 

heteroreceptors are merely less sensitive to CGP 35348 than GABAb 

autoreceptors and that they may be antagonized at higher concentration 

(>lm M ) or by a more potent compound. Similar studies carried out by other 

groups have produced contradictory data as outlined below:

a) GABAb antagonists do not distinguish between presynaptic GABAb 

autoreceptors and GABAb heteroreceptors in rat brain preparations.

Thompson and co-workers (1992) reported that the (-)baclofen-mediated 

depression of both pharmacologically isolated IPSPs and EPSPs in the rat 

hippocam pus was reversed by CGP 35348. Although the two receptor 

populations were not distinguished by this antagonist they did differ in their 

sensitivity to PTX. The generation of EPSPs was unaffected by PTX whereas
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IPSPs were fully blocked by the toxin pretreatment. These findings confirm 

those of Dutar and Nicoll (1988b) and Colmers and Williams (1988).

b) GABAp antagonists do distinguish between presynaptic GABAb 

autoreceptors and GABAp heteroreceptors in rat brain preparations.

The present study indicated that GABAb autoreceptors in rat hippocampus are 

CGP 35348-sensitive whilst GABAb heteroreceptors on glutaminergic terminals 

are not. This has been confirmed by recent observations. Paired pulse 

depression (an index of GABAb autoreceptor activity) was alleviated by CGP 

35348 in both the rat hippocampus (Olpe et al., 1992) and rat neocortex (Deisz 

et al., 1992), although additional studies showed that if the pulse interval was 

increased from 200msec to 400msec the sensitivity to CGP 35348 was lost 

(Deisz and Zieglgansberger, 1992). Both phaclofen and CGP 35348 

antagonized the (-)baclofen-mediated inhibition of electrically-evoked 

endogenous GABA release from rat cortical synaptosomes (Waldmeier and 

Baumann, 1990). However, both compounds enhanced basal release at the 

stim ulus frequency used making it difficult to interpret the results fully.

In synaptosomes prepared from rat spinal cord the effect of GABA (lOpM) at 

prejunctional autoreceptors was antagonized by CGP 35348 but was insensitive 

to phaclofen (ImM) (Raiteri, 1992).

In contrast, Bonanno et al. (1992), using rat cerebral cortical synaptosomes, 

found the GABAb autoreceptor to be phaclofen-sensitive and CGP 35348-
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insensitive, the GABAg heteroreceptor regulating glutamate release to be 

phaclofen-insensitive and CGP 35348-sensitive and a third receptor m odulating 

the release of somatostatin to be sensitive to both antagonists. The availability 

of more potent antagonists may help to resolve these discrepancies.
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CHAPTER FOUR: RESULTS 

CHARACTERIZATION OF PRESYNAPTIC 

GABAb RECEPTORS IN THE RAT 

ANOCOCCYGEUS MUSCLE
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1) GABAp Receptor-M ediated M odulation of the Electrically-Evoked

Release of [3H1-Noradrenaline from the Rat Anococcygeus Muscle.

i) The dependency of the electrically-evoked release of [3Hl-noradrenaline

on stimulus frequency.

Stimulation of the anococcygeus muscle with electrical pulses (10 second train, 

0.5 msecond pulse width, supramaximal voltage) of successively greater 

frequency (2-32Hz) led to a frequency-dependent increase in tritium  overflow 

(Fig. 34). Measurable tritium overflow, 0.05% of tissue content, was detectable 

at 2Hz and was maximal (>0.37%) at between 16 and 32Hz. So as to detect 

both decreases and increases in tritium overflow the submaximal stimulus 

frequency of 10Hz was chosen for all subsequent studies.

The twitch responses of the rat anococcygeus muscle increased in m agnitude 

over the same frequency range (Fig. 35). This response was composed of two 

components; a fast initial twitch which peaked within 20 sec and a second 

m uch slower 'shoulder' with a duration of up to 4 min. The effect of 

pharmacological agents on both components was noted in ensuing 

experiments.
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Fie. 34 The effect of increasing stimulus-frequencv on tritium 

overflow from the rat anococcveeus muscle.i ■ ■ ■ ■■■!■■■ ■ n« hi .  ii ■ i .1, i. i ■ ■ ii 11  i i

0.40 n

0.32 -

0.24 - 

0.16 -

0.08 -

0.00 J  L- 1 L-J L—1 >—1 LJ —  
10 2 4 8 16 32 8

+ 1pM Phentol
Frequency (Hz)

Electrical stimulation was applied via platinum  ring electrodes to the rat 

anococcygeus muscle. The following stimulus parameters were employed: 10 

sec train, 0.5msec pulse width, supramaximal voltage, train interval of 25 min. 

The frequency of stimulation was increased sequentially from 2 to 32 Hz 

following an initial pulse delivered at 10 Hz. The response to 8Hz was 

unaffected by the presence of 1 pM phentolamine.
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ii) The effect of TTX on electrically-evoked release of [3Hl-noradrenaline.

TTX (ljiM) present in the perfusion m edium  during the third and fourth 

stimulation periods, completely depressed electrically-evoked tritium  overflow 

(S3 and S4) compared to the control response (S2) (Fig. 36). Overflow in the 

presence of the toxin comprised 0.04% of tissue tritium content, 87% less than 

under control conditions. The result suggested that the majority of the 

electrically-evoked [3H]-noradrenaline overflow was released from presum ed 

adrenergic neurones within the rat anococcygeus muscle preparation. 

Interestingly, the twitch response to the third stimulation, whilst reduced 

compared to the control response, was not affected to the same extent as the 

associated tritium overflow (Fig. 37). The fast twitch response to the fourth 

stimulus was completely abolished although the second component of the 

mechanical response was not suppressed by TTX.

iii) Ca2+-dependencv of the evoked release of r3Hl-noradrenaline.

A pair of anococcygeus muscles were used for this study one perfused 

continuously with normal Krebs-Henseleit solution containing 1.8mM CaCl2 

the other with Ca2+-free medium, until after the third stimulus at which point 

Ca2+ was reintroduced. Under control conditions tritium  overflow comprised 

0.15 - 0.25% of tissue content, decreasing with successive periods of electrical 

stimulation (Fig. 38a). In the absence of Ca2+ tritium overflow was barely 

detectable, comprising no more than 0.04% of tissue content (Fig. 38b). On
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Fig. 36 The effect of TTX on the electrically-evoked release of T3H1-

noradrenaline from the rat anococcygeus muscle.

0.35 ~i < -  Control ->

0.28 -

=C 
_o
T: 0.21 -<D >o
E

.2  0.14 H

< -  Recovery ->

0.07 -
< -  1pM TTX - >

0.00
1 2 3 4 5 6

Stimulus Number

Tritium overflow was calculated in response to successive periods of electrical 

stimulation delivered at 25 min intervals. TTX (lpM ) was introduced into the 

perfusing medium 1 min prior to the 3rd stimulus and was present until 

imm ediately after the 4th stimulus. Tritium overflow was substantially 

reduced in the presence of the toxin and did not begin to recover until the 6th 

stimulus. Data are from one experiment.
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Fi&. 38 The Ca2+-dependencv of the electrically-evoked f3Hl-

noradrenaline release from the rat anococcveeus muscle.

0.24 -|

0.18 -

<L>
0.12  -
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Stimulus Number

N/l C a  012
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0.12

0 .0 ©

o
2 3 5 © 7

Stimulus Numbeer

Preparations of rat anococcygeus muscle were transmurally stimulated in the presence (a) or 

absence (b) of Ca2+ and tritium overflow was compared. Ca2+ was reintroduced into the Ca2+- 

free medium (b) immediately following the 3rd stimulation period. Electrically-evoked [3H]- 

noradrenaline release exhibited a clear dependence on the presence of Ca2+ in the external 

medium. Data are from one experiment.
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reintroduction of 1.8mM CaCl2 into the perfusing m edium  tritium overflow for 

the rem aining four stimulation periods was comparable to that in the control 

preparation. Therefore, almost 90% of electrically-evoked [3H]-noradrenaline 

release was Ca2+-dependent. The twitch response was equally sensitive to the 

lack of Ca2+, although, as in the presence of TTX, the slow component 

rem ained unaffected.

iv) The effect of successive periods of electrical stimulation on the 

m agnitude of tritium  overflow from the rat anococcygeus muscle.

Tritium overflow was calculated for each of the seven successive stimulation 

periods (Sl - S7) (Fig. 39). From this it was apparent that the m agnitude of 

tritium  overflow diminished with subsequent periods of electrical stimulation 

from 0.47 ± 0.12% (S-  ̂of tissue content to 0.27 ± 0.04% (S7), a decrease of 43%. 

However, in subsequent studies the effect of test compounds on tritium 

overflow was compared to that evoked by the preceding control stimulation. 

Therefore the ratio of each of the seven control responses to the preceding 

response was calculated (Sx+1/S x) (Fig. 40). Expressed in this way the ratio of 

each response to the preceding response was greater than 0.9 and provided a 

constant control response against which to determine the effect of test 

compounds.

y2 The effect of GABAp agonists on evoked f3H1-noradrenaline release. 

Preliminary experiments were carried out to show that the GABA-mediated 

inhibition of [3H]-noradrenaline from this preparation was due to activation
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Fig. 39 The effect of successive periods of electrical stimulation on the 

m agnitude of tritium overflow.

0.6 n
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Stimulus Number

Tritium  overflow (S1 - S7) was calculated and found to decline gradually with 

successive periods of electrical stimulation. S7 was reduced by 43% compared 

w ith Data are the mean ± s.e.m. of 5 observations from 3 experiments.
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Fig. 40 The comparison of control responses to the preceding 

response.

S(x+1)/Sx

0.8  -

0.4 -

S6/S5S4/S3S2/S1
S3/S2 S5/S4 S7/S6

Tritium  overflow elicited by successive periods of electrical stimulation in 

control preparations were each compared to the preceding response (Sx+1/S x). 

Data are the mean ± s.e.m. of 5 observations from 3 experiments.
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of GABAb receptors. GAB A (30pM), in the presence of AOAA (50pM) and 

nipecotic acid (20pM), produced a 43% decrease in evoked release (S2/S 1=0.57) 

whereas the GABAa agonist isoguvacine (30pM) was w ithout effect 

(S2/S 1=0.94). In both cases (-)baclofen (30pM) produced a 49% decrease in 

tritium  release (S6/S 5=0.51). As expected for a GABAB-mediated response the 

effect of baclofen was stereoselective. In one preparation (+)baclofen (30pM) 

was inactive (S2/S 1=0.93) whereas (-)baclofen (30pM) reduced [3H]- 

noradrenaline release by 48% (Sa /S 1=0.52). (Data not shown)

(-)Badofen (l-300pM), 3-APA (0.3-30pM) and SKF 97541 (0.3-30pM) produced 

dose-dependent decreases in electrically-evoked tritium overflow as 

determ ined by the S6/S 5 ratios calculated in the presence of each dose of 

agonist and compared to the control ratio of 0.97 ± 0.05 (n=5). All three 

com pounds produced a maximal depression of evoked tritium overflow of 

approximately 45-50 %. 3-APA (Fig. 42) and SKF 97541 (Fig. 43) were of 

similar potency, achieving maximal inhibition of the response at lOpM. (-) 

Baclofen (Fig. 41) was approximately 10 times less active than the other two 

compounds; lOOpM of (-)baclofen was required to produce a 45% inhibition 

of evoked tritium overflow. A more quantitative estimate of the relative 

potencies of these GABAb agonists was determined against the electrically- 

evoked twitch response in the same preparation described below (IV.2.i).
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Fig. 41 The effect of (-)baclofen on electrically-evoked f3Hl-

noradrenaline release from the rat anococcvgeus muscle.

1.00

0.75
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(-)Baclofen (l-300pM) was introduced into the perfusion m edium  90 sec prior 

to the 6th stimulation period. The resulting S6/S 5 ratios were compared to the 

control value of 0.97 ± 0.05 (n=5) using Student's 2-tailed t-test.

* = p < 0.05 ** = p < 0.01 *** = p < 0.005

Data are the mean ± s.e.m. of 3 - 6 experiments per concentration.
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Fig. 42 The effect of 3-APA on electrically-evoked T3H1-

noradrenaline release from the rat anococcygeus muscle.

1.00 i
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3-APA (0.3-30|iM) was introduced into the perfusion medium 90 sec prior to 

the 6th stimulation period. The resulting S6/S 5 ratios were compared to the 

control value of 0.97 ± 0.05 (n=5) using Student's 2-tailed t-test.

* = p < 0.05 ** = p < 0.01 *** = p < 0.005

Data are the mean ± s.e.m. of 3 - 7 experiments per concentration.
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Fig. 43 The effect of SKF 97541 on electrically-evoked f3H1-

noradrenaline release from the rat anococcygeus muscle.
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SKF 97541 (0.3-30pM) was introduced into the perfusion m edium  90 sec prior 

to the 6th stimulation period. The resulting S6/S 5 ratios were compared to the 

control value of 0.97 ± 0.05 (n=5) by Student's 2-tailed t-test.

* = p < 0.05 ** = p < 0.01 *** = p < 0.005

Data are the mean ± s.e.m. of 4-6 experiments per concentration.
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vi The effect of putative antagonists on the GABAg-mediated inhibition of

electrically-evoked release of r3Hl-noradrenaline.

Com pounds were first tested alone to verify that they possessed no activity of 

their own in this system. Test compounds were introduced into the perfusion 

system immediately after the fifth stimulation period, allowing an equilibration 

period of 20 min. S6/S 5 ratios were determined for CGP 35348 (300pM), CGP 

36742 (300pM) and CGP 46381 (30pM, 100pM) and were compared to the 

control value obtained in the absence of test compounds (Table 15). The effect 

of each compound on the evoked tritium overflow was not significantly 

different from control in each case. These compounds therefore lack 

significant GABAg agonist activity and if they have appreciable antagonist 

actions then this observation may indicate a lack of intrinsic GABAg tone in 

this preparation.

In further studies putative antagonists were added separately to the 

perfusing medium 20 min prior to the sixth stimulation period, concomitantly 

w ith either 30pM (-)baclofen or 3pM 3-APA for the last 90 sec. S6/S 5 Ratios 

were calculated for each concentration of antagonist and compared to both the 

effect of the agonists alone and to control values (Student's 2-tailed t-test). 

CGP 35348 (100-300pM) (Fig. 44) and CGP 36742 (100-300pM) (Fig. 45) dose- 

dependently reversed the inhibition of electrically-evoked tritium overflow 

induced by 30pM (-)baclofen. In both cases the S6/S 5 ratio for the highest 

concentration of antagonist in the presence of (-) baclofen was significantly
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Table 15 The effect of putative GABAp antagonists on the

electrically-evoked release of r3Hl-noradrenaline from the rat

anococcygeus muscle.

Test Compound ^6 /S5 n

Control 0.97 ± 0.05 5

300pM CGP 35348 0.98 ± 0.06 3 NSD

300pM CGP 36742 0.81 ± 0.12 4 NSD

30pM CGP 46381 0.97 ± 0.10 3 NSD

100pM CGP 46381 0.86 ± 0.12 2 NSD

Test com pounds were introduced into the perfusion m edium  20 m in prior to 

the 6th  stimulation period. Calculated S6/S 5 ratios were compared control by 

Student's 2-tailed t-test.

NSD = no significant difference at p < 0.05
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Fig. 44 Antagonism of (-)baclofen by CGP 35348 in the rat

anococcygeus muscle.
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100mM 300mM CGP35348

CGP 35348 (100-300pM) was introduced into the perfusion m edium  20 min 

prior to the 6th stimulation period, concomitantly with (-)baclofen (30pM) for 

the last 90 sec. S6/S 5 ratios were compared to that obtained in the presence 

of (-)baclofen alone (Student's 2-tailed t-test).

* = p < 0.05 Data are from 4-5 experiments per concentration
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Kg. 45 Antagonism of (-)baclofen by CGP 36742 in the rat

anococcygeus muscle.
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CGP 36742 (100-3OO|iM) was introduced into the perfusion m edium  20 min 

prior to the 6th stimulation period, concomitantly with (-)baclofen (30pM) for 

the last 90 sec. S6/S 5 ratios were compared to that obtained in the presence 

of (-)baclofen alone. (Student's 2-tailed t-test).

* = p < 0.05 Data are from 4-6 experiments per concentration
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different from that obtained with the agonist alone, but not from control. A 

similar result was obtained with CGP 46381 (3-100pM) but this com pound was 

m uch more potent, the effect of (-)baclofen was fully reversed by the presence 

of lOpM CGP 46381 (Fig. 46).

The antagonists did not distinguish between the response to (-)baclofen and 

that to 3-APA. The depression of the evoked twitch response produced by 

3pM 3-APA was completely antagonized by CGP 35348 (300pM), CGP 36742 

(300pM) and CGP 46381 (30pM) (Table 16).
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Fig- 46 Antagonism of (-)baclofen bv CGP 46381 in the rat

anococcygeus muscle.
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CGP 46381 was introduced into the perfusion medium 20 m in prior to the 6th 

stimulation period, concomitantly with (-)baclofen (30pM) for the last 90 sec. 

S6/S 5 Ratios were compared to that obtained in the presence of (-) baclofen 

alone (Student's 2-tailed t-test).

* = p < 0.05 ** = p < 0.01 *** = p < 0.005

Data are from 4-6 experiments per concentration.
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Table 16 Antagonism of 3-APA by CGP 35348, CGP 36742 and CGP 46381 

in the rat anococcvgeus muscle.

Test Com pound s 6/ s 6 n

Control 0.97 ± 0.05 5

3pM 3-APA 0.66 ± 0.07 7

3pM 3-APA + 300pM CGP 35348 1.26 ± 0.18 5 *■

3pM 3-APA + 300pM CGP 36742 1.15 ± 0.13 6 **

3pM 3-APA + 30pM CGP 46381 0.96 ± 0.05 3 **

CGP 35348 (300pM), CGP 36742 (300pM) or CGP 46381 (30pM) were 

introduced into the superfusion medium 20 min prior to the 6th stimulation 

period, and 3-APA (3|iM) was also present for the last 90 sec. S6/S 5 Ratios 

were compared to.that obtained in the presence of 3-APA alone (Student's 2- 

tailed t-test).

* = p < 0.05 ** = p < 0.01

Data are from 4-6 experiments per concentration.
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2) GABAp-Mediated Modulation of Electrically-Evoked Twitch

Contractions in the Rat Anococcygeus Muscle.

i) The effect of GABAp agonists on the electrically-evoked twitch 

contraction.

(-)Baclofen (10‘8M-10'4M), 3-APA (10'9M-10'5M) and SKF 97541 (10‘9M-10'5M) 

produced dose-dependent decreases in the amplitude of the electrically-evoked 

twitch contraction of the rat anococcygeus muscle. A maximum depression 

of 70-90% of the control twitch height was achieved in each case and the order 

of potency obtained was :

3-APA > SKF 97541 > (-)baclofen

3-APA was found to be twice as potent as its methyl derivative SKF 97541 

which in turn exhibited a tenfold increase in potency over the prototypic 

GABAB agonist (-)baclofen (Fig. 47; Table 17).

iii The effect of putative GABAp antagonists on GABAp receptor-mediated 

inhibition of the electrically-evoked twitch response.

Dose-response curves were constructed to (-)baclofen, 3-APA and SKF 97541 

in the absence and presence of increasing concentrations of CGP 35348 (30,100 

and 300pM), CGP 36742 (30,100 and 300pM) and CGP 46381 (3,10, 30 and
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Fig. 47 The effect of GABAp agonists on the electrically-evoked twitch

response in the rat anococcygeus muscle.
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Increasing concentrations of (-)badofen (o), 3-APA (A) and SKF 97541 W were 

added cumulatively to the bathing medium and the depression in evoked 

twitch height recorded isometrically. Responses were expressed as a % of the 

m axim um  response achieved. Data are the mean ± s.e.m. of 18-21 

experiments.
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Table 17 The relative potencies of (-)baclofen, 3-APA and SKF 97541 as 

GABAp agonists in the rat anococcveeus muscle.

Agonist Geometric Mean (range) Rel. Potency n

(-)Baclofen 1.02x10'6M (lxlCT7 - 4.8x10'6M) 1 21

3-APA 4.63x1 0"8M (2x1 O'9 - 5.5xlO'7M) 22 18

SKF 97541 1.03x10'7M (9x10"9 - 5.0x10'7M) 9.9 20

The values are the geometric mean and range of the EC50 values obtained for 

each of the agonists from 18-21 experiments.
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lOOpM) which resulted in a progressive rightward shift of the agonist DRC's 

(Fig. 48, 49, 50, 52, 53, 54, 56, 57 and 58) with no apparent reduction in 

m aximum response. For CGP 35348 the Schild regressions for each of the 

agonists had slope of unity and pKB values of 4.98, 4.73 and 4.60 against (-) 

baclofen, 3-APA and SKF 97541 (Fig. 51) respectively. These data indicate that 

the agonists mediated their response through populations of GABAb receptors 

that could not be distinguished by CGP 35348. In addition the slope of unity 

implied that the antagonist was acting in a competitive m anner at least over 

the concentration range tested.

CGP 36742 was slightly more potent than CGP 35348. Again the slope of the 

Schild regressions were not significantly different from one suggesting a 

competitive interaction at the GABAb receptor and pKB values of 5.07,5.43 and 

5.02 were obtained against (-)baclofen, 3-APA and SKF 97541 (Fig. 55) 

respectively. An significant improvement in potency was achieved with CGP 

46381. This compound has the highest affinity for the GABAb receptor of any 

GABAb antagonist yet available and represents a significant breakthrough in 

GABAb receptor pharmacology. pKB Values of 6.39, 5.70 and 5.71 were 

obtained against (-) baclofen, 3-APA and SKF 97541 respectively (Fig. 59). As 

before slopes were not significantly different from one.
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Fig. 48 Antagonism of (-)baclofen by CGP 35348 in the rat

anococcygeus muscle.
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DRC's to (-)baclofen were constructed in the absence P) and the presence of 

30pM (a), lOOpM (A) and 300pM of CGP 35348. Responses are expressed as 

a % of the maximum response achieved for each DRC. Data are from 4-21 

experiments.
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Fig. 49 Antagonism of 3-APA by CGP 35348 in the rat

anococcygeus muscle.
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DRC's to 3-APA were constructed in the absence (o) and the presence of 30pM 

(a), lOOpM (4 ) and 300|iM (0) CGP 35348. Responses are expressed as a % of 

the maximum response achieved for each DRC. Data are from 4 - 1 8  

experiments.
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Fig. 50 Antagonism of SKF 97541 by CGP 35348 in the rat

anococcygeus muscle.
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Fig.51 ArUjlakshana-Schild plots for 

CGP 35348.

CGP 35348 antagonized the inhibitory 

effects of (-)badofen (a), 3-APA (b) and 

SKF 97541 (c) in the rat anococcygeus 

muscle. The lines are the best fit (least 

squares) to the data. Slopes were not 

significantly different from unity.

193



Fie. 52 Antagonism of (-)baclofen by CGP 36742 in the rat

anococcygeus muscle.
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the maximum response achieved for each DRC. Data are from 5 - 2 1  
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Fig- 53 Antagonism of 3-APA by CGP 36742 in the rat

anococcygeus muscle.

120 n
Q.«/>0
L .

x  100 -
(0
E

— 80 -
_co>
0sz 60 -
JC0
4—*

1
4—» 40 -
c
0
<00 20  -

k .o
0
O

10“1° 10“* 10“* 10“7 10“* 10“5 10“4 10“3

[3-APA] M

DRC's to 3-APA were constructed in the absence ® and the presence of 30pM 

(a), lOOpM (A) and 300pM CGP 36742. Responses are expressed as a % of 

the maximum response achieved for each DRC. Data are from 4 - 1 8  

experiments.
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Fig, 54 Antagonism of SKF 97541 by CGP 36742 in the rat

anococcygeus muscle.
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Fig.55 Ari^lakshana-Schild plots for 

CGP 36742.

CGP 36742 antagonized the inhibitory 

effects of (-)baclofen (a), 3-APA (b) and 

SKF 97541 (c) in the rat anococcygeus 

muscle. The lines are the best fit (least 

squares) to the data. Slopes were not 

significantly different from unity.
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Fig. 56 Antagonism of (-)baclofen by CGP 46381 in the rat

anococcygeus muscle.
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DRC's to (-)baclofen were constructed in the absence ®  and presence of 3pM 

10pM fc), 30pM (0) and IOOjiM (•) CGP 46381. Responses are expressed as 

a % of the maximum response achieved for each DRC. Data are from 4 - 2 1  
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Fig. 57 Antagonism of 3-APA by CGP 46381 in the rat

anococcygeus muscle.
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Fig. 58 Antagonism of SKF 97541 by CGP 46381 in the rat

anococcygeus muscle.
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Fig.59 Arulakshana-Schild plots for 

CGP 46381.

CGP 46381 antagonized the inhibitory 

effects of (-)badofen (a), 3-APA (b) and 

SKF 97541 (c) in the rat anococcygeus 

muscle. The lines are the best fit (least 

squares) to the data. Slopes were not 

significantly different from unity.
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3) Discussion.

A neurotransmitter role for GABA in the peripheral nervous system has been 

m uch more difficult to establish than in the CNS due in part to the much 

lower concentrations of GABA present in the periphery (less than 1% of CNS 

levels in most tissues). However a possible physiological role has been 

postulated for GABA in the enteric nervous system for which evidence of a 

transmitter role for GABA is almost complete (Jessen et al., 1979; Taniguchi et 

al., 1982; Jessen et al., 1983; Kerr and Krantis, 1983; Miki et al., 1983; Davinger 

et al., 1987; Kerr et al., 1987). As GABA has no direct effect on the 

longitudinal and circular smooth muscle cells, its actions prim arily involve the 

modulation of presynaptic motor innervation of these muscle layers. Thus, the 

activation of both GABAa and GABAg receptors appear to be involved in the 

m odulation of intestinal motility (Ong and Kerr, 1983; Kerr and Ong, 1990). 

Some evidence for a neurotransmitter role for GABA is also available for the 

superior cervical ganglion (Bowery and Brown, 1974; Bertisson et al., 1976; 

Farkas et al., 1986; Happola et al., 1987), urinary bladder (Kusunoki et al., 1984; 

Maggi et al., 1985), gallbladder (Saito et al., 1985; Saito and Tanaka, 1986) and 

sinus node of the heart (Bowery et al., 1981; Taniyama et al., 1990). W hilst the 

physiological role of GABA in the periphery has yet to be fully elucidated 

isolated peripheral tissues such as the rat anococcygeus muscle (M uhyaddin 

et al., 1983; Hills et al., 1989), the rat or guinea-pig vas deferens (Kerr et al., 

1990; Hills et al., 1991) and the guinea-pig ileum (Ong et al., 1987; Kerr et al., 

1989) have been used extensively to assess the potency of potential GABAb
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agonists and antagonists.

In these preparations activation of presynaptic GABAb receptors (located on 

the terminals of adrenergic, NANC and cholinergic neurones respectively) 

mediates the inhibition of electrically-evoked neurotransm itter release usually 

m easured as a decrease in evoked twitch height (Fig. 60).

Fig. 60 Electrically-evoked twitch responses in the rat anococcygeus.
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°*°10.03^*1 0.3 1 3 10 *30 100 (-)BACLOFEN ftiM)

(-)Baclofen-mediated inhibition of electrically-evoked noradrenaline release in 

the rat anococcygeus muscle.
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(-)Baclofen, 3-APA and SKF 97541 caused a dose-dependent inhibition of the 

electrically evoked release of [3H]-noradrenaline and of the twitch response in 

the rat anococcygeus muscle. In contrast to the twitch responses shown above 

(Fig. 60) the responses obtained to electrical stimulation in the release 

experiments (e.g. Fig 35 ) were biphasic. The second component of the 

mechanical response was not suppressed in the presence of TTX. Tetrodotoxin 

specifically binds to, and therefore blocks, voltage-dependent N a+-channels 

such as those responsible for the generation of the neuronal action potential. 

Sensitivity of neurotransmitter release to TTX is therefore taken as evidence for 

release from neurones rather than, for example, from glial cells. These data 

therefore suggest that this component was not m ediated by neuronally 

released noradrenaline or any co-transmitter that m ay be present. It is possible 

that this slow component was due to the direct stimulation of the smooth 

muscle cells caused by the very close proximity of the platinum  electrodes to 

the preparation. Alternatively the lack of supporting bathing medium, which 

w ould be present in the usual organ bath system as used in this thesis, may 

have hindered the relaxation of the preparation following electrical stimulation 

and given rise to this sustained response. This is supported by the observation 

that the application of identical stimulation parameters to a preparation of rat 

anococcygeus muscle set up in a organ bath arrangem ent produces a fast, 

single component, response (not shown).

As predicted from binding data, 3-APA inhibited pHl-noradrenaline release

and depressed the evoked twitch response with ten times greater potency than
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(-)baclofen. SKF 97541 was slightly less potent than 3-APA in both 

experiments. These data are in agreement with the results of Hills and 

Howson (1992) who have published very similar EC50 values for the three 

agonists in the rat anococcygeus muscle and comparable results in the rat vas 

deferens and guinea-pig ileum (Hills and Howson, 1992). In the isolated 

guinea-pig trachea baclofen, 3-APA and SKF 97541 inhibited the electrically- 

stimulated contraction with the same relative potencies as observed in the rat 

anococcygeus muscle. It would appear therefore that in peripheral 

preparations GABAb receptors located presynaptically on adrenergic, 

cholinergic and NANC neurones are not distinguishable with the available 

GABAb agonists.

The two new compounds, CGP 36742 and CGP 46381 compared favourably 

with the GABAb antagonist CGP 35348 in the rat anococcygeus muscle. All 

three compounds had no effect on either evoked release or twitch response 

indicating the absence of GABAergic tone in this preparation. However these 

compounds fully reversed the inhibition of evoked [3H]-noradrenaline release 

m ediated by (-) baclofen and 3-APA, with CGP 46381 an order of m agnitude 

more potent than the other two. More quantitative data were obtained from 

the Schild regressions for antagonism of (-)baclofen, 3-APA and SKF 97541 in 

the rat anococcygeus. In these experiments all three compounds produced 

rightw ard shifts of the agonist DRC's w ithout apparent reduction in maximum 

response and accordingly the slope of the Schild regression lines were not 

significantly different from unity. This suggested that the antagonism was
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competitive over the concentration range tested and therefore differed from the 

findings of Hills and coworkers (Hills et al., 1991; Hills and Howson, 1992). 

They reported that CGP 35348 antagonized the effect of (±)baclofen in the rat 

vas deferens (pKB 5.0) and 3-APA in the rat anococcygeus muscle (pKB 5.4) but 

that the slope of the Schild plot in both cases was less than 1 (0.6 and 0.7 

respectively). They did not discount the possibility that CGP 35348 was either 

a non-competitive antagonist at the peripheral presynaptic GABAb receptor or 

acting at more than one GABAb receptor subtype. This is not supported by 

the findings of this thesis.

The pA2 obtained in the rat anococcygeus muscle for CGP 35348, CGP 36742 

and CGP 46381 are in good agreement with their ability to inhibit [3H]-3-APA 

from rat brain membranes (IC50 values of 34pM, 35pM and 5pM respectively) 

(Klebs et al., 1992) and this may reflect their improved tissue penetrability over 

phaclofen, saclofen and (-)baclofen.

Interestingly, in the studies, discussed more fully in chapter III, (-)baclofen 

inhibited K+-evoked release of endogenous aspartate, glutamate and GABA 

from rat hippocampal synaptosomes but its effect was not mimicked by 3- 

APA. This would suggest that peripheral presynaptic GABAb receptors on 

adrenergic terminals in the rat anococcygeus muscle do not appear to have the 

same pharmacological profile as central presynaptic GABAb receptors in the 

rat hippocampus and supports the concept of GABAb receptor heterogeneity.
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CHAPTER FIVE: RESULTS 

[3H]-GABA DISPLACEMENT STUDIES IN 

RAT WHOLE BRAIN SLICES
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1) Displacement of [3H1-GABA from GABAa and GABAp Binding Sites

in Whole Rat Brain Slices by Putative GABAb Ligands.

iI GABAa bindine assay.

The ability of putative GABAb ligands to displace [3H]-GABA from GABAa 

binding sites was assessed in rat whole brain slices. Specific GABAa binding 

accounted for 89.6% of total [3H]-GABA binding and was essentially 

unaffected by the addition of IOOjiM (-)baclofen, SKF 97541, CGP 35348, CGP 

36742, CGP 46381 to the incubation medium (data not shown). In contrast, 3- 

APA (0.1-100pM) produced a dose-dependent decrease in specific GABAa 

binding, of up to 92%, with an IC50 value of 5.5pM.

ii) GABAp binding assay.

A study was made of GABAp binding site distribution throughout rat brain 

(Fig. 61) using autoradiographic techniques (Fig. 62). Seventeen brain regions 

were investigated, and of these the highest density of GABAp sites were 

found in the cerebellar molecular layer (136±4 fm oles/m g), the dorsolateral 

gen icu la te , la tera l dorsal thalam ic and  v e n tro p o s te ro la te ra l/ 

ventroposteromedial thalamic nuclei (94-123 fm oles/m g) and the outer layers 

of the cerebral cortex (112±4 fmoles/mg). Intermediate levels of binding (31-67 

fm oles/m g) were present throughout the inner cerebral cortical layers, the 

corpus striatum, the hippocampal CA1, CA2, CA3 regions (with binding
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Fig. 61 Diagram of parasaeittal section through the rat brain.

10pm Sections were cut from frozen rat brain and used for the autoradiographic visualization 

of GABAb binding sites. Seventeen brain regions were studied as follows:

1) CxO Outer layers of cerebral cortex 11) DG Dentate gyrus

2) Cxi Inner layers of cerebral cortex 12) CbM Cerebellar molecular cell layer

3) St Corpus striatum 13) CbG Cerebellar granule cell layer

4) CA1 O Hippocampus CA1 oriens 14) DLG Dorsolateral geniculate nucleus

5) CA1 R Hippocampus CA1 radiatum 15) LD Lateral dorsal thalamic nucleus

6) CA2 0  Hippocampus CA2 oriens 16) VPM Ventral posteromedial/ventral

7) CA2 R Hippocampus CA2 radiatum posterolateral thalamic nuclei

8) CA3 O Hippocampus CA3 oriens 17) cc corpus callosum

9) CA3 R Hippocampus CA3 radiatum

10) ML Moleculare lacunosum
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density significantly higher in the s.radiatum compared to the s.oriens), 

lacunosum moleculare and dentate gyrus. With the exception of the corpus 

callosum, which was assumedto represent background levels, the lowest 

density of GABAb binding was observed in the cerebellar granule cell layer 

(25±2 fmoles/mg) (Fig. 63).

(-)Baclofen (1(T9M-10'5M)/ 3-APA (10'1°M-10'6M), SKF 97541 OxlO^M-lCTM), 

CGP 35348 (3x10^-3x10^4), CGP 36742 (3xl0‘6M-10‘3M) and CGP 46381 (10‘ 

M-3x10'4M) produced dose-dependent inhibitions of specific GABAb binding 

in all the brain regions studied (cortex Fig. 64; striatum Fig. 65; hippocampus 

Fig. 66; cerebellum molecular layer Fig. 67). Complete displacement (100%) 

was achieved at the highest concentrations used for each compound. 3-APA 

was the most potent displacer of [3H]-GABA with IC50 values of between 

12.7nM (CA1 oriens) and 29.9nM (lateral dorsal thalamic nucleus). SKF 97541 

and (-) baclofen were 10-20 times less potent than 3-APA throughout the brain, 

with SKF 97541 slightly, though not significantly, more potent than (-)baclofen 

in 11 of the 16 brain areas (Table 18). Of the putative GABAb antagonists CGP 

46381 (regional IC50 values 6.4-24.2pM) and CGP 36742 (IC50 values 6.6- 

20.2pM) were 10-15 times more potent than CGP 35348 (IC50 values 63.2- 

303.4pM) (Table 19). It was difficult to ascertain whether potency differences 

between the brain areas for each compound reflected anything more than 

experimental variability, as no consistent pattern emerged.
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Fig- 63 Distribution of GABAp binding sites in rat brain.
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The density of GABAb binding was determined throughout the rat brain using quantitative 

autoradiographic techniques. Values are the mean ± s.e.m. from 4 experiments performed in 

triplicate. Abbreviations as for Fig. 61.
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Fig. 64 Displacement of [3H1-GABA from cerebrocortical GABAp binding 

sites in rat brain.
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Rat brain slices were incubated for 20 minutes with [3H]-GABA (30nM) in the 

presence of isoguvacine (40pM) and CaCl2 (2.5mM) with or without the 

addition of increasing concentrations of the following displacing compounds: 

(-)baclofen p); 3-APA <$; SKF 97541 (a); CGP 35348 (•); CGP 36742 (■); CGP 

46381 ^). Non-specific binding was defined with lOOpM (-)baclofen. Cortical 

GABAb binding densities (fmoles/mg protein) were determined by 

autoradiographic techniques. The reduction in specific GABAb binding at each 

concentration of displacing ligand was expressed as a % reduction in total 

binding density. 3-4 experiments were performed in triplicate.
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Fig. 65 Displacement of F3H1-GABA from striatal GABAp binding sites

in rat brain.
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Rat brain slices were incubated for 20 minutes with [3H]-GABA (30nM) in the 

presence of isoguvacine (40pM) and CaCl2 (2.5mM) with or without the 

addition of increasing concentrations of the following displacing compounds: 

(-)baclofen (o); 3-APA (a); SKF 97541 M; CGP 35348 (•); CGP 36742 (■); CGP 

46381 (*). Non-specific binding was defined with lOOpM (-)baclofen. Striatal 

GABAb binding densities (fmoles/mg protein) were determined by 

autoradiographic techniques. The reduction in specific GABAg binding at each 

concentration of displacing ligand was expressed as a % reduction in total 

binding density. 3-4 experiments were performed in triplicate.
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Fig. 66 Displacement of f3Hl-GABA from hippocampal GABAP binding

sites in rat brain.
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Rat brain slices were incubated for 20 minutes with [3H]-GABA (30nM) in the 

presence of isoguvacine (40pM) and CaCl2 (2.5mM) with or without the 

addition of increasing concentrations of the following displacing compounds: 

(-)baclofen (o); 3-APA <p); SKF 97541 (A); CGP 35348 (•); CGP 36742 («); CGP 

46381 (a). Non-specific binding was defined, with lOOpM (-)baclofen. 

Hippocampal GABAb binding densities (fmoles/mg protein) were determined 

by autoradiographic techniques. The reduction in specific GABAb binding at 

each concentration of displacing ligand was expressed as a % reduction in total 

binding density. 3-4 experiments were performed in triplicate.

215



Fig. 67 Displacement of f3H1-GABA from cerebellar GABAp binding sites

in rat brain.
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Rat brain slices were incubated for 20 minutes with [3H]-GABA (30nM) in the 

presence of isoguvacine (40pM) and CaCl2 (2.5mM) with or without the 

addition of increasing concentrations of the following displacing compounds: 

(-)baclofen (?); 3-APA (o); SKF 97541 ft); CGP 35348 (•); CGP 36742 (■); CGP 

46381 (a ). Non-specific binding was defined with lOOpM (-)baclofen. 

Cerebellar GABAb binding densities (fmoles/mg protein) were determined by 

autoradiographic techniques. The reduction in specific GABAb binding at each 

concentration of displacing ligand was expressed as a % reduction in total 

binding density. 3-4 experiments were performed in triplicate.
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Table 18 ECcp Values for the displ£ement of [3H1-GABA from GABAb

binding sites in rat brain by (-)baclofen, 3-APA and SKF 97541.

Brain Region (-)Baclofen (nM) 3-APA (nM) SKF 97541 (nM)

CxO 189 (87-430) 19 (12-27) 221 (150-450)

Cxi 150 (34-400) 17 (4-42) 290 (240-350)

St 196 (20-1300) 22 (4-60) 130 (30-410)

CA1 O 164 (73-860) 13 (3-37) 193 (135-2200)

CA1 R 234 (54-1350) 16 (9-30) 412 (175-1200)

CA2 0 366 (80-1300) 20 (7-80) 225 (70-900)

CA2R 338 (65-1250) 24 (8-56) 641 (300-730)

CA3 O 489 (250-1500) 24 (9-95) 261 (120-570)

CA3R 407 (100-1800) 28 (13-56) 255 (120-430)

ML 559 (410-840) 18 (10-66) 139 (33-310)

DG 408 (115-2200) 18 (8-29) 208 (150-260)

CbM 267 (130-460) 17 (14-23) 208 (80-390)

CbG 326 (95-860) 15 (7-51) 107 (27-420)

DLG 403 (165-1250) 24 (13-69) 195 (110-420)

LD 185 (48-600) 30 (22-38) 111.(20-450)

VPM 337 (89-850) 19 (9-42) 306 (200-420)

IC50 Values are the geometric mean (and range) of 3-4 experiments performed 

in triplicate. Abbreviations as outlined in Fig. 61.

217



Table 19 ECcp Values for the displacement of f3Hl-GABA from GABAb

binding sites in rat brain by CGP 35348, CGP 36742 and CGP 46381.

Brain Region CGP 35348 (pM) CGP 36742 (pM) CGP 46381 (pM)

CxO 162 (93-350) 12 (9-22) 21 (15-27)

Cxi 238 (140-420) 11 (4-53) 14 (7-26)

St 56 (40-82) 6 (3-10) 8 (2-23)

CA1 O 123 (60-134) 10 (3-46) 10(3-30)

CA1 R 297 (180-690) 17 (8-69) 21 (11-58)

CA2 0 76 (27-225) 7 (3-11) 7 (2-63)

CA2 R 94 (68-175) 8 (5-16) 7 (4-23)

CA3 0 81 (49-110) 12 (7-24) 6 (3-25)

CA3R 82 (45-110) 11 (5-28) 9 (3-35)

ML 195 (115-400) 14 (8-20) 10 (5-25)

DG 73 (28-120) 16 (7-47) 8 (3-38)

CbM 127 (89-210) 11 (7-28) 10 (6-24)

CbG 86 (29-380) 13 (8-27) 23 (8-42)

DLG 156 (110-190) 17 (7-42) 13 (3-80)

LD 122 (80-140) 19 (9-68) 20 (2-95)

VPM 117 (75-195) 10 (1-57) 16 (2-64)

IC50 Values are the geometric mean (and range) of 3 experiments performed 

in triplicate. Abbreviations as outlined in Fig. 61.
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2) Discussion.

Of the six compounds tested only 3-APA had appreciable affinity for GABAa 

receptors. In this study 3-APA displaced [3H]-GABA from GABAb binding 

sites (IC50 13-30nM) with 183-433 times greater potency than from GABAa 

binding sites (IC50 5.5pM) in rat brain. This margin of selectivity for GABAb 

over GABAa sites was at least one order of magnitude less than previously 

reported (Pratt et al., 1989) using similar experimental conditions. These 

results indicate that whilst 3-APA is selective for GABAb receptors it is by no 

means specific and, unless experimental conditions are controlled to exclude 

GABAa receptor activation (as in binding studies), results obtained using this 

compound should be interpreted cautiously. Since 3-APA potently displaced 

[3H]-GABA from GABAb binding sites throughout the rat brain, including all 

the hippocampal areas investigated, this contradicts the observation made in 

Chapter 3 in which 3-APA failed to inhibit the K+-evoked release of 

endogenous amino acids from rat hippocampal synaptosomes. Possible 

reasons for this discrepancy are:

Presynaptic GABAa receptors are found in the rat hippocampus (Andrade et 

al., 1986; Dutar and Nicoll, 1988b; Colmers and Pittman, 1989). The observed 

effect of 3-APA on the K+-stimulated endogenous amino acid release from rat 

hippocampal synaptosomes was therefore presumably the net response to 

simultaneous activation of both GABAa and GABAb receptors. Enhancement
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of both basal (Docherty and Bradford, 1987; Fung and Fillenz, 1985) and 

stimulated (Demeneix et al., 1986; Gervais, 1987; Levi and Gallo, 1981) 

neurotransmitter release by muscimol or isoguvacine has been described and 

may be explained by the presence of an outwardly directed electrochemical 

gradient for Cl'. Thus GABAa receptor activation can lead to terminal 

depolarization (as in the dorsal root ganglion) resulting in neurotransmitter 

release. The effect of 3-APA on neurotransmitter release in the hippocampus 

may therefore be determined by the net movement of ions due to the GABAa 

receptor-mediated opening of chloride channels and the GABAb receptor- 

mediated opening of potassium channels/or closing of calcium channels. 

Preliminary experiments indicated that isoguvacine did indeed enhance the 

K+-stimulated release of endogenous aspartate, glutamate and GABA from rat 

hippocampal synaptosomes (data not shown) but further studies are required 

to determine whether or not 3-APA will inhibit such release in the presence 

of bicuculline. There is no evidence that GABAa receptors are present on 

adrenergic terminals in the rat anococcygeus muscle and therefore the 

GABAergic effect of 3-APA in this preparation can be assumed to be due to 

presynaptic GABAg receptor activation.

In addition to possible GABAa effects it was noted that in release samples 

obtained in the presence of 3-APA (III.4.iii) two large additional amino acid 

peaks were present at peak retention times of approximately 19 and 22 min. 

The peak areas increased with increasing concentrations of 3-APA tested in the 

experiment and the first peak was smaller than the second. That 3-APA

220



should be detected by HPLC was not surprising as this compound is a close 

GABA analogue, but the occurrence of two peaks indicated the presence of a 

possible contaminant. A sample of a 3-APA oxidation product, CGP 34854, 

was kindly provided by Ciba-Geigy chemists for analysis by HPLC.

Solutions containing lOpM 3-APA or a combination of 10pM 3-APA and 50pM 

CGP 34854 were prepared and analyzed by HPLC. 3-APA alone produced 

two peaks with retention times of 18.8 and 22.1 min and peak areas of 1086.8 

and 8366.8 (ratio 1:8) respectively. The combination of 3-APA and CGP 34854 

also eluted as two peaks at 19.8 min (slightly later than for 3-APA alone 

because of the increased broadness of the peak) and 22 min. It is not 

unreasonable to assume from this that the smaller of the two peaks produced 

by 3-APA alone is due to the presence of the oxidation product CGP 34854. 

To determine to what extent 3-APA is contaminated by CGP 34854 a standard 

curve was obtained from samples of CGP 34854 (0.5-2pM) from which the 

amount of this product in a lpM  and a 10pM solution of 3-APA was 

determined. From the calibration curve (Fig. 68) lpM  3-APA contained 

0.16pM CGP 34854 and lOpM 3-APA contained almost lpM  CGP 34854. This 

particular batch would therefore seem to contain approximately 10% of the 

oxidation product though this is likely to vary with each batch.
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Fig- 68 Calibration curve for CGP 34854.
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In displacement studies using whole rat brain slices, lOOpM CGP 34854 

displaced 27% of specific GABAa binding and 50% of specific GABAb binding. 

Reports from Ciba Geigy (personal communication to Prof. N.G. Bowery) 

indicate that this compound exhibits weak GABAb antagonist activity in a 

number of experimental systems. Therefore 3-APA, described in many studies 

as a potent, selective GABAb agonist is actually a compound that is selective 

for GABAb receptors but has low pM affinity for GABAa receptors and is 

susceptible to oxidation, the oxidation product possessing weak GABAb 

antagonistic activity of its own. Thus it is perhaps not surprising that such 

conflicting data have been obtained using this compound.
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The order of potency of the three GABAb agonists as displacers of [3H]-GABA 

from GABAb receptors assessed in whole rat brain sections was essentially the 

same for each of the brain regions studied as follows:

3-APA »  SKF 97541 > (-)Baclofen 

and for the three antagonists:

CGP 46381 > CGP 36742 »  CGP 35348

In each case the order of potency was the same as that observed in the rat 

anococcygeus preparation but the relative potencies of the compound was 

different. In the periphery 3-APA was only slightly more potent than SKF 

97541 and these two were 10-20 times more potent than (-)baclofen. In the rat 

brain slice preparation 3-APA was 10-20 times more potent than either SKF 

97541 or (-) baclofen, with SKF 97541 slightly more potent than (-)baclofen in 

most of the brain regions. Likewise, in the rat anococcygeus muscle CGP 

46381 was at least 10 times more potent than CGP 36742 which was slightly 

more potent than CGP 35348. In the rat brain CGP 46381 and CGP 36742 were 

equipotent and 10-15 times more potent than CGP 35348. It is not easy to 

determine whether the observed differences in relative potencies of these 

compounds in the rat peripheral and central nervous systems reflect GABAb 

receptor heterogeneity. Experiments using a much larger range of GABAb 

ligands are required to provide more conclusive evidence to support this 

possibility.
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CHAPTER SIX: RESULTS 

THE EFFECT OF PERTUSSIS TOXIN 

ON REGIONAL GABAb BINDING IN 

RAT BRAIN SYNAPTIC MEMBRANES
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1) Regional and age-related variations in the sensitivity of GABAb 

binding in rat brain to pertussis toxin.

It has been shown that unilateral injection of PTX(4pg) into the dentate gyrus 

produces a significant reduction in GABAb but not GABAa binding 

throughout the hippocampus on the injected side but not the contralateral side 

of the rat brain (Bowery et al., 1990). Despite a loss of GABAb binding density 

in the ventral hippocampus, an area remote from the site of injection, binding 

in other brain regions was unaffected. Results from further investigations 

indicated that the localized effect of PTX was probably due to the poor tissue 

penetration properties of this toxin. GABAb binding was quantified 

autoradiographically in rat brain sections cut from blocks of tissue which had 

been incubated for up to 24 hours in preactivated PTX or its vehicle. PTX 

reduced the density of GABAb binding by 20-50% throughout the rat brain 

including cortex, hippocampus, geniculate nuclei and cerebellum but with the 

surprising exception of the corpus striatum which was unaffected (Knott et al., 

1992). These experiments were designed to avoid regional differences in the
Ihefejfcve

diffusion of PTX̂  the possibility that GABAb receptors are heterogenous in 

their sensitivity to this toxin could not be discounted.

To address this possibility the effect of PTX on in vitro GABAb binding was 

investigated in synaptic membranes prepared from the cortex, hippocampus, 

cerebellum (three areas previously found to be responsive to PTX 

pretreatment) and corpus striatum of rat brain.
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Three groups of male Wistar rats were studied as follows:

Group A Sexually mature rats, 10-12 weeks postnatal (270-320g)

Group B Young adult rats, 7-9 weeks postnatal (160-220g)

Group C Sexually immature rats, 5-6 weeks postnatal (80-150g)

A preliminary study was carried out to verify that the incubation conditions 

used did not adversely affect GABAb binding. Levels of GABAb binding were 

not significantly different in rat brain membranes incubated for 30 minutes at 

29°C compared to membranes incubated at 18°C (data not shown).

i] Group A.

In membranes prepared from the brains of sexually mature male, Wistar rats 

the amount of [3H]-GABA specifically bound to GABAb sites (fmoles/mg 

protein) was 332±21 in cortex, 94±9 in striatum, 104±15 in hippocampus and 

239±31 in cerebellum. Following incubation of membranes with PTX, specific 

GABAb binding was significantly reduced by 32±6% in cortex, 41 ±7% in 

hippocampus and 31 ±9% in cerebellum. In agreement with the previous 

findings by Knott and colleagues (1992) striatal GABAb binding was unaffected 

by PTX (Table 20).
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Table 20 The effect of PTX on GABAb binding in rat brain membranes:

Group A.

Specific GABAb Binding (fmoles/mg protein)

Cortex Striatum Hippocampus Cerebellum

Control 332±21 (57%) 94±9 (37%) 104±15 (43%) 239±31 (54%)

+ PTX 221 ±21*** 94±9 NSD 60±10* 170±17*

Rat brain membranes were prepared from the cortices, striata, hippocampi and 

cerebella of adult male Wistar rats (10-12 weeks postnatal, 270-320g). GABAb 

binding (fmoles/mg protein) was determined following incubation of 

membranes with either pre-activated PTX or toxin vehicle (control) for 30 min 

at 29°C (n=6). GABAb binding in the presence of PTX was compared to control 

(Student's paired t-test ,2-tailed).

NSD no significant difference at p = 0.05 * p < 0.05 *** p < 0.005

Specific GABAb binding as a % of total [3H]-GABA binding is given in

parentheses.

227



ii2 Group B.

In membranes prepared from the brains of young adult rats specific GABAb 

binding (fmoles/mg protein) did not differ significantly from that of group A 

in any of the four brain regions studied. Incubation with PTX significantly 

reduced both hippocampal and striatal GABAb binding by 31%. Although 

binding was inhibited in cortical and cerebellar toxin-treated membranes, by 

27±13% and 23±5% respectively, these effects were not significantly different 

from control (Table 21).

iii) Group C.

Specific GABAb binding (fmoles/mg protein) in membranes prepared from the 

brains of sexually immature rats was not significantly different from that of 

either of the older age groups. PTX was without effect on cortical and 

cerebellar GABAb binding (reductions of 2±11% and 12±15% respectively) but 

significantly reduced specific GABAb binding in the striatum by 40±9% and 

hippocampus by 50±5% (Table 22).

Addition of GTP7S (2pM) to the binding assay reduced GABAb binding by 80- 

93% in all four brain regions in each of the age three groups (Fig. 69).
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Table 21 The effect of PTX on GABAp binding in rat brain membranes:

Group B.

Specific GABAb binding (fmoles/mg protein)

Cortex Striatum Hippocampus Cerebellum

Control 342±26 (76%) 88±22 (43%) 134±24 (48%) 338±51 (69%)

+ PTX 245±29 NSD 63±20* 94±20* 254±26 NSD

Rat brain membranes were prepared from the cortices, striata, hippocampi and 

cerebella of young adult male Wistar rats (7-9 weeks postnatal, 160-220g). 

GABAb binding (fmoles/mg protein) was determined following incubation of 

membranes with either pre-activated PTX or toxin vehicle (control) for 30 

minutes at 29°C (n=4). GABAb binding in the presence of PTX was compared 

to control (Student's paired t-test, 2-tailed).

NSD no significant difference at p = 0.05 * p < 0.05

Specific GABAb binding as a % of total [3H]-GABA binding is given in

parentheses.
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Table 22 The effect of PTX on GABAb binding in rat brain membranes:

Group C.

Specific GABAb binding (fmoles/mg protein)

Cortex Striatum Hippocampus Cerebellum

Control 312±30 (71%) 140±24(53%) 159±32 (51%) 415±76 (74%)

+ PTX 313±52 NSD 92±28*** 82±17** 335±18 NSD

Rat brain membranes were prepared from the cortices, striata, hippocampi and 

cerebella of immature male Wistar rats (5-6 weeks postnatal, 80-150g). GABAb 

binding (fmoles/mg protein) was determined following incubation of 

membranes with either pre-activated PTX or toxin vehicle (control) for 30 min 

at 29°C (n=6). GABAb binding in the presence of PTX was compared to control 

(Student's paired t-test, 2-tailed).

NSD no significant difference at p = 0.05 ** p < 0.01 *** p < 0.005

Specific GABAb binding as a % of total [3H]-GABA binding is given in

parentheses.
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iv) Age-related changes in PTX sensitivity.

The changes in sensitivity to PTX with age were more obvious if specific 

GABAg binding density remaining in the presence of the toxin was expressed 

as a ratio of that determined in its absence (Table 23).

Table 23 Ratio of specific GABAp binding in the presence and absence of 

PTX: regional and age related variations.

Ratio of Specific GABAg Binding PTX:Control

Postnatal Age Cortex Striatum Hippocampus Cerebellum

10-12wks (A) 0.68±0.06 1.06±0.14 0.59±0.07 0.69±0.09

7-9wks (B) 0.74±0.13 0.70±0.11 0.69±0.06 0.77±0.05

5-6wks (C) 0.98±0.13 0.60±0.08 0.49±0.05 0.89±0.15

From these data it was apparent that whilst hippocampal GABAb binding 

retained its sensitivity (30-50%) to PTX at all stages of development (6-12 

weeks postnatal), both it, and to a much greater extent, the striatum became 

progressively less sensitive to PTX with age. In contrast the cortex and 

cerebellum increased in responsiveness to PTX pretreatment as the animals 

matured.
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If only high affinity (i.e. GTPyS-sensitive) GABAb binding was considered then 

some interesting trends emerged. Specific high affinity GABAb binding fell by 

approximately 35% in both the striatum and hippocampus from 6-12 weeks, 

yet the PTX-resistant portion of GABAb binding in these areas remained 

constant (Fig. 70). Therefore the increasing insensitivity to PTX observed in 

these regions appeared to be due to a progressive loss of the PTX-sensitive 

GABAb component. High affinity GABAb binding density was also reduced 

by the same amount in the cerebellum with maturity. However in this area 

PTX-resistant GABAb binding also fell by 50% as age increased and so, if 

anything, a small increase in the PTX-sensitive portion is observed (from 57 

fmoles/mg in group C to 75 fmoles/mg in group A). Cortical high affinity 

GABAb binding density did not alter from 6-12 weeks so that the apparent 

reduction in the PTX-insensitivity is paralleled by an increase in the PTX- 

sensitive binding component (Fig. 70).
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2) Discussion.

GABAb binding can be detected in rat brain at postnatal day 1, increases to 

maximum levels at day 14 and declines to stabilize at adult levels by 21-28 

days after birth (Al-Dahan and Thalmann, 1989; Dr. C. Knott personal 

communication). This coincides with changes in the activity of both the high 

affinity GABA uptake system (Balcar and Johnston, 1989) and glutamate 

decarboxylase (Coyle and Enna, 1976) and with increases in the concentration 

of the G0 a-subunit measured by immunoassay in rat brain (Asano et al., 1988) 

all of which reach adult levels after 4 weeks. Animals used in this present 

study ranged in age from 6 to 12 weeks and therefore the changes in GABAb 

binding observed with age and PTX pretreatment occurred after the 

development of the GABAergic system in the rat brain.

Binding of [3H]-GABA to GABAb sites may be influenced by the presence of 

specific endogenous inhibitors (Toffano et al., 1978; Kuroda et al., 1982; 

Yamada et al., 1987), the concentrations of which may vary regionally and 

reportedly decline during ontogeny (Skerritt and Johnston, 1982). For this 

reason the rat brain membrane preparations used in these studies were 

extensively washed during preparation and samples were analyzed by HPLC. 

The GABA content of washed tissue samples from the four brain regions in 

adult rats (group A) was found to be below the level of detection (sub-pmoles: 

data not shown). This indicated that the washing procedure successfully 

removed almost all endogenous GABA that may possibly have interfered with
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GABAb binding.

The activity of PTX is both temperature and time dependent (Katada and Ui, 

1982; Ui, 1984). However prolonged incubation of rat brain membranes at 

temperatures above 30°C has a deleterious effect on total GABAb binding, 

presumably due to the denaturation of the receptor protein (Asano et al., 

1985). Therefore to study the effect of PTX, tissue preincubation conditions 

were chosen under which GABAb binding remains stable and the 

concentration of PTX used (7-20pg/mg protein) was comparable or greater 

than used by other researchers. Using these experimental conditions PTX did 

not inhibit GABAb binding by more than 50%. However this is not dissimilar 

to the findings from other studies in which incubation times of up to 24 hours 

were used (Asano et al., 1985; Xu and Wojcik, 1986; Knott et al., 1992). 

Therefore, although the biological activity of PTX can vary greatly, the degree 

of effect of the toxin observed in these experiments is unlikely to be limited by 

either the concentration of toxin or the preincubation conditions.

It is possible that the observed regional and age-associated variations of 

GABAb binding in rat brain to PTX were related to the extent of endogenous 

ADP-ribosylation activity. Endogenous ribosylation of Gs has been reported 

and was suggested to be mediated via the Py subunits released from activated 

Gj/ 0 (Jacquemin et al., 1986). More recently mono-ADP ribosylation of a 

39kDa - presumably G0-like - protein stimulated by nitric oxide liberating 

compounds such as sodium nitroprusside and 3-morpholinosydnonimine was
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observed in human platelets and rat brain and heart cytosolic fractions. 

Haemoglobin reversed the effects of sodium nitroprusside in the platelet 

preparation (Brune and Lapetina, 1989). As cGMP, its analogues 8-bromo 

cGMP and dibutyryl cGMP and agents which increase cytosolic cGMP 

concentrations (hydroxylamine and aniline) failed to modify this ADP- 

ribosylation the effect of nitric oxide would appear to be a novel one 

independent of the activation of the guanyl cyclase system (Brune and 

Lapetina, 1989). Such endogenous ADP-ribosylation has been demonstrated 

to show regional heterogeneity, for Gs-like proteins at least (Duman et al., 

1991) with highest levels of activity in the hippocampus and cortex and lower 

levels in striatum and cerebellum. Whether a different pattern of activity 

exists for Gi/o proteins remains to be seen.

Hormonal influences on both G-proteins and GABAb receptors may also be 

responsible for the heterogeneous response to PTX observed in rat brain. 

Endogenous ADP-ribosylation is modulated by circulating levels of 

glucocorticoids. Chronic administration of corticosterone increased levels of 

Gsa  immunoreactivity, mRNA and ADP ribosylation and decreased Gj(x 

immunoreactivity and mRNA in rat brain. G0a  appeared to unaffected (Saito 

et al., 1989; Duman et al., 1991). Whilst this may be of relevance in 

pathological states in which glucocorticoids are produced excessively (e.g. 

Cushing's syndrome or severe stress) or following long term synthetic steroid 

treatment, the influence of the sex hormones on GABAb function may be of 

greater physiological importance.
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Gonadal steroids, known to modulate other neurotransmitter systems (Bigeon 

et al., 1983; Hruska, 1986), may also influence GABAg receptor activity as 

sexual maturation occurs. Effects of oestrogen on both GABAa (Perez et al., 

1986; Schumacher et al., 1989) and GABAg (Francois-Bellan et al., 1989) 

receptors have been reported in the literature: GABAa binding is up-regulated 

by oestrogen in the corpus striatum, but not cortex or cerebellum, of castrated 

male rats and in the hippocampus of ovariectomized female rats; in contrast 

GABAg binding in corpus striatum was reduced following chronic 

administration of oestrogen to adult female rats. Levels of the male hormone 

testosterone, which is metabolized to the active steroids 5a-dihydrotestosterone 

and oestrogen, are reportedly higher in sexually mature male rats compared 

to younger animals (6-7 weeks old) (Dohler and Wuttke, 1975). This increase 

in oestrogen with age may, at least in part, explain the reduced PTX- 

sensitivity of GABAg binding observed in the striatum with maturation.

As a stable analogue of GTP, GTP7S binds to the a  subunit of the G /G q 

moiety resulting in the loss of high affinity GABAg binding. Therefore the 

lack of sensitivity to PTX did not imply the presence of GABAg receptors not 

coupled to inhibitory G-proteins. Rather it suggested that both PTX-sensitive 

and PTX-insensitive GABAg receptor-linked inhibitory G-proteins exist, the 

proportions of which vary regionally and with age. As yet a functional PTX- 

insensitive (but Gi/o-protein linked) GABAg-mediated response has not been 

described in the rat brain and so the physiological relevance of the current 

findings is unclear, although evidence for PTX-insensitive (Gx) G-protein
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mediated responses exits for other systems (Evans et al., 1985; Pobiner et al., 

1985; Schlegel et a l ., 1985). Perhaps the importance of these observations, at 

this stage, may be to highlight the difficulty in comparing the effects of PTX 

in biochemical and functional GABAg assays carried out using tissue from 

animals at differing stages of sexual maturity.
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FUTURE DIRECTIONS
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Future Directions.

The rat hippocampus has formed the focus of the experiments described in 

Chapter 3. Information on the effects of GABAb agonists and antagonists in 

in vitro hippocampal preparations is invaluable given the possible involvement 

of GABAb receptor activation in learning and memory processes. 

Administration of baclofen impairs memory in rats (Schwartzwelder et al., 

1987) whilst CGP 35348 facilitation of long term potentiation has been 

demonstrated in the rat hippocampal slice (Olpe and Karlsson, 1990) and the 

novel GABAb antagonist CGP 36742 has positive effects on cognitive function 

in a number of animal experimental paradigms (Bittiger et al., 1992; 

Mondadori et al., 1992). In the present investigation although (-)baclofen 

attenuated the release of the excitatory amino acids glutamate and aspartate 

and that of GABA in hippocampal synaptosomes, only the latter effect was 

antagonized by CGP 35348. It will be of interest to determine whether the 

hippocampal presynaptic GABAb heteroreceptor is affected by more potent 

GABAb antagonists such as CGP 46381 or CGP 55845, a compound with 

affinity for GABAb binding sites in rat cortical membranes of 7nM (Froestl et 

al., 1992). If not, it may be that the improvement in cognitive function 

obtained with GABAb antagonists is due to the selective augmentation of 

GABA release mediated via tonically-activated GABAb autoreceptors.

An injection of tetanus toxin into the hippocampus produces a reduction in 

GABA release and results in local neuronal degeneration which can be
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prevented by the lesioning of excitatory afferents or pretreatment with NMDA 

receptor antagonists (Bagetta et al., 1990; Bagetta et al., 1991). Extrapolation 

of these findings has led to the suggestion that antagonists acting at GABAb 

autoreceptors may be neuroprotective, and therefore novel drugs may be of 

possible use in stroke (Bowery, in press). Evidence to support this theory is 

as yet unavailable.

It was fortunate that Bowery and Hudson (1979) had the foresight to 

investigate the effects of baclofen on sympathetic outflow in peripheral tissues. 

W ithout this piece of crucial research it is a matter for speculation as to when 

GABAb receptors would have eventually been discovered. Since the early 

1980's isolated peripheral preparations have been used to assess the functional 

activity and relative potencies of new GABAb receptor compounds as 

illustrated in Chapter 4 of this thesis. It is usually assumed that such 

preparations are a means to providing purely quantitative information with 

regards to a new ligand and are not in themselves of any particular 

physiological relevance (e.g. the somewhat esoteric rat anococcygeus muscle). 

However, the functional significance of GABA and GABAb receptors in the 

peripheral nervous system is likely to assume greater importance in future as 

a target for clinically useful drugs. The possibility that GABAb agonists have 

anti-asthmatic properties is already under investigation. Baclofen depresses 

the following; cholinergic receptor-mediated contractions of the guinea-pig 

trachea (Tamaoki et al., 1987; Chapman et al., 1991), evoked acetylcholine 

(Shirakawa et al., 1987) and tachykinin (Ray et al., 1991) release from
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pulmonary tissues and vagally- (Chapman et al., 1992) or tachykinin (Belvisi 

et al., 1991) -induced bronchoconstrictor responses in guinea-pigs. In the light 

of the recent concern over the safety of available |32-adrenergic agents, novel 

anti-asthma therapies or would be advantageous.

The thalamus is believed to be of paramount importance in the generation of 

the spike and wave discharges (SWD) observed in the rodent model of 

absences (Vergnes et al., 1987; Vergnes et al., 1990) and in patients with petit 

mal (absence) epilepsy (Williams, 1953). The density of GABAb binding is 

moderately high in this brain region as described in Chapter 5 and is displaced 

by (-) baclofen, 3-APA, SKF 97541, CGP 35348, CGP 36742 and CGP 46381. 

Contrary to the postulation that GABAb agonists may be anti-epileptic 

(presumably due to the depression of excitatory neurotransmission) systemic 

baclofen increases SWD in the genetic absence epilepsy rat (GAER's; 

Strasbourg) (Vergnes et al., 1990). The most exciting recent development in 

GABAb receptor pharmacology has been the observation that GABAb 

antagonists are effective in these models of absence seizures (Hosford et al., 

1992; Marescaux et al., 1992; Snead et al., 1992). CGP 36742 which is active 

orally and is able to enter the brain from the circulation has been put forward 

as a candidate for clinical studies. As preliminary investigations indicate that 

this compound is well tolerated in human volunteers and produces few overt 

behavioural adverse effects (Bittiger et al., 1992) it is to be hoped that CGP 

36742 will be the first therapeutically useful GABAb antagonist, not only in 

petit mal epilepsy but also in conditions of cognitive impairment.
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Data provided in Chapter 6 indicated that whilst GABAb receptors in rat brain 

are linked to inhibitory G-proteins, the sensitivity of GABAb binding to PTX 

altered regionally and with age. A possible influence of gonadal steroids on 

GABAb receptors may be evaluated by an investigation of regional GABAb 

binding in castrated male rats of between 5 and 12 weeks old. If a similar 

pattern of PTX sensitivity is observed following this procedure then it is 

unlikely that sex steroids play a major role in the regulation of GABAb 

receptor-Gi/0-protein interactions by either stimulation of endogenous ADP- 

ribosylation or at the level of genes controlling G-protein synthesis. As there 

are experimental difficulties inherent in the use of PTX, investigations into 

alterations in GABAb receptor-inhibitory G-protein coupling using antibodies 

to specific Gia subunits may be more informative.

As baclofen reaches its 21st birthday the prospect that GABAb agonists and 

antagonists will be of clinical use in a wide variety of pathophysiological 

conditions is tremendously exciting to researchers in the field. GABAb 

receptors have at last 'come of age'.
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