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Abbreviations: 13 

β-galactosidase      - β-gal 14 

Cyclooxygenase 2      - COX2 15 

C Reactive protein      - CRP 16 

Dasatinib and Quercetin    - D+Q 17 

Dendritic cells       - DCs 18 

Interferon       - IFN 19 

IFN regulatory transcription factor    - IRF8 20 

Giant cell arteritis      - GCA 21 

Lipopolysaccharide      - LPS 22 

Micro RNA       - miR 23 

Pattern recognition receptors    - PRRs 24 

Polymyalgia rheumatica     - PMR 25 

Prostaglandin 2      - PGE2 26 

Retinoic acid–inducible gene I    - RIG-I 27 

Respiratory syncytial virus    - RSV 28 

S-(2,3-bis(palmitoyloxy)-(2-RS)-propyl)-N-palmitoyl-(R)-Cys-(S)-Ser-(S)-Lys4- 29 

OH,trihydrochloride      - Pam3Cys 30 

Mammalian target of rapamycin complex 1    - TORC1 31 

Tumor necrosis factor receptor–associated factor 3  - TRAF3  32 

Toll-like receptors      - TLRs 33 

Varicella-Zoster virus      - VZV  34 
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Abstract 35 

Ageing is a global burden. Increasing age is associated with increased incidence of infections 36 

and cancer and decreased vaccine efficacy. This increased morbidity observed with age, is 37 

believed to be due in part to a decline in adaptive immunity, termed immunosenescence. 38 

However not all aspects of immunity decrease with age as ageing presents with systemic low 39 

grade chronic inflammation, characterised by elevated concentrations of mediators such as 40 

IL-6, TNFα and C Reactive protein (CRP). Inflammation is a strong predictor of morbidity and 41 

mortality, and chronic inflammation is known to be detrimental to a functioning immune 42 

system. Although the source of the inflammation is much discussed, the key cells which are 43 

believed to facilitate the inflammageing phenomenon are the monocytes and macrophages.  44 

In this review we detail how macrophages and monocytes phenotype and function change 45 

with age. The impact of ageing on macrophages includes decreased phagocytosis and  46 

immune resolution, increased in senescent-associated markers, increase inflammatory 47 

cytokine production, and reduced autophagy and decrease in TLR expression. With 48 

monocytes there is an increase in circulating CD16+ monocytes, decreased type I IFN 49 

production, and decreased efferocytosis. In conclusion, we believe that monocytes and 50 

macrophages contribute to immunosenescence and inflammageing and as a result have an 51 

important role in defective immunity with age.    52 
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Introduction 53 

Ageing populations are becoming a global trend (1), however increasing lifespan is 54 

outstripping health-span. This results in people living longer with chronic health conditions, 55 

adversely impacting on quality of life. Older adults are at increased risk of hospitalisation and 56 

death from primary infections such as influenza (2), reactivation of latent infections such as 57 

shingles caused by Varicella-Zoster virus (VZV) (3), and are often living with chronic 58 

inflammatory diseases such as type 2 diabetes and rheumatoid arthritis. Although four 59 

vaccinations (Influenza, tetanus-reduced diphtheria-acellular pertussis [TdaP], 60 

Pneumococcal, and Herpes Zoster) are recommended for older individuals (>65 years) in the 61 

UK, vaccine efficacy decreases significantly with age (4-6).  62 

All these age-related changes suggest that there are alterations in immunity which result in 63 

poorer antigen-specific immunity and worse vaccine efficacy. To date the majority of the 64 

research has focussed on the adaptive immune system which has been reviewed extensively 65 

(7, 8). Although T and B cell changes are important in ageing, there is clearly also a role for 66 

innate immune cells. In this review we discuss age-related inflammation and how monocytes 67 

and macrophages contribute to these inflammatory processes. We then focus on what defines 68 

monocytes and macrophages, then what changes occur in these cells with age, and how this 69 

underlies diseases commonly associated with ageing. 70 

 71 

Inflammation and ageing 72 

Ageing is arguably primarily characterised by the accumulation of cells which have undergone 73 

the process of permanent cell cycle arrest, termed senescence (9). Senescence can occur in 74 

all cells in the body, meaning that all tissues can contain senescent cells. Structural stromal 75 

cells, such as fibroblasts, show high levels of senescence with age. In the immune system, 76 

senescence has been shown in multiple cell types including macrophages and T cells (10-12). 77 

However there is evidence, certainly in T cells, that what has been defined as senescence 78 

can be reversed with the addition of p38 MAP kinase inhibitors, begging the question if this is 79 

proper senescence or indeed if senescence is not always a state of permanent cell cycle arrest 80 

(12). Senescence occurs as a result of irreparable cellular insults, such as excessive DNA 81 

damage, telomere erosion, or oxidative stress (13). Senescent stromal cells do not divide and 82 

are apoptosis resistant (14). They can be characterized by the expression of the CDK 83 

inhibitors p16INK4A and/or p21, telomere associated γH2AX foci and/or β-galactosidase 84 

expression. However, there is no one definitive marker of senescence and this subject has 85 

been reviewed extensively elsewhere (13). 86 
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Systemic increases in senescent cells are closely linked to age-related pathology and 87 

inflammageing, the chronic low-grade inflammation observed with age in humans (15). 88 

Senescent cells themselves secrete a raft of inflammatory mediators, termed the senescence 89 

associated secretory phenotype (SASP) (16). The SASP can drive paracrine senescence 90 

perpetuating an increasingly senescent and inflammatory tissue environment (17). 91 

Importantly, while the SASP is a profound source of inflammatory mediators, it does not 92 

encompass all mediators that are increased with age.  93 

Inflammageing is characterised by an increase in circulating inflammatory mediators such as 94 

C Reactive protein (CRP), Interleukin (IL)-6 and Tumour Necrosis Factor (TNF)α (18). 95 

Although acute inflammation is important for clearance of infection or facilitating wound 96 

healing, it is becoming increasingly clear that chronic inflammation is detrimental to a 97 

functioning immune response. Indeed older people who have elevated circulating IL-6, CRP, 98 

TNFα, IL-1β or inflammasome-related genes have higher chance of all-cause mortality (19-99 

21). Conversely, lower levels of inflammatory cytokines in the peripheral blood correlate with 100 

good health outcomes, longevity, and reduced risk of death of older adults (22). Not all older 101 

people age similarly - one such example is frailty, which is the individuals biological age rather 102 

than chronological, and is considered to be an excellent guide for establishing the health of 103 

the individual. Inflammation is a strong predictor for frailty, and those older individuals who are 104 

most frail have highest levels of circulating CRP, IL-6 and IL-8 (23). In addition, excessive 105 

inflammation has been shown to reduce vaccine efficacy (24, 25), antigen-specific immunity 106 

(26) and increased immunoregulatory mechanisms to combat the increased inflammation 107 

(27). 108 

The source of the inflammatory cytokine production during ageing is believed to be multi-109 

factorial. SASP is an obvious contributor to this, but additional mechanisms have been 110 

proposed. Geriatric mice have been shown to have increased gut permeability which results 111 

in bacterial lipopolysaccharide (LPS) leakage into the blood stream and activation of 112 

mononuclear phagocytes via binding to Toll-like receptor (TLR)4 (28, 29). Older adults exhibit 113 

increased visceral adiposity; visceral fat is an inflammatory site as infiltrating immune cells, 114 

including mononuclear phagocytes, secrete a raft of inflammatory mediators (30). Additionally, 115 

aged mice have elevated damage-associated molecular patterns (DAMPs), suggesting that 116 

human ageing may also lead to increased DAMP production (31). DAMPS bind to a range of 117 

pattern recognition receptors (PRRs) on innate cells leading to a cascade of inflammatory 118 

cytokine production. Finally, the most recent proposed mechanism for increased inflammation 119 

with age is a failure of inflammatory resolution in older adults. The onset of inflammation is a 120 

highly active process, involving multiple cell types and mediators. We now appreciate that 121 

switching off inflammation is an equally involved process with distinct signalling and effector 122 
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pathways all of which impact downstream immune responses (32). We recently showed that 123 

although the onset of inflammation is similar between old and young, the resolution of 124 

inflammation was defective in older people leading to a prolonged inflammatory response (33). 125 

Mononuclear phagocytes, consisting of monocytes and macrophages, were unable to engulf 126 

apoptotic immune cells following an inflammatory insult. This resulted in an accumulation of 127 

apoptotic cells, cellular debris, and mononuclear phagocytes that did not switch to a pro-128 

resolution phenotype. Ultimately this kind of mechanism, of failed resolution, might underlie 129 

chronic inflammation such as that seen in aged people (33).   130 

When Franceschi and colleagues coined the term inflammageing in 2000 (15), they suggested 131 

the root of age-related chronic inflammation was chronic activation of the macrophage. Whilst 132 

more recent data suggests that macrophages are not the sole source of inflammageing, it is 133 

clear that monocytes and macrophages are the central component in initiating the 134 

phenomenon. Although the effect of ageing on monocyte and macrophages has been studied 135 

and will be discussed in detail in this review, there are clearly facets of ageing in this context 136 

that are poorly understood. The focus of this review is an overview of the current knowledge 137 

of the impact of ageing on monocytes and macrophages, and how these cells can contribute 138 

to the inflammageing. In addition, this review will highlight areas of monocyte and macrophage 139 

biology where more research is required. 140 

 141 

Macrophages 142 

Macrophage phenotype and function 143 

Macrophages are tissue resident cells known for phagocytosis, their name being derived from 144 

Greek meaning “big eaters”, first coined by Eli Metchnikoff in the late 19th century. He observed 145 

this population of cells in starfish larvae which had been pierced by tiny thorns going on to 146 

show that macrophages and the process of phagocytosis formed the “essence” of 147 

inflammation (34). However, even following Metchnikoff’s Nobel prize in 1908 (35), the 148 

macrophage had long been undervalued and underexplored in favour of work on the more 149 

high profile adaptive/humoral immune system. Only recently has research on macrophages 150 

increased in intensity and great strides have been made in understanding these complex cells 151 

(36). Macrophages express a broad range of PRRs, such as TLRs, that when triggered initiate 152 

an inflammatory signalling cascade. They are capable of ingesting a host of targets ranging 153 

from bacteria to apoptotic cells, thorns to tattoo ink, and grapple with helminths (37-39). This 154 

shows how important macrophages are in immune responses, both in terms of clearing 155 

infectious agents and subsequently cleaning up the debris caused by inflammation and 156 

infection. 157 
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Protean in their function, macrophages exhibit a high level of phenotypic plasticity with 158 

phenotypes historically being categorised based on in vitro models using discrete stimuli. 159 

Macrophages (and often monocyte-derived cells) exposed to the pro-inflammatory mediators 160 

interferon-γ and LPS are characterised as having the classically activated, pro-inflammatory 161 

M1 phenotype based on their release of cytokines such as TNFα, IL-1β, and IL-12 as well as 162 

their increased reactive oxygen species (ROS) production (40). Stimulation of macrophages 163 

using IL-4 or IL-10 results in alternative activation, or M2 type polarization, characterized by 164 

the release of anti-inflammatory and tissue repair molecules (41). In vivo, however, 165 

macrophages (and monocytes) display mixed phenotypes and are not completely polarised 166 

as described by the in vitro classification of M1/M2 (42, 43). Therefore, this nomenclature must 167 

be used with caution as it belies the complexity of macrophages phenotypes in vivo. As such 168 

this review will attempt to discuss macrophages in the context of their tissue environment 169 

and/or specific activating stimuli rather than describing them simply as M1 and M2 170 

macrophages. 171 

We now understand that macrophages are also key players in tissue homeostasis. 172 

Macrophages interact with the cells around them to maintain order and rapidly remove 173 

potentially hazardous debris (39). This mechanism is also used to bring about immune 174 

resolution and restore tissues to their homeostatic states while providing an environment 175 

conducive to immune memory (44, 45). Finally, different types of macrophages have very 176 

specific tissue functions, for example, microglia help orchestrate neuronal connectivity by 177 

pruning synapses (46), bone marrow macrophages enucleate erythroblasts during erythrocyte 178 

development (47) and splenic red pulp macrophages phagocytose and clear damaged 179 

erythrocytes (48).  180 

The origins of tissue resident macrophages and their development have been extensively 181 

reviewed recently (36, 49-51). The original dogma proposed that monocytes were recruited to 182 

tissues where they subsequently differentiated into macrophages (52). This does indeed 183 

happen, for example in the gut or the dermis (53, 54). It has been shown in mice that 184 

embryonic precursors seeded in the intestine underwent in situ proliferation, during the 185 

neonatal period they were subsequently replaced by an influx of Ly6C+ monocytes instructed 186 

by the local tissue environment and microbiota to differentiate into macrophages (53). 187 

However, other mouse studies have observed that in other tissues, such as in the brain, lung 188 

and epidermis, macrophages are exclusively embryonically derived (36). To add further 189 

complications to the field of macrophage ontogeny, murine studies have shown that there are 190 

situations where monocytes can temporarily replace embryonically derived macrophages 191 

when there is a deficit in the cell number due to an inflammatory event, to allow time for the 192 
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macrophage populations to proliferate (55). Unfortunately, data on whether this occurs in aged 193 

mice or humans are lacking. 194 

Macrophage ontogeny is therefore tissue dependent for reasons that are not yet entirely clear. 195 

Each tissue imprints function upon the macrophage irrespective of whether it is embryonically 196 

derived or monocyte-derived, thus meaning that each tissue has unique macrophage 197 

populations (56). Furthermore, we have to acknowledge that macrophage heterogeneity, even 198 

within specific tissues, is greater than previously appreciated (36).  199 

 200 

Macrophages and ageing 201 

Here follows a discussion of what is known with regards to macrophages during ageing. 202 

Ageing results in a plethora of phenotypic and functional changes in macrophages, reliant 203 

upon tissue residency, metabolic state, senescence, and multiple other factors. These will be 204 

discussed in turn and are summarised in Figure 1. 205 

 206 

Macrophage number and phenotype 207 

Geriatric mice (24-28 months old) have elevated numbers of macrophages in the spleen and 208 

bone marrow as compared to young mice (57). This contradicts a study performed on human 209 

bone marrow, where no significant difference in the number of CD68+ macrophages 210 

throughout adult life is observed. Interestingly, bone marrow in children and young adults (<19 211 

years of age) contains significantly more macrophages as compared to adults (58). Further 212 

analysis of these macrophages has identified an increased frequency of CX3CR1 expressing 213 

macrophages and conversely a reduction of Ly6C+ macrophages in old mice compared to 214 

young (57). The alteration in these two markers suggests a skewing towards a more anti-215 

inflammatory, pro-angiogenic phenotype of macrophage. Indeed, macrophages from old mice 216 

are more proangiogenic as compared to young macrophages (59). When adherent 217 

splenocytes (presumed to be myeloid cells) are removed from aged mice, they exhibit a 218 

reduced capacity to undergo classical in vitro polarization into M1- or M2-like macrophages. 219 

However, as mentioned previously, characterising macrophages as M1 and M2 is a little 220 

outdated and it has certainly become more apparent that macrophages are instructed on their 221 

function based on the tissue environment in which they are found. Further analysis suggests 222 

that it is not due to an inherent defect in the macrophages, but rather due to the ‘old’ 223 

environment in the mice which prevents the macrophage differentiation (60). 224 

 225 

Changes in tissue environment with age impacting on macrophage function 226 
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Studies in aged humans have found that the composition of the microbiome changes over 227 

time. For example, the prevalence of Bifidobacterium and Lactobacillus species decreases 228 

with age, whereas the numbers and diversity of Bacteroides, Clostridia and Fusobacteria 229 

increased (61). It has been postulated that the reason for this change in microbiota is 230 

increased gut permeability and subsequently elevated levels of LPS found in the gut and 231 

plasma of aged mice (29). More recently it was shown that the gut does indeed become more 232 

permeable in aged mice, resulting in more circulating LPS. This ultimately leads to an increase 233 

in systemic, but low grade, inflammation in aged mice, akin to inflammageing seen in humans 234 

(29). 235 

This LPS-driven chronic inflammation in geriatric mice is reflected in increases in circulating 236 

inflammatory cytokines such as TNFα. Indeed, TNFα deficiency or blockade protects from 237 

age-related inflammation and changes in the microbiota in mice (28). Elevated pro-238 

inflammatory mediators have profound and negative effects on peritoneal and bone marrow-239 

derived macrophages by reducing their capacity to ingest and clear bacteria further 240 

perpetuating an inflammatory phenotype (28). Interestingly mice that were kept in a germ-free 241 

environment did not develop age-dependent inflammation and had preserved macrophage 242 

function (28). It was recently shown that intestinal alkaline phosphatase activity declines in 243 

aged mice and humans. In mice, this decline resulted in increased liver dysfunction, increased 244 

portal vein TNFα levels, and a significant increase in circulating pro-inflammatory cytokine 245 

concentrations produced by bone marrow-derived macrophages (62). In humans, the increase 246 

in gut microbiome variability with age correlates with IL-6, IL-8 and CRP in the serum, implying 247 

that similar dysbiosis occurs in older adults (63).  248 

In the murine lung, the resident alveolar macrophage population changes dramatically with 249 

age, with macrophage numbers declining and studies finding in excess of 3,000 genes being 250 

altered in young compared to aged mouse lungs (64). Amongst the affected genes were 251 

scavenging receptors such as CD204 (64), and macrophage receptor with collagenous 252 

structure (MARCO) (65), which impacts bacterial phagocytosis and efferocytosis of apoptotic 253 

neutrophils, adversely affecting inflammatory responses. 254 

Candida albicans challenge in the skin of older adults results in reduced production of TNFα, 255 

IL-6 and IFN-γ by CD163+ dermal macrophages, as compared to younger people (66). 256 

However, TLR1/2 and TLR 4 stimulation in vitro of isolated skin macrophages showed similar 257 

TNFα  production between young and old adults (66). These data highlight that changes in 258 

the tissue environment with age can dictate macrophage function and studying macrophages 259 

in isolation is insufficient to give the whole picture. 260 

 261 
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Macrophage senescence 262 

Many macrophage populations proliferate to maintain their numbers and as such have the 263 

potential to undergo cellular senescence. Microglia, one of the resident macrophage 264 

populations in the brain, are exclusively yolk sac-derived, capable of lifelong self-renewal have 265 

been reported to undergo senescence with age. Indeed, senescent macrophages have been 266 

proposed to contribute to age-dependent neurological dysfunction (67). Limited evidence of 267 

the SASP has been found by way of elevated IL-1β, IL-6 and TNFα in aged rat and murine 268 

brains (68-71). While clearly not seen in all models, this suggests chronic microglial activation 269 

as a result of sustained aberrant inflammasome formation occurring with age (72, 73). It should 270 

be noted that microglia priming is associated with peripheral immune challenge such as from 271 

surgical stress meaning events in the periphery could contribute to increased activation and 272 

senescence in the brain. 273 

The peritoneum of aged mice contains macrophages expressing markers of senescence 274 

including p16 and β-galactosidase (β-gal). The increase in expression of these markers was 275 

due to bystander senescence from adjacent senescent stromal cells (74). However, the 276 

authors do not categorise these macrophages as senescent themselves. Indeed, β-gal+ foamy 277 

macrophages have been detected in atherosclerotic plaques in mice and p16-targeted 278 

depletion removed these cells, indicating atherosclerotic plaque macrophages exhibit signs of 279 

senescence (75). Other studies in aged mice show no effect of senolytic treatment of 280 

macrophage numbers in atherosclerotic plaques (76). Obesity-induced adipose tissue 281 

senescence results in monocyte recruitment and ultimately increased macrophage 282 

accumulation (77). Intriguingly this accumulation occurs in humans and can be reversed using 283 

senolytic treatment (Dasatinib and Quercetin, D+Q) (78). However, while D+Q treatment 284 

successfully reduced epidermal p16+ cell numbers, this decrease could not be attributed to 285 

Langerhans cell clearance, or recruitment of macrophages into the epidermis (78). 286 

Furthermore, D+Q treatment in aged mice did not affect CD68+ macrophage numbers in 287 

adipose tissue explants, regardless of their p16 expression (79). A potential confounder in this 288 

work is that β-gal is expressed in the lysosomes of macrophages when they are undergoing 289 

phagocytosis, meaning that β-gal is not an accurate marker of senescence in macrophages 290 

(80, 81). 291 

P16 expression is seen in bone marrow-derived macrophages where it suppresses IL-6 (but 292 

not TNFα) production by degrading IL-1R-associated kinase 1 (82). This finding was directly 293 

contradicted in another model using bone marrow-derived macrophages where p16-/- 294 

macrophages secrete significantly less IL-6 compared to p16+/+ cells, both basally and 295 

following LPS stimulation, instead resembling M2-like macrophages (83). Ablating p16+ cells 296 
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could therefore also target macrophages, which may be advantageous in the context of 297 

atherosclerosis (75), but could be disadvantageous in other contexts. 298 

 299 

Inflammatory cytokine production: 300 

Most of the focus of macrophage work has been on their role in orchestrating inflammatory 301 

responses. As discussed previously, there is increased TNFα and IL-6 produced from aged 302 

mouse peritoneal macrophages in response to LPS and S. pneumoniae (28). Aged microglia 303 

also secrete more proinflammatory cytokines such as IL-6 and TNFα in response to TLR 304 

stimulation as compared to young (84). This is in contrast to another study on splenic and 305 

thioglycolate-elicited peritoneal macrophages which found that there was reduced TLR 306 

expression in aged macrophages, which, as when stimulated with TLR stimuli they had 307 

reduced proinflammatory cytokine production in old as compared to young (85). Perhaps the 308 

differences observed between these studies could reflect the differences between different 309 

tissue resident macrophages. One such study showed that there was elevated 310 

Cyclooxygenase 2 (COX2) expression and subsequent Prostaglandin 2 (PGE2) production 311 

from aged macrophages as compared to young (11, 86), and that this expression of COX2 312 

correlated with increased expression of inflammatory cytokines such as TNFα and IL-6. This 313 

increase in COX2 is believe to be due to a higher rate of transcription, rather than transcript 314 

stability (87). While pathways like COX-2 and p38 MAP kinase are implicated in altered 315 

cytokine production in geriatric mice and older humans, there has not been much of a 316 

concerted effort to explain why these pathways change with age. It is likely that, as with most 317 

macrophage function, the tissue microenvironment will influence cytokine production. 318 

However, it is equally possible that changes in macrophage metabolism and phagocytic ability 319 

underlie these changes, and what we are seeing in terms of cytokine release is the result of 320 

other issues. 321 

 322 

Phagocytosis 323 

In aged mice it has been observed that there is reduced wound healing compared to younger 324 

mice, a difference attributed to reduced phagocytic capacity of macrophages collected from 325 

old mice as compared to young (88-90). Defects in phagocytosis in older macrophages have 326 

also been shown in other studies which demonstrated reduced clearance of apoptotic cells in 327 

aged mice, which results in unresolved, chronic inflammatory responses (90, 91). This 328 

efferocytic defect that leads to sustained inflammation has since also been observed in 329 

humans (33). The tissue environment in which macrophages reside have been proposed to 330 

be responsible for the reduced phagocytic activity in the old (92). A study which was carried 331 
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out in a rat model showed conversely that there was enhanced phagocytic activity in aged 332 

alveolar macrophages as compared to young, additionally the release of lipid mediators such 333 

as leukotrienes and prostaglandins was not altered with age (93). Overall, macrophage 334 

phagocytosis defects are prevalent in ageing research though we still do not fully appreciate 335 

how this comes about in different human tissues with age. 336 

 337 

Metabolism 338 

Immunometabolism, which is the study of metabolic pathway usage in an immune cell, is an 339 

emerging field of research and has been reviewed in detail previously (98). The metabolic 340 

pathways utilised by the cell have important implications for its phenotype. NAD+ has been 341 

suggested to be a therapeutic target for ageing as its levels change significantly with age (94). 342 

In macrophages, NAD+ synthesis is lower with age, much like during immune responses (95), 343 

affecting macrophage effector responses resulting in more pro-inflammatory function (96). 344 

Indeed, the question remains whether metabolic state causes macrophages to shift to a pro-345 

inflammatory phenotype in aged tissues, or if macrophage activation causes a sustained 346 

metabolic switch. Evidence for the former consists of the fact that telomeric stress, such as 347 

that encountered with age, causes dysfunction in mitochondrial metabolism that results in 348 

increased ROS formation, inflammasome activation and IL-1β release (97). IL-1β is further 349 

seen as a result of age-related autophagy defects. An aged mouse study observed found that 350 

there was reduced autophagy flux in older mice, which has been proposed to be due to 351 

hypermethylation of the autophagy genes Atg5 and Lc3 (98). This subsequently results in an 352 

increase in the expression of IL-1β, hence it was proposed that a deficiency in autophagy 353 

could be a marker of senescence (99). While these findings are intriguing and could contribute 354 

to our understanding of senescence and ageing, these avenues of research are still in their 355 

infancy and will require more effort to be put into a relevant context. 356 

 357 

Macrophage-driven age-related disease: 358 

Some diseases are very strongly associated with increased age. Polymyalgia rheumatica 359 

(PMR) and giant cell arteritis (GCA) are two that essentially only occur in people over the age 360 

of fifty, often coexisting (100). Both diseases are characterised by IL-1β and IL-6 production 361 

by arterial macrophages and circulating monocytes, possibly contributing, or arising as a result 362 

of, inflammageing (101). Giant cell arteritis is an inflammatory disease of medium to large 363 

arteries characterised by the infiltration of T cells and macrophages. The eponymous giant 364 

cells, though present in only ~50% of cases, arise as a result of aberrant macrophage 365 

phagocytosis leading to cellular fusion (101). These giant cells are secretory (mainly producing 366 
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platelet derived growth Factor and Vascular endothelial growth factor) and it is likely that their 367 

cellular profile underlies disease heterogeneity. The subsets of macrophages involved in this 368 

disease are not entirely clear and it is possible they are at least in part monocyte-derived. Only 369 

a subset of the CD68+ macrophages found in the artery tissue appear to contribute to the 370 

release of tissue-destructive proteases, and the pro-inflammatory cytokines IL-1β and IL-6 371 

which cause the general symptoms associated with GCA (101, 102). PMR presents with 372 

aching and stiffness in muscles, mainly in the pelvic girdle, upper arms, shoulders and neck 373 

(103). Like GCA it comes with a significant component of systemic inflammation of acute 374 

phase proteins that are likely macrophage derived (100). This chronic inflammation and the 375 

strong age association of these diseases makes them likely candidates for over-exuberant 376 

inflammageing. 377 

Cancer is known to increase in incidence with age. It has been proposed that aged 378 

macrophages are more permissive to tumour growth (57), as when macrophages from young 379 

and old mice were cultured with tumour cell-derived supernatants, macrophages from older 380 

mice secreted more IL-4. This increased IL-4 production from aged macrophages was shown 381 

to be immunosuppressive as it inhibited IFNγ production from T cells (57). 382 

Atherosclerosis is an age-associated disease resulting from the accumulation of monocyte-383 

derived macrophages (foamy cell macrophages that have ingested copious amounts of 384 

cellular debris, and apoptotic macrophages) and smooth muscle cells that occlude the blood 385 

vessels. TNFα, which is known to increase with and be pro-atherosclerotic, can induce CD47 386 

expression on vascular cells, inhibiting their removal via macrophage-dependent efferocytosis 387 

(104). CD47 blockade using monoclonal antibodies can successfully initiate macrophage-388 

dependent clearance of apoptotic vascular cells and protect against the development of 389 

atherosclerosis in mice (104). 390 

Chronic obstructive pulmonary disease (COPD) , while often associated with smoking, is a 391 

disease most prevalent in older individuals and is strongly linked to inflammageing (105-107). 392 

It has previously been postulated that COPD may become fully chronic due to the involvement 393 

of DNA damage-induced cellular senescence and the SASP that follows (108). Indeed, 394 

increased ROS, such as seen with age, is linked to DNA damage in PBMCs and oxidative 395 

stress in the lung (109). Here, tissue-damaging proteins, such as elastase and MMPs, 396 

commonly seen as SASP mediators, are released by alveolar macrophages in COPD (110), 397 

through a NOX2-mediated mechanism (111). Much like with ageing in general, bacterial 398 

phagocytosis and efferocytosis are both impaired in alveolar and monocyte-derived lung 399 

macrophages from COPD patients, resulting in increased bacterial colonization and an 400 

elevated pro-inflammatory environment, including cytokines such as IL-8 and CCL2 (112). 401 
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Indeed, increased levels of serum IL-8 (and IL-6 and CRP) are strongly linked to the 402 

pathogenesis of COPD (113). 403 

 404 

As exemplified, there is increasing evidence of age-related macrophage dysfunction that could 405 

be at the heart of many age-related pathologies we know today. However, the resident 406 

macrophage field is still relatively “young”, particularly in human research. Much is currently 407 

being done surrounding macrophage ontogeny and tissue-dependent function, but more will 408 

be needed to understand how macrophages behave in ageing tissues and organisms. 409 

Moreover, we need to devote more time to the study of monocytes, blood-borne cells that can 410 

travel throughout the body and migrate into tissues where they are needed. In addition to their 411 

unique functions, monocytes are also capable of differentiating into macrophage-like cells. 412 

Therefore, it is important to know also how monocytes change with age as this will impact on 413 

macrophage function. 414 

 415 

Monocytes 416 

Here follows a discussion of what is known with regards to monocytes during ageing. Ageing 417 

results in a plethora of phenotypic and functional changes in monocyte populations. These will 418 

be discussed in turn and are summarised in Figure 2. 419 

 420 

Monocyte phenotype and function 421 

Monocytes historically were presumed to be precursor cells for macrophages and dendritic 422 

cells (DCs). Although this can be true, monocytes are recognised as established immune 423 

effector cells in their own right. Monocytes have various immune effector functions including 424 

pathogen recognition through TLRs and other PRRs and subsequent secretion of pro-425 

inflammatory cytokines, antigen presentation, contribute to tissue remodelling and wound 426 

healing, and also can contribute to resolution of inflammation via efferocytosis and anti-427 

inflammatory cytokine and lipid mediator production (33, 114-117).  428 

Human monocytes are defined by their expression of the cell surface markers CD14 and 429 

CD16. The classical monocytes are defined as CD14+CD16-, the intermediate monocytes are 430 

CD14+CD16+ and then the non-classical monocytes are defined as CD16+CD14- (118). In 431 

mice, the classical monocyte is Ly6C++CD43+, intermediate Ly6C++CD43++ and the non-432 

classical is Ly6C+CD43++ (118).  The relationship of one monocyte population to the other is 433 

often discussed, a clinical trial in 1994 in M-CSF treatment suggested that CD14+ monocytes 434 

are precursors to CD16+ monocytes (119). Further evidence that this was the case was 435 
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confirmed when transcriptomic analysis was performed on CD16- and CD16+ monocytes, and 436 

it showed that all monocyte populations originated from a common precursor. Indeed it was 437 

observed that the CD16+ expressing monocytes were transcriptionally more differentiated then 438 

the CD16- cells (120). A more recent study showed that in steady-state conditions CD14+ 439 

monocytes originated from the bone marrow and then either migrated into the tissue or 440 

differentiated into CD14+CD16+ monocytes. CD14+CD16+ monocytes then terminally 441 

differentiate into CD16+CD14- monocytes (121). Other cell surface markers which could be 442 

used to differentiate between the monocyte populations include CCR2 and CX3CR1 which 443 

identify CD14+ or CD16+ monocytes respectively (114, 121). 444 

These three different monocyte populations are proposed to have distinct effector functions. 445 

The classical monocytes, the majority population circulating in peripheral blood (80-90% of 446 

monocytes) (121), have the capability to migrate into tissues in homeostatic conditions. Once 447 

at the tissue site they can either transport antigen to the lymph nodes or repopulate the tissue 448 

resident macrophage population (53, 55, 122, 123). CD14+ monocytes also have the ability 449 

secrete inflammatory cytokines such as IL-6 and chemokines such as IL-8, CCL2 and CCL3 450 

in response to PAMPs or DAMPs, further recruiting inflammatory cells to the tissue site (114). 451 

For the CD14+ monocytes, that do not migrate out of the blood, they differentiate into 452 

CD14+CD16+, intermediate monocytes. These intermediate monocytes can secrete large 453 

amounts of IL-1β and TNFα when stimulated with PAMPs such as LPS (114). The non-454 

classical monocytes, CD16+CD14-, are known as ‘patrolling’ monocytes, as these monocytes 455 

are actively surveying the endothelium and removing debris (114, 124). CD16 is an Fc 456 

receptor for IgG antibodies, which means that CD16 expressing monocytes are efficient at 457 

antibody-dependent phagocytosis (125). 458 

What is becoming increasingly clear is that monocytes have a distinct effector function of their 459 

own, unique from tissue resident macrophages. Indeed although monocyte-derived 460 

macrophages adopt many tissue resident macrophage characteristics, it is known that they 461 

maintain some monocyte identify and respond differently during inflammation (126). 462 

Therefore, it is imperative to understand how these cells change with increasing age. 463 

 464 

Monocytes and ageing 465 

Aged murine studies 466 

The focus of many aged mouse studies has been on macrophages so the information on 467 

monocytes is rather limited. As discussed before aged murine studies have shown that older 468 

mice have more permeable intestine, which results in LPS leakage into the circulation (28, 469 

29). This in turn leads to activation of circulating monocytes via LPS binding to TLR4 resulting 470 
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in inflammatory cytokine production including TNFα. Older mice have worse immunity to 471 

Streptococcus pneumoniae, and this is believed to be due to the direct effect of elevated 472 

TNFα, that is observed in older mice, on monocytes (127). Increased circulating TNFα 473 

promotes early monocyte egress from the bone marrow, which results in immature monocytes 474 

being recruited to sites of infection, and due to their immaturity they are unable to clear bacteria 475 

from the lung (127).  476 

 477 

Phenotype of human monocytes:  478 

Although it has been observed that there are no significant differences in the number of  479 

circulating monocytes in older adults as compared to younger adults (128), it has been 480 

proposed that the phenotype of these cells are different. Early studies identified that there was 481 

an increased frequency of CD16+ monocytes in older adults as compared to young (129). It 482 

was found that both intermediate and non-classical monocyte compartments expand in older 483 

adults (129, 130). It has been proposed that the CD16+ monocytes are in fact a senescent 484 

monocyte population, with shorter telomeres, increased inflammatory potential in line with 485 

SASP, and expression of a senescence-associated microRNA (miR) miR-146a (131, 132). 486 

Whether the non-classical monocytes are indeed senescent, with irreversible cell cycle arrest 487 

or just terminally differentiated still warrants further investigation as many of the markers of 488 

senescence are commonly expressed by mononuclear phagocytes, given their physiological 489 

role in inflammation. In addition, monocytes are relatively short-lived effector cells and it has 490 

been predicted that the CD16+CD14- monocytes only live for an average of 7.4 days in the 491 

circulation (121). Therefore it is unlikely that the cells have accrued enough DNA damage to 492 

initiate senescence-associated pathways.  493 

What factors drive the expansion of CD16+ monocytes in older adults is unknown. It could be 494 

either due to a failure of clearance of old CD16+ monocytes, or due to a defect in CD14+ 495 

monocytes means they do not extravasate as efficiently and fail to leave the periphery and 496 

instead differentiate into CD16 expressing cells. 497 

 498 

Inflammatory cytokine production: 499 

Early studies on monocyte populations were either carried out in whole blood or PBMC 500 

cultures and a s a result there were conflicting results due to cell culture methods used and 501 

the non-specific way of measuring cytokine production by ELISA. LPS stimulation was found 502 

in some cases to have a similar effect on the age groups and in some cases older cultures 503 

produced less inflammatory cytokines (133, 134). Subsequent studies using intracellular 504 
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cytokine staining to specifically look at monocyte populations showed that there was no 505 

difference in the response to TLR4, 5 and 7 ligands between young and old monocytes (135). 506 

However, a small difference was observed in TLR4 expression, with higher expression on the 507 

young as compared to old (135). For TLR8 stimulation with Poly(U) there was a less IL-6, but 508 

not TNFα, produced when cells were stimulated with Poly(U) in old as compared to young 509 

(135). 510 

A more recent study by Metcalf et al, which built upon earlier observations in PBMCs from the 511 

same lab (136), isolated the three monocyte populations and studied them individually, 512 

showing that at baseline, monocytes from young and old people were similar. However, upon 513 

stimulation with TLR4, TLR7/8 and retinoic acid–inducible gene I (RIG-I), aged monocytes 514 

produced less pro-inflammatory cytokines, such as IL-1β and IFNα (137). More recent analysis 515 

has shown that there is an impairment of primary and secondary RIG-I signalling in monocytes 516 

from older adults, due to decreased abundance of the adaptor protein tumour necrosis factor 517 

receptor–associated factor 3 (TRAF3) and IFN regulatory transcription factor (IRF8) 518 

respectively (138). This in turn results in reduced type I IFN production and is thought to be 519 

one of the reasons that older people are more susceptible to respiratory infections, as type I 520 

interferon is necessary to clear infection (138).  521 

When monocytes are stimulated with TLR1/2 stimuli such as PamCy3 there reduced 522 

production of TNFα and IL-6 from aged monocytes as compared to young; this is believed to 523 

be due to a reduced expression of TLR1 on the monocytes of older individuals (129, 135). In 524 

fact, Nyugen et al suggest that there the defect in the TLR1/2 signalling is restricted to the 525 

monocytes that express CD16, as for the classical monocytes there was no difference (129).   526 

Interestingly within the older adult population there are differences in monocyte number and 527 

function depending on the level of frailty. It has been observed that there is an increased 528 

overall number of monocytes in frail older adults as compared to those les frail older adults 529 

(139). Classical monocytes isolated from frail older adults had increased inflammatory 530 

associated genes in response to LPS  as compared to non-frail older adults (140). However, 531 

further studies will be needed to confirm that change in mRNA level translated to change in 532 

protein expression. 533 

 534 

Function: 535 

There is currently limited data available about the effect of age on monocyte function. Recently 536 

we have shown that mononuclear phagocytes, presumed to be inflammatory monocytes, from 537 

older adults, recruited to a site of tissue damage fail to resolve inflammation as effectively as 538 

younger monocytes (33). This defect in resolution was due to lower expression of expression 539 
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of T cell immunoglobulin mucin receptor-4 (TIM-4), a receptor that recognizes apoptotic cells, 540 

and a subsequent failure to phagocytose apoptotic neutrophils as compared to younger 541 

monocytes (33). This led to sustained inflammation at the site of damage and a longer time to 542 

heal and is suggested to be a contributor to the aetiology of inflammageing. Interestingly this 543 

defect in resolution in the old could be reversed by pre-treatment with a p38-MAP Kinase 544 

inhibitor (Losmapimod), and thus identifies a therapeutic target for improving monocyte 545 

function in older people (33). In addition, we have shown that older people have an increased 546 

recruitment of monocytes to a site of needle challenge (air, saline or antigen) (26, 141). This 547 

increased non-specific inflammation negatively correlated with antigen-specific cutaneous 548 

immunity (26). It is observed that inflammatory monocytes inhibited antigen-specific immunity 549 

through increased PGE2 production, and blockade of inflammation and PGE2 production using 550 

Losmapimod significantly improved cutaneous immunity (141). However, this 551 

immunomodulatory property of monocytes may be a by-product of the increased inflammatory 552 

skin environment – as increased senescent stromal cells such as fibroblasts are present in 553 

older skin (10). 554 

 555 

Metabolism: 556 

Ageing results in the redistribution of body fat from subcutaneous to visceral fat – visceral fat 557 

is less efficient at storing fatty acids and as a result there is an increase in circulating free fatty 558 

acids in older adults (142). This has implications for circulating monocytes as certain free fatty 559 

acids such as palmitate promote an inflammatory phenotype and in turn may contribute to 560 

atherosclerosis pathology (143). It has been observed that respiratory capacity steadily 561 

declines with age in CD14+ monocytes as a consequence of mitochondrial dysfunction (144). 562 

Mitochondria from aged classical monocytes have reduced membrane potential as thus do 563 

not work as well as mitochondria from young monocytes (145). Older CD14+ monocytes also 564 

have reduced spare respiratory capacity as compared to younger monocytes (146). 565 

Immunometabolism is a new and active field of research, and more research is needed to fully 566 

understand the impact of age on metabolic pathway usage. 567 

 568 

Future perspectives: 569 

Although many studies have been performed to look at the effects of age on monocyte and 570 

macrophage function, there are still many unknowns within the field of ageing. Macrophage 571 

ontogeny experiments are carried out in young mouse models, so there is a lack of data on if 572 

the origin of macrophage populations changes as we reach advanced age. We do not know 573 

whether there is a change in the monocyte contribution to the macrophage pool with advanced 574 
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age. Also we do not know how age influences macrophage longevity and whether 575 

macrophages can be functionally senescent given a lifetime of proliferation, albeit at a 576 

supposedly low rate of turnover. 577 

In the context of monocyte biology and the effect of age, current data is contradictory which is 578 

in in part due to differences in starting monocyte populations, in vitro stimulation and analysis 579 

of effector function. Non-classical monocytes have been neglected when it comes to studies 580 

about ageing, and certainly warrant further investigation as they are the population that 581 

increase in number with age. It will also be important to ensure that sex is taken into 582 

consideration when studying monocyte populations, as monocytes from males make 583 

considerably more inflammatory cytokines as compared to monocytes from females (147). 584 

We believe that targeting inflammation caused by aged monocytes and macrophages has the 585 

potential to limit the detrimental effects of inflammageing and potentially boost immunity in 586 

older adults. We have shown that blocking monocyte-derived COX2-driven inflammation using 587 

the p38 MAP Kinase inhibitor, Losmapimod, could significantly reduce monocyte infiltration 588 

and downstream inflammatory processes (26, 141), as well as improve inflammatory 589 

resolution (33). These data pave the way for future studies where anti-inflammatory drugs 590 

such as Losmapimod or a COX2-specific inhibitor could be used to boost vaccine efficacy in 591 

older adults. Indeed, another anti-inflammatory that has been shown to improve efficacy of the 592 

flu vaccine in older adults is RAD001 which is a mammalian target of rapamycin complex 1 593 

(TORC1) specific inhibitor (148). Although the authors note the beneficial effects of this 594 

inhibitor on adaptive immunity, there is every potential that it could also inhibit inflammation 595 

originating from aged mononuclear phagocytes. 596 

In conclusion, monocytes and macrophages play a key role in ageing and age-related 597 

pathology, but further research is needed as the impact of age on macrophage ontogeny, 598 

monocyte contribution to macrophage numbers and the function of monocytes with age is still 599 

relatively unexplored. Indeed, we believe that monocytes and macrophages should not be 600 

looked at in isolation and should be considered together when investigating the impact of age 601 

on these cells. 602 
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  1020 
Figure 1: How ageing alter macrophage phenotype and function 

Schematic showing how macrophages change in mice (blue) and humans (purple) with increasing age. 
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Figure 1: How ageing alters human monocyte phenotype and function 

Schematic showing how monocytes change with increasing age in humans. 


