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Abstract

Signal Detection Theory (SDT) plays a central role in the characterization of

human judgments in a wide range of domains, most prominently in recognition memory.

But despite its success, many of its fundamental properties are often misunderstood,

especially when its comes to its testability. The present work examines five main

properties that are characteristic of existing SDT models of recognition memory: i)

random-scale representation, ii) latent-variable independence, iii) likelihood-ratio

monotonicity, iv) ROC function asymmetry, and v) non-threshold representation. In

each case, we establish testable consequences and test them against data collected in

the appropriately-designed recognition memory experiment. We also discuss the

connection between yes-no, forced-choice, and ranking judgments. This connection

introduces additional behavioral constraints and yields an alternative method of

reconstructing yes-no ROC functions. Overall, the reported results provide a strong

empirical foundation for SDT modeling in recognition memory.

Keywords: signal detection theory, ROCs, recognition memory, area theorem,

axiom testing
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In the construction of scientific knowledge, it is useful to distinguish theoretical

accounts at different levels. At one level, we consider a theory as usually understood,

while at another level, we consider an instantiation of the theory as a specific model.

Characterized in this way, a theory consists of a set of assumptions that builds a given

picture of the domain of interest while a model contains additional assumptions in order

to make contact with the world and to serve specific goals such as testing or parameter

estimation (e.g., Bailer-Jones, 2009; Frigg & Hartmann, 2018; Kellen, 2019; Morgan &

Morrison, 1999; van Fraassen, 1980). These additional auxiliary assumptions help

connect the theory to data but are not part of the theory as such. For example, as we

discuss in detail below, Signal Detection Theory pictures the evidence on which a

decision is based as a latent variable (such as memory strength) having some

distribution on a continuum. To turn this into a testable model, the auxiliary

assumption that the distribution has a specified form (usually Gaussian) is added.

Accordingly, a theory may be viewed as the intersection of the set or family of models

that are consistent with it (e.g., Suppes 2002; van Fraassen 1980). The distinction

between the core assumptions of a theory and the auxiliary assumptions of a specific

model derived from said theory complicates theory testing: Any attempt to test a

theory requires a demonstration that the conclusions being drawn do not hinge on the

auxiliary assumptions of the model that actually comes into contact with the data.

Rather, these conclusions should hold across all relevant models. Otherwise, one could

always attribute the failure of a model to its auxiliary assumptions rather than to the

theoretical picture at its core (Duhem, 1954).

Unfortunately, the distinction between theory and model is often overlooked. One

example concerns the functional relationship between a latent variable and the

dependent variable that measures it. While at a theoretical level this relationship may

take any form, it is frequently assumed to be linear, as presupposed in ANOVA-type

models (Dunn & Kalish, 2018; Garcia-Marques, Garcia-Marques, & Brauer, 2014;

Kellen, Davis-Stober, Dunn, & Kalish, in press; Loftus, 1978; Wagenmakers, Krypotos,

Criss, & Iverson, 2012). Based on this assumption, statistically-significant interactions
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are frequently interpreted as supporting more complex theories (e.g., Ashby & Valentin,

2017) although such interactions may disappear under alternative models that do not

assume linearity (for a recent overview, see Stephens, Matzke, & Hayes, 2019). In some

domains such as syllogistic reasoning, the dismissal of linearity has led to drastic

reinterpretations of long-standing empirical results (Rotello, Heit, & Dubé, 2015). In

the context of response-time modeling, Jones and Dzhafarov (2014) showed that the

ability of diffusion and ballistic accumulator models to successfully describe people’s

responses hinges on auxiliary distributional assumptions that are not an essential part

of the underlying theory.

If a particular model fails to fit the data, it is often possible to attribute this to its

auxiliary assumptions rather than to the core assumptions of the underlying theory.

This possibility is concerning as it may serve to protect the theory from falsification. A

similar issue arises when comparing models associated with competing theories. The

fact that one model outperforms another does not mean that a similar result would be

obtained under alternative models. For these reasons, it is desirable to identify critical

tests of properties that can be found across large sets or families of models (e.g.,

Bamber, 1979; Birnbaum, 2008; Dunn & Anderson, 2018; Dunn & Kalish, 2018; Dunn

& Rao, 2019; Falmagne, 1985; Karabatsos, 2005; Krantz, Luce, Suppes, & Tversky,

1971; Luce, 2010; Regenwetter, Dana, & Davis-Stober, 2011; Steingrimsson, 2016;

Suppes, Krantz, Luce, & Tversky, 1989; Townsend & Nozawa, 1995). Such tests are

examples of what Platt (1964) has famously referred to as strong inference.1

Relative to traditional model-fit comparisons (e.g., Pitt & Myung, 2002; Roberts

& Pashler, 2000), critical tests offer two main advantages: First, they establish a

transparent relation between theory and data – something that is not provided by

penalized-fit statistics, regardless of their sophistication (Birnbaum, 2011a; Kellen,

2019). Second, the test results have farther reaching implications. For instance, the

critical-test results reported by Birnbaum (2008) do not merely reject some parametric

1 It is worth noting that the same concerns and desire for greater generality are found in some of the
model-comparison approaches that have been recently proposed (e.g., multiverse analyses, see Steegen,
Tuerlinckx, Gelman, & Vanpaemel, 2016; factorial model comparisons, see van den Berg, Awh, & Ma,
2014).
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implementation of Prospect Theory – they reject the entire family of Prospect-Theory

models formalized by Tversky and Kahneman (1992). Similarly, Regenwetter et al.’s

(2011) failure to reject the assumption of transitivity in people’s preferences

demonstrates the viability of a large family of models without having to enumerate the

unique aspects of each of its members.

The aim of the present paper is to apply a critical-test approach to families of

Signal Detection Theory (SDT) models, focusing on their application to the domain of

recognition memory. SDT is arguably one of the most successful theoretical frameworks

in psychology today (for overviews, see Green & Swets, 1966; Kellen & Klauer, 2018;

Macmillan & Creelman, 2005; Wickens, 2002) and has played a central role in the

modeling of recognition-memory judgments (see Egan, 1958; Wixted, 2007; Rotello,

2018; Yonelinas & Parks, 2007). The popularity of SDT can be attributed to two

factors: its empirical success and its theoretical inclusiveness. First, SDT has been

shown to characterize judgments across a wide variety of psychological domains beyond

memory, such as perception and reasoning (e.g., Green & Swets, 1966; Macmillan &

Creelman, 2005; Rotello, 2018; Trippas et al., 2018). Second, its core assumption that

judgments are based on an evaluation of latent-strength values sampled from continuous

distributions plays well with popular theoretical accounts of learning, forgetting, and

generalization, among others (Lockhart & Murdock, 1970). Nevertheless, SDT has been

traditionally applied in ways that rely heavily on auxiliary assumptions, which are often

simply taken for granted by researchers. This reliance is problematic as it tends to

promote misconceptions regarding the distinction between SDT and alternative models.

For example, Threshold Models are often contrasted with Gaussian SDT models, under

the premise that they provide theoretical accounts that are fundamentally distinct (e.g.,

Bröder & Schütz, 2009; Dube & Rotello, 2012). But a closer look shows that both

models can be cast as members of large families of SDT models (see Falmagne, 1985,

Chap. 10; Kellen & Klauer, 2018; Macmillan & Creelman, 2005; Malejka & Bröder,

2019; Rouder, Province, Swagman, & Thiele, 2014).

Figure 1 illustrates our application of critical tests to a hierarchy of properties,
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Step 1

Random-Scale
Representation

(Experiments 1 & 2)

No Random-Scale
Representation

Step 2

Latent-Variable
Independence

(Experiments 1 & 2)

Step 3

Latent-Variable
Dependence

Likelihood-Ratio
Monotonicity

(Experiments 1 & 2)

Likelihood-Ratio
Non-Monotonicity

Step 4

Yes-No ROC
Symmetry

(Experiment 3)

Yes-No ROC
Asymmetry

Step 5

Threshold
Representation

Non-Threshold
Representation

(Experiment 4)

Figure 1 . Overview of the critical testing conducted in the present manuscript. Each step establishes a
division in terms of whether or not a property is satisfied. The properties supported by the reported
experiments are presented in bold. For details, see the main text.

which are organized in a way that reflects their increasing level of specificity (for very

similar testing strategies, see Luce, 2010; Steingrimsson, 2016). Families and

sub-families of SDT models can be defined by establishing which properties its members

must satisfy. When testing for a specific property, we are evaluating the empirical

adequacy of the families or sub-families of models that satisfy it. Allowing for details to

be discussed later on, let us take brief overview of the properties being tested. At the

top level, we identify a critical property of SDT models at large – the assumption of a

random-scale representation. In the context of recognition memory, this representation

holds that choices between studied items and new items is characterized by a joint

distribution of latent-strength values and the probability distribution over rank orders

that it induces. Experiments 1 and 2 implement a direct test on the family of SDT
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models that assume a random-scale representation. A failure of the random-scale

representation hypothesis would indicate a need to rethink the way in which

latent-strength variables are assumed to underlie recognition-memory judgments.

At the second level, we identify a property that is almost universally assumed in

existing SDT models: that the latent-strength variables associated with the different

items in a given test trial (e.g., in an m-alternative forced-choice task) are independent.

At the third level, we consider a property that is expected to hold for the latent-strength

variables – likelihood-ratio monotonicity. Experiments 1 and 2 will be used to test the

empirical adequacy of these two properties. At the fourth level, we focus on the

symmetry of ROC functions, a property that has been at the center of many theoretical

discussions (for a review, see Yonelinas & Parks, 2007). Experiment 3 implements a

critical test for ROC symmetry that does not rely on parametric assumptions. Finally,

at the fifth level, we distinguish between threshold and non-threshold representations.

Experiment 4 implements a critical test that distinguishes between these two

representations. To foreshadow our results, at each node in the family tree structure

shown in Figure 1, we find evidence supporting the branch labelled in bold text.

Altogether, the results obtained across these studies provide an empirical foundation for

SDT that has previously been unavailable, opening new avenues for future research.

Signal Detection Theory and ROC Functions

Let us consider a general scenario in which a decision maker is tasked with

classifying incoming stimuli as belonging to one of a number of pre-specified stimulus

classes. For example, such a scenario is encountered in a visual yes-no task in which the

decision maker classifies stimuli as signal or noise by responding “yes” or “no”

respectively. A second example would be a recognition-memory yes-no task in which the

decision maker attempts to identify which stimuli she previously encountered in a study

phase, and which ones she did not, once again by answering “yes” or “no”. The

challenge faced by the decision maker is that these classifications always involve some

degree of uncertainty or confusability (for discussions, see Lu & Dosher, 2008; Wixted,
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Figure 2 . Left Panel: Illustration of the Gaussian SDT model Latent-strength values above the
response criterion result in a “yes” response, values below a “no” response. Right Panel: The models’
respective yes-no ROC, along with two ROC points associated with different response criteria (one
strict, the other lenient). Dashed lines delimiting the gray areas indicate chance-level performance.

2020). According to SDT, the decision maker classifies stimuli based on the

latent-strength values λ associated with each of them. These values are assumed to be

realizations of random variables established on a latent metric space. In a simple

scenario in which the decision maker attempts to discriminate between two stimulus

classes – signal (S) and noise (N) – the distributions of these random variables are

established on a latent unidimensional scale which we refer to as latent strength. In the

context of recognition memory, signal and noise items correspond to studied and new

items, respectively (these terms will be used interchangeably throughout this paper).

In a yes-no task, the latent-strength λ value associated with a given stimulus is

evaluated by comparing it with a pre-established response criterion κ.2 A “signal” or

“yes” response is produced when λ ≥ κ, otherwise a “noise” or “no” response is given.

2 Characterizations of SDT typically assume that the response criterion κ is fixed across test trials.
Although we can relax this restriction and allow κ to be a random variable (e.g., Kellen, Klauer, &
Singmann, 2012; Rosner & Kochanski, 2009), we refrain from doing so here for two reasons: First, the
present discussion of κ takes place in a context in which SDT with fixed vs. random κ are not
empirically distinguishable (see Rosner & Kochanski, 2009). Second, our discussions will almost
invariably focus on forced-choice judgments, which are assumed to be based on comparisons between
latent-strength values (i.e., κ plays no role). The only exception is when we establish a critical test
comparing ‘threshold’ versus ‘non-threshold’ representations (see Step 5 in Figure 1). In this specific
case, it turns out that the question of whether or not κ is fixed across trials is completely
inconsequential.
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The degree of overlap between latent distributions reflects the degree of confusability

between the different stimulus classes. The value of criterion κ relative to these latent

distributions denotes the degree of response bias, with larger values indicating a more

strict response criterion. The left panel of Figure 2 illustrates this description of SDT,

under the assumption that the latent signal and noise distributions are Gaussian. The

right panel of Figure 2 illustrates the predicted relationship between the probabilities of

“yes” responses for signal and noise stimuli – referred to as hit (H) and false-alarm

probabilities (FA) – as the response criterion κ varies from strict to lenient. The

functional relationship between hit and false-alarm probabilities, H = ρ(FA), which can

be used to characterize the decision-maker’s performance across different response

biases, is commonly referred to as the [yes-no] ROC function.

When discussing some of the more formal aspects of SDT, such as establishing the

kind of ROC functions that it can predict, or the relationships between different types

of judgments, it is convenient to adopt a universal representation in which latent

variables are defined on a [0,1] interval (for previous applications, see Iverson &

Bamber, 1997; Rouder, Pratte, & Morey, 2010; Rouder et al. 2014). Let fN and fS be

the noise and signal density functions, respectively, with corresponding cumulative

distribution functions FN and FS. Let F−1 denote the inverse of the cumulative

distribution function. We will also assume that the noise distribution is uniform on the

[0, 1] interval, such that fN(κ) = 1 and FN(κ) = κ for all κ ∈ [0, 1]. No constraints are

being imposed on fS, with the exception that
∫ 1

0 fS(t) dt = 1. Unless noted, this

universal representation will be assumed throughout the manuscript. We acknowledge

that this representation is not ‘standard’ in the sense that latent variables are typically

represented on the entire real line (e.g., see the left panel of Figure 2) rather than on

the unit interval. However, its adoption does not limit the scope of any the theoretical

results discussed (as shown below, we can describe any yes-no ROC function with it).

According to SDT, the hit and false-alarm probabilities correspond to:

FA = P (λN ≥ κ) = 1− FN(κ), (1)
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H = P (λS ≥ κ) = 1− FS(κ). (2)

As previously stated, the ROC function ρ expresses the hit probability H as a function

of the false-alarm probability FA. Rearranging (1), we see that κ = F−1
N (1− FA), which

leads us to a more explicit formulation of the yes-no ROC function:

H = ρ(FA) = 1− FS(F−1
N (1− FA)). (3)

But what kind of ROC functions are permissible under SDT? The shape of an

ROC function is given by its slope, ρ′(FA), at each point. Taking the derivative of (3)

with respect to FA:

ρ′(FA) = fS(F−1
N (1− FA))

fN(F−1
N (1− FA))

= fS(κ)
fN(κ) . (4)

Given that fN(κ) = 1 under a universal representation, it follows that:

ρ′(FA) = fS(κ). (5)

It turns out that the slope of the ROC function at any given point corresponds to the

signal density fS. Note that because fS ≥ 0, the ROC function is necessarily

monotonically increasing. It also follows that any ROC shape (e.g., linear, concave) can

be produced by establishing a density fS that perfectly matches the slope of the

function. In other words, there is no (monotonically-increasing) yes-no ROC function

that is at odds with the tenets of SDT.

Additional constraints can be introduced via the assumption that the likelihood

ratio fS(κ)
fN (κ) is monotonically increasing, reflecting the notion that signal items are more

likely to take on larger latent-strength values than noise items (Criss & McClelland,

2006; Glanzer, Hilford, & Maloney, 2009; Osth & Dennis, 2015; Zhang & Mueller,

2005). This property, likelihood-ratio monotonicity, holds if and only if the ROC

function is concave (i.e., it has a monotonically non-increasing slope).
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Figure 3 . Examples of models that can be cast in a universal SDT representation. Left Column:
Universal representation of models, along with their traditional representations (embedded in each
panel). The darker density corresponds to the signal distribution, the lighter density the noise
distribution. The parameters (e.g., D, g) and their complements (D̃, g̃) in each tree correspond to the
probabilities associated with the different binary branches. For the high-threshold distribution, the
signal density is a mixture between a rectangular distribution and a Dirac pulse (highlighted by a
triangle). Right Column: The models’ respective ROCs. Dashed lines delimiting the gray areas indicate
chance-level performance.

ROC Shape Only Permits the Testing of SDT Family Members

The fact that SDT can accommodate any monotonically-increasing ROC function

raises important issues in the way SDT modeling is traditionally approached in the

domain of recognition memory. Researchers often rely on ROC shape to compare

different models, such as the un/equal variance Gaussian SDT model (Egan, 1958), the
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Finite-Mixture Model (DeCarlo, 2002), the Dual-Process Model (Yonelinas, 1997), or

the High-Threshold Model (Bröder & Schütz, 2009). Rotello (2018) provides a thorough

review. The problem with these comparisons is that they often confound the SDT

assumption of ‘latent-strength-based judgments’ with the Gaussian assumption and the

ROCs that it can yield. Manifestations of this confound include evaluations of the

number and nature of different memory processes that are entirely based on how curved

an ROC function is (e.g., Parks, Murray, Elfman, & Yonelinas, 2011), or attempts to

dismiss a dual-process account through the investigation of the fit residuals associated

with different candidate models (e.g., Dede, Squire, & Wixted, 2014; Kellen &

Singmann, 2016). These comparisons overlook – or at the very least downplay – the fact

that there is always some latent-strength distribution fS that can perfectly capture the

observed ROC shape (for a similar point, see Rouder et al., 2014).3

One prominent example is the long-documented comparison between the

unequal-variance Gaussian SDT model and the High-Threshold Model (e.g., Bröder &

Schütz, 2009; Dube & Rotello, 2012; Macmillan & Creelman, 2005). This specific

comparison has been framed as distinguishing between continuous and discrete accounts

of recognition memory.4 Figure 3 shows the universal SDT representation of both

models and their corresponding ROCs. In the case of the High-Threshold Model, it is

clear that it can be equivalently represented in terms of continuous distributions.5 This

representability indicates that the success of the High-Threshold Model, especially when

relative to an alternative such as the Gaussian SDT model (e.g., Kellen et al., 2013),

3 One reaction to this point is that the discussions mentioned above reflect researchers’ interest in
specific models, auxiliary assumptions included. Although we acknowledge the legitimacy of such
modeling practices, we argue that the meta-theoretical principles that underlie it severely limit what
can be meaningfully said and done. We will turn our attention to this issue in the General Discussion.
4 We will discuss threshold models in detail later on, when testing a ‘generalized’ threshold model (see
Step 5 in Figure 1).
5 Macmillan and Creelman (2005, Chap. 4) and Swets (1986) showed that the High-Threshold Model
can be represented as a SDT model with rectangular distributions. Our universal representation is
slightly different because both distributions are bound to the [0,1] interval, which is entirely covered by
a uniform noise distribution. Unlike Macmillan and Creelman or Swets, our formulation does not allow
us to establish an upper region of strength values that only the signal distribution covers. We therefore
have to represent the signal distribution as a mixture between a uniform distribution and Dirac pulse
located at the upper boundary 1. Importantly, note that these differences do not indicate a limitation
of either representation in their ability to characterize the high-threshold model.
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cannot be used to argue against SDT. The only thing these model comparisons can

achieve is determining which parametric assumptions perform best in a given situation

(see also Malejka & Bröder, 2019).

Step 1: Random-Scale Representation

A fundamental feature shared by all SDT models considered in the

recognition-memory literature at large is the existence of a random-scale representation.

That is, the different classes of stimuli (e.g., studied and new items) can be

characterized by a joint latent distribution, and that choice probabilities can be induced

from the comparison of a joint realization of latent-strength values. In the domain of

forced-choice judgments, it can be shown that this random-scale representation implies

a set of order constraints originally formalized by Block and Marschak (1960) and

Falmagne (1978). These results, known as the Block-Marschak inequalities, were

originally discussed in the context of the class of ‘random-utility’ or ‘random-scale’

models, which includes SDT, Thurstonian models (Thurstone, 1927; Torgerson, 1958),

Luce’s Choice Theory (Luce, 1959), among others (for reviews, see Marley, 1990; Marley

& Regenwetter, 2017).

Given its origins, it is useful to begin by discussing the Block-Marschak

inequalities in the broader context of ‘multi-alternative decision making’, and only then

discuss the specific case of forced-choice judgments in recognition memory. Let a, b, c,

d, . . . , denote alternatives or options in an option set T , and let A ⊆ T be a non-empty

option subset. Moreover, let (λa, λb, λc, λd, ...), be a vector drawn from a latent joint

distribution. Assuming that ties are impossible, it is easy to see that this joint

distribution of latent strengths implies a probability distribution over rank orders (e.g.,

P (λb > ... > λd > ... > λa, > λc > ...)). Now, let us consider a decision maker that, when

presented with the options in subset A, chooses the one with the largest latent-strength

value λ. It follows that the probability of choosing x ∈ A, P 〈A〉x , corresponds to

P 〈A〉x = P (λx = max
z∈A

(λz)), x ∈ A ⊆ T, (6)
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which can be induced from the probability distribution over rankings. For example, if

A = {a, b, c, d}, then

P 〈A〉a = P (λa > λb > λc > λd) + P (λa > λb > λd > λc) +

P (λa > λc > λb > λd) + P (λa > λc > λd > λb) + (7)

P (λa > λd > λb > λc) + P (λa > λd > λc > λb)

A random-scale representation is said to hold when choice probabilities over

option subsets A are based on a joint distribution of latent variables and (6). This

representation introduces a number of inequality constraints at the level of choice

probabilities when comparing different option subsets. For example, consider the

probability of choosing option a when presented with subset A \ {b}, in which option b

is not included:

P 〈A\{b}〉a = P (λa > λc > λd) + P (λa > λd > λc)

= P (λb > λa > λc > λd) + P (λa > λb > λc > λd) +

P (λa > λc > λb > λd) + P (λa > λc > λd > λb) + (8)

P (λb > λa > λd > λc) + P (λa > λb > λd > λc) +

P (λa > λd > λb > λc) + P (λa > λd > λc > λb)

The latter choice probability corresponds to the sum of probabilities of rank orders

in which option a is ranked above c and d, while option b can be assigned any rank.

Because (8) includes all the probability summands in (7) and then some, it follows that

P 〈A\{b}〉a ≥ P 〈A〉a . Block and Marschak (1960) showed that the example above is a small

part of a system of inequalities that is implied when choices can be induced from a

probability distribution over rank orders. For example, if A = {a, b, c, d}:

P 〈A〉a ≥ 0,

P 〈A\{b}〉a ≥ 0,
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P 〈A\{b}〉a − P 〈A〉a ≥ 0,

P 〈A〉a + P 〈A\{b,c}〉a − P 〈A\{b}〉a − P 〈A\{c}〉a ≥ 0, (9)

P 〈A\{b,c,d}〉a − P 〈A\{b,c}〉a − P 〈A\{b,d}〉a − P 〈A\{c,d}〉a − P 〈A〉a

P 〈A\{b}〉a + P 〈A\{c}〉a + P 〈A\{d}〉a ≥ 0,

with analogous inequalities being enforced over the probabilities of choosing options b,

c, or d. This system of inequalities can be described in a compact form:

∑
B:A⊆B⊆T

(−1)|B\A|P 〈B〉x ≥ 0, (10)

for all non-empty A ⊆ T and x ∈ A, and with |B \A| denoting the cardinality of option

subset B minus subset A. As later proved by Falmagne (1978), choice probabilities are

consistent with a random-scale representation if and only if they satisfy the system of

Block-Marschak inequalities (Block & Marschak, 1960). In other words, the statements

“a decision-maker is consistent with some random-scale representation” and “the choice

probabilities of a decision-maker satisfy the Block-Marschak inequalities” are formally

equivalent.

Two important aspects of Falmagne’s (1978) result need to be highlighted: First,

its generality – aside from the impossibility of ties, no parametric assumptions are being

imposed over the latent distributions. Second, the system of inequalities defined by (10)

provides a complete description of the facets of a convex polytope on a unit hypercube,

with vertices representing the possible ranking orders on 0/1 coordinates (for a minimal

description of this polytope, see Fiorini, 2004).6 Choice probabilities conforming to this

system of inequalities correspond to mixtures of these vertices, and therefore will be

inside the convex polytope. The same holds for averages of said choice probabilities,

which means that the inequalities cannot be spuriously violated because of aggregation

(e.g., across participants; see Estes, 1956; Heathcote, Brown, & Mewhort, 2000; for a

6 It turns out that many hypotheses in psychology can be appropriately represented by convex
polytopes, which has important implications for their testing (for detailed tutorial discussions, see Heck
& Davis-Stober, 2019; Marley & Regenwetter, 2017; Regenwetter & Cavagnaro, 2019).



FOUNDATIONS OF SDT 17

recent overview, see Regenwetter & Robinson, 2017).7

From an empirical perspective, the Block-Marschak inequalities are far from

trivial: As shown by McCausland, Davis-Stober, Marley, Park, and Brown (2020), the

space of choice probabilities that satisfy them is small under realistic choice

experiments, allowing researchers to apply strict tests to the hypothesis that a

random-scale representation holds (see also McCausland & Marley, 2014). Nor are they

theoretically trivial: For instance, one of the properties that emerges from the

random-scale representation is regularity, according to which the probability of choosing

a given option (e.g., option a) cannot be increased by introducing additional options

into the subset under consideration. The inequality P 〈A\{b}〉a ≥ P 〈A〉a discussed earlier

exemplifies this property. Violations of regularity have been observed in a variety of

domains, as reported in the rapidly-expanding literature on ‘context effects’ (e.g.,

Spektor, Kellen, & Hotaling, 2018; Trueblood, Brown, Heathcote, & Busemeyer, 2013).

For example, according to the attraction effect, the probability of choosing one option

(e.g., apples) over another (e.g., oranges) increases when introducing an inferior option

(e.g., apples of worse quality but not cheaper).

Block-Marschak Inequalities in The Context of m-Alternative Recognition

Judgments

In the context of recognition memory, we are dealing with scenarios that are much

simpler than the ones found in typical multi-alternative decision making scenarios. The

option sets used in m-alternative forced-choice (m-AFC) memory tasks are comprised of

alternatives coming from only two stimulus classes – signal and noise. More specifically,

the option set presented at a given test trial is always comprised of one signal

alternative and m− 1 noise alternatives. Alternatives coming from the same stimulus

class are all associated with the same (marginal) latent-strength distribution.

7 Although the Block-Marschak inequalities cannot be spuriously violated, they could be spuriously
satisfied. This possibility is reflected in the fact that we can always concoct scenarios in which
individual choice probabilities outside of the polytope fall within it (or very close to it) when
aggregated. However, the small volumes of the polytopes in question (we will compute these volumes
later on) suggest that the natural occurrence of such scenarios is quite implausible.
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The latent variables associated with the m− 1 noise stimuli are not only assumed

to be identically distributed – they are assumed to be exchangeable (for an introduction

to exchangeability, see Bernardo, 1996):8 Let λS be the latent-strength value of the

signal option and let λN,i be the latent-strength values of the ith noise option. Under

exchangeability, the probability distribution over rank orders is the same across

permutations of the noise options:

P (λN,1 > ... > λN,m−1) = P (λN,ξ(1) > ... > λN,ξ(m−1)), (11)

where ξ denotes some permutation of the indices i = 1, ...,m− 1. The rationale behind

the assumption of exchangeability is straightforward: In an m-AFC recognition task, the

indexing of noise options, which are all assumed to belong to the same stimulus class, is

completely arbitrary. In fact, when removing a noise option from a option set; i.e., going

from m to m− 1 alternatives total, there is no substantive distinction between the

removal of the ith noise option vis-à-vis the jth noise option.9 Because noise options are

exchangeable, the characterization of people’s choices can be reduced to how often they

choose the signal stimulus when the latter is presented alongside m− 1 noise stimuli.

Another characteristic of m-AFC judgments in recognition memory is that the

probability of choosing the signal option should not go below 1
m
; i.e., chance

performance. This lower boundary corresponds to an individual that is completely

unable to differentiate between studied and new items (i.e., we are assuming that

individuals are not actively trying to make incorrect judgments).

Altogether, the use of only two stimulus classes (signal and noise) and the

exchangeability of noise options results in a simplification of the Block-Marschak

inequalities. To better observe this simplification, let A = {a, b, c, d}, and let a denote

8 Note that independent and identically distributed (i.i.d.) variables are exchangeable, but the converse
is not true. For example, consider a bivariate Gaussian distribution with mean vector µ = [0, 0] and

covariance matrix Σ =
[
1 %
% 1

]
. The two variables established by this distribution are not independent,

but they are exchangeable.
9 To be clear, we are not denying the possibility of setting up richer experimental designs in which we
can distinguish between different classes of noise stimuli (e.g., high- and low-frequency words). We are
only assuming exchangeability among options belonging to the same stimulus class.
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the signal option whereas b, c, and d denote the exchangeable noise options. Now, let

P
〈m〉
S denote the probability of selecting the signal option (a) in an option subset of size

m. This probability, which has a lower bound of 1
m
, is the same across all possible

option subsets of size m:

P
〈4〉
S = P 〈A〉a

P
〈3〉
S = P 〈A\{b}〉a = P 〈A\{c}〉a = P 〈A\{d}〉a

P
〈3〉
S = P 〈A\{b,c}〉a = P 〈A\{b,d}〉a = P 〈A\{c,d}〉a

P
〈1〉
S = P 〈A\{b,c,d}〉a = 1

Going back to the inequalities given in (9):

Multi-Alternative
Decision Making =⇒ m-AFC Recognition

P 〈A〉a ≥ 0 =⇒ P
〈4〉
S ≥ 1

4

P 〈A\{b}〉a ≥ 0 =⇒ P
〈3〉
S ≥ 1

3

P 〈A\{b}〉a − P 〈A〉a ≥ 0 =⇒ P
〈3〉
S − P

〈4〉
S ≥ 0

P 〈A〉a + P 〈A\{b,c}〉a − P 〈A\{b}〉a − P 〈A\{c}〉a ≥ 0 =⇒ P
〈4〉
S + P

〈2〉
S − 2P 〈3〉S ≥ 0

P 〈A\{b,c,d}〉a − P 〈A\{b,c}〉a − P 〈A\{b,d}〉a − P 〈A\{c,d}〉a

+P 〈A\{b}〉a + P 〈A\{c}〉a + P 〈A\{d}〉a − P 〈A〉a ≥ 0 =⇒ P
〈1〉
S − 3P 〈2〉S + 3P 〈3〉S − P

〈4〉
S ≥ 0

Now that we clarified the transition to the specific context of m-AFC recognition,

we can provide a more general statement about the system of Block-Marschak

inequalities that applies to it. In a sequence of m-AFC trials, with m ∈ {1, 2, ...,M}:

P
〈m〉
S ≥ 1

m
, for 1 ≤ m < M,

P
〈m〉
S − P 〈m+1〉

S ≥ 0, for 1 ≤ m < M,

P
〈m−1〉
S − 2P 〈m〉S + P

〈m+1〉
S ≥ 0, for 2 ≤ m < M,

P
〈m−2〉
S − 3P 〈m−1〉

S + 3P 〈m〉S − P 〈m+1〉
S ≥ 0, for 3 ≤ m < M, (12)

P
〈m−3〉
S − 4P 〈m−2〉

S + 6P 〈m−1〉
S − 4P 〈m〉S + P

〈m+1〉
S ≥ 0, for 4 ≤ m < M,

P
〈m−4〉
S − 5P 〈m−3〉

S + 10P 〈m−2〉
S − 10P 〈m−1〉

S + 5P 〈m〉S − P 〈m+1〉
S ≥ 0, for 5 ≤ m < M,

etc.
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The system of linear inequalities described in (12) also constitutes a convex polytope

(for a proof, see Grünbaum, 2003, Chap. 3), established on a unit hypercube with

M − 1 non-redundant dimensions, each referring to a given P 〈m〉S . The polytope’s vertex

representation is included in the online Supplemental Materials hosted at the Open

Science Framework (see Author Note).

The transition to the case of recognition memory also has a positive effect on the

plausibility of the statistical assumptions that are going to be made. Both

choice-probability estimation and hypothesis testing (which will be detailed later on)

will be conducted under the premise that each discrete choice is an independent and

identically distributed (i.i.d.) sample. For example, the choice probability P 〈A〉a would

be estimated from the data by considering the number of times option a is chosen out of

multiple presentations of option set A (e.g., Regenwetter et al., 2011). One concern is

that choices might not be i.i.d. when each individual participant is presented with the

exact same option sets multiple times (for a discussion, see Regenwetter, Dana,

Davis-Stober, & Guo, 2011; Birnbaum, 2011b). This concern is considerably less serious

when estimating P 〈m〉S from recognition judgments, given that the multiple m-AFC

trials encountered by any given participant are each comprised of a unique set of items.

In other words, no m-AFC trial is exactly replicated. The only thing being replicated

across m-AFC trials is the fact that there is one studied item and m− 1 non-studied

items.

The Testability of the Block-Marschak Inequalities in Recognition Memory

Given our previous discussion on the flexibility of SDT family, and its ability to

capture any yes-no ROC, it is reasonable to ask how much do the Block-Marschak

inequalities constrain choice probabilities in m-AFC recognition trials. This is an

important question, given that the support for any given model or family of models is

more compelling the more strict or limited is the range of permissible predictions

(Roberts & Pashler, 2000). As shown below, the inequalities turn out be very strict

under reasonable experimental designs.
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First, let us consider some concrete cases that the Block-Marschak inequalities

cannot accommodate, beyond context effects (e.g., Trueblood et al., 2013). At the core

of the Block-Marschak inequalities is the assumption that choice probabilities across

different choice subsets can be induced from a probability distribution of rank orders,

which in turn is determined by a joint distribution of latent-strength values. If the way

in which individuals evaluate options differs across option subsets, then this assumption

is violated, leading to choice probabilities that are at odds with the Block-Marschak

inequalities. As a first example, consider the P 〈m〉S vector [.84, .75, .69, .55, .46, .39, .34],

from m = 2 to m = 8. At first glance, this vector appears to be perfectly plausible, as

performance is always above chance and regularity is satisfied. However, it violates

several Block-Marschak inequalities. For instance,

P
〈3〉
S − 2P 〈4〉S + P

〈5〉
S = 0.74− 1.32 + 0.55 = −0.08. These choice probabilities are

associated with a decision maker who perfectly follows an unequal-variance Gaussian

SDT model with µS = 1.5 and σ2
S = 1.3, but cannot rank more than four alternatives,

perhaps due to some limitation in their working memory capacity (e.g., Cowan, 2001).10

A similar example involves participants shifting from a relative comparison of latent

strengths to a serial, self-terminating search, in which a sequence of options is compared

with a response criterion κ until one of them surpasses it (see Starns, Chen, & Staub,

2017).11

For a more general evaluation of the testability of the Block-Marschak

inequalities, we considered vectors of P 〈m〉S , going from m = 2 to m = 8. These vectors

can be represented as points on a seven-dimensional unit hypercube. Because this space

includes many choice-probability vectors deemed unreasonable in the context of a

10 Forced-choice accuracy here is given by P 〈m〉S =
∫∞
−∞ FN (x)m−1fS(x) dx, for m ≤ 4, and

P
〈m〉
S = 4

m

∫∞
−∞ FN (x)3fS(x) dx, for m > 4.

11 As in the previous example, we assumed a Gaussian SDT model with parameters µS = 1.5 and
σ2

S = 1.3, as well as κ = 0.75. We assumed that if no option is recognized in the serial search (i.e., all
their latent strengths are below κ), then a recognition judgment is produced by randomly selecting one
of the options. The probability of a correct response under this serial-search process is given by
P
〈m〉
S = 1

mFN (κ)m−1FS(κ) + 1
m

∑m−1
i=0 FN (κ)i(1− FS(κ)). In the present example, we assumed a

mixture of comparative judgments and serial search, with the probability of the former taking place
being ω = (.95, .90, .80, .40, .20, .10, .05). The predictions of this model also violate several inequalities.
For instance, it predicts that P 〈3〉S − 3P 〈4〉S + 3P 〈4〉S − P 〈6〉S = −0.06.
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forced-choice recognition task, it is important to narrow our focus: First, we will only

consider choice probabilities at or above chance (i.e., P 〈m〉S ≥ 1
m
). Second, we will only

consider choice probabilities that satisfy regularity, such that accuracy decreases as the

number of alternatives increases (i.e., P 〈2〉S ≥ P
〈3〉
S ≥ ... ≥ P

〈8〉
S ). The satisfaction these

two properties, which correspond to the first two inequalities in (12), can be seen as the

minimum requirement for any set of choice probabilities to be deemed ‘reasonable’.

With the support of R packages geometry (Habel et al., 2015) and vertexenum

(Robere, 2018), we found that the satisfaction of these two properties restricts

predictions to approximately 1
13,021 of the probability space. When applying the same

computations to the entire system of Block-Marschak inequalities described in (12), we

found that only 1
37,405,425 of this already restricted space are permitted. What this

means is that the constraints imposed by Block-Marschak inequalities (beyond

above-chance performance and regularity) are very strict.

Goodness of Fit and Statistical Power

The statistical testing of inequality constraints such as (12) is going to be

conducted as follows: The likelihood of the (presumed i.i.d.) discrete choices observed

in each m-AFC condition will be described by a joint binomial model, with each

probability parameter corresponding to our estimate of a given P 〈m〉S . More specifically,

we will estimate the probability parameters under which the choice data are most likely,

while enforcing the inequality constraints established by (12), for example (for an

overview of this approach, see Riefer & Batchelder, 1988). The misfit of the data under

these parameter estimates will be quantified by the G2 statistic. Unfortunately, the

evaluation of this statistic is complicated by the fact that its sampling distribution

under the null hypothesis that the inequalities hold does not follow a χ2 distribution

(for a review, see Davis-Stober, 2009). In the present work, we addressed this challenge

by computing p-values using a double semi-parametric bootstrap procedure (see Kalish,

Dunn, Burdakov, and Sysoev, 2016; for further details, see also van de Schoot, Hoijtink,
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& Dekovíc, 2010; Wagenmakers, Ratcliff, Gomez, & Iverson, 2004).12

We assessed statistical power by generating discrete choice data from choice

probabilities P 〈m〉S , for m ∈ {2, ..., 8}. These probabilities were all above chance and

satisfied regularity.13 Based on the previous analysis on the volume of predictions

consistent with the Block-Marschak inequalities, we know that these data-generating

probabilities will in all likelihood violate them. The simulated choice frequencies were

then fit by a joint binomial model whose probabilities were constrained to conform to

the Block-Marschak inequalities. When simulating 500/1000 choice trials per m-AFC

condition (corresponding approximately to the samples sizes of Experiments 2 and 1,

respectively), we observed statistically-significant misfits (p < .05) 86%/95% of the

times. These simulation results complement the previous volume analysis of the

Block-Marschak inequalities: Not only are they highly restrictive, their violation can be

reliably detected in experiments with reasonable sample sizes.

Reanalysis of Swets (1959)

As a first empirical test of the Block-Marschak inequalities as expressed in (12),

we reanalyzed data from an auditory detection task originally reported by Swets (1959).

Three participants with “considerable practice” in psychophysical studies engaged in 2-,

3-, 4-, 6-, and 8-AFC trials. The signal was a tone of 1000 Hertz. Each alternative had

a duration of 100 milliseconds (ms), and were separated by a 600 ms interval.

Participants received feedback after each response. Swets (1959) used an incomplete

sequence of m alternatives, with m = 5 and m = 7 missing. This omission does not

allow us to test the Block-Marschak inequalities exactly as described in (12) given that

they require complete sequences of m. We overcame this problem by canceling the P 〈5〉S

and P 〈7〉S terms in the set of inequalities through the weighted sum of inequalities in

12 Note that this double-bootstrap procedure overcomes the biases observed in the application of
typical bootstrap procedures to cases of order-constrained inference (van de Schoot et al., 2010).
13 For each m, response probabilities were obtained by generating independent random values from a
uniform distribution ranging between 1

m and .85. Cases in which regularity was not satisfied were
discarded. These probabilities were then used to generate response frequencies from a joint binomial
distribution.
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which the to-be-cancelled terms have opposite signs.

As shown in Figure 4, only one of the three individual datasets deviates noticeably

from the best-fitting expectations that respect the Block-Marschak inequalities (Subject

3; G2 = 4.17, p = .10). The cause of misfit here is a slight violation of regularity

between P 〈3〉S and P 〈4〉S . Visual inspections were consistent with the bootstrap-based

p-values obtained for each individual participant. Overall, the results show that at least

two of the individual datasets reported by Swets (1959) were consistent with the

null-hypothesis that the Block-Marschak inequalities are satisfied.

Experiment 1: Testing the Random-Scale Representation in Recognition

Memory

In this experiment, we collected m-AFC recognition judgments, with m ranging

between 2 and 8. In each test trial, participants were presented with m alternatives, one

of them being a studied item, and requested to choose the item they believed to have

been previously studied. One key aspect of this experiment is that we collected a small

number of trials per m-AFC condition, and placed our focus on the aggregated data.

This move was motivated by the fact that the inequalities cannot be spuriously rejected

due data aggregation.

Participants, Materials, and Procedure

One-hundred and ten participants took part in this study online. The participants

were recruited through Figure Eight (www.figure-eight.com), and received a fixed

$2.50 reward in exchange for their participation. The experiment took roughly 10

minutes to complete. The experiment began with a study phase in which participants

were presented with a list of 70 common nouns, each presented for 2000 ms, with a 400

ms interval between each word. The study list was presented twice in random order

without a break between the two presentations. An additional primacy/recency buffer

of five words was presented at the beginning and end of the study phase. These buffer

words were not tested. After the study phase, participants initiated the test phase,

which was comprised of 70 test trials. The test trials were comprised of 10 trials per

www.figure-eight.com
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Figure 4 . Analysis of individual data from Swets (1959). The bars represent the marginal 95%
confidence intervals. BMI = Best-fitting predictions that respect the Block-Marschak inequalities.The
dashed lines delimiting the gray areas indicate chance-level performance.
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Figure 5 . Experiment 1 Results. Observed and predicted performance in the m-AFC trials. Bars
represent the marginal 95% confidence intervals. BMI = Best-fitting estimates that respect the
Block-Marschak inequalities. The dashed lines delimiting the gray areas indicate chance-level
performance.

choice set-size condition (randomly intermixed), with set sizes ranging from m = 2 to

m = 8 in steps of 1 (i.e., roughly 1000 trials per m-AFC condition in total). Words were

presented in the center of the screen. In trials involving smaller set sizes and/or shorter

words, all test items were presented next to each other. In trials involving larger set

sizes and/or longer words, test-item presentation was split into more than one row, with

several words in each row presented next to each other. Participants were informed that

their task was to select the one studied word from the m presented words. They selected

the word of their choice by simply clicking on it. They moved on to the next test trial

after confirming their choice. After completing all of the test trials, participants filled in

a short demographic survey, were thanked, and received their monetary reward.

Results and Discussion

As shown in Figure 5, forced-choice accuracy was clearly above chance for all

choice set sizes m. Regularity was also satisfied, with performance decreasing as m

increased. But do the data respect the complete system of Block-Marschak inequalities?

The model fits shown in Figure 5 indicate a near-perfect fit, with G2 = 0.13, p = .98.
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Note that our previous simulations indicate that this experiment is suitably powered to

detect violations. These fit results show that the data are in very close agreement with

a quite strict set of inequality constraints, providing empirical support for a very large

family of SDT models in the literature.

Step 2: Latent-Variable Independence

As previously discussed, the Block-Marschak inequalities make no assumptions

regarding the presence or absence of dependencies among the latent variables associated

with each option. This is also true in the case of recognition memory discussed here, in

which noise variables are assumed to be exchangeable. However, many SDT models go

one step further and assume that the latent variables are independent (Green & Swets,

1966; Kellen & Klauer, 2018; Macmillan & Creelman, 2005; Wickens, 2002). For

reference, latent-variable independence means that the joint cumulative distribution

function of latent-strength values corresponds to the product of their marginal

cumulative distribution functions (e.g., FS,N(x, y) = FS(x)× FN(y) for all permissible x

and y values). In this section, we discuss a direct test of this assumption and establish

an additional predictive test based on the relationships between forced choice, ranking,

and yes-no judgments that follow from latent-variable independence.14

Sattath and Tversky (1976) formally showed that the assumption of

latent-variable independence implies a number of multiplicative inequalities at the level

of choice probabilities (see also Shaw, 1980; Suck, 2002; Suppes et al., 1989). Let

A,B ⊆ T be option subsets including alternative a (i.e., a ∈ A ∩B). Then:

P 〈A ∪ B〉a ≥ P 〈A〉a × P 〈B〉a . (13)

In the context of an m-AFC task, we obtain the following set of multiplicative

14 Please note that the issue of latent-variable independence is distinct from the question of whether or
not discrete choices are independent and identically distributed (i.i.d.).
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inequalities:

P
〈3〉
S ≥ (P 〈2〉S )2,

P
〈4〉
S ≥ (P 〈2〉S )3, P

〈2〉
S × P

〈3〉
S ,

P
〈5〉
S ≥ (P 〈2〉S )4, (P 〈2〉S )2 × P 〈3〉S , (P 〈3〉S )2, P

〈2〉
S × P

〈4〉
S ,

etc.

(14)

These multiplicative inequalities are necessary under latent-variable independence,

although not sufficient (see Sattath & Tversky, 1976). What this means is that these

inequalities cannot be used to dismiss models assuming dependent latent variables.

However, the satisfaction of the multiplicative inequalities under strict testing

conditions can still be used to motivate the exploration and testing of models that

assume independent latent variables (for a similar testing approach, see McCausland &

Marley, 2014).

Some of the multiplicative inequalities implied by latent-variable independence

might not be obvious at first glance: For example, consider the values P 〈2〉S = .90,

P
〈3〉
S = .70, and P 〈4〉S = .60. These values might seem reasonable; after all they are all

above chance, satisfy regularity, and satisfy one of the Block-Marschak inequalities,

P
〈2〉
S − 2P 〈3〉S + P

〈4〉
S = 0.10 ≥ 0. However, they cannot be accommodated by the

sub-family of SDT models that satisfy latent-variable independence. To see this, simply

note that it violates the first inequality in (14), as .70 < .902.

Using the same simulation procedure described in Footnote 13, we generated

vectors of correct-response probabilities P 〈m〉S , from m = 2 to m = 8. These probabilities

were all above chance and satisfied regularity. We then checked how many these vectors

also conformed to the multiplicative inequalities described above (i.e., were consistent

with latent-variable independence). We found that only 7% of them did, which means

that latent-variable independence is not easily satisfied, even when focusing on

‘reasonable’ choice probabilities.

In order to determine our ability to detect violations of multiplicative inequalities,

we used the non-conforming probabilities obtained in the previous simulation to
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generate artificial choice data, with 500/1000 trials per m-AFC condition. When fitting

these artificial data with a joint binomial model that conforms to the multiplicative

inequalities, we found it to yield statistically-significant misfits (p < .05) in 85%/91% of

cases. These simulation results suggest that experiments with the sample sizes

considered (which are comparable to Experiments 1 and 2) are well suited to detect

violations of latent-variable independence.

When applying the same model-fitting procedure to the data from Experiment 1,

we obtained a perfect fit (G2 = 0, p = 1), which indicates that the observed choice

proportions are entirely consistent with the hypothesis that latent-variable

independence holds. This result is quite impressive given that most ‘reasonable’ choice

probabilities do not satisfy the multiplicative inequalities, and that the sample size used

in Experiment 1 is able to detect violations (Roberts & Pashler, 2000).

The Relationship Between Forced-Choice, Ranking, and Yes-No Judgments

Now that we have established some of the inequality constraints imposed by

latent-variable independence, and found the data from Experiment 1 to be in perfect

alignment with them, we turn to some of the implications that follow from this

property. Under the assumption of latent-variable independence, it can be shown that

each P 〈m〉S corresponds to the m− 1th moment of the yes-no ROC function ρ. Once

again, relying on the universal SDT representation:

P
〈m〉
S = P (λS > max(λN,1, λN,2, ..., λN,m−1))

=
∫ 1

0
FN(t)m−1fS(t) dt (15)

=
∫ 1

0
tm−1 dFS(t)

= E(λm−1
S ),

with E(·) being the expectation operator. Moments are quantities describing a function

(the first moment is the mean, the second central moment is the variance, etc.). Because

the ROC function is bounded between 0 and 1, it can be fully described by its moments
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(see Feller, 1971, Chap. 7). Note that P 〈2〉S = E(λS), which means that the probability

of a correct response in 2-AFC trials corresponds to the area under the yes-no ROC

function. This equality is the famous Area Theorem established by Green and Moses

(1966). The formal result in (15), which includes Green and Moses’ Area Theorem as a

special case, was coined the Generalized Area Theorem by Iverson and Bamber (1997).

Based on (15), we can determine the probabilities associated with ranking

judgments, which have also been modeled using SDT (e.g., Kellen & Klauer, 2014;

Kellen et al., 2012; McAdoo & Gronlund, 2016). In a typical ranking task, the decision

maker is requested to rank the options according to her belief that they are the signal

(rank 1 being the highest, m the lowest). Let R〈m〉i denote the probability of the signal

stimulus being assigned rank i among m alternatives. Under the assumption that the

latent variables are independent, signal-ranking probabilities are given by:

R
〈m〉
i =

(
m− 1
i− 1

)∫ 1

0
(1− FN(t))i−1FN(t)m−ifS(t) dt (16)

=
(
m− 1
i− 1

)∫ 1

0
(1− t)i−1tm−i dFS(t),

with the binomial coefficient
(
m−1
i−1

)
counting the number of ways that the signal option

can be outranked by i− 1 out of m− 1 noise options.

The expansion of the integrand (1− t)i−1tm−i in Equation 16 provides us with a

simple way to express signal-ranking probabilities R〈m〉i in terms of forced-choice

probabilities P 〈m〉S . For example, consider the probability of the signal being assigned

rank 3 for m = 4:

R
〈4〉
3 = 3

∫ 1

0
(1− t)2t dFS(t)

= 3
∫ 1

0
t3 − 2t2 + t dFS(t) (17)

= 3×
(
P
〈4〉
S − 2P 〈3〉S + P

〈2〉
S

)
.

Note that the P 〈m〉S summands in (17) correspond to one of the linear functions in the

Block-Marschak inequalities (see third line of (12)) scaled by
(
m−1
i−1

)
= 3. This
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correspondence reasserts the intimate relationship between the Block-Marschak

inequalities and ranking probabilities across subsets – a violation of some of the

inequalities would imply negative signal-ranking probabilities, a nonsensical scenario.

Based on these observations, it shouldn’t come as a surprise that there is also a close

relationship between ranking and yes-no judgments. The theoretical result below will

help us understand this relationship precisely.

Analogous to R〈m〉i , let Q〈m〉i be the probability of some noise option being assigned

rank i among m options. Given the exchangeability of noise options, it follows that

Q
〈m〉
i = 1−R〈m〉i

m− 1 . (18)

Using formal results reported by Feller (1971, Chap. 7), Iverson and Bamber (1997)

showed that as m→∞, the cumulative sums ∑t
i=1 R

〈m〉
i and ∑t

i=1 Q
〈m〉
i , t = 1, . . . ,m,

converge to the universal representations of the signal and noise’s cumulative

distribution functions, FS and FN . Figure 6 illustrates the accuracy of this

approximation using the cumulative sums of R〈m〉i and Q〈m〉i across different choice set

sizes m.

Based on the latter result, it is possible to reconstruct the underlying yes-no ROC

function from recognition-memory studies that have collected ranking judgments. Such

experiments were conducted by Kellen and Klauer (2014) and McAdoo and Gronlund

(2016). In both sets of experiments, the strength of the studied items was manipulated

via study repetition (e.g., weak items being studied once and strong items thrice). In

Kellen and Klauer’s experiments the items were common words, whereas in McAdoo

and Gronlund’s experiments they were human faces. As shown in Figure 7, the

reconstructed yes-no ROCs appear to be slightly concave with ROCs corresponding to

strong studied items dominating their weak counterparts. Also, these ROCs appear to

be asymmetric relative to the negative diagonal. Note, however, that the small option

set sizes in each of these studies (m = 3 and m = 4) only allows for rather crude

reconstructions (see Figure 6). Figure 8 illustrates the reconstructed ROCs obtained

with the four-alternative “answer-until-correct” forced-choice paradigm used by
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Figure 6 . Theoretical and reconstructed yes-no ROC functions (lines and points, respectively) for
different choice set sizes m.

Chechile, Sloboda, and Chamberland (2012). According to SDT, the choices made in

such a paradigm should follow the ranking of the different alternatives. Again, we

observe concave and asymmetric ROCs, with ROCs from “stronger” study conditions

dominating their “weaker” counterparts.

Step 3: Likelihood-Ratio Monotonicity

The relationship between ranking judgments and the yes-no ROC function

provides an important insight into the constraint that the slope of the latter should be

monotonically decreasing (i.e., the ROC is concave). As shown by Equation 4, a

decreasing ROC slope follows from the fact that the likelihood ratio fS(κ)
fN (κ) is

monotonically increasing, which is in line with the widely-held assumption that

small/large latent-strength values are more likely under the noise/signal distribution
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Figure 7 . Reconstructed yes-no ROC functions based on ranking judgments.

(e.g., Criss & McClelland, 2006; Glanzer et al., 2009; Osth & Dennis, 2015).

Now, let us go back to the reconstruction of the ROC function based on rankings.

In order for the reconstructed ROC function to be concave (i.e., for likelihood-ratio

monotonicity to hold), the signal-rank probabilities R〈m〉i need to be monotonically

decreasing with respect to rank position, such that:

R
〈m〉
i −R〈m〉j ≥ 0, (19)

for 1 ≤ i < j < m. To see how ROC concavity (i.e., likelihood-ratio monotonicity)

imposes this order constraint, simply note that the reconstructed ROC function is

piecewise linear, and that the slope of the linear segment connecting the ith and

(i+ 1)th ROC point corresponds to the ratio R
〈m〉
i+1

Q
〈m〉
i+1

. It should also be noted that a

mixture of concave functions (e.g., ROCs) will always yield a concave function, which

means that (19) cannot be spuriously violated by aggregation.
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The order constraint in (19) leads us to the following insight: In terms of ranking

judgments, likelihood-ratio monotonicity implies that more egregious errors are less

probable than more moderate errors. For instance, assigning rank 5 to a signal option is

less probable than assigning rank 4, which in turn is less probable than assigning rank

3, and so forth.

As shown in (17), rank probabilities R〈m〉i can be expressed in terms of

forced-choice probabilities P 〈m〉S , which allows us to recast the inequality constraint

described in (19). For example, in the case of forced-choice probabilities up to m = 4:

P
〈4〉
S︸︷︷︸

R
〈4〉
1

− 3
(
P
〈3〉
S − P

〈4〉
S

)
︸ ︷︷ ︸

R
〈4〉
2

≥ 0,

3
(
P
〈3〉
S − P

〈4〉
S

)
︸ ︷︷ ︸

R
〈4〉
2

− 3
(
P
〈4〉
S − 2P 〈3〉S + P

〈2〉
S

)
︸ ︷︷ ︸

R
〈4〉
3

≥ 0, (20)

3
(
P
〈4〉
S − 2P 〈3〉S + P

〈2〉
S

)
︸ ︷︷ ︸

R
〈4〉
3

−
(
−P 〈4〉S + 3P 〈3〉S − 3P 〈2〉S + P

〈1〉
S

)
︸ ︷︷ ︸

R
〈4〉
4

≥ 0.

This system of inequalities can be imposed alongside the Block-Marschak

inequalities, allowing us to test for a random-scale representation comprised of latent

variables that satisfy likelihood-ratio monotonicity. When imposing these additional

constraints over a sequence of m-AFC judgments from m = 2 to m = 8, we observe a

considerable reduction of the volume of permitted choice probabilities.15 Specifically,

this volume now corresponds to 1
413,121,934,659 of the already restricted volume of P 〈m〉S

that are above chance and satisfy regularity. Simulations showed that with a sample

size of 500/1000 trials per m-AFC condition, the percentage of cases in which this

extended set of inequality constraints is rejected (p < .05), is around 95%/98% (for

details on this simulation, see Footnote 13).

We tested the constraints imposed by likelihood-ratio monotonicity along with the

Block-Marschak inequalities, using the data from Experiment 1. The resulting fit was

15 The intersection between two convex polytopes – such as the ones defined by the random-scale
representation and likelihood-ratio monotonicity – is itself a convex polytope (see Grünbaum, 2003,
Chap. 3). The vertex representation of the latter is reported in the online Supplemental materials (see
Author Note).
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Figure 9 . Reconstructed yes-no ROC of the data from Experiment 1 using the predicted forced-choice
performance under the Block-Marschak inequalities without (BMI) and with likelihood-ratio
monotonicity (BMI-LRM; white and gray points, respectively). The dashed line delimiting the gray
area indicates chance-level performance.

still very good (G2 = 0.88, p = .93). We also reconstructed the yes-no ROC function

from Experiment 1 and assessed the impact of the constraints introduced by

likelihood-ratio monotonicity. To do this, we converted the best-fitting P 〈m〉S values

obtained under each set of constraints (i.e., random-scale representation with and

without likelihood-ratio monotonicity) into ranking probabilities R〈m〉i . The

reconstructed ROCs illustrated in Figure 9 show that the constraints imposed by

likelihood-ratio monotonicity removed a couple of small violations of concavity. Note

that the small difference in misfit found between the two tests suggests that these

violations of concavity are well within what one would expect under the null hypothesis

that all of the inequalities coming from random-scale representation and likelihood-ratio

monotonicity are satisfied.
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Experiment 2: Further Testing of Latent-Variable Independence and

Likelihood-Ratio Monotonicity

When applied to the results of Experiment 1, the constraints imposed by a

random-scale representation, as well as latent-variable independence and

likelihood-ratio monotonicity, were all found to hold. The aim of Experiment 2 is to

replicate and extend these findings, using a slightly modified design in which yes-no

judgments for single items are also collected. These yes-no judgments will enable us to

conduct a predictive test of independence and likelihood-ratio monotonicity: If the

reconstructed concave ROC function accurately captures the relationship between hits

and false alarms, then it should be able to capture the observed yes-no ROC point.

Participants, Materials, and Procedure

One-hundred and three new participants took part in this study online. As before,

the participants were recruited through Figure Eight and received a fixed $2.50

reward in exchange for their participation. This experiment was identical to Experiment

1, with two changes. First, we introduced twenty single-item trials (10 studied and 10

non-studied) in which participants were requested to judge whether the item was

previously studied, responding “yes” or “no”. Second, we alleviated the task demands

by reducing the number of m-AFC trials to five per m (i.e., roughly 500 trials per

m-AFC condition in total).

Results and Discussion

The data are shown in Figure 10. As before, we found performance to be above

chance and regularity satisfied. Note that performance was generally better than in

Experiment 1, a result that can be attributed to the fewer number of m-AFC trials

collected per participant and its relation with output interference (Criss, Malmberg, &

Shiffrin, 2011; Murdock & Anderson, 1975): The more items one encounters throughout

the test phase, the more performance should be impaired (see Murdock & Anderson,

1975, Table 7).
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Figure 10 . Experiment 2 Results. Left Panel: Observed and predicted performance in the m-AFC
trials. Bars represent the marginal 95% confidence intervals. BMI = Best-fitting estimates that respect
the Block-Marschak inequalities. Right Panel: Reconstructed yes-no ROC using the predicted
forced-choice performance under the Block-Marschak inequalities and likelihood-ratio monotonicity.
Black square represents the observed hit and false-alarm probability. In both panels, the dashed lines
delimiting the gray areas indicate chance-level performance.

The data were once again consistent with the Block-Marschak inequalities

(G2 = 0.70, p = .91). As before, enforcing likelihood-ratio monotonicity leads to a

virtually identical fit (G2 = 0.74, p = .95), and the multiplicative inequalities were once

again perfectly satisfied (G2 = 0, p = 1). The right panel of Figure 10 shows the

reconstructed yes-no ROC. Again, this function takes on a concave, asymmetric shape.

Most importantly, the yes-no data point is entirely consistent with the ordered ROC

points in the sense that they can all be described by a single monotonically-increasing

function with monotonically decreasing slope. Altogether, these results provide support

for the sub-family of SDT models that satisfy latent-variable independence and

likelihood-ratio monotonicity.

Step 4: Yes-No ROC Symmetry

The reconstructed yes-no ROCs obtained so far are all asymmetric relative to the

negative diagonal (see Figures 7-10). In the domain of recognition memory, ROC

asymmetries of this kind have been a major motivation for the development of
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extensions of the equal-variance Gaussian SDT model. These extensions involve a

myriad of theoretical concepts such as variable encoding, attentional failure, or

additional retrieval processes (for a review of different models, see Yonelinas & Parks,

2007). In more applied domains, the violation of ROC symmetry has important

implications for our ability to assess and compare different decision makers (for a

discussion, see Rotello et al., 2015).

Assessments of ROC symmetry almost invariably rely on confidence-rating

judgments (e.g., Yonelinas & Parks, 2007). However, there are a number issues that

speak against this approach: For instance, a recent critical test by Kellen and Klauer

(2015) showed that confidence ratings do not behave as expected under a large

sub-family of models that includes the Gaussian SDT model (for a replication of these

results, see McAdoo et al., 2018; for other issues, see Benjamin, Tullis, & Lee, 2013; Van

Zandt, 2000). Given these issues, some researchers have considered alternatives such as

constructing ROCs using binary yes-no judgments obtained across different

response-bias conditions (e.g., Bröder & Schütz, 2009; Dube & Rotello, 2012). But

unfortunately, this alternative approach often leads to extremely noisy data that can

fail to meet some basic selective-influence assumptions (both response criterion and

memory discriminability might be affected; see Kellen, Klauer, & Bröder, 2013; Van

Zandt, 2000). As a solution to these challenges, we propose a direct test of ROC

symmetry that hinges on a simple equality prediction across response probabilities, and

does not depend upon any parametric assumptions.

Formally, an ROC function ρ is symmetric if and only if the inclusion of point

{FA,H} implies the inclusion of point {1− H, 1− FA} (Iverson & Bamber, 1997;

Killeen & Taylor, 2004). Figure 11 provides an illustration. This constraint can be

expressed in terms of the following equality:

ρ(FA) + ρ−1(1− FA) = H + (1− H) = 1, (21)

where ρ−1 is the inverse of the ROC function. Under a universal representation, this
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Figure 11 . Illustration of a symmetrical yes-no ROC function and the constraint that it must include
points {FA,H} and {1−H, 1− FA}.

equality constraint can also be expressed in terms of FS and F−1
S :

FS(t) + F−1
S (1− t) = 1. (22)

Iverson and Bamber (1997) formally showed that ROC symmetry implies an equality

between m-AFC judgments and judgments made in an modified m-alternative

forced-choice task (m?-AFC) in which individuals are requested to choose the single

noise option from among the m− 1 signal options.16 To see this, let us denote the

probability of a correct response (noise being chosen) by P 〈m?〉N , which corresponds to

the probability that the single λN value is smaller than all the m− 1 λS values. Again,

using the universal SDT representation:

P
〈m?〉
N = P (λN < min(λS,1, λS,2, ..., λS,m−1)),

=
∫ 1

0
fN(t)(1− FS(t))m−1 dt. (23)

16 Both m-AFC and m?-AFC judgments should not be confused with the judgments made in an oddity
task (O’Connor, Guhl, Cox, & Dobbins, 2011). In the latter task participants are requested to choose
the ‘odd item’ without knowing whether the m-alternative choice set includes m− 1 signal or m− 1
noise stimuli.
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=
∫ 1

0
tm−1 d(1− F−1

S (1− t)).

If symmetry holds, then FS(t) = 1− F−1
S (1− t) (see (22)) and therefore P 〈m?〉N = P

〈m〉
S

for all m (compare the penultimate and last lines of Equations 15 and 23, respectively).

The predicted equality in choice accuracy between m-AFC and m?-AFC under ROC

symmetry allows us to dismiss the latter if any P 〈m?〉N systematically differs from P
〈m〉
S

for some m. Importantly, testing these predicted equalities does not require the

elicitation of confidence judgments nor the use of response-bias manipulations.

With the type of asymmetry typically observed in recognition-memory ROCs,

including the one reconstructed in Experiment 1, we expect P 〈m〉S > P
〈m?〉
N . For example,

an unequal-variance Gaussian SDT model with parameters µS = 1 and σ2
S = 1.3, which

yields an asymmetric ROC, expects the following forced-choice probabilities: P 〈4〉S = .55,

P
〈5〉
S = .49, and P 〈6〉S = .45., whereas P 〈4?〉N = .51, P 〈5?〉N = .45, and P 〈6?〉N = .40.

Interestingly, the opposite prediction is made by some well-known parametric

distributions. For instance, take the double-exponential distribution discussed by

Yellott (1977). Yellott showed that under rather benevolent conditions (including

latent-variable independence), the latent variables underlying preferences must be

double-exponentially distributed, which in turn implies that choice probabilities must

conform to Luce’s Choice Theorem (Luce, 1959; see also Luce, 1977). For example, if

the signal and noise distribution have location parameters 0 and 1, respectively, then

P
〈4〉
S = .48, P 〈5〉S = .40, and P 〈6〉S = .35., which are all respectively smaller than

P
〈4?〉
N = .55, P 〈5?〉N = .50, and P 〈6?〉N = .47.

Experiment 3: Testing ROC Symmetry

In this experiment, forced choice recognition judgments were obtained under

signal-recognition instructions (m-AFC trials) and under noise-recognition instructions

(m?-AFC trials).
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Participants, Materials, and Procedure

Three-hundred and fifty-nine new participants were recruited online, again

through Figure Eight. As before, a $2.50 reward was given in exchange for

participation. The task participants engaged in (m-AFC vs. m?-AFC) was manipulated

between subjects. We recruited 180 participants in the m-AFC condition and 179

participants in the m?-AFC condition. Of those, we had to exclude 10 participants in

the m?-AFC condition who did not follow the instructions and indicated incorrectly in a

post-experiment survey that their task was to select the studied items. The study and

test phases were similar to the previous experiment, with the exception that we only

considered forced-choice trials, and only for choice-set sizes m = 4, 5, and 6 (six test

trials per m per participant, which resulted in roughly 1000 trials per m/m?-AFC

condition in total). The focus on a limited number of choice set sizes was motivated by

previous simulations showing that differences would be more easily detected with these

set sizes. The reduction in the total amount of test trials was necessary when trying to

have the same number of trials per condition. After all, each m-AFC trial involves only

one studied item, whereas each m?-AFC trial involves m− 1 studied items.

Results and Discussion

The proportion of correct responses are illustrated in Figure 12. These

proportions are all above chance and satisfy regularity, and although the m?-AFC

judgments violate the Block-Marschak inequalities, as P 〈4?〉N − 2P 〈5?〉N + P
〈6?〉
N = −0.03,

this was not statistically significant (G2 = 0.74, p = .18). We tested whether the

equality hypothesis following from the assumption of ROC symmetry holds by

comparing the goodness of fit of two joint binomial models. First, we fitted a model

that imposed the inequality constraints P 〈4〉S ≥ P
〈4?〉
N , P 〈5〉S ≥ P

〈5?〉
N , and P 〈6〉S ≥ P

〈6?〉
N . We

then compared this fit with the one from another model imposing the equality

constraints P 〈4〉S = P
〈4?〉
N , P 〈5〉S = P

〈5?〉
N , and P 〈6〉S = P

〈6?〉
N . The difference in fit between

the two models was statistically significant, with ∆G2 = 16.62, p < .001, indicating that

the equality constraint imposed by the hypothesis of ROC symmetry does not provide a
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Figure 12 . Experiment 3 results. The bars represent the marginal 95% confidence intervals.

reasonable characterization of the data. Furthermore, note that these results are also at

odds with the latent-strength distributions assumed by Luce’s Choice Theory (Luce,

1959, 1977; Yellott, 1977) as they predict the opposite pattern, namely P 〈m〉S ≤ P
〈m?〉
N .

The present results suggest that the yes-no ROC is asymmetric, corroborating what has

been so far observed in ROCs constructed with response-bias manipulatons (e.g., Dube

& Rotello, 2012; Kellen et al., 2013) or confidence ratings (e.g., Klauer & Kellen, 2015;

Pratte, Rouder, & Morey 2010), or with ROCs reconstructed from

forced-choice/ranking judgments (see Figures 7-10).

Finally, it is worth noting that the present approach for testing ROC symmetry

has been applied in other domains: Trippas et al. (2018) conducted a large-scale

meta-analysis on ROCs obtained with syllogistic-reasoning judgments, and found them

to be symmetric. This meta-analytic result was corroborated by a subsequent

comparison between m-AFC and m?-AFC judgments, which were not reliably different

from each other. At least in the domains of syllogistic reasoning and recognition

memory, the a/symmetry found in ROCs is in line with outcomes of this critical test.



FOUNDATIONS OF SDT 44

Step 5: Threshold and Non-Threshold Representations

The results from the critical tests conducted up to this point are consistent with a

random-scale representation that is comprised of independent latent-strength

distributions that satisfy likelihood-ratio monotonicity, and that yield asymmetric

yes-no ROCs. In this section, we will further divide this sub-family of models by

introducing the distinction between ‘threshold’ and ‘non-threshold’ representations.

This distinction hinges on conditional independence, a property that we will elaborate

upon below (for earlier discussions on this property, see Kellen & Klauer, 2014, 2015;

Province & Rouder, 2012; Rouder & Morey, 2009; Rouder et al., 2014).

According to threshold models, people’s judgments are governed by a small

number of mutually-exclusive discrete mental states that are entered with some

probability. In turn, each of these mental states is associated with a probability

distribution over the response alternatives – a state-response mapping (see Rouder &

Morey, 2009; Klauer & Kellen, 2010). As an example, let us consider one of the

best-studied threshold models in the literature, the High-Threshold Model (e.g., Bröder

& Schütz, 2009; Dube & Rotello, 2012). This model, which is illustrated in Figure 13

(see also the bottom row of Figure 3), postulates that signal and noise items can fall

into one of three mutually-exclusive discrete mental states M. The probability with

which each state can be reached differs between stimulus classes. In fact, some of the

states can only be reached by certain stimulus classes:

• M1: Noise-Detection State

P(Signal Stimuli) = 0

P(Noise Stimuli) = qN

• M2: Uncertainty State

P(Signal Stimuli) = 1− pS

P(Noise Stimuli) = 1− qN

• M3: Signal-Detection State

P(Signal Stimuli) = pS
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P(Noise Stimuli) = 0

Conditional independence enforces the same state-response mapping to all stimuli that

happen to be in the same mental state M, irrespective of the stimulus class they belong

to. For instance, the same guessing probabilities g and 1− g apply to signal and noise

stimuli that reach the uncertainty state M2 (see Figure 13).

Conditional independence also establishes that a state’s response mapping is

unaffected by experimental manipulations that vary the probability of that state being

reached by stimuli of a given class (for discussions, see Kellen & Klauer, 2018; Rouder

& Morey, 2009; Rouder et al., 2014). For example, consider an experimental design that

includes a study-strength manipulation that is applied to the class of studied items (e.g.,

some items are studied once, others thrice), such that we can refer to the subclasses of

weak and strong studied items.17 The response mapping associated with each mental

state will be the same for both subclasses of studied items, a situation that implies a

number of equality constraints at the level of response probabilities. For instance,

incorrect “new” responses can only result from the mapping of the uncertainty state M2

(see the top tree in Figure 13). It follows that the probability distribution of such

responses is the same for weak and strong studied items (for tests, see Chen, Starns, &

Rotello, 2015; Kellen & Klauer, 2015; McAdoo, Key, & Gronlund, 2018; Province &

Rouder, 2012).

In recent years, many studies have pitted the High-Threshold model against

non-threshold SDT models (e.g., Bröder & Schütz, 2009; Chen et al., 2015; Dube &

Rotello, 2012; Kellen & Klauer, 2014, 2015; Kellen et al., 2013; Province & Rouder,

2012; Starns, Dubé, & Frelinger, 2018). One limitation found in these model

comparisons is that their implications do not generalize beyond this specific threshold

model. For instance, Kellen and Klauer (2014) reported a critical test that rejected the

High-Threshold Model (for a replication, see McAdoo & Gronlund, 2016). However, the

17 Importantly, the different subclasses introduced by the study-strength manipulation (weak vs.
strong) are not to be correlated with external (e.g., word color, font), internal (e.g., word frequency,
category membership), or contextual features (e.g., experimental block). Otherwise, conditional
independence cannot be assumed (e.g., one can guess differently for green/weak and red/strong words).
For a similar point, see Kellen and Klauer (2015).
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Figure 13 . Processing tree representation of the High-Threshold Model for the yes-no task. White
squares correspond to the latent mental states, whereas gray squares correspond to the observed
responses. State-response mappings are represented by the dashed branches. The parameters
associated with each branch correspond to its respective probability (when omitted, the probability of a
branch is 1). Parameters: pS = Probability that a signal stimulus is signal-detected. qN = Probability
that a noise stimulus is noise-detected. g = Probability of guessing “yes”, conditional on the stimulus
being in the uncertainty state.

results of their critical tests can be successfully accommodated by the Low-Threshold

Model originally proposed by Luce (1963; see also Kellen, Erdfelder, Malmberg, Dubé,

& Criss, 2016; McAdoo & Gronlund, 2020; Starns et al., 2018). One distinctive

property of this Low-Threshold model is that assumes that noise stimuli can be

incorrectly signal-detected. It should be noted that an extension of the Low-Threshold

model has been proposed by Krantz (1969). This extended model includes a

super-signal-detection state that can only be reached by signal stimuli.

The limited scope of the existing critical tests for threshold representations is
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unsatisfactory. Ideally, one would be able to directly test properties associated with a

large family of threshold models, some of them more complex than the High- and

Low-Threshold models discussed so far. In the section below, we achieve this

desideratum by specifying a novel recognition-memory paradigm that allows for the

direct testing of a Generalized Threshold Model (GTM), a model that includes all of its

predecessors as special cases.

A Generalized Threshold Model and a Critical Test

The GTM assumes that a test item can be in one of five mutually-exclusive

mental states M′. These states can be reached by signal and noise stimuli with some

probability, which is determined by the occurrence or non-occurrence of a number of

detection processes (see Figure 14). These processes can either lead to an item being

detected as studied (‘signal-detection’ or ‘super-signal-detection’ states) or non-studied

(‘noise-detection’ or ‘super-noise-detection’ states). Some states can be reached by both

signal and noise stimuli, whereas others are exclusive to one of the stimulus classes. In

the following, we list the mental states included in the GTM and their respective

probabilities (see also Figure 14). We also reference any previous threshold model that

has postulated such state [in brackets]:

• M′
1: Super-Noise-Detection State

P(Signal Stimuli) = 0

P(Noise Stimuli) = (1− qS)× qN × q?
N

• M′
2: Noise-Detection State

P(Signal Stimuli) = (1− pS)× pN

P(Noise Stimuli) = (1− qS)× qN × (1− q?
N ) [High-Threshold Model]

• M′
3: Uncertainty State

P(Signal Stimuli) = (1− pS)× (1− pN ) [all threshold models]

P(Noise Stimuli) = (1− qS)× (1− qN ) [all threshold models]

• M′
4 Signal-Detection State
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P(Signal Stimuli) = pS × (1− p∗S) [all threshold models]

P(Noise Stimuli) = qS [Low-Threshold Model]

• M′
5: Super-Signal-Detection State

P(Signal Stimuli) = pS × p∗S [Low-Threshold Model]

P(Noise Stimuli) = 0

Note that in order to ensure the prediction of above-chance performance in

recognition-memory tasks, one must assume that the probability of correctly detecting

the class of a stimulus is always greater than the probability of an incorrect detection

(i.e., qS ≤ pS and pN ≤ qN).

The GTM includes all the threshold models previously discussed as special cases.

For example, when p∗S = pN = qS = q∗N = 0, the GTM reduces to the High-Threshold

Model illustrated in Figure 13, a model that has been at the center of many recent

discussions (e.g., Bröder & Schutz, 2009; Dube & Rotello, 2012; Kellen & Klauer, 2014,

2015; Province & Rouder, 2012). Alternatively, the constraint pN = qN = q∗N = 0

reduces the GTM to Krantz’ extended Low-Threshold Model (Krantz, 1969). However,

note that the GTM goes beyond any of these models. For instance, it allows signal

stimuli to be incorrectly noise-detected (for a theoretical motivation, see Moran, 2016).

As in all preceding threshold models, conditional independence is assumed to hold.

In the specific case of the GTM, conditional independence also imposes a constraint on

pN , the conditional probability of a studied item reaching the noise-detection state. As

argued by Moran (2016), the assumption in High- and Low-Threshold models that

individuals cannot actively reject studied items is nothing more than a convenient

idealization. For example, consider a scenario in which a participant was often

distracted during the study phase. There is no reason to assume that the studied items

that the participant missed cannot be subjected to the same kind of meta-cognitive

inferences assumed to underlie the noise-detection of non-studied items (for discussions,

see Bröder & Schütz, 2009: Klauer & Kellen, 2010).18 Because such inferences are

18 The GTM nevertheless includes state M′1, which is exclusive to noise stimuli. This inclusion is
motivated by the existence of certain kinds of active rejection that could only apply to non-studied
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Figure 14 . Processing tree representation of the Generalized Threshold Model (GTM) for the yes-no
task. White squares correspond to the latent mental states, whereas gray squares correspond to the
observed responses. State-response mappings are represented by the dashed branches. The parameters
associated with each branch correspond to its respective probability (when omitted, the probability of a
branch is 1). Parameters: pS/qS = Probability that a signal/noise stimulus is signal-detected.
pN/qN = Probability that a signal/noise stimulus is noise-detected, conditional on not being
signal-detected. p∗S/q∗N = Probability that a signal/noise stimulus is super-signal/noise-detected, given
that it was signal/noise-detected. g = Probability of guessing “yes”, conditional on the item being in
the uncertainty state.

predicated on the absence of any kind of remembering (e.g., “I would have remembered

it, if I had seen it”; see Strack & Bless, 1994), it follows that the probability of a

items (see Gallo, 2006, Chap. 5).
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studied item reaching the noise-detection state M′
2 is conditionally independent from

the probability of successfully remembering studied items; i.e., pN is unaffected by the

experimental manipulation of pS and p?S (but see Footnote 17 for boundary conditions).

When dealing with test trials involving multiple alternatives (as done in the task

detailed below), the mental-state probabilities associated with each of the alternatives

are assumed to be independent (i.e., latent-variable independence holds). For example,

if a signal stimulus and a noise stimulus are presented together in a 2-AFC trial, the

probability of the former being in state M′
4 and the latter being in state M′

2

corresponds to
signal stimulus︷ ︸︸ ︷
pS × p∗S ×

noise stimulus︷ ︸︸ ︷
qN × (1− q∗N). The assumption of latent-variable

independence has a precedent in previous work involving High- and Low-Threshold

models (e.g., Luce, 1963; Province & Rouder, 2012).

Multiple-alternative subsetting task. In order to pit the GTM against

non-threshold SDT models of recognition memory, we developed a novel

multiple-alternative subsetting task (for a similar task in preferential choice, see

Regenwetter, Marley, & Joe, 1998). At each subsetting trial, participants are shown five

items. They are informed that the total number of studied items can range between one

and four, and that this number varies randomly across subsetting trials. Participants

are requested to select which items they believe to have been previously studied (i.e.,

select a subset). The total number of items selected per trial can range between one and

four. The left panel of Figure 15 provides an illustration.

Some of the subsetting trials were immediately succeeded by a followup 2-AFC

trial. Participants were informed that these followup 2-AFC trials would occur

randomly, and that their occurrence was unrelated to the accuracy of their responses in

the immediately-preceding subsetting trial. The two alternatives presented in these

followup 2-AFC trials were always two items that received the same judgment (i.e.,

they were both judged to be studied or non-studied) in the immediately preceding

subsetting trial. The participant’s task here is to choose the item that they are more

willing to reverse their previous judgment (e.g., which one would they rather judge to

be studied; see the right panel of Figure 15).
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Figure 15 . The two types of trials used in the experiment. The grey shades symbolize the selected
words (i.e., the words judged as ‘old’). In the subsetting task, the horizontal displacement was
randomly determined for each word on each trial anew. Note that the follow-up trial on the right is an
example of a new-to-old trial, which occurred probabilistically.

GTM Predictions. According to the GTM, the unrecognized test items

presented in the followup 2-AFC trials are either in the uncertainty state M′
3 or being

actively rejected (i.e., states M′
1 and M′

2). When confronted with two unrecognized

items, a decision is assumed to be made based on their respective states: If the two

items are in different mental states, then the one with the largest index will be chosen

(e.g., Luce, 1963; Province & Rouder, 2012). For example, if one item was detected as

new (M′
1 or M′

2) whereas the other one was in uncertainty M′
3, then the latter item

would be chosen. Alternatively, if two items are in the same mental state, then one of

them will be chosen with probability 1
2 (for a discussion on the comparison of items

based on their mental states, see Erdfelder, Küpper-Tetzel, & Mattern, 2011).

When the pair presented in the followup 2-AFC trial consists of an unrecognized

studied item and an unrecognized new item – a 〈S,N〉 pair – the probability of a
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correct response (i.e., the studied item being selected) is given by:19

P
〈S,N〉
S =

(1− pS)(1− qS)[qNq∗N + pNqN(1− q∗N)1
2 + (1− pN)qN(1− q∗N) + (1− pN)(1− qN)1

2 ]
(1− pS)(1− qS) .

(24)

The products (1− pS)(1− qS) in the numerator and denominator cancel out. Also,

conditional independence establishes that the probabilities of noise-detection processes

(given by parameters pN , qN , and q?N) are unaffected by study-strength manipulations.

Together, these constraints enforce the prediction that the probability of a correct

response in a followup 〈S,N〉 pair does not depend on the signal-detection probabilities.

In context of the study-strength manipulation referred to earlier, this means that the

probability of an unrecognized studied item being chosen in a followup 2-AFC trial is

predicted to be the same for 〈weak-studied, new〉 and 〈strong-studied, new〉 pairs.

Henceforth, we will denote these pairs of unrecognized items by 〈WS,N〉 and 〈SS,N〉

pairs, respectively. A similar argument can be used to show that the probability of

choosing an unrecognized weak item over an unrecognized strong item in a 〈WS,SS〉

pair; i.e., P 〈WS,SS〉
WS , is predicted to be 1

2 . These predictions concerning unrecognized

pairs are summarized by the following hypothesis, which we denote by HGTM:

HGTM : P 〈WS,N〉
WS = P

〈SS,N〉
SS , P

〈WS,SS〉
WS = 1

2 .

This hypothesis is in line with other recent tests conducted on threshold models, which

establish equality and/or chance-level constraints at the level of choice probabilities (see

Malejka & Bröder, 2016; McAdoo, 2019; Starns et al., 2018; Voormann, Rothe-Wulff,

Starns, & Klauer, 2020).

‘Non-Threshold’ SDT Predictions. According to SDT, the inclusion of items

into a subset will depend on their latent-strength values. We will assume that these

judgments are based on a comparison of the test items’ latent-strength values with a

response criterion κ, such that any test item whose latent-strength value surpasses it is

19 So far, we used the superscript 〈m〉 to denote the number of alternatives in a given trial. In the
present context, the actual stimulus-class composition of alternatives matters, which led us to include
this information in the superscript.
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judged to be studied (i.e., included in the subset). Latent-variable independence is

assumed to hold.20 Now, let us consider the case in which the decision maker is

presented with an unrecognized 〈S,N〉 pair in a followup 2-AFC trial. Given the way

items that are assumed to be judged in the subsetting task, it follows that the

latent-strength values of both unrecognized items are below the response criterion κ.

Conditional on this inequality, the probability of selecting the studied item over the

non-studied item in this pair is given by the probability that the latent-strength value

of the former is greater than the latter’s. Formally:

P
〈S,N〉
S =

∫ κ

l
fS(t)FN(t) dt

FS(κ)FN(κ) . (25)

for l ≤ κ ≤ u, with l and u denoting the lower and upper bounds of the latent-strength

scale. The reason why we are not fixing these bounds to 0 and 1 respectively is that the

formal result discussed below will not rely on the universal representation used so far.

This change is motivated by the specific approach used here to contrast models

assuming threshold and non-threshold representations: We will formally establish a

property at the level of the latent distributions that – whenever present – implies a

violation of conditional independence (i.e., implies a non-threshold representation) at

the level of the followup 2-AFC choice probabilities. We will then show that this

property holds across a wide range of parametric distributions.

Theorem. Let FN(t) and Fµ(t), for t ∈ (l, u), be the CDFs of the noise and signal

distributions, the latter being parametrized by parameter µ. Moreover, assume that Fµ is

differentiable in µ for every admissible t. Finally, let Hµ(t) =
∂
∂µ
Fµ(t)

Fµ(t) . If Hµ(t) is

monotonically increasing in t for all µ, then P 〈S,N〉S is monotonically increasing in µ.

Proof. First, let us express P 〈S,N〉S as function of µ, using a more convenient formulation:

P
〈S,N〉
S (µ) = 1−

∫ κ

l
Fµ(t)fN(t) dt

Fµ(κ)FN(κ) .

20 We note that a formally equivalent model has been previously proposed in the domain of
social-choice modeling (see Marley, 1993; Regenwetter et al., 1998).
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If P 〈S,N〉S (µ) is monotonically increasing, then the fraction on the second term, which we

will denote here as g(µ), is monotonically decreasing (i.e., its derivative with respect to

µ is negative). Rearranging terms and differentiating under the integral sign:

∂

∂µ
g(µ) =

∫ κ

l

fN(t)
FN(κ)Fµ(κ)2 ·

(
∂

∂µ
Fµ(t)Fµ(κ)− ∂

∂µ
Fµ(κ)Fµ(t)

)
dt.

The first multiplicative term can be ignored, as it is always positive. In order for the

second term to be negative, the following inequality needs to hold

∂
∂µ
Fµ(t)
Fµ(t) ≤

∂
∂µ
Fµ(κ)
Fµ(κ) ,

which corresponds to

Hµ(t) ≤ Hµ(κ)

Given that t ≤ κ, this inequality can only hold if Hµ is monotonically increasing.

What the theorem above shows is that, if Hµ is monotonically increasing, then

P
〈S,N〉
S should increase as a function of parameter µ. With this formal result as a

backdrop, let us consider the predicted choice probabilities for unrecognized 〈SS,N〉

and 〈WS,N〉 pairs: The study-strength manipulation is expected to make strong

studied items more memorable than than their weak counterparts. In terms of the

latent-strength distributions of studied items and their respective parameters µ, this

manipulation means that µWS ≤ µSS, which leads us the following hypothesis, which we

denote by HSDT:21

HSDT : P 〈WS,N〉
WS ≤ P

〈SS,N〉
SS , P

〈WS,SS〉
WS ≤ 1

2

But how general is this hypothesis? Quite so, actually. It turns out that function

Hµ is monotonically increasing for a large family of parametric distributions. For

21 By replacing the noise distribution with the weak-signal distribution, the theorem above can be used
to show that P 〈W S,SS〉

W S decreases along with the memory-strength µ of the strong-signal distribution.
The upper boundary of this probability is 1

2 , which corresponds to the boundary case in which there is
a null study-strength effect and the latent variables associated with weak and strong studied words are
identical (i.e., µW S = µSS).
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instance, take the case of the family of shift distributions fµ(t) = f(t− µ), which

includes many well-known distributions such as the Gaussian, logistic, exponential,

ex-Gaussian, Weibull, Gumbel, etc. As shown by Chechile (2011), the members of this

family have monotonically decreasing reverse-hazard functions r(t) = fµ(t)
Fµ(t) . It is easy to

see that Hµ(t) = −r(t) for members of this family of distributions. However, note that

the monotonicity of Hµ is not limited to shift-type distributions, as it can be shown to

hold in cases such as the Gamma distribution (see Kellen & Klauer, 2014, 2015).

There is one notable exception though: HSDT can be violated by a Gaussian SDT

model that allows σ2
S to differ between weak and strong studied items. However, we do

not see this situation as problematic. A closer inspection of this specific SDT model

shows that such violations have nothing to do with this model’s merits, such as its

ability to describe asymmetric, concave ROCs, or the relationship between

study-strength manipulations and ROC asymmetry (Heathcote, 2003; Lockhart &

Murdock, 1970; Ratcliff, McKoon, & Tindall, 1994). Instead, violations of HSDT are

made possible by the model’s unfortunate ability to make pathological predictions, such

as below-chance accuracy or partially convex ROCs (all of which follow from violations

of likelihood-ratio monotonicity; see DeCarlo, 2002; Kellen & Klauer, 2011). In any

case, this exception does not put into question the test results reported below.

Hypothesis HGTM is included within HSDT as a boundary case. This relationship

reflects Rouder et al.’s (2014) argument that threshold models are nothing more than a

sub-family of SDT models for which conditional independence holds. We also see the

same kind of theoretical characterizations found in previous critical tests (Kellen &

Klauer, 2014, 2015): Conditional independence imposes the prediction that the

‘magnitude’ of errors is invariant to the probability of said errors being committed.

Even though recognition-failure is greater for weak studied items than for strong studied

items, the probability of correcting such failures in a followup 2-AFC trial is the same

for both stimulus subclasses. In contrast, non-threshold representations that violate

conditional independence predict that the probability and magnitude of errors go hand

in hand, such that the probability of correcting a failed recognition in a followup 2-AFC
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trial is expected to be greater for strong studied items than weak studied items.

Under any realistic experimental design, the number of followup 2-AFC trials that

one could ever hope to collect per participant is going to be extremely small. This

unfortunate reality severely compromises the ability to test HGTM and HSDT at the

individual level. However, these hypotheses can nevertheless be tested using aggregate

data, as neither of them can be spuriously rejected when aggregating individual data

that are in conformity with them. One fortunate consequence of this robustness to

aggregation is that it also applies to the aggregation of heterogeneous data coming from

the same individual respondents. As discussed in Footnote 2, one could in principle

relax the assumption in SDT that the response criterion κ is fixed across test trials

(e.g., Kellen et al., 2012; Rosner & Kochanski, 2009). The aggregation of responses

from followup 2-AFC trials, when the latter were obtained under different κ (i.e., in the

presence of criterion noise), will not spuriously reject HSDT the same way that

aggregating responses from heterogeneous respondents would not.

Experiment 4: Testing the Generalized Threshold Model

Participants, Materials, and Procedure

Four-hundred and one participants took part in this study online. Participants

were recruited through Prolific (www.prolific.co), and received a fixed £1.5 reward in

exchange for their participation. The experiment took roughly 12 minutes to complete.

After instructions were given, the experiment began with a study phase in which

participants were presented a list of 70 common words. Half of the words were

presented once (weak words), whereas the other half was presented three times (strong

words). Words were presented in random order with a minimal distance of five words

between the repetitions of strong words. Each word was presented for 2000 ms, with a

400 ms interval between words. A primacy/recency buffer of five words was presented

at the beginning and end of the study phase. These buffer words were not tested. After

the study phase was completed, participants initiated the test phase, which was

comprised of 28 subsetting trials and a variable amount of followup 2-AFC trials. The

www.prolific.co
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total number of follow-up trials varied across participants as it depended on chance.

Subsetting trials consisted of five words, each presented on a separate row with a

random horizontal displacement to it (see Figure 15, Left Panel). The reason behind

the use of a jittered display was to help distinguishing the different words clearly and

prevent them from being perceived as grouped units. Participants were asked to select

between one and four words, which they judged to be old. This request was made along

with the information that each subsetting trial included between one and four studied

words, with the exact composition being randomly determined across trials.

After each subsetting trial, there was a chance that a followup 2-AFC trial would

take place: If two or more words were not recognized, then a followup 2-AFC trial

comprised of unrecognized words would take place with probability .40. If only one

word was not recognized, then a followup 2-AFC trial comprised of recognized words

would take place with probability .40. In either case, the words included in a followup

trial were randomly selected among the ones available. In each of these followup 2-AFC

trials, participants were requested to select the word for which they were more willing

to reverse their judgment (for an illustration, see Figure 15, Right Panel). Participants

had to select one of the words in order to continue with the experiment.

After completing the test phase, participants filled in a short demographic survey,

were thanked, and received their monetary reward. The demographic survey included a

question in which participants could state that they did not take the experiment

seriously, and that we should better not analyze their data (without having negative

consequences for their pay). Data from participants who responded affirmatively were

discarded, which left us with a total of 395 participants. We also excluded data from

thirty-nine individuals whose observed performance in the subsetting trials was not

consistent with the experimental manipulation of study strength (i.e., failed to show a

better performance for the strong words relative to the weak words in the subsetting

trials; for a similar exclusion criterion, see Kellen & Klauer, 2015), leaving us with data

from a total of 356 participants.
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Results and Discussion

Among the retained participants, the average recognition rates in the subsetting

trials were 19%, 52%, and 77% for new, weak, and strong words, respectively. These

differences show a clear study-strength effect, which is necessary to ensure a diagnostic

comparison of followup 2-AFC trials (if there is no study-strength effect, then HSDT

reduces to HGTM).

On average, the retained participants engaged in 8.20 followup 2-AFC trials, 5.50

of which involved unrecognized word pairs. Among the latter, an average of 1.10 trials

were 〈WS,SS〉 pairs, 1.20 〈SS,N〉 pairs, and 3.20 〈WS,N〉 pairs. In these follow-up

2-AFC trials, unrecognized weak words were selected over unrecognized new words 60%

of the times (P 〈WS,N〉
WS ; 95% CI = [.57,.63]), whereas unrecognized strong words were

selected over unrecognized new words 68% of the times (P 〈SS,N〉SS ; 95% CI = [.63,.72]).

Moreover, unrecognized weak words were selected over unrecognized strong words only

44% of the times (P 〈WS,SS〉
WS ; 95% CI = [.39,.49]). In order to quantify the discrepancy

between the observed 2-AFC choices and HGTM, we fitted them with a joint binomial

model which assumed that P 〈WS,N〉
WS = P

〈SS,N〉
SS and P 〈WS,SS〉

WS = 1
2 . This model grossly

misfitted the data (G2 = 13.74, p = .0004). In contrast, a joint binomial model

implementing HSDT provided a perfect fit (G2 = 0, p = 1).

Overall, the 2-AFC choices from Experiment 4 suggest that errors are less

egregious in conditions where they are less frequent. These results violate of the

conditional-independence assumption that unites the family of threshold models

encompassed by the GTM, and are consistent with a non-threshold representation.

General Discussion

We began the present investigation by distinguishing theories from the families of

models that instantiate them. This distinction highlighted the fact that models

incorporate a number of choices with respect to different possible properties that can be

assumed to hold. Testing any given model corresponds to an omnibus test of the set of

assumptions defining it. This means that if that model fails to fit the data, it may not
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be apparent which of the postulated properties are violated, and hence which

alternative assumptions could have been made. With this distinction between theories

and models as a backdrop, we pursued the strategy of identifying a set of properties

that are relevant to a large family of SDT models of recognition memory. The choices

with respect to each property partitions the set of possible models into different

sub-families. By identifying and testing each relevant property, it is possible to find

evidence either for or against each sub-family of models. The critical tests conducted

here serve both to support the general framework of SDT as applied to recognition

memory and to identify sub-families of models that are more strongly supported by the

data. We considered five different properties which we discuss in turn.

As our first step, we focused on the existence of a random-scale representation

which is fundamental to all SDT models considered in the literature. A random-scale

representation implies that choice alternatives (i.e., a signal or noise item) are

characterized by a joint distribution in latent variable space. One alternative to this

picture is that the latent-strength distributions are context-dependent. In other words,

the joint distribution changes as a function of the composition of the set of alternatives

under consideration (e.g., Trueblood et al., 2013), a situation that would undermine the

viability of the kind of SDT modeling that is typically found in the literature. We

tested the hypothesis that a random-scale representation is possible by assessing

whether the data from two m-alternative forced choice experiments satisfy the system

of Block-Marschak inequalities (Block & Marschak, 1960; Falmagne, 1978). The

forced-choice data from both Experiment 1 and Experiment 2 were found to be

consistent with these inequalities, supporting (at least in this instance) the existence of

a random-scale representation.

In our second step, we directed our attention to the hypothesis that the

latent-strength distributions being postulated are independent. Latent-variable

independence is a property that underwrites many extant models and enables a set of

crisp and powerful relationships between m-AFC tasks, ranking tasks, and the yes-no

ROC function. If this property does not hold, then more complex models would be
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required to characterize the data. We applied a direct test of latent-variable

independence to the forced-choice data from Experiments 1 and 2. In Experiment 2, we

also invoked the aforementioned relationships between the different tasks and the yes-no

ROC function, and established an additional predictive test. Overall, the results were

consistent with the assumption that recognition judgments can be successfully

described by a SDT model assuming independent latent-strength variables.

In our third step, we were concerned with the requirement that the likelihood

ratio of latent signal and noise distributions is monotonically increasing. This property,

likelihood-ratio monotonicity, which is often assumed but rarely tested, is formally

equivalent to stating that the yes-no ROC function is concave. We showed that it is

possible to derive a series of implications from likelihood-ratio monotonicity, which take

the form of a set of inequality constraints at the level of signal-ranking or forced-choice

probabilities. More specifically, ROCs are concave if and only if the signal-ranking

probabilities are ordered, such that more egregious errors are less probable than more

moderate errors. The data from both Experiments 1 and 2 were found to be in

agreement with the constraints imposed by likelihood-ratio monotonicity.

Our fourth step concerned the symmetry of the yes-no ROC function. It has been

generally agreed that ROCs in recognition memory are positively asymmetric. However,

this finding might be due to the way latent-strength values are mapped onto confidence

values (e.g., Kellen et al., 2012; Klauer & Kellen, 2010) and/or to a misinterpretation of

the effect of response-bias manipulations (e.g., Van Zandt, 2000). We constructed a

critical test of ROC symmetry that sidesteps all of these issues. The test is based on the

comparison of a traditional m-AFC task with a m?-AFC task. Data from Experiment 3

implementing this critical test were found to be at odds with the hypothesis that the

yes-no ROC function is symmetric. Instead, the data were consistent with the

hypothesis that yes-no ROC functions are positively asymmetric.

Our fifth and final step addressed the way in which the latent-strength

distributions are affected by study-strength manipulations. We contrasted a large

sub-family of threshold models with an alternative sub-family of non-threshold (often
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described as continuous) models. We showed that the conditional-independence

property underlying threshold representations implies a number of equality constraints

at the level of response probabilities. Using a subsetting task in Experiment 4, we were

able to establish a critical test which yielded results that were found to be inconsistent

with a threshold representation.

The SDT modeling approach taken here is so far not a part of most researchers’

toolboxes. We will therefore dedicate the remainder of the general discussion to two

things: First, we will address certain kinds of skepticism regarding the value of

critical-test approaches. Second, we will delineate potential future directions and the

different ways in which the present work may contribute to lines of research where SDT

plays a major role.

Meta-Theoretical Clarifications

One possible reaction to the arguments motivating the critical-test approach taken

here is that they overlook the fact that many researchers are interested in models as a

whole. After all, models – not the theories from which they descend – are what

ultimately comes into contact with data, characterizing them in terms of a number of

well-defined conceptual components (e.g., parameters that modulate a number of

postulated processes or representations). Therefore, when someone argues that a model

MA outperforms modelMB, that is all that is being said, with little or no interest in

the theoretical propositions from which these models stem. When taking this “view

from the trenches”, the concerns we raise may appear somewhat esoteric and out of

touch with a perfectly consistent way of engaging with models in psychology. Moreover,

one could also argue that critical tests often resort to experimental designs that differ

markedly from the ones that are otherwise adopted. Therefore, one would answer

negatively the question of whether or not the failure of modelMA under experimental

design E1 should in any way detract from its successes under experimental design E2.

These criticisms are predicated on a number of misconceptions that are important

to dispel. The best place to begin is the agreement among philosophers and scientists at
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large that the term “modeling” encompasses many different ‘systems of practice’ that

cannot be reduced to a monolithic set of principles, goals, and criteria (see Bailer-Jones,

2009; Chang, 2012). Although this acknowledgement loudly echoes Feyerabend’s (1975)

famous maxim that anything goes, we are always required to make a number of

meta-theoretical commitments. These commitments will allow us to adjudicate what

can be meaningfully stated (see Maraun, 1998). The commitment to consider models

“as a whole” works to prevent us from scrutinizing the specific elements of each model

that drive their respective successes or failures. We can say that modelMA

outperforms modelMB according to some penalized-fit statistic, but we are unable to

directly inquire about which specific properties of each model are driving their

performance.22 Indeed, one can establish a system of practice that only engages with

models as a whole. But this would be an unnecessarily impoverished one, as it would

force us to remain silent in cases where much could be said.

In reaction, one could argue that we are resorting to a straw-man argument, in the

sense that nobody would really defend an embargo on dissecting models. But if that is

the case, then the justification for the above-described reluctance towards the

critical-test approach is undermined. For it is unclear what kind of intellectual

gerrymandering could sustain a system of practices that would permit a more careful

scrutiny of models while at the same time dismissing or downplaying the present focus

on specific properties that demarcate sub-families of models. The importance of

engaging in critical testing becomes obvious as soon as we begin disentangling the

different properties of a model and trying to figure out which ones are doing the leg

work.

Lastly, let us turn to the use of different experimental designs and their inferential

value. Under specific systems of practice, such as the ones found in cognitive

psychometrics (see Batchelder & Alexander, 2013), it is deemed perfectly reasonable to

continuously apply a modelMA to data coming out of experimental design E2 even

22 More formally: LetM be a model that is defined by a conjunction of postulates Pi, . . . ,PN , and let
C be an observational consequence ofM. Empirical verification of C can affect our credence onM as a
whole, however these effects do not necessarily extend to each of the postulates that constitute it, only
to those that contribute to the derivation of C (for discussions, see Rozeboom, 1970, 2008).



FOUNDATIONS OF SDT 63

though its failures with data coming from experimental design E1 are well documented.

The reason being that the cognitive-psychometric goal is not to test theories but to

establish measurement apparatuses with desirable properties that trump their known

shortcomings. For instance, consider the recent applications of streamlined

evidence-accumulation models (e.g., van Ravenzwaaij, Donkin, & Vandekerckhove,

2017): Even though these models make predictions that have long been falsified, they

nevertheless provide a convenient way to characterize differences across groups and

experimental conditions. Outside of cognitive-psychometric system of practice, it is

unclear to us how one could ever justify bestowing a specific experimental design with

some kind of privileged status (beyond experimental knowledge; see Mayo, 1996),

especially if one’s interests lie in the theoretical propositions that underlie the set of

candidate models: On one hand, such a privileged status would effectively discourage

the derivation of novel observable consequences from theories, a fundamental step in

every scientific domain that we can think of. On the other, it would assist in the

development of self-reinforcing relations between models and experiments that

ultimately inhibit the possibility of ‘paradigm-shifting’ developments (see Hacking,

1992).

Boundary Conditions

The present work focused on recognition memory, an area where SDT plays a

major role. An obvious question is whether the same type of critical tests could be

applied in other domains, such as visual working memory (Cowan, 2001; Donkin, Tran,

& Nosofsky, 2014; van den Berg, Shin, Chou, George, & Ma, 2012). The answer is: it

depends. In the case of visual working memory, it is well established that the fidelity of

stimulus representations is negatively affected by increases in stimulus set-size (e.g., van

den Berg et al., 2012). This result indicates that one cannot describe people’s

judgments across set sizes using the same joint latent distribution, which means that

the Block-Marschak inequalities are not expected to hold. However, one could still test

the Block-Marschak inequalities (and perhaps reconstruct yes-no ROCs) in designs
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where the set size is fixed (e.g., Donkin et al., 2014).

Testing SDT in More Complex Designs

The critical tests discussed here only considered two classes of stimuli – signal and

noise. Future work should also consider more complex designs in which multiple classes

of stimuli, such as different types of non-studied items, are considered. Note that these

‘enriched scenarios’ are already covered in the original formulation of the

Block-Marschak inequalities (see (9)). For example, a more complex design would allow

us to test Malmberg’s (2008) conjecture that retrieval processes are adjusted to the

composition of test items, with more recollection-type processes being involved when

most of the non-studied items are extremely familiar and/or similar to the studied

items (see also Heathcote, Raymond, & Dunn, 2006). Such designs could also be used in

more applied domains such as eyewitness identification, where it has been shown that

the introduction of certain types of alternatives (e.g., decoys similar to a suspect) can

affect performance in rather nuanced ways (see Wixted, Vul, Mickes, & Wilson, 2018).

Further critical testing of SDT can also be achieved by revisiting

previously-published studies. For example, Wixted (1992) tested whether 2-AFC choice

probabilities for a number of different stimulus-class pairings satisfy strong stochastic

transitivity (Luce & Suppes, 1965): Let X, Y , and Z denote three distinct stimulus

classes. Choice probabilities satisfy strong-stochastic transitivity if and only if

P
〈X,Y 〉
X , P

〈Y,Z〉
Y ≥ 1

2 implies that

P
〈X,Z〉
X ≥ max

(
P
〈X,Y 〉
X , P

〈Y,Z〉
Y

)
.

Using six different stimulus classes, Wixted (1992) found the data to be consistent with

strong-stochastic transitivity. Hintzmann, Curran, and Caulton (1995) reported similar

results with an experimental design involving a total of eight stimulus classes.

A random-scale representation implies a property known as the triangle inequality
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(Niederée & Heyer, 1997), which is satisfied if and only if

P
〈X,Y 〉
X + P

〈Y,Z〉
Y − P 〈X,Z〉X ≤ 1.

Strong-stochastic transitivity implies the triangle inequality. When dealing with five

stimulus classes or less, the triangle inequality being satisfied is both a necessary and

sufficient condition for existence of a random-scale representation. But this is no longer

the case when dealing with more than five stimulus classes (for an overview, see

Regenwetter, Dana, & Davis-Stober, 2010). This means that the tests conducted by

both Wixted (1992) and Hintzmann et al. (1995) did not include an exhaustive

evaluation of all of the constraints implied by a random-scale representation. They also

did not directly test whether latent-variable independence is violated (Suck, 2002; see

also McCausland & Marley, 2013, 2014). Until recently, a reanalysis of these

previously-published data would have been unfeasible – but recent algorithmic

developments have made the challenge much more tractable (see Smeulders,

Davis-Stober, Regenwetter, & Spieksma, 2019). Future research efforts should be placed

on revisiting these studies.

The Usefulness of Ranking Judgments

Although we did not collect ranking judgments in the present work, researchers

should not overlook the possibility of reconstructing ROC functions from them.

Especially in areas of research where the predominance of confidence-rating ROCs

might raise some concerns. For instance, Rotello et al. (2015) used confidence-rating

ROC data to assess the performance of maltreatment referrals for black and white

children. Instead of confidence ratings, one could reconstruct ROCs based on ranking

judgments (‘please order these cases according to their likelihood of being cases of

maltreatment’). Among other things, one could use such an approach to evaluate

performance in the absence of racial information and/or whether performance is

affected by the separate/joint ranking of black and white children.

Ranking judgments can also play an important role in the study of eyewitness
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identification (e.g., Wixted et al., 2018). Typical paradigms have focused on single

choices that participants may or may not make. Requesting participants to rank

alternatives, even when they do not believe that a suspect is among them, can provide

additional information that is valuable for the theoretical characterization of eyewitness

judgments (see Brewer, Weber, & Guerin, 2020; Carlson et al., 2019).

Confidence-Rating Judgments

Most of the ROCs reported in the literature are based on confidence-rating

judgments (for reviews, see Wixted, 2007; Yonelinas & Parks, 2007). The fact that our

results yield ROCs that are concave and asymmetric is consistent with the

characteristics of ROCs obtained with confidence ratings. However, it would be unwise

to interpret our results as legitimizing the general use of confidence ratings to estimate

yes-no ROCs. Our reluctance comes from the fact that confidence judgments often do

not behave as expected and/or can change the phenomena being studied (see Benjamin

et al., 2013; Brainerd, Nakamura, Reyna, & Holliday, 2017; Kellen & Klauer, 2015;

Miyoshi, Kuwahara, & Kawaguchi, 2018). Also relevant is the way in which confidence

judgments are requested (e.g., one-step versus two-step procedure; see Moran,

Teodorescu, & Usher, 2015; Stephens, Dunn & Hayes, 2019). On a more technical side,

the modeling of confidence-rating judgments often requires auxiliary assumptions that

can affect results (e.g., how response criteria can segment regions of a latent-strength

continuum; see Moran & Goshen-Gottstein, 2015). Given these issues, we think that

further work is necessary to better understand the agreement between performance as

described by SDT and confidence-rating ROCs across a wide range of conditions.

Final Remarks

The present work demonstrated how we can isolate some of the properties

underlying SDT models and directly evaluate them using critical tests. But beyond

providing an empirical foundation for SDT modeling in recognition memory, the present

work demonstrates the value of critical-test approaches. One of the merits of critical

testing is its ability to establish a clear relationship between theoretical statements and
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data. This contrasts with the model-fit comparisons that are typically found in the

literature at large, in which the failure of a given model (rather than a family of

models) is often discussed without an explicit reference to the theoretical properties

found to be at odds with the data. Our hope is that the present work encourages

researchers to expand their toolboxes and consider going beyond traditional

model-comparison practices.
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