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ABSTRACT

Objective: The aim of the study was to transform a resource of linked electronic health records (EHR) to the

OMOP common data model (CDM) and evaluate the process in terms of syntactic and semantic consistency

and quality when implementing disease and risk factor phenotyping algorithms.

Materials and Methods: Using heart failure (HF) as an exemplar, we represented three national EHR sources

(Clinical Practice Research Datalink, Hospital Episode Statistics Admitted Patient Care, Office for National Statis-

tics) into the OMOP CDM 5.2. We compared the original and CDM HF patient population by calculating and pre-

senting descriptive statistics of demographics, related comorbidities, and relevant clinical biomarkers.

Results: We identified a cohort of 502 536 patients with the incident and prevalent HF and converted 1 099 195

384 rows of data from 216 581 914 encounters across three EHR sources to the OMOP CDM. The largest per-

centage (65%) of unmapped events was related to medication prescriptions in primary care. The average cover-

age of source vocabularies was >98% with the exception of laboratory tests recorded in primary care. The raw

and transformed data were similar in terms of demographics and comorbidities with the largest difference ob-

served being 3.78% in the prevalence of chronic obstructive pulmonary disease (COPD).

Conclusion: Our study demonstrated that the OMOP CDM can successfully be applied to convert EHR linked

across multiple healthcare settings and represent phenotyping algorithms spanning multiple sources. Similar

to previous research, challenges mapping primary care prescriptions and laboratory measurements still persist

and require further work. The use of OMOP CDM in national UK EHR is a valuable research tool that can enable

large-scale reproducible observational research.
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LAY SUMMARY

Doing research on health data from different sources is challenging because often information is stored in different ways and using varying for-

mats. As a result, researchers need to spend substantial amounts of time to harmonize such data before analyses can be done. A potential way

to address this challenge is to convert data to a common data specification shared across all sources. In our study, we converted a large data

set of electronic health data to the OMOP common data model (CDM). We evaluated the conversion by examining the original and converted

data and calculating statistical measurements on various important clinical features. We observed a good agreement between the datasets and

converted the majority of information in the data with very low information loss. Our research demonstrates how CDM approaches can be

used to convert electronic health data from primary care and hospitalizations to a common format that can enable research to improve human

health and healthcare.

BACKGROUND AND SIGNIFICANCE

The combination of electronic health record data with large biobank

cohort studies (eg UK Biobank,1 eMERGE2) has scaled the breadth

and depth of genetic discoveries to identify hundreds of thousands

of novel associations between variants and phenotypes (and endo-

types) derived from EHR through analyses such as phenome-wide

association studies (PheWAS).3 EHR data however pose significant

challenges as they are collected as part of clinical care or for admin-

istrative purposes and not research. Information contained in EHRs

is often stored in bespoke formats, using a range of controlled clini-

cal terminologies and is of variable data quality.4 These challenges

are amplified when using data from multiple EHR sources that lack

a common data definition standard, and a significant amount of pre-

processing is required to harmonize and transform data into a data

set that can then be integrated with genetic discovery pipelines.

Common data models (CDMs) can potentially address these chal-

lenges by harmonizing EHR data across multiple sources under a

standardized format.

CDMs, such as the OMOP CDM,5 managed by the Observa-

tional Health Data Science and Informatics (OHDSI) community, or

the PCORNet CDM,6 enable researchers to integrate and analyze

information contained in disparate observational data sources by

mapping data (and the associated vocabularies used to record that

data) into a common format with a robust specification. The

OMOP CDM encapsulates definitions for patients, healthcare pro-

viders, clinical encounters, and healthcare related concepts (such as

a diagnosis or a laboratory measurement) recorded during those

encounters. OMOP CDM has been widely used to transform large

observational EHR databases. In the United States and elsewhere,

researchers have converted EHR and claims data to the OMOP

CDM to enable federated analyses of disparate sources of informa-

tion.7,8 In the United Kingdom, the Clinical Research Practice Re-

search Datalink (CPRD)9 and The Health Improvement Network

(THIN)10 have been converted to the OMOP CDM. In both of these

cases, extensive transformations were performed to map bespoke

data provider formats and UK-specific clinical terminologies and

researchers evaluated the quality of the CDM in terms of replicating

existing epidemiological analyses performed in the raw data sources.

Previous studies however have been mostly limited to disease

phenotypes from single sources (eg only primary care EHR) and the

ability of the CDM to adequately transform EHR spanning multiple

sources (eg primary care and hospitalizations and mortality) has not

been fully evaluated. Linked EHR enable researchers to recreate the

longitudinal patient pathway spanning across healthcare settings

and to obtain rich longitudinal phenotypes on risk factors and cova-

riates leveraging multiple sources.11,12 The use of multiple data

sources however in EHR phenotyping algorithms introduces a

higher level of complexity in terms of data volume, variability and

consistency,13 all of which may be potentially addressed by mapping

the source data into the OMOP CDM.

The aim of this study was to evaluate the feasibility of converting

and representing phenotyping algorithms which utilize EHR from

linked primary care, hospitalization records and a mortality registry

from the United Kingdom into the OMOP CDM. We evaluate the

conversion process by calculating and comparing descriptive statis-

tics on syntactic (eg percentage of terms mapped from source con-

trolled clinical terminologies) and clinical (eg prevalence of related

comorbidities) metrics. We use heart failure (HF) as a case study as

it exemplifies the challenges and opportunities of working across

EHR sources spanning multiple healthcare settings.

METHODS

OMOP common data model
We used version 5.2 of the OMOP CDM which consists of 24 data

tables organized in four top-level domains: clinical, derived ele-

ments, health system, and health economics. Clinical data tables

(n¼14) hold core data on patient demographics, clinical events (eg

diagnoses, laboratory measurements, medication prescriptions, and

surgical procedures), visit occurrences and observation periods.

Four clinical tables were not populated since the source EHR did

not contain specimen information or free text data. We preprocessed

clinical events such as drug exposure periods and stored information

as derived elements (n¼5). The health system data tables (n¼3)

provide information on healthcare providers associated with the

healthcare events held in the clinical data types. Finally, the health

economics data tables (n¼2, none were populated) contain cost in-

formation and details on enrollment of patients in health benefit

plans. More information on the CDM specification can be found on

the OHDSI repository14

The basic units used to express clinical information across all do-

main tables are called “concepts” and have a unique identifier

within the OMOP CDM (we will denote CDM concepts as Con-

cepts from this point onwards in the manuscript). Concepts can rep-

resent broad disease categories (eg “Cardiovascular disease”),

detailed clinical elements (eg “Myocardial infarction of the antero-

lateral wall”), or modifying characteristics and attributes that define

Concepts at various levels of detail (eg severity of disease). The

CDM contains tables of standardized Concepts which are derived

from international standards such as SNOMED-CT, RxNorm,

LOINC, and a mapping between Concepts and terms in each con-

trolled clinical terminology are provided, and we utilized the

OMOP vocabulary version dated 01/12/2017. An extensive online

browser of the OMOP vocabularies is available by using

ATHENA15

CALIBER EHR resource
The CALIBER resource16,17 is a library of phenotyping algorithms

and methods based on three national EHR sources. The CALIBER

resource curates rule-based EHR phenotyping algorithms defining

2 JAMIA Open, 2021, Vol. 00, No. 0

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

iaopen/advance-article/doi/10.1093/jam
iaopen/ooab001/6127557 by guest on 16 February 2021



(1) disease status, onset, severity, (2) biomarker measurements (eg

neutrophils, blood pressure, body mass index18–20), and (3) lifestyle

risk factors (eg alcohol consumption, smoking, ethnicity21–23). A

particular focus of the platform has been reproducibility and porta-

bility.24 CALIBER phenotypes are curated in an online open-access

portal for researchers and clinicians under an open-access license.25

CALIBER phenotypes have been used in >100 observational epide-

miology studies including recent studies investigating direct and in-

direct excess deaths due to Coronavirus disease (COVID-19).26,27

The baseline cohort is composed of a national primary care EHR

database, the Clinical Practice Research Datalink (CPRD).28 CPRD

contains longitudinal primary care data (extracted from the Vision

and Egton Medical Information Systems clinical information sys-

tems) on diagnoses, symptoms, laboratory tests, drug prescriptions,

vaccinations, blood tests, and lifestyle risk factors. These are col-

lected during consultations with a primary care physician and are ir-

respective of disease status and hospitalization. Data are recorded

using Read terms V2 (approximately 100 000 terms which are a

subset of the International Health Terminology Standards Develop-

ment Organization SNOMED-CT [Systematized Nomenclature of

Medicine Clinical Terms]).29 Prescriptions are recorded using Gem-

script (a commercial derivative of the NHS Dictionary of Medicines

and Devices [DMþD]) (approximately 67 000 terms).30 CPRD data

have been shown to be representative of age, sex, mortality, and eth-

nicity and of high diagnostic validity.22,31–33

Hospital Episode Statistics (HES)34 contains administrative data

on diagnoses and procedures generated during hospital admissions.

Diagnoses are recorded using the ICD-10 system and procedures us-

ing the Office of Population Censuses and Surveys Classification of

Surgical Operations and Procedures, Fourth Revision (approxi-

mately 8500 terms, similar to Current Procedural Terminology35).

Up to 20 primary and secondary discharge diagnoses are recorded

per finished consultant episode. The Office for National Statistics

(ONS) contains socioeconomic deprivation using the Index of Mul-

tiple Deprivation36 and physician-certified cause-specific mortality

(underlying and up to 14 secondary causes using International Clas-

sification of Diseases-Ninth Revision [ICD-9] or ICD-10).

Study population
We identified HF patients by extracting diagnoses in primary care

(CPRD), hospitalizations (HES), and death certificate information

(ONS) using a previously defined and validated EHR phenotyping

algorithm. Briefly, the diagnosis of HF was based on Read codes for

CPRD data and International Classification of Diseases (ICD)-9 or -

10 codes in HES and ONS which are created using a systematic ap-

proach described elsewhere in detail.25 The algorithm is available

online (http://portal.caliberresearch.org/) and described in detail

elsewhere.25–27

Patient follow-up started in patients diagnosed with incident

heart failure from 1st of January 1998 onwards and ended with (1)

patients’ survival and patient morbidity as outcome, (2) death in

CPRD or ONS, (3) transfer out of GP practice in CPRD, (4) study

end date (31 July 2016), (5) last collection date from the practice

and end of data collection from HES and ONS, whichever came

first. We excluded patients under 18 years of age and with less than

a year of follow-up prior to HF diagnosis.

Transforming CALIBER EHR to OMOP CDM
We created a bespoke Extract Transform Load (ETL) process which

was composed of two parts: syntactic and semantic mapping (Fig-

Figure 1: Overview of the transformation process of raw electronic health records linked from three national sources to the OMOP common data model. The

main steps of the process are the following: (A) Raw data from primary care (CPRD), hospitalizations (HES) and mortality (ONS) are migrated and loaded in a

Postgres relational database system. (B) White Rabbit summary reports are generated and inform the design of the ETL pipeline; (C) Working with experts of the

source data, syntactic mappings are generated using the “Rabbit In a Hat” tool and mappings between vocabularies are created using the “Usagi” tool; (D) In an

iterative manner, raw data are passed through the ETL pipeline, mapping quality is assessed using the “Achilles” tool and bespoke queries/validation metrics

and the ETL mappings are refined; (E) the final data set is stored in a Postgres relational database and is queried to produce datasets for statistical analyses.

CPRD, clinical practice research datalink; HES, Hospital Episode Statistics; ONS, Office for National Statistics; OMOP, Observational Medical Outcomes Partner-

ship (OMOP); CDM, common data model; ETL, extract transform load.
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ure 1). The syntactic ETL process mapped data fields in CALIBER

to CDM fields while the semantic mapping process created map-

pings between controlled clinical terminologies and CDM Concepts

or mapped data source specific fields (eg smoking-related informa-

tion such as packs per year and smoking status recorded during pri-

mary care consultations) to CDM concepts. Using the OHDSI

WhiteRabbit and Rabbit in a Hat tools, we documented the map-

pings between tables (eg, the patient table in CPRD mapped to the

person table in the CDM) and between columns (eg the patid col-

umn which contains a unique pseudoidentifier in CPRD mapped to

the person_id column in the CDM).

We used existing OHDSI vocabulary mappings to map the con-

trolled clinical terminologies used in the source EHR data sources

(ie Read V2, OPCS-4, ICD-10) to OHDSI standard Concepts which

are based on SNOMED-CT. Each source term was associated with

an OMOP CDM concept_id identifier which in turn was associated

with a SNOMED-CT term (Supplementary Table S3). The OMOP

CDM system table source_to_concept_map contains information on

mappings between source concept_id and target concept_id. We fol-

lowed a similar methodology for mapping the units of measure-

ments recorded in CPRD to the Unified Code For Units (UCUM)

vocabulary.37

We mapped additional structured data fields in CPRD which

were recorded using a bespoke lookup system (entity type fields

which in turn encoded up to eight different types of information) to

the LOINC terminology by using an existing mapping previously

created by Janssen Pharmaceutical Research & Development, LLC

(JNJ_CPRD_ET_LOINC available at https://github.com/OHDSI/

ETL-CDMBuilder). Using this mapping, individual fields across en-

tity types were mapped to a single LOINC term (and hence a unique

concept_id) in the CDM. Medications were mapped from Gemscript

terms to DMþD and from DMþD to RxNorm.

ETL scripts can be found in reference 38.

Clinical covariates
Using previously validated EHR phenotyping algorithms [11,20,28],

we extracted information from all sources (CPRD, HES, and ONS)

on (1) demographics, (2) lifestyle risk factors, (3) clinical measure-

ments and biomarkers (body mass index, total cholesterol, systolic

and diastolic blood pressure, platelet count, total white blood cell

count, albumin, creatinine, hemoglobin), (4) HF-related comorbid-

ities (atrial fibrillation, chronic obstructive pulmonary disease, acute

myocardial infarction, hypertension, cancer (any type)), and (5) re-

lated CVD medication (beta-blockers, loop diuretics, ace inhibitors).

We translated the existing phenotyping algorithms into the target

list of OMOP CDM Concepts using a similar approach described

previously.

Validation and evaluation
Validation of the final transformed data was performed using the

Achilles OHDSI tool (https://ohdsi.github.io/Achilles/), which per-

forms about 160 validation checks on the conformance, complete-

ness, and plausibility of the data in the OMOP CDM. Multiple

iterations of conversion and validation were performed until all vali-

dation checks passed. In addition, we utilized Achilles to create a

dashboard of visualizations of key data source characteristics (eg

demographics and most occurring clinical events) and inspected

them for consistency and clinical plausibility after each transforma-

tion iteration and in collaboration with clinical colleagues.

We validated the syntactic mapping by examining the source

data and the target tables (and their attributes) for consistency. We

validated the semantic mapping by creating, generating, and com-

paring a set of predefined metrics across both original data and

CDM converted data. Specifically, we described and compared the

raw and OMOP CDM datasets using descriptive statistics. For clini-

cal measurements, medians of measured values and their standard

deviation were compared. For other metrics, the numbers/percen-

tages of patients identified with particular conditions were com-

pared.

RESULTS

We successfully converted 1 099 195 384 rows of data across three

national EHR sources to the OMOP CDM. We mapped 109 772

terms across five controlled clinical terminologies used in the source

EHR data for diagnoses, procedures, observations, measurements,

deaths, devices, and medication to CDM Concepts (Table 1). Specif-

ically, we mapped 66 245 Read V2 terms, 9187 ICD-10 codes, 495

ICD-9 codes, and 8428 OPCS-4 codes. We observed incomplete

mappings in terms related to drug codes where 62.5% of Gemscript

codes were mapped successfully to RxNorm (via DMþD).

Using the raw primary care consultations (CPRD) and hospitali-

zation tables (HES), we generated 216 581 914 (211 209 045 for

CPRD þ 5 372 869 for HES) unique encounter events (stored in the

OMOP CDM Visit Occurrence table). Specifically, in CPRD, we

created a unique visit occurrence identifier by combining the nu-

meric primary care consultation identifier, the numeric patient iden-

tifier, and the date of consultation. In HES, we uniquely identified

visits by combining the hospitalization identifier, the numeric pa-

tient identifier, and the date of admission to the hospital. A total of

Table 1: Mapping coverage for disease and drug clinical terminologies used across the entire cohort in raw CPRD, HES, and ONS and con-

verted to the OMOP CDM standard dictionary

Total unique terms in

terminology

Total mapped

terms (%)

Unique terms

used in events

Used mapped

terms (%)

Total unique

events

Total excluded

events (%)

Total mapped

events (%)

Read 111 163 82.13 67 886 97.58 320 328 788 0.22 97.42

ICD-9 6519 99.98 495 100 13 130 0.92 100

ICD-10 17 934 85.85 10 158 90.44 31 905 144 0.01 99.09

OPCS-4 11 000 99.01 8474 99.45 8 453 813 0 99.88

Drugs 66 970 60.09 40 647 62.53 264 589 509 1 92.67

Units 287 45.29 22 72.72 27 036 1.55 99.95

Entity types—laboratory results 259 51.35 245 54.28 125 581 411 0.59 54.06

Entity types—test 324 97.22 324 97.22 151 645 201 12.24 98.16
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88 988 consultations and 63 hospitalizations were not mapped dur-

ing the ETL due to missing consultation/admission dates.

We identified 502 723 patients with the incident and prevalent

HF recorded across three EHR sources (CPRD, HES, and ONS) in

the original data (Table 2). For these patients, we extracted all data

across 20 source tables and performed the conversion to the OMOP

CDM resulting in a cohort of 502 367 patients. The observation pe-

riod start date was defined as the greatest of patient registration date

or the date a practice started submitting research-quality data (de-

fined as Up To Standard date by the CPRD). We defined the obser-

vation period end as the earliest of (1) the date the patient

deregistered from the primary care practice, (2) the date the patient’s

practice last submitted data, (3) the patient’s death date defined

from the national mortality register (ONS), or (4) the study end date

(08/03/2016). A number of patients (n¼356) were rejected from the

ETL pipeline during the conversion to the CDM as the raw data

contained inconsistent observation period information (the observa-

tion period start date preceded the observation period end date).

We extracted and compared (Tables 2 and 3) information on

clinical comorbidities, lifestyle risk factors, and key demographic

fields between source and converted data. Specifically, we mapped

2217 Read, ICD-10, ICD-9, and OPCS-4 terms used across existing

phenotyping algorithms to 1266 unique OMOP CDM Concepts.

We investigated the accuracy of comorbidities’ mappings for each

source terminology separately (Supplementary Table S2). We ob-

served the biggest inconsistency in comorbidities definitions encoded

by the Read ontology. Inconsistencies were further quantified by ex-

amining the unmapped source and incorrectly mapped target en-

counter events.

Data quality assessment based on database profiling summary

statistics (generated using Achilles Heel), uncovered four types of

data quality and consistency issues: records outside valid observa-

tion period in condition (27.8%), visit (12.6%), drug exposure

(12.5%), and death records (38.3%); invalid person_id in visit

(7%), condition (4.3%), and drug exposure (11.4%) records; invalid

visit_id in drug exposure records (19%) and invalid start and end

Table 2: Cohort summary and comparison between the entire cohort of raw CPRD, HES, and ONS data the OMOP CDM cohort

CPRD-HES-ONS source data OMOP CDM data

n 502 723 502 367

Median follow-up (IQR) 9.56 (10.39) 9.56 (10.39)

Demographics

Female (%) 52.39 52.4

Caucasian (%) 90.81 90.46

Most deprived fifth (%) 15.18 15.18

Lifestyle

Smoker (%) 324 755 (64.59) 331 445 (65.97)

Never smoker (%) 155 995 (31.03) 149 569 (29.77)

Clinical measures mean (SD) or median (IQR)

BMI (kg/m2) 28.9 (6.44) 28.9 (6.44)

SBP (mmHg) 143.07 (22.42) 143.07 (22.42)

DBP (mmHg) 80.05 (12.19) 80.05 (12.19)

Platelets 2.39 (3.53) 2.39 (3.53)

Total WBC counts 7.49 (2.88) 7.49 (2.88)

Albumin 40.71 (4.5) 40.71 (4.5)

Creatinine (mmol/L) 102.76 (58.09) 102.76 (58.09)

Hemoglobin 129.92 (18.22) 129.92 (18.22)

Medication

Loop diuretics (%) 42.2 42.2

ACE-I (%) 50.2 50.1

Beta-blockers (%) 48.3 48.2

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood cell count; ACE-I, angiotensin-converting enzyme

(ACE) inhibitors; IQR, interquartile range

Table 3: Overall comorbidity comparison between the entire cohort of raw CPRD, HES, and ONS data the OMOP CDM cohort

Comorbidity

Unique patients % (n)

Unmapped patients % (n) Incorrectly mapped patients % (n)Original OMOP CDM

AF 35.39 (177 954) 35.40 (177 866) 0.05 (91) 0.001 (3)

COPD 49.55 (249 119) 53.33 (267 925) 0.005 (13) 7.02 (18 819)

T2DM 23.86 (119 968) 24.09 (121 059) 0.23 (280) 1.13 (1371)

AMI 20.29 (102 020) 20.31 (102 028) 0.01 (11) 0.02 (19)

HT 65.84 (331 011) 65.86 (330 884) 0.041 (138) 0.003 (11)

Cancer (all types) 26.86 (135 047) 27.34 (137 380) 0.048 (65) 1.74 (2398)

AF, atrial fibrillation; COPD, chronic obstructive pulmonary disease; T2DM, type 2 diabetes, AMI, acute myocardial infarction; HT, hypertension.
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date (end date < start date) in visit records (33 records out of

�216M).

Records with a date found as to be outside observation periods

were fully mapped and could cause potential issues only with tools

operating over OMOP CDM, for example, Atlas. Direct validation

described in this paper is not affected by these records, which were

given by the source data quality and could be reduced by modifica-

tion of the formula for observation period calculation. All reported

invalid person_id errors were caused by the records related with 356

unmapped patients. Invalid visit_id errors were caused by an incon-

sistency found in the source data since not all diagnosis/prescription

records (in the therapy/clinical CPRD tables) had a corresponding

record in the primary care consultations table (CPRD consultation

table). A detailed overview of the most frequently utilized and

mapped terms from the source vocabularies is provided in Supple-

mentary Tables 4, 5, and 6.

DISCUSSION

In this study, we extracted and mapped a cohort of 502 723 HF

patients derived from three national EHR data sources spanning pri-

mary care, hospitalizations, and mortality into the OMOP CDM.

We performed syntactic and semantic validation of the resulting

data set by repeating a series of descriptive analyses in both raw and

converted datasets and analyzed similarities and differences between

data sets.

Diagnostic and procedure codes from the Read, ICD-10, ICD-9,

and OPCS-4 terminologies were mapped with a coverage between

82% and 99% (Table 1). The impact of mapping coverage on the

total number of mapped events was minimal as the percentage of

mapped events was between 97.4% and 100%. In line with previous

research, primary care prescriptions in the CPRD which are

recorded using a bespoke vocabulary were challenging to map to

CDM Concepts with only 60% mapped. Despite this however,

�93% of all prescription records in the source data were success-

fully mapped which indicates that the drugs which were not mapped

to Concepts are very infrequently used.

The main reason leading to a reduced proportion of mapped

medications prescribed in the source data was the lack of equivalent

concepts, that is, the source concept is either too specific or too gen-

eral to be directly mapped to a destination concept. In Supplemen-

tary Table S7, we provide a breakdown of the top 10 (based on

frequency) unmapped drugs all of which do not have a direct, valid

mapping to RxNorm Extension. For example, “aqueous cream” is

used as an active substance to multiple products but does not exist

as a standalone product and similarly, Gaviscon products exist only

for specific volumes and concentrations. This is likely due to the fact

that 80% of the medications prescribed in UK primary care are non-

proprietary (generic) versions rather than the commercial branded

equivalents. A potential solution to address this challenge would po-

tentially involve creating bespoke mappings linking the prescrip-

tion’s active substance to a more generic target concept. This would

be a manual process with significant resource requirements and as

such as not attempted at this stage given the fact that the current

mapping covered 93% of prescription records and the low impact of

omitting the unmapped prescriptions from our study.

Structured data fields (entity types) capturing clinical examina-

tion findings (derived from the CPRD additional table) and labora-

tory and other miscellaneous test results (derived from the CPRD

test table) were the most challenging to map. Specifically, only 54%

of measurement-related terms and events were successfully mapped

mainly due to two reasons. Firstly, the mapping transformed the

original wide format to a long format. An entity type can have up to

eight distinct structured data fields attached to it—for example, the

entity type for blood pressure has eight data fields: diastolic blood

pressure, systolic blood pressure, korotkoff sounds, time of measure-

ment, laterality, patient posture, and cuff position. The majority of

these however do not contain any data (as they are not systemati-

cally captured by the primary care physician). For example, the time

of the blood pressure measurement is only defined in 4.7% of the

rows in the source data (Supplementary Table S8). Similarly, for lab-

oratory tests, entity type 467 “Procedures, specimens and samples”

accounts for approximately 55% of unmapped rows but the major-

ity of records associated with it contain “0” as a value which is used

to denote “value not entered.” As a result, during this wide-to-long

conversion, the number of unmapped events generated during the

conversion ETL is artificially inflated given that these fields are miss-

ing in the raw data. Secondly, not all concepts captured by the struc-

tured data fields had an equivalent mapping in LOINC. For

example, LOINC does not seem to have an equivalent concept for

Korotkoff Sounds nor concepts that adequately capture administra-

tive tasks around repeat prescriptions such as the date of the next re-

view or the staff member due to review these medications. Similar to

the way medications were mapped while we did not add bespoke

mappings further examination could potentially increase coverage.

Despite these reasons, we did not observe a negative impact on the

precision of the standard tests and measurements we mapped for

our study (Table 2).

For both medications and clinical findings/laboratory results,

creating bespoke mappings in collaboration with clinicians and do-

ing further ETL iterations could potentially lead to higher mapping

coverage percentages. With regards to medications, mapping based

on the active substance rather than the product name could poten-

tially alleviate some of the mismatches between UK and US pharma-

ceutical products that caused some mappings to fail. For clinical

examination findings and laboratory tests, the issue is more complex

as a large percentage of the unmapped records is due to missing data

rather than failed mappings. Prioritizing specific entity types based

on study requirements combined with missingness could lead to a

more manageable list of fields that require bespoke mappings. In

both cases however, further iterations would require significantly

more human and computational resources.

In total, there were 1165 ICD-10 codes which were not mapped.

The majority of unmapped ICD-10 codes were from the W00-X59

“Other External Causes of Accidental Injury” chapter—specifically,

502 codes were from the “W00-W19 Falls” group and 466 codes

spanned both W and X groups, for example codes from groups X61

and X60 associated with intentional self-harm. Supplementary Ta-

ble S10 provides the top ten most frequent unmapped ICD-10 codes

and the overall percentage of unmapped events that are associated

with each code. Interestingly, these top ten codes all do not exist in

the ICD-10 vocabulary. The first three characters are valid ICD-10

codes, but the last digit is not. For example, while “W19” exists in

the ICD-10 version that the UK utilizes, W19.9 does not and there-

fore a mapping to a standard concept was not available. An alterna-

tive mapping strategy would be to map these codes first to their

category (eg W19.0 to W19) and map that to a standard OMOP

concept. However, this was not performed at this stage given that it

could potentially lead to information loss by mapping a specific

term to a broader parent term. Also the overall prevalence of these

codes in the raw data is low and the impact of not including these in

the study was assessed to be minimal as neither chapters are related
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to HF—two codes (W19.0 Unspecified fall home while engaged in

sports activity and W19.9 Unspecified fall home during unspecified

activity) accounted for approximately 50% of unmapped events and

related to unspecified falls at home.

We observed good overall consistency when comparing key de-

mographic, lifestyle risk factors, and related clinical comorbidities

between the original raw data from three EHR sources and the

CDM data. Despite the worst vocabulary coverage, the best results

were observed in clinical measurements as the mapping was binary.

Inconsistency in demographics details was observed in the patient’s

ethnicity classification which is recorded in two separate source data

(CPRD and HES). However, only HES ethnicity records were used

inside the ETL process, which caused a difference between the

source and target in Caucasians (�0.35%).

The largest discrepancies were comorbidities were found in

COPD, cancer status, and smoking information but the difference

for these remained below 4% between the source and target events.

Differences were mainly caused by incorrect mappings which in

term translated to broader disease phenotypes. For example, in

COPD, multiple Read codes used in CPRD were translated to the

same Concept including terms which were not originally presented

in the phenotyping algorithm (Supplementary Figure S1).

In this work, we chose HF as an exemplar as it showcases the

strengths of national linked electronic health records but the find-

ings we present here are generalizable to other conditions defined in

similar data. For example, the HF population we defined includes

information on related comorbidities (eg cancer), biomarkers (eg

blood pressure, white blood cells), medications (eg beta-blockers)

which can be used as a guide for researchers to define comparable

clinical populations. HF as a disease itself is defined by diagnoses

across multiple sources (eg primary care, hospitalizations, and mor-

tality) and the approach illustrated here can serve as a template for

defining other diseases in a similar manner. Other diseases however

might require some manual mappings to be created, for example to

extract specific biomarker measurements or medications which were

not mapped in our ETL workflow but that should be relatively

straightforward to do.

CONCLUSIONS

In this study, we demonstrated how the OMOP CDM can be suc-

cessfully used to implement existing EHR phenotyping algorithms

using multiple EHR sources to the CDM. Our results showed that

translated phenotyping algorithms and the population derived from

the displayed similar results between the source and CDM datasets.

Widespread usage of the CDM, especially in commonly used data-

sets, can enable reproducible research at scale at lower costs.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.
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