
  

  

Abstract— A path planning system based on the Informed 

RRT* path planner was developed to enable an unmanned aerial 

vehicle (UAV) to avoid moving obstacles in a cluttered 3D 

environment. For congested environments such as a 

construction site, path planning systems that help a UAV to 

safely manoeuvre around dynamic objects and potential 

co-workers operating within the same workspace is needed.  

Instead of using a general RRT* path planner approach which 

will generate a sinuous path, we proposed a flexible approach to 

increase the convergence of our path planner by re-defining the 

search space based on 2D Informed RRT* path planner. General 

RRT* has a relatively low convergence speed to optimize its 

original solution. By using motion tracking cameras, we 

obtained real-time feedback of the UAVs pose as well as map 

structuring and obstacle positions. With this setup, the 

performance of our proposed path planning approach was 

assessed using a set of diverse scenarios to compare against 

general RRT* in convergence rate, quality of solution and ability 

to handle multiple obstacle situation.   

I. INTRODUCTION 

Using swarms of unmanned aerial vehicles (UAVs) to 

assist and capture information to aid co-working across a large 

volume is widely being explored across a range of sectors [1]. 

For example, the potential benefits of using UAV’s within a 

construction site include: reduced construction time via 

continuous monitoring, in addition to supporting safer 

construction methods in hard-to-access and dangerous 

conditions such as working at height [2] and post-disaster 

reconstruction [3]. Construction sites are interesting 

environments for testing UAV capabilities due to their scale 

and need to have other actors co-working within the same 

working volume; making protocols for safe operation a critical 

requirement. Further, automation of these protocols is 

desirable to cope with the complexity of tasks being performed 

concurrently, and the ability to use these methods whilst 
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controlling multiple robotic systems. Therefore, to use UAVs 

within this context, in the first instance we must consider the 

implementation of appropriate path planning with quick 

reactions to handle potential scenarios that occur when 

working within cluttered and highly dynamic environments.  

Rapidly exploring random tree (RRT) is one of the main 

sampling-based path planners as it has a relatively high speed 

to generate solution in large and high dimensional search 

spaces [4]. RRT* obtains the global effective solution by 

randomly building a space-filling tree and efficiently searching 

non-convex, high-dimensional spaces. Further, RRT* provides 

an optimal solution through repeating the search process if the 

time tends to infinity [5]. However, repeating the search 

process and asymptotically finding the optimal solution is 

inefficient and not inconsistent with their single-query nature 

[6]. Hence, 2D Informed RRT* [7] has been proposed 

demonstrating improved convergence rate, final solution 

quality, the ability to find difficult paths decrease in the 

dependence on state dimension, and the size of the search 

space by generating an ellipsoidal subset of the planning 

domain. To extend these results for a 3D environment, a new 

method to generate 3D subset of path planning domain needs 

to be defined instead of the ellipsoidal subset in 2D 

environment as it does not consider the Z-dimension and can 

only surround the path in X-Y plane.  

In this paper we show an effective method to tackle the 

problem occurred when transforming Informed RRT* path 

planning from 2D environment to 3D environment. We show 

that our 3D Informed RRT* path planner with an oblique 

cylinder subset in 3D space achieves a higher convergence rate 

and better solution than general RRT* when comparing them 

in path length and search space during same time interval. We 

also show that 3D Informed RRT* works more efficiently 

when dealing with multiply obstacle situations when compared 

with general RRT*.  

In strict assumptions (i.e., no obstacles) 2D Informed 

RRT* improves the linear convergence to reach the optimal 

solution by generating an ellipsoidal subset of the planning 

domain [7]. In 3D Informed RRT*, solution is divided into two 

situations: 1. initial position is equal with target position in any 

dimension, the question degenerate to the 2D path planning, 

path planner generates ellipsoidal subset of previous path 

planning domain; 2. initial position and target position is not 

equal in any dimension, path planner generates oblique 

cylinder subset. Altogether, the supported experiments 

demonstrate a clear improvement of 3D Informed RRT* 
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compared with general RRT* in search space, path length, 

calculation time and number of branches [8]. 

To demonstrate 3D Informed RRT* is an effective path 

planner for UAVs in dynamic environments, this paper is 

organized as follows. Section II presents a background 

including problem definition and math analysis about 

optimizing Informed RRT* path planner in 3D environment. 

Section III presents the system architecture of our UAV path 

planning system based on 3D Informed RRT*. Section IV 

presents the experiments designed for comparing the 

performance of UAV path planning system based on Informed 

RRT* and RRT* in 3D environment. Section V concludes the 

paper with a discussion of the path planing system and some 

related ongoing work.  

II. BACKGROUND 

A.   Problem Definition 

The definition of this path planning optimizing problem is 

similar to S. Karaman and E. Frazzoli [9]. In the definition of 

[9] and our problem, let X   Rn be the n-dimensional space 

for our path planning problem. Let Xobs   X be the space in 

which the UAV will collide with obstacles. We should pay 

attention to the change of Xobs. As the path planning space 

should be collision free so Xfree =  X \ Xobs. Let the initial 

position and target position of our UAV belong to the collision 

free space Xstrat   Xfree and  Xtarget   Xfree.   

Except the space state, we defined an optimal path σ* 

which optimizes the cost function c and generates a feasible 

path between Xstrat and Xtarget [10]: 

σ* = arg min{c(σ) | σ(0) = Xstrat, σ(1) = Xtarget,  s  [0, 1], 
σ(s) = Xfree}, where R  0 is the set of non-negative real 
numbers. 

Then ƒ(x) is defined as the global cost of the path between 

the initial position and target position at the same time pass the 

position x.  The subset which can optimize the current path is 

defined as: 

Xƒ  = {x  X | ƒ(x) < cbest}. 

Informed RRT* is focusing on increase the convergence 

rate which can be transform into increasing the probability of 

adding a random state from Xƒ [10]. Because ƒ(·) is unknown 

in common situation, we use a heuristic function f


(·) as an 

estimate for our optimizing problem. Informed RRT* path 

planner calculates X
f
  explicitly and samples from it directly 

[9]. Through this way, Informed RRT* could work effectively 

without consider the size of planning problem.  

B. 3D Informed RRT* 

The ellipsoidal informed subset in 2D Informed RRT* has 

been proved to improve the convergence rate of the subset in 

[11]. In this paper, we proposed an effective way to extend the 

ellipsoidal informed subset from 2D into 3D. Inspired by 2D 

Informed RRT* directly sample in the ellipsoidal subset, 

directly sample in an oblique ellipsoid or an oblique cylinder 

can be feasible. The formulation of defining an oblique 

ellipsoid has high complexity as it will change the definition 

of standard coordinate system. The most important reason we 

choose the oblique cylinder as the subset is because oblique 

cylinder can compress the information from 3D into 2D. 

Compressing the information from 3D in 2D means only 

using the information of the path at any height to define the 

top and bottom surface of the oblique cylinder. Then this 

method will extend the surface along with the connection of 

start position and goal position. Through this way, the 

complexity of defining the subset has been decreased. An 

example to shown oblique cylinder has better performance 

than oblique ellipsoid in some specific situation is shown in 

Fig.1. In this specific situation the subset of oblique cylinder 

will be smaller than oblique ellipsoid. There is a simple 

inference based on this example -- oblique ellipsoid will be a 

good choice when the path has higher complexity at the 

middle part and lower complexity at the part near the edge.  

  

 

Figure 1.  One situation of using oblique ellipsoid and oblique cylinder to 
define subsets for the same path. The size of these subsets has been roughly 

shown. 

In a 3-dimensional space, a path can be surrounded by a 

quadratic surface including cylindrical surface, conical 

surface, spherical surface, ellipsoid, hyperbolic and others. 

For the situation in Fig.1 we can infer that an inverted conical 

surface could be a good subset for it. So analyzing the spatial 

density distribution and defining a classifier which could 

confirm the best shape of the specific subset and give the 

method to define these subset. This method can be the optimal 

solution for optimizing subset of RRT* in 3D space and will 

also converge the search space at the fastest speed. However, 

this needs to create a perfect mathematical classifier model 

with validation [12].  

The 3D Informed RRT* path planner implemented by us 

defines the subset as an oblique cylinder, it could apply to 

various paths with different spatial probability density 

distribution. Meanwhile, the oblique cylinder subset has a 

relatively high convergence rate with an acceptable 

complexity. The oblique cylinder subset based on standard 

coordinate system is shown as follows: 



  

        

Figure 2.    The subset (oblique cylinder space) of 3D Informed RRT* 

We assume that the Xstart and Xtarget are not equal in any 

dimension so the common situation is similar to Fig.2. When 

Xstart and Xtarget are equal with each other at any dimension in 

the space, the question will degenerate to 2D path planning 

question so we implemented 2D Informed RRT* in the system. 

The connection of Xstart and Xtarget can define Rmax and Rmin by 

measuring the largest and smallest Euclidean distance from 

the connection to the points on the fundamental path through 

equation,  

Rmax = arg max{ρ(σ(x)) | σ(0) = Xstrat, σ(1) = Xtarget}, where 
x is on the fundamental path. 

The equation of defining the shortest distance from the 

path to the connection is similar: 

Rmin = arg min{ρ(σ(x)) | σ(0) = Xstrat, σ(1) = Xtarget}, where x 
is on the fundamental path. 

As a result, we obtained the longest distance and shortest 

distance of an ellipse in X-Y flat. The area of the subset in 3D 

Informed RRT* is based on the subset in X-Y flat which has 

been implemented in 2D Informed RRT* and along with the 

connection of Xstart and Xtarget. Then Informed RRT* algorithm 

in 3-dimensional space directly informs subset to sample. This 

path planner searches for optimal path σ* by incrementally 

building a tree in Xfree [13],  which is the same as RRT* path 

planner. But it differs from RRT* once the fundamental 

solution is found and differs from 2D Informed RRT* in the 

part of defining subset space [13].  

III. SYSTEM ARCHITECTURE 

A.  Hardware System Architecture 

In this paper we used an OptiTrack 12 camera motion 

tracking system achieving a 5x5x5 cubic meter space for the 

following experiments. Markers are installed on every object 

inside the experiment site with portraying the profile of it such 

as our UAVs and obstacles. The obstacles in this experiment 

are cylinders and are fixed on AGVs controlled by different 

joysticks. As a result, the real-time pose of each object inside 

the experiment site can be detected. 

 

 

Figure 3.  The  middle figure shows the interface of tracking system. The left 

figure shows UAV with markers. The right figure shows dynamic obstacle 

dynamic obstacle (AGV) with markers on them to portray their profile. 

B. Software System Architecture 

This part controls the process of all the built-in algorithms 

such as 3D Informed RRT* and RRT* based on Robot 

Operating System in Linux environment [14]. Moreover,  we 

used Rviz (a visualization tool) to visualize the path planning 

process and monitor the situation of the real path by 

communicating with UAV through bluetooth. The command 

for UAV to take off is sent from a controller through bluetooth. 

The flying UAV will hover at the last position when the path 

planner is calculating the new path. The command for UAV to 

land on the ground will be executed once the real-time path 

planning is finished.        

 

Figure 4.  The process of 3D Informed path planner generates path for the 

UAV-based path planning system 

 



  

IV. EXPERIMENT DESIGN AND RESULT ANALYSIS 

In the experiment, 3D Informed RRT* is compared with 

RRT* in a variety of path planning situations (1, 3 and 6 

dynamic obstacles in the map). 3D Informed RRT* and RRT* 

were given 5.0 seconds to optimize their solution and the 

experiments focus on the convergence rate and the 

performance of global optimizing the path. When measuring 

parameters to reflect the performance, each parameter has been 

recorded 150 times based on 150 running times of each 

experiment for these path planners. The paths of both path 

planners in each running time are given to real UAVs in the 

laboratory to fly and avoid obstacles. As the real flight data is 

influenced by the factors such as the accuracy of control and 

battery power, the performance of the path planners will be 

reflected based on simulation data. 

A. Experiment Design  

This experiment is in cubic space where l equals to 5 

meters and w equals to 0.2 meters. The positions of Xstart and 

Xgoal are constant in the map and the top view of the map is 

organized as follows: 

 

Figure 5.  The top view of the UAV path planning experiment for 3 dynamic 

obstacles. The map of 1 dynamic obstacle and 6 dynamic obstacles can refer 

to this map. 

 

Figure 6.  A recording for real-time feedback of the path and search space in 
6 dynamic obstacles condition. The figure at the left belongs to RRT* and the 

figure at the right belongs to Inform RRT*. The blue line is the optimized 

solution and orange part is the search space. 

Longitudinal comparing the result of RRT* and 3D 

Informed RRT* from 1 to 3 and then to 6 dynamic obstacles 

based on the following table (parameters including path length 

to reflect the quality of the latest solution and the size of search 

space to reflect the convergence rate): 

TABLE I.  PARAMETER RESULT OF DIFFERENT OBSTACLE NUMBER 

Path planning with 1 dynamic obstacle (t = 5.0 second, 

repetition = 150) 

Name of path planner RRT* 
Informed 

RRT* 

Path length (m) 14.3 13.7 

Search space (m3) 125 20.4 

Path planning with 3 dynamic obstacles (t = 5.0 second, 

repetition = 150) 

Name of path planner RRT* 
Informed 

RRT* 

Path length (m) 15.6 14.1 

Search space (m3) 125 22.7 

Path planning with 6 dynamic obstacles (t = 5.0 second, 

repetition = 150) 

Name of path planner RRT* 
Informed 

RRT* 

Path length (m) 17.3 14.3 

Search space (m3) 125 31.3 

 

TABLE II.  SOLUTION IMPROVEMENT IN INFORMED RRT* 

Informed 

RRT* 
Path optimization 

rate (%) 
Search space in total 

space (%) 

1 obstacle 4.19 16.32 

3 obstacles 8.97 18.16 

6 obstacles 11.56 25.04 

 

B. Result Analysis 
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Figure 7.  The horizontal comparison of RRT* path planner and Informed 

RRT* path planner on number of branches under different obstacle condition. 
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Figure 8.  The horizontal comparison of RRT* path planner and Informed 

RRT* path planner on path length under different obstacle condition. 

 Based on the experimental result of Fig.7, we can see the 

search space of 3D Informed RRT* is 16.32%, 18.16% and 

25.04% of the search space of general RRT*. These path 

planner begin with the same unoptimized original condition. 

Experiments in various number of moving obstacles show that 

3D Informed RRT* is capable of obtaining near-optimal 

solutions in significantly smaller search space than RRT* [7]. 

Informed RRT* path planner has a lower cost than RRT* path 

planner in 3D space when the computation time is equal. 

Re-defining subset as a smaller space could increase the 

convergence rate of RRT* path planner. With the repetition 

increased, the search space keeps decreasing of Informed 

RRT* compared with general RRT*. In another word, 3D 

Informed RRT* more likely to find the optimal path under 

limited time constraint.  

Based on the observation of Fig.8, 3D Informed RRT* has 

significant improvement than general RRT* in solutions when 

the varying the number of moving obstacles. The path reduced 

4.19% (0.6 m), 8.97% (1.4 m) and 11.56% (2.0 m) in Informed 

RRT* than in general RRT*. The performance improvement in 

3D Informed RRT* is outstanding in cluttered environment.  

In cluttered environment, the probability of generating small 

gaps grows rapidly with incremental dynamic obstacles. As a 

result, another experiment can be implemented in the future to 

measure the ability of 3D Informed RRT* when sampling with 

difficult passages (this situation is more likely to happen when 

the quantity of obstacles is huge) [7].  In addition, a hypothesis 

can be derived as follows, the larger quantity of obstacles in the 

map, the better performance 3D Informed RRT* will have 

compared with RRT*. As [6] has proved that Informed RRT* 

has the ability restrict the search space and regardless of the 

size of path planning problem.  

V. CONCLUSION 

In our experiments, we show that 3D Informed RRT* 

trend to generate fewer branches in the newly defined search 

space. We also demonstrate that 3D Informed RRT* can 

easily handle problems with lots of obstacles. It can be viewed 

as a technique to generate open-loop path for nonlinear system 

with state constraints.  

The research about the path planning method presented in 

this paper is able to combine with real applications as it can 

rapidly optimizing a solution for UAV. There are several lines 

of research arising from the UAV path planning system. Rapid 

path planning can also be used in building task and it is not 

only used in obstacle avoidance while carrying materials [15]. 

An open path planning code implemented of Informed RRT* 

in 3D is described at https://github.com/jiaweimeng. 
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