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ABSTRACT

The thesis is divided into two parts. The first is 
concerned with the fully developed, two-dimensional, free 
surface flow of a viscous, incompressible fluid over a 
horizontal surface and down a slope at high Reynolds 
number, Re. In both cases we concentrate on mechanisms for 
upstream influence through branching from the relevant 
basic flow. In the horizontal case it is found that 
branching can occur and, if the Froude number is 
sufficiently large, the solution resembles a hydraulic 
jump. The branching is studied computationally and 
analytically and the theory is used in a comparison with 
experiments. For the half-Poiseuille flow on a slope we 
consider free interactions for a range of gradients, 
identify when separation can occur and, in the limit of 
small gradient, find analytic solutions for the flow 
forced by simple geometries. The flow on larger slopes is 
addressed computationally.

The second part deals with some aspects of boundary 
layer transition beneath a transonic free stream (Mach 
number, M^, close to unity). Again the emphasis is on high 
Reynolds number theory and we concentrate on lower branch, 
Tollmien-Schlichting disturbances. Two unsteady 
interactions appropriate to transonic flow are studied.
The first has M 2-l ~ 0(Re-1/9) and is an extension of the00
triple deck structure when the free stream reacts 
unsteadily. This regime links previously studied subsonic 
and supersonic cases. Two-dimensional disturbances are 
little altered but there are new, weakly nonlinear, 
three-dimensional effects including enhanced growth for 
slightly oblique disturbances and novel triad

2 — 1/5interactions. The second has M -1 ~ 0(Re ) and links00
an unsteady, nonlinear free stream, capable of containing 
shocks, and a quasi-steady boundary layer. The possibility 
of a resonance linkage between shock buffetting and 
boundary layer thickening is addressed, being a candidate 
for a bypass transition mechanism in transonic flows.
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§1.1 V iscous- I nviscid  Interactions At  High Reynolds 

Numbers.

This thesis covers some aspects of liquid layer flow 
and transonic boundary layer transition through the 
application of the ideas of viscous-inviscid interaction. 
This interaction occurs when the flow is determined by an 
interplay of some effects caused by viscosity and others 
controlled by inviscid mechanics. The fact that the two 
areas considered in this thesis are so widely different is 
an indication of the widespread occurrence of these 
effects in fluid mechanics. The work on liquid layers is a 
study of the mechanism of upstream influence in a rapidly 
moving stream and the structure of the feature most 
commonly associated with it - the hydraulic jump. Upstream 
influence is made possible by an' interaction between 
viscous retardation of the layer and the pressure gradient 
generated as the layer is caused to thicken. The sections 
on transition to turbulence in transonic boundary layers 
are centred on the study of the nonlinear development of 
Tollmien-Schlichting waves. These are the instability 
waves in an incompressible boundary layer with no external 
pressure gradient and they rely on an interaction between 
viscous effects close to the wall and pressure waves in 
the free stream for their growth.

A second idea running through this work is the 
asymptotic solution of the governing equations, making use 
of the large Reynolds numbers usually associated with 
these flows. A flow with a large Reynolds number is 
primarily governed by inviscid mechanics, but it is by no 
means possible to neglect viscous effects in such cases. 
In both of the physical areas studied, these governing 
equations are the Navier-Stokes equations of the flow of a 
Newtonian fluid. However, these equations, although simple 
in principle to derive, are very difficult to solve in 
practice, especially at large Reynolds numbers. This is 
due to their nonlinearity and problems associated with the 
wide variation of scales which arise due to the effects of 
viscosity at large Reynolds numbers. The assumption of an
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infinitely large Reynolds number leads to the possibility 
of asymptotic solution of the equations. We offer no proof 
of the convergence of these asymptotic solutions to a 
solution of the Navier-Stokes equations but their history 
of success in describing fluid flows at high Reynolds 
numbers, from Prandtl's boundary layer theory onwards, 
enables us to have every confidence in the technique.

Hand in hand with the idea of a high Reynolds number 
expansion is the so-called structural approach to the 
solution. This enables the various scales of the motion to 
be identified. The flow domain is divided into regions and 
the governing equations capturing the dominant physics in 
each region are identified. The solution in each area is 
then found as an expansion in inverse powers of the 
Reynolds number and these solutions are matched across the 
boundaries of the regions. This is simply an example of 
the application of techniques for the solution of singular 
perturbation problems, of which high Reynolds number fluid 
flow is an exceedingly important example. See, for 
example, van Dyke (1964) and Stewartson (1974).

Prandtl's boundary layer theory is an example of a 
high Reynolds number expansion and of the use of matched 
asymptotic expansions. This theory is used, for example, 
to find the steady flow of a fluid past a body at high 
Reynolds numbers. In the main part of the flow the viscous 
terms in the Navier-Stokes equations are small and do not 
appear, to first order, in the expansion. Near to the 
body, in the boundary layer, the normal coordinate is 
scaled with the Reynolds number so that viscous effects do 
enter at first order. The solution proceeds as follows: 
first the exterior, inviscid, solution is found and then 
this is used to provide the boundary condition for the 
boundary layer flow. This solution then gives the forcing 
for the next term in the solution in the free stream. The 
solution proceeds in this hierarchical fashion. However 
this technique has its deficiencies in that the equations 
governing the boundary layer motion do not necessarily 
have a solution (Goldstein (1948), Stewartson (1970)). The 
method has failed in determining the flow around the body
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due to its hierarchical structure - the solution is forced 
once the inviscid, exterior flow is known and this is 
calculated without regard for viscous effects. There is no 
mechanism by which viscous effects can act to alter this 
inviscid flow, i.e. no scope for a viscous-inviscid 
interaction.

The high Reynolds number structure which controls the 
viscous-inviscid interaction between the boundary layer 
and the external flow is the triple deck structure. See 
Stewartson and Williams (1969), Neiland (1969) and 
Messiter (1970). It first arose in the study of upstream 
influence and boundary layer separation in supersonic flow 
and most of the elements of the structure, including its 
scales, are given in Lighthill (1953). The basic idea is 
that quite a small pressure perturbation (0(Re"1/4) as 
Re oo in supersonic flow) can act over a relatively small.o/p 1/8streamwise distance (0(Re )) to give a large (0(Re ))
pressure gradient. The short scales of the motion mean 
that the viscous effects are confined to a thin sublayer 
of the Prandtl boundary layer situated at the wall. The 
rest of the boundary layer reacts in an inviscid fashion. 
However the small displacement velocity, from the viscous 
sublayer response, forces, in the free stream, a 
significant adjustment due to the short scales involved. 
What is special about the these scalings with the Reynolds 
number is that this inviscid motion in the free stream 
produces a pressure of the same order as that driving the 
flow, namely 0(Re"1/4) . There is therefore a mechanism for 
an interaction between the viscous motions within the 
boundary layer and the inviscid flow outside. The essence 
of the interaction is to be found in the 
pressure-displacement law, P = ^(A), relating the 
pressure, P, to the (negative) displacement of the 
boundary layer, A. The equations governing the triple deck 
for steady two-dimensional disturbances are

13



UU + VU = -P + u ,X Y X YY (1.1.1a)

(1.1.1b)

U = V = 0 at Y = 0 (l.l.lc-d)

U-)Y + A a s Y - ) » (1.1.le)

P = ^(A). (1.1.If)

Here U and V are the streamwise and normal velocities 
respectively and X and Y the streamwise and normal 
coordinates. Equations (l.l.la-e) govern the flow in the 
sublayer close to the wall where viscous effects are 
important. The pressure-displacement law (1.1.If) is found 
by solving the inviscid free stream equations for the 
pressure response to the boundary layer displacement. The 
viscous-inviscid interaction captured by these equations 
can be clearly seen.

In the case of supersonic flow the 
pressure-displacement law is P = -Ax and this allows a 
self-sustaining interaction to occur which ends in the 
separation of the boundary layer from the body surface. A 
small adverse pressure gradient causes the boundary layer 
to thicken and through the pressure-displacement law this 
reinforces the adverse pressure gradient and so the 
process continues. See Lighthill and Stewartson and 
Williams.

These ideas have been extended to channel flows, pipe 
flows, hypersonic flows, boundary layer jets and 
supercritical liquid layer flows. See, for example, the 
review by Smith (1982). In all these cases the governing 
equations seem to be parabolic at first sight allowing no 
mechanism for upstream influence. The possibility of a 
self-sustaining interaction between viscous and inviscid 
effects, however, allows branching and a non-uniqueness of 
the solution and so facilitates upstream influence.

In the field of boundary layer stability 
viscous-inviscid interaction plays an important role. This

14



is because, as we explain in §4.1, Tollmien-Schlichting 
waves, which are the stability waves in a flat plate 
boundary layer, are interactive phenomena. Viscous effects 
are essential for the instability as is the feedback from 
the inviscid reaction to these effects as the free stream 
adjusts. The governing equations of Tollmien-Schlichting 
waves at high Reynolds numbers are, in fact, the unsteady 
version of the triple deck equations (1.1.1). (Simply add 
a UT term to the left hand side of (1.1.1a)). See Smith 
(1979a&b). The use of structural, high Reynolds number 
theory and the nonlinear triple deck in the study of
boundary layer stability and transition in incompressible, 
supersonic and hypersonic flows has led to a great
understanding of the mechanisms of transition, although 
the mechanism is by no means fully understood. See the 
work of Smith (1979a&b), Smith and Burgraff (1985), Smith 
(1986a&b), Smith and Stewart (1987), Smith (1989), Stewart 
(1990) and the many references therein.

§1.2 A Des c r ip t io n  Of  T he Wo rk  Of  T his T h e s is .

This thesis starts with a study of the mechanisms for 
upstream influence in fully developed liquid layer flows. 
An introduction to liquid layer flows and to the hydraulic 
jump, and a description of the work of other authors in 
the application of high Reynolds number techniques and 
viscous-inviscid interaction in the area is given in §2.1.
The governing equations contain within them the
possibility of viscous-inviscid interaction and the 
structure of this interaction is identified in various 
limits in §2.6. There is a strong connection with the 
triple deck structure allied with the hypersonic 
pressure-displacement law, P = -A. This similarity was 
first identified in the work of Gajjar and Smith (1983). 
The work of chapter 2 is, in fact, an extension of the 
work of Gajjar (1983), Gajjar and Smith (1983), and 
Brotherton-Ratcliffe (1986) on liquid layer flows to cover 
motions over the long length scale X ~ 0(Re). On this 
scale viscous effects are important throughout the depth
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of the layer and as a result the viscous-inviscid 
interaction is strongly influenced by the non-parallelism 
and simultaneous development of the basic flow. In some 
limits, for example that of large Froude number, the form 
of the interaction resembles the hydraulic jump. Section 
2.7 is a comparison of the experiments of Craik, Latham, 
Fawkes and Gribbon (1981) on circular hydraulic jumps, 
formed when a vertical column of water falls onto a flat 
plate, with the theoretical results of the chapter. It is 
complementary to a similar comparison made by 
Brotherton-Ratcliffe.

Chapter three considers an extension of the work of 
chapter two to the half-Poiseuille flow of liquid layers 
down a favourable gradient. The free interaction is 
considered first, in §§3.2-3.5 and its structure on a 
range of gradients investigated. It is found to take 
different forms depending on the slope. For small slopes 
it is governed primarily by lubrication theory, but on 
larger slopes it takes on the structure of a hydraulic 
jump and separation occurs. The downstream asymptote in 
both cases has a horizontal free surface. Some of the 
effects of surface tension are also considered.

The limit of small gradient is paid special attention 
in §3.6. It is found that the relatively simple governing 
equation, derived using lubrication theory, yields 
solutions showing viscous-inviscid interaction and many of 
the features of interactions seen in more complicated 
flows. Numerical solution of the interactions forced by 
obstacles are presented in §3.7. On sufficiently large 
slopes and with severe obstacles the numerical solutions 
exhibit a hydraulic jump and separation upstream of the 
obstacle.

The second part of this thesis is concerned with 
extending the work on boundary layer transition, mentioned 
in §1.1, to the transonic regime. An introduction to the 
use of high Reynolds number theory in transition modelling 
is given in §4.1 and the introductions to Chapters 5 and 6 
contain a summary of certain aspects of boundary layer 
transition. The major difference between the subsonic or
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supersonic and the transonic regime lies in the closeness 
of the speed of the Tollmien-Schlichting waves to the 
speed at which the free stream is able to adjust to 
perturbations within the boundary layer at transonic 
speeds. This leads to two significant regimes. In the 
first, covered by chapters 4 to 6, the free stream 
equations, as well as the boundary layer equations, are 
unsteady. This occurs when the Mach number, is such 
that |M2—1 1 ~ 0(Re"1/9) as Re ». The second regime,

^ 2 1/5discussed in Chapter 7, has | 1 1 ~ 0(Re ) and is of 
relevance to the unsteady interaction of a shock and a 
boundary layer.

Chapter 4 presents a derivation of the equations and 
scales governing Tollmien-Schlichting waves in the first 
regime. The properties of the linearised form of these 
equations are then considered in §4.3. This study is 
successful in illustrating the fate of the unstable 
Tollmien-Schlichting disturbances in a transonic flow as 
the Mach number increases and the flow becomes more 
supersonic - in supersonic flow it is known that all 
disturbances, unless sufficiently oblique, are stable 
(Ryzhov and Zhuk (1980)).

Chapter 5 considers a weakly nonlinear solution of 
these equations and effectively extends the work of Smith 
and Burgraff (1985) on some nonlinear aspects of
incompressible boundary layer transition to transonic 
flows. The nonlinear growth of the disturbance is followed 
through a weakly nonlinear interaction to an essentially 
large-amplitude-inviscid stage (although with bursts of 
vorticity possible from a viscous sublayer at the wall). 
An important result in this section is that, in the weakly
nonlinear stage, a two-dimensional wavepacket is
susceptible to a rapidly growing sideband instability in 
the presence of a small degree of spanwise warping. 
Finally we consider the so-called Euler stage of
transition in transonic flow.

The last two chapters, chapters 6 and 7, are shorter 
than the others and present results of work still in 
progress. In chapter 6 we consider the extension of the
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work of Smith and Stewart (1987) on subharmonic resonance 
and triad interaction in boundary layer transition to 
transonic flows. Chapter 7 is concerned with flows in the 
second transonic regime. In it we consider the possibility 
of a self-sustained shock / boundary layer interaction, an 
essentially nonlinear process, being a mechanism for 
bypass transition in transonic flow.
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Ch a p t e r  T w o

LIQUID LAYER FLOWS ON A HORIZONTAL PLATE.
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§2.1 In t r o d u c t io n  A nd  T he Go v e r n in g  Eq u a t io n s .

Liquid layer flows are commonly observed phenomena. 
They may be seen in nature, in rivers, weirs and 
spillways, for example. They are also widely used in 
industrial processes, where the liquid is less likely to 
be water. Common uses are in mixing processes in 
industrial chemistry or in the manufacture of films.

In chapters 2 and 3 of this thesis we consider, 
primarily, the steady two-dimensional flow of a fully 
developed liquid layer. The emphasis is on the study of 
the viscous forces at work in the layer and their 
interaction with the position of the free surface. We hope 
to develop a description of the mechanism for upstream 
influence in these flows based on these ideas. The steady 
hydraulic jump is the phenomenon commonly associated with 
upstream influence in liquid layer flows, and it can be 
seen in its many forms in situations ranging from rivers 
to the kitchen sink. The form of the jump varies with the 
Reynolds number and the Froude number of the oncoming 
layer. It is often turbulent or unsteady, with the energy 
loss required at the jump being effected by the scale 
reduction and viscous dissipation in the turbulence, or 
alternatively carried away in a wave train. See the theory 
of Benjamin and Lighthill (1954). A description of the 
possible forms of the jump can be found in Ishigai, 
Nakanishi, Mizumo and Imamura (1977). Although global 
considerations of mass and momentum can give useful 
results (for example Lamb (1932) or Lighthill (1978)), the 
internal structure of the jump remains largely 
unexplained. Progress has been made by the authors 
mentioned below, however, by considering the effects of 
viscosity which, through interaction with the free 
surface, can have a surprisingly large effect on the flow 
structure. The jump is assumed to be laminar and steady, 
with the viscous dissipation, therefore, being responsible 
for the required energy loss.

We concentrate here on fully developed flows on a 
horizontal surface (where they can be sensibly defined -

20



see later) in order to complement the work in this area of 
Gajjar and Smith (1983), Gajjar (1983) and 
Brotherton-Ratcliffe (1986). These authors study many 
aspects of steady liquid layer flow and of the stability 
of such flows. Their emphasis, however, is on a flow with 
a uniform velocity profile. Their results, as far as we 
are concerned, can be summarised as follows. If the 
velocity profile of the layer is uniform, allied with a 
Blasius boundary layer at the solid surface, then upstream 
influence is possible even if the Froude number is greater 
than unity. This supercritical upstream influence has its 
origin in the viscous-inviscid interaction between the 
boundary layer and the free surface, and is governed by 
the triple deck equations with the hypersonic 
pressure-displacement law, P = -A. These hold over a 
length scale L where h* << L << Reh*. Here h* is the depth 
of the layer and Re the Reynolds number associated with 
the flow. The effects of surface tension are neglected. 
The equations have a solution with a downstream form in 
which the height of the free surface increases like Xm, 
where m = 2{Vl - 2)/3 * 0.43050 as X co, and this blunt 
shape is reminiscent of the hydraulic jump studied in 
experiments performed by Craik, Latham, Fawkes and Gribbon 
(1981). Beneath this growing surface is a long separation 
bubble, with reattachment occurring far downstream, and 
the velocity profile above the bubble still uniform. The 
steady experimental jumps have Reynolds and Froude numbers 
both of the order of 100, and the jumps are typical of 
those one may view in an ordinary sink if the flow from 
the tap is not too strong. A comparison of the theory with 
these experiments is presented by Brotherton-Ratcliffe and 
gives good qualitative agreement, predicting both the 
change in length of the separation bubble and the jump 
strength with jump position, although the prediction of 
the strength itself is inaccurate, being too small. He 
points out, however, that a more suitable theory would be 
one in which the velocity profile could be taken as being 
fully developed, with the vorticity spread across the 
layer. Further evidence for the importance of fully
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developed flow and the scale L ~ h*Re, which would allow 
viscous effects to be important across the depth of the 
layer, comes from Gajjar who studies the adjustment of 
fully developed flow on a slope in preparation for a small 
increase in slope downstream. The length scale he

1/7considers (0(Re )) is akin to that used in the studies
of Smith (1976) on fully developed channel flow, in which 
the curvature of the streamlines as well as the free 
surface position interacts with viscous effects. Gajjar 
concludes that the return to Poiseuille flow downstream 
must take place on a longer scale. We therefore 
concentrate on interactions which take place on a length 
scale in which viscosity acts right across the layer and 
its direct effects are not confined to the wall region as 
in the cases described above.

On a downward sloping surface, considered in chapter 
3, the fully developed layer consists of half-Poiseuille 
flow of a suitable thickness, but on a horizontal surface 
the lack of any gravitational force to counter viscous 
effects makes a fully developed flow difficult to define. 
Indeed it is clear that, for a finite Froude number, the 
equations derived and presented below have no solution as 
x -» oo. The 0(Re) scale is precisely that over which the 
development occurs, and we must therefore view the 
velocity profile and depth at a particular x-station to be 
in the process of developing due to this viscous 
retardation, whether or not it is also adjusting for any 
downstream boundary condition. This leads to important 
differences between the flow on the horizontal and that on 
a slope, however shallow. An exception is when the Froude 
number is large. As described in §2.2.2, the flow then 
develops into one described by Watson's (1964) solution 
with the depth increasing linearly and the velocity 
profile being governed by a balance between inertial and 
viscous forces. This may then be taken to be a fully 
developed flow and is, in fact, the basic flow assumed in 
the theory which is presented in §2.6 and describes the 
hydraulic jump.

The physical set-up of the problem is illustrated in
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Figure 2.1.1. We consider two-dimensional motions. Let 
*X = 0 be the station at which we are considering the 

flow, and let the depth and velocity profile here be h 
and U*(y*/h*) respectively. Here y* is the vertical 
coordinate. The volume flux per unit width, Q, carried in 
the layer, is independent of X*, and if the kinematic 
viscosity of the fluid is u we can define a Reynolds 
number for the flow as Q/v. A typical velocity at the 
particular X*-station is U* = Q/h* and a representative

~*2 1 1 *pressure is pU , where p is the fluid density. We take h 
as a typical length scale. If we nondimensionalise the 
Navier-Stokes equations with respect to these values we 
find

uux + %  = -P* + R ^ ( u yy + o**)'

UV* + W y = -p - s + Re-'tVyy + V**),

U* + Vy = 0,

U = V = 0 at y = 0,

1+T7 (X)
U(y)dy = 1.

J 0

Here y = 1 + t)(X) = h(X) is the unknown position of the 
free surface. We define s to be the inverse Froude number 
of the problem, gh*3/Q2, where g is the acceleration due 
to gravity. If we neglect the stresses in the air above 
the layer and assume its density to be zero we can take 
the pressure at the free surface to be zero. The 
conditions at the free surface, including the effects of 
surface tension, are then
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( ux - Vy ) TI(X) + 1/2 ( Uy + ) ( 1 - 7]̂ 2 ) = 0,

P =
Re(l + 7}(X) )( - ( V ^ X  + Vy) -

Ts
*2

[pgh  J

^xx
/ 1 ■ 2.3/2(1 + )

Here T is the coefficient of surface tension of the 
fluid/air interface. We now assume that the length scale 
of the adjustment of the layer is long compared with its 
depth and make the boundary layer approximation. More 
specifically we scale X with Re (X = Rex) and V with Re-l

-l(V = Re V) and let Re » to get

UU + VU = -P + U , X  y X  yy

P + s = 0,y

u* + vy = °-

Udy = 1,
Jo

U = V = 0 at y = 0,
U = 0 at y = 1+7], y

P + 7f Vxx = 0 at y = 1+7]

See Figure (2.1.2). This assumes that surface tension*2 2effects are strong enough to ensure that y = Ts/pgh Re
is 0(1) as Re co. if this is not the case, then the
condition at the free surface is simply P = 0. If we now 
write

P = -s(y-l) + p,

and neglect surface tension, we are led to the system
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UU* + V U y = “P *  + V (2.1.1a)

+ vy = 0, (2.1.1b)
rl+T7Udy = 1,
Jo

(2.1.1c)

U = V = 0 at y = 0, (2.1.Id)
U = 0 at y = 1+7}, y (2 .1. le)

P  = ST}, (2.1.If)

= U (y), 7} = 0 at x - 0. (2.2.lg)

These are the equations studied in chapter 2.
We can scale the Froude number out of the equations, 

leaving it to occur only in the initial conditions at 
x = 0. The scalings

effectively replace s by unity in equation 2.1.If, which 
becomes

p = 7), (2.1.2a)

and the conditions at x = 0 become

U = s1/3U(s~1/3y) and y e  (0,h) h = s1/3. (2.1.2b)

In addition, 1 + 7} in (2.1.1c&e) becomes h + 7}.
The next two sections of chapter 2 are initial 

analytic investigations of these equations, and study 
their behaviour as s -+ 0, s -+ » and x -+ 0+. This enables 
important scales to be identified. Section 2.4 details a 
numerical solution and reveals more information about the 
properties of the interaction. In §2.6 the numerical 
results are explained in terms of the interaction and a 
non-uniqueness in the solution of the system 2.1.1(a-g) 
which arises from it. This section also presents
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asymptotic structures which govern the non-uniqueness in 
various limits. Finally a comparison, complementary to 
that of Brotherton-Ratcliffe, with the experiments of 
Craik et al. is made and the results support the proposal 
that, in the regime of their experiments, the hydraulic 
jump can be described in terms of a viscous-inviscid 
interaction in a steady, laminar and fully developed flow.

§2.2 Extremes Of The Froude Number , s .

§2.2.1 Large s and the lubrication theory solution.
The limit s <» corresponds to a small Froude number 

and to gravity exerting a comparatively strong influence. 
It takes a relatively large pressure change to raise or 
lower the free surface and the effects associated with 
mass continuity are therefore of a higher order. The 
change in position of the free surface h is then small, 
0(s-1), for some distance. We expect a half-Poiseuille 
flow , U = ~Px (y2/2-hy), to develop on an 0(1) scale in x 
under what is, in effect, a locally rigid free surface. 
This flow requires a pressure p = -3x/h3 to drive it. Over 
a long 0(s) length scale, however, where x = sX say, the 
change in depth becomes 0(1) as the pressure drops. This 
slow change in depth provides the pressure to drive the 
Poiseuille flow. Hence lubrication theory is appropriate. 
Over the long length scale equations (2.1.1) become

U + V = 0,X y '

.h
Udy = 1,
o

U = V = 0 at y = 0, Uy = 0 at y = h

p = sh . x
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Therefore for large s we find

(2 .2 .1)

Integrating this equation and applying the boundary 
conditions and the condition that the total mass flux is 
unity leads to

which becomes singular, or "chokes", as X 1/12-. This 
solution is therefore not valid where x ~ s/12. If we 
write X = 1/12 - X, then the terms included in (2.2.1) are 
0(hx) ~ 0(X"3/4), whilst those neglected, the inertial 
terms, are 0(s_1UU ) ~ 0(s“1X‘3/2). So here, in a zone of

—1/3x-extent 0(s ), inertial effects enter to prevent the
choking above and with the scalings [U,y,p] ~

1/3 —1/3 2/3[s ,s ,s ] the full equations are reintroduced with 
s entering only through the scalings for this new 
problem, as in equations (2.1.1a-e, 2.1.2a-b). The
upstream condition for this problem is that of

~ -1/3~half-Poiseuille flow as x -» -oo, where x - s/12 + s x.
The depth varies as (-12x)1/4.

§2.2.2 Small s and Watsons solution.
At the other extreme, small values of s correspond to 

an inertia-viscosity balance with pressure effects 
secondary. Equations (2.1.1a-g) with s = 0 are those 
solved by Watson (1964) and they predict a linear 
thickening of the layer, h ~ x, with U ~ I/*, as x ». 
Thus the inertial and viscous terms are 0(l/x3) whereas 
the neglected pressure gradient is 0(s). This solution

—1/3 •fails therefore when x ~ 0(s ) . The rescaling
[U,y,p] ~ [s1/3,s-1/3,s2/3] yields, again, the full set 
(2.1.1a-e, 2.1.2a-b), with the Froude number entering only

h = -3/h3X '
(2.2.2)

with the solution

h(X) = (1-12X)174 (2.2.3)
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through the scalings.
So both the extremes of s described above lead to the 

full system eventually, downstream. This emphasises the 
need for tackling this full system, which is in general a 
numerical task. This is done is §2.4 below.

§2.3 Solution For Sm a ll  x .

§2.3.1 The limit x -> 0 .
Further features of interest are brought out by an 

expansion of the solution for a general starting velocity 
profile, UQ say, as x -» 0+.

We assume that the profile at x = 0 has the form

U ~ a y  + <xy2 + a y 3 + ... as y -> 0,0 1 2 3 1 1

and that s and the constants a are 0(1), with a > 0. The 
expansion has the following form

p - p ^  + psx4/3lnx + P3*4/3 + • • • i (2 . 3 . la)

0 ~ 0Q + + ^2x4/3lnx + tf3*4/3+ • • • / (2 . 3 . lb)

across most of the flow, where U = 0 , U = 0„ and
' y 0 Oy

0 (0 ) = 0 , 0(1 + 71) = 1 .
It is found that 0 -0(1) as y->0. As a result

^  1/3there is a boundary layer of thickness x at the wall. 
This provides the balance between viscous effects, 
0(U/y2) - 0(x/y2), and inertial effects, 0(0 0 )oy iyx
~ 0(y), required to reduce the slip velocity to zero at 
the wall. Here the solution expands as

D ~ «1£2x2/3/2 + x ft(5) + x-4/3lmr f2(?) +
x4/3 f3(C)+ • • • , (2.3.2)

1/3where ^ = y/x is the appropriate similarity variable. 
A viscous layer at the free surface, y = 1 + f]{x) =
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1 + p(x)/s, is also necessary but it is passive to our
order of working. The boundary conditions to be applied
there, namely \/t = 1 and if/" = 0, with 7 denoting
differentiation with respect to y, reduce, after
linearisation about t)(x ) = 0, to

^(1) = -PiUo(l)/s, i = 1,2,3, (2.3.3a)

^"(1) = -PiUo77(l)/s, i = 1,2,3 (2.3.3b)

Substitution of the above expansion (2.3.1a-b) into 
equations (2.1.1a-f) gives, in the main part of the flow

1/3 1/3where y ~ 0(1), at successive orders 1, x lnx, x ,

\h '\h ' - ilj ilj '' = - p  +  \lf 7 7 7 ,

*0*z - W '  = _P2'

ift'ii' - l A i * "  = - p .0 3 3 0 3

These have solutions, using (2.3.3a-b),

\/j = U 2 0

r u  7 7 -  po M_dy
1 Uo

-p2 dy
1 Uo
-p3 dy
. Uo

Pi
s

(2.3.4a)

(2.3.4b)

(2.3.4c)

In the wall layer the boundary conditions as £ co 
are such that a match with the solutions (2.3.4a-c) is 
achieved. We find, on substitution of (2.3.2) into 
(2.1.1a-g), that the governing equations and boundary 
conditions take the form
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/ / / o IIf + a r/3 f 1 Is 7 1 a £ f + a f _ P = 0 ,  i ^ i  i i *i
f j ( 0) = f/(0) = 0,

fi ~ a2^ /3 + ( P r 2a2)/ai as s ■*007
(2.3.5a)

f + « i 2/3 f - 4a C/3 f + 4a /3 f -2 1̂* 7 2 ls/ 2 V 2 4p2/3 = 0,

f2(0) = f2 (0) = 0,

f2 ~ 2a3C/ai + p2/ai as £ -> «,
(2.3.5b)

f 3 + “l^/3 f 3 - 4«i€/3 f3 + 4“/ 3 f3 - 4V 3 =
P2 * W *  f2'>-

f3(0) = f3 (0) = 0,

f ~ a /4 £4 + 6a /a £ln£ + £(a K -a p {K ~s_1}) + P,/«3 3 3 1 1 2 1*1 1 3 1
as £-> 00 / 
(2.3.5c)

where K2 = J- UQ / UQ2 dy, Ka = -£ 1/ UQ2 dy and denotes
the finite part of the integral.

The solution to the first of these equations is

f = p £ /6, p = 2a .1 ' ' *1 2

This solution corresponds simply to higher terms of the 
starting flow near the wall and to the pressure, p^, 
needed to 
order are

f = 2

drive this basic flow. The solutions at

2a £3s
.u f

e~yU(v) 9/3 ►dv, 27/3a
/ ' 
9

a I .i i J0
2/3VI

. 4/34v J

P2 3 2 21 l a

1/3
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where u = a ^ / 9 ,  0 = T( 2/3) /T( 1/3), V. is the confluent
hypergeometric function, U(7/3,5/3,u) (Abramowitz & 
Stegun, Chapter 13) and

I = i
e~vt/( v) 90

2 / 3 4v 4/3 dv.

Further, f is given by

f = Au3
1/3 e M (v) , . _ 1/3 —  'dv + Bu2 / 3V

' < V<Û )dv + Cu1/3 + pJ *2 / 3  3 1V

1/3+ U

i ft CO 1i
1/3-

L0i| 9k J 1 J
e"v t̂( v)

2 / 3V

e~vt/( v)

e_w<li2w5/3dwdv
o
»v

2 / 3
5/3e l/ w dwdv

and
p3 = ^2703/4,

where A, B, C are constants to be found and M is 
M( 7/3,5/3,u), a confluent hypergeometric function 
(Abramowitz and Stegun, Chapter 13).

§2.3.2 The case of half-Poiseuille flow and discussion.
We can calculate the coefficients A, B, C in 

particular cases from the boundary conditions imposed on 
fg, (2.3.5c), but the results are of relatively little 
interest. Instead we concentrate on the case of a flow 
with a3 = 0, e.g. Poiseuille flow. In this case we lose 
the logarithmic terms proportional to xA/3lnx and find

P3 4
0 i/3 r 5/3 9 Ia — — —i Ii L

K - 2a ( K - 1/s) 2 2 1 ] ■

f =3
4p
270a

3 1/3  U e~vU
2/3

90
4v4/3

dv

In the case of Poiseuille flow, which has oci = 3,
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a = -3/2 and K = 2a K , this reduces to 2 2 2 1 '

p ~ -3x 243/3 3 1/3:.4/3
4 I s i

(2.3.6a)

t? ~ p/s. (2.3.6b)

We note that as s -» oo this behaviour mirrors the 
solution (2.2.3) for large s with the pressure 
predominantly being that needed to drive the starting 
flow, but that, as s -» 0, the solution (2.3.6a) becomes

3 5/3invalid when x ~ 0(s ). Also as -» oo, p3 ~ 0(ai ), and 
so for large skin friction the expansion fails when 
x ~ 0(«i"5). We return to this later, in §2.6, when we 
consider possible branching of the solution to equations 
(2.1.1a-g), and matters of upstream influence in these, 
seemingly parabolic, equations.

It seems clear that there are two processes in the 
solution. Firstly there is the pressure needed to drive 
the starting flow. This must come from an alteration in 
the depth of the layer, since the wall is horizontal. 
Secondly there is the response of the flow to this change 
in depth. More precisely, there is a pressure term, p^, 
driving the basic flow, overcoming viscous resistance and 
this causes a change in the position of the free surface 
P ^ / s . The inertial response in the main part of the 
stream interacts with this change in depth but also 
provokes a viscous boundary layer giving rise to a 
pressure p x 4/3, The failure of the expansion occurs when

4/3P3X alters the position of the free surface to the same 
order as does p x and we lose the sequential form of the 
expansion, originally dominated by the pressure change 
needed to provide the flow.

To investigate the downstream development of these 
initial stages of the flow a numerical solution of the 
full equations is required. This is performed in the next 
section.
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§2 .4  Nu m e r ic a l  So lutio n  Of  T he Free In ter a ctio n  Pr o b le m .

§2.4.1 The numerical method.
We have seen in §2.2 that the full system emerges, 

eventually, downstream in the limits of both large and
small s and in §2.3 that the nature of the interaction 
between the change in position of the free surface and the
response of the flow changes as s decreases. This section
aims to shed more light on these effects with a numerical 
solution of the interaction governed by (2.1.1a-g).

Initially we treat the system as parabolic in x, 
although part of the overall purpose of this investigation 
and of the calculations is to reveal the nature of the
mechanisms for upstream influence in the equations. Here, 
then, we consider the general so-called "free interaction" 
problem, rather than one forced by a particular downstream 
boundary condition which must, instead, be accommodated by 
an elliptic method (see §3.7). Given this assumption the 
solution is simply obtained by a marching scheme in x. The 
solution is marched downstream from an initial profile 
using a second order accurate Crank-Nicholson scheme.

In order to deal with the problem that the position 
of the free surface, y = 1 + f\{x), is an unknown, the 
equations are rewritten by introducing

£ = (y - f)/(l + E),

where E = i\ - f and y = f(x) is the position of the plate, 
obstacle or slope over which the stream is flowing. Here £ 
takes values only in the range [0,1], with the free 
surface identified with £ = 1. We also use a modified 
stream function, $(£), such that

U = — , V = -jf = V - U [£ E + f 1,1 + E x x x

giving

33



*xuCu u  = -
u

x 1+ E
= -p +

(1+ E)
(2.4.1a)

U =
1 + E

(2.4.1b)

i = U = 0 at C = o, U^= 0, i = 1 at ^ = 1, (2.4.1c-f)

P  = ST?. (2.4.lg)

Although the integrations in this section are all on 
a horizontal surface (f = 0), f is introduced here since 
the same numerical scheme is used in §3.2 to solve for the 
flow down a slope (f = -ax). Also, the equations in the 
two cases are identical when we acknowledge the 
ellipticity of the problem, as we do in §3.7, and 
investigate the forced interaction problem of the flow 
over an obstacle on an inclined plate. It is noted that in 
the above rewriting we have made use of a Prandtl shift in 
y. In chapter 3 we change notation slightly and a further 
Prandtl shift is made allowing us to define the case f = 0 
to be flow down a uniform slope.

System (2.4.1a-g) constitutes a third order system 
for ^(x,£) in £. The fourth boundary condition in £ 
enables us to determine the unknown E and so the depth of 
the layer, which, of course, provides the pressure 
gradient driving the flow. These equations are written in 
finite difference form as

fu  + u  ] fu - U )i, J i-1,J i,J i-i,J
2

[{jj - {jj } i,J *1-1,j
Ax

fu  -  u  + u  -  ui, j+1 i , j -1 i-1,J i-1,j-1
4Az

+ Pl-P»-1
Ax

fU - 2U + U + U - 2U + Ui, j+1 i,j i,J - 1 i-1,j+l i-1,j i-1,j-1
2Az

— 0 ,  j  — 2 , J - 1 , (2.4.2a)
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fu  + u 1i,j 1 ,J-1 ii > j i >
2 AzV. /

*i.j = ii o C

3U - 4U + U1,J-1 i, J-2

Az = A£(l + (Pj+ Pi_! )

— 0,j — 2,J, (2.4.2b)

(2.4.2c-e) 

(2.4.2f)

Here A£ = 1/(J-1), where J is the number of points used in 
y. The method of solution and of finding the unknown E, 
which appears in the above as p/s - f, is as follows. If 
the solution is known at x-station i-1, the above 2J 
equations are solved for the 2J unknowns, \jj , U ,J *>J
j = 1,J. The nonlinearity is dealt with by using Newton
iteration until successive iterates differ by less than a
specified amount, typically 10”6. This takes only 5 or 6
iterations using as an initial guess the solution at
x-station i-1. For each iteration a single (2J-1)x(2J-1)
matrix, §, is derived from the above system without
equation (2.4.2f). This is inverted for the iterates

./ SU ,i=l, J. The matrix a has a single band abouti,J i > J ' = 3
the diagonal and so this is easily performed by Gaussian 
elimination. The term in the equations arising through the 
unknown pressure iterate, Sp^ is considered as part of 
the inhomogenous term. Thus if £ is the vector made up of 

./ SU , we have
* 9 J 1 » j

| 2 =  b+Sp c,

where b, c are vectors. The solution is written in the
form

£ = a+Sp /3.

The inversion of | recursively defines a , given
that equations (2.4.2d-e) imply a = = a = fi = 0.1 1 & ^
Finally, knowing ajt pjt ocj it 0 ^ ,  aj2, /3j2, we impose 
the neglected boundary condition (2.4.2f) and fix 5pi. 
Hence all the iterates can be calculated. This method is
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commonly used in computing interactive boundary layers 
where the pressure is unknown and is constant throughout 
the boundary layer depth. See Smith (1974).

§2.4.2 Results and discussion.
For the case of liquid layer flow along a horizontal 

surface we use f = 0. Usually the initial condition used 
is half-Poiseuille flow, with depth 1 at x = 0. A typical 
numerical solution in this case is shown in Figure 2.4.1. 
This has s = 2, Ax = 10"6, A£ = 10'2, and the solution 
remains quantitatively similar when finer grids are used. 
The most notable feature is that it ends, at some finite 
x, in a singularity in which the skin friction, Uy(0), and 
pressure gradient become infinite although the pressure 
itself remains finite. The structure of the solution in 
the neighbourhood of the singularity is investigated in 
§2.5. The singularity is attained remarkably soon
(x = 0.0373), although it is postponed for larger s and
hastened for smaller s. Figure 2.4.2 shows solutions for a 
variety of values of s. The singularity itself seems to 
have the same qualitative form for all s.

For values of s numerically of the order of 0.01 a 
very small value of Ax (10-8) is needed to advance the 
solution, which still attains the singular form described 
above. If larger values of Ax are used (10 4) the
solution develops into one similar to Watson's solution 
with the depth growing linearly. See Figure 2.4.3. 
Watson's solution is equivalent to setting s = 0, and 
suppressing the interaction. However as the depth reaches 
a certain value, further downstream, the method fails. We 
can presume that, as explained in §2.2, at this downstream 
station the depth has increased sufficiently to reinstate 
the pressure term into the equations and allow the
interaction. An explanation of this small s behaviour is 
offered below in §2.6.5 in terms, suggested by §2.3, of 
the interactive development becoming rapid as s decreases 
and the interaction being suppressed if we choose a 
sufficiently coarse discretisation in x.

In addition to half-Poiseuille starting flow, smooth
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initial profiles with the vorticity confined to near the 
wall and with a large skin friction were followed in their 
downstream development. If the skin friction is not too 
large these develop initially with the vorticity diffusing 
from the wall, the skin friction dropping, and the depth 
decreasing. Then, however, they attain the same singular 
form as do the half-Poiseuille profiles. For a larger 
initial skin friction similar behaviour to that for small 
s is observed, with the method unable to advance the 
solution by a single x-station. This is true whatever the 
value of s. Again we offer an explanation of this below.

§2.5 The Structure Of The Expansive Singularity.

The singularity revealed by the free interaction 
calculations of §2.4 is found to have the structure 
described below, which is essentially that of the 
expansive singularity in hypersonic flow; see Brown, 
Stewartson and Williams (1975), Gajjar and Smith (1983). 
This similarity is due to the relationship between the 
pressure-displacement law in hypersonic interactions 
(P = -A), and the corresponding law in liquid layer flow 
(p = stj). We follow the analysis of Brown, Stewartson and 
Williams (BSW) who consider the singularity in the 
hypersonic case and expand the solution as x -» 0-, where 
we have assumed the singularity to occur at x = 0 after a 
shift of origin.

For y ~ 0(1), viscous effects are small and the 
solution for the stream function here is

/•a
^(Y) ~ ^0(Y) + A(x) UQ(y) + p(x) UQ

U *y o
dy, (2.5.1)

where is the stream function at x = 0. This develops 
from the initial profile and contains information about 
the history of the flow, so we expect it to depend on s. 
Here a is the depth of the liquid layer at x = 0 and
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Uo = ^Qy. The unknowns A and p are 0(1) functions of x, 
with p corresponding to the pressure, and A the negative 
displacement suffered by the main part of the flow 
relative to its position at x = 0. The free surface in the 
vicinity of x = 0 is given by y = a + p/s.

As y 0 (2.5.1) predicts a non-zero vertical
velocity at the wall unless UQ ~ 3Xy1/2/2 as y 0, where 
X is to be determined. We therefore deduce that the 
velocity must develop into a profile with this form. In 
this case

>1) - Xy3/2+ A(x) 3Xy1/2/2 + p(jr)

as y -> 0, (2.5.2)

2 1/2, , 1/2  y lny + K y
3X

K = 21na 3X
3X

,a

lUo2(t) 9X2tJ
dt = 1A I I_ 

2 0 0
dt

To smooth out this non-analytic behaviour as y 0 
the solution requires a boundary layer near y = 0. 
Inertial effects here will be of order U2/x ~ y/x and the

1/2 2 -3/2viscous terms of order y /y = y . A balance is 
possible, therefore, which brings in inertial, viscous and 
pressure effects near the wall if y ~ |x|2/5, \fj ~ |x|3/s

“3/5and Px ~ |x| . Accordingly we substitute a form

0 - a | x | 3/5f (ay/ | x | 2/5), px ~ 2a4|x|3/5/5#

as x 0 - ,  into equations (2.1.1a-f). The constant a is 
to be determined but is related to X. This gives the 
following for the function f, written in terms of the 
similarity variable £ = ay/|x|2/5,

- 3/5 f + 1/5 ( fc2 + 2 ) = 0,

f ( 0 )  = o,  f ^ ( o ) = 0 ,  f  -  goc3/2, C -> »

for some GQ. A solution to this equation exists, (BSW),
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with f^^(O) = 1.398 and an asymptote as £ -» °° of

f -> Gq(C3/2 - 2/3C1/2ln(C)) + CqC1/2#

G = 1.380, C = -1.703. o ' o

This allows us to fix oc in terms of X, by matching the
3/2term proportional to £ to the solution (2.5.2). We find

2/7oc = (A/Gq) . Matching the rest of the two solutions 
gives

A(x)
P(*) 3a

C - —In a -  3«6f_idt - — In
r '
i

_ 0 3 2 L U n 0 0 15 1m  J
(2.5.3)

However the boundary condition at the free surface, 
\jf(a+p/s) = 1, applied by linearising (2.5.1) about y = a, 
leads to

A(x)  ___1_^
p(x) s

The matching is complete and X and a found, but for 
the slow dependence on ln(l/|x|) in (2.5.3). This mismatch 
stems from the large-£ behaviour of the boundary layer 
equation, in which the second biggest term at infinity is 
not the "displacement" term CQC1/2, but the 
logarithmically larger term forced by the dominant
3/2C -like behaviour of the solution. As in BSW this 

mismatch can be reduced by further refinement of the 
singularity structure, including an inviscid buffer region 
between the boundary layer and the free stream. Its 
thickness is 0( | x | 2/5/{ln( 1/ | x\ ) }1/5), and it adjusts the 
size of the pressure gradient to be 
0( |x| 3/5ln( 1/|x| )4/5) . However this still does not 
determine X for similar reasons to those above, there 
being a mismatch now of 0(ln(ln(l/|x|)), and further 
buffer regions are implied. This mismatch continues as 
these further buffer regions are included and so, as 
discussed by BSW, it becomes impossible to determine the
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actual coefficients of the expansion, a and A, although 
the structure of the singularity is clear. We have the 
predictions

Px - FIx I "3/5ln (1/1 x | ) 4/sLj ( | x | ) i

T - T|x|"1/5ln(l/\x\ )3/5L2( |X| ) .

Here x is the skin friction at the wall, and L and L2 are 
functions which vary more slowly than any power of lnx. 
The values of P and T remain unknown constants.

Figure 2.5.1 shows a comparison of this singularity 
structure with the numerical solutions of §2.4. Figure 
2.5.1a shows the velocity profiles (in terms of the £ of 
§2.4), and clearly shows the development of a boundary 
layer near the wall. Figures 2.5.1b and 2.5.1c show t "5, 
t's(1iit)3 and (-px )'5/3, (-px )'5/3(ln(-px.) )4/3 against |x|
in the neighbourhood of the singularity which occurs at 
x = 0.0373 in this case in which s = 2. As can be seen the 
curves are approximately straight lines, as they should 
be, but for the slow logarithmic behaviour, and this 
behaviour is improved in the cases where some of the 
effects of the buffer zone are included. Therefore we have 
some degree of confidence that the structure outlined 
above is a correct description of the singularity 
experienced by the numerical computations.

§2.6 The Branching Solutions .

§2.6.1 Introduction.
This section aims to explain the results of the 

computations of §2.4 in terms of solutions which can 
branch from the basic flow. These are initially small but 
grow in x and when nonlinear effects begin to enter they 
can alter the basic flow. The solutions found in §2.2 do 
not take this branching into account, and therefore the 
solutions which we calculate are not those predicted in 
§2 .2 .
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Solutions branching from a parallel oncoming flow are 
commonly used to explain the mechanism for upstream 
influence in many flows, such as supercritical liquid 
layers (Gajjar and Smith (1983)), supersonic boundary 
layer flow (Stewartson and Williams (1969), Lighthill 
(1953)), and pipe and channel flows (Smith (1976)), where 
the governing equations at first seem parabolic. The 
branching solutions render them elliptic enabling the flow 
to adjust for any downstream boundary conditions. The 
non-uniqueness in flows of this type has its origin in the 
possibility of a viscous-inviscid interaction in the flow. 
In the case of liquid layers the inviscid mechanism is 
that of pressure changes due to the hydrostatic effects of 
raising or lowering the free surface. Viscous effects 
enter as they affect the flow beneath the surface as it 
adjusts to these alterations. This, in turn, causes a 
change in the position of the free surface and so the 
interaction continues. In the case of flow over a 
horizontal surface the flow is not parallel, since the 
layer thins due to viscous retardation. This 
non-parallelism has an effect on the form of the branching 
solutions.

In the case of small s or large skin friction the 
failure of our numerical method, which assumes the 
equations are parabolic, and can thus march downstream in 
a simple fashion, may well be due to the growth rate of 
these departures being rapid in these limiting cases. The 
method is unable to pick out one of the many rapidly 
growing solutions and this non-uniqueness of possible 
solutions causes it to fail. Increasing the size of the 
x-step in the marching suppresses the branching, which 
occurs on a short length scale, in the finite difference 
form of the equations and the solution can proceed to that 
predicted in §2.2 for small s i.e. a linear increase in 
depth. The large skin friction case is associated with a 
uniform flow and allied Blasius boundary layer profile. 
This is known (Gajjar and Smith (1983)) to admit branching 
solutions.

The singularity that the numerical results exhibit
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has been shown in §2.5 to be akin to that occurring in the 
hypersonic boundary layer interaction studied by Brown 
Stewartson and Williams (1975). There the flow upon which 
the initially small perturbations grow is the parallel 
shear near the wall in a boundary layer. In this case, of 
hypersonic flow, there are two qualitatively different 
departures possible. In the first the boundary layer 
thickens and there is no singularity. Instead a 
downstream form is attained which is described in Gajjar 
and Smith (1983). This is known as a compressive free 
interaction because of its relevance to upstream influence 
in compressive corner flows. The second type is known as 
the expansive interaction for similar reasons. Here the 
boundary layer thins and continues to do so until 
attaining the singular form we have described. We see only 
this expansive singularity in our computations of liquid 
layer flows because the departure is forced by the 
thinning of the layer which is needed to provide the 
pressure gradient driving the original flow over the 
horizontal surface. This is an effect which has its basis 
in the non-parallel nature of the basic flow and it is 
represented by the first term in the expansion for small x 
presented in §2.3. For 0(1) s the development of the 
departure is slow and we can follow it with our numerical 
method. It is a development which occurs through 
essentially the same mechanism as described for small s 
below, but which is affected by the non-parallel nature of 
the starting flow.

From the small x expansion of §2.3 we can pick out 
that the x-scale of the rapid growth of the departures for 
small values of s is 0(s3) . Below we present the structure 
of these rapidly growing solutions together with several 
other structures relevant to departures in other related 
limits, such as small depth or large skin friction, or to 
alternative starting flows, such as those shown in §2.2 to 
be relevant to the full set of equations in the limits of 
small and large s. These are two-dimensional Watson's flow 
as x 0+ and half-Poiseuille flow with a depth of 
(-12x)1/4 as x -» -oo respectively.
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§2.6.2 Small s.
We seek a perturbation to the oncoming flow of the

form
\/f ~ \lfQ + s \/ji,

T) ~ 7?o + s 7̂ , 

p ~ spQ + s2pif

where iliQ, tiq, pQ represent the oncoming flow and are
functions of x satisfying equations (2.1.1a-g). See Figure
2.6.1. Without loss of generality we can let t)q be zero so
that the depth of the layer is initially unity. In
addition, therefore, pQ = = 0. The perturbation
quantities, ^ , tj , pi are functions of the fast variable
x = x/s3 and p = i) . In the main part of the flow where 1 1
y ~ 0(1) (region I in Figure 2.6.1) the rapid growth of 
the perturbation dominates and the solution is governed by 
inertial effects, with the pressure term reduced in 
importance by the smallness of s. Therefore equations 
(2.1.la-g) reduce here to

ih '\b ' - th "\b -  0,
X X

where ' indicates differentiation with respect to y. This 
has solution $ = A (x)^0' . Application of the boundary 
conditions at the free surface which reduce to
^ ( D  = “V o ' (1) and = Yields

A = -7) = -p . (2.6.1)i «i t'l

As y 4 0 we obtain, if ~ Ay2/2,

ifi ~ Ay2/2 + s A A y,

so a sublayer (region II in Figure 2.6.1) of thickness 
y ~ 0(s) is produced at the wall to reduce the resulting 
slip velocity, sAA to zero. Here we write y = sz and 
^ = s2$(z), U ~ sU(z) where U = iJj and so we obtain aZ
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nonlinear inertia-viscosity-pressure balance in this 
sublayer,

X X
(2.6.2a)

U = »z . (2.6.2b)

U(0) = 0(0) = 0, (2.6.2c)

U ~ A (z + A), z -> oo, (2.6.2d)

U ~ Az, x -> -oo, (2.6.2e)

and, from (2.6.1),

(2.6.2f )

The system (2.6.2a-f) consists of the equations 
governing the hypersonic free interaction. Gajjar and
Smith show them to be relevant to supercritical (in the
sense Fr > 1) liquid layer flow if there is no vorticity
in the main body of the flow (unlike here). These 
equations hold on a length scale L, where 1 << L << Re. 
The above analysis shows that we can expect branching from 
profiles with vorticity in the same fashion as from those 
without, provided that the Froude number is sufficiently 
large. The free interaction problem for these equations 
leads either to the hypersonic expansive singularity or, 
in the compressive case, to a downstream form with 
separated reversed flow and the pressure (proportional to 
the depth) growing like 0.94796xm where m « 0.43050. Here, 
therefore, as x -» oo we have a depth increasing like sxm. 
Brotherton-Ratcliffe (1986) makes a comparison of this 
blunt form of the free surface with the experiments of
Craik et al. (1981) who take measurements of an 
axisymmetric hydraulic jump, which, qualitatively at 
least, has the same shape of free surface. 
Brotherton-Ratcliffe assumes the oncoming profile to be
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essentially uniform and inviscid in his comparison. There 
is good qualitative agreement, although the depth is 
somewhat under-predicted. In §2.7 we take up this idea 
and, believing the flow to be fully developed at the 
position of the jump, we make a comparison of the above 
result with the experiments.

§2.6.3 Small depth, h.
Related to the above is a similar structure leading 

to the same set of equations (2.6.2a-f) governing the 
branching for small depth, h, at some position x q. This is
of relevance to the problem mentioned in §2.1, in which s
is scaled out of the equation but remains in the boundary 
conditions. In this normalisation a small initial depth 
corresponds to a large value of the Froude number from 
(2.1.2b). We can expand on a small length scale, L << 1, 
about x and derive the scalings as follows. Since 
\Jjq ~ 0(1) the oncoming velocity, U ~ 0(l/h). A velocity 
perturbation of size 6 << 1/h carries a small mass flux 
and so the position of the free surface is altered only by 
0(h6). As a result, although the relative change in the 
free surface position is 0(6), the pressure generated is 
only 0(h6) (since s ~ 0(1), or is scaled out of the
equations). The main body of the flow reacts therefore as 
in §2.6.2 above, leading to a slip velocity of size 6 at 
the wall. In a sublayer similar to that in §2.6.2, but of 
thickness h6 and where the velocity is 0(6), this is
brought to zero. Again the response here is of the
interactive inertia-pressure-viscosity kind, of equation
(2.6.2a-f). This requires 52/L ~ 6h/l ~ 5/h262, leading
to 6 ~ h and L ~ h5. This result also ties in with the 
result that the small x expansion in §2.3 fails when 
x ~ 0(A~5) ~ 0(h5) here.

§2.6.4 Large skin friction, X.
We now consider the case wherein the depth and Froude 

number are both order unity, but the starting flow has a 
large skin friction X. The analysis is valid for any
profile UQ for y ~ 0(1), provided that UQ ~ 0(1) as y -» 0,
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and that it is reduced to zero at the wall. The thickness 
of the sublayer which effects this reduction is 0(A.-1). A 
simple modification of the analysis in Gajjar and Smith 
shows that branching is possible on a length scale 0(A-5). 
We put their small parameter, e, equal to X 1 and follow 
their analysis through. In effect the analysis is similar 
to that in §2.6.2. We find that, after a factoring out of 
various 0(1) constants, equations (2.6.2a-f) hold in a 
sublayer at the wall of thickness 0(A~2), for a
perturbation of size 0(X-1). The criterion for
supercritical flow and the pressure-displacement law being 
p = -A, rather than p = A, which is appropriate to
subcritical flow but does not give rise to branching, is

This reduces to s < 1 if U = 1, the case studied byo ' ■*
Gajjar and Smith.

§2.6.5 Branching from Watson's solution.
An alternative form of branching solution, related to 

the case covered in §2.6.3 above, can be used to explain 
the sudden failure of the numerical solutions in §2.4 
which develop into Watson's form. These have s small but a 
step size large enough so that, initially at least, the 
interaction responsible for the branching is suppressed. 
The flow develops into Watson's form with a linear 
increase in depth and this solution remains valid until 
the increasing depth reinstates the pressure term in the 
equations. A rescaling, see §2.2, gives equations 
(2.1.1a-e, 2.1.2a), with a condition as x -> 0+ given from 
Watson's solution which may be written, on further 
factoring of the variables,
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0 - f(€), € = y/*q, h = qx,
where

q f x// +  f '2 = o,

f(0) = f'(0) = f"(l) = 0, f(l) = 1.

Here 7 indicates d/di*. This fixes q and f"(0) = A., both 
of which are positive. See Figure 2.6.2.

We perturb this starting profile as follows:

iff = f + E 0(£),

h=xq (1 + E 7)) ,

where E = exp(-y/x9) and y, presumed positive, is to be 
found. We substitute this form into the governing 
equations and expand as x -» 0+. As in §2.6.2, the main 
part of the flow (region I of Figure 2.6.2) reacts in a 
fashion dominated by inertia and gives the solution

$ = -V f' .

The pressure governing the perturbation is xE7?q, and there 
is a slip velocity at the wall of size EA(-r/)/xq. A 
sublayer in y with thickness 0(x4) in which the velocities 
are 0(x2), is generated in order to reduce this slip 
velocity to zero. This is region II of Figure 2.6.2. As 
y -> 0, we write z = y/x4, and

U ~ x2 (\q~2z - A2q"6x9z4/12 + ... - E7jXq_1x'3u( z ) ) .

On substitution of this form into the governing equations 
we find that at 0(Ex-9) a linearised form of system 
(2.6.2) results,
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zu - v = X-2q4 + q2u7 7 / (9Ay) ,

v7 = u , u (0) =0, u -» 1 as z -> oo,

where 7 now represents differentiation with respect to z.
We can solve this eigenvalue problem for y to give 

y = a5(3 |Ai7 (0) | )3/(9q8), with Ai representing Airy7s 
function. This value is positive as required. The 
coefficient of the growing exponential, t?, can have any 
value, and so we have the possibility of the flow
developing onward from the origin in a non-unique fashion.

We note that the perturbation has a very rapid growth 
rate as x 0. Also, the departure does not necessarily 
develop and become nonlinear in the same fashion as in 
cases considered in §§2.6.2-4, all of which end with the 
depth increasing as xo.43oŝ  Qr falling into a
singularity, as predicted by the hypersonic free 
interaction equations.

An axisymmetric version of this theory can be derived 
along similar lines. The base flow here has a quadratic 
increase in depth and the perturbation initially grows

A J Qlike exp(-y/x ) . The size of the slip velocity at the 
wall is 0(E/x3) and the viscous sublayer has thickness 
y  - o ( x 7) .

These results are of relevance to the problem of a 
fully developed liquid layer at high Froude number 
originating at x = 0, initially on a horizontal surface 
but adjusting, via the above non-uniqueness, for some
obstacle and then eventually flowing down a slope. This 
slope provides the pressure gradient to drive the flow as
X  -> oo.

§2.6.6 Branching from half-Poiseuille flow.
From §2.2 we know that in the limit of large s the 

profile at x = 0 develops according to lubrication theory, 
with the pressure needed to drive the flow coming from a 
slow decrease in the depth of the layer. Eventually, 
however, inertial effects enter and the flow, after 
rescalings detailed in §2.2, is governed by (2.1.1a-e,
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2.1.2a), i.e.

(2.6.3a)

(2.6.3b)

(2.6.3c)

U = V = 0 at y = 0, Uy = 0 at y = h , and J^Udy = 1.

(2.6.3d-g)
The boundary conditions as x -» are

h - ho = (~12x)1/4, U - (3/ho3)(yho - y2/2) .

(2.6.3h-i)

To search for the possibility of upstream influence 
in these equations we first make the change of variable, 
z = y/hQ, and introduce a stream function if/. We have, 
using the result hQx_ = - 3 / h Q3, that a /a y  -> hQ_1a/az and 
d/dx -> d/dx + 3hQ"4z a /a z . This leads to

We consider a perturbation to this flow at -oo of the form 
aE in depth and aEf in stream function. Here E = exp(-‘arhQ) 
for some positive y to be found. Substitution into 
equations (2.6.4) gives

(2.6.4a)

z € [0,1], (2.6.4b)

(2.6.4c)

iff ~ 3(z2/2 - z3/6), h ~ ho(x) as x -oo. (2.6.4d)

(3yhQ"2) (F7 f7 - F7,f) = -3y + f'"

where F7 = 3 ( z - z 2/2). However hQ is large and so
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f "' ~ 3y as x  -> -co.

The boundary conditions satisfied by f at z = 1 are 
obtained by linearising the position of the free surface 
about z = 1, and are f(l) = -3/2 and f"(l) = 3. Therefore

f = -3z(z - z 2/ 2 ),

V = 3.

The size of the perturbation, a, can take any value and 
so, again, the development forward in x, from x = is
not unique.

The perturbation itself is governed by lubrication 
theory, at least initially, and so too is the flow from 
which it branches. It also grows in the region of large 
negative x and so we can expect similar departures from 
the large s flow examined in §2.1. We see therefore that 
branching is possible on an 0(1) lengthscale in x in the 
large s limit and is governed by equation (2.2.1), 
although the branching is ignored in the analysis of 
§2.2.1. This behaviour has strong similarities with the 
branching of liquid layer flow on a small slope as 
discussed in §3.6.

§2.6.7 Discussion.
Most of the above structures have one thing in common 

- they represent eigensolutions growing on a flow that is 
parallel on the length scale over which the eigensolutions 
develop. There is an exception of sorts in §2.6.5, but 
here the base flow has a similarity form, which is in 
effect a parallel flow solution depending on only one 
variable, £. For example, in the case of small s the 
development length of the perturbation is relatively 
short, on an 0(Re) scale in X (X is defined in §2.1.1), 
whilst in the case of large s the development length of 
the basic flow is relatively long. The search for similar 
structures for finite values of s is hampered by the 
non-parallelism involved.
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It is tempting to suggest that branching is still 
possible in these non-parallel cases, not in the form of 
eigensolutions, but in the development of a perturbation 
which, as it grows on an 0(1) scale, must interact with 
the base flow right from the start. It is thus no longer 
clear what is base flow and what is perturbation. The 
numerical computations of §2.4 seem to suggest that such 
branching is possible, but it has not been possible to 
find analytic descriptions for the process, and so we can 
only put this forward as a tentative suggestion.

This is in contrast to the case of half-Poiseuille 
flow down a gradient. Here the pressure differences 
povided by gravity as the flow descends drive the flow and 
overcomes viscous retardation. Therefore the flow is 
parallel for all slopes. We show in §3.5 that branching in 
the form of eigensolutions can be found for all slopes, 
corresponding to all Froude numbers on a horizontal 
surface. In support of the above suggestions the 
subsequent development of the perturbations in the case of 
an expansive interaction, the only type seen in the 
numerical computations on a flat surface , is very similar 
to that which occurs on the flat. The compressive 
interaction on a flat plate, leading to a hydraulic jump 
and separation, seems to be possible only if it occurs on 
a short length scale, i.e. if the Froude number, s"1, is-ilarge. It may be possible for smaller s but its form will 
certainly be altered by non-parallel effects which may 
stop it occurring altogether.

§2.7 Comparison W ith Experiment.

§2.7.1 Introduction; axisymmetric hydraulic jumps.
Experiments performed by Craik, Latham, Fawkes and 

Gribbon (1981) on an axisymmetric hydraulic jump are 
close to the parameter range covered by the high Reynolds 
number theory described in the preceding sections. The 
experiments study the jump formed when a column of liquid 
falls onto a flat plate and spreads, just as from a tap
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into a sink. Here we make a comparison between these
experiments and the proposal that the jump is described by 
the large Froude number structure in §2.6.2. We suggest 
that the jump is the final form of a solution which 
branched from the upstream flow, which we presume to be
laminar and fully developed, and with a Froude number
sufficiently large that the theory applies.

Brotherton-Ratcliffe (1986) makes a comparison of the 
theory of Gajjar and Smith (1983) with the same
experiments. Essentially, of course, our comparison and 
his are for the same proposal, that the jump is described 
by the equations of the hypersonic interaction. Even the 
scalings with respect to the Froude number and skin 
friction are the same. The difference lies in the result 
of §2.6.2 that the same equations describe the jump even 
for fully developed flow if the Froude number is large. 
Brotherton-Ratcliffe presumes that the flow upstream of 
the jump is essentially inviscid, but with a Blasius 
sublayer at the wall. This is used to give predictions for 
the depth and skin friction of the flow at the radius of 
the jump. It implies that the depth varies inversely as 
the radius, due to mass continuity effects, and that the 
skin friction varies as the inverse square root of the 
radius. Overall the prediction for the height of the jump 
is approximately 40% too small. The comparison is most 
accurate in the case where the depth used in the 
prediction is not that calculated as above but that 
measured from Figure 6 of Craik et al., reproduced here as 
Figure 2.7.1. The inviscid theory predicts the upstream 
depth to be approximately a fifth of its actual value. 
However there are many encouraging qualitative agreements 
between the behaviour and structure of the experimental 
jumps and the predictions of the high Reynolds number, 
interactive theory. For example, in the experiments the 
main body of the layer does not slow suddenly, as presumed 
by traditional inviscid models of the hydraulic jump 
(Watson (1964), Lamb (1932), Lighthill (1978)), but 
instead seems to ride over a separated region below it, of 
great length compared with the depth of the layer. The
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theoretical prediction is that the flow should react in 
two regions with separation possible in the viscous 
sublayer but the main part of the flow merely being 
displaced. In addition, in the experiments, as the 
position of the jump moves towards the source of the water 
the length of the separated region decreases. This can be 
explained as being due to an increase in the skin friction 
or the Froude number in the thinner, faster-moving layer 
here, and so from the scalings involved, presented below, 
a decrease in the length scale of the interaction.

§2.7.2 The theoretical prediction.
Our suggestion is that the circular hydraulic jumps 

described above are self-induced, free, viscous-inviscid 
interactions, of the type described in §2.6.2, on fully
developed flow.

We believe that the flow is fully developed at the
position of the jump for two reasons. Firstly the Froude
numbers of the layers in the experiments are large,
typically 120. The development is therefore likely to be 
governed by Watson's solution which assumes an infinite
Froude number and predicts, in this axisymmetric case, a 
quadratic growth in the depth of the layer. This growth 
agrees qualitatively with that seen in Figure 2.7.1. The 
depth just upstream of the jump position, predicted with 
this assumption, is much closer to the measured values
than those predicted by inviscid theory. Secondly consider 
the equations

UU - \/f U = x2U , (2.7 .la)X X z zz

U = if/ , (2.7 .lb)Z

U(0) = = 0, U (T) = 0, ^(T) = 1, (2.7. lc-f)z

z € [0,T], T unknown. (2.7.1g-h)

This system is related to that governing the high Froude 
number (s = 0), axisymmetric flow of a liquid layer via
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the transformation y = z/x. In deriving this dimensionless 
form we nondimensionalise the "depth", z, with cr2/2, where 
cr is the radius of the jet of water falling on the plate,

2 1/3the radial coordinate, x, with = (Qo* /4nv) , and the
stream function, ip, with (Q/2na) . Here Q is the volume 
flux in the jet and v the kinematic viscosity of the 
fluid. The radius of the jet, cr, appears in the 
nondimensionalisation since we desire to match the 
solution with the inviscid behaviour of the jet near 
x = 0, where we can take the flow as uniform and governed 
only by the continuity condition, Q = UQTrcr2 = Uo27rxh, 
where UQ is the velocity in the jet (assumed uniform) and 
h is the depth of the layer. This predicts T ~ cr2/2 as 
x -> 0. The equations do not exhibit branching since we 
suppress the interaction by neglecting the pressure term, 
(sT/x)x, due to the small value of s. We integrate these 
equations forward in x from an initial condition using a 
suitable adjustment of the Crank-Nicholson scheme used in 
§2.4. This initial condition consists of uniform velocity 
for z > 0.05 which is reduced to zero at z = 0 with a
cubic in z, ensuring continuity of velocity and shear at
z = 0.05. The flow becomes fully developed with
T ~ (71/3/3) (x3+d3), as predicted by Watson's theory for x
>> 1. The value of d3 is estimated to be 0.69 and this is 
used later. See Figure 2.7.2. The nondimensional values of 
the jump radius in the experiments are in the range 1.5 to 
3 and are therefore well above the value, of about x = 1, 
where these integrations indicate the flow has become 
fully developed.

Using this theory to give the flow upstream of the 
jump, we can now go ahead and use the results of §2.6.2 to 
predict the free surface shape, h(x), downstream. The 
result is

(h - hj)
= (0.9167)

(x - xp X 
Re s3 h

5 N 0.4305

where X is the 0(1) skin friction parameter and is
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calculated, under the assumption of Watson's flow upstream 
of the jump, to be 2.279. Here h is the depth of the 
fluid just upstream of the jump at radius xj and Re is the 
Reynolds number which, from mass conservation, is Q/2ttxjv . 
The inverse Froude number, s, is ghj3/(Q/27rxj)2. The above 
assumes that the jump occurs on a length scale short 
compared with its radius, allowing us to neglect its 
axisymmetric form and approximate it as two-dimensional.

If we use Watson's theory to give a value for h , Re, 
and s, given x , Q, and cr, we get the following 
prediction. We use v = .01 and g = 981 in e.g.s. units.

L = 1. 996 (Qct2)1/3,00

A = 2.279,

hj = 0.03B01X* + 5.49Qa2)/{Qxj) t

Re = 15.91Q/xj,

s = 2.123 (Xj3 + 5.A9Qa2)3/(Q5X3) ,

(2.7.2a) 

(2.7.2b) 

(2.7.2c) 

(2.7.2d) 

(2.7.2e)

8h = 1.1306(6x)°-4305Q 1,4574Xj1‘7525. (2.7.2f)
hj (xj3 + 5 . 49Q<r2)1,305

Here we have used d3 = 0.69 and 5h and 6x represent h- ^  
and x-xj respectively.

§2.7.3 A discussion of the approximations made in the 
prediction.

We now reconsider the approximations implicit in 
deriving and using the result of §2.6.2. Firstly since s 
is small, the small perturbation, of amplitude 0(s/A2), 
develops in the main part of the layer in a way dominated 
by inertial effects, i.e. UU^ >> -p . This is true however 
short the scale of the interaction if s is small. 
Streamline curvature, generating a normal pressure 
gradient py, becomes increasingly important as the length
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scale shortens, however, adding a curvature term to the 
pressure-displacement law which then becomes p = -A - 
ciAxx' where ci = (A10J^Uo2dy/s7Re2) and UQ is the 
nondimensionalised oncoming velocity profile. This term is 
similar to that responsible for upstream influence in 
channel flows (Smith 1976). It reappears too in §3.5.3 
where it is shown to be the cause of branching on slopes 
of 0(1) gradient as Re ». Surface tension is also 
important, as can be seen from Figure 2.7.1, and the 
experimental photographs of Craik et al. which clearly 
show a capillary wave upstream of the jump. Surface 
tension (see §2.1) adds a term + c A vw where2 XX2 10 2 7c = s(T/pgh ) {X /Re s ), and p and T are the density 
and coefficient of surface tension of the fluid (1.0 g/cm 
and 73 dyn/cm2 in e.g.s. units for water). The numerical 
values of c and c2 are very large, a point we take up 
later. Including these extra effects therefore we have the 
effective pressure-displacement law

P = -A - c2(l - M)Axy, (2.7.3a)

\i = sT/(pgh*2I) , I = i*U2dt, c2 >> 1. (2.7.2b)

A pressure-displacement law of the form p = A , is, 
like the law p = -A, capable of giving rise to branching 
and upstream influence, but in this case the behaviour far 
upstream is wavy with a departure initially growing like 
exp(3Gx7ri/7) (x -» -»), where G = (3 |Ai' (0) | )3/7. This 
behaviour is not unlike the experimental capillary wave. 
Recent calculations of the solution of the interactive 
boundary layer equations allied to the 
pressure-displacement law p = cA (Professor F.T. Smith, 
private communication) indicate that, initially, the 
branching solution has the form of oscillations in A and p 
but with no separation occurring. Downstream, however, the 
amplitude of these oscillations increases rapidly and 
separation occurs. After separation there are no further 
oscillations and, instead, the downstream asymptote

2 -5/7p ~ P ,  A ~ P X c /2 is attained. P is negative. Inoof 00 ' 00 3
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the present context this implies that far downstream on 
the interaction length scale, as the displacement grows, 
the -A term on the right hand side of the pressure- 
displacement law dominates and the structure here is just 
that described by Gajjar and Smith with the blunt, 
A ~ -x0-4305, surface shape, independent of the surface 
tension. This behaviour is also seen, and made explicit, 
in the analysis of surface tension effects on the 
corresponding interaction on a small slope, in §3.6.6.

In contrast the pressure law p = -cAxx does not give 
a wave-like departure, although the downstream asymptote

p -5 /7is similar with p ~ P » 0.675 and A ~ -P X c /2 (Smithc o o '
and Duck (1977)). So, although the downstream form of the 
hydraulic jump is likely to be similar to the case above, 
the upstream form will not be wave-like.

If we use the assumption of Watson's flow upstream of 
the jump we can estimate the value of jti. We find

J-^dt = (L2 x‘f'2dt)/(4irV) « (0 . 012 )L2/x2, (2.7.4a)

where f' is the similarity function defining the velocity 
profile. Thus we find

UL = [2400/(o,2/3Q11/3) ] xf (x2 + 5.49QO-2), (2.7.4b)

using the results (2.7.2). For the experimental cases
covered by Craik et al., \i is in the range 300 to 500
approximately. Thus the shape of the jump is dominated 
initially by surface tension effects and by hydrostatic 
effects far downstream. If ju is less than unity the
result (2.7.3a) predicts no waves just upstream of the
jump.

Due to the smallness of s and the relative smallness 
of the Reynolds number in the experiments, the length 
scale of the interaction, namely Rek"5s3h , is very short 
and ci and cg very large. For the case Q = 29 in Figure 
2.7.1 we find s = .0097, Re = 111.2, L = 2.2xl0"5h , C2 *

136x10 . L is the length scale of the interaction. So the
experimentally small Reynolds number and large Froude
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number is stretching the applicability of the 
large Reynolds number theory quite a bit: the relative
error in neglecting streamwise derivatives in the viscous 
terms, and making the boundary layer approximation itself 
is 0(s 2Re’2) and is of order unity here. Strictly we 
should expand in suitable powers of the inverse Reynolds 
number, and scale s, ci and c suitably with Re in order 
to describe the structure of the jump at these high Froude 
numbers. However the discussion above indicates that the 
downstream form is still dominated by the hydrostatically 
produced pressure term and these extra effects serve only 
to delay the development of the jump profile and to add a 
constant to the downstream asymptote A « _x-0*4305> it is 
encouraging to note that in the above case we need (x-Xj) 
>> 170^, approximately, for the -A to dominate the c A 
in the P/A law and, although long, this is much closer to 
the observed scale of the interaction than is L above, 
especially given the possibility of errors being 
introduced by the sensitive dependence of c o n  s combined 
with the sensitivity of s to errors in xj.

§2.7.4 The comparison with experiment and discussion.
The discussion above gives rise to the question of 

where we take the jump position to be and how we measure 
the increase in depth from Figure 2.7.1 in order to make 
the comparison. The present theory takes no account of 
surface tension which we have shown to be primarily 
responsible for increasing the length of the interaction 
region and for the dip in the surface near the jump. This 
however only adds a constant to the downstream depth 
(although, of course, this could be quite large
numerically) . Therefore we feel it is most suitable to 
measure the actual change in depth, Sh, from the dip just 
before the rapid rise in depth, but consider it to have
taken place at the point where the upstream depth is a
maximum, before which the flow is well-approximated by 
Watson's solution. We consider therefore that the
interaction starts near this point of maximum depth, and 
we use the flow here to nondimensionalise our equations.
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The interaction continues, through a region where surface 
tension dominates and then, after the rapid rise in depth, 
the final form is governed by the hydrostatic part of the 
pressure-displacement law.

We make a comparison with Figure 2.7.1 from which we 
make the measurements of the jumps as detailed in Table 1. 
The values of the radius of the falling jet are estimated 
from similar cases, both in the height of the falling 
water column and its flux, mentioned in Table 1 of Craik 
et al.. The depths predicted using the formulae 
(2.7.2a-f) are displayed in Table 2. Table 3 shows the 
results of calculating the same quantities using the 
measured value of the depth upstream of the jump, i.e. the 
depth at the crest of the capillary wave. This uses the 
prediction

S h  q O . 1525
  = (0.0150) ------------ . (2.7.5), * ' , 0.305 0.1525(Sx) h xv ' J J

The results are seen to be encouraging in that the
predicted depths are close to those measured from Figure
2.7.1. This measurement is of course itself a source of
error in the comparison. The approximate error is similar 
to that in Brotherton-Ratcliffe1s comparison, with the 
better agreement being near to the start of the jump where 
the displacement is smallest. The theory used is for 
relative changes in surface position of 0(s/k ) and this 
is small in these experiments. Therefore, further 
downstream where the layer has thickened we cannot expect 
the theory to be as accurate. Effects associated with the 
longer length scale over which the displacement ceases to 
grow and becomes constant will need to be incorporated. 
The comparison seems most succesful for the jump with the 
largest Reynolds number.
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§2 .8  Su m m a r y .

Below we list the main results of this chapter.

1) Upstream influence eigensolutions in liquid layer
flows on a flat plate over the long, O(Re), length scale 
are strongly affected by the non-parallelism and 
simultaneous development of the basic flow.

2) Analytic progress can be made when either (i) the 
Froude number is large so that the branching solutions 
are rapidly established on an 0(s3Re) length scale where 
s is the inverse Froude number, or (ii) the Froude
number is small so that the basic flow develops slowly.

3) The expansive free interaction terminates in a
singularity with a structure in common with the 
corresponding interaction in hypersonic flow.

4) The compressive free interaction, which is perhaps
possible only for relatively large Froude numbers, is 
similar in form to the corresponding interaction in 
hypersonic flow.

5) A proposition is made, that the experimental results
of Craik et al. (1981) on hydraulic jumps can be
explained in terms of a viscous-inviscid interaction on 
a fully developed flow at high Froude number. The 
comparison with the experiments is encouraging if the 
very important effects of surface tension are also 
incorporated.
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Tables.

Table 1 This table gives measurements of the experimental 
hydraulic jumps of Craik et al. (1981). The volume flux 
contained within the jump is Q. The position of the 
jump, xjf and the depth of the layer at this point, hj7 
for jumps with various values of Q are taken from Figure 
6 of Craik et al., reproduced here as Figure 2.7.1. The 
value of <r, the radius of the water column falling onto 
the plate, is estimated from Table 1 of Craik et al.. 
The position of the jump is taken to be at the crest of 
the capillary wave which occurs just upstream of the 
jump. The values of 5h, the change in the depth of the 
layer, at a point <5x further downstream are measured, 
using as a reference point the point of minimum depth, 
which occurs just upstream of the jump. We use e.g.s. 
units.

Table 1(a)

Q O' X hj j
11 0.15 2.55 0.034
18 0.17 2.95 0.026
29 0.22 4.15 0.028

Table 1(b)

Q Sh 6h/hj
£x 0.25 0.5 1.0 0.25 0.5 1.0
n 0.0375 0.0625 0.1 1.103 1.84 2.94
18 0.0375 0.075 0.119 1.44 2.88 4.56
29 0.0313 0.0625 0.103 1.11 2.32 3.67
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Table 2 This table presents a comparison of the 
measurements of Table 1 with the predictions of equation
(2.7.2). Table 2(a) gives the calculated values of the 
layer depth, h f the inverse Froude number, s, and the 
Reynolds number, Re, at the jump position. The length 
scale, Lw, is that associated with the development of 
Watson's solution upstream of the jump. The flow can be 
taken to be fully developed at the jump if < xj. 
Tables 2(b) and 2(c) present the calculated change in 
the depth at a distance Sx downstream of the minimum in 
the depth. The figures in brackets are a comparison of 
these calculated values with the measured values in 
Table 1(b).

Table 2(a)

Q Xj hj s Re
11 2.55 0.024 0.030 1.25 68.67
18 2.95 0.020 0.0088 1.60 97.13
29 4.15 0.023 0.0097 2.23 111.2

Table 2(b)

Q Sh /(Sx ) Sh
11 0.0615 0.0339 (90%) 0.0465 (73%) 0.0615 (62%)
18 0.0684 0.0337 (90%) 0.0507 (68%) 0.0684 (58%)
29 0.0673 0.0371 (118% i 0.0499 (79%) 

.
0.0673 (65%)

Table 2(c)

Q Sh / (hjSx) I&so-a? Sh
11 2.53 1.39 (126%) 1.88 (102%) 2.53 (86%)
18 3.35 1.84 (128%) 2.49 (86%) 3.35 (73%)
29 2.93 1.61 (145%) 2.17 (94%) 2.93 (80%)
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Table 3 This presents a comparison similar to that in 
Table 2, but using the measured values of the depth at 
the crest of the capillary wave rather than the 
predictions from Watson's theory, in the calculation of 
the depth further downstream. The predictions are made 
using equation (2.7.5).

Table 3(a)

Q Shl&K-o.xs
11 0.0289 (77%) 0.0389 (62%) 0.0525 (53%)
18 0.0331 (88%) 0.0446 (59%) 0.0601 (51%)
29 0.0330 (105%) 0.0445 (71%) 0.0600 (58%)

Table 3(b)

Q Sh /hj 1 £ x - o OlS &h /h3 Sh /hj art X \> 6

11 0.85 (77%) 1.14 (62%) 1.54 (52%)
18 1.27 (88%) 1.72 (60%) 2.31 (51%)
29 1.18 (106%) 1.59 (68%) 2.14 (58%)
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Figure Captions For Chapter Tw o .

Figure 2.1.1 A definition sketch for fully developed 
flow on a horizontal surface, defining the
dimensional coordinate system (X*, Y*), velocity
profile (U*), free surface height (tj*) and mass flux 
per unit width (Q).

Figure 2.2.2 Figure 2.1.1 in normalised, dimensionless 
coordinates for motions over a length scale of the 
order of the Reynolds number, Re.

Figure 2.4.1 A typical solution of (2.1.1a-g) with
half-Poiseuille flow as an initial condition, s = 2, 
Ax = 10‘6 and A£ = 10~2. Figures (a) and (b)
illustrate the pressure and skin friction of the 
solution respectively. The solution ends in a 
singularity at x = 0.0373.

Figure 2.4.2 Integrations of (2.1.1a-g) for values of s 
of 1, 2, 4, 8. All solutions have half-Poiseuille
flow at x = 0 and end in a singularity, with the 
singularity occurring at larger values of x for 
larger values of s .

Figure 2.4.3 An integration of (2.1.1a-g) for s = 0.001 
and with Ax = 10-4. The x-grid is too coarse to 
capture the interaction and the solution develops 
into Watson's (1964) form. The initial condition is 
half-Poiseuille flow at x = 0. Figures (a), (b), and
(c) illustrate the development of the pressure 
(proportional to the position of the free surface), 
the velocity profile at x = 0.1 and the development 
of the skin friction respectively.

Figure 2.5.1 A comparison of the singularity calculated 
numerically, and illustrated in Figure 2.4.1, with 
the theoretical structure of §2.5. Figure (a) 
illustrates the velocity profiles at x = 0, 0.01,
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0.02, 0.03, 0.35, and 0.0373, and clearly shows the 
development of a boundary layer near y = 0. Figure 
(b) shows x~5 (curve (a)) and i"5(lnx)3 (curve (b)) 
against x -x. where x is the position of thes s
singularity and x is the skin friction of the

- 5 /3solution. Figure (c) similarly shows (“Px ) (curve 
(a)) and (-px )"5/3( In (-p^) )4/3 (curve (b)), where -px 
is the pressure gradient in the direction of the 
flow. The near-linear character of these plots 
illustrates that the theoretical structure is likely 
to be correct.

Figure 2.6.1 A sketch illustrating the scales and
asymptotic structure of the large Froude number 
interaction described in §2.6.2. The inverse Froude 
number, s, is small and the free surface suffers an 
0(s) perturbation over a short 0(s3) length scale. 
The nonlinear boundary layer at the wall (II) has 
thickness 0(s).

Figure 2.6.2 This illustrates the structure of the
interaction leading to a non-uniqueness in the
development of Watson's (1964) similarity solution as 
the depth becomes large enough to reinstate the 
pressure term. Region (I) reacts in an inviscid
fashion to a departure of size exp(-y/x9), for some 
positive y, as x -» 0. There is a viscous layer near 
to the wall of thickness 0(x4) .

Figure 2.7.1 Figure 6 of Craik et al. (1981)
illustrating the experimental hydraulic jumps used in 
the experimental comparison of §2.7.

Figure 2.7.2 The solution of (2.7.1a-h) illustrating
(T-l) and 3v/3 (T-l) /n - X3 which asymptotes to the 
value 0.69 as x oo. This value is taken to be the 
value of d3 in the comparisons of §2.7.2.
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Chapter Three

UPSTREAM INFLUENCE IN LIQUID LAYER FLOWS ON A 

FAVOURABLE SLOPE.
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§3.1 In t r o d u c t io n  A nd  T he Go v e r n in g  Eq u a t io n s .

Chapter two concentrates on the problem of liquid 
layer flow on a horizontal surface. Complementary to this 
study, the present chapter investigates two-dimensional 
liquid layer flow upstream of, and over, obstacles mounted 
on a slope. Typical physical problems are illustrated in 
Figure 3.1.1. Questions such as whether or not separation 
occurs will affect the stability of the flow and a 
determination of its depth is important in calculating the 
efficiency at which gas can be expected to dissolve into 
the liquid film - a question with important industrial 
implications. Also of interest is the effect that surface 
tension may have on these flows.

The study of flow on a slope is perhaps of more
physical relevance than the problems tackled in chapter 2.
An assumption, shared by these two sections, is that the
development is over a scale sufficiently long that viscous
effects are important throughout the layer's depth. This
severely restricts the relevance of the solutions found in
chapter 2, but here an obvious fully developed flow
exists, namely half-Poisueille flow. This chapter,
therefore, concentrates on mechanisms for upstream
influence in half-Poiseuille flow on a downward slope.
Again the emphasis is on the effects of the interaction
between viscous and inviscid effects and in order that the
pressure gradient generated by the interactive process is
not swamped by the gravitational force which also drives
the layer the slope must be shallow. In fact if we are
looking at the problem on a length scale proportional to♦the Reynolds number then the slope, tan (a ) say, must be 
0(Re_1) i'.e. tan a* = a/Re as Re -> oo. If the slope is
greater than this and we still insist on studying
interactions on an O(Re) length scale the problem becomes 
one of a classical boundary layer type with the pressure 
gradient given by the slope or obstacle shape and not 
determined by the flow itself in an interactive fashion. 
Problems of liquid layer flow described by the classical 
boundary layer formulation have been studied by many

74



authors, e.g. Eagles and Daniels (1986) and Eagles (1988).
With a slope of this magnitude it is a simple matter 

to extend the equations derived in §2.1 to cover flow over 
a slope by means of a Prandtl shift in y so that y now
becomes, in effect, a coordinate normal to the slope. The
resulting equations are similar,

UU + VU = -p + U , (3.1.1a)X  y X  yy

U + V = 0, (3.1.1b)X  y

U = V = 0 at y = 0, (3.1.1c-d)

Uy = 0 at y = 1 + 7) + ocx, (3.1.1e)

P = S7J, (3.1.If)

but the initial condition at x = 0 is replaced with the 
condition

7) ~ -ax, as x -» -oo. (3.1.1g)

Alternatively we can view the system as an initial value 
problem in which the conditions are given at some finite x 
(x = 0 say), rather than as x -> -oo. This is the approach
taken in §3.2. The length used to nondimensionalise the
problem is hQ*, the depth far upstream (or at x = 0). The 
depth of the liquid layer, h, is then 1 + t) + ax, and so 
the equation arising from the conservation of mass flux is

fi+7)+ax
U (y )dy = 1. (3.1.lh)

Jo

If we represent an obstacle on the slope by writing the
surface over which the layer flows as y = f(x) then the
lower limit of this integral (only) is altered to f(x). 
Again the slopes which make up this obstacle must be 
0(Re-1). See Figure 3.1.2.

If we consider half-Poiseuille flow on a uniform 
slope then equation (3.1.1) reduces to
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P = u  ,yy'

P = ST),

U = 0 at y = 0 and Uy = 0 at y = 1 + v(x) + ax,

j .

l+Tj+ax
U(y)dy = 1.

o

However in parallel flow = -ax + (h-1), with h, the
fluid depth, defined above. So, given half-Poiseuille 
flow,

Now, since the equations are normalised such that the 
upstream depth is 1, this means that

and so for the case of flow on a slope the requirement 
that the profile be fully developed, i.e. be half- 
Poiseuille, implies that s and a are not independent. Thus 
fixing the slope determines the depth of the layer for a 
given mass flux and thus determines the Froude number.

This chapter investigates equations (3.1.1) in a 
similar fashion to the approach taken in chapter 2. There 
are, in fact, many similarities, stemming mainly from the 
relationship (3.1.2), which implies a similarity between 
large/small Froude numbers on a horizontal surface and 
steep/shallow slopes. The main difference arises in that 
the compressive interaction, which leads to a self-induced 
thickening of the layer and possibly to separation, is 
able to occur for all slopes whereas in chapter 2 it is 
positively identified as being possible on a horizontal
surface only if the Froude number is large. This leads to 
a class of solutions distinct from those found in chapter
2. These solutions are studied first in a numerical
solution of the flow on a uniform slope in §3.2. The

h = (3/sa) 1/3

sa = 3, (3.1.2)
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chapter goes on to study the downstream asymptotes of 
these solutions and finds that there are two possible 
asymptotes, depending on the steepness of the slope and 
the severity of the separation (if any) which occurs on 
it. This variation has implications for the type and shape 
of hydraulic jump to be expected on different sizes of 
slope. Again the numerical solutions are interpreted in 
terms of a non-uniqueness in the solutions of the system. 
The limit of small a is discussed in §3.6 and it is found 
that the flow is governed by a particularly simple 
equation which allows numerical and analytic solutions for 
the whole flow field over an obstacle. These solutions 
exhibit many of the characteristics commonly associated 
with the upstream influence of an obstacle and allow a 
prediction of the flows which are to be expected in the 
case of larger values of a. Finally in §3.7 a numerical 
solution of the equations for finite a is attempted and 
confirms many of the features of this prediction. Of 
particular interest is the apparent emergence of two 
scales for the interaction, as the severity of the slope 
and obstacle are increased. One, the short scale, governs 
separation upstream of the obstacle and the second, 
longer, scale governs the flow over the obstacle and the 
return to half-Poiseuille flow downstream.

§3.2 Numerical Solution Of The Free Interaction Problem In 
Flow On A Slope.

Solutions of equations (3.1.1), describing the liquid 
layer flow down a uniform gradient of magnitude C K R e 1), 
can be obtained using the method developed for the similar 
problem on a horizontal surface in §2.4. Here, as in §2.4, 
we consider the free interaction problem. We go on later 
to investigate forced interactions numerically in §3.7.

We therefore march the solution of equations (3.1.1) 
downstream from an initial condition at x = 0. The 
equations are first rewritten in a similar fashion to that 
detailed in §2.4 taking into account the Prandtl shift
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already introduced in deriving (3.1.1). First we introduce

C = (y - f)/(l + E),

where E = 7) + ax - f and, in this instance, f = 0, since 
the slope is uniform. Then, if \jj is an appropriate stream 
function,

UU - = -p + , (3.2.1a)
1+ E (1+ E)

u  = — , (3.2.1b)
1 + E

ii = U = 0 at £ = 0, U^= 0, jf = 1 at ^ = 1. (3.2.1c-f)

The conditions imposed at x = 0, the start of the 
slope, are 77 = 0, which corresponds to an oncoming flow of 
depth 1 in dimensionless variables, and U = 3£(l-£/2), 
V = 0, i.e. a velocity profile given by half-Poiseuille 
flow in a direction parallel to the slope. (Note that we 
used a Prandtl shift in deriving equations (3.2.1)). The 
Froude number and scaled slope, a, are varied. As 
explained in §3.1, for a given s and a, the depth of a 
half-Poiseuille flow should be (3/sa)1/3, so unless 
sa = 3, the initial conditions do not constitute a flow 
which can continue unaltered. Instead we expect to see it 
develop downstream. The actual development for various s 
and a is described below.

Firstly, if sa < 3 the depth decreases monotonically 
from 1, and the skin friction similarly increases. The 
solution eventually falls into the singularity described 
in §2.5, in just the same fashion as on a horizontal 
surface. See Figure 3.2.1, which presents solutions for 
various values of s on the slope a = 0.25.

In contrast, if sa > 3 the layer thickens, the skin 
friction decreases, and the solution far downstream seems 
to depend only on a, the slope, and not on the Froude 
number of the oncoming flow. This solution consists of an

78



approach to a horizontal free surface, which would provide 
only a weak pressure gradient, and a slowing flow beneath. 
For small values of a the flow does not separate and 
remains forward throughout its depth. The approach of the 
free surface to the horizontal is from above. For larger 
a, in contrast, there is a region of reversed flow and on 
increasing the gradient further the separated region
becomes larger and most of the forward flow is confined 
near to the free surface. The decay towards the horizontal 
is from below. The asymptotic structure of these various 
regimes is described in §3.2 and §3.3. Numerically the
separated regions, with reversed flow, are handled simply 
using the so-called Flare approximation (Reyner and 
Flugge-Lotz (1968)) in which the term UÛ . is set equal to 
zero if U < 0. This is an effective and, since the speed 
of any reversed flow is usually much less than that of 
forward flow, quite accurate device for obtaining 
solutions. It does alter the equations however making them 
parabolic in regions where reversed flow is present. 
Figure 3.2.2 shows solutions for s = 10 and a = 4 and 6. 
We note here that the solution with a = 6 shows a
separation whilst that for a = 4 does not. Also, the 
approach of the free surface to the horizontal
(p constant) is from below whilst the approach on the 
smaller slope illustrated in Figure 3.2.1 is from above.

If sa is equal to 3 the flow seems to continue as 
half-Poiseuille flow, but perhaps with a small departure.

It is worth considering why sa = 3 is the dividing 
line between the two types of behaviour, especially as if 
sa < 3 the half-Poiseuille flow on such a slope has a
depth greater than 1 and so we might expect the depth to 
increase towards this depth rather than decrease towards 
the singularity as described above. The explanation can be 
found by considering the sign of the perturbation the flow 
receives at the start of the interaction. The profile 
U = 3(£-£2/2) needs a pressure varying as -3x to drive it 
and on the horizontal plate this is provided by an initial 
fall in the free surface and so this initial perturbation 
will drive the flow into the singularity. This will always
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be the case on a horizontal plate. However on a favourable 
gradient gravity provides the energy to drive the profile. 
The pressure provided by the slope is -sax, and so if this 
is too small, i.e. sa < 3, the layer will thin to provide 
the extra pressure gradient needed. Similarly if sa > 3 
the layer will thicken to reduce the pressure gradient to 
the correct value. These cause the initial perturbations 
which determine the subsequent behaviour of the solution. 
In the case sa = 3, there is no initial perturbation, and 
the flow is parallel. The slow departure seen in the 
calculations in this case comes from numerical errors 
which act as a source of small perturbations.

It seems clear that the singularity experienced in 
these computations is identical to that which the 
equations suffer on a horizontal surface. Indeed if we 
repeat the analysis of this singularity of §2.5, we see 
that, due to the increased pressure gradient caused by the 
rapid change in the free surface position, the 
contribution from the slope is negligible and the same 
analysis is succesful in describing this singularity. The 
other type of behaviour seen, corresponding to a 
compressive interaction, is not experienced on a flat 
surface, except in various limits described in §2.6, where 
the interaction develops relatively rapidly. The next two 
sections investigate the downstream asymptotes of this 
solution.

§3.3 Large X Asymptotes for the Smaller Gradients.

§3.3.1 The expansion leading to the Jeffrey-Hamel 
equations.

For the smaller values of a the asymptotic form, for 
large x, of the solution calculated in §3.2 is similar to 
that for a flow through diverging plates. This can be seen 
from a consideration of the possible symmetry of these 
flows about the centre of the channel, where necessarily 
Uy = 0. Replacing this symmetry line with the horizontal 
asymptote of the free surface gives us our liquid layer

80



flow. These channel flows are of course Jeffrey-Hamel 
flows and have been studied by many authors (Jeffrey 
(1915), Hamel (1916), Rosenhead (1940), Fraenkel (1962)). 
Here we need consider only the high Reynolds number limit 
of these flows, with the angle between the plates 0(Re_1) 
as Re -» oo, and concentrate on those which are symmetric 
and with net outflow.

To derive the governing equations at large x we write 
the position of the free surface as

y = 1 + 1/s (pQ + pt/x2 + . . . ), x co

and the stream function, as

0 = + • • • , x  -> oo

where and 0 are functions of

€ = Y / ( 1 + P0/s + ax ).

The value of pQ will not be found in this large x analysis
since it is related to the total drop or rise in the free
surface during the interaction and therefore contains
information about the history of the flow. Substitution of 
the above expansion into equations (3.1.1) yields, at 
0(x~3), as x oo,

\jj + a i/j '2 + 2p a3 = 0,

0O(i) = i, 0O"(i) = o, 0O(O) = vQ' ( 0) = o,

p is to be found. i

Here ' indicates S/S£.
To simplify this equation we make the substitution 

V = oci/jq' , P = 2a4pi7 and find
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V" + V2 + P = 0, (3.3.1a)

V7 (1) = V(0) = 0, Si V d£ = a. (3.3.1b-d)

This system can be solved in terms of elliptic functions 
and we do so by following the work of Fraenkel (1962). We 
first integrate once and put W=-V/6, to give

W /2 = 4(W3 + P/12 W + 1/4 (t /6)2), (3.3.2)

where t = V'(0). This is now in a standard form for
integration to give elliptic functions. The type of 
solution depends on the number of real roots of the cubic 
on the right hand side of (3.3.2). If it has only one, r2 
say, with the other roots, r and r3, making up a 
conjugate pair we write

a4 = (r -r ) (r -r ) = 2r 2 + r r ,' 2  3 2 1 2 1 3 '

r2 = - 2/3 a2 (2m-l),

defining a and m. This means that the pressure and skin
friction can be written as,

1/4(t /6)2 = -rtr2r3 = a6(2/3) (2m-l) (1 - (8/9) (2m-l)2),

P/12 = rtr2 + r2r3 + = a4(l - (4/3) (2m-l)2).

(3.3.3a-b)
The solution for V can be written as

V = 6a2(sn2a dc2a - sn2a(£-l) dc2a(£-l)),

where sn and dc are Jacobian elliptic functions with 
modulus m. See, for example, Abramowitz and Stegun (1964). 
The boundary conditions on V give
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m = 1/2 (1 + 3/2 sn2(a\m) dc2(a\m)), (3.3.4a)

a = 6a2(sn2a dc2a + 2E(a)/a - 1 - sn(a)dc(a)/a) . (3.3.4b)

Here E(a) is the incomplete elliptic integral of the 
second kind with modulus m.

These two equations together define a and m in terms 
of a. In our problem, however, we are given a, the slope 
of the plate, and not a. We therefore hope to invert 
(3.3.4) to give a and m in terms of a. Fraenkel (1962) 
shows that in this case the inversion is possible, with 
unique values of a and m corresponding to a given a. We 
are therefore able to calculate the velocity profile and 
pressure P. The profile is monotonically increasing from 
zero at the wall. The derivative of the velocity, V', is 
monotonically decreasing. See Figure 3.3.1. This type of 
solution is representative of those with smaller values of 
a .

The second type of solution occurs if r and r are1 J
real, say r ̂ r ̂ r . In this case there is more than one' 3 1 2
zero of W' possible. If one occurs within the range £ € 
(0,1) there is a minimum in V within the flow field as 
well as the maximum at £ = 1. Therefore the flow in this 
case can be separated. We define b and m in this case by

Just as for the smaller slopes we can find expressions for 
P and t ,

P = - 4/3 b4 (m2 - m + 1) < 0,

1/4 (t /6)2 = 2b6/27 (m + l)(m - 1/2)(2 - m ) .

Solving (3.3.1) we find, in terms of elliptic functions,

m = 1/(3 sn2b -1), a = b2 (E(b)/b - dn2b),
(3.3.5a-c)

V = 6mb2(sn2b - sn2b(£-l)).
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In contrast to the solutions of the first type, given m we 
have a large choice of b satisfying (3.3.5). Any b such 
that

b = n K(m) ± /3, sn2|3 = sn2b, 0 ± (3 ± K(m), (3.3.6)

with n an integer, is suitable. This freedom of choice is 
responsible for the solutions for Jeffrey-Hamel flow with 
multiple regions of inflow and outflow. Here, however, we 
have two choices. If we choose n = 0, b = £ we get
unseparated profiles with V increasing but a zero in V" .
On the other hand if n=0, b=-£, we get separated profiles
with one region of backflow near the wall. The condition 
separating the two types of profile and the two choices of 
b is b = K(m), corresponding to just-separating flow. 
Again, given a, we can attempt to invert (3.3.5), and find 
the complete solution. However, Fraenkel shows that da/db 
is zero at a = a. = 5.461, and so the equation has no

C

unique inverse at this point.

§3.3.2 Some special cases of interest.
Some special cases of the above analysis are 

presented below.
1) Poiseuille Flow, a -> 0.

Consider equation (3.3.4a) for small a. It yields the 
asymptote

m ~ 1/2 + 3/4 a2,
and so

sn(a) - a(l-a2/4), dc(a) - (l+a2/4), E(a) - a(l-a2/6). 

From equations (3.3.3a-b), therefore, we now find that

. 4a ~ 4a ,

V - 12a4(C-S2/2) - 3<x(e-£2/2), P - 3a,

IV ' 3(C-C2/2), p2 - 3 / 2a3.
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Therefore the downstream form is one of
half-Poiseuille flow, of linearly increasing depth. Since
the error in fixing the position of the free surface at
£ = 1 is 0(p2/socx) and p2 is large the above is only valid
when xac >> (sa)~1/3.

2) Transition between the two types of solution.
This occurs at m = 1, i.e. sn2(a\l)dc2(a\l) = 

tanh2(a) = 2/3, from equation (3.3.4a). Thus
E(a)=tanh(a)=V2/3 and from (3.3.5b) we get a = 2.988. The 
profile is

V = 4a2 (1 - 3/2 tanh2a( l-£)) . 

This equation is valid if x >> (sa)-1.

3) Just-separating flow.
Here b = K(l/2) and from equations (3.3.5a-c), we

find
a = 4.712,

V = 3K2 cn2K( £-1) .

This profile has 3V/5£ = 0 at £ = 0.

4) P = 0.
This corresponds to the approximate dividing line 

between the approach towards the asymptote ri ~ ocx being 
from above and it being from below. If P = 0 equations 
(3.3.1a&c) imply

„v/u
£ = / 3 U / 2 dv

(1 - v3)1/2
where V = U at the point where V7 = 0. Thus from equation 
(3.3.1b)

_i
dv

(1 - v3)1/2
= 1.717.
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Therefore
,i

v dv 7T 1.814.
(1 73

o o

Thus a = 1.814 is the critical slope, delineating the 
alternative shapes for the hydraulic jump. If a is less 
than 1.814 the approach is from above and there is no
obvious "jump". If ot is bigger a rise in the level of the
free surface, or "jump", is possible.

§3.3.3 Discussion.
In summary, consider increasing a from zero. The 

modulus, m, of the elliptic functions appearing in (3.3.4) 
increases from 1/2 to 1, at which point all the roots, ri# 
become real, and the solution changes to being of the
second type (3.3.5). This occurs at a = 2.988. Increasing 
a still further causes m to decrease again to 1/2 at which 
point the flow is just separating (b = K(l/2), a = 4.712). 
Larger a still causes m to increase from 1/2 again.
However Fraenkel shows that at m = 0.5725, b = 2.364, 
a = 5.461 there is no unique solution. Above this value of 
a there is the possibility of more than one solution, or 
perhaps none, for a given a, corresponding to different 
choices of b and n in (3.3.6) and with multiple regions of 
backflow. As a -» a -, dV/da = (dV/db) (db/da) becomesc
infinite. Figure 3.3.1 illustrates this change in the 
profile as a increases. In addition Figure 3.3.2 presents 
a numerical solution of the free interaction with 
a = 4.712, the critical angle for separation.

In the numerical work of §3.2 there is no evidence of 
large x solutions with more than one region of reversed 
flow, even for a > a.̂. The different types of profiles, 
described above, are appropriate in the cases where a < 
ac, and the critical values of a dividing the types are 
reflected in the numerical solution. We propose, as an 
explanation, that the form of the large x asymptote for a 
> (*c is that described in §3.4, in which the vorticity of 
the oncoming flow breaks away from the wall, leaving
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beneath it a slowly moving, reversed and irrotational flow 
with a viscous sublayer at the wall. Thus for larger a the 
separation is of the breakaway type, whereas for smaller 
slopes the development is slow enough for viscosity to 
diffuse the vorticity across the whole depth of the liquid 
layer. The profiles have to develop from the initial 
half-Poiseuille flow at the start of the interaction, and 
the vorticity must diffuse through an increasingly thick 
layer with, of course, the rate of thickening increasing 
with a. In addition it is shown in §3.5.2 that the scale 
over which the actual separation occurs decreases as a 
increases, and so viscosity has an even shorter distance 
over which to act.

§3.4  Large X Asym pto te  for Br ea ka w ay  Sepa r atio n .

§3.4.1 The flow structure and expansion for large x.
As suggested in §3.3.3, it seems likely that 

breakaway separation occurs for scaled slopes, a, greater 
than 5.461. Below we study the downstream form of this 
separation on the long, 0(Re), length scale by obtaining 
an alternative asymptotic solution to equation (3.1.1) to 
that described in §3.3. This form has the vorticity 
concentrated near the free surface, rather than 
distributed throughout the layer's depth.

The thickness of the layer is given by ax + p/s say, 
where p is the pressure. Without loss of generality we can 
ignore the 0(1) contribution to the pressure and free 
surface position since this expansion is for large x and 
so its origin in x is uncertain. For the purposes of this 
analysis, therefore, we can use this freedom to write the 
thickness of the layer in a form with no 0(1) component as
X  -» oo.

The flow divides into three regions. Region I, near
2/3to the free surface, is of thickness 0(x ) and here we

use the variable x  - (ax+p/s-y)/x2/3, so x = 0 at the free 
surface and approaches infinity towards the interior. The

1/3stream function \ft is 0(-x ), and the velocity profile
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here turns out to be that of a sech2*-like jet. In the 
main part of the flow, region II, which is of thickness

1/30(x), there is a slow backflow with \Jj ~ 0(x ) and
“2/3U ~ 0(x ). Accompanying this is region III, a reversed

flow boundary layer at the lower wall of thickness 
0(x5/6), and in which i/j ~ 0(x1/6) . We combine regions II 
and III into region II in the analysis below and use the 
variable £ = y/x5/6 to describe it. See Figure 3.4.1. The 
variables £ and x are related by

- 1/6 -1/6 , , -5/6 , 0 „ -i _ \C = (xx - x x + p/s x , (3.4.1a)

w 1/6 1/3 , —2/3 , o a <i u  \X = “C* + ocx + p/s x (3.4.1b)

With this structure, then, we expand as follows. In
region I,

xjj ~ -{x1/3fi(^)+x1/6f2(^)+f3(^)+x'1/6f4(^)+x"1/3f5(^)
+ ...}.

In region II,

<!> ~ *w\(0  + g2(C) + x-",/s g3( 0  + * ' 1/3g4(C ) + ,

and

_  / "4/3 . -3/2 , -5/3 , -11/6 . .p ~ -(P^ + p2x + p3x + p4x +...).

The relevant boundary conditions are
fl"(0) = ft(0) = 0, for i = 1-5 at least, before the 
change in position of the free surface has an effect, with 
the exception that f3(0) = -1 for the net mass flux to be 
unity. The value of fj/ (») should be zero to match with 
the slow reversed flow in region II. The other f^oo) 
should match with the higher-order solutions in region II. 
Here, g^O) = gi/(0) = 0 and g^ (oo) < 0 to give reversed
flow in the main body of the layer.

Substituting the above asymptotes into equations 
(3.3.1) and using the result that f turns out to be zero
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in the equations for f3, f and fg, gives the following.

f + 1/3 (f f "  + f /2) = 0,1 ' v i i i 7 '

f 777 + 1/3 f f "  + 5/6 f 7f 7 + 1/6 f,"f0 = 0,2 1 2  1 2  1 2

f 777 + 1/3 f f " +  f 'f ' = 0,3 ' 1 3 1 3  '

f 777 + 1/3 f-f 77 + 7/6 f 7f 7 - 1/6 = 0,4 1 4 7 1 4  1 4

f ,7/ + 1/3 f f "  + 4/3 f 7f 7 - 1/3 f 77f =5 15 1 5  ' 1 5
-4/3 Pi + 2/3 f / %

where 7 indicates d/dx. Also,

g / "  + 1/6 g ^ "  + 2/3 (g^ 2 - 2Pj) = 0,

g2"' + 1/6 g1g2" +  3/2 (g,'g2' - P2) = 0,

g3"' + 1 / 6 gig3"  -1 / 6 gt" g3 +
5/3 (9 / 9 3' - p3 + 1 / 2  g2'2) = 0,

g4'" + 1/6 gtg4" -  1/3 gi" g 4 + 1 1 / 6  (g/g/ - p4) =
i/eg2" g 3,

where 7 indicates d/a£.
We note that in the main part of the flow, region II, 

where the vorticity is zero, these equations give Pi to p4 
in terms of the backflow velocities g^ («).

We can now go ahead and solve for these unknown 
functions. In region I, fi is found to be

±1(X) = a tanh (a*/6) (3.4.2)

giving a jet with a velocity « sech2(a^/6) near the free 
surface. This jet is a balance of inertial and viscous 
effects, the viscosity being important due to the long, 
0(Re), length scale. The value of a is undetermined and 
will remain so throughout this work (see, however, the
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discussion at the end of this section). The momentum flux 
contained within the jet is a3/9, and is 0(1) as x -» oo. In
addition the pressure is asymptotically zero as the free
surface is horizontal and the shear stresses at the free

-3/2surface and at the wall are zero and 0(x )
respectively. An application of the momentum integral
theorem, therefore, suggests that this momentum flux is 
the same as that emerging from the interaction at 
x ~ 0(1), and so is equal to that of the original profile 
except for some possible losses in the process of
separation. These losses are due to either viscous 
stresses at the wall or work done by the initial flow in 
countering any rise in depth and so adverse pressure
gradient, near to the start of the interaction. It seems
unlikely, therefore, that the value of a will be
determined by this large x theory.

We now turn to completing the expansion. Noticing
that f = f ' is a complementary function to all the 
equations for f  ̂ allows us to write the full complementary
function for f , i ^ 2, in the form

2.sech z
f = C sech2z - — —  sech2z ---------  du, (3.4.3)i i  ̂ 2, - N1/22 } u  (1-u)

where z = a.x/6 and

Ht(u) = KF(r,S}l}U)+ B1F( r , s ; 1/2; 1-u) =
A A  + BA '  say*

Here F is the hypergeometric function (Abramowitz and 
Stegun, Chapter 15), with r+s = 1/2 and rs = (l-i)/4. If 
i = 3 there is a relation between F and Legendre 
polynomials so that f can be found explicitly in terms of
hyperbolic functions. The function 02 has a logarithmic
singularity as u -» 0, corresponding to z ». This implies 
that the growth of this part of f^z), as z -> oo, is at 
most linear and is derived from a combination of this 
singularity and the exponential decay towards zero of
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sech2z. At the free surface, u -» 1, <p behaves like
1/2 2 (1-u) , but the parabolic behaviour of sech z near to

z = 0 ensures that the behaviour in z is analytic. Using 
the asymptotic forms of and 02 leads to the following 
relationships between the unknown constants,

where Kq = 20(l)-0(r)-0(s), with 0 the Di-Gamma function, 
T'/r. Hence, using the boundary conditions, we find 
Ct = = 0, i = 2,4, C =-1, and A = -2, since then
r = 1, and s = -1/2. We do not consider fg here, other 
than to note that, since the forcing for it is later shown 
to be zero at infinity, the solution for large x is given 
by (3.4.3) and it too is at most linearly increasing.

The equations in region II, for the reversed flow, 
must be solved numerically. The transformations

f
r(r)r(s)
b r(1/2)

z +
2
1 A + B

f (0) = C
(3.4.4a)
(3.4.4b)

fiz(0) = A ir(i/2)/(r(i-r)r(i-s))+ b i# (3.4.4c)

fizz(0) = _2Ci+ A lr(-i/2)/(r(r)r(s)), (3.4.4d)

C = C(2pi)1/V 6 , <r = p3-p22/4pi, n = p22/(4picr)

= V6 (2pi)1/4, j2 = V6 p2/(2pi)3/4, r3 = oV6/(2pi)3/J

lead to the normalised equations



with boundary conditions

gt(0) = g/(0) = 0, gri ~ -C + ci at <*>.

These are solved using finite difference methods and the
results checked using a variety of grid sizes and values
of f . It is found that 0̂0

g '7 (0) = -2.273, c = 0.414,

g2"(0) = -3.715, c2 = -0.140.

The constant c3 depends on iif which turns out to be 
independent of a but not of a, and therefore no unique 
value can be given to it. The decay towards the reversed 
flow solutions at infinity is like £~7, i.e. algebraic.

We are now in a position to match the solutions in 
regions I and II, and find the unknown coefficients and
the pressure. Writing c = y c and using (3.4.1a) to
write the solution in region II as £ -» «» in terms of x ,  we 
find

if/ ~ x1/3(~cc/2p^) + x1/6(ci-ap2/v'2jT) + (v/2p^^+c2-<r/-/2p̂ )
as

(3.4.5)
1/3So, matching, we find, from the 0(x ) term,

Pi = a

since f^co) = a. At 0(x1/6) there are no
proportional to x in (3.4.5) and therefore B2 = 0.
h and C are also zero we find f = 0 and 2 2 2

terms
Since

p = c 2 1
3/2

= 1.014-
01 a5/2

At 0(1) we get, using (3.4.4a) and r = 1, s = -1/2,
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B3 = -12/a,

f3(x) = -1 + ax /ol - 9/a (a*/6 sech2a*/6 + tanh a*/6),

9.348 1 
1 +   .

In principle higher order terms in this expansion can
be found. For example A^, B4 and C4 are found easily from
(3.4.4) and (3.4.5), and further terms follow in a clear

—2/3fashion. There is new physics entering at 0(x ), due to
the change in the position of the free surface, and at
0 ( x 1) due to the algebraic decay of the solutions in
region II. Uncertainties over the 0(1) position of the
free surface, i.e. the pressure rise in separation, and 
the origin of the expansion in x, would bring in
eigensolutions to the problem but these have been 
suppressed by the use made of this freedom of choice of 
the origin at the beginning of the analysis. None of these 
extra effects, however, serve to fix the value of a, which 
as explained above will depend on the momentum flux 
emerging from the region x = 0(1). In summary, therefore, 
given both a and a,

_  r , 2 2. -4/3 , . „ 3/2. 5/2 -3/2p ~ -{ (a /2a )x + 1.014a / a x

( a/<x2 + 8.834a/a3)x'5/3 +

U | - -0.928a3/2/a3/2x'3/2(l + 1. 657x'1/s/a) .y 1 wal1

§3.4.2 Discussion.
We have shown that the momentum flux of the oncoming 

flow, except for any losses at separation, is concentrated 
in a jet (fi) of thickness 0(x1/3) near to the free

— 1/3surface. The speed of this jet is 0(x ), which is
faster than the 0(x_1) velocities in the Jeffrey-Hamel 
flow of §3.3. The large, 0(x1/3), volume flux in the jet 
is balanced by a slower backflow in the wider main part of 
the thickening layer. This backflow is brought to zero by
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a boundary layer at the wall. The flux of the original
oncoming flow is carried in f and g2 and the velocity
associated with f in the jet is of the same order as that
dominating the backflow. The pressures are simply those
required to drive the backflow and so make up the 
required corrections to the mass flux due to the effects 
of the boundary layer or of the jet. It seems possible to 
accommodate any momentum flux and therefore any oncoming 
flow/separation pair with a structure of this kind.

It is worth noting that this structure, at least to 
these lower orders, before the position of the free 
surface enters into the expansion, can describe the 
asymptotic form of breakaway separation in a diverging 
channel. The differences appearing at higher orders will 
not result in the general form of the expansion becoming 
unsuitable.

The question of whether this asymptotic form is 
attained for all slopes greater than <*c = 5.461, or indeed 
whether it is appropriate for slopes smaller than a i n  
some circumstances, has yet to be answered. There is no 
hard evidence to suggest that a is the lower limit for 
breakaway separation, although there is clearly no need 
for the separation to be of the breakaway type for slopes 
less than a . The numerical calculations of §3.2, however,

C

show that for a of the order of 15 to 60, the largest 
value studied, profiles qualitatively similar to those 
described in this section develop. For example, see Figure 
3.4.2, which details the downstream development of such a 
profile. There is much qualitatively similar with the 
theory above, although the comparison is hindered by the 
relatively thick boundary layer on the lower wall, which 
is predicted theoretically.

However, there remains the possibility that these 
types of asymptote are only seen in the numerical 
calculations due to the large perturbation received by the 
starting flow at the start of the interaction. These are 
due to the large values of sa used. As explained in §3.2, 
these will cause the slope to provide relatively large 
pressure gradients which are countered by a rapid initial
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thickening of the layer. On the other hand, and this seems 
more likely, it is shown in §3.5.2 that the length scale 
over which separation can occur for large a is small, 
0(a 3) . In this case the main part of the initial flow 
reacts inviscidly and is lifted off the lower wall by a 
separated region of backflow. As the solution emerges from 
these shortened length scales, viscosity acts on this,
now-free shear layer and forces it to take a jet-like 
profile. This implies that the momentum flux in the jet is 
precisely that in the initial profile and enables us to 
determine a in equation (3.4.2).

§3.5 Branching Solutions On A Favo urable  Slope .

§3.5.1 The initial stages of the branching.
We now turn to a consideration of the initial stages 

of the branching, i.e. the structure and growth rates of 
the linear, small perturbations which can develop to give 
the large x asymptotes described in the previous two 
sections. Here, however, we change the set-up of our
problem a little and consider a half-Poiseuille flow at 
x = -oo as our basic flow. This is in contrast to the 
numerical solutions of §3.2 which have a similar profile 
at x = 0, and values of the Froude number and slope 
unsuitable for a layer of depth unity. The form used here 
is ultimately more sensible in considering the problem of 
free interactions than the form used in §3.2. However we 
can expect the downstream asymptotes of the two systems to 
be identical. In this section, too, we do not initially 
presume that the slope is 0(Re"1), nor the length scale of 
the interaction to be 0(Re), since we go on after
considering these scalings to consider the interaction on 
steeper slopes, which occurs on a shorter length scale. We 
neglect surface tension effects, apart from a short
discussion of the differences they are likely to make to 
the results.

Let the slope have gradient a, here 0(1), and write
sina, cosa and tana as s , c and t respectively. Thea' oc a c
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governing equations are

UUX  + VUy = " P ,  +  + R e_1( Uyy +

UVjf + w y = -Py + Re'1 (Vyy + v„),

Ux + Vy = 0, 

p| = he Fr-1,^ 1 y=h a '

U = V = 0 at y = 0, i^Udy =1, Uy = 0 at y = h.

Here h is the depth of the layer, Fr the Froude number of 
the flow and x and y are coordinates in directions 
parallel to and perpendicular to the slope respectively. 
Also, p is the pressure with the variation perpendicular 
to the slope due to hydrostatic effects subtracted out. 
The basic flow is half-Poiseuille with depth 1. This has

V = 0 and U = 3(y-y2/2),

and therefore

Res = 3Fr. (3.5.1)a v '

We introduce a stream function \b, such that U = 0yand V = -i/j . Then the basic flow is

$ = i/jq = F(y) = 3 (y2/2 - y3/6).

Consider a perturbation to this basic flow of a size 
which is initially exponentially small. This is similar to 
the method suggested by Lighthill (1953), who extends the 
work of earlier authors to include the important viscous 
effects, in considering departures from the shear flow 
near the wall in a supersonic boundary layer. So

\jj = F(y) + a E f (y),

h = 1 + a E ,
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where E = exp(xq), and a is an 0(1) constant. If we
substitute these forms into the Navier-Stokes equations we 
find

(qa)[F7f7 - f F7 7 ] = -p + aRe_1(f 7 7 7 + q2f7 ),
(3.5.2a)

-q2aF7f = -p - qaRe-1(f77 + q2f ) , (3.5.2b)

where 7 represents 5/ay. If we write

p = c Fr"1 + a E c Fr”1 II,* a a '

so that n(l) = 1, then using (3.5.1), we find

(F'f' - fF" + 311/(Ret )) = Re”’(f''' + q2f' ), (3.5.3a)

IT = (taReq2/3)F'f - (taq/3) (f" + q2f), (3.5.3b)

These, then, are the equations which govern the 
perturbation profile and the variation in the pressure 
across the depth of the layer. The boundary conditions 
appropriate to these equations are f(0) = f7(0) = 0, and, 
at the free surface, linearising about y = 1, we find

0(h) ~ F(1+aE) + aEf(1+aE) + ... = 1,

07 7 (h) ~ F7 7 (1+aE) + aEf77 (1+aE) + ... = 0,

giving

f(l) = -3/2, f,7(l) = 3. (3.5.3c-d)

The final condition is

n ( l )  = 1 . ( 3 . 5 . 3 e )

We now go on to consider (3.5.3) as Re -> oo for 
progressively steeper slopes.
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§3.5.2 Slopes of 0(Re~1): relatively small slopes; larger 
slopes. The shape of hydraulic jumps.

If the slope is 0(Re_1) we write t = t^/Re, 
q = q/Re, and find that (3.5.3a-b) reduce to,

IT = 0, (3.5.4a)

q( F' f' - fF" + 3/t ) = f'". (3.5.4b)

This is an eigenvalue problem for the growth rate q.
We hope that there will be at least one positive value of
q satisfying (3.5.4) so that our assumption that the
perturbation is small as x -» -oo is valid. The problem is
solved using finite differences, and the positive values
of q against t are plotted in Figure 3.5.1. There are
many negative values of q satisfying (3.5.4), but only one
positive growth rate is found for a given t .

The two limits t -> 0 and t -» oo are easily examined.a a z
For small t the predominant balance is one between 
viscosity and pressure and we find that the perturbation 
is governed by lubrication theory,

q - 3tfl,

f - 3 (y3/2 - y2) = -yF' .

The stream function can thus be written as,

\fj = F - aEyF' ,

so that,

*(C(l+aE)) = 0o( O  + 0(E2) .

Thus the flow is still of a half-Poiseuille type but is 
thickening. The adjustment occurs on a sufficiently long 
length scale, 0(Reta_1), that viscosity can smear out any 
changes across the whole depth and the profile remains of 
a viscous character throughout this depth. Note the
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similarity here with the large s behaviour of the flow on 
a horizontal surface in §2.6.6. The connection is through 
the relation (3.5.1), which implies that a small value of 
a, i.e. a nearly horizontal surface, corresponds to a 
large value of s .

In the limit of large t , moving towards gradients 
larger than 0(Re-1), we find that the solution splits into 
two regions. The growth rate of the disturbance becomes 
large and we write q ~ ta3q*, where q* is 0(1) as -> oo. 
In the main part of the flow, where y = 0(1), inertia 
dominates and f = -F' . Thus there is a slip velocity at 
the wall of magnitude -3. This is reduced to zero in a 
boundary layer of thickness ta_1 where a linearised form 
of equations (2.6.2) hold,

zu - v = - 1 + u"/(3q*), 

v' = u ,

u = v = 0 at z = 0, u -3 as z ».

Here ' represents 3/3z, where z = yta « We can calculate 
that

q - 9(3|Ai'(0)|)3ta3 = 4.213 t/.

The structure here is just the same as is relevant to 
the case of small s studied in §2.6.2. This is to be 
expected since, again, equation (3.5.1) implies s « l/a 
and the length scale of the interaction in this limit 
decreases so that the flow does not experience the slope. 
A nonlinear structure for the interaction which, in the 
limit of large t , shows that in a region near the wall 
the flow reacts according to equation (2.6.2), can be 
constructed along lines similar to those in §2.6.2. The 
disturbance amplitude for such a nonlinear reaction is

a.0(t ) . So we can expect the hydraulic jump on slopes of
this magnitude to have the same form as those on a 
horizontal surface. Separation occurs rapidly on this
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short length scale and, although the stages in the
subsequent development have yet to be fully investigated,
it seems likely that the linear increase in depth due to
the slope soon dominates the X°'4305-like growth as a
result of the separation. Here X measures the short
0(t 3) scales of the interaction. The new term entersoc
into the equation governing the lower deck, and causes the 
growth to flatten off, as follows. The 
pressure-displacement law, including the prescribed 
pressure gradient due to the slope, is

P = -A + d X t  _1, d =0(1), t„ >> 1.1 a ' i v / # a

Now, far downstream A ~ x0,4305 so that the two terms in
a \ 7559this law become comparable if X ~ 0(ta ) or

x ~ 0(ta * ). Further downstream it seems likely that
the prescribed term in the law dominates and A attains a 
constant value so the free surface flattens off, although
the depth increases due to the effects of the slope. A
similar effect, due to this given component in the
pressure-displacement law, is seen in the work on
asymptotically small slopes in §3.6.3. Eventually, on an 
0(1) scale in x, the solution asymptotes the form 
described in §3.4. See also the numerical solutions of the
forced interaction presented in §3.7.

§3.5.3 Slopes of 0(Re~s/?) and greater. Some effects of 
surface tension.

We now consider larger slopes. If we substitute this 
large t asymptote into equations (3.5.3), we find that 
the relative error in neglecting the transverse pressure 
gradient generated by the streamline curvature as the 
branching commences is 0(ta7/Re2). This becomes 0(1) if 
t^ = 0(Re2/?), or t = t^Re-577, say. With this scaling
for t we find that q = qRe~1/7 with £ and q both 0(1).

OC '3. - 3. OC

In this case we find, where y = 0(1),

IT = (t q2/3) F'f,
F'f - fF" = 0.
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These can be integrated, and the boundary conditions used 
to give f = -F' and therefore

H( 1) - 11(0)

and so

n(0) = 1 + (2/5) taq2.

We see, therefore, that on these scales the pressure is 
made up of both gravitational and curvature terms.

—2/7In a boundary layer of thickness 0(Re ) we find 
again that the equation reduces to a linearised 
interactive boundary layer equation, and II' = 0. The 
equation satisfied by the eigenvalue is

q(l + 2/5 taq2)3 = ta39( 3 | Ai'(0) | )3.

This has a real positive root for all t . As t^ 
increases we find q ~ 91/7( 15 | Ai'(0 ) |/2 )3/?, so the growth 
rate levels off at 0(Re”1/7) as the slope increases. 
Examining equation (3.5.3), we see that this asymptote 
will hold even for 0(1) slopes. So the branching on 
anything other than shallow slopes is dominated by the 
effects of streamline curvature. The nonlinear version of

—5/7this structure for slopes large on the 0(Re ) scale, so 
that the gravitational term diminishes in size, is 
governed by the interactive boundary layer equations with 
the pressure given by P = -cA , with X measuring these

—1/7 — xx ~0(Re ) scales and c of 0(t ) as t -» ». These are the' or a
equations governing upstream influence in channel flow 
(Smith (1976)) and in boundary layer jet-like flows (Smith 
and Duck (1977)). They predict a downstream form with 
separated flow and A ~ -Pqc~5/7X2/2 , PQ » 0.675 as X w. 
However, using a argument similar to that used in §2.7.3, 
with regard to a large surface tension coefficient, the 
neglected gravitational term is reinstated at large values 
of X, as A becomes large but Axx remains finite. It is 
possible, therefore, that a jump is possible with a free

i
= -(t q2/3) [ F'2dy, 

Jo
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surface shape of the blunt form predicted by the law 
P = -A. This possibility, however, neglects the effects of 
the slope which may enter as the solution develops 
downstream and swamp this jump. If we consider, then, the 
prescribed gravitational component to the
pressure-displacement law (as in the arguments of the 
previous sub-section) we find that it now reads

P = -A - d t A - d  Re"2/7t X,2 a  xx 3 a  ’

d2, d3 both 0(1). (3.5.5)

If we consider this equation, as t and X become large,
a -5/7 otogether with the result that downstream A = 0(t X ), 

we see that the first term will only enter and give the 
blunt shape of the free surface (and an obvious "jump"),
if the distance required for it to become important,

1/20(ta ), is sufficiently short. The last term will enter
O a B1 0/7and stop this occurring when X ~ 0(Re t ) . So, for 

a "jump" to be seen, we require t << Re4/31. If this is 
not the case, as is true for slopes of 0(1) as Re -» », the 
flow will not be affected at all by the hydrostatic term, 
-A, in the pressure law. As a result, it seems that the 
flow will proceed to attain the downstream form of §3.4 
with the free surface remaining concave throughout the 
interaction.

Surface tension effects, as described in §2.1 and 
§2.7.3, will result in the addition of a term + A to theXX
pressure-displacement law. If the coefficient of surface 
tension is large enough, then the growth rate, q, will 
have an imaginary part and the initial departure will be 
wave-like. See also §3.6.6. It is interesting to note also 
that the effects of surface tension can reduce the 
magnitude of the coefficient of the Axx term in (3.5.5) 
and allow the first, "jump-producing11, term to enter 
before the growth of the last, prescribed, term destroys 
the interaction. Thus a large (although not too large) 
surface tension coefficient will mean that "jumps" will be 
more likely to be seen as the slope increases.
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§3.5.4 Further comments and discussion.
The Froude number of the flow and so the magnitude of 

the slope has a further effect on the length scale of 
these interactions via its influence on h, the depth of 
the layer far upstream which is used in the above analysis 
as a scaling for the distances parallel to the slope.

The results of this section, allied with the large-x 
asymptotes of §3.3 and §3.4, seem to provide a complete 
description of the compressive free interaction problem
for half-Poiseuille flow on a slope. The range of slopes

"5/7covers any up to those large on an 0(Re ) scale as 
Re oo, but it seems reasonable that the mechanisms due to 
streamline curvature or surface tension can account for 
upstream influence on slope of 0(1) or near-vertical 
slopes. In this latter case the hydrostatic effects
necessarily become less important.

All the interactions develop into a form in which the
free surface becomes horizontal. For the smallest slopes,
0(t Re’1) where Re -» oo, t 0, the whole flow remainsa ' ' oc '
half-Poiseuille in character throughout its development, 
which occurs only slowly. Separation is not possible. This 
limit is considered further in §3.6, where its simplicity 
allows the easy analytical and numerical solution of 
certain forced interaction problems. This also has strong 
similarities with the branching from low Froude number 
flows on a horizontal plate.

As the slope increases, the flow departs from the 
Poiseuille form, but viscosity still manages to spread 
vorticity throughout the depth of the flow. For larger 
slopes separation occurs within this viscosity-affected 
structure. The profiles emerging in these cases as x -» oo 
are all Jeffrey-Hamel flows. There is a complicated 
interplay between viscosity, pressure and inertia in this 
regime and it is not possible to clarify the structure of 
the interaction in any asymptotic sense. The development 
on an 0(Re) length scale.

For larger slopes the length scale over which the 
branching occurs shortens and the asymptotic structure 
becomes clear. It is similar to that in the large Froude
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number limit on a horizontal surface and so is governed by 
the hypersonic free interaction equations which hold in a 
sublayer near the wall. The main body of the flow is 
merely displaced. Downstream it seems that the free 
surface flattens out and the displaced initial profile 
develops into a spreading jet at the free surface. Beneath 
this there is a strong recirculation, in the sense that it 
carries a great deal of fluid, although the actual 
velocities are small.

At still larger slopes, up to 0(1) as Re -» oo, it is 
the pressure increase through the depth of the fluid and 
its relation to the curvature of the streamlines as the 
branching commences which governs the branching process. 
In this regime, if the effects of surface tension are 
weak, the blunt shape of the hydraulic jump is lost as the 
slope becomes more severe.

§3.6  The L im it  Of Sm a ll  Gr a d ie n t .

§3.6.1 Introduction and the governing equations.
We have seen in §3.3.2 and §3.5.2 that if the scaled 

slope, a, is small the flow remains of half-Poiseuille 
type throughout the compressive free interaction. Both the 
initial stages and the final large x asymptote, with a 
horizontal free surface, are governed by lubrication 
theory; the development in x is slow and viscosity acts to 
redistribute the vorticity and keep the flow 
half-Poiseuille in character. This means that separation 
is not possible.

We can use these simplifying features to develop a 
simple first order equation for the depth of the layer 
which includes the effects of the viscous-inviscid 
interaction. This equation can be solved analytically for 
simple geometries and numerically for more complicated 
cases. The effects of surface tension, which raise the 
order of the equation to third, and of a moving wall can 
easily be incorporated.

We therefore start with the Navier-Stokes equations
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appropriate to the flow down a slope

UU + VU = -Pv + sin(a) s + Re-1(U + U ),yy xx

UV + W  = -P -cos(a) s + Re-1 (U + V ),X  y y yy XX

U + V = 0.X  y ’

u  = V = 0, y = 0, u y = 0, y = H,
»H
U dy = 1.

(3.6.1a) 

(3.6.1b) 

(3.6.1c) 

(3.6.ld-f)

(3.6.lg)

Here y = H corresponds to the unknown position of the free 
surface and x and y are measured parallel and 
perpendicular to the slope.

We scale the length on Re/sin (a) so that x = Re X / 
sin(a), and rewrite the pressure as P = p - s cos(a) y, so 
that p is the reduced pressure. Then if we write a for 
sin(a) we find that (3.6.1a-b) become

a(UUx + VUy) = -a px + a s + (U^ + a2/Re2 Da ),

<x2/Re2 (UV + W  ) = -p + a/Re2(V + a2/Re2 V ) .X y y yy XX

If we consider flow over the obstacle given by y = f(X) 
then the equation obtained from considering the balance of 
forces across the free surface, given by y = h + f(X) say, 
including the effects of surface tension becomes

p - s (h + f) + (T/pghQ2) s (a2/Re2)
h + fXX XX

[(l+a2/Re2(hx+fx)2)3/2J

= 0 . (3.6.2)

Here hQ is the depth used in the nondimensionalisation of 
the equations as a representative length. It is the depth

1/3of the layer upstream and so is (3i>Q/ga) where v is the 
kinematic viscosity of the fluid and Q the volume flux per 
unit width carried by the layer. In addition, T is the
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coefficient of surface tension of the air/liquid 
interface, p is the density of the liquid and g the 
acceleration due to gravity. We now use the assumption 
that oc << 1 to simplify the equations. Note that for
half-Poiseuille flow on a small slope the Froude number, 
s 1, must be small and so we presume that sa remains 0(1) 
as a -» 0. The equations reduce to

ap = as + U , (3 . 6 . 3a)x yy

Py =  0 '

“ Px = <a s > (  h x +  f x "  *  < h xxx +  f x x x > ) '

where
y = (T/pghQ2) (a2/Re2) is assumed 0(l),as

We can write y as (Tjtx4/3/( 32/3p7/3g1/3)) (a/Q)8/3, where u
is the viscosity of the fluid. Using physical constants
typical of film-coating processes, namely p = 1 gm/cm , 
T = 50 dyn/cm, p = 50 gm/cm sec (taken from Christodoulou 
and Scriven (1989)), gives y ~ (10a/Q)8/3 if Q is measured 
in e.g.s. units. Thus the large y approximation, used 
later in this chapter, requires a small volume flux.

The flow is governed by lubrication theory.
Integrating equation (3.6.3) in y, and applying the
boundary conditions at y = 0 and y = f + h we find

1 = (-h3)(cxs/3)(hx + fx - * ( hxxx + fxxx) - l). (3.6. 3e)

Far upstream hx and f are zero and h = 1 so we must have
as = 3, and therefore

h - r h = 1 - l/h3 - f + i f . (3.6. 3f)X XXX ' X XXX

This, then, is the equation governing the depth of

(3.6.3b)

(3.6.3c)

a -> 0.
(3.6.3d)
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the half-Poiseuille flow. The assumptions used in deriving
it are as follows. Firstly aUU << U , which reduces to a

3 x yy<< h , or to f being 0(1) or less. Secondly, we require
Re >> oc, and since oc is small the theory is therefore
valid for Re = 0(1).

Similar equations have been derived and solved by 
Wilson and Jones (1983) in the study of the fall of a thin 
liquid film down a vertical wall into a pool. In this 
case, since the wall is vertical, the hydrostatic 
contributions to the pressure are negligible and surface 
tension dominates. See also Christodoulou and Scriven 
(1989) and Higgins and Scriven (1979). There is also a 
strong connection with the work of Chester (1966), who 
uses lubrication theory to give a description of a 
viscosity-dominated bore, or moving hydraulic jump 
travelling downstream. As a first step in the study of 
these equations we re-derive and extend some of the 
results of Chester. We go on to investigate the solutions 
of (3.6.3f), first with r = 0, in both forced and free 
interactions, using both analytical solutions and a 
numerical scheme. We then investigate the free interaction 
in the limit of large y. Finally we make some deductions 
about the form of the forced interaction on slopes larger 
than these. Computations to check these predictions are 
carried out in §3.7.

§3.6.2 Travelling bores.
If the speed of a bore on the liquid layer is 

constant, W say, then moving in a frame with the bore 
gives an upstream moving wall of speed W. See Figure 
3.6.1. If the wall is smooth and there is no surface 
tension then we can derive, in a similar fashion to the 
derivation of (3.6.3f) from (3.6.3a-d), the following 
equation

hx = 1 - 1/h3 + W (1/h3 - 1/h2) . (3.6.4)

As Chester shows, there is the possibility of a 
smooth transition from an upstream depth of 1 to a depth D
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< 1 downstream, if
W = D2 + D + 1.

If D = 1 - e (e << 1) we get the weak bore examined by 
Chester, namely

W ~ 3 - 3c + e2,

h ~ 1/2 (1 - tanh (3eX/2)).

See Figure 3.6.2(a). On the other hand for small D, say 
D = e with a << e3, we get a relatively strong bore moving 
with speed

A A OW ~ 1 + e + e .

This is illustrated in Figure 3.6.2(b). Upstream of the 
bore position, X = XQ, the depth is 0(1) and equation
(3.6.4) becomes

hx = i - i/h2, 

and so the solution here is simply

X - XQ = h + 1/2 In |(1-h)/(1+h)|.

1/3However as X -> X - , h ~ (3(X - X)) and so in a smallo '  o
region of X-extent 0(e3) the governing equation is

h~ = 1/h3 - 1/h2,

where h = eh and (X - X ) = e3X. Thus hereN o '

(-X) = h3/3 + h2/2 + h + ln|h -1| .

As X -> oo, h -» 1 and so

h = f for X > X .o

Of course inertial effects will enter as the depth becomes
a 1/3small, rendering our approximation invalid when e ~ a
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§3.6.3 Stationary hydraulic jumps; free and forced
interactions.

In this section we concentrate on the case W = 0, 
K = 0, so that

hx = 1 - 1/h3 - fx, (3.6.5a)

h -> 1# X -> ±oo. (3.6.5b)

This equation contains within it the possibility of
viscous-inviscid interaction. It is first order in X but
we wish to impose two boundary conditions. That is we wish
to consider a forced interaction. However we first
consider the case f = 0 and look at free interactions andx
neglect the boundary condition as X -» co. A possible
solution is h = 1, but this is not unique and an initially 
small disturbance of the form h = 1 + eg(X), c << 1, will
grow according to gx = 3g which implies g = a exp(3X) with
a arbitrary, as in §3.5.2. Further downstream we have the

1/4three possible asymptotes h ~ X, h ~ 1 or h ~  (4(Xq-X)) 
for some finite XQ. The first of these corresponds to the 
compressive free interaction studied in §3.5.2 (a > 0). 
The second is undisturbed flow (a = 0) and the last will 
lead to the expansive interaction (a < 0). As the layer
thins inertial effects will become important and, as in 
§2.2.1, prevent choking. In the case of a large Reynolds 
number, the final form of this interaction will be 
governed by the full boundary layer equations with the 
singularity described in §2.5 being attained.

We now turn to the forced interaction. We first note 
that if the position of the free surface is H = f+h then, 
from equation (3.6.5), the gradient of this is always less 
than unity, since h is positive. Since the gradient of the 
slope is exactly unity it is impossible for the free 
surface level to rise. We later present a numerical scheme 
for solving a general forced interaction but first we 
consider a case which can be solved analytically and which 
exhibits many of the features common to forced
interactions. The case considered is that of a simple
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change in slope at X = 0,

f = 0. X < 0,x ' '

f = |3, X 2: 0.X ' '

A numerical solution of this problem, with 0 = 4/5, using 
the numerical scheme developed in the next subsection is 
presented in Figure 3.6.3.

In the limit 0 -» 1- the slope downstream of X = 0 
becomes nearly horizontal and the depth of the layer 
becomes large. In contrast, the gradient here increases as 
0 -» -oo and inertial effects must enter as the layer thins. 
For X > 0 the equation (3.6.5a) reduces to

hx = (1 - (3) - 1/h3.

The appropriate downstream boundary condition is hx -» 0 as 
X oo, corresponding to uniform flow downstream. It is 
clear from the arguments presented above for the free
interaction that the only possible solution has hx = 0 for
all positive X i.e.

h = (1 - 0)"1/3 for X > 0.

This implies that h(0) = (1 - 0)~1/3 and so for X < 0 we
have

hx = 1 - 1/h3, 

h(0) = (1 - <3)"1/3, 

h -» 1 as X -> -oo.

— 1/3We write ( 1 - 0 )  = 8  and then this equation has a
solution given implicitly by
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X = (h - 8) + 1/3 In -
6

1 82 + 8 + 1

1 Jh2 + h + 1

1//3 tan-1 2/V3 (h - 8)
1 + 4/3 (h + 1/2)(5 + 1/2)

If we examine this as 8 oo (£ -» 1-), corresponding 
to the downstream slope nearing the horizontal and so the

This implies that upstream of X = 0 the free surface is 
horizontal and the depth alters due to the slope beneath 
this free surface, which is scaled to be unity. In the 
vicinity of X = -1 , ie X = -8, the depth becomes 0(1) and 
the solution here is

This is the solution of (3.6.5a) for a free interaction. 
As X + 8 -oo the solution is

corresponding to the form of the solution predicted for 
the free interaction.

For finite 5 the solution is more complicated, but as 
X -» -oo it always has the form

depth there becoming infinite, we find, writing h = 5h and 
X = 6X where h and X remain 0(1) as 8 -» co, that

h ~ 1 + X.

X + 8 = h + 1/3 In

h = 1 + V3 exp (3(X + 8 )), (3.6.6)

h = 1 + a exp (3X),

where

a = (6-1)
✓(62+S+l)

If now 8 >> 1 this reduces to
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a ~ VZ exp (35),

and this agrees with the result (3.6.6), corresponding to 
the position of the free interaction moving a distance 
0(5) upstream. On the other hand, if we consider the case 
of a large increase in slope so that 5 -> 0+, then

a ~ - ^3/5 exp (-3 + VZ tan”1 (1/VZ)),

and this indicates that the adjustment towards a large 
increase in slope starts at a position 0(ln(5)) upstream. 
Of course the limit 5 -» 0 is not strictly valid as 
inertial effects will enter as the depth of the liquid 
layer decreases. It is possible, however, that the initial 
stages of the interaction will be governed by lubrication 
theory as they are for small Froude number, high Reynolds 
number flow on a horizontal surface (§2.6.6) and this 
result will hold upstream of X = 0 as 8 -> 0. Near X = 0 
the flow will be affected by inertial effects.

This simple example, for which a complete analytic 
solution is available, illustrates features common to many 
forced interaction problems especially the movement of the 
start of the interaction upstream as the size of the 
departure from uniform flow increases. See Smith (1982). 
Also clear is the development, in the limit 5 -» oo, of a 
flow containing a free interaction far upstream of X = 0.

§3.6.4 The numerical solution of some forced interaction 
problems.

To study more complicated interactions, for example 
the flow over the obstacle given by f(X) = dexp(-bX2), the 
following numerical scheme is used. It is based on an 
adjustment of Carter's (1979) method which is successfully 
used by Brotherton-Ratcliffe (1986) (BR) in his study of 
the forced interaction problem with the hypersonic 
pressure-displacement law (P = -A) . This is appropriate to 
liquid layers that are not fully developed, unlike the 
cases we consider here. It is, like Carter's method, an 
iterative process. A guess is made at the displacement for
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the whole flow field and the boundary layer equations used 
to solve for the pressure field associated with this 
displacement. In this case the boundary layer equations 
reduce to lubrication theory and so a guess at the depth, 
hn(X) say, gives a pressure gradient Pxa, from lubrication 
theory, of

Pxa = -3/(h"(X))3.

A pressure field, P b, is also calculated from the 
appropriate pressure-displacement law, the two pressures 
are compared and the difference used to update the guess 
for the displacement. As the iteration continues the
displacement will, if the updating is done correctly,
converge to a solution of the elliptic interactive 
problem. In this case the equivalent of the 
pressure-displacement law predicts that

P b = 3(h “ + f -1).X v X X '

The update of the depth is achieved as follows. If we 
introduce the artificial time z and imagine the 
convergence of hn to h to occur as t  increases with z 
increasing by a discrete amount on each iterative cycle we 
can write the formula used in the updating as

h = P a - P b. (3.6.7)Z X X

This is the method of updating used in BR. In contrast to 
Carter's method it compares the pressure gradients rather 
than the pressures themselves. The former approach was
also tried by BR but was found to give divergence. Whether 
convergence is obtained or not depends on the size of the 
artificial timestep At between iterates and the value 
giving the most rapid convergence must be found by trial 
and error due to the nonlinearity of the problem. Equation
(3.6.7) is written in finite difference form and yields 
the formula
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h"+1 = {&X/(l+tf)} {gi+i+ l/(h^)3+ g t+ 1/(h")3}

+ + (l-0)/(l+*) {h"j - h" }•
(3.6.8)

Here AX is the grid size in X, <p is AX/Ax and g(X) = fx-l* 
The subscripts refer to the station in X and the 
superscripts the iteration number. The boundary condition 
as X -> oo is h -» 1, for obstacles that decay as |x| -> oo,
and this fixes the value of hn+1 far downstream. Equation
(3.6.8) then allows the update of the depth at the other X 
stations. As an initial guess the depth is taken to be 
uniformly equal to 1 and the iterations are continued 
until |Pxa - Pxb| is less than some specified amount,
usually 10”4. Typical solutions are shown in Figures
3.6.3&4. These use AX = 10-1, Ax = 10”2 and typically
require 800 iterations for convergence. If the method 
fails the use of a smaller value of Ax is usually
successful in achieving convergence.

The main characteristic of the solutions presented in 
Figures 3.6.3&4 is that the height of the free surface
does not increase as the flow thickens. The liquid layer 
adjusts upstream of the obstacle and flows over it
satisfying this constraint. The mechanism for this 
upstream influence is the viscous-inviscid interaction, 
and the nonlocal behaviour which is included in equation
(3.6.5) by considering the possibility of this 
interaction. This is in contrast with the work and results 
of Eagles (1988) who does not use lubrication theory but 
instead considers non-interactive flow over beds varying 
in such a way that the flow is always of a Jeffrey-Hamel 
type which is determined locally. Jeffrey-Hamel flows
develop for reasons explained in §3.3. The results given 
by this approach which, although valid for steeper slopes 
upon which separation can occur, does not allow for the 
possibility of viscous-inviscid interaction, suggest that 
the position of the free surface can rise smoothly as the 
liquid layer passes over the upstream face of the 
obstacle. This does not occur in the results presented
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here and in the next section, §3.7, where the interaction 
on steeper slopes is addressed numerically. It is 
possible, as discussed later in this chapter, to make 
estimates of the flow field in the case of interactive 
flow on these larger slopes from the results of this 
lubrication theory, and it is suggested there that the 
possibility of a rise in the position of the free surface 
exists in these cases, but this rise is shown to occur far 
upstream of a large obstacle and to be very short in 
extent. In other words it occurs as part of a hydraulic 
jump. See §3.6.7.

§3.6.5 The asymptotic structure of flow over a large 
obstacle.

We now turn to the asymptotic structure of the 
solutions of equation (3.6.5) in the limit of a tall 
obstacle of 0(1) width. Here equation (3.6.5) becomes

hx = 1 - 1/h3 - dfx, (3.6.9a)

f = 0(1) as d -» co, (3.6.9b)

h -» 1 as X -» ±oo, (3.6.9c)

f - l-fQX2/2 as X -) 0, f decays exponentially as X -> ±co.
(3.6.9d)

The obstacle shape, f, is typically of the type used in
the numerical solutions in Figure 3.6.4. We presume, too,
that it is symmetric about X = 0. We look for a solution 
of the type suggested by the numerical solutions and 
consider the equation in the following three regions. See 
Figure 3.6.5.

I) The lee side and the slope downstream of the obstacle.
Here the primary balance is local in character and 

hx is relatively small. The solution is

h - (i - dfxr 1/3( a ->».
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Thus as X -* co and f decays exponentially to zero, h -> 1. 
In addition, on the lee slope of the obstacle the depth is 
determined solely by the local slope. Thus, for this 
asymptotic structure to be valid, d << 1/a. As X -» 0+,
i.e. approaching the crest of the obstacle, we find, for 
large d, that

h - (dfQ)‘1/3X'1/3 - (1/3) (dfo)'4/3X"4/3(l+0(X)) .
(3.6.10)

since f is symmetric.
II) The crest of the obstacle (i.e. near X = 0).

At the crest of the obstacle the slope nears zero and 
so a locally defined depth would be infinite. To counter 
this the non-local term h enters and a balance including

^  -1 /7  -4/7this effect is possible if h ~ 0(d ) and X - 0(d ).
Therefore we write

h = h/d1/7, X = £/d4/7, h and £ both 0(1) as d -» oo,

and find

h^ = -1/h3 + £f0 + l/d3/7 + 0(d“4/7), as d -> oo.

We now write

and substitute into (3.6.9) to get, with boundary 
conditions from equation (3.6.10),

fi. = -1/h 3 + ?f , fi - (f €)‘1/3 as C -» oo,Oq 0 0 0 v o
(3.6.lla-b)

h . = 3h /h 4 + 1 ,  h - -1/3 (f £)~4/3 as € -> ».1 0 ' 1 ' v 0̂* 1
(3.6.llc-d)

Equation (3.6.lla-b) can be solved numerically using a 
method similar to that described above for the full
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problem. This has not been done since it seems clear that 
a solution can be found. The asymptotes as £ -« are

h - C2f /2 + E + (8/5) f ' V 5 " (48E /7) f ‘4?"7 + . . .0 ^ 0  0 v / / 0 0 0 (3.6.12a)
and

h ~ £ + E + . . . . (3.6.12b)i i

The value of E is fixed by equations (3.6.11a&b) and is
—1 /*?given by Eq = efQ where

D = -1/D3 + z,Z

1/3 2 ***D 1/z as z -> oo and (D - z /2) -» e as z -oo.

E is also fixed and can be calculated from the relation i

= h-3exp(3jo(fot/ho)dt] [Ĵ fio3exp(-3Jo(fot/ho) dtjdsj .

Ill) Upstream of the obstacle.
From (3.6.12) we see that, as X -» 0-,

h ~ d (X2/2) + X + d"1/? Eq+ d'4/7 Ei + . . . (3.6.13)

and so we write, for X < 0,

h = d H + H + d"1/7 H + d'4/7 H + ... .0 1 2 3

Substitution of a solution of this form into equation
(3.6.9) gives, on matching with (3.6.13),

H = 1-f, H = X, H = E , H = E .0 7 1 ’ 2 O' 3 1

and as X -> -oo we find that

h ~ d + X + d”1/7E + d'4/7E + . . .0 1
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We now consider the region in the vicinity of X = -d. Here 
h becomes 0(1) once more and we expect a free interaction 
to occur here. To first order the position of this 
interaction is X = -d, as found earlier in the section for 
the case of an adjustment of the flow to that on a nearly 
horizontal slope. However in this case we have shown that 
the next term in the position of the interaction isw “1/7eo(fQd) and so depends on the curvature of the
obstacle at its crest, with a sharper crest having a 
smaller effect on the upstream behaviour of the solution. 
If X = -d-EQ/d1/7-E /d4/7+C then in the vicinity of 
C = 0(1), as d -» oo, the flow is governed by the equation 
of the free interaction and this ensures that h -» 1 as 
X -» -oo.

§3.6.6 The effects of surface tension on the free 
interaction.

We now consider the effect that surface tension has 
upon the compressive free interaction. As shown earlier 
the governing equation, including capillary effects, is

h - y h = 1 - 1/h3, h -» 1 as X -co,X XXX ' ' '

where y ( > 0) measures the relative importance of surface 
tension and y >> 1 if surface tension dominates. The large 
X asymptote which we expect to emerge from the interaction 
is still h ~ X since there we expect gravitational effects 
to dominate over capillary effects which typically have an 
influence over relatively short length scales.

First we note that the mechanism for upstream 
influence involves surface tension as well as hydrostatic 
effects however small the value of y. An initally small 
exponential departure from h = 1 grows like exp(qX) where

y q 3 - q + 3 = 0 ,  (3.6.14)

and as y -> 0 this gives

-1/2 , - 1/2 q ~ y + 3 y /2.
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In contrast if y = 0 then q = 3. So we see that the
addition of a small amount, 0(y), of surface tension
effects leads to a singular perturbation problem giving
rise to two possible length scales over which upstream
influence can occur. First there is the 0(1) scale
associated with the viscosity-hydrostatic pressure

1/2interactiopn and second the shorter, 0(y ), scale over
which the inviscid hydrostatic and capillary effects 
interact to effect the upstream influence. This second 
type of interaction is the most rapidly growing and 
therefore the most likely to be seen in practice for small 
values of y. As y is increased these two modes of upstream
influence coalesce as the positive real roots of (3.6.14)
become closer. For larger y the roots with positive real 
part become imaginary and the upstream influence
wave-like. As y -> « we have

q = ±i(3/y)1/3,

and so the length scale of the interaction becomes long,
1/30(y ) . The mechanism is now a viscosity-capillary

interaction.
We confine our attention to the limit of large y and 

consider the structure of the whole of the free
interaction. We first choose a length scale appropriate to 
this limit and write X = y1/3z , where z = 0(1) as y 
to get

h - y"1/3h = 1/h3 - 1,zzz z

h -> 1 as z -oo,

and study this equation in the limit y -> 00 • Similar 
equations are discussed by Wilson and Jones (1983) (WJ) in 
the case of a vertical plate where hydrostatic effects are 
identically zero but there is a small parameter entering 
in the denominator of the curvature term in equation
(3.6.2), which they retain. We follow much of their 
analysis. As a first step we consider the equation with 
y = oo. The solution in this case consists of a nonlinear
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wave train of increasing amplitude. In regions where h is 
relatively large the equation becomes

h = -1, (3.6.15)zzz

with solution

h = 1/6 (z q - z )3 + a(zQ-z)2 + b(zQ-z), (3.6.16)

for arbitrary values of a, b and z q . Thus h will always
return to a small value as z approaches z q . In these
regions of relatively small h the equation is dominated 
by the balance

h = 1/h3. (3.6.17)
ZZZ

This has solutions (WJ) in which

h ~ -z as z -> -oo, (3.6.18a)

h ~ z2 as z -> +co, (3.6.18b)

and so another region with large h is entered where the
solution has the form (3.6.16) with the coefficients a and
b found by matching to these regions of small depth. As 
explained in WJ, and below, it is possible to fit these 
regions together in such a way that the amplitude of these 
nonlinear leaps decreases as -z increases. Thus if y = oo 
the solution is one of an infinite series of increasingly 
large leaps in the depth. We expect, however, that even
for large y the downstream form will be dominated by 
gravitational effects with the free surface horizontal and 
the depth increasing linearly. To effect the match between 
these two types of solution let us start at this
downstream end and look for scales such that h is large
and the hitherto neglected gravitational effects and the 
capillary effects balance. See Figure 3.6.7. This is
possible if h ~ 0(y1/2) and z ~ 0 (y1̂ 6) as y -> *». So, with

A 1/2 A 1/6 A Ah = hy and z = zy with h and z both 0(1) as y -» oo,
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we have 

with solution

Therefore as z -> *» gravitational effects dominate and the 
first order viscous-inviscid interaction is lost, whilst 
as z -> 0+ we wish to match to a region of small depth and 
important capillary effects. The point z = 0 is therefore 
the position of the last dip in the level of the free 
surface as we move downstream, after which point
gravitational effects balance surface tension and the free 
surface flattens off. In order to match with the solution 
(3.6.18b) of the equation governing the flow in these thin
regions (3.6.17) we must have h ~ 0(z2) as z -» 0+ and so
B = -1 and C = 1, i.e.

h = z + e”z - 1.
A 1 oAs z -»• 0+ we find that h ~ y z /2. We now search for a

balance with h small over a short length scale so that
surface tension is important. If h = and z =
where and |3 are powers of y to be found and hi and z^
are 0(1) as y -» oo, then we find the balance,

h = 1/h 3,1Z Z Z ' 1 '1 1 1

emerges if = a 3. However, in order to match as
T . ~ . 2 1/6 _ - 1/10 Jzi oo, we also require £ /a = y so = y and

-2/15a = y . W e  now consider the solution as z, -» -oo. From i i
WJ the asymptote here is

where X is found numerically to be 1.03\/2 (WJ) and so the 
depth increases once more as we move just upstream of 
z = 0 with h ~ y1/30z . We now search for scalings that 
will give us the balance appropriate for a large depth of

h —  ~ — h- — —1, z zz z '

h = z + B + C e z .
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fluid and including surface tension (3.6.15). Again we 
write h = /3 h and z = a z and find the balancea a a a

h = -1,aZ Z Z 'a a a

if £ = oc 3. However to match with the solution abouta a
z = 0 we must have |3 /a = y1/30. Hence |3 = y anda a a

= y1/60. Thus, in this region, the depth is relatively
great for a long z-extent. The solution here is

h ^ =  1/6 (-zQ3 + a/2 (-zj2 + b (-2$,

where a and b are to be found. Matching as za -» 0- yields
b = X and further upstream h must return to small values.

* aLet h be zero at z = z < 0 as well as at z =0, thena a a a
if the zero is a double root the solution in the vicinity *of z = z is similar to that near z = 0 with the flowa a a
governed by equation (3.6.17) with a quadratic growth in 
the depth downstream and linear growth upstream. Since the 
root is a double root this fixes z and a in terms of b,a
and so

h^ = -z^(z^-z*)2/6, z^ 2 = 6b = 6X.

The solution just downstream of this last but one dip in 
the depth of the layer is

h ~ I z I (z - z )2y1/50/6 as X - > X + ,  (z = z y1/6°) .1 a 1 0 0 0 a

It is now easy to see how this structure consisting 
of a pair of regions, one where h is relatively small and 
a second where h is large can be repeated indefinitely 
upstream as X -» -oo. However the size and extent of the 
leaps decreases as we follow the solution further 
upstream. For example if the narrow region about z = z q is 
of z-extent 0(a2) and the depth there is 0(/S2) then we 
have, just as before, £ 4 = a 3 and &2/a2 ~ ?1/6° anc^
-i_ 0 -1/10.1/10 J -1/10.2/15 • 4_therefore £ = y and a = y . Indeed it2 2
can be shown that in the nth trough (moving upstream) the
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depth of the liquid layer is 0(r~<1/10) ,1/10) whilst
n

under the nth crest the depth is 0(y(1/10) ,1/2°) . Thus 
the decay in the size of the jumps is very rapid and, 
although asymptotically an infinite number of waves are 
needed to reduce the depth to 0(1) as required upstream, 
in practice only a few waves will be seen.

In summary we see that the interaction for large 
values of y has the form illustrated in Figure 3.6.6. 
There are a few nonlinear waves upstream dominated by 
surface tension, whilst the decay towards the downstream 
asymptote, h - X, in which the interaction is lost and 
gravitational effects dominate j is from below, causing 
there to be a final dip in the position of the free 
surface before it becomes horizontal.

§3.6.7 Implications for the forced interaction on larger 
gradients.

We now turn to the possibility of speculation on the 
flow field for large obstacles of the type discussed above 
but on slopes steeper than those required for lubrication 
theory to be appropriate, although still small in the 
sense that aRe = 0(1) as Re oo. The gradients generated 
by the addition of the obstacle to this basic slope must 
also be 0(Re-1). Since the obstacle is high the upstream 
influence is of large extent and a free interaction occurs 
far upstream. From the numerical solutions of the free 
interactions on these slopes in §3.2 we know that a 
downstream form of this interaction is a flow with a 
horizontal surface which develops over a scale which is at 
least 0(Re) in length but which can be reduced to 0(Rea 3) 
for the larger slopes. We would therefore expect that the 
horizontal surface would develop upstream of the obstacle 
just as in the case of small slopes. On the lee of the 
obstacle, where the slope is large and negative, a 
possible solution is one similar to that shown above to be 
appropriate to small slopes. This has the depth 
essentially determined by the local slope and a 
half-Poiseuille velocity profile. Beneath the horizontal
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surface on the upstream side of the obstacle there would 
not be separated flow unless the slope is greater than 
4.712 (see §3.3.2). If the slope is larger still the flow 
here will take the form of a jet just below the free 
surface with a slower moving reversed flow region beneath. 
Together with this basic structure we must consider the 
effect of the result (Smith 1988) that reversed flow 
within an interacting boundary layer is subject to a 
singularity. This, or an appropriate adjustment of this 
theory to the long length scale acting here, implies that 
the interacting boundary layer equations are not 
necessarily sufficient to describe the process of 
separation and reattachment upstream of an obstacle which 
is larger than some finite limit. The effect of this in 
this context is unclear but it could indicate that several 
separation bubbles occur upstream of the obstacle.

The final question to address is whether the free 
surface can ever rise. We know, from the numerical 
solutions above and from a consideration of (3.6.5), that 
in the limit of small slopes it cannot, but the numerical 
solutions of §3.2 indicate that for the larger slopes the 
approach of the free surface to the horizontal is from 
below and we know that in the limit of large slope the 
interaction has a form similar to that on a horizontal 
surface at large Froude number, with the free surface 
initially moving upwards before the effect of the slope is 
felt and it flattens off. The dividing line seems to be in 
the regime where the downstream asymptote is still a 
Jeffrey-Hamel flow and is given by the condition P = 0 in 
equation (3.3.1). This implies that the slope is 
a = 1.814, which is less than the slope required for 
separation to occur. Thus it seems that for slopes smaller 
than this the free surface gradient is likely to remain 
negative, but larger slopes will, in contrast, give rise 
to a region of positive gradient in the vicinity of the 
free interaction. This, of course, is similar to the form 
of a hydraulic jump. If the slope becomes larger than 
0(Re-1), however, then this jump shape may be lost, as 
explained in §3.5.3.
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§3 .7  T he Nu m erical  So lution  of Forced Interaction  Problems 

On Steeper Slopes .

§3.7.1 An introduction to the solution of interactive 
boundary layer problems.

Section 3.6 considers the flow of a liquid layer over 
an obstacle on a very shallow slope. This simplifying 
feature allows an easy numerical solution and, in simple 
geometries, an explicit solution for the depth. The main 
constraint in flows of this type seems to be the inability 
for the position of the free surface to rise and this 
subsequently dictates the qualitative nature of the flow 
field. This feature was also conjectured to be likely on 
larger slopes. Exceptions stem from the form of the free 
interactions studied in §§3.2&5 and the fact that the 
approach of the surface to the downstream asymptote (i.e. 
the horizontal) is from below in some of the solutions. 
This leads to an increase in the surface height in the 
vicinity of the free interaction which is far upstream in 
the case of large obstacle, where a free interaction can 
be expected to make up a distinct part of the flow field. 
Separation from the solid surface is also possible on 
these larger slopes. This section considers the numerical 
solution of forced interactions on slopes where the 
inertia of the fluid is an important feature and must be 
included in the solution. This turns out to be quite a 
difficult problem and although several methods were tried 
only one proved successful and the results presented here 
are those found using this so-called lubrication method 
(Smith (1986c)). We do however describe all three methods 
used, the other two being variations of Carter's (1979) 
method and of Davis' (1984) method. Despite the success of 
the first method it still proved impossible to find 
solutions in cases where the slope was sufficiently steep 
and the obstacle sufficiently large to provoke separation 
obviously of the breakaway type discussed in §3.4, 
although features similar to those which could be expected 
in this case are observed. Flows with separation of the 
less severe type which occurs on smaller slopes are found
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successfully, however.
Two types of problem are addressed, corresponding to 

the two types of geometry studied in §3.6. The first 
consists of a slope connected smoothly and over a 
relatively short distance to a shallower slope downstream 
thus causing the liquid layer to thicken. The second is of 
an obstacle, with a height proportional to exp(-bx2), 
mounted on a slope.

There are many examples in the literature of 
computations of forced interactions in the case where the 
interactive equations are based on the triple deck 
formulation. In these cases the equations reduce to the 
steady boundary layer equations in the domain (x,y) €
( ( -co,co)x(-co,oo)) , with U ~ y + A(x) as y -> <», and with a 
pressure displacement (P-A) law linking A and the pressure 
driving the boundary layer. For example Smith and Merkin 
(1982) give solutions for subsonic flow past corners and 
wedged trailing edges and also mention many techniques for 
improving the accuracy and the ease of calculation of the 
solutions. Brotherton-Ratcliffe (1986) presents solutions 
with the hypersonic P-A law, P = -A, shown to be of 
relevance to liquid layer flows. See also Carter (1979), 
Davis (1984) and Veldman (1983). Three-dimensional 
problems can also be solved, see Edwards and Carter 
(1985). The particular problem of interest here differs 
from these in that the range in y is finite due to the 
finite depth of the layer and in the fact that viscosity 
is important throughout the depth of the fluid. This 
difference could be the cause of the failure of the 
schemes used successfully by the authors above. The 
equations to be solved here are, from §3.2,

i U- U*-
UU - -£-£ = -p + - SS-=i (3.7.1a)

x 1+E (1+E)

fieU = --- §— , (3.7.1b)
1 + E
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0 = U =  O a t £ = O ,  U^= 0, \jj - 1 at £ = 1, (3.7.1c-f)
K = (Y - f)/(l + E)f (3.7.lg)

p = stj, (3.7. lh)

where E = Tj+ax-f and f = dexp(-bx2) in the case of an 
obstacle on a slope. The inverse Froude number is s, and 
since there is half-Poiseuille flow far upstream sa = 3. 
The boundary conditions are E -» 0 as x -> ±a>. See Figure 
3.1.2. We know that upstream influence is possible in 
these equations and first starts as an initially 
exponentially small departure from half-Poiseuille flow 
upstream of the obstacle. We can find the form of an 
initial perturbation to equations (3.7.1) in a fashion 
similar to that used in §3.5.1. The results are

$ ~ + 3c(g + £Up/3), (3.7.2a)

U ~ Up + 3c(g' + CU//3), (3.7.2b)

T) - ocx = c << 1. (3.7.2c)

Here the subscript P refers to the basic Poiseuille flow 
and g satisfies equation (3.5.4) for a given slope a. Also 
' indicates differentiation with respect to £ and c is an 
unknown constant which determines the size of the 
perturbation and depends on the downstream conditions.

Davis' and Carter's methods were chosen in an initial 
approach to the problem due to their successful use by 
Brotherton-Ratcliffe in dealing with the interactive 
boundary layer equations and the hypersonic P-A law which 
we know governs the solution of (3.7.1) on relatively 
short scales. He finds that Davis' scheme works if there 
is no significant separation present and Carter's can be 
used to take the solution further into the separated 
regime. Reversed flow in the boundary layer is simply 
dealt with using the Flare approximation (Reyner &
Fliigge-Lotz (1968)). Both of these schemes rely on
introducing an artificial time dependence into the P-A
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law. In our context we write p = sy, or equivalently 
Px = sV  as

ST?t = - p x  +  s v x  ( 3 . 7 . 3 )

This unsteady relation is used in the hope that as at -> 0 
convergence to the steady solution is achieved. The 
adjustment towards this solution is via the waves admitted 
by the unsteadiness. Other methods of introducing time 
will lead to waves with different dispersion relations and 
stability characteristics. These features determine the 
efficiency or suitability of the particular method. For a 
successful scheme waves must travel upstream, providing 
for upstream influence, as well as downstream, and these 
waves must decay in time and space. In the case of the 
triple deck equations the dispersion relation for linear 
waves can be derived to check these properties. However in 
the case of equation (3.7.1) this is a more difficult task 
and the form used, (3.7.3), is chosen because of its 
similarity to that used by Brotherton-Ratclif f e in the 
hope that the dispersion relations are similar (a fact 
which we know will be true for short waves where the 
interaction is governed by the triple deck structure).

Davis' method is iterative and we start from an 
initial guess for the position of the free surface, ^(x) 
- the initial value in terms of t. Equations (3.7.1a-g and 
3.7.3) are then integrated forward, from x = -co, using a 
scheme similar to that used for the free interaction 
problems studied in §2.4 and §3.2. The initial conditions 
on \Jj and U are given by (3.7.2) and the value of c 
appropriate to yn, the displacement as x -» », from the 
previous timestep. The P-A law is written in finite 
difference form as

“ S / At { (7)i+i + 7).) - (7i*+i + 7]") } =

(1/Ax) (Pi+1-Pi) " (s/Ax) ( \ +1-'nnl) • 

Here y™ is the position of the free surface at x-station i
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from the previous timestep and we solve for rj(x) and p(x) , 
the values at time t+At/2. With this form of 
discretisation there is a balance between p> „ and -f?i+1 i+1
on this forward sweep. As a result the possibility of 
upstream influence is suppressed, the equations are 
rendered truly parabolic and hence the marching scheme is 
stable. The nonlinearity in the equations is dealt with 
using Newton iteration but only a single iteration cycle 
is completed at each x-station since this saves on 
computation time and the accuracy increases to second 
order (as would be achieved by completing the iteration) 
as the method converges (Smith and Merkin).

On the reverse sweep the P-A law is written as

(-S/At) { + l)"1) - (T)1+1 + T),) } =

(1/Ax)(pm  - pt) - (s/Ax) - T}"+1).

This, given the downstream boundary condition and p and i) 
which are known from the forward sweep, can be integrated 
upstream to give 7jn+1(x), the free surface at the next 
timestep and the basis for the next forward sweep.

Carter's method differs from Davis' method in that on 
the forward sweep the pressure and displacement are not 
allowed to interact. Instead the value of is fixed at 
T)" and the equations (3.7.1a-g) are solved for the 
pressure alone. The reverse sweep is identical however. 
Carter's method is generally slower to converge than 
Davis' because of the suppression of the interaction in 
the forward sweep.

§3.7.2 A numerical scheme based on lubrication theory.
As mentioned earlier, neither of these methods proves 

successful in obtaining solutions for any but the most 
shallow of slopes and obstacles. As an alternative, a 
scheme based on the successful combination of Carter's 
method and lubrication theory in the limit of small slope 
(§3.6.4) and a suggestion by Smith (1986c) is developed. 
The method is basically that used in §3.6.4 but includes
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the inertial terms by lagging them at the previous 
timestep. Thus we write equation (3.7.1a) as

where
_n  n+1 . -.n + 1.- . _n+l .-2R = ~px + U-- (1+E ) ,

Just as in the case of lubrication theory we can integrate 
this in 5 to give

P ^ 1 = 3( I3(l) - ii(l)/2 - 1/(1+En+1 )3 ), (3.7.4a)

U“+1 = (1+En+1 )2{ p"*1^-!) + It(C) - I J D  J, (3.7.4b)

UnM = (1+En+1 )2{ p"*1(C2/2-5) + I2(?) - !,(!)€ },
(3.7.4c)

ill"*1 = (1+Entl)3{ p ^ 1(€3/6-e2/2) + I3(C) - I1(l)C2/2 J,
(3.7.4d)

I (€) = R , (3.7 .4e)
J o

I2(^ ) = f f (3 . 7 . 4f)J oJ o
£ £ £

x3(?) = I I 3f (3 .7. 4g)J 0J 0 J 0

If we replace En+1 by En we fix the displacement on the
forward sweep to be that calculated at the previous time
level and so do not need to use a P-A law on the forward
sweep. The method used is then effectively that of Carter.
That is to say, given the displacement we use equation
(3.7.4a-g) to calculate p n+1 by marching forward from
x = -w. The value of c at -« in equations (3.7.2) is
calculated from En and allows u£+1 , Un+1 and ^n+1„ to be1 £ 1 1 i
found. This initiates the x-sweep. To evaluate R at a 
particular x-station we write it as
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U"*1 ( c ) { t O c ) - U " _ , ( ? )  } / ( 2 A x ) -

U"^(£){ }/ (2Ax( 1+E” )),

i.e. we use values calculated at previous sweeps for the 
x-stations at i and i+1 but use values already calculated 
on the present sweep for the station at i-1. This 
differencing means the method is second order accurate in 
Ax and, if the integrations in equations (3.7.4) are done 
using the trapezium rule, the scheme is also second order 
accurate in A £ . Once p is calculated it can be integrated 
to give p and the position of the free surface is simply 
p/s. To try to speed up the convergence, and also to 
affect the stability of the method, Rn is updated to Rn+1 
using relaxation so that

R"+1 = (J(UUX - ^ U ^ d + E ) ' 1) I"*1 + d-6>)R",

where w is a chosen relaxation parameter.
The upstream sweeps to update En given Pn+1 are 

performed just as in Carter's method above, and the whole 
process is then repeated. Convergence is tested using the 
error norm

max | pt - st)i | , (3.7.5)

and is said to be achieved when this is less than some 
small value typically 10"1 or 10”2. In the solutions 
presented this represents an error of about 1% or 0.1%. 
This is not particularly small but is necessitated by the 
slow convergence of the method.

The technique described above has two advantages. 
Firstly, reversed flow is dealt with automatically as 
convergence is obtained and secondly it reduces the amount 
of differentiation used, replacing it with integration, 
thus increasing the accuracy and the stability of the 
method.
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§3.7.3 Results and Discussion.
Although more successful than either Carter's or 

Davis' methods, the above technique is still very slow to 
converge and this limits the geometries which can be 
studied. For example Figure 3.7.2(d) uses a timestep of 
10 3, a relaxation parameter of 10_1 and has Ax = 0.038 
and it requires just over 10000 time steps. These sweeps 
are quick compared with the calculation involved in other 
methods, allowing many more sweeps to be used but still a 
great deal of computation time is required. The solutions 
presented here are similar to those obtained when slightly 
finer or coarser grids are used, although grid size checks 
are hampered by the fact that a smaller Ax requires a 
smaller At in order that the backward sweep remains 
stable, and so the convergence is much slower. Generally 
21 points were used in the £ integrations, giving a A£ of 
0.0476.

Figures 3.7.1(a&b) show solutions illustrating the 
flow adjustment over a change in slope, i.e. 
f = (a -a )xtanhx for x > 0, where a and a are theu d u d
upstream and downstream slopes respectively. In both cases 
the upstream slope is 5 and the downstream slopes are 3 
and 1 respectively. It can be seen that in the second, 
more extreme, geometry the adjustment is rapid and 
separation occurs. The extent of the upstream influence is 
very short in both cases since, from §3.5.2, the growth 
rate of the exponential departure, exp(qx), is large 
(q = 358 when a is 5). Also evident is an increase in the 
height of the free surface over a very short distance. The 
profile here is reminiscent of a hydraulic jump and 
indicates that perhaps, as suggested by the large value of 
q, the adjustment has a structure similar to that of the 
hypersonic free interaction. The separation and upstream 
influence occur on a short scale, 0(Rea”3), but 
reattachment and a return to half-Poiseuille flow occurs 
over a much longer scale, 0(Re). Gajjar (1983) studies 
interactions in fully developed flow but on a shorter 
length scale 0(Re1/7) and suggests that a return to 
Poiseuille flow occurs over a much longer scale.
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We now turn to some examples of flow over obstacles, 
as shown in Figures 3.7.2 where the obstacle is 
f = dexp(-x2/9). Here we have shown solutions with slope 5 
and the height, d, of the obstacle increasing from 16 to 
20. In these solutions Ax is .044, although the two 
solutions shown for the height of 18 are for Ax = 0.038 
and 0.068 and illustrate the independence of the solution 
to grid alterations. A characteristic of the solutions for 
the larger obstacles is the slight kink just before 
separation occurs. This is similar to the wobbles in the 
solutions shown in Figures 3.7.1. This kink persists as 
the convergence error under the norm (3.7.5) is varied but 
alters form as Ax is changed. We therefore believe that it 
is a numerical feature due to the grid being too coarse in 
a region of very rapid change. The case d = 20 clearly 
shows a hydraulic jump, associated with flow separation, 
quite far upstream of the obstacle.

The solutions are indeed of the general form 
predicted in §3.6.7, with the free surface tending to 
become horizontal upstream of the obstacle. The 
lengthscale of the upstream influence grows as the 
obstacle height is increased although the scale of the 
more active adjustment, i.e. the hydraulic jump itself, is 
very short due to the steep slope. On the lee of the 
obstacle the flow seems to be close to half-Poiseuille 
with a depth and skin friction determined locally by the 
slope there. There are therefore two scales for the 
adjustment, one rapid - the jump itself - and one long 
over which the flow reattaches and negotiates the obstacle 
and eventually returns to being half-Poiseuille.
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§ 3 .8  S u m m a ry .

Below we list the main results of this chapter.

1) Half-Poiseuille flow is not a unique solution for a 
liquid layer flow down a slope. Branching solutions 
caused by a viscous-inviscid interaction render the 
solution non-unique and allow upstream influence.

2) The form of the interaction alters as the slope 
increases. For small slopes it is slow to develop and is 
governed by lubrication theory. As the slope increases, 
inertial effects become important. For larger slopes the 
interaction takes place on a short length scale.

3) The downstream asymptote for the compressive free 
interaction has a horizontal free surface, and the 
viscous-inviscid interaction is a weak effect here. The 
flow is governed by the Jeffrey-Hamel equations for the 
smaller slopes. Separation does not necessarily occur. 
For larger slopes breakaway separation occurs over a 
short distance and the vorticity of the original 
half-Poiseuille flow develops into a jet at the free 
surface.

4) The steady hydraulic jump takes different forms as 
the slope varies. On slopes small on an 0(Re-1) scale 
the height of the free surface cannot increase. For 
larger slopes a jump is possible, leading to an increase 
in the free surface height. For slopes steep on the 
0(Re_1) scale this jump has the same blunt shape as is 
seen in jumps on a flat plate. On slopes steeper than 
0(Re ), for flows with little surface tension, this 
blunt shape can be lost. Surface tension can have the 
effect of reinstating the blunt shape, as well as 
causing capillary waves upstream of the jump.

1 3 4



5) In the limit of vanishing slope the flow is governed 
by lubrication theory. Again, viscous-inviscid 
interaction is possible and analytic solutions to some 
forced interaction problems are given.

6) Some numerical solutions for forced interaction 
problems of flow over an obstacle on a steeper slope are 
calculated. For large obstacles a hydraulic jump and 
separation are seen upstream of the obstacle. This jump 
occurs over a very short length scale.
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F ig u r e  Ca p t io n s  F or  Ch a p t e r  T h r e e .

Figure 3.1.1 Typical problems involving upstream
influence in fully developed liquid layer flow on a 
slope.
(i) How does the flow adjust on approaching a 

decrease in gradient ?
(ii) What is the form of a hydraulic jump and 

separation upstream of a decrease in slope.
(iii) How does the flow adjust on approaching an 

increase in slope ?
(iv) & (v) In flow over a large obstacle, does an 

obvious "jump" in the level of the free surface 
occur and how does the layer return to half- 
Poiseuille flow downstream ?

(vi) The viscous flow over a less severe obstacle.

Figure 3.1.2 A sketch defining the variables used in 
§3.1-§3.4 and §3.7, illustrating the horizontal and 
the vertical (after a Prandtl shift) coordinates (x, 
y), the definition of i\, the height of the free 
surface above its height at x = 0, and the function f 
describing an obstacle on an otherwise uniform slope.

Figure 3.2.1 A numerical solution of (3.1.1) with
half-Poiseuille flow at x = 0. The slope, a, is 0.25 
whilst s takes values of 2, 3, 5, 10, 12, 20, 50. The 
cases such that sa < 3 have a solution which ends in 
a singularity. If sa > 3 the solution continues with 
the pressure approaching a constant value from above. 
If sa = 3 the pressure gradient is approximately 
constant at -3. Figure (a) illustrates the pressure 
and Figure (b) the skin friction of the solutions. In 
these integrations A£ = 10-2 and Ax = 10”2.

Figure 3.2.2 Solutions of (3.1.1) for larger values of a 
than those illustrated in Figure 3.2.1. Here a = 4 
and 6 and s is fixed at 10. Figure (a) shows the 
pressure, which asymptotes a constant value from
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below. Figures (b) and (c) show the development of
the skin friction and the velocity profiles at x = 5. 
Separation occurs for a = 6 but not for a = 4.
AC = 10"2, Ax = 0.05.

Figure 3.3.1 Velocity profiles predicted by
Jeffrey-Hamel flow for the large x asymptotes of
equation (3.1.1). The last figure is the profile 
which is assumed to develop if a, > 5.461, in which 
case the Jeffrey-Hamel flows are no longer 
appropriate to describe the asymptote.

Figure 3.3.2 Numerical solutions of (3.3.1) for
oc = 4.712, the value at which, according to
Jeffrey-Hamel theory, separation just occurs. The
inverse Froude number, s, is 10. There are two curves 
in each figure, one with Ax = 0.05 and one with 
Ax = 0.01. They are almost indistinguishable. Figure
(a) shows the pressure, (b) the skin friction and (c) 
the velocity profile at x = 10.

Figure 3.4.1 A sketch defining the asymptotic structure, 
for large x, that is appropriate to breakaway 
separation. Region (I) contains the jet. Region (II) 
has slow irrotational backflow and region (III) is 
the boundary layer at the wall associated with this 
backflow.

Figure 3.4.2 A solution of (3.1.1) for a = 60, s = 10,
Ax = 0.00035. Figures (a) and (b) show the
development of the pressure and of the skin friction 
respectively. Figures (c) and (d) show the velocity 
and stream function profiles at numerous values of x 
throughout the development of the solution. It is 
possible to see the emergence of the similarity 
structure described in §3.4 and illustrated in Figure 
3.4.1.
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Figure 3.5.1 The solution of (3.5.4) for the eigenvalue, 
q, governing the spatial growth rate of upstream 
influence in liquid layers on a slope of Re . 
Figure (a) shows smaller slopes and Figure (b) larger 
ones. Also shown are asymptotic solutions of the 
equation for small and large t .

Figure 3.6.1 A sketch of a travelling bore (speed W) on 
a shallow slope. The depth alters from unity upstream 
to D < 1 downstream. The figure shows the motion in 
both the laboratory frame and the frame of the bore.

Figure 3.6.2 (a) A sketch of a weak bore on a shallow
slope (D * 1).

(b) A relatively strong bore on a shallow 
slope (D = e << 1).

Figure 3.6.3 A numerical solution of (3.6.5) for liquid 
layer flow on a shallow slope encountering a decrease 
in the gradient. This problem is solved analytically 
in §3.6.

Figure 3.6.4 Numerical solutions, using the scheme
described in §3.6.4, of equation (3.6.5), governing 
the flow over an obstacle on a shallow slope. The 
obstacles are of the form dexp(-(X/b)2) . In Figure
(a) d = 1 and b = 1/4. In (b) d = 3 ,  b = l and in (c) 
d = 11, b = 2. The position of the free interaction 
can be seen to move upstream as the severity of the 
obstacle increases. Figure (d) shows the flow over an 
obstacle with d = -7, b = 3 and shows both a 
compressive and an expansive interaction.

Figure 3.6.5 The asymptotic structure of the solution 
for the depth, h, of liquid layer flow over a tall 
(0(d) >> 1) obstacle of 0(1) width.
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Figure 3.6.6 The asymptotic structure of the free
interaction governed by equation (3.6.3f) in the 
limit of a relatively large surface tension 
coefficient (y >> 1). A nonlinear wave train is
followed by an approach of the free surface towards a 
horizontal asymptote.

Figure 3.7.1 The solution of equation (3.1.1) governing 
the flow on a slope, a = 5, on encountering a 
decrease in slope to cx = 3 (Figure (a)) and a = 1 (in 
Figure (b)). The change in slope is gradual and the 
solution uses the lubrication scheme described in 
§3.7.2. Figure (b) clearly shows a hydraulic jump, 
separation and reattachment of the flow (illustrated 
by the crosses). The extent of the upstream influence 
is short due to the relatively large upstream slope. 
In both solutions At = 10-4, Ax = 0.44, A£ = 0.0476 
and the relaxation parameter, a>, is 0.1.

Figure 3.7.2 The numerical solution of (3.1.1) for flow 
over humps, f(x) = dexp(-(x/3)2) on an otherwise 
uniform slope, a = 5. The Figures show both the 
position of the free surface and the skin friction as 
the flow encounters the obstacle and then returns to 
half-Poiseuille flow downstream. In Figures (a) and
(b) d is 16 and 17 respectively. Figures (c) and (d) 
have d = 18 and show solutions with Ax = 0.068 and 
0.038 respectively indicating, to some extent, the 
grid-independence of these solutions. The case d = 18 
is also the stage at which the obstacle gives rise to 
a reasonable extent of near horizontal wall. Lastly, 
Figure (e) has d = 20 and clearly has a hydraulic 
jump and separation upstream of the obstacle. The 
positions of separation and reattachment are 
indicated by crosses. In all these calculations 
At = 10”3, except the last, which has At = 10 4. The 
relaxation parameter, cj, is 0.1 and AC = 0.0476. 
Except in cases (c) and (d), Ax = 0.044.
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Chapter Four

TOLLMIEN-SCHLICHTING DISTURBANCES IN TRANSONIC

FLOW.
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§4.1 Introduction; The Problem Of Boundary Layer 
Transition.

The question of the stability of a laminar boundary 
layer and the associated problem of transition from 
laminar to turbulent flow are of great technological 
importance and theoretical interest. The history of their 
study goes back to Reynolds (1883) experiments on 
Poiseuille flow in a pipe, and even the work of Leonardo 
da Vinci contains illustrations of turbulent flow. The 
differences between laminar and turbulent boundary layers 
are obvious and striking. Laminar boundary layers consist 
of orderly unidirectional flow; turbulent flow is 
unsteady, with a mean profile defined only in a 
statistical sense, and containing a wide spectrum of eddy 
motions and scales. Turbulent boundary layers are, in a 
time-averaged sense, thicker and much more efficient in 
mixing momentum thoughout their thicknesses than are 
laminar boundary layers. This implies a greater skin 
friction at the wall and an increase in the drag. In the 
passenger aircraft and automobile industries the recent 
increases in the cost of fuel and in the level of 
environmental awareness have focussed the attention of 
designers on the need for the development of effective 
techniques for the control of the type of flow in a 
boundary layer. Such techniques aim at keeping the 
boundary layer laminar in flow regimes and at external 
pressure gradients where it would otherwise be turbulent. 
In addition the possibility of a sudden transition of the 
boundary layer flow can affect the handling of high 
performance aircraft.

There are also many occasions where it is desirable 
to provoke such a transition. In areas where efficient 
mixing is important, such as in the chemical industry or 
in the air intakes of high performance jet engines, where 
mixing of fuel with air takes place, the increased mixing 
efficiency of turbulent motion makes it useful. This 
increased ability to diffuse quantities extends to the
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momentum content of the boundary layer. This means that a 
turbulent boundary layer is able to withstand more extreme 
adverse pressure gradients without separating than can a 
laminar boundary layer. This can be used to advantage in 
the design of high lift aerofoils where it is important to 
keep the pressure over the upper surface as low as 
possible. Here the presence of a separation bubble 
containing a region of slowly recirculating flow would 
reduce the efficiency of the design. This feature can also 
be used to reduce the likelihood of dynamic stall.

An understanding of the most efficient means of 
controlling transition phenomena must be underpinned by an 
understanding of the mechanisms by which transition occurs 
and by which turbulent motion is maintained. Consider the 
structure of the vorticity field both in two-dimensional 
laminar flow and in turbulent flow, which is strongly 
three-dimensional in nature. The laminar boundary layer 
flow consists of a balance between the convection 
downstream of vorticity and its production at the wall and 
diffusion away from it (both viscous phenomena). This 
balance occurs over a vertical scale of the order of the 
boundary layer thickness, 0(Re"1/2) as Re 4 oo. The only 
effective mechanism acting in the streamwise direction is 
the convection of the vorticity downstream. Free turbulent 
flows, on the other hand, consist of a wide variety of 
scales of unsteady motion with a constant cascade of 
energy and vorticity to the smaller scales, where they are 
dissipated by viscous effects. In an incompressible 
boundary layer the velocity fluctuations are, on average, 
about 10% of the free stream speed, and the motions have 
the same scale in both the vertical and spanwise or 
streamwise directions, except close to the wall. In 
addition the motions are strongly three-dimensional with 
vortex line stretching close to the wall being the 
dominant mechanism of vorticity production. The physics 
seem to be those of the three-dimensional, inviscid Euler 
equations with viscous dissipation occurring in a sublayer 
at the wall. There is a net transport of vorticity towards 
the wall where it is dissipated. The production of
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vorticity by three-dimensional effects is vital in 
maintaining this transport which takes place against the 
mean vorticity gradient in the layer. This description of 
the structure of a turbulent boundary layer is primarily 
taken from Lighthill (1963), but see also Townsend (1956).

The mechanisms by which transition proceeds, 
therefore, must give rise to a redistribution of the 
vorticity of the oncoming flow, an increase in the three- 
dimensional nature of the motion, a decrease in the 
physical scales of the motion and a broadening of the 
spectrum of the disturbances. It must also be inherently 
nonlinear. There are many types of transitional behaviour, 
some of which we describe later in this thesis. Here, 
however, we make the distinction between "bypass" and 
"natural" transition. Bypass transition is a catch-all 
phrase describing the multitude of mechanisms involved in 
the response of a boundary layer to a large amplitude 
disturbance. It is often important in internal flows such 
as engines where the amplitude of a disturbance may be 
large and its spectrum dominated by relatively high 
frequency components. Natural transition, which can also 
be of several types, is associated with smaller 
disturbance amplitudes and so with external flows, 
especially with the performance of aircraft flying at high 
altitudes where the level of free stream turbulence is 
generally low. It is characterised by the presence of 
several well-defined stages in the development of an 
initially small disturbance. These include the onset of 
three-dimensionality in an initially two-dimensional flow 
and the nonlinear excitation and interaction of 
instability modes present in the initial disturbance 
spectrum at only small amplitudes. The process ends, as 
the disturbance proceeds downstream, in vorticity 
production due to the induced three-dimensional motions, 
an alteration of the original boundary layer profile, 
including an increase in the stress at the wall, and 
finally in the dominance of inviscid mechanics away from 
the wall with bursts of vorticity from a sublayer. We 
concentrate on natural transition although many of the
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equations which we show to govern the latter stages of 
transition will also be of relevance in describing the 
response of the boundary layer in bypass transition. The 
work of chapter 7 investigates a possible bypass mechanism 
unique to transonic flow.

The process of natural transition starts with the 
generation of low amplitude waves in the boundary layer in 
response to some forcing such as free stream turbulence, 
acoustic waves or, as is often used in experiments, a 
vibrating ribbon. This was first established in the 
experiments of Schubauer and Skramstad (1947) in the case 
of a Blasius boundary layer. The waves are long with 
respect to the boundary layer thickness and, as it 
transpired, exactly those predicted by the theoretical, 
linear work of Tollmien (1929) and Schlichting (1933). The 
experiments of Schubauer and Skamstrad were the first to 
positively identify these so-called Tollmien-Schlichting 
(TS) waves with the process of transition on a flat plate. 
Previous experiments suffered from too high a level of 
background disturbance to be able to pick out the stages 
in transition.

The linear theory of these waves, which presumes a 
parallel basic flow profile, predicts that, as it moves 
downstream and the local Reynolds number increases, a 
relatively low frequency disturbance will pass through a 
region where it decays and then through a neutral point 
and into a region of growth. This is the lower branch
neutral point. Further downstream a second neutral point
is encountered, the upper branch neutral point, and 
finally the waves become stable once more. See, for 
example, Lin (1955), Stuart (1963), Drazin and Reid
(1981). Depending on the local Reynolds number at the 
point at which the disturbance is introduced a wave can 
join this process at any stage. The height above the plate 
at which the speed of the boundary layer profile is equal 
to the phase speed of the wave is associated with the 
critical layer of the disturbance. It is at this point
that the energy is extracted from the mean flow. TS waves 
are a viscous instability. This means that the instability
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does not survive as the Reynolds number of the flow tends 
to infinity. Unlike the Rayleigh instability, which is 
important in boundary layers with a profile with a 
vorticity maximum (unlike the Blasius profile) or in an 
extended sense in compressible boundary layers (see 
§4.3.6), the TS instability relies on viscous effects for 
its amplification. Viscous effects within the critical 
layer result in a phase change in the vorticity profile 
across it and, in addition, vorticity diffuses out from 
the Stokes layer near the wall. If the position of the
critical layer is such that this vorticity, when it 
reaches the critical layer, is in phase with the vorticity 
fluctuations there it will reinforce the disturbance thus 
causing it to grow. See Lighthill (1963).

The lower branch of disturbances correspond to the
critical layer being within the Stokes layer itself and in 
upper branch disturbances it is situated further away from 
the wall. Lower branch disturbances are therefore longer 
and slower than upper branch ones. Asymptotic results for
the wavelength of the lower branch neutral wave as the
Reynolds number becomes large (Lin (1955)), yield the 
result that the length scale of the disturbances are of

•3/80(Re ) where length scales are now normalised with 
respect to the the plate-length. This scaling is exactly 
that which governs the steady interactive boundary layer 
in external flow. See Stewartson and Williams (1969), 
Messiter (1970) and Smith (1982). In fact the asymptotic 
structure of TS waves at large Reynolds number is exactly 
the triple deck structure. Therefore Tollmien-Schlichting 
waves are essentially an viscous-inviscid interaction 
phenomenon, with the inviscid mechanism being pressure 
waves in the free stream. Smith (1979a&b) notes that the 
only valid way of studying these TS disturbances is via 
the unsteady triple deck formulation since the limit 
Re -» oo is implicit in the boundary layer approximation 
itself. Bodonyi and Smith (1981) carry out a similar high 
Reynolds number expansion for the upper branch of 
disturbances and Gajjar and Cole (1989) extend this 
analysis to include the effects of a non-zero Mach number.
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The lower branch is, in essence, unaffected by the 
compressibility effects, at least at subsonic speeds (see 
§4.2.2). A similar technique can be applied to TS waves in 
channel flow.

The two advantages of the structural approach to 
boundary layer stability theory and the asymptotic 
solution of the governing Navier-Stokes equations in an 
expansion in inverse powers of the Reynolds number are as 
follows. Firstly it is a "rational" procedure (in the 
sense of Van Dyke (1964)). This means that the importance 
of neglected effects, such as the non-parallelism of the 
basic boundary layer flow, can be gauged at any stage of 
the expansion and if necessary incorporated at higher 
orders in the expansion (Smith 1979a). It leads naturally 
to approximations that are consistent with the governing 
Navier-Stokes equations. Secondly it naturally leads to a 
nonlinear equation governing the flow close to the wall 
for a relatively small disturbance amplitude. In the case 
of lower branch disturbances in incompressible flow, a 
nonlinear equation results where the disturbance size is 
that of the basic velocity profile at the position of the 
critical layer, and this turns out to require a 
disturbance velocity of only 0(Re~1/8) . Since transition 
is a nonlinear phenomenon, this is an important feature. 
This nonlinearity has been exploited to gain an 
understanding of many features of the transition process, 
e.g. the saturation and equilibrium amplitudes for lower 
branch disturbances close to the neutral point (Smith 
(1979b)) and the nonlinear development of relatively high 
frequency disturbances, leading to the equations governing 
large amplitude waves (Smith and Burgraff (1985), Smith 
(1986a&b), Smith and Stewart (1987)).

There are two main criticisms of the triple deck 
approach. Firstly there is the objection that it is only 
an asymptotic solution of the governing equations. This is 
often countered by the argument that the boundary layer 
approximation itself is also only valid for infinite 
Reynolds number. In addition the Reynolds number is often 
extremly large in practical situations. Furthermore it
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often turns out that the predictions of the theory are in 
agreement with experiments or computations down to quite 
small values of the Reynolds number. The most convincing 
argument in its favour, however, is that it makes clear 
the physical processes at work in the fluid and eases an 
understanding of the interactions between them. The second 
objection is that the triple deck can only capture the 
lower branch of the disturbances. This is not quite true 
since the relatively high frequency limit of the triple 
deck equations, as used in chapters 5 & 6 of this thesis, 
captures all the mechanics of the upper branch 
disturbances except the crossover to stability at the 
neutral point and the possible effects of saturation of a 
disturbance due to nonlinear effects within the critical 
layer. In addition Smith and Burgraff (1985) argue that in 
natural transition it is the lower branch that is met 
first as the wave travels downstream and so it is the 
nonlinear development of the lower branch disturbances 
that is of importance, especially in the case of larger 
amplitude disturbances.

The development of lower branch disturbances is not 
the only cause of instability in boundary layers and not 
the only cause of transition. In a decelerating free 
stream the boundary layer vorticity profile develops a 
maximum which implies that it is subject to the inviscid 
Rayleigh instability which is typically more dangerous 
than the TS instability. On a concave plate the Gortler 
instability is important. In the presence of cross-flow in 
the boundary layer the net vorticity profile in some 
direction can contain a maximum triggering the Rayleigh 
instability. In compressible flows the inviscid Rayleigh 
instability is slightly modified and so-called higher 
modes of instability develop which are more unstable. 
Finally and most importantly there is the possibility of 
interaction between these modes of instability typified 
perhaps by the wave-vortex interaction. In these 
mechanisms a very small amplitude, oblique pair of TS or 
Rayleigh waves can interact wth a longitudinal vortex 
structure whose amplitude is the same as the basic
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oncoming flow. This gives rise to the possibility of a 
small wave altering the basic flow by a significant 
amount. This leads to the generation of shear layers and 
inflexion points within the boundary layer profile and the 
triggering of the inviscid instabilities mentioned above. 
There follows a rapid cascade of instabilities and 
turbulent motion. This idea of wave-vortex interaction is 
a promising one for the description of a host of 
transition phenomena. See Hall and Smith (1989) and Smith 
and Walton (1990). However, this thesis does not consider 
this interaction.

There are many routes to turbulence starting from 
linear TS waves. Which one the flow takes depends on the 
amplitude and frequency spectrum of the initial 
disturbance. A description of the types seen 
experimentally and the theory describing them can be found 
in the introductions to chapters 5 and 6. The study of the 
nonlinear triple deck has been able to shed light on much 
of the physics of these routes. As mentioned above, Smith 
and Burgraff and Smith follow the development of a 
disturbance through increasing amplitudes to a stage where 
the disturbance is essentially inviscid and bursts of 
vorticity emanate from a viscous sublayer. As the 
amplitude increases still further the work of Smith, 
Doorly and Rothmeyer (1987) is important in the 
understanding of the structure of turbulent spots in 
boundary layers. Smith and Stewart (1987) use the triple 
deck as a starting point in the study of the resonant 
triad mechansim of mode interaction in transition (see 
Craik (1971), Craik (1985)). Stewart and Smith (1987) 
study the secondary instability of a two-dimensional wave 
to three-dimensional disturbances and the effects of the 
non-parallelism of the basic flow on the growth rate.

These theories originated in the study of 
incompressible, subsonic boundary layers on flat plates. 
With the increase in the speed of travel of aircraft has 
come a need to understand compressible, transonic or 
hypersonic flows and the elements of the triple deck 
theory are now being applied to different flow regimes and
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to different geometries. Smith (1989) investigates lower 
branch disturbances in supersonic and hypersonic flows. 
Cowley and Hall (1990) look at waves in the presence of a 
leading edge shock in a hypersonic flow. Avis (1989) and 
Duck and Hall (1989a&b) look at axisymmetric flows. The 
work of the latter half of this thesis is an initial 
investigation into transonic flows.

The problem which we study originates in the boundary 
layer on an engine nacelle of a commercial airliner. The 
speed of the aircraft and the geometry of the nacelle 
means that, at certain operating conditions of the engine, 
the speed of the free stream at the point of transition is 
transonic, in the range 0.8 < < 1.2, with the local
Mach number. Associated with this transonic flow is a 
pocket of supersonic flow and a weak shock which, although 
not sufficiently strong to provoke separation and 
transition, may well have some influence on the transition 
process. The work of Smith (1989) identifies two different 
types of lower branch disturbance at transonic speeds. The 
first is the so-called major mode. This is an oblique wave 
directed at an 0(1) angle to the direction of the free
stream. The second type is the minor mode and is directed
at a lesser, 0( |M2-l |1/2), angle to the free stream. We 
study these minor modes. These modes are fast-moving 
compared with the major modes and are directed more 
strongly in the direction of the oncoming stream. There
comes a stage, therefore, as the Mach number approaches
unity, when the wave speed balances that of the 
slowest-travelling sound wave in the free stream. The 
regime where these two speeds are of the same order has 
M2-l ~ (Re 1/9) and the wave speed also 0(Re”1/9) . It 
leads to a triple deck structure for the lower branch 
disturbance with unsteadiness in both the boundary layer 
equation and the free stream equation.

In §4.2 we derive the scales for the motion and the 
nonlinear triple deck equations governing the disturbance. 
We then go on to discuss the solution of the linearised 
form of these equations in §4.3. It has long been realised 
(Rhyzhov and Zhuk (1980)) that two-dimensional linear
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lower branch disturbances in supersonic flow are all 
stable. The transonic regime discussed here allows us to 
trace the development of the lower branch disturbances 
from subsonic speeds, where there is a range of
frequencies that are amplified, through transonic speeds 
and to supersonic speeds. It is found that waves directed
at an angle less than 0(|M2-1|1/2) to the direction of the1 00 1
free stream, with Mro> 1 , (within the wave-Mach cone)
rapidly become affected by the non-parallel nature of the
boundary layer as their growth rates are reduced. As the
Mach number increases they become primarily neutral 
disturbances travelling downstream at the speed of the
slowest-moving sound wave and the strength of the 
viscous-inviscid interaction and so the growth rate is 
very much reduced. We also discuss unsteady 
(upstream-travelling wave) modifications of the steady 
upstream influence solution to the supersonic triple deck 
problem (Stewartson and Williams (1969)) which arise in 
transonic flow.

The knowledge of the stability characteristics of the 
boundary layer to linear disturbances gained in this 
chapter is utilised in chapters 5 and 6 in formulating 
weakly nonlinear theories of the development of a 
wavepacket and of mode interaction. These lead on to the 
study of the boundary layer response to larger amplitude 
disturbances, effectively extending the work of Smith and 
Burgraff into the transonic regime. This yields some new 
features unique to transonic flow. Perhaps the most 
important of these is a weakly nonlinear description of a 
Benjamin-Feir secondary sideband instability of a 
primarily two-dimensional disturbance in the presence of a 
slight degree of spanwise warping. This has the effect of 
increasing the growth rate of the disturbance. The 
evidence is that this instability extends, to some degree, 
into the subsonic compressible regime.

Chapter 7 studies the interactive structure which 
arises at Mach numbers still closer to unity for 
relatively low frequency disturbances. It is of interest 
in that it captures an unsteady shock / boundary layer
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interaction and presents a possibly powerful mechanism for 
bypass transition.

§4.2 Definitions And Scalings.

§4.2.1 Introductory comments.
We start with a summary of the Navier-Stokes 

equations, which govern the flow of the fluid. We
introduce a reference length L^, and reference velocity 
U^. Since the fluid is compressible it is necessary to 
introduce reference values for the temperature, density, 
viscosity, heat conductivity, and coefficients of specific 
heat of the fluid at constant pressure and at constant 
volume. These are T , p , \i , k , c , c respectively.

00 ' 00 00 00 ' poo' VC0

We can now derive a typical value for the pressure, P^U^,
and a representative time scale for the motion, L /U .00 00
Important non-dimensional quantities of the flow are the
Reynolds number, Re = U L p /\i , and the Mach number,00 00 00 00
M = U /a , where a is a typical speed for sound waves in 00 00 00 ' 00 c

the flow and is given by a2 = (y-l)c T . Here y is theCO pOO 00
ratio of specific heats of the gas, c /c . I f  we use thec  poo vco
above quantities to non-dimensionalise the governing 
equations they reduce to

5 £ + V.(pu)=0, (4.2.la)
at

p —  = “Vp + —  V[(U7-2/3/u)V.ul + —  fv. (jLtV u)_ + V(UV.u )] , 
Dt Rp i J I )

(4.2.1b)
p = pT/yM2, (4.2.1c)

D(c T) (y-l)M2 Dp 1
p --- —̂  = ------ - $ + (y-l)M2 —  +   V. (kV T) .

Dt Re 00 Dt Recr
(4.2.Id)

Here /lC is the bulk viscosity of the fluid

175



non-dimensionalised with u, , u is the velocity vector00 ' —
(u,v,w), p the pressure, p the density, and T the 
temperature of the fluid at a point r = (x,y,z) at time t. 
The substantial derivative, D/Dt, is defined as d/dt + u.V 
and $ is the dissipation function

$ = (1/4) jLi (V u + (V u)T):(V u + (V u)T) + (p /-2/3jli) (V.u)2.
(4 . 2 . le)

The Prandtl number <x is defined as p c /k and is00 poo 00
approximately 0.72 for air. We, however, make the
approximation of a model fluid and assume a = 1. The work 
of this thesis can be generalised for any value of <x,
since the equations we later derive as governing the 
disturbance are independent of <r, whose only influence is 
on the basic flow and so on the normalisation of these 
governing equations. At transonic speeds it is also 
reasonable to assume that c and k do not vary with

ptemperature and to set them equal to 1 in the above
equations.

We now consider two limits of the Navier-Stokes 
equations as Re -» <». The first leads simply to the Euler 
equations

(4.2.2a)

(4.2.2b) 

(4.2.2c)

(4.2.2d)

If, in addition to being inviscid, the fluid motion is
also irrotational then it will remain so and we can 
introduce a potential 0 such that u = V0. The potential 
can be shown to satisfy

—  + V.(pu) = 0, 
dt

Du
p —  = -V p, 

Dt

p = pT/rM2,

DT Dp
p —  = (y-i)M^ —

Dt Dt
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0 (a2 - u2) + 0 (a2 - v2) + 0 (a2 - w2) =xx yy zz
0.. + 2uv0 + 2uw0 + 2vw0 + 2u0 + 2v0 + 2w0 ^,tt xy xz yz xt yt ^ z t '

(4.2.3a)

where a is the speed of sound and varies with position. 
It is related to 0 by

a2 - m;2 = -(y-l)(0t + 1/2 (V0)2 - 1/2 Q2)), (4.2.3b)

where Q is the magnitude of the velocity vector at the
point at which the sound speed is equal to its reference
value, M^1, assuming that the motion there is steady. The 
pressure and density at any point in the flow field can be 
calculated, if 0 is known, from the equations

a2 = yp/p, D/Dt (p p~r ) = 0. (4.2. 3c-d)

If we linearise (4.2.3) so that the flow is a small 
perturbation from a uniform flow in the x-direction, the 
equation governing the perturbation potential, 0 is

0 (1-M2) + 0  + 0  = M 2(0 + 2 0 ) .  (4.2.4)
XX oo yy r zz co'^tt xt

Sound waves, which are responsible for the transfer of
information throughout this inviscid, irrotational flow,
satisfy this equation. Two-dimensional plane waves, i.e.
those in which d/d = d/d =0. have a streamwisey z
velocity, cg, given by

1 - M2 = M2(c 2 - 2c ) ,
00 00 S s

i.e.

c = 1 - 1/M or c = 1 + 1/M . (4.2.5)S 00 s 00

These expressions are simply the sum of the speed of the 
uniform flow and the speed of a sound wave which, without 
the uniform flow, would travel towards x = -co or +co
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respectively. As -» 0 and the flow becomes subsonic
these speeds become large and the free stream tends to 
react quasi-steadily to slower motions, such as boundary 
layer disturbances. Similarly, if », the free stream
also reacts quasi-steadily to slow boundary layer
disturbances but, since in this case both waves move
downstream, its adjustment will be governed by a
hyperbolic equation. On the other hand, if is close to 
1 the slower of the two speeds becomes close to zero. The 
wave moves upstream if M < 1  and downstream otherwise.CO
This speed can be similar to that of the boundary layer 
instability waves and have an effect on their development. 
It is the magnitude of this velocity which is important in 
the stability of transonic boundary layers, especially in 
the case of two-dimensional disturbances.

The second limit of interest leads to the Prandtl 
boundary layer equations (see Stewartson (1964)). In this 
theory the steady Euler equations are assumed to be 
sufficient to determine the steady flow away from the 
surface of the body, where the effects of viscosity are 
presumed to be negligible. We impose inviscid boundary 
conditions on the Euler equations, which predict a slip
velocity, (u ,0,w ), at the surface. This is assumed to be

6 6 — 1/2 reduced to zero in a thin region of thickness 0(Re ) -
- 1/2the boundary layer. In this region we write y = ybRe / 

u = u(x,yb,z) = (Uo,Re'1/2Vo,Wo), p = RQ(x,yb,z)( and
T = TQ(x,yb,z). On substitution into (4.2.1) and taking 
the limit Re -» oo, this leads to

(R U ) + (R V ) + (R W ) = 0,' 0 o'x v 0 0 y v 0 0 z 'b
(4.2.6a)

R (U U + V U + W U ) = - p +  C (x ) (T U ) ,o' 0 Ox 0 Oy 0 Oz1 0 Oy yb b b
(4.2.6b)

R (UW + V W  + W W ) = -p + C (X ) (T W ) ,0 0 Ox 0 Oy 0 Oz *z 0 Oy yb b b
(4.2.6c)
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p = 0, (4.2.6d)
yb

p = pT/*yM2, (4.2.6e)

R (UT + V T  + W T ) = (r-l)M2(U 2+ W 2)0 0 Ox 0 Oy 0 Oz ' co' Oy Oyb b b
+ U - 1 ) M 2(U p +W p ) + C(x)(TT ) ,' co' O x 0 z v v O Oy 'y 'b b

(4.2.6f)

with boundary conditions u = V = W = 0  at y = 0  and0 0 0 b
UQ -> Ue, Wq we as yb -> w. The driving pressure, p, is 
given by the solution of the Euler equations. We have used 
Chapman’s law, p = C(x)To, to relate the viscosity to the 
tepmerature where C(x) = p (x)/T (x). Here the subscript ww w
indicates the value at the wall yb = 0. This approximation 
is valid as long as the variations in the temperature are 
not too extreme, which will be the case at transonic 
speeds. This so-called classical boundary layer
formulation, in which the external flow is calculated
first and then a boundary layer fitted to it to ensure
that the no-slip conditions are satisfied, is valid as
long as the boundary layer does not separate and a 
solution for the boundary layer equations can be found
over the whole body or in the region of interest.

§4.2.2 The scaling arguments and disturbance equations.
We presume that the steady flow over a surface and 

the associated boundary layer can be calculated, at least 
locally from a prescribed exterior flow, by using the
above strategy and consider the stability of the boundary 
layer flow. Let us concentrate on a region in the vicinity 
of (x o,0,zq) where there is no cross flow and so WQ in 
equations (4.2.6) is zero, and the flow external to the
boundary layer is parallel to the x-axis. Cross flow 
instability is itself a dangerous instability but we do 
not consider it here. We take the reference quantities 
used in deriving equations (4.2.1) to be those just 
outside the boundary layer at this point, and L^ to be a
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representative streamwise length, say the chord length of 
an aerofoil. These reference values, the Chapman constant 
and the skin friction parameter X = U (0) / (U^/L^) vary

0yb 00 00
with xq and zq and indeed the boundary layer profile 
itself develops on a length scale which is 0(1) as Re -> eo, 
and so in general the problem of the stability of the 
boundary layer is one in which this non-parallelism of the 
basic flow must be taken into account. We, however, 
concentrate on disturbances which are short relative to 
this development length and so reduce the base flow to be 
effectively parallel to leading order. We also presume 
that the body is flat to this order. The particular 
disturbances upon which we will concentrate are 
Tollmien-Schlichting waves which are, at the high Reynolds 
numbers required for the boundary layer approximation, 
viscous-inviscid phenomena (see §4.1). Since we are 
looking at disturbances in the transonic regime where Mw 
is close to unity and as a result the slowest-moving sound 
wave in the free stream is very slow compared with its 
speed in more supersonic or subsonic conditions, we look 
for disturbances in which this slow speed is important.

The boundary layer thickness at (x ,0,z ) is of the— 1 /? 1 /P aorder of Re C T , from equation (4.2. 6 b, c&f), sinceW
in our non-dimensionalisation p = T-1. We use, therefore,w w
the 0(1) variable y = yRe1/2C 1/2t _1 to describe the mainw
part of the boundary layer. Let the size of the streamwise 
velocities which make up the disturbance be e and its 
streamwise length scale be L . If the spanwise scale is L 
we may introduce 0(1) coordinates X and Z such that

[ x - x , z - z ]  = [ L X , L Z ] .  (4.2.7)0 0 x z

We write the streamwise velocity near the wall as u = eU 
where U = 0(1) as Re -> «. Near the wall we presume that 
the base flow, U , behaves like U - Ay as y-> 0, where X 
is the local normalised skin friction. Therefore, if the 
disturbance is concentrated in a region where y = AY, 
where Y = 0(1) and A << 1 as Re -> », then the disturbance

180



size balances that of the base flow if

e = AA. (4.2.8)

A perturbation of this size is sufficient to provoke a 
nonlinear response in the boundary layer. The inertial 
effects associated with the perturbation are of a size 
0 (pwc2/Lx) and so a typical pressure associated with the 
disturbance is of a size 0 ( p e 2). Viscous effects close to

W

the wall also balance these inertial terms if

AA3/L = 1. (4.2.9)
X

We concentrate on the so-called lower branch of the 
Tollmien-Schlichting disturbances in which the critical 
layer, i.e. that point in the boundary layer at which the 
speed of the disturbance matches that of the base flow, is 
close to the wall, where viscous effects are important. 
Thus, if the timescale associated with the motion is t , we 
require the balance

L / t = c (4.2.10)
X

and we write t = tT, where T is 0(1) as Re -» «. Consider 
now the motion in the main part of the boundary layer 
where y is 0(1). If the relative size of the streamwise 
disturbance velocity to the oncoming boundary layer 
velocity profile in this region is c «  1 , we expect the 
solution, for two-dimensional disturbances, to expand as 
follows.

u ~ U0 (Y) + G U(y) + ... ,

v ~ eRe"1/2 (C1/2Tw/Lx)V(y) + ...,

P ~ R0(y) + G R(Y) + '•*'

p ~ (yM2 )-1 + p e2P.c ' oo7 *W

(4.2.11a) 

(4.2.11b) 

(4.2.11c) 

(4.2.lid)
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We expect that c = 0(e) as Re -» oo. if we substitute the 
above into the Navier-Stokes equations and take the limit 
Re oo then

R U  + U R  + (R V) ~ = 0, (4.2.12a)0 X 0 X v 0 ' y '

U U + VU ~ = 0, (4.2.12b)0 X Oy '

U R  + VU ~ = 0, (4.2.12c)0 X Oy '

P~ = 0, (4.2.12d)y

with solutions

U = A U ~, V = -A U . R = AR ~, (4.2.13a-c)O y ' X 0 # Oy ' v

for some function A(X,Z). Thus in the main part of the 
boundary layer the free stream is merely displaced upwards 
by an 0(c) amount, -A. As y » this solution asymptotes

u ~ 1 + 0(e2), (4.2.14a)

v ~ (-Ax)Re_1/2C1/2Tw/Lx, (4.2.14b)

p ~ 1 + 0(c2) , (4.2.14c)

and as y -> 0 ,

u ~ Ay + eAA = e(Y + eA/e A). (4.2.15)

Thus we see that the boundary condition on the velocity
near the wall, U, as Y -» oo, is U -» Y + A and that c = e/A.
Consider now the effect that these motions in the boundary 
layer have on the free stream, where the motion is 
irrotational. There is a vertical velocity given by
(4.2.14b) emerging from the boundary layer and if this
decays over a vertical scale in which y = Hy, with 
y = 0(1) as Re -> oo, then the velocity can be described by 
a potential function
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0 = x + S0(X,y,Z,T) , (4.2.16)

where 0 is 0(1) as Re co and

S = cHRe~1/2C1/2T /(XL ).
W X

(4.2.17)

The pressure generated by this potential 0 is (yM2 )-1 - 
(S/Lx)0x from equations (4.2.3b-d) and this is (yM2 )-1 + 
(Pwe2 )P, and so of the same size as the pressure 
associated with the motions at the bottom of the boundary 
layer, provided that

L 2e/HRe"1/2 = C1/2T 2/X,X w (4.2.18a)

P = -0 .
X

(4.2.18b)

However from (4.2.8) and (4.2.9) we know that
  1/3. 2/3 ,e = L X , and so

X

L 7/3/HRe"1/2 = C1/2T 2/X5/3
X w

(4.2.19)

Equation (4.2.19) contains the essence of the scalings 
which lead to a viscous-inviscid interaction.

We now need only to consider the relative sizes of 
the scales for the motion in the streamwise direction (L^) 
and in the normal direction (H) in the free stream. It is 
a characteristic of transonic flows that, unlike in 
subsonic or supersonic flows (where H = L^), typical 
normal length scales are much larger than streamwise 
distances. This is due essentially to the slower speed of 
travel of the information carried by the slower sound 
wave, in the streamwise direction, than in the normal or 
indeed in the spanwise directions. The latter speeds are 
unaffected by the oncoming streamwise speed which is 
close, in the case of transonic flow, to the speed of
sound waves. If we write (M2-l) = md << 1, where m is 0(1)00
as Re -» oo, then the equation governing the perturbation 
potential in the free stream (4.2.3a) is linear if S/Lx << 
d and is
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0 —  + 0 = 2 0 + m 0 , (4.2.20)yy ^ZZ XT ^ X X' '

if
H2 = L 2 = tL = L 2/d. (4.2.21)

Z X X

This balance is motivated by the desire to include
unsteadiness in the equation governing the perturbation in 
the free stream, as well as in the wall layer equations. 
Thus the speed of travel of the Tollmien-Schlichting 
waves, 0 (L /t)# is of the same magnitude as the speed of 
travel of information in the free stream, 0 (d/2 ).

The results (4.2.19&21) enable us to find all the
scalings mentioned in the above analysis

L = Re 3/9c1/3T 4/V4/3,X w
(4.2.22a)

L = Re-5/18C5/18T 10/V13/9,z w
(4.2.22b)

H = Re'5/18C5/18T 10/V13/9,
w

(4.2.22c)
d = Re"1/9C1/9T 4/V /9,

w
(4.2.22d)

T  = Re_2/9C2/9T 8/V14/9,
W

(4.2 .2 2 e )
€ = Re~1/9C1/9T 4/V/9,

W
(4.2 .2 2 f )

S = Re-5/9C5/9T 11/9X-8/9.
W

(4.2.22g)

We now consider the magnitude of the spanwise 
velocity w and its effect on the above arguments. The 
spanwise variation of the motion in the free stream sets 
up a spanwise pressure gradient (S/(LzLx))Pz and this 
forces a motion in the main part of the boundary layer. 
The results (4.2.13a-c), for the main body of the boundary 
layer, remain unaltered but are supplemented by

W = Re'5/18C5/18T 1/9x5/9 B/(UR), (4.2.23)w 0 0

where B = -P . As the region where y = cY/X, withX z
Y = 0(1), is approached the size of w increases so that

w = Re'3/18C1/6T "1/3A1/3 B/Y. (4.2.24)W
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This, however, is small compared with the magnitude of the 
streamwise velocity variations e, and so the motion of the 
disturbance close to the wall is effectively 
two-dimensional, although the motion in the free stream is 
three-dimensional. This feature arises directly from the 
shortening of streamwise length scales in transonic flows. 
Thus A is a function of X and T only.

To summarise then, we expand the flow variables as 
follows as Re -> oo. The streamwise and spanwise distances 
are as defined by (4.2.7) and (4.2.22). In the lower deck, 
i.e. the region close to the wall, we have

y - Re'11/18C11/18T 13/V7/9 Y, (4.2.25a)
W

u ~ eU, (4.2.25b)

V - Re*7/I8c7/18T 5/V/9 V, (4.2.25c)
W

w - 0, (4.2.25d)

p  - T ' 1, (4.2. 25e)W

p - (yM2 )'1 + Re'2/9C2/9T _1/V/9 P. (4 . 2 . 25f)00 w

In the main part of the boundary layer, the middle deck, 
we write

y ~ Re~1/2C1/2T y, (4.2.26a)w

u ~ U + c/X A(X) U ~, (4.2.26b)0 ' v ' Oy '

v - eRe'1/2C1/2'Iv/CLxX) (-Ax(X)) Uo(y) , (4.2.26c)

w - Re"5/18C5/18T 1/9x5/9 B/(UR ), (4.2. 26d)w ' v 0 O ' '

P - R0(y) + e/A A(x) R0j(y), (4.2.26e)

p - (yM2 )'1 + Re'z/9Cz/91 -1/9x4/9 P, (4.2.26f)00 W
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and in the free stream or upper deck we define a normal 
coordinate, y and a velocity potential 0 ,

y ~ Hy, (4.2.27a)

0 ~ x + S 0 (X,y,Z ), (4.2.27b)

p ~ (yM2 )'1 + Re"2/9C2/9T _1/V /9 P, (4.2.27c)00 w

M2-l ~ dm. (4.2.27d)
00

The density and the pressure in the upper deck can be
found from the relations (4.2.3b-d) and in fact

P = -0x(X,y,Z). (4.2.27e)

If we substitute these expansions into the Navier-Stokes 
equations we find that, as we expected, the disturbance is 
governed by the system

U + V =0, (4.2.28a)x y '

U + UU + VU = -P + U , (4.2.28b)T X Y X YY'

U = V = 0 at Y = 0 and U - » Y  + A a s Y - > c o ,  (4.2.28c-e)

P—  + P = 2P + mP , (4.2.28f)y y ZZ XT XX1

P P and P- -» A as y -» 0. P -> 0 as X2+y2+Z2 -> oo.v XX
(4.2.28g-i)

See Figure (4.2.1).
If, at these Mach numbers, there are transverse

velocities of a size 0(cL /L ) = 0(Re 1/180 1/18«p2/9x1/9)
Z  X w

they enter into the lower deck equations, which become

U + V + W = 0, (4.2.29a)X Y Z

U + UU + VU + WU = -p + U , (4.2.29b)T X Y Z X YY'

W + UW + VW +WW = W , (4.2.29c)T X Y Z YY'
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where W is the scaled spanwise velocity of the
disturbance. The boundary conditions on U remain unaltered 
but that on W is W ~ B/Y as Y -» oo where §x = 0. Thus in 
the main part of the boundary layer this transverse flow 
is represented by

as opposed to (4.2.23). In this case, however, Bx = 0 and 
w does not vary in the streamwise direction in the main 
deck. As a result the motions forced in the free stream 
are independent of X and, although described by a

—/L/Q —5/9potential of 0(Re ) rather than 0(Re ) as in 
(4.2.22g), they cannot interact with the lower deck 
through equations (4.2.27e), even though the pressure 
contribution, associated with its time derivative, is

-2/90(Re ) . Thus we see that three-dimensional motions are 
possible within the wall layer with these scalings. 
However in many flows we expect that w is of size

—5/180(Re ) near the wall as in (4.2.26d) and so the motion
is governed by (4.2.28). It is upon this case that this 
thesis concentrates although equation (4.2.29) could be of 
interest in the study of wave-vortex interactions at 
transonic speeds.

§4.2.3 Further comments and discussion.
Another regime of interest should be mentioned here.

If the disturbances in the wall layer are such that the
length scales are similar in both the spanwise and
streamwise directions, the above structure is not a valid 
description of the motion. Instead the appropriate 
structure is that of the so-called major transonic mode 
identified by Smith (1989). This has the unsteady 
three-dimensional boundary layer equations governing the 
motion in the lower deck, i.e. an additional -P term on 
the right hand side of (4.2.29c), but the free stream 
equation is reduced to

w = Re -3/18-3/18— -1/3,. 1/3T V /J B/(U R ) ' ' 0 o' (4.2.30)w

(4.2.31)
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Here, instead of reducing the relative streamwise scale of 
the motion, the closeness of the Mach number to unity 
causes the free stream motions to be governed entirely by 
transverse effects. The wavelength of the disturbance is

—  3 / 30(Re ) here, which is shorter than the wavelength in 
the motions described by (4.2.29), which are associated 
with the minor transonic mode of Smith (1989). The longer 
waves imply that any growth rate over the scale of the 
waves will be relatively less in the case of the minor 
modes. Hence the term "minor".

The regime leading to (4.2.28) is of relevance to 
nearly two-dimensional disturbances in the boundary layer 
which are at angles of at most 0(Re”1/18) away from the 
direction of the oncoming two-dimensional flow. These 
disturbances are such that, in a slightly supersonic free 
stream, they can be directed to lie close to or inside the 
wave-Mach cone, which lies about the x-axis with a

—1 p 1/psemi-angle of tan [ (M -1) ] which here is00i / 2  — 1/1 80(m Re ). All Tollmien-Schlichting waves, of length
—3/80(Re ) and directed within this cone, decay if 

(M8-l) = 0(1), and is positive (Ryzhov and Zhuk (1980)). 
In this case the free stream reacts in a quasi-steady 
fashion. However, it is possible for disturbances which 
are sufficiently oblique as to be directed outside the 
cone to grow (the major mode of Smith (1989)). In a 
subsonic free stream there is the possibility of growing 
two-dimensional disturbances. The present structure can be 
used to study the change in the behaviour of the waves as 
the Mach number increases above unity or the direction of 
a 3D disturbance in a supersonic free stream approaches 
and passes into the wave-Mach cone. It is found that the 
Tollmien-Schlichting mode becomes subject to strong 
non-parallel effects as its rate of growth decreases.
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§ 4 .3  L in e a r  T h e o r y .

§4.3.1 The dispersion relation.
As a first step in the analysis of equations

(4.2.28), we assume that the disturbance size is small, so 
that they may be linearised about the undisturbed state, 
U = Y, and consider normal mode solutions. This approach 
has the advantage of making clear the structure of the 
solutions admitted by the equations and also acts as a 
starting point for the weakly nonlinear analysis pursued 
in later sections of this thesis. We therefore look for 
solutions in which

(U,V,A,P,P) ~ (Y,0,0,0,0) + h[ E(u,v,a,p,p) + c.c ] + ...

h 0 , (4.3.1)

where E = exp i(aX + £Z - fiT), and c.c. represents the 
complex conjugate of the preceding expression. We first 
derive a dispersion relation for these linearised 
disturbances and then examine their behaviour in the 
limits of high frequency and increasing Mach number.

If we substitute (4.3.1) into (4.2.28) we find that

iau + vy = 0, (4.3.2a)

-ifiu + iaYuy + v = -iap + uyy, (4.3.2b)

u-»aasY-»a>, u = v =  0 a t Y = 0 ,  (4.3.2c-e)

p-- - y2p =0, y2 = 2Qa + /32 - ma2, (4.3.2f-g)

P P / P" -> ~a2a as y 0 and p -> 0 as y oo. (4.3.2h-j)

Differentiation of (4.3.2b) and use of (4.3.2a) leads to 
an equation for uy with solution

uY = DAi(C), € = (ia) 1/3Y + Co, e0 = -i1/3fi/«2/3,
(4.3.3a-c)
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where Ai is Airy's function and D is a constant. The 
boundary conditions applied to this solution lead to

Thus,

p = (ia)-2/3DAi'(Co),

r00a = (ia)~1/3Dr Ai(q)dq, 
€

- tt/3 < arg(ia)1/3 < tt/3

^ .-1/3 Ai' (£ )—  = (ia) — --- — ô -*00
a [ Ai(q)dq

€» r\

In addition, the equation for p (4.3.2f-g,j 
interaction conditions (4.3.2h-i) lead to

p = pe”yy, Real(y) > 0,

and so

P 2 _  = —
a y

Thus, combining (4.3.7) and (4.3.5), we 
dispersion relation

, . .1/3 a2 Ai'(£ )(ia) —  =---- —̂̂ 0—— ,
y k.

k = f Ai(q)dq , y2 = (2Qa + (32 - ma2),

- tt/3 < arg(ia)1/3 < tt/3, Real(y) > 0.

(4.3.4a) 

(4.3.4b)

(4.3.4c)

(4.3.5)

) and the 

(4.3.6 a-b)

(4.3.7) 

have the

(4.3.8a) 

(4.3.8 b-c)

(4.3.8 d-e)

We concentrate here on the problem of the spatial 
stability of the boundary layer, although we shall also



consider temporal instability when we look at the 
behaviour of the disturbances as m -> to in §4.3.5. 
Therefore we presume Q and £ to be real and given, 
corresponding to a known frequency and wavenumber in the 
spanwise direction. With these assumptions (4.3.8) is 
solved for a = a + la. with a and a real. Then the waver i r i
number of the disturbance in the streamwise direction, 
which depends on its frequency and orientation, is a^, 
whilst its spatial growth rate, p-1dp/dX, is (-0^).

We investigate this dispersion relation in the 
following sections. The first considers neutral 
downstream-travelling modes. Next we consider the upstream 
influence modes predicted by equation (4.3.8). In §4.3.5, 
we look at the effects of large m, which have, in certain 
cases, connections with relatively high frequency 
disturbances. We end with some comments on the linear 
theory of boundary layer stability in transonic flow.

§4.3.2 Neutral waves.
We first consider neutral disturbances, i.e. those 

with a, = 0, for which a = a and Q = Q , say. The1 ' N Nf *
condition for Ai' /#c to be real is, from Drazin and Reid 
(1981),

Q = d a 2/3 (4.3.9)N 1 N

and so

d -2.3, d -1.0. 1 ' 2 (4.3.lOa-c)

Since Real(7 ) > 0 we must also have

02/a2 > m - 2 d /a 1/3 = m - 2 fi /a
‘ l' N N' N (4.3.11a)

i.e.

0 2/a > (M2-l) - 2c ,00
(4.3.11b)
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where the superscript * indicates a quantity unsealed with 
the Reynolds number, and c* is the speed of the wave. This 
is in contrast to the result (Smith (1989)) for the regime 
with M 2-l = 0(1) and c* ~ 0(Re'1/8) as Re ^ oo, which reads

ft*2/oc*2 > (M2-l) . (4.3.12)00

This latter result implies that neutral waves must be
directed outside the wave-Mach cone which subtends an
angle of tan_1( (M2-l)1/2) with the direction of the00
oncoming flow. On the other hand (4.3.11) shows that
linear neutral Tollmien-Schlichting waves can be directed
inside the cone, in the transonic regime, if they are
travelling sufficiently fast. What is of importance is the
relative speed of the wave to that of the slowest-moving
sound wave in the free stream. Thus even if both the
characteristic sound waves are being swept downstream by a
supersonic free stream, a neutral wave, and by implication
the neighbouring growing waves, can exist if they
themselves travel more quickly downstream so that in their
frame of reference there is a characteristic which moves
upstream. The wave must be subsonic in the free stream
according to the definition of Mack (1987).

It is worth noting, in order to extend the results of
this work away from the transonic regime, that similar
behaviour occurs as a more oblique, "major mode" wave
approaches its cut-off angle, B * 2/ o l*2 -» (M2-l)+. We know00
from Smith (1989) that the dispersion relation for neutral 
modes in this case is

aN1/3(aN2 + 02) = d2[* 2 “ ( K - 1)ocn2]1/2' (4.3.13)

where a = iRe3/8a , a = iRe3/8jS and a = -iRe2/8d a 2/3.x N' z M  t I N
On the approach to the cut-off, the neutral wavenumber can 
be shown to be
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3/11“a ~ e  oc ,N N 1 oc = 23/11 [M2-l]3/11N oo M‘

6/11

r/i1
(4.3.14a-b)

0 -> (M2-1)1/2cxn + (M2-l)1/2ep, (4.3.14c)

where e << 1 and j§ = 0(1). Thus the speed of the wave
“ 1/3 “ 1/8increases to d c a Re . We have incurred a1 N

relative error of the order of

-l/8n _ . r . . 2  2, ^ / T - -1/8 -9/11.Re 2Qoc /[0 - (M -1)oc ] ~ 0(Re c ),N 00 N

in presuming that the free stream reacts quasi-steadily. 
This becomes 0(1) when c ~ Re”11/72 at which point,
including the effects of free stream unsteadiness, the
corrected expression for a becomes

a = 23/11
\ 6/11

rrt,..2 . . , j “ 5/3 3/11[£(M -1) + d a ]Ll v oo 1 I N (4.3.15)

Now we see that as £(M2-1) -» 0 the unsteady term in the 
free stream equation dominates the decay of the 
disturbance there and we have the result

= dz(2di)1/2/ M 2. (4.3.16)

Here 3 = iRe3/9a and S = iRe3/9 (M2-l )1/2a +
x N z 00iRe (M^-l)172̂ . The wave speed is 0(Re"1/9) .

We have seen that, as a neutral wave approaches the 
cut-off of the wave-Mach cone, unsteadiness in the free 
stream takes over as the controlling influence there and 
enables waves to exist at least just inside the cone (/3 < 
0).

193



§4.3.3 Unstable / stable Tollmien-Schlichting waves.
We now turn to a consideration of the more general 

downstream-travelling waves. We first consider the limit 
m -oo which should match with the subsonic 
Tollmien-Schlichting wave dispersion relation of, say, 
Smith (1979a&b). We scale the variables according to

(a,fi,/3) ~ (a | m | 3/8, fi | m |2/8, /3 | m |7/8), (4.3.17)

and find that (4.3.8) becomes

'Ai' (S0)l
(2afi|m|-y'° + p* + a2 )1/2 = (ia)1/Ja‘s. (4.3.18)

When |m| becomes 0(Re1/9), so that (1-M2) is 0(1) as 
Re -> oo, this reduces to

fAi7 (€0)] / ̂ 2 . ~ 2 N 1/2 # • ^ » 1/3^2 t a o i a\($ + a ) = (ia) a , (4.3.19)

where d = iRe3/8a, d = iRe3/8/3 and d = -iRe2/8fi. This
X z  t

is the subsonic dispersion relation if, as in (4.2.28a-e), 
transverse pressure gradients are neglected within the 
boundary layer. In subsonic interactive flow the free 
stream is governed by the equation Pxx + + P-- = 0, in
these new scalings, whilst the boundary layer equations 
are as in (4.2.29a-b) but with — IM2—1 1 P„ added to the' 1 oo 1 Z
right hand side of (4.2.29b). To obtain these normalised
equations in this form, where the Mach number dependence
has been scaled out (except in the boundary layer) it is
necessary to scale the spanwise lengthscale with
|M2-11 7/8 and the streamwise lengths with |M2-1| 3/8.
Similarly the streamwise and transverse velocities must be
scaled differently. To see this we can either consider the
equations of Smith (1989) or carry out a similar analysis
to that used in §4.2.2, only this time aiming for the
above equation in the free stream rather than (4.2.28f).
Therefore as |M2-1| -> 0, and the subsonic flow approaches
transonic speeds, the angle described by the ratio /3/a
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decreases to 0((1-M2)1/2) and the dispersion relation00
becomes that of the minor transonic mode described by
Smith (1989), but in the case of a subsonic free stream. 
This result is identical with (4.3.19). Thus we see that 
the solutions of (4 .3 .8 a-d) match back to the standard 
subsonic results as m -» -oo, approaching the minor oblique 
transonic mode in the case of three-dimensional
disturbances.

Figure 4.3.1 illustrates the growth rate for the 
normal mode disturbances for values of m of order unity. 
It can be seen that two-dimensional growing waves can
survive in the just-supersonic regime, in contrast to the
fully supersonic case where all modes decay.

The effects of large values of m, and the approach to 
a supersonic free stream are considered in §4.3.5.

§4.3.4 Upstream influence modes.
There are two distinct modes of wave satisfying the 

dispersion relation (4.3.8). Firstly, there are the 
downstream-travelling Tollmien-Schlichting waves covered 
in both the previous two sections and the next one and 
secondly, there are upstream-travelling, unsteady 
modifications of the upstream influence mode in supersonic 
flow. (See Stewartson and Williams (1969)). The eigenvalue 
corresponding to these upstream influence waves is 
illustrated in Figure 4.3.2.

For n = 0 (4.3.8) reduces to

(ia)1/3a2 = -ci0 2 - ma2)1/2, (4.3.20a)

c = -3Ai'(0) = 0.7665, (4.3.20b)

together with the conditions (4.3.8d-e). Thus a - (-i)r 
where r is real and is the positive root of

7/3 » 0 2 2 * 1/2 t a o o 1 \r = c (|3 + mr ) , (4.3.21)

so that
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3/4 3/8 - _ 3/7 _3/7 0r ~ c m as |3 -> 0 and r ~ ci /3 as /3 -» oo.
(4.3.22a-b)

The first of these results matches with the steady 
two-dimensional supersonic result of Stewartson and 
Williams. The second has no Mach number dependence and 
illustrates the approach to the more oblique major modes 
of Smith (1989). It also shows how the length scale of the 
upstream influence decreases as the mode becomes directed 
away from the downstream direction and, as a result, 
becomes less influenced by the fast-moving supersonic flow 
in the free stream.

Two-dimensional, unsteady upstream influence modes 
also exist. We first consider the case of small m. If ma2 
<< 2fia and 0 2 << 2Qa as Q -» 0 the appropriate asymptote 
for a is

a ~ (2n)3/11ci6/11exp (-57Ti/ll) . (4.3.23)

This result corresponds to relatively long wave motions in 
which a boundary layer reacts quasi-steadily to a free 
stream governed by the equation P-- = 2Pxt. The relative
errors in this result are those made in neglecting mPxx

— _ — 8/11and P ^  in the free stream equation and are 0 (mfl ) and
0 ( / 3 2n " 14/11) respectively. If we allow m ~ 0(fl8/11)and

7/11£ ~ 0 (fi ) as Q -> 0 this result matches with the 
upstream influence modes appropriate to the more transonic 
shock regime described in chapter 7. These are 
characterised by the time scale of the motion being 
determined by the slow motions in the free stream. The 
boundary layer can be expected to react instantaneously 
over these long time scales.

If Q is large, then, for two-dimensional motions, the 
asymptote

oc ~ Q3/521/5exp(-47ri/ 5 ) , (4.3.24)

is appropriate. Here we have used (4.3.26). This solution
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predicts y ~ 2 3/5Q4/5exp(-27Ti/5) and (ia)1/3 ~
2 1/5fi1/5exp (-7ri/1 0 ), and so satisfies conditions
(4.3.8d-e). The asymptote is also valid if the wave is 
oblique, provided that |3 << 0(fi4/5) as -> ». It also
requires m << 0(Q2/5) . At high frequencies these modes
represent upstream-travelling and rapidly decaying waves. 
If the unsteadiness in the free stream is not strong 
enough to dominate the effects of the streamwise 
derivatives, i.e. m = Q2/5in, the argument of a in (4.3.24) 
varies from -4tt/5 as m -» 0 to -3tt/4 as m -» oo, at which
point the scaling for a be com i s a ~ Q1/z. At large m the
unsteadiness in the free stream is of secondary importance 
and the scalings match with those appropriate to high 
frequency, unsteady upstream influence in fully supersonic 
flow (see, for example, Duck (1985)).

If £ is large (|3 >> fi4/5), however, and |m| <<
2/50 (ft ) the high frequency asymptote is replaced by the 

oblique-wave asymptote

a ~ Q1/3jS1/3exp(-27Ti/3 ) . (4.3.25)

The waves described by (4.3.24&25) are also possible 
if m < 0 and the flow is subsonic, in both the two- and 
three-dimensional motions. The question therefore arises 
of what happens to these modes at smaller frequencies, 
since there are no acceptable exponential upstream 
influence modes in steady subsonic flow, rather the
upstream influence is algebraic (Smith, Brighton, Jackson 
and Hunt (1981)). Figure 4.3.3 illustrates solutions of 
(4.3.8) for negative m. The crosses indicate a cut-off in 
the solutions, as the frequency decreases, which occurs 
when Real(y) =0. At this point the required decay of the 
disturbances in the free stream is lost. This cut-off is 
generally affected by viscous effects but we will 
illustrate it here by considering the case where cut-off 
occurs at large Q, or when |m| is great and the flow is 
very subsonic. In this case, using the result,



the dispersion relation becomes

(2Cia + fi2 + | m | a2 )1/2 = a3/Q, (4.3.27)
where /3, |m| and ft are all assumed to be real and
/32 ~ 0 ( | m | a2) , c ~ 0(|m|), and ft >> a2/3 as |m| -» oo.
Cut-off occurs when Real(y) = 0 and so

(2 ft a + j32 + |m|a2 )1/2 = -id, (4.3.28)

where d is real and positive. We have taken the root with 
negative imaginary part to ensure that the phase velocity 
of the wave at cut-off is directed outwards, away from the 
boundary layer. If a and ft at cut-off are denoted by a

C
and ft , then we can show thatc

ft = (/3/2 )3/2 I ml 3/2d1/2, (4.3.29a)c 1 1

ac = (v'3 /2 )1/2 |m|1/2d1/2exp(-57Ti/6 ), (4.3.29b)

d = | m 12/3 (1 ± 0)/4, 9 = (1 - 16(32/3 | m | 4)1/2. (4.3.29c-d)

Therefore for two-dimensional disturbances ( 6 = 1 ) ,  in the 
limit of large frequency or large |m|, a cut-off occurs at

ftc = 3 | m 15/2/4, ac = \/3 | m 13/2exp(-57ri/6 )/2,

Cc = ^c/«c = /3 |m| exp( 57ri/ 6 )/2 , Real(cc) = -3|m|/2.
(4.3.30a-d)

This result requires ftc/ac2/3 ~ |m|3/2 >> 1. For
sufficiently oblique waves or smaller values of |m| , such 
that /3 > /3|m| /4, there is no cut-off since there is no 
suitable real d. Otherwise, if £ is non-zero, there are 
two possible cut-off frequencies, implying a range of ft 
between which these upstream influence modes are not 
possible. The cut-off (4.3.30) remains valid, neglecting 
0  (/S2/1 m |4) corrections , but there is an additional 
cut-off at the smaller frequency where
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Q = /3 |m11/zf$/2, a = f3exp(-57ii/6 )/|m|1/2. (4 . 3 . 31a-b)c c

For this result to be valid, i.e. for the high frequency 
or large |m| approximation to be correct, we require that 
nc/ a c2/3 ~ lm |5/6£ 1/3 >> 1, i.e. 0 >> |m|~5/2 as |m| -> co.
For smaller values of 0 the cut-off is affected by viscous 
effects and such simple analysis as that presented above 
is not possible.

We now turn to a consideration of the subsonic modes 
which have fi = 0 and £ =0. These are steady, oblique

® 3/7 3/7upstream influence modes. Here a = -iq/3 c where
(l-q2jLi) = q7/3 and jli = ci6/7 |m| /(08/?) . This result is
similar to (4.3.21) but with a crucial sign change. If u
is small, i.e. for a small value of |m| , or for a large
value of 0 , then q = 1 , agreeing with the result

- 1/2(4.3.22b). However, a large value of u implies q ~ ia
and a ~ -i0/|m|1/2. This latter limit corresponds to the
motion becoming primarily one with little interaction
between the boundary layer and the free stream. We note,
too, that the vertical decay scale of these motions,
[Real(y)]"1, becomes very long as |m| -» oo. Again, as in
the similar limit with a supersonic free stream, the
extent of the upstream influence decreases as the motion

1/2becomes more oblique. For all values of ii, |0/a|>|m|
and so, in a sense, this influence is confined to be

1/2outside of a cone of semi-angle |m| upstream of the 
disturbance. Similar behaviour to this can be seen in the 
inviscid wave dispersion relation (4.3.27) which holds for 
large 0. If |m| ~ O(04/3fi~2/3) as 0 -> oo then (4.3.27) 
implies

/ 2 | | 2. 1/2 3(0 + |m|a) = oc /Q,

as opposed to the result (4.3.28). As |m| increases still 
further, a ~ -i0/|m|1/2. This result implies that, as 
fully subsonic flow is approached and |m| increases, 
oblique upstream-travelling disturbances become primarily 
governed by the free stream motion, with the dominant 
balance in the free stream being lm l^Xx+^zz = T^e
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interaction with the boundary layer gives rise only to 
higher order effects. This is similar to the fate of 
downstream-travelling Tollmien-Schlichting waves as 
m -+ +oo, described in the next section.

The results of this section are summarised in Figure 
4.3.4. This illustrates the various inviscid modes 
discussed (large ft and large £) and how they vary as m 
decreases from +00 to -00.

§4.3.5 The limit of increasing Mach number.
To investigate the effect of a large positive value 

of m we first consider two-dimensional waves, as these are 
likely to be the most strongly affected. Neutral waves 
must, from (4.3.11a), travel at speeds, c, greater than

1/3m/2. Thus since scales like ca , there are two
possibilities. Firstly, if a remains 0(1) as m -> 00, then 
£ 0 -+ 00, and we can make use of the large £ 0 expansion
(4.3.26) to simplify the dispersion relation. This 
corresponds to approaching the upper branch disturbances 
which, due to their faster speeds, are unaffected by the 
transonic nature of the flow, at least with these scalings 
of the Mach number with the Reynolds number. See the 
comments on the upper branch of Tollmien-Schlichting 
disturbances in §4.3.6. The second possibility has 
a ~ 0(m-3) as m -» 00. With this scaling remains 0(1) and 
the disturbances are of the lower branch type. This 
possibility will be shown to correspond to a weakening of 
the interaction between the boundary layer and the free 
stream equations. As a result the problem of determining 
the growth rate of the lower branch disturbances becomes 
one in which the non-parallel nature of the boundary layer 
profile must be considered.

c/2— 3/2— 2""If m 00 and we scale ft = m ft, a = m a, j3 = m/3,
where ft, a, and j§ are 0 (1 ), we find that

(2fta + £ 2 - a2)^2 -2 x 1/2 oT „ . (1+ i  )a
ft

and so, given ft and /3,

1 + /n 9/4=3/2 V2 m ft
(4.3.32)
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a  = ao
(l+i)a ( 2Qa + fi2 - a 2) ^ ' o v o 1 o '

V2 m 9 /V /2 (5Qa + 3/32 - 2 a 2)
( 4 . 3 . 3 3 a )

(2fiae + |32 - o l 2)W2 = a c3/fi. (4.3.33b)

This approach can also be used to derive the 
high frequency limit of the dispersion relation, used in 
the weakly nonlinear analysis of chapters 5 and 6 . If we 
look at the limit fi » and, using the scalings above as a 
guide, scale a = afi3/s, /3 = /Sfi4/5 and m = mft2/5 we derive 
a similar result to (4.3.33) giving a at relatively high 
frequency. If m is set equal to zero this latter 
expression corresponds to a high frequency, lower branch 
disturbance in transonic flow, where the free stream 
motions are determined primarily by the balance 
P-- = 2Pxt . The limit above corresponds to a disturbance 
forced to be of high frequency due to the cut-off imposed 
by the requirement that the wave move downstream more 
rapidly than the sound waves in the free stream.

On the other hand, as mentioned above, it is possible 
for the disturbances to remain of the lower branch type as 
the flow becomes more supersonic. If, a s  m  -> «, we write

a = am"3, Q = fim"2 /3 = /Sm“5/2, (4.3.34)

where a, n, and /3 are 0 (1 ), the dispersion relation 
becomes

-2 -2 i/2 (i«)1/3a2 («c/Ai')(t )(20a + |32 - a2) 2 = ------------------ — , (4.3.35a)9/2 N *m

C0 = (- i ) 1/30/a2/3 = (- i ) 1/3Q/a2/3 = £q. (4.3.35b)

Thus, for large m and to first order, the dispersion 
relation is simply that for plane sound waves, represented 
by (4.3.35a) with the right hand side set equal to zero. 
If we look for spatial instability, we must have

201



a = a - am’9, 2 ft a + ft2 - a 2 = 0. (4.3.36a-b)o 1 o o '

(ia)1 /3a 2 (K/Ai')(t)(a) =   ■ (4.3.36c)
(2a - 2ft) v o '

Since is real to first order it is convenient to
rewrite (4.3.36c) in terms of the Teitjens function, F
(see, for example, Drazin and Reid (1981)).

a 3 1 a 1/2
(a )1/2 = — ------------------- ------ , (4.3.37a)

— A O AO 1 /P f '£5 (1 - F(Y)) (a02 + p2)1/z

Y = n/ao2/3 (4.3.37b)

The relative error in assuming that the argument of the 
Teitjens function is real is that in assuming there is no 
interaction and so is, if £ = 0 so that ft ~ 0 (aQ), of size
0(ao2/(l-F)2m9) . This becomes 0(1) when ft is large,

9/2 a Q/20(m ), and so a ~ 0(m ). This corresponds to
5/2 3/2ft ~ m , a ~ m , and so it is the regime covered by 

equation (4.3.33). Oblique disturbances, as well as high 
frequencies, will reinstate the interaction to first 
order. If /3 is large then a ~ /3. If in addition ft ~ £2/3 
then Y remains 0(1) and the disturbances remain of the 
lower branch type. The interaction is reinstated when 
|3 = 0(m27/8). This corresponds to d ~ m3/8, d ~ m2/8 and

7/83z ~ m and these scalings indicate a return to the
—3/8Lx ~ Re scalings for oblique, minor mode

Tollmien-Schlichting disturbances in supersonic flows, as 
the importance of the unsteadiness in the free stream 
equations decreases. Alternatively this result can be 
viewed in reverse, as an illustration of the fate of 
oblique disturbances as their direction approaches that of 
the wave-Mach cone.

Figures 4.3.5a8cb show the real and imaginary parts of 
(1-F) 1 and -(1-F)"2 for real argument and illustrate that
there is a cut-off in these disturbances, associated with

1/2Real (?) ( = Real (a )) approaching zero as
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Y = (a 2-/32)/(2a 5/3) 0.85+. This result is theo o
equivalent, for non-neutral waves at large values of m, of
(4.3.11). If Y is less than 0.85 (an approximate value)
1/2a becomes negative. Thus, as m increases, the speed of 

the waves approaches m/2 , the sonic speed, but only waves 
with a frequency greater than Qc = (.597)/m2, and with 
wavenumber greater than 2Q /m, can exist in the

C
two-dimensional case. Thus the effects of this cut-off 
become less wide-ranging as the Mach number increases. 
Another point to notice is that the speed of the waves is

RealH H  = Real( H r  {X + )' (4.3.37c)

which is less than the sound speed, m/2, if Real (a) < 0.
This is the case for a range of values of Y just greater
than the cut-off, Y » 0.85. These modes are therefore
supersonic in the sense of Mack (1987), in that their
speed is less than l-M-1. They are unstable for values of00
Y less than 2.3 and stable otherwise, although the growth 
rates are very small.

These lower branch modes in a supersonic free stream 
are long and develop slowly due to their weak interaction 
with the boundary layer. Their growth is thus likely to be 
affected by the non-parallel nature of the basic boundary 
layer flow. We have been able to neglect these effects in 
the above analysis due to the short length scales involved 
in the disturbances. A useful way to view these modes is 
to consider the temporal stability problem and consider 
the motion in a frame travelling downstream with the speed 
of the slowest-travelling sound wave, m/2. The free stream 
equation for two-dimensional disturbances becomes, with 
the scalings (4.3.34),

m~9P—  = P + 2P (4.3.38)y y XX XT.

If we now make the transformation

dT = -1 / 2 ax + m"V, (4.3.39)
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this becomes

P-- = 2P - . (4.3.40)yy x t

The nonlinear boundary layer equation (4.2.28b) becomes 

-1/2 U + UU + VU + m'9U~ = -P + U ,' X X Y T X YY'

and the interactive boundary conditions and continuity 
equation in (4.2.28) remain unaltered. If we linearise 
this system, in the limit of large m, we find a dispersion 
relation

(2(ja)1/zAi'(So) = a2 (ia) 1/3/c(C0) / € 0 = -(ia)1/3/2.
(4.3.41a-b)

In this formulation 3- = -i(j, a = ia and (4.3.41) is an 
equation for to, the second order contribution to the 
frequency, as a function of a. The first order expression 
for the frequency is simply the acoustic relation

fi = a/2, fl = am/2. (4.3.41c)

The above approach is used in Appendix 5A to 
investigate the largem properties of the weakly nonlinear 
solution of (4.2.28) found in chapter 5.

Alternatively, we can introduce a long spatial scale, 
rather than the slow temporal one, via the transformations

3 3 + m~93~, 3 -» -1/2 d . (4.3.42a-b)X X  X T X ' 7

The free stream equation then reads

P—  = 2P «, (4.3.43)y y XX

and the dispersion relation is, if d = -in and 3- = ia,

(-2f2a)1/2Ai'(fo) = (2£2)2(2i£2) 1/3/c(C0) / l0 = - (2£2i)I/3/2 .
(4.3.44a-b)
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We now consider how three-dimensional effects alter 
these small growth rates. First, as mentioned above, if

a 7/8dz = is as large as 0 (m ) the interaction is
reinstated at first order and equations (4.3.41&44) do not 
apply. We note, next, that (4.3.36b) can be rewritten as

2 ^ = 2c = [l - § ] . (4.3.45)
a I a2'

Thus as £ co, a ~ p and c 0, agreeing with the first
point. For 0(1) 0, however, we see that the oblique nature 
of a disturbance has the result of reducing the speed of 
the acoustic wave and therefore decreasing the long 
spatial scale over which growth occurs. This, in turn, 
increases the growth rate of the disturbance. Finally, if 
0 is as small as 0 (m~2) as m co it will enter in the form 
of a +0 inside the square root in equations (4.3.41a) and 
(4.3.44a) and affect the growth rate directly.

In the derivation of the triple deck equations
(4.2.28) we neglect terms associated with compressibility 
of relative order a1/3Re~1/9, if the surface is cooled or 
heated (i.e. Ry(0) * 0), and of size a2/3Re”2/9 if the
surface is adiabatic (Ry(0) =0). In addition in making 
the assumption that the local values of the skin friction, 
Chapman's constant, etc. are constant we incur an error of

1/30(aRe ). The relatively weak interaction as m » and 
the associated slow growth rates balance these errors when

t>~1/90 Ti 2/99 , „  1/36 . . -3m ~ Re , Re , and Re m  turn, since a ~ m .
This corresponds to M2-l ~ Re"1/10, Re_1/1\ and Re'1/1200
respectively. The first two scalings of the Mach number 
give rise (in the case of linear disturbances) to modes 
primarily governed by a free stream interacting with a 
boundary layer satisfying

-1/2 U = -P + U , (4.3.46)' X X YY' V 1

and the effects of compressibility enter at a higher order
in the Reynolds number. However the third size of Mach
number, M = 1 + 0(Re~1/12), leads to a wave structure00 ' 1 '
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that moves an 0 (1 ) distance downstream in the time scale 
associated with the interaction and its growth or decay. 
Alternatively, in the spatial stability context, its 
growth is determined over an 0(1) distance in x as Re -» co. 
Thus the normalisation used in deriving (4.2.28) varies 
over the length scale of the interaction and the question 
of growth or decay of the disturbance becomes 
fundamentally affected by the non-parallel nature of the 
boundary layer. If is any larger it seems that the 
first mode wave becomes simply a neutral acoustic wave 
which is swept downstream instantaneously on the 
timescales upon which the boundary layer can react. 
Nonlinear solutions may well involve singularities in the 
boundary layer as this pressure wave travels past, since 
the boundary layer can react only relatively slowly. See 
Elliot, Smith and Cowley (1983).

§4.3.6 Further comments and discussion.
We now make some final points concerning the linear 

theory of boundary layer disturbances with a transonic 
free stream. The first concerns inviscid inflexional, or 
Rayleigh modes. These are the compressible counterpart of 
inviscid modes which are possible if the velocity profile 
contains an inflexion point. In incompressible flow the 
flat plate, Blasius profile contains no such inflexion 
point and so no Rayleigh modes are possible. In 
compressible flow, however, the inflexion point criterion 
is replaced by the generalised inflexion point condition - 
D(RDU) = 0 where D stands for 3/Sy and R and U are the 
undisturbed density and velocity profiles respectively 
(Lees and Lin (1946), Lees and Reshotko (1962)). The 
eigenvalue problem for determining the wavenumber, given 
the frequency, for a two-dimensional disturbance is

P" - t P '  - “*(1 - M2)p = 0 , p'(0 ) = 0 , p(») = 0 ,
M

M = R 1/2(U - C * ) M  .00
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1 /? * 1 /“> * * * *Here, d = iRe a , d = iRe and c = Q cl . The
' X ' t

factoring out of the skin friction etc., carried out in 
the derivation of (4.2.28) has not been carried out here. 
This linear, inviscid equation can be analysed in the

# *• 3/2limit 1 , c 0 with the scalings a ~ 0 (c ),
Q* ~ 0 (e5/2), c* ~ 0 (c), and ~ °(c ) where c << 1 .
The result is the neutral inviscid version of the high 
frequency / large m result (4.3.32). The scalings of the 
two systems also match. This limit corresponds to 
approaching the long, neutral sonic wave of Lees and Lin 
in the transonic regime, where the speed of this wave is 
small. The growth rate of this mode, at transonic speeds, 
is determined by higher order matching, and the effect of 
the critical layer at the generalised inflexion point is 
determined in an intermediate viscous-inviscid regime. The 
analysis of this system is, of course, similar to the high 
Reynolds number upper branch analysis of Bodonyi and Smith 
(1981), for the incompressible Blasius profile, or that of 
Gajjar and Cole (1989) who consider the compressible case 
and the effect of the generalised inflexion point.

The effects of a transonic free stream, rather than a 
subsonic or supersonic free stream, as studied by Gajjar 
and Cole, would seem to be as follows. Firstly, since the 
speed of the modes is faster, a new balance will be set up
when this speed is of the same order as the sound speed in
the free stream, just as in the case of lower branch
disturbances. The scales themselves will depend on the 
wall conditions which determine the position of the
generalised inflexion point in the flow. For adiabatic 
walls we have the speed c ~ 8 , L^ ~ 8 7 and M2-l ~ 5. There 
is a lower region, including the critical layer, of

-1/2 -1/2 3thickness Re 5, a Stokes layer of thickness Re 5
and an unsteady region in the free stream of thickness
Re1/2821. Here 8 is Re”1/17. In the case of a cooled or
heated wall, in contrast, L ~ 5s, and the thicknesses of

X —1/2 —1/2 1the regions mentioned above become Re 8 , Re 8 , and 
Re1/28 18 with now 5 = Re-1/13. These are slight 
modifications of the scales used by Gajjar and Cole, who 
find 8 = Re~1/16 and Re”1/12 in turn. In each case the
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vertical velocity expands like Re"1/3Lx"16 ( v q + S2v2
+ ...) and the critical layer smooths out the logarithmic 
irregularity in vg in the case of the insulated wall and 
in v otherwise. This provokes a phase shift of -tt for 
linear disturbances which balances, in magnitude, the 
phase shift from the Stokes layer which is responsible for 
the growth of lower branch disturbances. Nonlinear effects 
will come into play at low amplitudes within the critical 
layer. This structure will govern the disturbances as M^ 
increases above unity and, as the flow becomes still more 
supersonic, we can expect a development into non-parallel 
modes similar to that which occurs in the case of the 
lower branch, although due to their greater speeds the 
upper branch will survive, unaffected by non-parallelism 
at first order, until larger values of the Mach number.

The second comment regards the relative importance of 
these two-dimensional non-parallel supersonic first mode 
disturbances. They have slow growth rates both because of 
their length and due to the weakness of the interaction. 
The linear stability of the boundary layer is thus likely 
to be determined by the development of oblique first mode 
disturbances which are not forced to be non-parallel in 
the just-supersonic case but, instead, become non-parallel
at large Mach numbers (M ~ Re1/10) (see Smith (1989)). In00
addition, of course, there are the inviscid Rayleigh modes
which are generally faster-moving and shorter and
therefore more unstable than first mode disturbances.
Their faster speeds allow them to last further into the
supersonic regime before becoming primarily a neutral
sound wave (the Lees and Lin sonic wave) as their speed
approaches 1-1/M . Finally we should consider waves which00
decay vertically within the boundary layer itself, such as 
those which arise from wall cooling. An analysis of the 
effects of wall cooling on the first mode disturbances and 
on the Rayleigh modes is presented in Seddoughi, Bowles 
and Smith (1990).
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§4.4 Su m m a r y .

Below we list the main results of this chapter.

1) We have derived the scalings for the minor mode of
Tollmien-Schlichting disturbances as the Mach number of 
the flow nears unity. The scalings bring in an 
unsteadiness of motions in the free stream reflecting 
the finite speed of travel of information there on the 
time scales associated with the disturbance. The length 
scale in the streamwise direction of these disturbances

1/3is 0(Re ) as Re -> oo. The transverse length scale is
-5/180(Re ) and the Mach number, M , is such that 

|Mz -11 = 0 (Re"1/9) .I 00 1 ' 3

2) The free stream unsteadiness is also important in 
fully supersonic flows when Tollmien-Schlichting waves 
are directed close to the wave-Mach cone.

3) We have studied the unsteady modifications of the 
supersonic upstream influence mode which exist in 
transonic flow. These are upstream-travelling, decaying 
waves. These waves also exist in just-subsonic flow but 
are subject to a cut-off as the flow becomes fully 
subsonic.

4) As the Mach number increases from unity, 
Tollmien-Schlichting waves, directed within the 
wave-Mach cone, continue to exist, subject to a cut-off 
at low frequencies. Their growth rates become strongly 
diminished in supersonic flow and they develop into 
modes that are primarily acoustic in nature with a weak 
interaction between the boundary layer and the free 
stream giving rise to the small growth rate. The waves 
with frequencies just above the cut-off frequency have
speeds greater than 1-M"1 and are supersonic. When

- 1/12Mw = 1+0 (Re ) the growth occurs over a scale at 
which the boundary layer itself develops and the waves 
become affected by the associated non-parallel effects.
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F igure  Ca p t io n s  For Ch a p t e r  4 .

Figure 4.2.1 A sketch showing the scales of motion for
Tollmien-Schlichting disturbances in a boundary layer
associated with a transonic free stream ((M2-l) = 1 +00—1/9 ~3/9mRe ). The streamwise length scale is 0(Re ) 
and is much shorter than the spanwise or vertical 
scales (both 0(Re'5/18)). The speed of the

— 1/9disturbance is 0(Re ) .

Figure 4.3.1 Plots of the growth rate (-o^) against 
frequency (0) for linear waves in a transonic 
boundary layer. The dispersion relation for these 
waves is equation (4.3.8). The Mach number of the

— 1/9free stream is 1 + mRe /2 and so is slightly
supersonic in the cases where m is positive. Figure
(a) shows waves for a range of values of m. Figure
(b) shows waves with a subsonic free stream. Figure
(c) illustrates waves with positive m and a small 
value of n .  For some large positive values of m it 
proves difficult to find solutions for small values 
of fi. It is possible that this has some connection 
with the cut-off at small C2 and large m described in 
§4.3.5.

Figure 4.3.2 Upstream influence modes in just supersonic 
flow. Figure (a) shows two-dimensional modes as the 
frequency, Q, increases from zero for various values 
of m = (M2-l)Re1/9 (m = 1/20, 1/4, 1, 4, 8). Figure
(b) presents oblique modes as £2 increases for m = 1 
and various values of the spanwise wavenumber, 
(32 = 1/2, 2, 6, 10.
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Figure 4.3.3 Upstream influence modes in just-subsonic 
flow. A cross indicates the position at which a mode 
becomes subject to the cut-off described in §4.3.4. 
Figure (a) shows two-dimensional modes as Q increases 
for m of -2, -1, -1/4, -1/100. Also shown is the
position of the cut-off when it is governed by 
inviscid effects (valid for large |m| , see equation 
(4.3.30)). Figure (b) illustrates oblique subsonic 
modes with |m| = 5  and shows the position of the 
cut-off for 02 = 1, 4, 8, 24, 36. Figure (c) is of
similar modes but with |m| = 1  and £2 = 1/10, 1/4, 1, 
4, 8 and shows that at small enough |m| sufficiently 
oblique waves can avoid the cut-off (equation
(4.3.29)).

Figure 4.3.4 A sketch showing the variation of inviscid 
upstream-travelling modes with m and /3. The value of 
m varies from -» (subsonic flow) to » (supersonic 
flow). The various asymptotes illustrated in this 
figure can be found in §4.3.4.

Figure 4.3.5 Figure (a) shows the real and imaginary 
parts of (l-F(Y))’1, where F is the Teitjens function 
and Y is real. The point marked (1) indicates the 
value at which Real ((1-F)"1) = 0, corresponding to 
the cut-off in the downstream-travelling waves in the 
limit of large m. See equation (4.3.37). Figure (b) 
illustrates -(1-F)’2. Values of Y for which the 
imaginary part of this is positive correspond to 
unstable waves in (4.3.37). The points marked (1) and 
(3) are neutral points with (1) corresponding to the 
cut-off mentioned above. The point marked (2) 
corresponds to the minimum value of Y such that the 
waves described by (4.3.37) are subsonic, i.e. their 
speed is greater than 1-M^1.
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Ch a p t e r  F iv e

THREE-DIMENSIONAL (AMPLITUDE)3 INTERACTIONS AND 

THE DEVELOPMENT OF NONLINEAR DISTURBANCES IN TRANSONIC

BOUNDARY LAYERS.
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§5.1 INTRODUCTION; NATURAL TRANSITION FOR LARGE

Disturbances.

The introduction to chapter 4 states that, even in 
natural transition, there are many routes from laminar to 
turbulent flow. These routes are characterised by the 
sequence of nonlinear interactions or secondary 
instabilities which the unsteady disturbance may 
experience as it travels downstream. Alhough the original 
experiments of Schubauer and Skramstad (1947) were the 
first to identify Tollmien-Schlichting (TS) waves with 
transition of the boundary layer on a flat plate, it has
been only in more recent years that modern experimental
techniques have been able to distinguish between the 
subsequent developments of these waves which characterise 
different transition mechanisms.

The work of this chapter can, to a degree, be
identified as being appropriate to a type of transition
seen in incompressible boundary layers, known as K-type 
transition. This notation, introduced by Herbert and 
Morkovin (1979), is prompted by the experimental work of 
Klebanoff, Tidstrom and Sargent (1962), which was the 
first to identify this route. This mechanism is associated 
with quite high disturbance amplitudes with r.m.s. 
velocities in the boundary layer of approximately 1-2% of 
the free stream velocity. The features of this type of 
transition are as follows. An initially two-dimensional 
wave becomes unstable to a three-dimensional perturbation 
which has the form of a spanwise variation in the 
intensity of the disturbance. These variations are known 
as peaks and valleys. Associated with this, as transition 
proceeds, is the presence of lines of hairpin vortices in 
the streamwise direction with a wavelength exactly that of 
the initial TS disturbance. In the latter stages of 
transition, bursts of high frequency oscillation, known as 
spikes, are seen. These develop into turbulent spots which 
eventually fill the boundary layer.

Although, as explained later in this section, the 
experimental results of Klebanoff et al. do not indicate
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that it is an important feature in the development of the 
three-dimensional nature of the transition, in 
incompressible flow, the large amplitude of the initial

3disturbance involved suggests the study of an (amplitude) 
type of nonlinearity. In this type of weakly nonlinear 
theory the amplitude of the fundamental disturbance varies 
as a result of its nonlinear reproduction through the 
interaction of the fundamental with its second harmonic 
and mean flow terms, as well as through growth induced by 
viscous-inviscid interaction. This work was done, in the 
case of incompressible flow, by Smith and Burgraff (1985) 
and Smith (1986a&b). Here we extend this work to the 
transonic regime.

Section 5.2 considers disturbances in a Blasius
boundary layer and leads, through a weakly nonlinear
analysis, to a Schrodinger equation governing the
downstream development of the amplitude of the wavepacket
of the disturbance. The wavepacket is directed at an angle 

—  1/18of 0(Re ) to the free stream as Re -> oo when the Mach
number, M , is such that IM2 — 1 1 ~ 0(Re”1/9) . As a result00 1 00 1
the amplitude is governed by the nonlinear equation 
derived in chapter 4 (4.2.28) and its behaviour at
infinitesimal amplitudes is described in §4.3. A 
multiple-scales analysis is used to determine the 
amplitude of the fundamental wave. This requires a 
separation of the scales of motion into that of the 
wavelength and that over which the growth occurs due to 
viscous effects. This step can be made rational, in an 
asymptotic expansion, for only two types of wave: those
near the lower branch neutral point and those of
relatively high frequency. In the latter case the
wavelength shortens and the growth rate becomes small (see 
§4.3.5) and it is this case which we consider. These are 
waves that are nearing the upper branch of TS 
disturbances. The shortening of the wavelength of the 
disturbance in this limit also justifies the neglect of 
the non-parallel nature of the Blasius boundary layer (at 
least for Mach numbers that are not much greater than 
unity, see Appendix 5A) . We use the separation of scales
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to balance the weak growth with the weak effects of 
nonlinear regeneration at small disturbance amplitudes.

The solutions to the governing Schrodinger equation 
are considered in section §5.3 in two special cases (a) 
and (b). The case (a) is of a wavepacket travelling in the 
downstream direction and the equation governs its
amplitude modulation in an oblique (£-) direction. This 
direction depends on the Mach number and the spanwise 
wavenumber of the wavepacket. It is this case that
contains, as a sub-case, the development of a
two-dimensional wavepacket with a weak spanwise amplitude 
modulation. Case (b) concerns the modulation in the 
streamwise direction of waves travelling in the
^-direction.

The results lead to the conclusion that wavepackets
“ 1/18directed at an angle less than some 0(Re ) value 

(which is dependent on the Mach number) are subject to a 
sideband (Benjamin-Feir) instability which has the effect 
of increasing the growth rate to three times that of a 
more oblique wave, in scaled terms. It also introduces 
seemingly chaotic features to the flow and a rapid 
broadening of the spectral content of the disturbance. In 
the case of waves of type (a) this corresponds to an 
instability to spanwise modulations of a two-dimensional 
wavepacket, with the growth rate of these modulations 
being greatest for those of the longest spanwise 
wavelength. This is in contrast with the incompressible 
case, which has a similar increase in growth rate for 
waves more oblique than 54.7° (Smith (1986b)).

The nonlinearity in the problem is such that, as in 
the incompressible case, the Stuart-Landau coefficient of 
the Schrodinger equation is purely imaginary. This 
precludes the occurrence of the finite-time breakdown in 
the solution which occurs in similar work by Hocking, 
Stewartson and Stuart (1971). Instead the wavepacket grows 
exponentially in amplitude. Eventually the response of the 
fluid close to the wall, where the basic boundary layer 
flow is slowest (the Stokes layer) becomes nonlinear and 
the large-amplitude-inviscid stage or stage 2 of Smith and
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Burgraff (1985) is reached. This stage is relevant to the 
latter stages of the K-type of transition. We study this 
stage in §5.4 and draw the conclusion that the transonic 
free stream has a stabilising influence in this regime, 
reducing the likelihood of vorticity bursts from the 
nonlinear wall layer which is governed by the classical 
non-interactive boundary layer equations.

Finally, in §5.5, we consider the Euler stage of 
transition in transonic flow.

We make two final comments here. Firstly, it has not 
been possible to find experimental results of the quality 
of those avaliable for incompressible boundary layer 
transition. K-type transition may or may not occur at 
transonic speeds. This makes it difficult to gauge the 
importance of the theoretical results described above, one 
of which predicts a mechanism for the onset of 
three-dimensionality in the disturbance which is unique to 
transonic flow. The second point concerns the relevance of 
this weakly nonlinear theory to the initial stages of 
K-type transition in flows with zero Mach number. The 
experiments of Klebanoff et al. indicate that the 
development of the three-dimensional perturbations, in 
incompressible flow, is due not to an (amplitude)3 
response and the nonlinear generation of harmonics and 
mean flow terms, but to the existence of longitudinal 
vortex structures. The understanding of this particular 
route to transition is likely to be gained, therefore, 
through a study of the wave-vortex interaction mechanism 
mentioned in §4.1. This has the power to explain the 
significant alteration of the mean flow profile seen in 
the peaks and valleys and the resultant triggering of an 
intermittent Rayleigh instability which is likely to be 
responsible for the spikes seen in the experiments. It is 
thus important that the theory of this interaction be 
extended to cover the transonic regime.
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§5 .2  De r iv a t io n  Of  T he We a k l y  N o n lin e a r  Eq u a t io n .

As mentioned in the introduction to this chapter, the 
relatively slow growth exhibited by linear disturbances of 
relatively high frequency on the lower branch scalings 
allows a weakly nonlinear analysis of the development of a 
wavepacket. In this section we present a derivation of the 
scalings used in deriving an (amplitude) nonlinear effect 
and the analysis which leads to a nonlinear Schrodinger 
equation, which governs the temporal growth of a
wavepacket in a frame moving with the group velocity of 
the disturbance.

The nonlinearity in the unsteady, transonic triple 
deck equations (4.2.28) is quadratic, of the form 
U t ~ UUx ~ Px* As a result/ a fundamental disturbance
proportional to E or E-1, where E = exp i(aX + |3Z - ftT), 
and with a pressure of an amplitude of size h, say, will 
generate a velocity of size hT/X. The small nonlinear 
terms will act upon this velocity and generate velocities 
of size h2T3/X3, varying as E° (a mean flow adjustment) 
and as E2 and E~2 (second harmonics). These small 
velocities will themselves interact with the original 
disturbance, through the nonlinearity, and reproduce the 
fundamental disturbance at a size of 0(h3T5/X5). This 
occurs through products of the type E°E and E2E_1. Thus 
the fundamental pressure disturbance is reproduced at an 
amplitude 0(h3T4/X4), a size of relative magnitude
0(h2T4/X4) compared with the original amplitude. Consider 
now linear high frequency disturbances. These develop 
according to the dispersion relation (4.3.33) which is

1 <1+i> %  1 1   2-------  (5.2.1a)—  9/10 /o . „ “ 6 . “ . “ 2. '0 v2 (2a + a + 0 )v o o ^ ' J

a 3 = (2a + ^2 - ma 2)1/2, (5.2.1b)o o o '
where

X ,-4/5- ,—2/5“ ~ -3/5-(3 = Q /3, m = Q m, a = ft a ,
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and |3, m, a ~ 0(1), as ft -> oo. This implies that
T4/X4 ~ ft"8/5.

In a weakly nonlinear analysis of this type we aim to 
balance the reproduction of the fundamental wave, through 
nonlinear effects, with its slow growth over the 
relatively long scales implied by (5.2.1a,b). The relative 
size of the growth term is 0(ft"9/1°) and so this balance
leads to the result ft~9/1° ~ h2T4/X4 ~ h2ft~8/5, i.e. 
h ~ ft7/1°. Therefore the size of the streamwise velocity 
perturbations due to the fundamental disturbance is 
0(ft 1/20) and the relative decrease in amplitude between 
the fundamental wave and that of the mean flow and 
harmonic terms is 0(ft~9/2°) . Similar considerations lead 
to the following multiple-scale expansion of equations 
(4.2.28), where c = ft"1/2°,

U ~ e(u + e9u + e18u + ...),x 0 1 2 77

V ~ e-1(v + e9v + e18v + ...),' 0 1 2 77

P ~ c"7(P + e9P + e18P + . . . ),v 0 1 2 77

P ~ e"7(P + e9P + c18P + . . . ),' 0 1 2 77

A ~ c (A + c9A + e18A + . . . ),' 0 1 2 77

a ~ e"12(a + e9a + e18a + ...),X x x x0 1 2

a ~ e"20(a + c9a + e18a + ...),t v t t t 770 1 2

a ~ e'16(a + c9a + e18a + ...),z z z z 770 1 2

m = e~8m, y = e16y*, Y = e10Y*, c 0. (5.2.3a-c)

In this expansion we assume that all the x , z and t 
c  o ' 0 0

dependence occurs in the exponential term which governs 
the wave-like behaviour on these relatively fast scales. 
The other space and time scales are slower and it is upon

(5.2.2a) 

(5.2.2b) 

(5.2.2c) 

(5.2.2d) 

(5.2.2e) 

(5.2.2f)

(5.2.2g)

(5.2.2h)
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these that either the mean flow and second harmonics are 
generated or, on the longest scale of all, the amplitude 
of the fundamental varies. The linear increase in U, U -> Y 
as Y -» oo, (equation (4.2.28e)) is incorporated into the 
boundary condition satisfied by the mean part of u as 
Y* 00.

We write

u = u  E + u + E+, o 01 oi '

and use similar expressions for P , P , A , v , where thec 0 0 0 0
superscript + indicates the complex conjugate, and 
E = exp i(axQ + /3z q - t ). The expansion (5.2.2&3) is then 
substituted into the nonlinear equations (4.2.28). At 
first order we find that the disturbance is governed by 
the system

P ** + P = in P + 2 P . (5.2.4a)01y y Olz z Olx x Olx t0 0 0 0 0 0

P * -» A , y* 0, (5.2.4b)Oly Olx x 1 '0 0

P -» P , y* 0. (5.2.4c)oi oi' 1 '

-i u = -ia P + u " , (5.2.4d)01 oi oi '

ia u + v * = 0, (5.2.4e)01 01Y '

u = v = 0 at Y* = 0, u -> A as Y* » (5.2.4f-h)oi oi ' 01 oi '

where 7 indicates 5y*. These imply that

*
* ✓ - _-CTY

u = A (1 - e_CPY ) , v = -iaA oi oiv 77 01 01( v -  1 ^ 1 ,
>. rr *<T

(5.2.5a-b)*
P = p e'Vy , (5.2.5c)01 01 '

P = P , yp = a2A , (5.2.5d-e)01 01' 01 01 '
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and, from (5.2.4d) and (5.2.5a),

A = c<P , ( 5 . 2 . 5 f)oi oi'

where cr2 = -i, Real(cr) > 0 ,  y2 = (2fia + /32 - mot2) and 
Real(7 ) > 0.

Comparing (5.2.5e) and (5.2.5f) we find the
dispersion relation at this order to be

r = a. (5.2.6)

This is exactly the inviscid version of (5.2.1).
At second order the nonlinearity in (4.2.28b) 

balances terms such as u and . This nonlinearityoit oit1 o
consists of the terms

E2(iau 2 + v u *) + E~2(-iau *2 + v *u * *) +01 01 01Y 01 01 01Y
E°(v u + * + v +u *),V 01 01Y 01 01Y

which are

E2[ia3P 2( 1 - e_crY - ctyV0** )] + c.c + L oi'
_0. 3|_ |2E ia P1 oi1

* + * , +\ + * * -cty * + -o* y , ( a* cr | -«r+cr )yY <t e - Y c r e  + — - - --- e
' cr+ cr '

+ + * * cr -cr y cr -cty+ --  e -   e+cr cr

or, defining H.T. and M.T. (harmonic and mean terms),

E2(ia3PQi2)( H.T. ) + E"2 (-ia3PQ* )( H.T." )

+ E°(ia3|Pol|2)( M.T. ).

With forcing of this type in mind for u we write it as

u = E°u + Eu + E_1u + + E2u o + E"2u *1 10 11 11 12 1 2 '
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and express P^ P , A , and v similarly.
We find that the second harmonic term 

the equations

P * * = 4y2P ,12y y 12

P * -» 4a2A and P -» P as y* 4 0,12y 12 12 12 ■* '

- 2iu + ia3P 2( H.T.) = -2iaP + u ' 12 01 v ' 12 12

2iau + v * = 0.12 12Y '

u = v = 0 at Y* = 0, u -» A as Y*12 12 ’ 12 12

Solving these, we find from (5.2.7d) that

aP + 3a3P 2/2 + D = 0 for some 12 oi 7

A = aP + a3P 2/2. 12 12 01 7

However from (5.2.7a-c) and (5.2.6),

P = 2A /a, P = P . 12 12 7 12 12

As a result we can determine D and so

A = -<x3P 2/2 and P = -a2P 2 12 01 7 12 01

Therefore,

u = a3p 2 [ (1-crY*) e-<rv* - (1 + 12 01 L ' 7 1

v = -2ia4P 2[Y*e_crY - Y*/2 - (1 - e ^ 2(n 12 01 L 7 '
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is governed by

(5.2.7a) 

(5.2.7b-c) 

(5.2.7d) 

(5.2.7e) 

co. (5.2.7f-h)

D,

(5.2.8a-b)

)/2 ]f

)/(2S2r)].

(5.2.9a-b)



Now we consider the mean flow terms. These satisfy

u" = ia31P |2( M.T. ), 10 1 01 1 v 77

u = 0 at Y* = 0, u Y* + A as Y -» « 10 ' 10 10 7

and so

u = Y* - 2a3IP I2 Im 10 1 oi1
n  -(cr+cr+)Y* -0“V\cr ( 1 - e __________ )_ _  ( 1 - e  ) +

<7 (cr + <7+ ) 2 <r<r*

Thus

d - e V v ) _ 
+ 2

+
Y e~a Y

(5.2.10)

A = 3 1P 2\a3, v = 0. 10 1 01 1 7 10 (5.2. lla-b)

The mean pressure term P cannot be found in this r 10
analysis.

We now consider the behaviour of the extra
fundamental term at second order. EP . This term does notn
suffer any forcing from nonlinear terms and u satisfies

- i u  + u = -iaP - P + u ' , (5.2.12a)11 Olt 11 Olx n  7i i

u = 0 at Y* = 0 and u -» A as Y -> ». (5.2.12b-c)li li li

Thus

_/TVu = (aP - iP - iaP )(1 - e )11 ' 11 Olx oit 7 vi i

+ P
* -CTYaY e

oit 2cr 7i
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and applying the boundary conditions we find that

aP - A = iP + iaP11 11 Olx oit1 i
(5.2.13)

The disturbance in the upper deck satisfies the equations

P * * ~y2P = 2iamP -2i/3P +2iaPrt<i ~2i? ,lly y 11 Olx Olz Oit Olx1 1 1 1

P P , 11 1 1 '
—  2 *P * -> 2iaA -a A as y -> 0.lly Olx ni

(5.2.14a-c)

However, from (5.2.5c-d,f), P = P e’*y and An/i = olP , ' ' ' 7 ' 01 01 01 01
so

P = P eli li
-r y

Olx ‘ Olz 1 1 Oit J
So, from the conditions (5.2.14), we find that P = P^ 
and

aP - A = —  |"-(3a+2/32-ma2)P + a/3P11 11 2 v 1 1 OlxIf L 1
- a2P 1Olz Oit1 1J

Combining this with (5.2.13) leads to

oit
1 5a + 3(32 - 2a2m p , i

i

i XD
to __
I

a 3a + /32 - 2 - a m Olx1 13 _3a + £2 - a2m_ Olz

= 0. (5.2.15)

Equation (5.2.15) corresponds to the disturbance 
being neutral over the xi scale in a frame moving with its 
group velocity. The velocity in the X-direction, cgx, is

2/5positive and is 0(Q ), and that in the Z-direction, cgz,
is 0(fi1/5) and is directed opposite to the phase velocity. 
The coefficient of P in (5.2.15) is eg , whilst theOlx v ' 3 x'i
coefficient of P is eg .Olz 3zi
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We now introduce a notation which is useful in the 
study of these high frequency limits. If we write

A = 2/a5, B = #2/a6, C = -m/a4, (5.2.16)

the linear neutral dispersion relation (5.2.6) becomes

A + B + C = 1. (5.2.17)

The term A measures the importance of unsteadiness in the 
free stream and is always positive. B is also positive and 
gauges three-dimensional effects, whilst C can be positive 
or negative depending only on the sign of m. The right 
hand side of (5.2.17) represents the effect of the 
interaction of the free stream with the boundary layer. In 
this notation

1 6-A-2C 1 4+A+2B
a 2+A a 2+A a

cgz = -  

P

-2B
2+A

(5.2.18a)

(5.2.18b)

Equations (5.2.18a-b) define F and G.
We now turn to the third order of the expansion and 

in particular the term proportional to E. We identify 
these terms by the suffix 21. In the boundary layer u 
satisfies

21

-iu, + u + u +21 lit Oit1 2
(iau +u + iau u + v u + * + v u  * + v *u ) = 01 12 10 01 12 01Y 01 01Y OI 12

-iaP - P - P21 llx Olx + u21 '
(5.2.19)

with boundary conditions u = 0 at Y = 0 and u -+ A * 21 21 21
as Y ->00. This equation governs the development of the 
fundamental term u within the boundary layer and its 
form is similar to (5.2.4d-h) which governs the term u .
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We therefore expect that, together with the system
governing the disturbance in the free stream and the
matching conditions expanded to this order, this equation
will yield a secularity equation governing the development
of P over the longer scales x and t . To determine this 01 3 2 2
equation we simply evaluate equation (5.2.19) as Y »
where u = A . This gives 21 21 3

aP - A = lA + lA + lP + lP21 21 lit Olt llx Olx1 2  1 2
2 c 5

“ p  - 5“ p |P
01 0 01 1 01 

< T 2

or, if we use (5.2.13) and (5.2.5f) to eliminate A and
A in favour of P and P we find 11 01 11

aP - 21 A = i f aP + p I + i I aP + P ] + aP21 I lit llx I I Olt Olx I oit tv 1 1'  ̂ 2 2J 11
2 (.5

+ P - - P  - —  P |P I2. (5.2.20)Olx t 01 0 01 1 01 1 ' 'i i cr 2

In evaluating the nonlinear terms we have used 
(5.2.5a-b,8,9a-b,10,11).

The third order fundamental terms in the free stream 
and the matching conditions are

+

+

(5.2.21) 

and

P  * *
2iy y r p = 2i[(am-l)P + aP - £P ]21 L v 1 Olx Olt Olz J2 2 2

2i[(am-l)P + aP - £P ]L ' ' llx lit ^ llz Ji l l
mP - P + 2P ,Olx x Olz z Olx t11 11 11
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P * -» 2iaA + 2iaA + A - a2h21y Olx llx Olx x 212 1 1 1
= 2ia2(P +P ) + 3aP +2a*Pni t -a“A .Olx llx Olx x Olx t 212 1 11 11

P P . as y 4 0.21 21

(5.2.22a-b)

Here we have used equations (4.2.28f-i), (5.2.5f), and
(5.2.13). The right hand side of (5.2.21) can be written 
as

* ** -Yy * * —A e + B y e  ,

where

A = 2ias[-(C+A/2)(P + P ) + (<xA/2)(Po n + Pm  )
2 1 2 1

- (aB/0)(P + P ) ]v ^ ' ' Olz llz ' J2 1
+ a4[-CP - (a2B//32)P + (aA)P_ t ],Olx x 1 1 Olz z 1 1 Olx t 1 1

and

B* = 2ra4[(C+A/2)2P0lx + 2(aB//3)(C+A/2)P01x z
X1X1 1 1

- A(C+A/2)aP - (aA) (aB/|3)P ^' 7 ' Olx t v Olz t11 11
+ («i/P)2P01z z + («A/2)2Pont ].

11 11

Equations (5.2.21&22) imply that

aP - A =21 21 2a
A* + S.

- -POlx xa i i

27 

- 2P

- 2i(P + P„ )' Olx llx2 1

Olt x 1 1
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and comparing this result with (5.2.20) we find the 
relation

(l+A/2) [ (P +P )+cg (P +P )+cg (P_ +P^ )]L ' Olt lit 1 Olx llx ' Olz H z  '2 1 2 1 2 1

6-C+(C+A/2)2 D -L
f *
2B(C+A/2)

a2
sr i Olx x 1 1 . «<*

B(B-l) p  + 6+A-A(C+A/2)
e2 j r — Olz z 1 l

Olx z 1 1

Olx t 1 1
_-AB

I p J

(1-i)

P + (2+A2/4)P„„ „Olz t \ / oit t11 11

= a P - a V I Pni |2.v2 oi 2 oi1 oi1

Without loss of generality we can assume that P
depends on (x -eg t ) and (z -eg t ) only and so satisfies
an equation similar to (5.2.15). Using this result and
(5.2.15) to rewrite the time derivative, d , in terms of

i
spatial derivatives, allows us to obtain the following 
result, which is valid in a reference frame moving with 
the group velocity,

3P
(l+A/2) 01 - l

a t

k_ d\ x  _B_ a\ 1_ + _C_
2 n 2  ̂ «2

s2p 1 01
a dx a/3 axiazi 3 dz

a ( P - a4 P |P |2,v2 oi 2 oi1 oi1 '
(5.2.23)

where

A = -(1/2)[C-15 + (1+2A)F2 + (3A+4C)F], (5.2.24a)
B = -(1/2)[2(1+2A)FG + (3A+4C)G + 4BF], (5.2.24b)

C = -(1/2)[B + (1+2A)G2 + 4BG]. (5.2.24c)

As a final step in this analysis we can eliminate the 
cross-derivative terms by using the spatial coordinates X
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and £ where X = x and £ = x - (2|3A/aB)z andi 1 1  n 1 i
normalise the equations by introducing the quantities 

P = P /X , € = € / A ,  X = X /X , T = t /A ,Ql' l' s s l' 2f V 3 2' 4
(5.2.25)

= (i/2/5a3)1/2, X2 = |AHi/2/a3|1/2, A3 = |A/2/a311/2,
(5.2.26a-c)

X4 = V2 (l+A/2)/a, (5.2.26d)
H = (4AC - B2)/B2. (5.2.26e)

This leads to

PT - i sgnA (Pxx + sgnH P ^ )  = (l-i)P - i P|P|2.
(5.2.27)

The line = constant corresponds to

= («B/2^A)(Xi - ^). (5.2.28)

The solutions of equation (5.2.27), a nonlinear 
Schrodinger equation, correspond to the development of a 
relatively high frequency wavepacket, of spanwise 
wavenumber £ and streamwise wavenumber given by equation 
(5.2.6), which travels downstream with the group velocity, 
which has a negative Z-component. Within this travelling 
frame, lower order dispersion effects and viscous growth 
interact with the nonlinearity over a relatively long 
timescale and govern the development of the disturbance 
amplitude. The change of variables to X and £ corresponds 
to picking out suitable coordinates for describing the 
effects of dispersion within this moving frame, and the 
coefficients X and X determine the scales over which2 3
these dispersive effects act, the scales being short if 
the corresponding coefficients are small.

We note here that we can rewrite (5.2.23) in slightly 
more general form than (5.2.27) if we use the variables | 
and C where
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X
B

(5.2.29a)
2a ii - v 1/2 1/2

2

Z (5.2.29b)

u = {A + C ± V{ (A+C)2-4A) } , A = AC-B2/4, (5.2.29c-d)1,2

If the eigenvalues ji and ill are different in sign, 
equation (5.2.23) is hyperbolic and we can expect 
solutions different from those in the case where they are 
of the same sign and the equation is elliptic. Figures 
5.2. la&b show the two eigenvalues plotted against m and ft. 
It seems that n is always positive but that m2 changes 
sign as ft increases, becoming negative for the least 
oblique disturbances. The resulting change in the 
qualitative nature of the solution is discussed in the 
next section.

§5.3 Solutions Of The Equation.

§5.3.1 The special cases (a) and (b).
The various coefficients used in the derivation of 

equation (5.2.27) are presented in Figures 5.3.1a-i. The 
important points to notice are the regions of the (m,ft) 
plane where A or AH (or equivalently AHB2) are different 
in sign, since the solutions of (5.2.23) are different 
according to the sign of the dispersive term on the right 
hand side of (5.2.27). For example, consider the special

(5.2.29e)

Equation (5.2.23) is then

PT - i (sgn(/Lii)P|| + sgn(jU2)P^-) = (l-i)P - i P|P|2.
(5.2.30)
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cases (a) and (b).

a) P = Qa(£,T)exp(-iT + inX - in2TsgnA),

Qa - i saQac = Qa - i Qa | Qa |2, sa = sgn(AH),

(5.3.1a)

b) P = Qb(X,T)exp(-iT + in£ - in2TsgnAsgnH),

, b_b _ b . _b i _b ■ 2 b , £ »Qx - 1 s Qxx = Q - 1 Q IQ | S = sgn(A).

(5.3.1b)

If sa and sb are positive, the large-time behaviour of the 
solutions to equations (5.3.1a-b) is of a wavepacket which 
spreads in X or £ like exp(2T/3) and which has an
amplitude growing like exp(2T/3). The phase of Q varies
like exp(4T/3). See Smith (1986a). On the other hand, if/the coefficient of the dispersive term is positive (sa or 
sb < 0), it acts as a focussing influence and the growing 
wavepacket is itself subject to a rapidly growing 
Benjamin-Feir type of sideband instability, see Benjamin 
and Feir (1967). This consists of localised, short, 
0(exp(-2T)) width spikes of large amplitude, 0(exp(2T). 
The phase of the disturbance varies within these spikes 
like exp(4T). These spikes can occur seemingly at random 
upon the basic solution, due to their small width and 
rapid growth rate, and the downstream form has many 
randomly positioned, thinning spikes, of large amplitude, 
and a corresponding significant broadening of the 
frequency spectrum of the disturbance. See Smith (1986b).
This change in behaviour of the solution is associated 
with the change in type of the equation and so a change in 
sign of one of the eigenvalues in equation (5.2.29c). The 
focussing is associated with the hyperbolic form of the 
equation. A numerical solution of the full system (5.2.30) 
would be of interest but here we investigate only the 
special cases of the plane waves (5.3.1a-b). The relevance
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of equations (a) and (b) and the implications of their 
solutions are discussed separately below. Also discussed 
is the two-dimensional version of equation (5.2.23), the 
limit of which, at large m, is covered in Appendix 5A.

§5.3.2 Solutions in case (a) and two-dimensional
disturbances.

It can be seen from Figure 5.3.1(i) that sgn(AH) is 
negative, corresponding to the more rapid growth, in a 
region of the (m,/3) plane which borders the line /3 = 0. 
This region extends for negative in, a point discussed 
later in this section, but as m increases it is confined 
to smaller values of 0. A limit typical of this regime is 
0 0 and in this case

A + C = 1-B, i << 1, (5.3.2a)

F ~ (4+A)/(2+A) ~ 0(1), G ~ -2B/(2+A) ~ O(02), (5.3.2b-c)

A ~ ( 3A2+4A+8)/2(2+A)2 ~ 0(1), (5.3.2d)

B ~ AB(A+8)/(2+A)2 ~ O(02) , (5.3.2e)

C ~ -B/2 ~ O(02), (5.3.2f)

H ~ (-1/B) [ ( 3A2+4A+8 ) (2+A)2/ (A+8)2] ~ O(0'2), and is -ve,
(5.3.2g)

AH ~ (-1/2B) [ (3A2+4A+8) /(A+8) ]2 ~ O(0-2), and is -ve,
(5.3.2h)

20A/aB ~ (0/a) [ (3A2+4A+8) /(A+8 ) ] (1/AB) ~ O(0_1).
(5.3.2i)

For the above to hold for large values of A and C, B must 
be smaller than 0(1) as A and C -> oo. This limit, of large 
A and C, is relevant for large m. On the other hand, if 
B = b, say, is 0(1) the appropriate expansion for large A 
and C is
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F ~ 1-2(b+1)/C, G ~ 2b/C, (5.3.3a-b)

A ~ (3-b)/2/ B ~ b, C ~ -b/2, (5.3.3c-e)

H - -3/b, AH ~ 3(b— 3)/2b, (5.3.3f-g)

where C -> -oo and A = -C + (1-b). Thus, for large m, A
changes sign where b = 3. We consider this feature further 
in §5.3.3. We note that HB2 = 4A, where A is defined in 
(5.2.29d), and that H does not change sign in this limit. 
As a result the type of the equation and so the 
qualitative nature of the solution do not alter as A 
changes sign. Expansions (5.3.2) and (5.3.3) agree as 
A -> 00.

From the results (5.3.2) we can see that, as £ -+ 0,
A becomes large and £ ~ z . (See (5 . 2 . 26b,28)). The2 1
coefficients A remain 0(1). This corresponds to a1,3,4
two-dimensional wave with a slight degree of warping in 
the Z-(spanwise-) direction. This warping allows a
secondary instability of the two-dimensional wavepacket to 
occur, governed by (5.3.1a). This has the form of
focussing in the Z-direction and the appearance of spikes
of large disturbance amplitude.

As a check on this result, the analysis of §5.2 can
be repeated with scaling with like
n4/5n-9/20 _ n7/20 instead of ft4/5 This restricts the
three-dimensional influence to the (amplitude) level of
the expansion. If 3 = ft7/20, the result is

3P
d+A/2) 01

a t a
3A2+4A+8

H  2 (2+ A )2

a 2 p01

ax

a 2p
a 01

dz

= a ILjJ. p _ li a4|p 
V2 01 2

, T> oi1 01 (5.3.4a)

in a frame moving in the positive X-direction with a speed 
implied by

ap l (4+A) ap
— 21 + -  — 21 = o.
a t  a (2+A) 3xi ' ' i

(5.3.4b)
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We can normalise equation (5.3.4a) using the new
variables P, X and T and the normalising factors X
introduced in (5.2.26), with the understanding that the
limit as |3 -» 0 has been taken. The new variables required
are z and X , where 2 '

zi = X̂ z and X = \V2/a7 \1/2. (5.3.5a-b)

We then find

PT - i (Pxx - P--) = (l-i)P - i P|P|2. (5.3.6)
Therefore a wave of the type P = Q(z,T)exp(-iT+inX-in2T) 
is governed by

Qt + i Q—  = Q - i Q|Q|2, (5.3.7)
1 Z Z

and so is subject to focussing in the spanwise direction 
and the resulting destabilisation.

Without the d2 term equations (5.3.4a-b) govern
zizi

the development of a two-dimensional disturbance and 
exhibit only spreading behaviour, in contrast to the 
solution when small warping is present. They are 
considered further in the limit m-)» in Appendix 5A.

It is worth considering what happens to the type of 
solution described by (5.3.1a) and (5.3.2a-i) as m -> ±co. 
For large positive m we have seen from Figure 5.3.1(i)
that the value of £ at which sa changes decreases. This is
due primarily to the relation, a ~ 2/m, valid for small |3
and large m, see (4.3.34&36b) . Since B = ft2/a6, we see
that B ~ /32m6/26 and so for B to be small, and hence for

— _ 3this behaviour to occur, /3 must be smaller than 0(m ), 
which decreases rapidly. We know from (5.3.3c) that the 
crossover from type (a) to type (b) occurs where b = 3 and 
so £ = 8v^3/m3 as m -> oo. The behaviour in the case of 0(1) 
values of /3 for large m is related to equation (b) and is 
discussed in subsection §5.3.3, although the distinction 
between solutions of type (a) and (b) is somewhat
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artificial, since A = 0 simply corresponds to the 
direction associated with the focussing effects being 
coincident with the X-direction.

As m -oo we approach the subsonic minor modes (See 
§4.3.3). If we now consider larger values of /3 than in the

. i — i 1/4 * i — i 3/4 *previous paragraph, with a ~ |m| a and 0 ~ |m| 0 ,
then as A 4 0 the dispersion relation becomes B + C = 1, 
where, for the purposes of these results, B = 0*2/a*6 and
— *4C = 1/a . The coefficients become

C ~ 1-B, (5.3.8a)

F ~ 2(l+B/2), G ~ -B (5.3.8b-c)

A ~ (1/2) (3B2+B+2) , B ~ -3B2, C ~ (1/2)(3B2-B),
(5.3.8d-f)

H ~ (5B-2)/9B4. (5.3.8g)

Thus AH < 0 if B < 2/5 and so focussing occurs if

0*/a* < (2/5 )1/2a*2. (5.3.9)

We note that a*2 ~ | in |1/2 as i n T h e  result (5.3.9) 
implies that there must be disturbance angles, bordering
zero, which suffer this focussing and the induced
increased growth rate in subsonic, compressible flow, 
although Smith (1986a) indicates that this is not the case 
for purely two-dimensional motion. The limit of this 
crossover angle as in -> -« has 0*/a* = (2/3)1/2. Smith 
(1986b) shows that in incompressible flow (M^ = 0) waves 
at angles greater than 54.7° are subject to a similar 
secondary instability. Similarly, Bowles and Smith (1989) 
state that major mode transonic waves more oblique than 
68.53° are also destabilised. The appearance of enhanced 
instability in the less oblique minor modes due to 
nonlinear effects, as the Mach number increases from zero 
towards unity would seem to be a feature worthy of further 
study, especially since on linear grounds it is the more
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oblique modes that are the most unstable. It seems likely
that the single incompressible crossover angle will
connect to both the major mode crossover and the minor
mode crossover angles as M increases. The former angle00
remains 0(1) as M -» 1- whilst the latter becomes00P 1 /POCtl-M^] ) and matches with equation (5.3.9).

§5.3.3 Solutions in case (b).
The solutions of equation (b) become subject to a 

sideband instability and the associated increased growth 
rate when A is negative. Equation (5.3.3c) implies that A 
changes sign, at least for large m, when /3 = 8/3/m3, or, 
since the scaling A ~ C predicts a ~ 2/m, when 
|3/a = 4\/3/m2. It is at this point too that AH changes sign 
and *2 becomes zero. Thus at this point the solutions of 
equation (a) merge with those of (b) . Asymptotic results 
for C -» -oo reveal that A remains negative and |A| grows to 
be 0( | C | ) as j9 increases from these 0(m"3) values through 
sizes of 0(in~1/2). Also |A| remains large until 
/3 - 0(m1/3). If /3 ~ 0(m'1/2) then a ~ 0(m-1) and so 
A ~ B ~ C ~ 0 ( m )  and the dispersion relation becomes

A + B + C = 0.

Here the interaction between the boundary layer and the 
free stream is weak and this is reflected in the large 
values of A, B and C. As £ increases further to a size of 
0(m1/3) a regime is reached where A ~ 0 ( | C |1/2) and 
B ~ 0( |C| ) . Thus a ~ 0(m~1/6) and |C| ~ 0(m5/3) . With the 
expansions

A ~ <r | C |1/2 + a , B ~ | C | - o* | C |1/2 + (1-a),

where <r = 0(1), | C | -> oo (cr ~ 2m//33), we find that

A ~ C/2(1 - 12/cr2) , H ~ - | C|_1(3-20/cr2)/(l-12/cr2)2.
(5.3.lOa-b)
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Therefore A again takes positive values if o* < /12. This 
implies that the asymptote for the curve A = 0, as m -»• «, 
is

f n1/6\(3 - (1/3)1/6 m /3, (3/a - m1/2[l - . (5.3.11a-b)
' m *

More important is the position at which H = 0 since it is 
this curve which determines whether or not the solution 
enjoys the increased growth rate associated with the 
focussing in one direction. This has the asymptote

(3 - (3/5)1/6 i1/3, (3/a - 51/2[l - T ^ iTi) • (5.3.12a-b)

The behaviour of the coefficients A and AH as 0 increases
“ 1/3from zero towards these 0(m ) values, is summarised in

Figure 5.3.2. This change in sign of the coefficients
takes place for waves directed, to first order, along the
boundary of the wave-Mach cone discussed in §4.2.3.

M 1/2Although these are asymptotic results for large |C| and 
in the Figures 5.3.1 this regime attains a |C| of only 
around 5, we can expect the structure described above to

_ “ 1/3emerge as m increases in the vicinity of j3 ~ 0(m ) .
Indeed, numerical evaluation of the coefficients for 
values of m around 8 confirms this trend. In addition more 
careful numerical investigation of the coefficients shows 
that this order of events, as £ increases, is also seen at 
smaller values of m, although the critical values of |8 
become very close in the range 4 < m < 4.5.

On linear grounds, the waves directed inside the 
wave-Mach cone suffer from a strongly reduced growth rate 
as the interaction weakens - this is reflected, too, in 
the increase in X and so in the timescale upon which this 
nonlinear development takes place, as m increases. The 
nonlinear focussing gives rise to an increase in the 
growth rate, but this is unlikely to compensate for any 
but the smallest value of in.

242



§5.4 Higher Amplitude Disturbances.

§5.4.1 The development of a two-dimensional wavepacket.
The weakly nonlinear analysis for a high frequency, 

dispersive wavepacket described in §§5.2&3 leads, for the 
special cases considered, to a prediction of a disturbance 
which grows in time and so, as the packet moves 
downstream, in space. It also either spreads or breaks up 
into shortening, large amplitude peaks, depending on

—1/9whether it is more or less oblique than an 0(Re ) angle 
which depends on the Mach number. We now follow the work 
of Smith and Burgraff (1985) and investigate the 
implications for the next stage in the development of this 
nonlinear disturbance as it travels downstream in a 
transonic flow. Alternatively the structure derived below 
will govern the response of the boundary layer to a more 
sudden, sufficiently high frequency and large disturbance, 
such as may be encountered in bypass transition.

We concentrate first on a further examination of the 
difference between a two-dimensional disturbance and the 
slightly three-dimensional wavepacket (warped
two-dimensional wave, equation (5.3.4a-b)). This section 
considers two-dimensional disturbances while the next 
section considers the warped case.

— 1/2The Stokes layer at the wall in which Y ~ 0(Q ),
is assumed linear in §5.2 and leads to equation (5.2.4d). 
However it becomes nonlinear as the disturbance size 
increases. The nonlinearity becomes important when the 
disturbance has grown to such a size that

e9u u ~ P , (5.4.1)01 Olx Olx 'o o

using the notation of §5.2. This implies, since 
aPQ1 - uqi, that P ~ c~9/ot2. However we know from §5.3.2 
that, for two-dimensional disturbances, since they suffer 
no sideband instability,

P ~ A exp(2t /3A ), (5.4.2)01 1 * v 2' 4y '
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and so we can expect the expansion to fail due to a 
fully nonlinear reaction near to the wall when

t2 - 0(3X4ln{J59/20/(a\)}/2). (5.4.3)

At this point the disturbance amplitude has risen to a 
level given by

If a is 0(1), i.e. we do not consider the limits m -> ±00 
(although the results agree with Smith and Burgraff (1985) 
as m -00 and with Appendix 5A for large positive m), 
these results suggest the scalings

The length scale of the waves is therefore just as in

although in the context of a natural transition the 
position of the wavepacket is

further downstream, on the original triple deck length 
scale. The wavepacket has spread to be of an extent

3/10 2of 0(X3fi /(aA )), also on these scales. The group 
velocity, cĝ , is defined in (5.2.18a), with B = 0. The 
distance (5.4.6) exhibits a strong dependence on the Mach 
number, varying as |m|”1/2, for large negative m, and like 
m7 as m -> +». Thus we see again the increased stability of 
the flow to two-dimensional disturbances as it becomes 
more supersonic.

.7/20. (5.4.4)

(5.4.5a-b)
2/5 —as Q -> oo, with again, m = Q m.

§5.2, where the pressure-amplitude is only 0(Q ),,7/20

0(A4cgxfi3/1031n{n9/20/(a2Ai) }/2) ,,3/10 (5.4.6)
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On substitution of the scalings (5.4.5) into the 
triple deck equations (4.2.28), the governing equations 
are found to be

U* + U U *  + V U *  = -P* + U**, (5.4.7a)T X Y X Y Y ' '

U** + V** = 0, (5.4.7b)X Y ' '

U* = V* = 0 at Y* = 0, (5.4. 7c-d)

U* -> A* as Y* -» oo, (5.4.7e)

P-*-* = mP** * + 2P** *, (5.4.7f)y y X X  X T  ' ' '

P*-> P*, P- -» A** * as y*-> 0 and P %  0 at oo.' y X X  z
(5.4.7g-i)

The only difference between these and the full triple 
deck equations is the boundary condition (5.4.7e) which 
reflects the large size of the disturbance. This allows us 
to simplify (5.4.7) by neglecting, for the moment, the 
boundary conditions at the wall. Thus we write

U* = A*, (5.4.8a)

and so

A** + K K *  = -P**, (5.4.8b)T X X '

together with (5.4.7f-i).
In order to impose the boundary conditions at the 

wall it is necessary to use the classical boundary layer
equations there. These are (5.4.7a-e) where P** = A*A**
and A is prescribed by the solution of (5.4.8b). These
are subject to a finite time singularity (see, for
example, van Dommelen and Shen (1980), van Dommelen and 
Cowley (1990)) and so we must accept that equations
(5.4.8b, 5.4.7f-i) govern the development of the
disturbance for only as long as the classical boundary
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layer at the wall has a solution. The failure of this 
structure is associated with the bursting of vorticity 
from the sublayer near the wall into the main part of the 
boundary layer where the disturbance is governed by 
inviscid mechanics. These bursts serve to broaden the 
frequency spectrum of the disturbance, as smaller scales 
come into play and are the subject of much current work 
(see, for example, van Dommelen and Cowley (1990), Elliot 
and Smith (1987)). This theoretical result has much in 
common with experimental and computational studies of 
transitional boundary layers, for example the computations 
of Laurien and Kleiser (1989) and Zang and Krist (1989).

§5.4.2 The development of a slightly warped, two-
dimensional wavepacket.

We now consider the similar development of the 
slightly warped, two-dimensional waves. Here, due to the 
sideband instability, the growth of the disturbance is 
three times as fast (in normalised terms) and is 
accompanied by a rapid decrease in the spanwise length
scale of the disturbance and an increase in its 
three-dimensional nature (although the boundary layer is 
still governed by the two-dimensional equations). The
spanwise length scale is of a size

^ - 4/ 5^ 9/ 20t” t a  i / -v \n n  A2exp(-2t2/X4),

where Xg is |i/2/a71 . See (5.3.5). The Stokes layer becomes 
nonlinear three times as quickly as in the pure 
two-dimensional case (5.4.3) and therefore this occurs at 
a downstream distance a third of that given in (5.4.6). At 
this point the z^scale becomes

o ( n " 4/5x 2a 2x i ) ~ o ( n " 4/5/ « 3 ) .

For m of 0(1), this scale is short enough to enter at 
first order into the equation governing the free stream 
response. Thus with the scalings (5.4.5a-b) together with 
3z = 04/5az*, we find that the disturbance is governed by
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(5.4.8b, 5.4.7g-i) but with (5.4.7f) replaced by

P-*-* + p** * = mP** * + 2P** *. (5.4.9)y y  Z Z X X  X T  ' '

As in the two-dimensional case we have the 
possibility of bursts of vorticity from the wall layer, 
but the slight degree of warping has decreased the time at 
which this bursting becomes possible by a factor of three.

§5.4.3 More general disturbances.
We now turn to a consideration of the more general

cases of disturbances satisfying equations (a) and (b) of
§5.3.1. As above, the expansion used in §5.2 fails when
the boundary layer becomes fully nonlinear and this occurs
at exactly the same point that the slow (x , zj and fast
(xQ, z ) spatial scales become comparable. Here, however,
the focussing occurs in the ^-direction and so affects
both the x. and z scales. We see therefore that the i i
increase in amplitude has the same effect as is described
above in §§5.4.1 & 5.4.2. The disturbance, initially
governed by equation (5.2.23) develops and becomes
governed by equations (5.4.8b, 5.4.7g-i, 5.4.9) in small
areas of relatively large amplitude, whilst (5.2.23)
continues to hold in regions unaffected by the spikes of
rapidly increasing amplitude.

More specifically, if we compare the two Z-scales of
the motion we find that they coincide first for
disturbances for which the scale of £ is initially
closest to the short length scale of the wave. This
corresponds to a small value of X̂  and a small value of H.
Therefore the regions of large amplitude and the
possibility of sublayer bursting are likely to appear
first for disturbances directed in the direction of the
critical angle which separates the spreading and the
focussing solutions. We have the asymptotes (5.3.12) and
(5.3.9) for this angle as m ±<x>. This angle is of size 

— 1/180(Re ) and coincides with the edge of the wave-Mach 
cone for large m.
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§5.4.4 Some solutions of the equation governing two- 
dimensional disturbances.

Here we discuss possible solutions of the 
two-dimensional equations (5.4.7), leaving aside the 
possibility of vorticity bursts from the classical 
sublayer at the wall. Equations (5.4.8b) and (5.4.7f-i) 
can be combined to give, dropping the *'s now,

A + AA = -T X 0 3/22 TT

-T -X A (p,q)
 — ---------  dp dq,

1 / 2  — 3/2_„(T-q)(X-p)
(5.4.10a)

X = X - in (T—q )/2 . (5.4.10b)

This equation is a transonic counterpart of the 
Benjamin-Ono and Burger equations which govern the 
development of corresponding disturbances in the subsonic 
and supersonic regimes respectively (Smith and Burgraff 
(1985), Benjamin (1967)). These equations can be derived 
from the above as in -> -oo or +co respectively if 
X = 0( |in|3/8), T = 0( |in|1/4), A = 0(|m|1/8) in both cases. 
This integral form of the free stream response makes clear 
the importance of the speed at which the disturbance 
travels relative to the sound speed (in/2). In addition, if 
m is finite and negative, the resulting effect of a finite 
range of upstream influence at a given time is made 
explicit. This is caused by the finite speed of sound on 
these scalings.

Simple travelling wave solutions, depending only on 
X-cT, exist. These are governed either by the Benjamin-Ono 
form,

/o - v -1/2
(A-c)A = - ( m)---' x TT -oo

A s s (S)
(X-S)

ds, (5.4.11)

in relative subsonic flow (c > m/2), or by the Burger 
form

(A-c)Ax = |2c-mr1/2Axx, (5.4.12)
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in relative supersonic flow (c < m/2). The solutions to
(5.4.11) and (5.4.12) are always smooth. Nonlinear-wave 
and soliton solutions exist for the Benjamin-Ono equation, 
whilst the Burger equation exhibits only decaying 
solutions if A is zero at infinity.

The necessity that c be greater than in/2 for the 
travelling wave to be governed by the Benjamin-Ono form 
has implications for the maximum wave amplitude and 
steepness that can be obtained in a just-supersonic flow. 
For example, Smith and Burgraff identify nonlinear waves 
which match back to the sinusoidal form of §§5.2&3 as 
their amplitude decreases but which become slower and 
steeper as they become larger. The above lower bound, of 
m/2, on their speed, prevents these steeper waves, which 
are more likely to provoke sublayer bursting and its 
associated effect of the introduction of shorter scales. 
Instead as c decreases to m/2 the length scale of the 
waves increases like c-112c-in| "1/2 whilst their amplitude 
remains 0(m/2). Upstream-travelling wave solutions of the 
Benjamin-Ono equation are also prohibited. In the case of 
the Burger equation, Smith and Burgraff show that the form 
of the solution is essentially invariant under a 
transformation of the type X -» X-cT so that any solution 
can be translated with uniform speed with no important 
changes in its properties. More specifically, if c < m/2, 
a change in the speed of the wave does not increase its 
steepness, which would make bursting more likely. As a 
result a decrease of the wave speed in just-supersonic 
flow causes a change in the governing equation from
(5.4.11) to (5.4.12). Thus a limit is imposed on the 
steepness of the wave, at least for the travelling waves 
discussed by Smith and Burgraff. Therefore we can gauge 
the effect of a given supersonic Mach number in 
prohibiting, to some degree, the likelihood of sublayer 
bursting, at least in two-dimensional flows.

As mentioned previously, the Benjamin-Ono and Burger 
equations are not subject to a finite time singularity. We 
do not know whether this is also the case in the transonic 
form and although the numerical work necessary to confirm
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or deny this possibility has not been carried out it is 
worth describing the form of a possible breakdown since it 
would be an important mechanism, unique to transonic flow, 
for introducing short spatial scales. To investigate this 
possibility we first scale the factor m/2 from the 
governing equations by making use of the following 
scalings

[X,T ,P,P,A,y] ~ [t3/2,t5/2,t'2,t'2,t'\t2] , t = (2/in).
(5.4.13)

The governing equations are still (5.4.10a-b) but with m/2 
replaced by unity. Once this is done, and if we write B 
for 2A/m, we can consider the effect of moving in a frame 
with the sonic speed m/2 and introduce X = X-T, in 
coordinates scaled as in (5.4.13). Then integrating the 
equation once in X and assuming that B 0 at -» we find 
that

B ds +T
(B-l) _ 1

2 71
b ( p , q )P P dpdq.

This equation is equivalent to (5.4.10a-b). We now search 
for a similarity solution of this equation as T -» 0-, of 
the form

B(X,T) = B(X/|T|3/5)/|T|2/5, ITI -> 0.

In this limit the speed of the motions in the boundary 
layer relative to m/2 is becoming so large that the 
effects of the moving frame become negligible and the 
governing equations are exactly those which apply with 
m = 0. The similarity form, B, satisfies



where x = X/1T |3/5 and B -> 0 as x -» ±00. A solution to this 
equation has not been found, if indeed there is one, which 
is not the case in the corresponding equations for the 
Burger and Benjamin-Ono systems. It corresponds to the 
coupled system

(2/5 )B + (3/5 )xB- = -II-, B 0 as x 4  ±«,

5n —  = 2 [ 7IT- + 3xii—  + 4yii- - ], n -> 0 at 00yy x xx ■‘ xy

n n and n- -» B—  as y 4  0.y xx

The free-stream equation is of mixed type, being elliptic 
if y2 < -(15/8)x and hyperbolic otherwise.

§5.5 The Euler Stage Of Transition In Transonic Boundary 
Layers.

We have seen (equation (5.4.13)) that the Mach number 
scales out of the fully nonlinear, inviscid equations of 
§5.4. The length and time scales for the motion vary like 
|m|’3/2 and |m|”5/2 respectively. As |m| increases, 
therefore, and the free stream speed moves away from 
transonic, there comes a stage where the length scale of 
the disturbance shortens to become comparable with the 
boundary layer thickness itself. This occurs when
m = 0(Re1/9fi"2/5) i.e. at the point at which 
becomes 0 (1 ), since then

T _ -3/9~-3/5,_ 1/9-.-2/5. -3/2 r * / c _1/2\Lx ~ Re n (Re 0 ) ~ 0(Re ) .

— 1/2Simultaneously the time scale becomes 0(Re ) and the 
typical amplitude scale of the disturbance reaches 0 (1 ), 
whilst the upper deck reduces in thickness to merge with 
the boundary layer. More importantly, the speed of the 
disturbance increases to be 0 (1 ) and so the position of 
the critical layer, where the speed of the basic flow is 
the same as that of the disturbance, must be situated in
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the main part of the boundary layer. Since this speed must 
be greater than 1-1/M^ in supersonic flow, we see that any 
two-dimensional disturbance in supersonic flow must be 
governed by this system. The governing equations are the 
two-dimensional Euler equations

p + (pu) + (pv) = 0, (5.5.1a)t x y

p(u + uu + vu ) = -p , (5.5.1b)t x y'

p(v + uv + vv ) = -p , (5.5.1c)t x y y

P (P t + UPX + vpy) = yp(pt + upx + vpy) ,  ( 5 . 5 . Id)

(u,v,p,p) -» (1,0,1,y_1M~2) as y -> «, (5.5.1e)

v = 0 at y = 0. (5.5.If)

Here p is the density of the fluid and y is the ratio of 
specific heats (see §4.2.1). Three-dimensional
disturbances are governed by the three-dimensional Euler 
equations (4.2.2) but it must be remembered that
sufficiently oblique waves need not be governed by this 
system since they are not affected by the wave-Mach cone 
and they may have speeds low enough that viscous effects 
are important. Associated with these inviscid equations is 
a viscous sublayer at the wall in which the classical 
boundary layer equations are satisfied. Just as in §5.4, 
this is subject to a finite time singularity which can be 
interpreted as vorticity erupting from the fluid near the 
wall and into the main part of the boundary layer.

If equations (5.5.1) are linearised about the basic 
boundary layer flow the resulting equations are the 
compressible Rayleigh equations studied by many authors 
(for example, Lees and Lin (1946), Mack (1974), (1984),
(1987)). See also the comments of §4.3.6. These equations 
exhibit a multitude of solutions, which depend strongly on 
the Mach number and the basic boundary layer profile. 
There is much current analytical research in the area
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(Smith and Brown (1989), Gajjar and Cole (1989), Cowley 
and Hall (1990), Sedougghi, Bowles and Smith (1990)). 
Gajjar and Cole extend the analyis into the weakly 
nonlinear regime. Equations (5.5.1) govern the fully 
nonlinear development of these modes.

We can view parts of the work both in this section, 
and the preceding sections of this chapter, as following a 
two-dimensional, relatively high frequency, Tollmien- 
Schlichting disturbance as the local Mach number of the 
flow increases through the transonic regime. We see that 
as the critical layer of any surviving disturbance must be 
an 0(1) distance from the wall, the disturbance is forced
to become governed by the Euler equations. Other, slower,
modes become non-parallel in the way described in 
§4.3.5. Alternatively the Euler scales are achieved for m 
of 0(1) if the scaled frequency of the disturbance, Q, is

5/18raised to 0(Re ) . In this case the flow remains
transonic and the flow in the upper part of the boundary 
layer, where we can linearise about the near-uniform 
profile, is governed by (4.2.2) with M = 1.

The Euler equations match to the equations governing 
the disturbances we study in §5.4 as the speed of the
disturbance decreases and its length scale increases. If 
M^-l is 0(1) and positive they link with the Burger 
equation, whilst if it is negative a match with the 
Benjamin-Ono equation is achieved. If, instead, as the 
speed decreases the value of |M2-1| is also scaled to beI 00 1
small then equation (5.4.10a-b) is obtained. This latter 
result can be seen as follows. If c << 1 we scale the 
variables according to

(ax, at, M*-l) - (c3/2ax, cs/2dT, me), (5.5.2)

then, where y is 0(1), i.e. in the main body of the 
boundary layer, we expand thus

[u,v,p,p] = [U + eul# e5/2vi# y_1(l-me) + e2pi# RB + ep^,
(5.5.3)
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where U and R are the velocity and density profiles ofB B
the basic boundary layer. Substitution of these into 
(5.5.1) yields equations with the solution

u = A(X)U , v = -A U , p = AR .1 v ' By' 1 X B' *1 By
(5.!

- - 2“In the region where y = e y and y = 0(1), i.e 
free stream, the solution expands as

[u,v,p,p] = [1 + c2u2 + e3u3, e5/2v2 + c7/2v3,

y"1 (1-me) + c2pi + e3p2, 1 + e2p2 + e3p3]

and is governed by the equations

p + u = 02X 2X
p + D  + U + V “ = 02T 3X 3X 2y

from (5.5.1a),

u = -p2X ^ix
u + u = -p2T 3X 2X

from (5.5.lb),

v = -p -2X 1 y
v + v = -p -2T 3X 2y

from (5.5.1c)

p = p ^1X 2X
£> + p  = p  + p  - mp IT 2X 2T 3X 2X

from (5.5.Id).

These can be manipulated, together with (5.5.4a- 
yield

p —  = mp + 2p and p - A as y -> 0. ilyy ^lXX 1XT M y  XX x

5.4a-c) 

in the

i
(5.5.5)

c), to 

(5.5.6)
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Finally, close to the wall, if y = e2Y and Y = 0(1), and 
the wall is held at a constant temperature, we let

[u,v,p,p] = [eu, e7/2v, e2̂ , RB(0)], (5.5.7)

and find

u + v = 0, (5.5.8a)x y ' ' '

Rb(0)(ut + uux + vuy) = -pix, (5.5.8b)

and, in order to match with (5.5.4a-c),

u ~ \{Y + A) and v ~ ~̂ -AxY as Y -» », (5.5.9a-b)

where \ is Ufiy(0). Therefore, evaluating (5.5.8b) as 
Y -> oo, we find

Rb(0)A (At + AAAx) = -pix< (5.5.10)

With the scaling-out of the factors R (0) and X fromB
(5.5.10), equations (5.5.6&10) are exactly (5.4.7f-i, 
5.4.8) .
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§5.6  Sum m ary.

Below we list the main results of this chapter.

1) We have derived a weakly nonlinear equation which
governs the development of a wavepacket of the so-called
minor mode Tollmien-Schlichting disturbances in a
transonic boundary layer. These modes are directed at

“*1/18angles of 0(Re ) to the oncoming flow at a Mach
number M such that IM2 — 1 1 = 0(Re~1/9) . It is found that 00 1 00 1
wavepackets directed at angles less than some value are 
subject to a sideband instability. This instability 
increases the growth rate of the disturbance and 
broadens its frequency spectrum.

2) Purely two-dimensional wavepackets do not suffer from 
such an instability but the result above implies that 
they are unstable if they have a slight degree of 
spanwise variation.

3) As the flow becomes more subsonic this enhanced 
instability persists. This is in contrast with the 
result of Smith (1986b) who shows that in incompressible 
flow it is only sufficiently oblique modes which suffer 
from this sideband instability. More work in this area 
is required therefore to trace the development of the 
instability as the Mach number decreases towards zero.

4) For supersonic Mach numbers the sideband instability 
is possible for all disturbances directed within the 
wave-Mach cone (except purely two-dimensional 
disturbances). However the increased growth rate due to 
this nonlinear effect is unlikely to compensate for the 
dramatic stabilising influence of increasing Mach number 
which is discussed in §4.3.5.
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5) For disturbances with a normalised pressure-amplitude 
of 0(Q4/5) as Q, the scaled and normalised frequency of 
the disturbance (see equation (4.2.22)), becomes large, 
a transonic boundary layer responds in a nonlinear 
inviscid fashioin. This response corresponds to similar 
responses in incompressible and supersonic boundary 
layers described by Smith and Burgraff (1985) and 
matches with their results in the appropriate limits. 
The inviscid mechanics of this disturbance are 
complemented by the possibility of bursts of vorticity 
from a viscous sublayer at the wall.

6) Nonlinear travelling wave solutions to these large 
amplitude disturbance equations have a limit imposed on 
their steepness in just-supersonic flow. This arises 
from the restriction that they have speeds greater than 
l-M"1. This limit on the wave steepness reduces the 
likelihood of vorticity bursting from the wall layer.

7) We have identified the scalings for the so-called 
Euler stage of transition in transonic boundary layers.
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Appendix 5A The Limit Of Increasing M ach Number For Tw o - 
Dimensional Disturbances.

The simplicity of the two-dimensional version of the 
Schrodinger equation (5.2.23) allows an analysis of the 
variation of the nonlinear balances involved as the flow 
becomes more supersonic in the limit m ». From the study 
of two-dimensional linear waves in this limit (§4.3.5) we 
know that the interaction between the boundary layer and 
the free stream weakens and the dispersion relation 
becomes essentially that for a plane sound wave. The 
growth or decay due to the interaction becomes a 
second order effect. More specifically, as m co, equation 
(5.2.1b) with 0 = 0 yields the result a ~ 2m”1 + 0(m”6) . 
Therefore the relative error in taking oc = 2/m is 0(m”5). 
Using the notation of §5.2, the size of xq, i.e. the
length of the wave, and x^ the scale over which the mean 
flow terms are generated, are m and e”9m3/2 respectively, 
as m increases. The latter scaling results from the
expression for X (5.2.26c) and the fact that A ~ 0(1) as
— 2 _ g — 1/2m oo. Therefore x is of a size c m  x . The relative1 o _
sizes of these two lengths balances the 0(m"5) error

• —2 1/2 mentioned above when m ~ c  , or m~0(fi ). We write
1/2m = n m where m is 0(1) as oo. With these scalings 

the amplitude of the pressure disturbance required in 
order that the nonlinear regeneration of the fundamental
over the scale of the viscous growth is 0(ft1/2). In detail
the scalings are

[U, V, P, A] = 0([1, 1, n1/z, 1]), (5A. la)

[x, y , t , y] =o([fi"1/2, n'1/2, n'1, n1/2]). (5A.ib)

From the work on linear modes in §4.3.5, we know that 
a useful technique, when the interaction is weak, is to 
consider the motion in a frame moving with the acoustic 
speed m/2. We make the transformation

d = -m/2 d + d . (5A. 2)t 1 x t
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This yields the equation for the free stream disturbances

P—  = 2P , (5A.3a)y y xt

and, in the boundary layer, (4.2.28b) becomes

-m/2 U + U + UU + VU = -P + U . (5A.3b)' X t X Y X YY '

With the scalings (5A.1), Ut in the boundary layer is of 
the same order as the nonlinear terms as fi -» oo. A multiple 
scales expansion is used just as in §5.2. Here, however

a ~ n '1/2(a + n"1/2a + n-1a ), (5A.4a)t ' t t t '10 1 2

a - fi"1/2(a + Q~1/2a + a'1 a ). (5a.4b)X ' X X X 70 1 2

If the variation on the short scales in the
travelling frame is confined to the exponential term
E = exp i(aXQ-cjto) where u is the frequency of the motion
within the travelling frame, then a. = 2/mj from (5A.2) and
(5A.4a). At first order in the expansion we find the high 
frequency, inviscid dispersion relation

(j = lGrr̂ ’5, (5A. 5 )

as expected from the linear theory. At second order we 
find that a mean flow correction and harmonics are
generated. The terms proportional to the fundamental E 
yield

+ c P = i<x10P /2, (5A.6)Olt g 01X or '1 1

where ĉ  = 3o>/a = 24/ir̂ 4. Thus the amplitude of PQl does 
not vary within this frame. Its phase does vary, however.
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At third order we derive the pressure-amplitude 
equation

cf5P - 3i/2<x2P - 5<x4/2 POlt ' 01X X ' 01X2 1 1  1

a ( l - i ) A / 2  PQi -  7 i a 10/ 8  -  5 i a 4/ 2  P01|P01| 2 -

(5A.7)

However, a moving frame transformation applied to (5A.7) 
shows that there is no qualitative change in the nonlinear 
behaviour of the disturbance amplitude at these larger 
values of m.

5/8This result is true at still larger m. When m ~ Q 
and P ~ fi11/16, the relative error in neglecting the 
interaction in the dispersion relation balances the
relative difference between the scales x and x . Again ao 2 J
moving frame can be employed to simplify the analysis and 
it is found that there is no difference in the qualitative 
behaviour. The correction to the result a = 2/mi enters 
only in the amplitude equation, derived at second order, 
but, as in the m ~ Q1/2 case above, it affects only the 
phase of the disturbance. We note, however, that although 
the length scales associated with the amplitude equation 
vary only a little from the case of smaller m, the 
timescale associated with the growth increases 
dramatically. For still larger m the error in neglecting 
the interaction in the first order dispersion relation has 
no effect on the growth over the scales on which the 
amplitude equation holds. Here the governing equation is

a”5P - 3i/2a2P = a(l-i)/i/2 P - 5ia4/2 P |P I2,oit ' oix x v '' oi ' oi1 oi1 '2 11
(5A.8)

in place of (5A.7) where the variables are suitably scaled 
with Q. Again a - 2/m. This result is exactly that which 
would be obtained by letting m -> oo in the formulae for the 
two-dimensional coefficients (5.2.24a&c). There are no 
significant differences from the in = 0(1) case except that
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the timescale over which the growth to occurs is greatly 
increased. This leads to an increase in the streamwise 
distance that the wavepacket must travel before it is 
significantly affected by the growth described by (5A.8). 
This in turn leads to the possibility of the growth rate 
being affected by the non-parallel nature of the basic 
boundary layer flow, just as is the case for the linear 
waves, discussed in §4.3.5.

In contrast to the above, there are differences as m 
increases in the fully nonlinear, inviscid stage covered 
in §5.4, if the size of the disturbance is not scaled to 
increase with m. The boundary layer is governed by

-m/2 A + AA = -P , (5A.9)' X X x'

within a frame moving downstream with a speed m/2, and the 
free stream has the controlling equation

P—  = 2P- *, (5A.10)y y x t

where T* describes the long timescale over which the 
interaction has an effect. Together with the interaction 
conditions equations (5A.9&10) lead to an integral 
equation, valid in the moving frame, for an initial value 
problem,

(B-l)2 = 1 +
-T ^  a2B(p,q)/ap2

-00
,* . 1 / 2 . - . 1/2 (T -q) (X-p)

dp dq. (5A.11)

Here B = 2m_1A and X and T* have been normalised. The 
boundary conditions are B -> 0 as |X| -> oo. The cases B = -1 
and B = 0 correspond to stationary and sonic travel 
respectively in the laboratory frame. The classical 
viscous sublayer, required to ensure that the no-slip 
boundary condition is satisfied at the wall, reacts 
quasi-steadily due to the slow timescale of the motion in 
the free stream and so is subject, not to the van Dommelen 
singularity, but to the singular forms described by
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Elliot, Smith and Cowley (1983). These are appropriate to 
the steady classical boundary layer on an upstream-moving 
surface. In contrast to the finite time Van Dommelen 
singularity these are of a finite X form and so the 
question arises of whether or not a self-consistent 
solution of the form outlined above, and including the 
effects of the sublayer, can exist for all X at a given 
time. A similar question arises in §7.4.
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F igure Ca p t io n s  fo r  Ch a p t e r  5 .

Figure 5.2.1 This shows contour plots of the
eigenvalues, and (see equation (5.2.29c)),
derived from the quadratic form of the dispersive 
terms in (5.2.23), for various m and /3. Here /3 is the 
scaled spanwise wavenumber and m is the scaled value

2 1/9of (M^-ljRe . Equation (5.2.23) is hyperbolic where 
H2 is negative and elliptic otherwise. It seems that 
U is always positive.

Figure 5.3.1 (a-i) This shows contour plots of various 
coefficients of interest in the high frequency 
analysis and normalisation leading to the nonlinear 
Schrodinger equation (5.2.27). The coefficients are 
plotted against m and 0.

(a) The streamwise wavenumber, a, given by the 
high frequency dispersion relation (5.2.6). We note 
that a decreases as m increases.

(b) The (scaled) angle /3/a which the wave makes 
with the direction of the oncoming stream.

(c) The group velocity in the x-direction of a 
disturbance, given by equation (5.2.18a).

(d) The group velocity in the z-direction of a 
disturbance, given by equation (5.2.18b). We note 
that this is negative.

(e) The ratio of the group velocities, cgz/cgx. 
This gives the (scaled) angle between the direction 
of motion of the frame in which the Schrodinger 
equation (5.2.23) is valid and the oncoming free 
stream. It can be seen to have a maximum for the 
oblique, primarily acoustic disturbances which occur 
for large values of m. See §5.3.3.

(f) The coefficient A in equation (5.2.23). A 
change in the sign of A from positive to negative 
indicates a change from the possibility of sideband 
instability (and the associated increased growth) 
occurring in disturbances of type (a) to the 
possibility of it occurring in those of type (b) .
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Here (a) and (b) refer to the equations of §5.3.1. 
The value A = 0 corresponds to the primary direction 
along which focussing occurs coinciding with the 
streamwise (X-) direction.

(g) The coefficient B in equation (5.2.23). The 
value B = 0 corresponds to the focussing being 
primarily in the spanwise (Z-) direction. The warped 
wave case of equation (5.3.4) is of relevance to the 
region about = 0.

(h) The coefficient HB2. A change in the sign of 
this coefficient from negative to positive 
corresponds to a change in type of equation (5.2.23) 
from hyperbolic to elliptic and the suppression of 
the sideband instability which can give rise to 
increased growth rates and spectrum broadening.

(i) The coefficient AHB2. The sign of this 
coefficient is the sign of sa in equation (5.3.1a). 
If it is negative there is the possibility of an 
increased growth rate of the disturbances governed by 
this equation, due to the sideband instability.

Figure 5.3.2 This is a sketch showing the variation of A 
and H with /3 at large values of m. See §5.3.3.
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Ch a p t e r  S ix

RESONANT TRIADS AND (AMPLITUDE)2 INTERACTIONS IN 

TRANSONIC BOUNDARY LAYERS.
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§6.1 INTRODUCTION; NATURAL TRANSITION FOR SMALL
Disturbances.

Chapter 5 considers weakly nonlinear interactions of 
Tollmien-Schlichting waves which occur at an (amplitude)3 
level and leads to an equation governing the development 
of a relatively high frequency, three-dimensional 
wavepacket as it moves downstream. Nonlinear interactions 
can also take place between triads of waves at the 
(amplitude)2 level and it is interactions of this type 
that are the subject of this chapter.

The study of so-called resonant triads is relevant to 
a transition mechanism other than the route described in 
§5.1. This new type occurs at smaller initial disturbance 
amplitudes (the r.m.s. velocity fluctuations of the 
disturbance are approximately 0.1% of the free stream 
velocity) and involves the gradual filling of the energy 
spectrum through nonlinear wave interactions. In 
incompressible flow the first such interaction involves 
the fundamental wave, with frequency f say, interacting 
with a subharmonic of frequency f/2. This subharmonic is 
an oblique wave and in incompressible flow its direction 
is at 60° to that of the oncoming free stream. As 
transition progresses, staggered arrays of hairpin 
vortices are generated with their streamwise wavelength 
twice that of the original fundamental wave (Saric and 
Thomas (1984)).

This onset of three-dimensionality and the importance 
of the subharmonic can be explained by the resonant triad 
mechanism, suggested by Craik (1971), in which a suitable 
pair of oblique waves are selectively amplified by a 
nonlinear interaction with a two-dimensional wave. This 
type of transition is called subharmonic transition or 
(after Herbert and Morkovin (1979)) C-type.

Experiments by Kachanov, Koslov and Levchenko (1978) 
and Kachanov and Levchenko (1984) confirm the presence of 
this interaction in transitional incompressible boundary 
layers and Smith and Stewart (1987) use triple deck theory 
to give a rational description of the nonlinear
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development of the three interacting modes. They show 
that, as confirmed by experiments, the three-wave system 
eventually gains the growth rate of a single 
two-dimensional mode. This is in excess, for
incompressible flow, of that of a single linear oblique 
mode.

This nonlinear theoretical work has been extended by 
Avis (1989) to axisymmetric flows and, importantly, to an 
investigation of the effects of detuning. The triad
proposed by Craik predicts the amplification of a single 
oblique mode, whilst the experiments of Kachanov and 
Levchenko detect the amplification of a broad band of 
disturbances centred, in the frequency spectrum, about the 
subharmonic. Avis finds that the effect of such detuning 
is to delay the onset of the phase locking that occurs
with resonance. This has the effect of slightly reducing 
the growth rate but does not destroy the triad mechanism.

We should also mention here the so-called Herbert or 
H-type transition mechanism (Herbert, Bertolotti and 
Santos (1987)). This is similar to the C-type mechanism 
and is also subharmonic. However the spanwise wavelength 
of the three-dimensional perturbation is different, in 
general, and indeed can take a range of values. The 
resonance is between a Tollmien-Schlichting mode and a 
Squire vorticity mode (Squire (1933)). Using the shape
assumption, i.e. choosing the (finite) amplitude of the 
initial (linear) two-dimensional mode, good agreement in 
the initial linear growth rate against spanwise wavenumber 
for a given three-dimensional disturbance with 
experimental measurements can be obtained. See, for 
example, Corke and Mangano (1989). It is of interest to 
note that the H-type mechanism reduces to the C-type when 
the amplitude of the Tollmien-Schlichting wave is allowed 
to become small. In any situation other than this the 
shape assumption is not a "rational" step (in the sense of 
van Dyke (1964)).

In this chapter we extend the work of Smith and 
Stewart to transonic boundary layers. We take as our 
starting point the triple deck equations, derived in §4.2,

274



which describe the nonlinear development of
Tollmien-Schlichting waves which are either

“ 1/18two-dimensional or at an angle of at most 0(Re ) to 
the streamwise direction. In this chapter the Mach number 
of the flow, M^, is such that | 1 1 = 0(Re"1/9) . Using 
the high frequency limit of the dispersion relation for 
linear waves, as in §5.2, we set up a multiple-scales 
expansion of the unsteady triple deck equations (4.2.28). 
This expansion leads to a triad of linked nonlinear 
equations governing the amplitude of a two-dimensional 
wave and a pair of oblique waves.

A major difference between incompressible flow and 
transonic flow is that in the latter it is the most 
oblique high frequency waves which are most unstable on 
linear grounds (see equation (5.2.1) in the limit £->«), 
whilst in the former these are the least unstable (see, 
for example, Smith and Stewart). Of particular interest in 
transonic flow, therefore, is the possibility, especially 
in the case of just-supersonic flow where two-dimensional 
modes suffer from an extremely low growth rate, of 
nonlinear effects transferring energy from 
three-dimensional waves to two-dimensional waves, 
increasing their growth rate.

The oblique modes, in the triad, turn out not to be 
symmetric, but to lie to one side of the fundamental. 
Their frequency is also not equal to half that of the 
fundamental. This is unlike Craik's symmetric triad 
mechanism. The modes still interact, but it is not clear 
whether they become phase locked and resonate in the same 
way. In §§6.3-4 we consider the limits of large and small 
spanwise wavenumber. In these limits the linear growth 
rates of two of the waves become identical and are widely 
separated from that of the third.
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§ 6 .2  T he Sc a lin g s  And  De r iv a t io n  Of  T he T r ia d  Eq u a t io n s .

The triple deck equations appropriate to nearly 
two-dimensional transonic flow are

U + V = 0, (6.2.1a)X Y '

U + UU + VU = -P + U , (6.2.1b)T X Y X YY

U = V = 0 at Y = 0 and U-»Y + A a s Y - » o o ,  (6.2.1c-e)

P—  + P = 2P + mP , (6.2. If)y y ZZ XT XX

P -> P and P- -» Axx as y -> 0, P -» 0 as X2+y2+Z2 -> «,
(6.2.lg-i)

M2 - 1 = dm, (6.2.1j)00 9

—1/9where d is defined in (4.2.22d) and is 0(Re ) as 
Re oo. we know (equation (5.2.1)) that, at high
frequencies, linear, two-dimensional solutions of this

—3/5system have a length scale, L, of 0(Q ) where Q is the
(large) disturbance frequency. Viscous growth occurs over 
the much longer 0(fi3/1°) scale. If we suppose that the 
amplitude of the pressure in the disturbance is 0(h) then 
the velocity provoked is, from (6.2.1b), of a size

—2/50(h/LQ) ~ 0(hft ). The nonlinear inertial effects are 
therefore of a size 0(UU ) ~ 0(h2fi”1/5) . For the relative

^ -4/5error in neglecting these nonlinear effects (0(hfi )) to
_ 9/10balance the small growth (of relative size 0(fi )) we 

— 1/10must have h ~ fi . A  pressure of this size will provoke 
a possible (amplitude)2 interaction over the length scales 
associated with the viscous growth of the wave.

The triad interaction rests on there being a system 
of three waves each of which satisfies the linear 
dispersion relation and such that the product of any two 
of them yields the third (or its complex conjugate). Any 
such system of three waves of amplitude h will give an 
interacting triad system. To fix matters here, however, we
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insist that one of them (mode 2) be a two-dimensional 
wave, proportional to E2 = exp i(AxQ - tQ), where x q and 
t are the scaled, fast, space and time variables. At high 
frequencies, the neutral dispersion relation, on these 
rapid scales, is

(2Qoc + /32 - ina2)1/2 = a/Q, (6.2.2a)

where m = mfi2/s, and |3 is the spanwise wavenumber of the
disturbance. This can be rewritten as

a6 + ma2n2 - 2<xfi3 - /32fi2 = 0, (6.2.2b)

3if we take care to choose only roots such that Re(a /ft) is
positive. We consider two oblique waves proportional to

Ei = exp i{(l+s)AxQ + 0zq - (l+#i)to}, (6.2.3a)

E3 = exp i{sAxQ + j3zQ - jLttQ} , (6.2.3b)

where s and n are to be found. These modes interact with 
each other and with the two-dimensional mode E2 according 
to the relations

E = E E , E = E E+, E = E E* (6.2.4a-c)1 2 3 2 1 3 7 3 1 2

where the superscript + denotes the complex conjugate.
Equations (6.2.2b) and (6.2.4) require that

R(l+U,/3) = R( 1, 0) + R(H,0), (6.2.5a)

R (1, 0 ) = A, s = R(ju,|3)/A, (6.2. 5b-c)

where R(q,£) is the unique positive root of

06 + mq202 - 2q30 - /S2q2 = 0. (6.2.5d)

Therefore, given m and £, (6.2.5) gives A, ii, and s which
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describe the triad system. Numerical investigations show
that triads exist for all 0 and all in. This result is
complemented by the consideration of the limiting cases of
small and large 0 in later sections of this chapter.
Figure 6.2.1 illustrates the value of u for the triads for
a range of 0 and m. The values of s and /i are always
positive. The oblique modes found by this method are at an 

™1/18angle of 0(Re ) to the streamwise direction due to the
scalings inherent in (6.2.1). We note too that both the
oblique modes are directed towards the same side of the 
two-dimensional mode. This is unlike the incompressible 
case where the system is symmetric. The mode proportional 
to E3 (mode 3) is more oblique than that proportional to 
Ei (mode 1).

The expansion used to find solutions of equations
(6.2.1) proceeds as follows, using the scales derived 
above for guidance,

1/10 5 * - 8 * -4-e = fi , Y = c Y , y = c y , m = e m ,
(6.2.6a-d)

P ~ e(P + e9P +...), (6.2.6e)\ o i ' '

U ~ e5(Y* + UQ + e9̂  +...), (6.2.6f)

V ~ c4( VQ + e9V +...), (6. 2. 6g)

P ~ e(P + e9P + . . . ), (6.2.6h)' o 1 11 v

A ~ c5(Aq + e9A +...), (6.2.6i)

ax ~ e~6(5x + c9ax +...), (6.2.6j)
xo xi

d ~ e~8(d + c9d + ...), (6.2.6k)Z z z0 1

a - e'10(5 + c9a +...)• (6.2.61)T t t 70 1

Here xq, zq and tQ represent the fast scales associated
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with the wavelength and frequency of the neutral wave. All
the dependence on these scales is presumed to be
restricted to the exponential factors E , E , and E3*

We write P and P as o 1

P = P E + P E  + P E  + (  complex conjugates ),0 01 1 02 2 03 3 ' * J 3
(6.2.7a)

Pi = P11EJ + PJ2E2 + p13e3 + ( complex conjugates )
+ ( terms in E^2 and E° , j = 1,2,3 ),

(6.2.7b)

and use similar expressions for the other variables.
In the following analysis we use the notation

gj = (-i)(EJx /Ej), hj = (i)(EJt /Ej), fj = g/hj,
(6.2.8a-c)

so that

gi = [ (1+s) A, A, sA], hj = [(1+jli), 1, n],

fj = [(l+s)A/(l+n), A, sA/n], j = [1, 2, 3].
(6.2.9a-c)

Substitution of (6.2.6) and (6.2.7a) into 
equations (6.2.1) leads, in a similar fashion to the work 
of §5.2, to the first order equations

-ih U = -ig P + U", (6.2.10a)J oj a j 0j 0 j '

ig U + V' =0, (6.2.10b)oj Oj '

V = U = 0 at Y* = 0 and U -» A as Y* -> w.0j 0j Oj oj

(6.2.lOc-e)

Here 7 represents dy*. These lead to the results
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= hj1/2 exp(37ri/4). (6. 2.lid)

The free stream equations at first order lead to the 
results

P * = A (-g2), P = P  I* , (6.2.12a-b)Ojy Oj v a j 1 ' Oj Oj 1 y = 0 ' '

from (6.2.ig-h), and from (6.2.1f-i) we find

P * * - y 2P =0, (6.2.13a)Ojy y J OJ

7j = (2gjhj + (32 - Sg2), j = 1,3, t\ = (2g2h2 - Sg2).
(6.2.13b-c)

Combining (6.2.12&13) and (6.2.11c) gives

7j = 9jfj( j = 1,2,3. (6.2.14)

These are the high frequency dispersion relations for the 
individual waves of the triad.

At second order the nonlinear terms on the left hand 
side of (6.2.1b), evaluated at Y* = oo, give a contribution

i I"{Y* + Y f (P E + P +E+)} {Y f g (P E - P +E+)} -L ^  J oj j oj j ;j jy j v oj j oj j /J

Y f a (P E - P +E+)Y* + Y f g (cr_1P E - ( o * V X X ) lY J J oj j oj j' L j j j oj j y  oj j'J

= i I NL E - V G E  1, (6.2.15a)
L J J j J J

say, where



NLE = V  f (P E + P +E+) Y f g (P E - P *E*), j j L  j v oj j oj j' L  oj j oj j M
(6.2.15b)

VG E = 7  f g (cr_1P E - (cr+)_1P +E+), (6.2.15c)j j 4- J J j oj j v j' oj j

and we consider only the parts of the right hand sides of 
(6.2.15b-c) which are proportional to E^.

In a way similar to that in §5.2, we find that the 
second order contributions in the boundary layer equation 
yield

i(g P - h A  ) = -i(NL - VG ) - P - f P ij j i j j j ojXi j c

(6.2.16)
°Jt1

Turning again to the free stream equations and the 
interaction conditions, we can show that

(y P - g2A ) = -£ (P /2y ) - 2ig f P , (6.2.17a)j ij 3 J j' j v oj' °j' 3 j j Ojx^

where is the linear operator

£ = i(2mg - 2h )d + i2g d - ±2p a , (6.2.17b)J J * I*-. J z«

with /3 = 0 and fi = (3.2 1 1,3 '
Combining (6.2.16) and (6.2.17) leads to the triad 

equations

(1 + A /2)
n ap f ap g ap ,
 2i + —1 — 21 + _J _ 2 4  = i(vG. - NL.)/g,,
h . at g ax p dz
3 i aj i

j" "j
j '“i 1

(6.2.18)

where, extending ^the notation introduced in §5.2, 
A, = 2h3/g5, B =?p2/ g 6 j = l & 3, B, = 0,j J J j A j7 3 j J ' 2
F = (4+2B +A )/(2+A ) and G = -2B /(2+A ) . j j j r j y v j
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The right hand side of (6.2.18) can be evaluated 
using (6.2.15b-c) ,(6.2.4) and (6.2.5a) to give

P01

i VJ
(6.2.19a)

j = 1/2,3.
(6.2.19b)

Equation (6.2.19) governs the development of the 
three interacting waves. The right hand side contains 
terms giving the linear growth, due to viscous effects, 
and terms describing the nonlinear linkage between the 
modes. The left hand side corresponds to movement within a 
frame travelling downstream with the group velocity of the 
individual waves. The group velocity is, of course, 
different for each mode, as is the linear growth rate.

A solution of the full partial differential system 
would be of interest (Avis (1989) solves a similar system 
for the case of symmetric, incompressible, triads in an 
axisymmetric boundary layer). Here, however, we 
concentrate on the special case of motion which is 
dependent only on time, suppressing the dependence on the 
slow spatial variables, xi and z . This gives a set of 
ordinary differential equations. Similar equations are 
investigated by Smith and Stewart, but with the important 
difference that, due to the symmetry of their oblique 
waves, the equations governing their oblique modes are 
identical.

We now narrow down our field of interest still 
further and, as an initial stage in the study of (6.2.19), 
consider the limits of large and small |3.
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§ 6 .3  T he L im it  Of  Large  Sp a n w is e  Wa v e n u m b e r .

If jS, the transverse wavenumber of the oblique modes, 
is large the positive root of equation (6.2.5d) asymptotes
-.1/3 1/3 , . _ - _ . . , ./3 q , and so (6.2.5a) implies

A = |31/3(1 + n )1/3 - p1/3u1/3. (6.3.1a)

Thus we find

U ~ |31/2/(3A)3/2, s ~ 3^1/2/(3A)3/2, (6.3. lb-c)

where A can be found, given m, from (6.2.5b&d).
To first order, the oblique waves in this case have 

the dispersion relation, B = 1. They are, therefore, more 
oblique than those that match, as m -oo, to the transonic 
minor modes, i.e. /3 >> | m |3/4. The contribution to
relation (6.3.1) from the oblique waves is independent of
the Mach number. For large positive m we need the
restriction j3 >> in2, and, since the streamwise wavenumber

~ 1/2 m 1/2of the oblique modes, a, is sA ~ £ /(3A) and
A ~ 0(l/m) as m », this implies that the oblique waves 
lie outside the region of the wave-Mach cone which has

v 4 /2/3/a ~ m . I n  fact the oblique waves are directed at an
~ 1/2angle (3A£) to the streamwise direction.

In this limit we find

hj - (£1/2/(3A)3/2, 1, ̂ 1/2/(3A)3/2), (6.3.2a)

5j - (£1/2/ ( 3A)1/2, A, |31/2/(3A)1/2), (6.3.2b)

fj ~ (3A, A, 3A). (6.3.2c)

The two oblique waves, which have a much more rapid linear
growth rate than does the two-dimensional wave, become 
identical to first order. If we use as our timescale the 
relatively rapid scale associated with the oblique modes 
we can make the transformations
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tt = t/(3A|3)1/4, P01 = 3P*(1 + A'S)/(3A)2, (6.3.3a-b)

P 02 = 9P/(3A^)1/2, P* = 3P3(1 + A'S)/(3A)2, (6.3.3c-d)

and rewrite (6.2.19), with the spatial derivatives
suppressed, as

P = (l-i)P /v̂ 2 - iP P , (6.3.4a)It v 7 V 2 3

P = - iP P+, (6.3.4b)2t 1 3

P = (l-i)P /^2 - iP P+, (6.3.4c)3t ' 7 3' 1 2’

to first order as j3 -> oo.
We note that, although the oblique waves represent 

the same mode to this order, there are no non-trivial
solutions to (6.3.4) with P = P . The system represents 
two rapidly growing three-dimensional modes interacting 
through a triad mechanism with a two-dimensional mode. 
These two-dimensional motions therefore gain energy at a 
rate greater than one would expect on linear grounds. If m 
> 0 this mode will be within the wave-Mach cone. A
preliminary numerical solution of (6.3.4), using a simple 
predictor-corrector scheme, is shown in Figure 6.3.1. 
Whether or not this nonlinear system has a solution in 
which the three waves lock together and grow at a common, 
exponential growth rate, as in the system studied by Smith 
and Stewart, is a matter for further research. The 
numerical work does not point to such behaviour, however. 
Instead there seems to be an interchange of energy between 
modes 1 and 2 at a rate determined by the amplitude of 
mode 3, which itself seems to grow exponentially.

§6.4 The Limit Of Small Spanwise W avenumber.

If, as opposed to the case of large /3, we look at the 
limit of small /3, we find that two of the waves become 
almost identical two-dimensional modes whilst the third 
becomes a very oblique wave. This can be seen as follows.

284



1/5For small /3 we scale n such that |3 = bju , where b is an 
0(1) constant to be found. Provided that

inn2/V 4/3 << 1, 2ub's/3 << 1, (6.4. la-b)

R(q,b) becomes, as in §6.3, the root of

.6 —.2 2 ,2 12/5 / /- j« <) \0 = 0 ji = b jLi , (6.4.2)

i.e.

R(ju,/3) ~ b ^ V ' 5. (6.4.3)

Since |3 and u are small we expect that

R(l+M,/3) = R( 1, 0) + AK/li2/5, (6.4.4)

where K is to be found and R(1,0) = A. If the restrictions
(6.4.1a&b) are satisfied one can show, by substitution of
(6.4.4) into (6.2.5d), that

AK(1 + 2A5) = b2/2. (6.4.5)

  O /CEquations (6.4.4) and (6.2.5a) imply that AK/n = R(/u,/3), 
which is b1/3/Li2/s, from (6.4.3). Thus we determine K and 
b,

K = b1/3/A, b = [2(1+2A5)]3 '5. (6.4.6a-b)

Therefore
X k

JLI ~ /35X3, s ~ |32X , X = [2 (1+A5) ]~ . (6.4. 7a-c)
T  A

As m -> oo we know that A ~ 0(l/m) and so b ~ 0(1). 
Also, as m -> -oo, A ~ 0 ( | m |1/4) and b - 0 ( | m |3/2). 
Therefore, the conditions (6.4.1a&b) can be shown to 
require only << m”̂ * as m -> oo. This is the only
additional condition on /3, other than that it be small, 
that (6.4. la-b) imposes as m -» ±oo. It implies that the
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three-dimensional wave is less oblique than the oblique 
acoustic modes identified in §5.3.3.

In the limit 0 -> 0, therefore, the coefficients ĝ ,
ĥ  and f become

gs - (A, A, f32A ), hj - (1, 1, p V ) ,  (6.4.8a-b)

f - (A, A, <3'V2). (6.4.8c)

The oblique wave, proportional to E , is at an angle of
~  - l  30((A£A) ), and is relatively long and of low frequency

when compared with the nearly identical two-dimensional 
modes, proportional to and E2. Thus, as /3 decreases, we 
may expect the relatively high frequency approximation to 
fail in describing the oblique mode, and equations
(6.2.19) to be no longer appropriate.

If we choose new variables

suppressed,

= [|31/2 A1/2 ] t, (6. 4.9a)

p = 01 [0-3/2(i+A'5)1/2/(iu)] Pt, (6. 4.9b)

p = 02 [8'3/2(l+A‘5)1/2/(AA)] P2, (6. 4.9c)

P03 = [£5/2( 1+A-5)\3/2/A] P3, (6. 4. 9d)

19) becomes, with the spatial variations

pIt -iP P ,2 3 (6.4 .10a)

p2t -iP P+,1 3' (6.4 .10b)

= (l-i)/V2 P -iPP+. (6.4.10c)3t 3 1 2

This system represents the nonlinear interaction of a 
relatively slow and long three-dimensional wave of small 
amplitude but of large growth rate due to its obliqueness, 
with two, larger amplitude, almost identical and much
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shorter two-dimensional waves. It has not yet been 
investigated, either analytically or numerically.

§6.5 Discussion.

This chapter shows that an (amplitude)2 type of
nonlinear interaction can occur between waves in a
transonic boundary layer. It seems that, at any Mach 
number in the transonic range, a relatively high frequency 
lower branch Tollmien-Schlichting disturbance, in an 
otherwise undisturbed boundary layer, can interact with 
many pairs of oblique high frequency modes. We go on to
derive the weakly nonlinear governing equations for this
mode interaction and make a start at investigating their 
properties.

A question arises as to which of the many possible 
pairs of oblique modes, for a given Mach number, is the 
most suitable to consider when modelling the process of 
transition. A partial answer to this problem lies, of 
course, in the range of disturbances initially present in 
the boundary layer at the start of the transition process. 
In addition it seems likely that if, for example, a range 
of disturbance frequencies are seeded at a sufficiently 
low amplitude that the nonlinear terms in (6.2.19) are 
unimportant, at least at the start of the process, it is 
the most oblique modes which will grow most rapidly and 
first activate the nonlinear terms.

Another question is that of how these transonic
triads fit into a complete picture of (amplitude) 
interactions at general Mach number. Craik's triad system, 
studied in the high frequency limit used here by Smith and 
Stewart, is symmetric, whilst the system considered here 
is not, in general. It can, however, be easily extended to 
a symmetric system, by the addition of two modes
proportional to Ei and E3 where Ei and E3 are identical
with Ei and E3 except that £ is replaced by -/3. These two
waves will also interact with the two-dimensional mode 2. 
and so give a symmetric system of five interacting waves.
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This is of interest in conjunction with the limit m -» -oo. 
If /3 is scaled with the Mach number so that the modes 
become minor transonic waves, it may be possible to extend 
these waves into the subsonic regime and to match them 
with Craik's incompressible triad in some fashion. The 
further work required to investigate these ideas, and also 
to learn more about the transonic triads themselves, is 
underway.
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F igure Ca p t io n s  for  Ch a p t e r  6 .

Figure 6.2.1 This shows values of 11 for triad formation
for a range of values of ft, the (scaled) spanwise
wavenumber. and m. the scaled value of M2-l. The ' ' 00
wavenumber and frequency of a pair of waves which 
interact with a two-dimensional mode can be 
calculated from \i via equations (6.2.3&5).

Figure 6.3.1 This presents a preliminary solution of the 
triad equations (6.3.4) appropriate to large values 
of ft. This shows an interchange of energy between 
modes 1 and 2. Mode 3 seems to grow exponentially. 
The latter stages of the interaction are unlikely to 
have been captured correctly due to the increasingly 
small time scales involved.
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Chapter Seven

UNSTEADY SHOCK /  BOUNDARY LAYER INTERACTION IN 

TRANSONIC FLOW.
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§7.1 In t r o d u c tio n  And  T he Go ver n in g  Eq u a t io n s .

This chapter investigates the behaviour of an 
interactive boundary layer, at transonic speeds, in the 
case where the Mach number is so close to unity that 
relatively small motions close to the wall are able to 
provoke a nonlinear response and therefore shocks in the 
free stream. This regime is of interest since, as we show, 
this feature gives rise to the possibility of a 
self-sustaining shock / boundary layer oscillation which 
could provide a means for a bypass rather than a natural 
transition to turbulence. This oscillation is similar in 
origin to the shock flutter or large scale shock 
buffetting seen on transonic aerofoils. See the work, 
experiments and calculations of Tijdeman and Seebas 
(1980), Bogar (1986), Howlett (1987) Howlett and Bland 
(1987), and Gibb (1989). It also, perhaps, has some 
relevance to the perceived unsteady nature of the shock / 
boundary-layer interaction at more supersonic speeds, 
studied by, for example, Dolling and Brusniak (1987), 
Muck, Andreopoulos, and Dussauge (1986) and Dolling 
(1989).

The range of Mach numbers, M^, for which a shock is
possible in the free stream, i.e. for which the equations
governing the flow there are nonlinear is given by
|M^-1| ~ 0(Re”1/5), as the Reynolds number, Re, becomes
large. The steady flow in this regime has been studied by
many authors. See Brilliant and Adamson (1974), Bodonyi
and Kluwick (1977), (1982), Bodonyi (1979), Adamson and
Messiter (1980), and Bodonyi and Smith (1986). The scales
for the motion are well-known, although much of the work
until now has been concerned with shockless flows or flows
with oblique supersonic-to-supersonic shocks so the free
stream equations are not of mixed type. In extending the
work to cover unsteady flows it is found that the
governing time scale (i.e. the slowest scale) is that
governing the adjustment of the free stream and is 

- 1/100(Re ) . On this scale the boundary layer reacts 
instantaneously and so the lower deck equations in the
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governing triple deck formulation are quasi-steady. This 
feature has also been noted by Rizetta (1982).

We can derive the scales for the motion either by 
studying the work of previous authors (Brilliant and 
Adamson or Bodonyi and Smith), or from first principles, 
using arguments similar to those used in §4.2.2 in 
obtaining (4.2.28). Using the notation of §4.2.2, and 
aiming for a nonlinear reaction in the free stream 
provoked by the boundary layer displacement, we find that, 
instead of (4.2.20&21), we have

+ *zz= <K + *xx+ 2*xt' (7-1*1)

if

(M2-l) = Kd, K = 0(1) and d << 1 as Re -> oo, (7.1.2)

and

tL = H2 = L2 = L 3/S, (7.1.3)X Z X ' 1

where y is the ratio of specific heats of the gas. These 
results, together with others presented in §4.2.2, lead to 
the scalings

L  = Re"3/10C3/1°T 3/V7/S,X w ' (7.1.4a)
L =  Re"1/SC1/ST 3/V8/S,Z w '

(7.1.4b)
H = Re"1/5C1/5T 3/V8/5,

W
(7.1.4c)

d =  Re’1/5C1/5X2/S, (7.1.4d)
T  =  Re-l/10C1/10T 3/V9/5fW (7.1.4e)

_  -1/10_1/10_ 1/2. 1/5e = Re C T A ,w (7.1.4f)
S = Re"1/2C1/2T 3/2A"1.w (7.1.4g)

The timescale for the viscous adjustment of the 
boundary layer over these length scales is 0(Re 1/5) and 
so is much shorter than r, the timescale of the motion in 
the free stream. The expansions of the flow variables
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proceed along similar lines to those presented in 
(4.2.25,26,27) but here we use the scalings suggested by
(7.1.4). Three-dimensional effects enter near the wall in 
a similar fashion to that in the regime covered in §4.2.2. 
The governing equations are

ux + VY + Wz = 0, (7.1.5a)

u u x + VUy + WUz = -Px + Uyy, (7.1.5b)

UW + VW + WW = W , (7.1.5c)x y z YY

U = V  = W =  0 on Y = 0, U Y + A, W 0, as Y -> oo,
(7.1.5d-h)

P —  + p = [(k + (y+l)P)P ] + 2P . (7.1.51)yy ZZ L v ' ' XJX XT

P -> P, P- -» Axx, as y-> 0, (7.1.5j-k)

where

P = -0x. (7.1.51)

The flow structure is illustrated in Figure 7.1.1.
The free stream equation (7.1.5i) has been written in 

conservation form. The far field boundary conditions are 
problem-dependent. However they will be typically either 
an increase in pressure between X -» -oo and X +» which 
supports a shock in the free stream or, alternatively, if 
K is negative, zero pressure at both extremes of X, with a 
shock appearing close to the wall in response to some 
localised forcing from the boundary layer. See Figure 
7.1.2. We note that the assumption of potential flow is 
valid even though shocks are present. This is due to the 
relative weakness of the shock. The error incurred in 
assuming potential flow is proportional to the cube of the 
velocity jump across the shock (von Mises (1958)) and so 
is at most 0((S/Lx)3) ~ 0(Re'3/5) .

There are two sources of nonlinearity in the problem
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- the unsteady shock and the quasi-steady lower deck 
equations.

As in the work of chapters 4 to 6 we concentrate on 
disturbances in which W is identically zero in (7.1.5). 
The length scales involved in this unsteady shock / 
boundary layer interaction are longer than those in the 
problems studied in chapters 4 to 6 which are longer still 
than those governing Tollmien-Schlichting waves in 
incompressible flow. The length scale is exactly that 
governing steady transonic flow, indeed equation (7.1.5i) 
is an unsteady version of the transonic small perturbation 
equation which is a well-known approximation to the Euler 
equations in the transonic regime. As a result of this and 
the quasi-steady nature of the boundary layer equation, 
two-dimensional travelling wave solutions to (7.1.5), with 
a speed c say, can be found simply since the unsteady 
problem reduces to the steady problem but with the reduced 
Mach number altered from K to K-2c. The quasi-steady 
response of the boundary layer also implies that, in an 
otherwise undisturbed boundary layer, the only possible 
solutions of the linearised form of (7.1.5) are upstream 
influence solutions and there exist no neutral or growing 
waves. These upstream influence solutions are investigated 
in §7.2. Sections 7.3 and 7.4 investigate, in a tentative 
fashion, the possibilities arising from a shock 
oscillation resonating with a neutral wave which may be 
possible in a grossly disturbed boundary layer (following, 
for example, a separation in the lee of a shock or 
downstream of a wedged trailing edge). Finally §7.5 
considers some further points and suggests possibilities 
for some further research needed on this, potentially very 
powerful, nonlinear interaction.

§7.2 Small Disturbance Properties (Unseparated Fl o w).

The linearisation of (7.1.5) about a basic, 
undisturbed, attached flow (U - Y and P both small) leads, 
in a similar fashion to that of §4.3.1, to the dispersion
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relation

a2( ia)1/3 = 3Ai'(0)(2Qa + 02 - Ka2)1/2, (7.2.1a)

Real((2fia + |32 - Ka2)1/2) > 0, | arg( (ia)1/3) | tt/3,
(7.2.lb-c)

for normal mode disturbances, proportional to
exp(i(aX+/3Z-fiT) . This equation can be obtained in the
limit of small frequency and m, from the dispersion
relation for the case M2-l ~ mRe~1/9. See §4.3.4. It00
produces only stable, upstream-travelling waves, akin to 
the upstream influence modes studied in §4.3.4.

We write

a = (|K|3/8/d3/4)s3, (7.2.2a)
fj = (|K|7/8/d3/4)£, (7.2.2b)

J2= ( |K|11/8/2d3/4)n, (7.2.2c)

where d is |3Ai'(0)|, allowing (7.2.1a) to be written as

• 2/3 14 , 6  « 3 t 2 a / t  o o \i s ± s  - Qs -ft = 0, (7.2.3a)

if K is positive or negative respectively. The results
(7.2.lb-c) reduce to

-571/21  ̂arg(s) < -2tt/21, (7.2.3b)

-7T/2 < arg(s) < n/6, (7.2.3c)

with the equality in (7.2.3b) corresponding to a
disturbance which does not decay in the free stream but 
which has an outward-going phase velocity.

We consider first the supersonic range, K > 0, in
steady flow, n = 0. If

s = rexp(-7ii/6), (7.2.4a)

with r real, then
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14 6 ~2r - r = £ . (7.2.4b)
■■ 1 / * 7  a  •Therefore r ~ /3 as j3 -> « and r -» 1 as j3 -» 0. These 

results lead to the asymptotes

, . . -.3/8 j -3/4a ~ (-i)K d , as ^ 0 or K -) w, (7.2.5)

a ~ (-i)jS d” , as H  “> or K 0.,3/7 J -3/7 (7.2.6)

The first of these results is the well-known steady 
two-dimensional, upstream influence eigenvalue, in 
supersonic flow (Stewartson and Williams (1969)). The 
second is independent of Mach number. This feature can be 
traced to the modes being very oblique on these scalings 
and, as in §4.3.4, becoming associated more with the 
transonic major modes.

If a supersonic flow is unsteady, the eigenvalue, a, 
moves off the negative imaginary axis and represents a 
decaying, upstream-travelling wave. In the limit of large 

or, more precisely, large fi, where the relative 
importance of the unsteadiness depends on the Mach number, 
we have the asymptote

This result is true whatever the value of |3, provided it 
is finite. It represents short wavelength disturbances, 
travelling upstream and decaying rapidly.

If the flow is subsonic (K < 0), the large Q and 
large /3, zero-frequency results above remain unaltered. 
For 0(1) values of £ however the zero-frequency case has 
|K| replacing K in (7.2.4a) and r satisfying

a - exp(-77Ti/ll) (4/d)3/22 Q,3/11 (7.2.7)

(7.2.8)

— — i/3rather than (7.2.4b). Here, as £ -» 0, r ~ £ and so

a ~ (-i) |K|"1/2/3. (7.2.9)
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This implies that such "steady upstream influence11 modes 
in steady subsonic motion are confined to angles more
oblique than |K|1/2 (c.f. the downstream-facing wave-Mach
cone in supersonic flow). Furthermore, in the unsteady
case of non-zero fi, these subsonic modes are subject to a
cut-off at such values of 0 or fi that the disturbance
decay in the free stream is lost and (7.2.1b) is violated. 
This occurs when arg(a) = -5n/7. Similar behaviour is seen 
in the upstream influence modes studied in §4.3.4. We can 
show that if the value of [fid374/1K111/8cos (27T/7) ]173 lies 
between the positive roots of r14 - r6 + d3/2|K| 774/32 = 0 
then no waves exist. Outside this range of frequencies the 
waves that are possible are again upstream-travelling,
decaying disturbances. There is no such cut-off if 
d3721K | "7/4/32 > (5/14 ) 3/4 - (5/14 ) 774 » 0.297. As a
result, as the flow becomes locally more subsonic, 
corresponding to an increase in |K|, a wider range of 
modes becomes subject to a cut-off and very oblique waves 
are the only solutions to (7.2.1).

The behaviour of the roots of equation (7.2.1a-c) as 
/3 and fi are varied is summarised in Figure 7.2.1.

§7.3 Shock Oscillation.

We now consider the possibility of shock oscillation 
or flutter in two-dimensional flows. A tentative 
suggestion is to model an overall pressure rise in the 
free stream, from Pi to P2 say, as simply

P = P , X < 0, P = P2, X > 0, (7.3.la-b)

P > P , (7.3.1c)2 1 '

over a relatively long scale. We therefore presume that 
there is a shock-like discontinuity at X = 0. The jump 
conditions satisfied across this shock can be found either 
by an expansion of the Rankine-Hugoniot conditions by 
using an expansion suggested by the scalings of (7.1.4),
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or by an analysis of equation (7.1.5i) together with an 
assumption of irrotational flow, both written in 
conservation form. Both approaches lead to the results

0 = 0 . (7.3.2a)*1 2

K + i(y+l)(0 + 0  ) = G-2 + 2G , (7.3.2b)2 ' 7 'r lX r 2X7 y T '

at a shock given by X = G(y,T). The subscripts 1, 2 refer 
respectively to values immediately upstream and 
immediately downstream of the unsteady shock. 
Alternatively, if the shock shape is written as 
y=F(X,T), (7.3.2b) becomes

KF 2 + 2F F = 1 - -|(r+l) F 2(0 + 0  ). (7.3.2c)X X T  2V 7 X V*1X 2X ' 7

If we now look for small oscillations about the 
steady state G = 0 (a normal shock) and (7.3.1), the
governing equations reduce to a linearised version of
(7.1.5i) and the linearised shock conditions

0 —  = (K-(y+1)P )0 + 2 0  , (7.3.3a)lyy ' v 7 l 7 r lXX 1XT 7
0 —  = (K-(y+l)P )0 + 2 0  , (7.3.3b)2y y ' ' 7 2 2XX ^2XT ’

“ PiG = 0 2 " P 2G ' ( 7 . 3 . 3 c )

GT = |(r+l)(«iX + *„). (7.3.3d)

Oscillatory behaviour of the shock position, proportional 
to expi(aX-QT), gives the jump condition, on elimination 
of G,

c - (P -P )(y+l)/4
0 = 0,-j--------- — ------------- L  C = n/a . (7.3.4)

c + (P2-Pl)(y+l)/4

We note here that resonance will be possible if the speed
of oscillation of 0 on the downstream side of the shock2

300



is

c = -(P2-Pi)(3r+i)/4, (7.3.5)

which is negative. The actual value of the speed will be 
determined by a consideration of the interaction of the 
free stream with the boundary layer. On the upstream side 
of the shock the interaction gives rise to the upstream 
influence modes studied in §7.2. These help to fix 0 as a 
single wave. Equation (7.3.4) transfers this solution 
across the shock discontinuity from which the downstream 
solution can be found either by the use of characteristics 
if the flow there is still supersonic, which is possible 
if the shock is oblique, or by spatial transforms if the 
flow is subsonic. On the downstream side, however, §7.2 
also shows that, in the case of an undisturbed boundary 
layer, there are no neutral waves possible in either 
subsonic or supersonic flow. The next section goes on to 
consider waves which may be possible in various types of 
disturbed boundary layer.

§7.4 The Stability Of A Disturbed Boundary Layer.

An incident shock may well cause separation and if 
the separation is sufficiently strong we may model the 
flow using the inviscid, high wavenumber "UPSA" 
formulation of Smith (1986c&d), (1987). This is an
extension, to the case of separated flow, of the type of 
approximation used in §5.4. In the present case of a 
quasi-steady boundary layer, however, the steady, 
classical, viscous sublayer at the wall associated with 
the large amplitude, inviscid response in the main part of 
the boundary layer may well have no solution, even at 
T = 0+. This is due to the possible (and indeed likely) 
presence of a finite distance Goldstein singularity 
(Goldstein (1948)), which arises when the steady boundary 
layer equations are driven by a prescribed adverse 
pressure gradient. The presence of such a singularity,
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which is in general not removable (Stewartson (1970)),
will imply here that the "UPSA" approximation is not 
valid, even for a finite time. However we will use the
approximation since it may be of relevance in the case 
where the shock occurs in the vicinity of a wedged 
trailing edge of an aerofoil. In this case there is no 
need for such a viscous sublayer. In fact experiments
indicate that shock flutter and aerofoil buffetting seem 
most likely to occur when separation occurs near to a 
wedged trailing edge (Gibb (1989)). In the "UPSA" 
formulation the governing equations become

UUx = -Px, (SU)x = 0, (7.4. la-b)

(S+A)(S+A)x = -Px , (7.4.1c)

together with the pressure-displacement law due to the 
interaction with the free stream (7.1.5i-k). Here U, P, S, 
A are functions of X and T and are, respectively, the 
velocity of the fluid beneath the separated shear layer, 
the pressure, the height of the shear layer above the wall 
and the (negative) displacement of the boundary layer. The 
scalings leading to this regime (and also the alternative 
simplification of a linearised boundary layer and a 
nonlinear free stream) are presented in Appendix 7A. A 
small disturbance of a basic flow described by these 
equations leads to the boundary layer response

[1 + S (S + A )/U2] P = -(S + A )A, (7.4.2)L 0 0 0 0 0 0

where the subscript 0 represents the basic flow. This, 
coupled with the linearised transonic small perturbation 
equation, gives the dispersion relation

a = (-Ao)(2c - K)1/2, (7.4.3)

in the further specialised case of strongly disturbed but 
unseparated motion. This is also relevant to the case of 
flow downstream of a wedged trailing edge, where (see

302



Smith and Merkin (1982)) A -0X as X -» » where 0 is the 
semi-angle of the wedge, so that sufficiently far 
downstream the "UPSA" formulation is valid.

In the case of larger scale separated flow near to a 
trailing edge we can use the Sadovskii (1971) or Smith 
(1986d) model for a relatively long and thin eddy flow. 
See also Brown, Cheng and Smith (1988). This leads to the 
nonlinear equation governing the boundary layer response

P = d(T) - 1/8 C2S2, (7.4.4)

where S is the eddy height (identified with -A here), £ is 
the (uniform) vorticity within the eddy and d is an 
undetermined function of time. Linearisation leads to the 
law

P = 1/4 C2S0A, (7.4.5)

and so to

a = 1/4 C2SQ (2c - K )1/2. (7.4.6)

This result is similar to (7.4.3). Both imply that 
neutral waves can travel upstream with -|K|/2 < c < 0 or 
downstream, in subcritical motion, and downstream only in 
the supercritical case. It is the upstream-travelling 
waves that are of particular interest to us since it is 
these which may lead to a resonant reaction with the 
shock-flutter motion described by (7.3.4&5). This needs 
subsonic flow downstream of the shock, necessitating a 
study of (7.1.5) with mixed type flow in the free stream.

We therefore deduce that there is a possibility of 
resonance phenomena between the shock and the boundary 
layer motions giving rise, perhaps, to a strong means of 
bypass transition. The analysis above has some 
deficiencies, except in the important case of flow near to 
a trailing edge, in relying on a singularity-free solution 
to the steady, classical boundary layer equations. It is 
hoped, however, that numerical solutions of the problem,
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currently being attempted, will show some similar 
behaviour.

§7.5 Further Comments.

This short chapter studies the unsteady interaction 
between a boundary layer and a free stream where shocks 
are either present or are likely to form. The slow time 
scale of these motions means that the boundary layer 
reacts quasi-steadily to the free stream disturbances. As 
a result Tollmien-Schlichting waves are not possible. 
There are, however, decaying, upstream-travelling modes.

We identify a condition for resonance to occur 
between shock motion and a wave within the boundary layer 
(equation (7.3.5)). These waves are likely to be present 
in separated flow near to a wedged trailing edge. Here the 
problems associated with Goldstein's singularity discussed 
in §7.4 do not arise.

It is hoped that numerical work, now in progress, 
will shed more light on this important interaction.

A second, more strongly nonlinear mechanism for shock 
/ boundary layer interaction, is suggested by equations
(7.1.5) and has its origin in the reversed flow 
singularity suffered by an interactive boundary layer as 
the size of the reversed region attains some (finite) 
limit (Smith (1988)). An upstream-moving shock can provoke 
separation and reversed flow locally. Within this reversed 
flow the singularity mentioned above can occur at some 
finite time, as the strength of the shock and so the size 
of the separated region attains some finite value. This 
may well lead to a collapse of the separated flow and to 
transition as shorter scales than those captured by
(7.1.5) come into play. This is likely to reduce the 
downstream pressure and so the strength of the shock. This 
process may repeat giving a self-sustaining, and strongly 
nonlinear, oscillation.
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Ap p e n d ix  7A  So m e  L im it s  Of In t e r e s t .

We first present the scalings which lead to the 
inviscid, large amplitude, boundary layer formulation, 
similar to that used in equations (7.4.1). It is very 
similar to the approximation used in §5.4. If the size of 
the boundary layer disturbance has U = 0(h), where h >> 1, 
we use the scalings

[U, V, P] - [h, h2, h], (7A.1)

[Y, y, T, X, K] - [1, h‘3, h'4, h'2, h2]. (7A.2)

The governing equation for the boundary layer, with an 
unsteady (on the timescale of the free stream motion) 
forcing by, for example, an obstacle given by hf(X,T) at 
the wall is

Px = -(A + f)(A + f)x. (7A.3)

The free stream responds through equation (7.1.5i-k) in 
these new, scaled variables. Associated with these
equations are the classically-driven, steady, boundary 
layer equations governing the motion in a viscous region 
close to the wall. As mentioned in §7.4 it is unlikely 
that these will have a solution in general, thus
invalidating the above approximation in certain cases.

As a second point, we investigate the equations in 
the case of a small disturbance size, but with K 
sufficiently small that the free stream response is still 
nonlinear. This is the limit investigated by Brilliant and 
Adamson (1974) in the case of steady flow. The scalings in 
this limit are, if e << 1,

-1/3 * -1 * -3 * — -1— *Y = c Y , X = e X , T = c T ,  y = e y ,

U = Y* + eu, P = cP*, V = e5/3v, A = eA*.

The free stream equations remain as in (7.1.5i-k), but
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written in these new variables. However the boundary layer 
equations may be linearised and solved to give the 
pressure-displacement response

. (-3c/3 T(2/3))
p = ------- 25--------------

where c = |Ai^(0)|, and Ai is Airy's function.

A (?)
(X-?) 2/3 (7A.4)
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F igure Ca p t io n s  For Ch a p t e r  7 .

Figure 7.1.1 The nonlinear disturbance structure for 
unsteady shock / boundary layer interaction at 
transonic speeds. An oncoming two-dimensional flow,

P -1/5with Mach number such that |M -1| = 0(Re ) as
l 00 1

Re -» oo, is subject to a three-dimensional disturbance 
at a small, 0(Re-1/1°), angle to the streamwise 
direction. The shock surface is effective only within 
the free stream.

Figure 7.1.2 Two different types of problem governed by 
equations (7.1.5). Figure (a) illustrates the 
possibility of the interaction leading to a 
self-sustaining oscillation of the boundary layer 
motion and the shock due to a locally decelerating 
external flow. Figure (b) shows the formation of 
shocks in an otherwise uniform free stream due to 
unsteadiness within the boundary layer.

Figure 7.2.1 A sketch summarising the behaviour of the 
upstream influence modes of the transonic regime with 
|M^-1| = 0(Re”1/5) as Re oo, as the spanwise 
wavenumber (js), frequency (fi), and scaled Mach number 
(K) are varied.
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SuRSowtc 
p  L O ^

U>CA-USCT> P0dt|W6-

308



Figure 7. 2.1
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