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Abstract

We use density functional theory (DFT) to calculate the equilibrium isotopic fractionation
factors of zirconium (Zr) in a variety of minerals including zircon, baddeleyite, Ca-catapleiite,
ilmenite, geikielite, magnetite, apatite, K-feldspar, quartz, olivine, clinopyroxene, orthopyroxene,
amphibole, and garnet. We also report equilibrium isotopic fractionation factors for Hf in zircons,
Ca-catapleiite, and ilmenite. These calculations show that coordination environment is an
important control on Zr and Hf isotopic fractionation, with minerals with Zr and Hf in low
coordinations predicted to be enriched in the heavy isotopes of Zr and Hf, relative to those with Zr
and Hf in high coordinations. At equilibrium, zircon, which hosts Zr and Hf in 8-fold coordination,
is predicted to have low **Zr/°°Zr and 17°Hf/177Hf ratios compared to silicate melt, which hosts
Zr and Hf in 6-fold coordination. However, our modeling results indicate that little equilibrium
isotopic fractionation for Zr is expected during magmatic differentiation and zircon crystallization.

We show through isotopic transport modeling that the Zr isotopic variations that were
documented in igneous rocks are likely due to diffusion-driven kinetic isotopic fractionation. The
two settings where this could take place are (i) diffusion-limited crystallization of zircon (DLC
model) and (ii) diffusion-triggered crystallization of zircon (DTC model) in the boundary layer
created by the growth of Zr-poor minerals. Fractional crystallization of zircons enriched in light
Zr isotopes by diffusion can drive residual magmas towards heavy Zr isotopic compositions. Our
diffusive transport model gives the framework to interpret Zr isotope data and gain new insights
into the cooling history of igneous rocks and the setting of zircon crystallization.

Keywords: isotopes, equilibrium fractionation, diffusive transport, zirconium, hafnium
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1. Introduction

High Field Strength Elements [HFSEs; Ti(IV), Zr(IV), Hf(IV), Nb(V), Ta(V)] have high ionic
charge (Z) over radius (r) ratio. They behave incompatibly during magmatic processes, resulting
in their enrichment in the continental crust relative to the bulk silicate Earth (by factors of ~3 to
24'%), They are insoluble in aqueous fluids under most circumstances, and are characterized by
low concentrations and short residence times in seawater (Zr: 5600 yr, Hf: 1300 yr’, Ti: 150 yr?).
They are highly refractory, with 50% condensation temperatures under solar nebula conditions of
1546 to 1741 K for Zr and Hf, respectively™°. Because of all these characteristics (incompatibility,
insolubility in aqueous fluids, and refractoriness), they have proven to be extremely useful in
geochemistry for normalizing concentrations of water-soluble’* and moderately volatile’ elements.

HFSE:s are also useful in their own right: (1) In cosmochemistry, their relative abundances in
refractory inclusions are found to be fractionated by high-temperature evaporation/condensation
processes'’ 1. (2) The "*Lu-17®Hf decay system (ti2= 37.8 Gyr) has been widely used as both a

16-19 " (3) Titanium enrichment

chronometer and a tracer of planetary differentiation processes
during fractional crystallization is a feature that distinguishes tholeiitic from calc-alkaline series”’
(other trace HFSEs can also be used to distinguish these two series’!). (4) The sub-chondritic
Nb/Ta ratios in all the major terrestrial reservoirs (the missing Nb-paradox) points to the existence
of high-temperature processes that can fractionate these twin elements at large scales” 2. (5) The
elevated Ti, Ta, and Nb (TITAN) concentrations in ocean island basalts with high *He/*He
indicates the presence of a non-primitive recycled component in the deep mantle’®. (6) The

abundances and isotopes of these elements in terrigenous sediments can help constrain the nature

(felsic or mafic) of the provenance region of the detritus® ',
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Isotopic variations that depart from the laws of mass-dependent fractionation’” have been
documented for Ti, Zr, and Hf. These variations arise from (1) incomplete mixing of
nucleosynthetic anomalies for Ti** Y, Zr*!** and Hf*>** ¢ (2) cosmogenic neutron capture effects
from irradiation of solar system materials by cosmic rays for Ti*’ and Hf***", and (3) radioactive
decay of short-lived *>Nb (1= 34.7 Myr) for *>Zr°* 2, and long-lived '7Lu for 76Hf'®!7-5354 Qver
the past several years, considerable progress has been made in documenting the mass-dependent
component of isotopic variations for Ti*> * and Zr® °°. Mass-dependent Ti isotopic variations in
58,59

calcium-aluminum-rich inclusions (CAls) reflect evaporation/condensation processes

Titanium isotopic variations have also been found in igneous rocks resulting from mantle

56,60 55,57,61,62

depletion and magmatic differentiation . These variations are driven by differences in

coordination between Ti in melt and minerals®>*"°. Zirconium isotopic variations have more

recently been documented in igneous rocks and minerals® %’

but the mechanism responsible for
those variations is uncertain.

Much focus in recent Zr isotope studies has focused on zircon (ZrSiO,). Zircon is an accessory
mineral commonly found in igneous, metamorphic and detrital sedimentary rocks. It can be readily
dated using the U-Pb system and hosts important geochemical tracers (Hf, U, Th and REE). These
features, combined with the high resistance of zircon to secondary processes, have made it the
focus of a wide variety of geochemical, petrological, and geological studies interrogating major
questions of Earth sciences, such as the timing of mass extinctions, onset of subduction, and growth
and maturation of the continental crust!*>471-79,

Zirconium has five naturally occurring stable isotopes, *°Zr (51.45%), *'Zr (11.22%), **Zr

(17.15%), **Zr (17.38%) and **Zr (2.80%). Zirconium isotopic compositions are typically reported

in 8°*Zr or 8"*Zr notations, which are departures in permil (%o) of the **Zr/*°Zr ratio relative to a
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reference material. Zirconium stable isotope systematics is a relatively new field and there is no
widespread agreement on which reference material to use. In the following, we report 8*Zr values
relative to NIST 3169°7. Zirconium isotopic analyses have also been reported relative to a NIST
standard under development®® and the IPGP-Zr standard®* ®°. Converting Zr isotopic compositions
from NIST 3169 to IPGP-Zr would involve shifting all §°*Zr values by ~ -0.04 %o°"%.

The role that zircon plays in controlling Zr isotopic fractionation in igneous rocks is debated.
Inglis et al.** measured the Zr isotopic compositions of bulk magmatic rocks from Hekla volcano
and found that 6°*Zr increases with SiO> content, which is a tracer of magmatic differentiation.
Combining these data with the zirconium concentrations of these rocks, they concluded that zircon
crystallization within the Hekla differentiation suite was the main driver of the observed variations
in the bulk samples. They argued based on coordination considerations that equilibrium isotopic
fractionation could explain qualitatively why zircon would preferentially incorporate light Zr
isotopes, leaving the residual melt enriched in heavy Zr isotopes (elevated 3°*Zr values). Feng et
al.’” and Tian et al.®” found that among igneous rock standards, felsic rocks tend to have heavier
Zr isotopic compositions than mafic rocks, which agree with the trend documented by Inglis et
al.®***, Tbanez-Mejia and Tissot®® measured single zircon and baddeleyite crystals from an
anorthositic gabbro (FC-1) and found widespread 6°*Zr values ranging from -4.3 to +0.9 %o. Unlike
Inglis et al.**, they argued that their data could be explained using a distillation model if zircon and
baddeleyite were isotopically heavy relative to the melt from which they crystallized, driving the
residual liquid to extremely low 8°*Zr values. The rocks measured in these studies were different
and the discrepancy illustrates the fact that the driver behind Zr isotopic fractionation in igneous
rocks remains highly uncertain, which limits the usefulness of this system to draw petrogenetic

inferences on zircon formation based on Zr isotopic analyses. Zhang et al.®> analyzed the Zr

5
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isotopic compositions in several zircons using laser ablation multiple collector inductively coupled
plasma mass spectrometry (LA-MC-ICPMS) and found relatively constant values.

Auvailable Zr isotopic data® *’

in igneous rocks hint at the possibility that they could provide
new insights into the conditions of zircon formation but there are outstanding questions that need
to be addressed before Zr isotopes can be developed into a useful petrogenetic tracer. Are the
measured variations the result of equilibrium fractionation between minerals and melts? If yes, is
it the crystallization of zircon or other Zr-bearing phases that drives Zr isotopic fractionation
measured in bulk rocks? Alternatively, are the observed variations due to kinetic processes such
as diffusion? If yes, what does it tell us about magma cooling and zircon crystallization history?

Hafnium has very similar chemical behavior to zirconium. It possesses six stable or long-
lived (the half live of 7*Hf is ~2x10'° yr) isotopes "*Hf (0.16%), '"°Hf (5.26%), 7"Hf (18.60%),
I8Hf (27.28%), '"Hf (13.62%) and '8°Hf (35.08%). To our knowledge, no high precision
measurements of Hf stable isotopic fractionation have been reported. As discussed in the present
manuscript, such data would shed light on the processes responsible for Zr isotopic fractionation
in igneous rocks.

To understand what controls Zr isotopic variations in igneous rocks, we have performed ab
initio calculations of the equilibrium isotopic fractionation factors of Zr and Hf in a variety of
minerals using the technique of density functional theory (DFT). Following Farges et al.?’, Ca-
catapleiite (CaZrSi;0q - 2H,0) was used as a model structure for Zr in silicate melts. The Zr-rich
minerals investigated here are zircon (ZrSi0,) and baddeleyite (Zr0O,). We also investigated
equilibrium isotopic fractionation for Zr in a variety of minerals where Zr substitutes other
elements: ilmenite (FeTiO3), geikielite (MgTiO3), apatite (Cas(PO,);F), magnetite (MgFe,0,),

forsterite (Mg,Si0,), diopside (MgCaSi,0¢), enstatite (MgSiO3), K-feldspar (KAlSi;Og), quartz
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(Si0,), tremolite (Ca,MgsSig0,,(0H),) and pyrope (Mg3Al, (Si0,4)3). Besides these calculations,
we have also explored how diffusion-driven kinetic isotopic fractionation during crystallization of
zircon and other Zr-poor minerals could fractionate Zr isotopes in igneous rocks. We find that both
(1) diffusion-limited zircon crystallization from a supersaturated liquid and (2) Zr diffusion in the
liquid boundary-layer around a Zr-poor growing crystal, can explain the Zr isotopic variations that
have been documented in igneous rocks. Our favored scenario is that the Zr isotopic variations
documented in some zircons reflect their crystallizations in a supersaturated diffusion boundary

layer, in a process of diffusion-triggered crystallization.

2. Methods
2.1. Equilibrium mass-dependent isotopic fractionation

Equilibrium mass-dependent isotopic fractionation arises from changes in vibrational
frequencies caused by isotopic substitution of an element in a given system®%2. Following
Bigeleisen and Goeppert-Mayer®!, the reduced partition function ratio 8, of an element X in Phase
A, which represents the isotope fractionation factor between Phase A and an ideal gas of X atoms,

can be expressed within the quasi-harmonic approximation as,

1
ujp e ZWih 1—e7¥il

Ba=2=[]3" . (1)

Q ug 1-e™"ih -y

where 4 and / represent the heavy and light isotopes respectively, i is a running index of vibrational
frequency mode, N is the number of atoms in the unit cell, and O and Q; refer to the vibrational
partition function for the heavy and light isotopes, respectively. A phase with N atoms has 3N
vibrational modes and thus the product runs over all 3N phonon modes. u;;, and u;; are defined as,

u; = hw;/kgT . (2)

where h and kg is the reduced Planck constant and Boltzmann constant, respectively, 7 is
7
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temperature in Kelvin, and w; is the vibrational frequency of the i mode. Equilibrium isotopic
fractionation between two phases A and B in the 6-notation is readily calculated from the reduced
partition function ratio using the following formula,

Ay_p= 103Ina,_g = 103Inp, — 103Inpg. (3)
For a given phase, 103Inf can be expressed as a polynomial expansion of even powers of the

inverse of the temperature®3-#4,

Ay A, A
10%Ing =5+ 2+ 2. 4)
where the coefficients A;, A,, and A; can be calculated from the even moments of the phonon

density of states®*. The first term in this equation is proportional to the mean force constant (F) (in

N/m) of the chemical bonds that the element of interest forms with the coordination atoms,

A = 1000(mil— 1)

mp

s (F). 5)

8k
At the high temperatures relevant to igneous system, this term is the dominant control on
equilibrium isotopic fractionation®¢, For the **Zr/*°Zr and '""Hf/!7"Hf ratios, we have,
1000InB (°*Zr/°°Zr) ~ 2081(F)/T>. (6)
1000InB (Y7°Hf/177Hf) =~ 278(F)/T?. (7)

1.34%7 and use the mean force constant (F) to discuss equilibrium

We follow Dauphas et a
isotopic fractionation factors. The virtues of this approach for non-traditional stable isotopes are:

(1) It is a number that is usually easy to remember when reported in SI unit (the same units
as a spring constant), typically spanning the range 0 to ~1000 N/m.

(2) It does not depend on the choice of isotopes used to define isotopic fractionation, so one

can compare values from different publications regardless of the choice that are made in reporting

isotopic fractionation.
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(3) It allows easy comparison of isotopic fractionation between different elements. For
example, when comparing Zr and Hf equilibrium isotope fractionations, the difference could result
from a difference in the masses of the isotopes of the two elements, and/or from a difference in the
nature of the bonds (force constant).

(4) Bond strength is the governing factor for equilibrium isotopic fractionation, especially at
high temperature. We use Eq. 4 to calculate equilibrium fractionation factors at all temperatures
and recommend that this equation be used in future studies, but the truncated Eqgs. 5 to 7 are
adequate above ~300 °C.

For the reasons outlined above, we have used the mean force constant (F) in a number of

84,8791

publications discussing equilibrium isotopic fractionation and we encourage the community

to use this quantity more broadly in non-traditional stable isotope geochemistry.

2.2. First-principle calculations

We performed first-principle calculations based on density functional theory (DFT) using
VASP (Vienna Ab Initio Simulation Package) with the projector-augmented wave (PAW)
method””. The generalized-gradient approximation (GGA)®® for the exchange-correlation
functional was adopted and the PAW-PBE pseudopotentials were used. The energy cutoff for all
calculations was 600 eV. All mineral structures, including cell parameters and atomic positions,
were well relaxed at ambient pressure. The Brillouin zone summations over the electronic states
were performed at different k-point grids according to their unit cell sizes (Table S1). For all
structure optimizations, the residual forces converge within 10 eV/A. In order to estimate the B
factors of **Zr/*°Zr for all phases, we performed full calculations of phonon vibration frequencies

using the finite displacement method as implemented in the open-source code PHONOPY 4,
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2.3. Mineral structures
The DFT approach is better suited to calculate the equilibrium isotopic fractionation for
periodic crystals or small molecules. DFT can in principle tackle liquids but it is computationally

challenging to run such calculations”*?>-%

, and while there are good constraints to ground truth
calculations involving ions in water, the structure of silicate melts remains poorly known. For those
reasons, we have decided to use knowledge from X-ray Absorption Fine Structure (EXAFS)
spectroscopy on the local structure of Zr in silicate melts to select a model crystal composition to
simulate Zr dissolved in silicate liquid. Farges et al.?® found that regardless of the glass investigated,
Zr*" at a trace level of ~2000 ppm in silicate glass was mainly in 6-coordinated sites and had a
local structural environment similar to that in the mineral catapleiite (with a similar Zr-O bond
length of ~2.07-2.10 A)*, a 3-tetrahedra zirconium cyclosilicate (the synthetic sodium zirconium
cyclosilicate Lokelma is used to treat hyperkalemia in patients®®!%?). The atomic positions of H
atoms in catapleiite (Na,ZrSi;Oq - 2H,0) have not been reported, and cannot be properly modeled
by DFT. We have therefore selected the similar Ca-catapleiite (CaZrSi;Oq - 2H,0) in which all
atomic positions are well known, to use as the model structure for Zr in silicate melt.

The calculated minerals in this study include zircon, baddeleyite, Ca-catapleiite, geikielite,
ilmenite, magnetite, apatite, K-feldspar, quartz, olivine, clinopyroxene, orthopyroxene, amphibole
and garnet. Zirconium is a trace element in these minerals except for zircon, baddeleyite, and Ca-
catapleiite.

In spinel-facies lherzolite and harzburgite, the inventories of Zr and Hf are dominated by

clinopyroxene and to a lesser extent orthopyroxene'’!. In garnet lherzolite, the inventories of Zr

and Hf are dominated by garnet and clinopyroxene, with again orthopyroxene playing a lesser
10
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role 102

. Although major element sites in these minerals are well known, the substitution
mechanisms for Zr incorporation as a minor element remain unclear. In olivine, clinopyroxene,
and orthopyroxene, there are two possible Zr substitution mechanisms. One is that Zr** directly
occupies the tetrahedral Si site (VSi*'«<>Zr*"), and the other one is that Zr substitutes in the
octahedral Mg site or the dodecahedral Ca site (in clinopyroxene) with charge balanced by nearby
Mg vacancies (V'Mg?"/VICa? +VIMg? > Zr* mgcat ).

Olivine has one equivalent tetrahedral Si site and two nonequivalent octahedral Mg sites (M1
and M2) with M2 site being larger than M1 site. For the substitution 'VSi*"«<>Zr*", we constructed
a Zr-doped olivine by replacing one Si atom with one Zr atom in a supercell of forsterite. For the
substitution VIMg?*+ VIMg?*«Zr*'+ | the nearest neighbor [V!Mg?*]-[VIMg?"] pair is replaced by
Zr*" and a vacancy ( ). There are four different possible configurations for this substitution:
MM vi-[YMe2 v, M2 hai-[YMe2 vz, [VMe o-[VMe2 w1, and  [Y'Mg2*Jyo-
[VIMg?*m2, where we substitute the first VIMg?" of each pair by Zr*" and the second is replaced by
a vacancy. Our calculations show that the Zr-doped olivine with Zr** occupying the M2 Mg site
and the charge balanced by the nearest M1 Mg vacancy ([V'Mg? Imz-[V'Mg?*]m1) has the lowest
total energy among all nonequivalent configurations. This configuration with the lowest energy
was used for the calculation.

Orthopyroxene also has two nonequivalent Mg sites (M1 and M2) and two nonequivalent Si
sites (SiA and SiB). Our calculations show that the energy difference between Zr*" in the SiA and
SiB sites is large, 7.6 €V for Mg3:Si31ZrOos orthopyroxene, suggesting that Zr*" prefers the SiB
site. Thus, orthopyroxene with Zr** occupying the SiB site was used for the substitution
VSi*"«>Zr*". Similar to the substitution Y'Mg?*+ VIMg?"«<>Zr*"+ in olivine, we also considered

four configurations for the Zr*+ substitution: [V'Mg?* mi-[VIMg? Im1, [VIMgZ Imi-[VMg** vz,
11
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[VMg? Imz-[V'Mg? Tmi, and [YMg?** m2-[V'Mg?*m2. The Zr-doped orthopyroxene, in which Zr**
occupies the M1 Mg site with the charge balanced by the nearest M2 Mg vacancy ([V'Mg?]mi-
[VIMg? Im2<>Zr**+ ) has the lowest total energy and was used in the calculations.

Diopside, the CaMgSi,0O¢ end-member of clinopyroxene, contains four equivalent Ca atoms,
four equivalent Mg atoms, and eight equivalent Si atoms. A Zr-doped clinopyroxene with the
substitution VSi**«<>Zr** can be produced by replacing one Si atom with one Zr atom. We also
investigated the Zr-doped clinopyroxene with the substitution V!Ca?*/VIMg?'+
VIMg?*Zr* camet , in which Zr**+  can substitute for any pair [V'Ca?*]-[V'Mg?*], [VIMg?']-
[VIICa?*], or [V'Mg?*]-[V'Mg?*]. Our calculations show that the Zr-doped diopside with Zr**
occupying the Mg site and the charge balanced by a vacancy in the nearest Ca site ([V'Mg**]-
[VICa?"]e>Zr*'+ ) has a lower total energy than the configuration with [VCa?"]-
[ViIMg*-Z*'+  (ie., -2.3 eV for CasMg7ZrSi16043), indicating that Zr*" preferentially enters
the Mg site in diopside. This is consistent with the experimental finding that Zr is located in the
M1 (Mg) site in clinopyroxene'’.

Tremolite has three nonequivalent Mg sites (M1, M2, and M3) and two nonequivalent Si sites
(SiT1 and SiT2). The volume of Mg-O octahedron increases in the order of M3 < M1 < M2. For
the substitution 'VSi*"«<>Zr*', the configuration with Zr* occupying the larger SiT2 site has a lower
energy and was used for the calculation. For the substitution YIMg?'+ VIMg?" < Zr*'+ | tremolite
has six different [VIMg?*]-[V'Mg?'] pairs: [V'Mg? Imi-[Y'Mg? Imi (3.17 A), [V'Mg? Tma-[V'Mg> w2
(5.59 A), [YMg*ms-[V'Mg2Ims (10.27 A), [V'Mg> Twi-[Y'Mg* Im2 (3.08 A), [VIMg>Imi-
[VMg* vz (3.08 A), and [V'Mg* Imz-[V'Mg?"Ims (3.18 A). Here we only consider [V'Mg?']-
[VIMg?*] pairs where the two Mg sites are in close proximity, corresponding to seven different

conﬁgurations ([VIMg2+]Ml'[VIMg2+]M1, [VIMg2+]M1'[VIMg2+]M2, [VIMg2+]M2-[VIMg2+]M1,
12
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MM har-[YMe2 s, VM2 Tvis-[VMe2 s, [VMe2 - [YMe2 s, and  [VMg2 s
[VIMg?*]m2) that could be replaced by Zr**+ . Our calculations show that the structure with Zr**
occupying the largest M2 Mg site with the charge balanced by the nearest M1 Mg vacancy
([V'MgZ Ima-[VMg* Imi<>Zr**+ ) has the lowest energy and was therefore used in the calculations.
This choice is consistent with spectroscopic evidence indicating that in arfvedsonite (a sodium
amphibole mineral), Zr is in the M2 site'%*.

The initial structure of Zr-doped quartz was constructed through the substitution 'VSi*" <> Zr**,
while the Zr-doped structure for K-feldspar was constructed by substituting Zr** for K*/AI** with
the charge balanced by a tetrahedral AI*/K' vacancy (VUK'+ NAP*-Zr*'x+  and
WVAPHVIIR Y Zr* A+ ). Our  calculations show  that the configuration  with
VAPHVIIR - Zr* A+ has a lower energy than YUK+ WAP*&Zr*'x+  (ie., -4.7 eV for
K7Al7ZrS124064). The former was therefore used in the calculations.

Previous work suggested that Zr could substitute for Ca in apatite!%*

, we generated the initial
structure of Zr-doped apatite by substituting one Zr atom for one nine-coordinated Ca atom, with
the charge balanced by the vacancy in the nearest seven-coordinated Ca site (XCa?'+
VICa2* 7 iy cat ).

For geikielite (MgTiO3) and ilmenite (FeTiOs), the Zr-doped structures were generated by
the substitution VI Ti**«Zr*" due to the similarity between Ti*" and Zr**. For MgFe,O4 magnetite,
Zr*" occupies the octahedral Fe** site with charge balanced by the nearest tetrahedral Fe** replaced
by Mg (VIFe3*+ VFe3* > Zr* yp.ret Me2H1y.re).

Pyrope, the Mg endmember of garnet, contains 160 atoms in its conventional cell with space

group la-3d. Here we consider three possible substitution mechanisms: (1) 'VSi**«Zr**, where

Zr*" occupies the tetrahedral Si site, (2) VIAP™+ VSi**—Zr*"+ AlY*, where Zr*" occupies the
13
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octahedral Al site and the original A" occupies the nearest Si site, and (3) V!'Mg?'+
VM g?*>Zr**+ | where Zr*" occupies the dodecahedral Mg site with the charge balanced by
replacement of the nearest Mg site with a vacancy. Spectroscopic data seems to support the

presence of Zr in 6-fold coordination in garnet'*

, which would be support of the second
substitution mechanism VIAP*+1VSi* - Zr*+ A3,

Zirconium are present as trace element in many of these minerals. We modelled various levels
of Zr dilution in olivine, orthopyroxene, clinopyroxene, tremolite, quartz, geikielite, ilmenite,
apatite, K-feldspar, and magnetite by incorporating Zr into their supercells, which were generated
by expanding the primitive cell along different directions. For example, the 112-atom and 224-
atom supercells of olivine were obtained by expanding the primitive cell twice along the a and ¢
directions and twice simultaneously along a, b, and c directions, respectively. Substituting one Si
atom with one Zr atom in those supercells can produce olivine structures with Zr/(Zr+Si) of 1/16
and 1/32, respectively. The same approach was used to simulate dilution in other minerals (Table
1).

For the calculations of Hf equilibrium isotopic fractionation, we investigated Ca-catapleiite
and zircon (Hf substituting Zr) as well as ilmenite (Hf substituting Ti). For zircon and Ca-
catapleiite, we calculated the mineral structures and PB-factors for different Zr/Hf ratios using a
supercell approach (Table 1).

The relaxed cell parameters and volumes of zircon, baddeleyite, and Ca-catapleiite are
compared with experimental measurements at 300 K in Table S2. Our calculations with GGA
overestimate the volumes of these minerals by ~3-4%, which is typical of GGA calculations, as

105-108

already noticed in previous studies . In general, the local density approximation (LDA) tends

to underestimate the volume, while GGA tends to give a larger volume than experimental data.

14

ACS Paragon Plus Environment

Page 14 of 73



Page 15 of 73

oNOYTULT D WN =

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

ACS Earth and Space Chemistry

DFT calculations will also give different 3 factors when different exchange-correlation functionals
are used. However, the differences in 10°Inp (i.e., 10°Ino or equilibrium isotope fractionation
factors between minerals), are less sensitive to the approximation adopted for the change-
correlation functional'%>-1%, We compare the calculated frequencies of zircon and baddeleyite with
experimental data in Fig. S1. Our results agree with experimental measurements, with a
slope between calculated and measured frequencies of 0.966+0.04. Following the uncertainty

ll()‘)

analysis presented by Meheut et al.'””, we estimate that the uncertainties of our calculated Inf} and

Ina values at high temperature are ~6 and 8% relative, respectively.

3. Results

The average Zr-O bond lengths and Zr coordination numbers (CNs) in all calculated minerals
are listed in Table 1. The average Zr-O bond length and Zr CN depend on the threshold adopted
for Zr-O bond lengths. In all calculated minerals, the Zr-O distances form two populations, ranging
from 1.9 A to 2.4 A, or greater than 3.0 A. Here we adopted a value of 2.4 A as the cutoff to
determine Zr-O bond lengths and Zr CNs. The Zr CN ranges from 4 in silicate minerals with the
substitution Si*"«>Zr*" to 8 in zircon, and the average Zr-O bond length ranges from 1.960 A in
olivine with the substitution Si*"«>Zr*" to 2.228 A in zircon. In addition, within the explored
compositional space (Table 1), there is no significant Zr concentration effect on the average Zr-O
bond lengths in Zr-doped minerals.

As discussed in Section 2.1. and references therein, the main control on equilibrium isotopic
fractionation is the bond strength or force constant, and at high temperature 1000Inp is directly
proportional to (F). The Zr force constants vary from 280 to 566 N/m in the calculated minerals

(Table 1). In all minerals, Zr is primarily coordinated with oxygen and as expected!'’, the main
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control on the bond strength (force constant) is coordination (Fig. 1A), which is also manifested
as a correlation between force constant with bond length (Fig. 1B). The average Zr force constants
of minerals in 4, 6, 7, and 8§ coordination are 540, 366, 323, 340 N/m respectively. Among them,
ilmenite (6-fold coordination), magnetite (6), apatite (6), baddeleyite (7) and zircon (8) have
weaker Zr-O bonds than that of 6-fold coordination Ca-catapleiite, the silicate melt proxy mineral.
Geikielite (6-fold coordination) and most of the silicate minerals with Zr in mostly 4- and 6-fold
coordination have stronger Zr-O bonds than that of 6-fold coordinated Ca-catapleiite. Pyrope with
the substitution V!"Mg?*+ VilIMg?*—Zr**+ is the only silicate mineral calculated with a weaker
Zr-O bond strength than the melt.

The 1000Inp values of **Zr/*°Zr of all calculated minerals can be expressed as a function of
temperature (10’ Inp=4;x+A4x*+A43x>, where x=10°/T? and T is temperature in Kelvin; Eq. 4). The
coefficients of this polynomial expansion are listed in Table 1. For many non-traditional stable
isotopes systems, one can relate equilibrium fractionation at any temperature to an expansion in

the even powers of (F)¥"-!!!, For a Debye phonon density of states (PDOS), we would have,

1000Ing = 1000 (22 — 1) (X4 S 07 2o (07 )
l

8 T2 2016 T* 326592 T®

with y = h2/(kim,). Phonon density of states of naturally occurring minerals rarely follow a
Debye profile and we can improve on this formula by writing a more general, semi-empirical
equation,

1000InB =~ B,(F)/T? — B,(F)?/T* + B3(F)3/T®. 9)
with B; = 1000(1/m; — 1/m,,) hz/(8k32), and B, and B; constants that depend on the element
and isotopes considered (and to some extent the particular PDOS, although these are second order
corrections and the exact shape of the PDOS does not matter too much). We have calculated the
values of B, and B; by regressing Az vs. (F)? and Az vs. (F)3 (Figs. S2, S3) for the purpose of
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evaluating the validity of the high-temperature approximation. Note that the equivalent regressions
of A vs. A, and As vs. A;> provide a rapid means of assessing the consistency of the polynomial
expansion as an erroneous reporting of the coefficients would show up as an outlier in these
diagrams. We find the approximate formula,

1000InB (**Zr/%°Zr) =~ 2081(F)/T? — 2.5 X 10*(F)?/T* + 8.5 x 105(F)3/T®.  (10)
In Fig. 2A (also see Fig. S4), we use this formula to calculate the extent to which the high-
temperature approximation (truncating the polynomial to the first order; Eq. 6, 9, and 10) can
approximate the true value of 1000Ing (Eq. 4) as a function of T and (F) (see Fig. 3 of Dauphas
et al.’ for a similar figure for iron). As shown, given that the force constants of Zr bonds in all
calculated minerals are between 280 and 566 N/m, we find that provided that the temperature is
higher than ~300-500 °C, truncating the expansion to the first order gives a 1000Ing value that is
within 1% of the value given by the whole expansion. For most high-temperature applications in
metamorphic and igneous geochemistry and petrology, the high-temperature approximation
1000Ing = 2081(F)/T? is therefore valid.

The Zr-doped silicate minerals with the substitution Si**«>Zr* have significantly larger
factors than other species. This is mainly because Zr in these silicate minerals form stiffer bonds
due to the incorporation of Zr into the low-coordination (IV) tetrahedral Si site. At 1000 K, the
1000Ing values range from 1.17 %o in Zr-doped olivine (substituting Si) to 0.58 %o in Zr-doped
ilmenite (substituting Ti). It decreases in the order of Zr-doped olivine (substituting Si), quartz,
orthopyroxene, K-feldspar (substituting Al) ~ tremolite (substituting Si) ~ clinopyroxene
(substituting Si) ~ pyrope (substituting Si) > pyrope (substituting Al) > geikielite (substituting Ti)
~ orthopyroxene, clinopyroxene, tremolite, and olivine (substituting Mg) > Ca-catapleiite > pyrope

(substituting Mg) > zircon ~ baddeleyite > apatite (substituting Ca) ~ MgFe.O4 magnetite

17
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(substituting Fe) > ilmenite (substituting Ti). The temperature dependence of the reduced partition
function ratio (10001Inp), as well as the equilibrium fractionation factors between minerals and
melt (1000Ina,inerai—meir; taking Ca-catapleiite as a silicate melt proxy) are shown in Fig. 3. As
expected, they scale linearly with 1/T?2.

We have also performed some ab initio calculations substituting Hf for Zr in several minerals
showing a wide range of Zr bond strengths: zircon, Ca-catapleiite, and ilmenite (Fig. 4). The force
constants of Hf bonds are very similar to those of Zr (Table 1 and Fig. 5), defining a linear
correlation,

(Fur) = (1.032 £+ 0.021)(F,) . (11)

By regressing 4> vs. (F)? and A3 vs. (F)3 (Fig. S3), we derive a one-parameter approximate
equation for the 1000Ing value of Hf,

1000InB (Y7°Hf/Y77Hf) =~ 278(F)/T? — 3464(F)?/T* + 175551(F)3/T* . (12)
As with Zr (Fig. 2A; also see Fig. S4) and Fe4, we use this formula to calculate the extent to which
truncating the formula to the first term 1000Ing (}7°Hf/177Hf) ~ 278(F)/T? (Eq. 7) provides an
adequate approximation of the 1000Inp value (Eq. 4; Fig. 2B and Fig. S5). We find that provided
that the temperature is higher than ~300-500 °C, truncating the expansion to the first order gives a
1000Inp value that is within 1% of the value given by the whole expansion. As with Zr, the first
term of the polynomial gives an adequate description of equilibrium Hf isotopic fractionation for
applications in igneous and metamorphic geochemistry/petrology.

Given the near-identical force constants of Zr and Hf, the ratio of equilibrium fractionation

factors is directly related to the mass of the isotopes involved through (combine Egs. 6 and 7),

1000lna(?*Zr/%%Zr) _ 2081 _
1000Ina(179Hf/177Hf) 278

7.5. (13)

18

ACS Paragon Plus Environment

Page 18 of 73



Page 19 of 73

oNOYTULT D WN =

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

ACS Earth and Space Chemistry

4. Discussion

As we mentioned in the introduction, the use of Zr isotopic fractionation as a petrogenetic
tracer of zircon formation is hampered by our lack of understanding of what controls this
fractionation.

Zirconium isotopic analyses reported thus far on bulk rocks and individual zircons®*

yield
contradictory evidence with regard to what controls the observed Zr isotopic variations, and
whether zircons are enriched in the light or heavy isotopes of Zr relative to coexisting magma.
Below we use the newly established fractionation factors to show that equilibrium zircon-melt

fractionation cannot account for the large Zr isotopic variations that have been documented. These

fractionations are most likely explained by diffusion-driven kinetic isotopic fractionation.

4.1. Equilibrium Zr isotopic fractionation during zircon crystallization from silicate melts
Zircon is an important carrier of Zr and Hf in igneous rocks, so we start by focusing on the
effects of the equilibrium crystallization of this mineral on the behavior of Zr and Hf stable isotopes
during magmatic differentiation. Following Inglis et al.®* and Ibanez-Meija and Tissot*®, we model
Zr isotopic fractionation during zircon crystallization using a Rayleigh distillation model,
8" e = 6 %4Zr + AZrconmeltyy £ (14)
where 8"94Zr, . and §'°*Zr, are the Zr isotopic compositions of the residual and starting melt

respectively, expressed as 8'9Zr = 10%In[(°**Zr/°°ZD)gampie/ (**Zr/°°Zr) g4, fzr is the fraction

of Zr remaining in the melt, and AZr"melt = 1000Ino&r"Me!t is the instantaneous isotopic
fractionation factor of Zr between zircon and melt. The Zr isotopic composition of the
instantaneous zircon crystallized from the melt can be calculated as,

8'9VL, yivcon = 6'94Zrg + AFICO ™ (14Infy,) . (15)
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The zirconium isotopic composition of the cumulative zircon is obtained by mass-balance with the

residual melt and initial composition,

6’94zrc,zircon = 6’9421'0 - Aéirrcon—melt 1f]Zchr 1anr . (16)
Both Inglis et al.** and Ibanez-Meija and Tissot’® derived apparent AZ™°"melt yalyes from

their measurements. The AZr"melt yalyes that they calculated have opposite directions and
different magnitudes. Inglis et al.** found that Zr in the melt becomes isotopically heavy in the
course of magmatic differentiation of the Hekla volcano, meaning that zircon must be enriched in
the light Zr isotopes. They were able to fit their data with an instantaneous fractionation
Azircon-melt — () 5 044, Ibanez-Meija and Tissot® measured many zircons from an anorthositic
gabbro (FC-1) and found that the statistical distribution of these §'°*Zr values extended to very
negative values, which they argue is more readily explained if zircon crystallizing from the melt
was enriched in the heavy isotopes of Zr, and the most negative &' °*Zr values resulted from
crystallization from a melt that has experienced extensive distillation. By fitting their statistical
distribution, they obtain AZrc°»™elt = 41,06 %,;. These two studies focused on different materials
(bulk rocks sampling a magmatic differentiation trend in the case of Inglis et al.**; individual
zircons sampling fractional crystallization within a single rock in the case of Ibanez-Meija and
Tissot*®). Based on available data, it is impossible to tell what is the cause of the discrepancy
between these two studies and whether the measurements reflect equilibrium or diffusion-driven
kinetic isotopic fractionation, as has been demonstrated previously for Mg and Fe in igneous
rocks!12-116

We have calculated Zr force constants of 335 and 369 N/m for zircon and Ca-catapleiite (the

silicate melt proxy), respectively (Table 1). The slightly higher force constant of Ca-catapleiite
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relative to zircon is consistent with its lower coordination number (6 for catapleiite vs. 8 for zircon).

The equilibrium Zr isotopic fractionation between zircon and melt is given by the formula,

e 7.87x10% = 1.94x10° 5.85x1013
A*ZrS] - + - . (17)

zircon-melt — T2 T4 T6

At the temperatures relevant to igneous zircon crystallization of ~700-1000 °C, the
equilibrium fractionation would only be -0.048 to -0.081 %o (Fig. 6). The lower &' **Zr value of
zircon relative to silicate melt at equilibrium is due to differences in coordination numbers. The
equilibrium fractionation is opposite in sign to the inferred instantaneous zircon-melt fractionation
of Ibanez-Meija and Tissot®® and is much smaller in magnitude than the values given by both Inglis
et al.** and Ibanez-Meija and Tissot’®. Taken at face value, this would suggest that the
instantaneous Zr isotopic fractionations measured in these two studies do not reflect equilibrium.
A caveat to this comparison is that we used Zr in 6-fold coordination in Ca-catapleiite ((F) = 369
N/m) as a proxy for Zr in silicate melt. As shown in Table 1 and Fig. 1A, Zr in 6-fold coordination
in other minerals has force constants that range between 280 and 433 N/m. Using these values for
Zr in melt and 335 N/m for zircon would result in zircon-melt equilibrium fractionations in the
range -0.12 to +0.21 %o above 700 °C. These values are again much smaller than the values inferred
by Inglis et al.* and Ibanez-Meija and Tissot’, strengthening the case that the values given in
these two studies do not reflect zircon-melt equilibrium.

We further evaluate below how combining Zr isotopic compositions with Zr/Hf ratios can
help identify zircons that grew in equilibrium with the melt. By equilibrium, we mean that zircon
growth increments were in equilibrium with the bulk melt but distillation effects can still be present
if Zr self-diffusion was too slow for the zircon interior to equilibrate with its rim, or if zircons were
sequestered from the melt. The degree of isotopic fractionation in the instantaneous fraction of

zircon crystallizing in equilibrium with the melt is given by (combining Eqgs. 15 and 17),
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7.87x10%
TZ

5,94zri,zircon = 5’94Zr0 - (1+lanr)~ (18)
In Fig. 7, we plot the value of 8" °*Zr; ,i,con for different Zr fractions in zircon (1 — fz;) and two

temperatures of 700 and 1000 °C. As shown, at equilibrium the slightly lower &' °*Zr value of

Page 22 of 73

zircon relative to the melt can drive the melt to evolve toward heavy 8'%4Zr values, reaching +0.25 %o

(at 700 °C) and +0.14 %o (at 1000 °C) at 95% crystallization. One way to assess whether the data
can be explained by equilibrium is to combine §"**Zr with Zr/Hf analyses. Indeed, these two
observables should correlate in a predictable manner during equilibrium zircon crystallization as
they both depend on T and f7,.. Zircon is a solid solution of zircon (ZrSi0,) and hafnon (HfSiO,),
and Hf zoning is often observed due to zircon growth while the melt composition evolves by
fractional crystallization. Zirconium is more compatible than Hf in zircon, resulting in a decrease
of the Zr/Hf ratio during fractional crystallization of zircon. Such Zt/Hf fractionations have been
documented within zircon grains (from core to margin) and in bulk rocks''’-'"°, Similar to §"°*Zr,

we can model Zr/Hf fractionation using a Rayleigh distillation equation:
(Zr/Hf)__, = (Zr/HD), f /5. (19)
where (Zr/Hf)  is the ratio in the melt, (Zr/Hf),, is the initial melt ratio, f7, is the fraction of

the remaining Zr in melt, and K is the Zr/Hf exchange coefficient between zircon and melt,

(Zr/Hf)zircon,inst

@/HD . Ka . (20)

We thus have,
1-1/K
(Zr/Hf)zircon,inst = Kd (Zr/Hf)O fZI‘ / d' (21)
The zircon Zr/Hf ratio is not only a function of the extent of fractional crystallization but also a

function of temperature. Aranovich and Bortnikov!?® proposed the following formula for K,

Kd — 81531/T—0.883 ) (22)
22
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In Fig. 8, we plot the calculated trends of Zr/Hf and §"°*Zr variations in growth increments
of zircon crystallized from silicate melt. The free parameters are the fraction of Zr remaining in
melt (fz, from 0.99 to 0.01) and the crystallization temperature, which we keep fixed for simplicity
(T from 870 to 600 °C; calculations are done using equations 15 and 17, 21 and 22). We use an

initial Zr/Hf ratio of 31.1, initial 6'°*Zr value of -0.086 %o °°, and the equilibrium isotopic

eq _ 7.87x10%
zircon-melt T2

fractionation factor inferred here A%Zr (Eq. 17). We also plot the current

analytical uncertainties of Zr/Hf ratio (+1%) and &' °*Zr isotopic composition (+0.01%o). The
8"9*Zr value is mostly sensitive to the extent of crystallization, while Zr/Hf ratio depends on both
temperature and extent of crystallization. By plotting Zr/Hf and &' °*Zr values in zircons, ideally

measured along depth profiles®-*

, one will be able to compare the results with theoretical
predictions, test whether zircon grew in increments in equilibrium with coexisting melt, and assess

the temperature (T) and extent (f7.) of zircon crystallization.

4.2. Equilibrium Zr isotopic fractionation before the onset of zircon crystallization in melts
Within the magmatic temperature range of zircon crystallization, our ab initio calculation
results show limited equilibrium isotopic fractionation between zircon and melt (see Fig. 6). This
can explain the homogenous Zr isotope compositions of those reference zircons reported in Zhang
et al.®> and Tompkins et al.®, but it fails to explain the observations made at the Hekla volcano®

and zircons and baddeleyites from the FC-1 anorthositic gabbro®

. This implies that the current
observed §'9*Zr variations cannot be simply explained by the mechanism of equilibrium mass-
dependent Zr isotopic fractionation between zircon and melt.

Below, we investigate whether equilibrium crystallization of other phases could have
controlled Zr isotopic fractionation during magmatic differentiation. We used the Rhyolite-
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MELTS program'?! to calculate the evolution of Zr concentration and isotopic composition during
magmatic differentiation before the onset of zircon crystallization. The melt major-element
compositions and temperature at each step in the Rhyolite-MELTS run were used as input in the
zircon saturation models of Waston and Harrison'?? and Boehnke et al.'?* to check if zircon was
saturated, as we were primarily interested here in evaluating the influence of the crystallization of
non-zircon phases on the isotopic composition of Zr during magmatic differentiation (see Fig. S6).

Two starting melt compositions were used to represent calc-alkaline and tholeiitic magmatic
series®>!12%, Both crystallization processes start at the calculated liquidus temperatures and at 1 kbar
for calc-alkaline and 0.6 kbar for tholeiitic magma, respectively. For every 5°C temperature
decrease, the major element compositions and mass of melt and crystallizing minerals are
calculated using Rhyolite-MELTS. At each step the program gives the proportions of every
mineral crystallizing. As a trace element, Zr is not incorporated in Rhyolite-MELTS program, but
its distribution among the phases can be calculated based on partition data (Fig. 9). The Zr partition

coefficients (Kpinerai/mert) Of €ach mineral in different rock matrix were compiled from the

GERM database. The compiled values vary in a wide range, due in part to the dependence of
partition coefficients on melt composition and temperature. We use the geometric mean of the
partition coefficients as fiducial values, and also consider the maxima and minima to assess
uncertainties associated with partition data. Knowing the mass fractions of minerals that crystallize,
the Zr partition coefficients between bulk rock and melts are calculated at each step, and mass
balance between melt and bulk crystallizing solids is then used to calculate the Zr concentration in
melt at each step. We also track the evolution of the Zr/Hf ratio and Hf concentration, using

literature data for the Zr/Hf exchange coefficients between minerals and melt.
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Expectedly, Zr and Hf concentrations in the melt increase during fractional crystallization
before zircon saturation (Fig. 10). In calc-alkaline magmas, about 16% of the total zirconium and
10% of the total hafnium are removed by crystallizing solids before zircon saturation. In tholeiitic
magmas, about 13% of total zirconium and 10% of total hafnium are removed (Figs. S7 and S8).
These removal fractions (1 — f7.; 1 — fyr) depend on the values of the partition coefficients that
are used and they range from 6 to 47% for Zr, and 3 to 32% for Hf in calc-alkaline magma (Fig.
S7), and from 4 to 60% for Zr and 2 to 52% for Hf in tholeiitic magma (Fig. S8). In Fig. 10, we
compare the modeling results for Zr and Hf concentrations with compilations of igneous rock
compositions from the Andes and Iceland (compiled from GEOROC database, see also Fig. S1 in
Ptacek et al.’'), which typically follow calc-alkaline and tholeiitic magma series, respectively (Fig.
10). The expected different trends of [Zr] vs. SiO2 (or [Hf] vs. SiO2) between calc-alkaline and
tholeiitic series can be explained by the earlier crystallization of SiO»-rich plagioclase in tholeiitic
series compared with calc-alkaline series melts!>>-!28, Overall, all partition data (minimum,
geometric mean, and maximum) reproduce well the trends seen in natural calc-alkaline Andes
samples, while only the maximum partition data reproduce the tholeiitic Iceland samples. The bulk
solid-liquid Zr partition coefficient values are mainly affected by clinopyroxene and feldspar (Fig.
9).

With the same mass-balance rationale, we model the Zr isotopic evolution trends using the
fractionation factors between minerals and melt from our ab initio calculation results. Although
feldspar and clinopyroxene have the most leverage on Zr concentration, we find that iron-titanium
oxides (ilmenite and magnetite) have the potential to produce non-negligible mass-dependent
fractionation of Zr isotopes before the onset of zircon crystallization (see Fig. 3B). The modeling

trends in Fig. 11 show that both for calc-alkaline and tholeiitic magma, the §"?*Zr value of the
25
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melt evolves towards light values before zircon starts to crystallize (Fig. 11). The magnitudes of
the isotopic fractionations are small, ranging from —0.005 to —0.160 %o for tholeiitic series and
from —0.016 to —0.165 %o for calc-alkaline series. These values are conservative estimates
because we considered all possible substitution mechanisms (see Table 1) and the fractionations
would have been smaller if we had solely used the substitution favored by spectroscopic

observations for clinopyroxene'"?

. Our modeling results thus show that before the onset of zircon
crystallization, magmatic differentiation is not expected to impart large Zr isotopic fractionation

in the magma if equilibrium prevails.

4.3. Diffusion-driven Kkinetic isotopic fractionations during crystal growth from silicate melt
The discussions in the previous two sections show that magmatic differentiation processes
are unlikely to be associated with significant equilibrium Zr isotopic fractionation. This suggests

that the large Zr isotopic fractionations measured in bulk volcanic rocks**

and igneous zircons and
baddeleyites® are more likely the product of kinetic isotope effects.

While equilibrium isotopic fractionation decreases rapidly with increasing temperature,
kinetic effects associated with diffusion can remain significant at magmatic temperature'?’. Such
diffusive fractionations have been documented in natural magmatic systems for Mg and Fe in
112-116

olivine and Mg in melts'*°. Such non-equilibrium variations in natural systems can result

B1-133 and crystals!!?11®, In the case of zircon,

from diffusion-limited transport in both melts
Ibanez-Mejia and Tissot® pointed out that Zr diffusivity in zircon is extremely slow. If any kinetic

isotopic fractionation is present in zircon and other non-zircon minerals, it is most likely due to

diffusion in the melt!3'-133,
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We examine below two models of kinetic fractionation of Zr isotopes resulting from diffusion
in melts (Fig. 12) that can explain the Zr isotopic variations that have been documented in igneous
rocks: (i) diffusion-limited growth of zircon in a supersaturated magma and (ii) diffusion in the
boundary layer formed during the growth of a Zr-poor mineral. Several studies have examined
diffusive isotopic fractionation during crystal growth. Jambon'3! presented the first model of
isotopic fractionation of major and trace elements in magmas associated with crystal growth. They
assumed a constant growth rate (dr/dt = v, with v constant) and examined a planar geometry.
Watson and Muller!*? also assumed a constant growth rate, but examined a spherical geometry and
allowed for advective transport outside of a boundary layer. Dauphas and Rouxel'** presented
analytical equations for diffusion-limited concretion/crystal growth for both planar and spherical
geometries. The main difference with Jambon'*! and Watson and Muller!3? is that the growth rate
of the crystal is assumed to be limited by diffusion and therefore varies with time (dr/dt « 1/+/t).
DePaolo!** examined Ca and Mg isotopic fractionation during carbonate formation.

The reason why isotopes can be fractionated by diffusion in magmatic systems is that light

(L) isotopes tend to diffuse faster than the heavy ones (H), which is often parameterized as'?*-13>-
139
B
D
5= () )

where D and m stand for diffusivity and mass of the isotopes, and £ is an empirical factor. No data
is available documenting Zr or Hf isotopic fractionation during diffusion in silicate melts. However,
Watkins et al.'* recognized that B exponents correlate with the ratio of the diffusivities of the
cations normalized by those of Si. The D,/ Ds; and Dy¢/ Ds; ratios in rhyolite melts most relevant
to zircon crystallization are close to ~1'#!. Using the relationship established by Watkins et al.!4?,

we calculate f =~ 0.054 £ 0.059 for both Zr and Hf (Fig. 13). Using Eq. 23, we therefore have,
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D 0.054+0.059
Dot _ (89-905) = 0.9977 + 0.0026 . (24)
Dooy,  \93.906
D 0.054+0.059

7our _ (176-943) — 0.9994 + 0.0007 . (25)
D177y 178.946

The differences in diffusivities Doay,./Dooy,. and D17oye/ D177y, are thus -2.3+2.6 and -0.6+0.7 %o

(Ap, see Eq. A10), respectively.

4.3.1. Diffusion-limited crystallization (DLC) of zircon
The first setting where Zr isotopes could have been fractionated is during diffusion-limited
growth of zircon from a supersaturated medium. The growth of zircon will deplete the surrounding

142,143 Because

medium in Zr, which has to be supplied by diffusion from the far-field medium
light isotopes diffuse faster than heavy ones, Zr delivered to the growing crystal will be enriched
in the light isotopes of Zr, while the medium further away will be enriched in the heavy isotopes
of Zr'?. The formalism developed by Dauphas and Rouxel'*? can be applied here to model isotopic
fractionation during diffusion-limited growth of zircon from an infinite medium. The growth rate
cannot be arbitrarily set to a constant value, as it depends on the supply of Zr to the growing crystal
through diffusion. This has important consequences for isotopic fractionation. Most importantly,
during diffusion-limited growth, the §"**Zr value of the growing crystal will be offset from that of
the surrounding medium even when the system has reached a pseudo steady-state. The reason is
that the diffusive boundary layer keeps growing as the square-root of time, so from a mass-balance
point of view, the light isotopic enrichment of the growing crystal can be offset by the heavy
isotopic enrichment of the diffusive boundary layer.

We used the equations provided by Dauphas and Rouxel'* to calculate the Zr concentration

and isotopic composition profiles in the liquid away from the interface of a spherical zircon
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growing in a diffusion-limited regime and these are plotted in Fig. 14 (we also provide movies as
Supporting Information SI (E) showing the evolutions of these two variables as a function of time,
Mov. 1 and 2, movie titles and captions are in Supporting Information SI (D)). Very rapidly, the
system reaches a pseudo steady-state whereby the concentration and isotopic profiles follow a self-
similar solution that stretches as the square-root of time. Dauphas and Rouxel'* derived an
approximate solution for the isotopic composition of the crystal (assuming spherical geometry)

that is valid up to a supersaturation of S = 5 to 10,

194 ) D
5’94zrzircon ~ A Zreq, zircon-melt + (1 _ l) < 947y _ 1) 103] ) (26)

S S Dooy,

where S = C,,/Csq; is the degree of supersaturation (Co, and Cs,; are the far-field and saturation
concentrations, respectively) and A’94Zreq, sircon-melt 18 the equilibrium isotopic fractionation
between zircon and silicate melt. Note that diffusive fractionation associated with growth of a
planar crystal is a factor of ~2 lower than that predicted for a sphere (Eq. 54 of Dauphas and
Rouxel'?%).

In Fig. 15, we plot the expected isotopic fractionation as a function of the degree of
supersaturation. The §'*Zr;,.,, here is the isotopic composition in the crystal relative to that in
the far-field growth medium. With 7, = 0.113 in Eq. 24, we can reach a §' °*Zr value for zircon
of -4.4 %o. This is similar to the lowest §"?*Zr values of -4.278 %o measured by Ibanez-Meija and
Tissot®. Ibanez-Meija and Tissot*® found a range of &' °*Zr values extending to +0.905 %o. The
formula of Dauphas and Rouxel'** assumes growth from an infinite medium. In practice, in a finite
system!®, the diffusive enrichment in the light isotopes of the growing crystal will leave behind a
residual melt that will become enriched in the heavy isotopes of Zr, so we do expect the production
of zircon with positive §"?*Zr values. As indicated by Eq. 26, the parameter that determines

whether equilibrium or diffusive kinetic isotopic composition is expressed in a crystal is the degree
29
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of supersaturation of the medium, which also influences the growth rate. Therefore, & °*Zr
measurements of zircons could provide direct clues on the cooling and crystallization history of
the host magma body. For purely diffusion-limited growth, the degree of supersaturation S
influences the crystal growth rate through (derived from Eq. 56 of Dauphas and Rouxel'*?; C,iycon

is the Zr concentration in zircon),

2Csqt(S—1)Dt
R — sat ) (27)
Czircon
ar — 1 [2Csat(S-DD 1 — Csat(S—-1)D (28)
at 2 Czircon Vt RCgircon

S =1+ x Kzlreon (29)
dt DCsqt

Neglecting equilibrium isotopic fractionation in Eq. 26 and injecting Eq. 29 in Eq. 26, we thus

have,

1
1+d_RXRCzircon
dt* DCeqt

5’94zrzircon = [1 -

(D‘“Zf - 1) 103 . (30)

Doozr

In Fig. 16, we use this equation to plot the expected Zr isotopic fractionation in zircon
8"9*Zr i c0n as a function of growth rate dR/dt at different temperatures (different D and C,q,
values) and different supersaturations. In Eq. 30, we consider crystals of 10, 100 um in radius (R).
As discussed by Zhang and Xu'#?, zircons larger than ~10 um in an open magma are expected to
partially grow through advection of Zr to a diffusive boundary layer. Watson and Muller'?
investigated numerically the isotopic consequences of such a model. The zircons measured by
Ibanez-Meija and Tissot®® are less than 10 um in size and grew in inter-cumulus liquid pockets,
where advection is most likely limited. In such settings (late crystallization of residual liquid
pockets), it is conceivable that diffusive growth could play a role even for zircons larger than 10

um. The Zr diffusivities at different temperatures are calculated using the experimental results
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1
2
2 679  from Zhang and Xu'#’. Zirconium saturation concentrations (Cs,;) at different temperatures are
5
6 680  calculated using the model presented in Boehnke et al.'>’. The Zr concentration in zircon is
7
8 681  ~500,000 ppm. The result of our calculation (Fig. 16) shows that the extremely light §'**Zr values
9

10 682 (-4.278 %) reported by Ibanez-Meija and Tissot®® in ~10 pm zircons crystallized at ~850 °C can
13 683 beexplained if they grew in a diffusion-limited regime at a supersaturation of ~7.8, corresponding
15 684 to a growth rate of ~0.4 pm/yr. We are not aware of any independent constraint on the zircon
17 685  growth rate in the specific anorthositic gabbro studied by Ibanez-Meija and Tissot®, but our
;g 686 inferred growth rate is in line with the results of Zhang and Xu'#* who gave values in the range
22 687 0.01-1.0 pum/yr for variably hydrated rhyolitic melts. We conclude that diffusion-limited

24 688  crystallization of zircon is a possible mechanism to explain the variable Zr isotopic compositions

;? 689  measured in zircon grains®.

28

29 690 Inglis et al.®* argued that the heavy Zr isotopic compositions of differentiated rocks from
30

31 691  Hekla could be explained by fractional crystallization of zircon with §"°*Zr values shifted by -0.5 %o
692  relative to the melt. As shown in Fig. 15, such low §'°*Zr values in zircon can be produced in the
36 693  DLC model by growth from a melt characterized by Zr supersaturations of ~1.1 to 2.2, depending
38 694  on the value of Bz,.. Zircons from the Hekla volcano are typically 40x160 pm in size and were
41 695  formed at temperatures of ~750-850 °C'**. Assuming a characteristic size of 36 um (a sphere of
43 696 36 um radius has the same volume as a cylinder of 20 um radius and 160 pum length) and a
697  temperature of 800 °C, the supersaturations of 1.1 to 2.2 correspond to growth rates of 0.0004 to

142

48 698  0.0044 um/yr, which is slightly smaller than the range given by Zhang and Xu'**. A caveat to this

50 699  calculation is that it assumes that Zr transport is entirely diffusive. Zircons would grow faster if

700  advective transport took place, which would also dampen kinetic isotopic fractionation. The

1 64

55 701  zircon-melt isotopic fractionation calculated by Inglis et al.*" is uncertain as it relies solely on bulk

57 31
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rock measurements. Without further isotopic characterizations of the mineral carriers of Zr in
Hekla, it is difficult to robustly interpret bulk rock Zr isotopic analyses. To summarize, the removal
of isotopically light zircon formed by the DLC process could possibly drive residual magmas to

evolve towards heavy Zr isotopic compositions, as is observed®*¢7¢”,

4.3.2. Diffusion-triggered crystallization (DTC) of zircon during the growth of Zr-poor
minerals

The highly fractionated zircons measured by Ibanez-Meija and Tissot*® are closely associated
with plagioclase, clinopyroxene and ilmenite, and are interpreted to have crystallized from inter-
cumulus liquid pockets. The second setting where diffusive isotopic fractionation could have taken
place is therefore in the diffusive boundary layers formed around Zr-poor minerals, as was first

described for apatite by Harrison and Watson'!#

. When Zr-poor minerals grow, Zr excluded from
their crystal lattice accumulates in the liquid at the interface with the solid!'*®, and the concentration
gradient thus formed relaxes by Zr diffusion from the solid-liquid interface to the far field. Because
light isotopes diffuse faster than heavy ones'?’, Zr at the interface get enriched in the heavy
isotopes while the liquid further away gets enriched in the light isotopes. Zircon crystallized from
liquid in this boundary layer could inherit the isotopic fractionation imparted by diffusion. Given
the great incompatibility of Zr in most minerals, the concentration in the liquid at the interface of
those growing crystals could be much higher than the far-field. In steady-state and planar geometry,

the constant growth rate model of Smith et al.!#¢

predicts that the liquid at the interface can be
enriched relative to the far-field by a factor of 1/K, where K is the mineral/liquid partition

coefficient'*®, Based on partitioning data for olivine, pyroxene, and feldspar (GERM database,

https://earthref.org/KDD/e:40/), we calculate that the Zr enrichments at the liquid/solid interface
32
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could reach factors of ~7-100, ~1-70, and ~2-1100, respectively. These dramatic enrichments
could have led Zr concentration to exceed zircon saturation and trigger their crystallization. The
zircon thus formed would inherit Zr from the diffusion boundary layer, which would have been
fractionated isotopically by diffusive transport. We call this second model diffusion-triggered
crystallization (DTC) (Fig. 12). Note that DTC and DLC could have occurred concurrently if the
diffusive layer around Zr-poor minerals was highly supersaturated and the growth of zircon itself
was diffusion-limited.

The models of Smith et al.!*6, Jambon'3! and Watson and Muller!*? are well suited to explore
diffusive isotopic fractionation created by the exclusion of Zr from growing Zr-poor crystals.
Using the framework of Smith et al.!*® for diffusive transport away from a planar crystal growing
at constant speed, we derive the analytical equations of the isotopic composition in the liquid and
solid in transient and at steady-state (see SI (A) for details). For the concentration, Smith et al.!*¢
give the transient liquid concentration C; relative to the initial (and far-field) concentration C; as a
function of (1) the distance x; from the original interface expressed with the dimensionless
variable u = Rx;/D, where R = dR/dt is the growth rate and D is the diffusivity in the melt, and
(2) the time t elapsed since the start of crystal growth expressed with the dimensionless variable

w = R?t/D,

Clw) _ g 4 1K g (WW) 1 e (utw _ 1) oK (urkw) g [1E@K-DW
= 1+ s ”erfc(zm) 2erfc(zx/w)+(1 21{)6 u Werfc[ T ] 31

In SI (A), we show that the isotopic composition in the melt can be written as,
8121 = AAp + BAg . (32)
with A, = (D,/D; — 1)1000 the term describing isotopic fractionation imparted by differences

in the diffusivities of the isotopes involved, and Ay = (K;/K; — 1)1000 = (a;,; — 1)1000 the
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equilibrium isotopic fractionation between mineral and melt. A and B are given by the following

formulas,

_gw_w)? ww)? _ _
e VT T (14K 2e MKW i re aw | —eXWuxerfo(YW) - e KWHKW) (_1 42 K) (ut+Kw)erfc wr@K-Dw
2yw 2yw

)]}. (33)

A=
{\/E[eulﬁeukxerfc(%)—(—1+K)erfc(%)ﬂ’((u‘f(—“’()w)(—1+2K)erfc(W)”
(ut+w)? (ut+w)? B %((2+4K)u+§+(1—21()2w> (2K-1)
e” aw {2eUK(-1+2K)wHVmwle aw erfc(%)—e (1+K(—1+2K)(u+(—1+2K)w))erfc(%)
B = (34)

{mw

(abierte(7) i ~zerte(15e) |-eur 10w 120120 |

In Fig. 17, we plot the Zr concentration and isotopic composition in the growing Zr-poor
crystal and melt growth medium at three times until the crystal grows to 1 cm in size (we also
provide movies as Supporting Information, Mov. 3, 4 and 5). The concentrations and isotopic
compositions in Fig. 17 are normalized to those in the far-field growth medium composition. In
the liquid, incompatible Zr accumulates. The concentration in the solid is always in equilibrium
with the liquid at the interface where the two concentrations relate with each other by the partition
coefficient Cginterface = KClinterface - 1he concentration in the growing crystal Cginterface
therefore increases as the concentration in the liquid at the interface C; j,terface builds up until the
concentration in the crystal is equal to that in the far-field and the liquid interface concentration is
enriched by a factor of 1/K (Figs. 17A, 18A). The Zr that accumulates in the liquid at the interface
diffuses away from that interface into the far field. Since light Zr isotopes can diffuse faster than
heavy ones'?, the solid-liquid interface has high 8'°*Zr, which is transferred into the Zr-poor
crystal as it grows. The liquid further away in the diffusive boundary layer has low §'%*Zr (Fig.
17B, C). As the system evolves towards steady-state (Fig. 18; movies are provided as Supporting
Information, Mov. 6, 7 and 8), the isotopic composition of the crystal and the liquid interface

approach that of the far field medium but the liquid in the diffusive boundary layer keeps a low
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8"9*Zr value. From a mass-balance point of view, this low §'°*Zr value is balanced by the high
8"94Zr value of the early crystal grown during the transient period.

As discussed above and by Harrison and Watson'#* for apatite, the elevated Zr concentration
in the diffusive boundary layer could trigger the saturation and crystallization of zircon (DTC
model). These newly-crystallized zircons would inherit some of the fractionated Zr isotopic
composition of the diffusive boundary layer from which they grew, which span slightly positive
and highly negative 8'%*Zr values (Fig. 18B, C). The most negative 8 °*Zr value achieved at

steady state is (see derivations in SI (A)),

Do,

5, = 1000( - 1) x ProductLog[=X] . (35)

907y
For clinopyroxene or plagioclase, the values of K are 0.08 and 0.004 (geometric mean values for
equilibrium with basaltic melt, GERM database), and we would predict isotopic fractionations that
could reach -2.8 and -7.6 %o, respectively for 55, = 0.054 (Eq. 24; Fig. 18B and Fig. S10B), and
-6.0 and -16.2 %o, respectively for 55, = 0.113 (Eq. 24; Fig. 18C and Fig. S10C). From Eq. 35,
we find that different Zr partition coefficients between minerals and melt K, different diffusive Zr
isotopic fractionation factor Ap (or the 5. exponent in Eq. 24), and different growth timescales
of the Zr-poor minerals result in a range of 8'**Zr values of the liquid in the diffusive boundary
layer (see Figs. 17, 18 and Figs. S9, S10) that can readily explain the values measured by Ibanez-
Meija and Tissot®. In Fig. 19, we plot the expected probability density function (PDF) of the Zr
isotopic composition of Zr atoms in the diffusive boundary layer (i.e., at any given time, the
fraction of Zr atoms in the diffusive boundary layer with an enrichment higher than 3 that have a
certain isotopic composition) (movies Mov. 9 and 10 are provided as Supporting Information).
We find more or less uniform distributions, while Ibanez-Meija and Tissot®® found many zircons

with 8'*Zr values around 0-1 %o and a long tail of 8'**Zr values extending to -4 %o. Comparing
35
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these PDFs is, however, fraught with difficulties as there is no compelling reason to think that Zr
atoms in zircons reflect a snapshot of the diffusive boundary layer. If DTC is the correct model,
the distribution of 8'**Zr values could help pinpoint when and where in the development of
diffusive boundary layers zircons can form.

While both positive and negative 8 °*Zr values are encountered in the diffusion boundary
layer considered in the DTC model (Figs. 17, 18 and Figs. S9, S10), the distribution is skewed
towards low 8'?*Zr. This is also shown in Fig. 19, where we plot the average 8'°*Zr value of the
boundary layer where the melt is Zr-supersaturated by at least of factor of 3. The shift towards low
8'94Zr values in the boundary layer is due to the removal of isotopically heavy Zr in the growing
Zr-poor mineral (e.g., clinopyroxene or plagioclase). At first sight, the development of low 8'*Zr
values in zircons formed by DTC is consistent with the -0.5 %o 8'?*Zr fractionation calculated by
Inglis et al® for zircon in Hekla. However, for these zircons to drive Zr isotopic fractionation in
the magma, they would have to be separated from the Zr-poor minerals whose crystallization drove
zircon saturation, which may be difficult to achieve. Future studies investigating Zr-poor minerals
will help test if zircons formed around them were formed by diffusion-triggered crystallization.

To summarize, isotopic fractionation induced by diffusion in boundary layers around growing
Zr-poor crystals (DTC model) can readily explain the range of §'**Zr values measured in zircons.
An appealing aspect of this scenario is that the formation of a such a Zr-rich boundary layer could
also be the trigger for zircon saturation and crystallization. As with the DLC model outlined in
Sect. 4.3.1, the DTC model provides the framework to tie §'?4Zr values measured in zircons to the

cooling history of the host magma.

4.4. Combined Zr and Hf fractionations
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One manner to distinguish between equilibrium and kinetic isotopic fractionation is, in theory,
to compare 6'°*Zr and §'Y7°Hf. We performed ab initio calculations of the equilibrium
fractionation factor of Hf in a variety of minerals (Fig. 4, Table 1). Zirconium and hafnium form
bonds of similar strengths and as discussed in the results section, at equilibrium we expect the

isotopic fractionations of Zr and Hf between two phases A and B to scale as,

11
A9 Ozr,p (M90 _M94)

1179/177 ~ 1 1
A Hfa-B (M177_M179

=75. (36)

Combining the diffusivity ratios of Zr and Hf isotopes (Egs. 24 and 25), we expect to first-order
that kinetic isotopic fractionation induced by diffusion will produce isotopic fractionations for Zr
and Hf that scale as (see the formulas in Sio et al.!'*!'%; Dauphas and Rouxel'**; Watson and

Muller!??; for a variety of diffusion geometries),

6[94—/9021. - I_W
S§1179/1TTHE ,_Db7°

~ 38 . (37)

This shows that equilibrium and diffusion-driven kinetic isotopic fractionation are expected to

&§'%%7Zr

8'179Hf

produce very distinct values. No 6'17?Hf value has been reported but its combination with

§'°*Zr measurements should provide a diagnostic tool to tell when Zr isotopic fractionation in
magmas reflects diffusive processes and use those effects to estimate the growth rate and cooling

history of zircons.

4.5. Potential usage in metamorphic zircons
Zirconium stable isotopic variations can potentially help unravel the complex processes
involved in metamorphic zircon formation. For example, our ab initio calculations show that under

amphibolite conditions (500-700 °C), Zr in amphibole should be fractionated in §'°*Zr by 0.22-
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0.35 %o, or 0.55-0.86 %o relative to Zr in ilmenite (Table 1, we use tremolite to approximate the
fractionation in amphibole, the two ranges correspond to two substitution mechanisms for the
calculations of tremolite). It is thus conceivable that metamorphic zircon formed from the

147

decomposition of amphibole'*’ would inherit the Zr isotopic composition of amphibole, which we

expect to be distinct from the Zr isotopic composition of the zircon formed by the breakdown of

ilmenite!4®

. Inter-mineral fractionations between zircon and co-existing Zr-bearing metamorphic
minerals may also help recognizing equilibrium parageneses and inferring equilibration

temperatures.

S. Conclusion

This study presents first-principle calculations of equilibrium Zr and Hf isotopic fractionation
factors in a variety of Zr-rich phases as well as a large number of minerals where Zr is present at
trace level in substitution with other elements. The minerals studied include Ca-catapleiite, a
mineral that previous EXAFS studies showed contains Zr in a coordination environment similar
to that encountered in silicate melts. We find that in the temperature range relevant to magmatic
zircon crystallization, there is negligible equilibrium Zr isotopic fractionation between
zircon/baddeleyite and melt. In general, equilibrium Zr isotopic fractionation between silicate
minerals and melt is not significant either. Iron-titanium oxides (ilmenite and magnetite) have the
potential to produce non-negligible mass-dependent fractionation of Zr isotopes. However, we
show through modeling using Rhyolite-MELTS that the relatively low concentration of Zr in these
Fe,Ti-oxide mineral offers limited leverage to greatly modify the melt composition during

magmatic differentiation before zircon saturation.
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Kinetic effects associated with diffusion-limited crystallization (DLC) of zircon can
potentially produce significant light Zr isotope enrichments in zircon. Reservoir effects in the
liquid would also lead to the crystallization of zircons with high 8'°*Zr. Diffusion-triggered
crystallization (DTC) of zircon from the diffusive boundary layer developed during the growth of
Zr-poor minerals can produce zircons with both positive and negative 8 **Zr values. If diffusion-
driven kinetic effects are the main mechanism at play, Zr isotopic analyses of zircons would
provide a means of constraining the cooling history of the host magma. We show that correlating
Zr and Hf isotopic measurements can help identify kinetic effects in zircons, as equilibrium and
diffusive kinetic effects are expected to impart different correlations between §'°*Zr and §'17°Hf

values.

Supporting Information

(A) Derivation of diffusion-driven kinetic isotopic effects produced by the accumulation of an
incompatible element in a diffusive boundary layer.

(B) Supplementary Figures.

(C) Supplementary Tables.
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Figure 1. (A) Zr mean force constant (N/m) as a function of Zr coordination number in minerals
calculated in this study. Lower coordination number generally corresponds to higher force constant
(stronger bond). (B) Zr mean force constant (N/m) as a function of Zr-O bond length (A). Shorter
Zr-O bond length generally corresponds to stronger bond.
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Figure 2. Relative error in the high temperature approximation 1000Inf = B;(F)/T? (Egs. 6, 7)
calculated using the 1-parameter 3-term expansion 1000InB = B,(F)/T? + B,(F)?/T* +
B;(F)3/T® (Egs. 10, 12). The curves were calculated following Dauphas et al.** for different
values of T and (F). (A) Relative departure from Eq. (10) when truncating the polynomial to the
first order for Zr. The force constants of Zr bonds in all calculated minerals are between 280 and
566 N/m (red dashed lines). When the temperature is higher than ~300-500 °C, truncating the
expansion to the first order (Eq. 6) will give a 1000InS value that is within 1% of the value given
by the whole expansion (Eq. 4). (B) Relative departure from Eq. (12) when truncating the
polynomial to the first order for Hf. When the temperature is higher than ~300-500 °C, truncating
the expansion to the first order (Eq. 7) will give a 1000Ing value that is within 1% of the value
given by the whole expansion (Eq. 4). The high temperature approximation can be applied to
calculate equilibrium Zr and Hf isotopic fractionation in igneous and metamorphic
geochemistry/petrology without compromising accuracy.
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Figure 3. (A) Temperature-dependent 1000Inf3 for Zr isotopes in minerals investigated in this
study. (B) Temperature-dependent 1000Ina,yiperal—melt fOr Zr isotopes in the same set of minerals.
The fractionation factors between minerals and melt are calculated by taking the difference
between each mineral and Ca-catapleiite (which we use as silicate melt proxy). The calculation
results for minerals with different Zr substitution mechanisms as well as different Zr
concentrations are also shown in the figure. See main text and Table 1 for details.
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Figure 4. (A) Temperature-dependent 1000In for Hf isotopes in zircon, ilmenite and Ca-
catapleiite investigated in this study. (B) Temperature-dependent 1000Ina yineral—mert for Hf
isotopes in zircon and ilmenite. As with Zr isotopes, the fractionation factors between minerals
and melt are calculated by taking the difference between each mineral and Ca-catapleiite (which
we use as silicate melt proxy). Solid and dash lines are calculation results for minerals with
different Hf concentrations (see Table 1 for details). Our results show that Hf stable isotope
fractionation during equilibrium process is very limited.
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Figure 5. Zr and Hf mean force constants in several minerals (zircon, ilmenite with two
concentrations, Ca-catapleiite). The current calculation results indicate that in minerals, Zr and Hf
form bonds with nearly identical bond strengths. The black dashed line is the 1:1 line and the green
dotted line is a regression through the data.
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Figure 6. Zr isotope equilibrium fractionation factor between zircon and melt as a function of
temperature. The two vertical dash lines bracket the temperatures relevant to igneous zircon
crystallization of around 700-1000 °C.
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Figure 7. §'°*Zr in the instantaneous zircon and melt during Rayleigh distillation process at two
temperatures of 700 and 1000 °C. fz, is the fraction of Zr remaining in the melt (see Eq. 18). 1 —
fz. is the fraction of Zr in zircon.
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Figure 8. Calculated trends of Zr/Hf and §'°*Zr variations in instantaneous zircon assuming melt-
zircon equilibrium at each step of a distillation. The free parameters are the fraction of Zr
remaining in melt (fz,. from 0.99 to 0.01) and the crystallization temperature. The calculations are
done using equations 15 and 17, 21 and 22, with an initial Zr/Hf ratio of 31.1 and initial §'**Zr

value of -0.086 %o0"°. The zircon-melt equilibrium isotopic fractionation factor is A**Zr;d =
7.87x10%

T2
Zr /Hf ratio (+£1%) and &'°*Zr isotopic composition (+0.01%o). This figure can help test if zircon
grew under equilibrium conditions.

(Sect. 4.1, Eq. 17). The red data point shows the current analytical uncertainties of
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Figure 9. Mass fractions of Zr in crystallized minerals and melt as a function of the mass fraction
of Zr remaining in melt for (A) calc-alkaline and (B) tholeiitic magmas. Before zircon
crystallization, only a small fraction of Zr is removed from the melt (mostly in clinopyroxene and
feldspar), and here we use the geometric mean of the partition coefficients for each mineral. These
calculations were run before zircon saturation (Fig. S6).
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Figure 10. (A) Zr and (B) Hf concentration and (C) Zr/Hf (weight ratio) evolutions during
magmatic differentiation along calc-alkaline and tholeiitic series. Modeling was done using
Rhyolite-MELTS and the results are compared with Andes (calc-alkaline) and Iceland (tholeiitic)
rocks (compiled from the GEOROC database; see Sect. 4.2. for details). The darker color trends
were calculated using the geometric mean of the partition coefficients compiled in GERM database,
while the bracketing lighter color trends correspond to minimum and maximum partition
coefficients.
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Figure 11. Modelled evolution of the Zr isotopic composition of residual melt before zircon
crystallization for (A) calc-alkaline and (B) tholeiitic magmas. The Zr isotopic fractionation factors
between minerals and melt from our ab initio calculations were used in the modeling, using results
from Rhyolite-MELTS as input (Fig. 9). The different trends are mainly caused by two factors: (i)
the various bulk Zr partition coefficients used in our calculations and (ii) the different isotopic
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fractionation factors calculated using different substitution mechanisms for Zr in several silicate
minerals. The blue lines labelled Si-Zr are calculated using 1000Inf3 values for olivine, cpx and
opx using the IVSi**Zr*" substitution with minimum, mean, and maximum mineral/melt K values.
The yellow lines are calculated using 1000Inf values in olivine, cpx and opx using the YIMg?* +
VIMg?'Zr*'+  substitution with minimum, mean, and maximum mineral/melt K values. In all
cases, the Zr isotopic compositions of the melts evolve towards lighter values before zircon starts
to crystallize but the magnitude of this fractionation is relatively small given the current analytical
precision on 8'?4Zr measurements (~£0.01 to +0.04 %0°°).

DLC

¢9OZr - Zr-poor
low high mineral
[Zr] [Zr]

8'947Zr G

Figure 12. Schematic models of diffusive Zr isotopic fractionation during crystallization. Left
panel: In the diffusion-limited crystallization model (DLC), the growth of zircon is limited by the
diffusive supply of Zr to the surface from a far-field medium that is supersaturated. Because the
light isotopes diffuse faster than the heavier ones, the liquid at the interface with the zircon will
have low &'°*Zr, while further away from the interface the liquid will have high §'*Zr. This model
would predict zircons to have low 8'%*Zr but reservoir effects in the liquid would also lead to the
crystallization of zircons with high 8 °*Zr. Right panel: In the diffusion-triggered crystallization
model (DTC), the growth of a Zr-poor mineral would push Zr away from the interface and lead to
high 8'%*Zr at the interface in the liquid and low 8'®4Zr further away. The whole diffusive
boundary layer would have elevated Zr concentration. This could trigger the saturation and
crystallization of zircon, which would inherit some of the fractionated Zr isotopic composition
from the diffusive boundary from which they grew.
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Figure 13. § exponents as a function of the ratio of cation diffusivities normalized by those of Si
in silicate melt (modified from Watkins et al.'*’). The B exponents for Zr and Hf isotopes were
estimated by linearly regressing this trend to In[Dz./Ds;] and In[Dy¢/Dsi] ~0 because the

diffusivities of both Zr and Hf are close to Si'#!. The two grey lines are the 95% prediction intervals.
This empirical correlation correlates the degree of diffusion-driven isotopic fractionation (f) with

a measure of solute-solvent interaction In[D;/Ds;]'*. In aluminosilicate melt, the solvent molecule

is Si0F", which is the reason why the quantity In[D;/Ds;] is used to describe solute-solvent

interaction.
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Figure 14. Zr concentration (A) and isotopic composition (B) profiles in the liquid away from the
interface of a growing zircon in a diffusion-limited regime (DLC model) at the time when the
zircon has reached 10 pm in size (the blue line is the liquid-solid interface). The red dot is the
liquid concentration and isotopic composition at the interface. Both concentration and isotopic
composition are relative to the liquid at infinity. As zircon grows from a supersaturated medium,
the liquid and crystal near the liquid-crystal interface get enriched in the light isotopes of Zr due
to their faster diffusion, while the liquid further away in the diffusive boundary layer gets enriched
in the heavy isotopes due to their slower diffusion. The calculations were done using Egs. 55, 49,
50 for diffusion-limited growth in a spherical geometry'*’ with a Zr diffusivity of D =
10~* um? /s'*?, Zr saturation concentrations Cg,; = 1806 ppm'*, Zr concentration in zircon of
500,000 ppm, and a supersaturation S = C,/Cs,; = 7.8, a diffusive Zr isotopic fractionation
factor Ap = —4.9 %o (B2 = 0.113 in Eq. 24). (A and B correspond to Movie 1 and 2).
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Figure 15. Expected 8'°*Zr variations in zircon as a function of the degree of supersaturation
during diffusion-limited zircon growth from silicate melt with different diffusive  exponents for
Zr isotopes (Eq. 26; see Sect. 4.3.1. for details). §'*Zr,;,.., is the isotopic composition in the
crystal relative to that in the far-field growth medium.
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Figure 16. Expected 8'9*Zr fractionations in zircon as a function of growth rate at different
temperatures and different supersaturations (Eqgs. 26 and 30; see Sect. 4.3.1. for details). (A)-(B)
use a diffusive Zr isotopic fractionation factor A, = —2.3 %o (8- = 0.054 in Eq. 24); (C)-(D) use
a diffusive Zr isotopic fractionation factor Ap = —4.9 %o (B = 0.113 in Eq. 24). §"°*Zr,i;c0n 1S
the isotopic composition in the crystal relative to that in the far-field growth medium. This figure
shows that measuring 8'°*Zr,;.,, can help estimate the degree of supersaturation and zircon
growth rate if the temperature can be independently constrained.
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Figure 17. Evolution of the Zr concentration (A) and isotopic composition (B, C) in a growing Zr-
poor crystal (blue line) and in the surrounding melt growth medium (black line) in three snapshots
taken at 0.6, 1.9, and 3.2 kyr (DTC model; see Sect. 4.3.2. for details). The concentration and
isotopic composition are normalized to the far-field growth medium. The diffusive boundary layer
has elevated Zr concentration, which could trigger zircon saturation and crystallization, thus
inheriting the isotopic composition in the diffusive boundary layer. The curves were calculated
using Eqs. 31-34, and A21, A23. We used the partition coefficient of clinopyroxene K = 0.08 (the
geometric mean of the values compiled in GERM database), diffusivity for Zr in melt D =
10~* um?/s at 950 °C'*, a growth rate of R = 10~7um/s (so that R/D = 10 cm™* which is in
the realm of possibilities'*’ ), and a diffusive isotopic fractionation factor A, = —2.3 and —4.9 %o
(B7-= 0.054 and 0.113 in Eq. 24, respectively). (A, B and C correspond to Movie 3, 4 and 5).
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Figure 18. Same as Fig. 17 but for a longer duration allowing the system to achieve steady-state
(note that this calculation is not aimed at reproducing natural conditions as crystals would stop
growing before reaching steady-state). Zr concentration (A) and isotopic composition (B, C) in the
growing Zr-poor crystal (blue line) and in the melt growth medium (black line) in three snapshots
taken at 6, 19, and 32 kyr. Note the difference in x-axis scale with Fig. 17. (A, B and C correspond
to Movie 6, 7 and 8).

09 . 04 . ;
(A) ! K= 0.08 © !
08+  Time=4kyrs | Bz =0.054 Time = 4 kyrs |
1 — 1
0.7 o (AD— _2 3 %0) -
= I 203 I
206 . 18 .
5 1 5 1
Tost ! 1°
g 1 Zo2 1t
Z04r . 1= .
- I I o p—
-C.é 03t 11 _-C.é [
% - 11 .g 11
11 [
E“ 02r 11 1 E 0.1 11
11 [
017 i B 11
11 [
0 1 1 11 0 1 11
3 2 -1 0 1 2 -6 4 2 0 2 4
194 !
o 5" Zr (%o) 5" Zr (%o)
. ' . ' 04 . . :
B) ' K=0.08 (D) !
0.8 Time = 7 kyrs . Bz =0.054 ] Time = 7 kyrs :
1
Ap=—2.3 %) !
§0.7 | (Ap 0) 203 |
206 I 12 I
%] 1 [} 1
20.5 - 1 -i ,
1
E 04l 1 | E 02 |
= - 1 = 1
® 03 | ' ] -
£02 : £ '
Loz i 1€ 0.1 :
1 1
0.1 I - |
1
0 . . . 0 , , :
-3 2 -1 0 1 2 -6 -4 2 0 2 4
194
5" Zr (%o) 5" Zr (o)

Figure 19. Expected probability density distribution functions (PDFs) of the Zr isotopic

compositions of Zr atoms in the diffusive boundary layer around a low-Zr growing crystal at 4 and

7 kyr. The dashed red vertical line is the average isotopic composition of the boundary layer where

the melt is Zr-supersaturated by at least of factor of 3. We only consider here locations where

C/Cy > 3 possibly conducive to zircon saturation. (A)-(B) use a diffusive Zr isotopic fractionation

factor Ap = —2.3 %o (B = 0.054 in Eq. 24); (C)-(D) use a diffusive Zr isotopic fractionation

factor Ap = —4.9 %o (S5 = 0.113 in Eq. 24). As the Zr-poor mineral grows (time increases from

(A) to (B), or from (C) to (D)), the §'%*Zr distributions of the diffusion-triggered crystallized (DTC)
zircons shift to more negative 8'**Zr values. (A, B and C, D correspond to Movie 9 and 10).
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1527
1528  Table 1. Average Zr-O and Hf-O bond lengths, coordination numbers (CN), force constant of Zr and Hf in relaxed mineral structures,
1529  and polynomial expansion coefficients of the reduced partition function ratios (10°Inp) of **Zr/*°Zr and """Hf/'""Hf of the studied
1530  minerals.
clinopyroxene Chemical composition Average Zr-O CN  Zr Force Polynomial expansion coefficients”
bond length constant Ay As Aj
Q) (N/m)
Si*teZr+ Mg24Ca24S147Z1O144 1.985 4 5243 1.09201 -5.903E-03 1.004E-04
(2b, 3¢)
Mg32CazSis3ZrO192 1.989 4 522.4 1.08785 -5.880E-03 1.000E-04
(2a, 2b, 2¢)
*VIMg2 +VHICa2 " Zr* g+ Mg7ZrCa;Sii60a8 2.124 6 390.2 0.80773 -4.366E-03 7.472E-05
(2¢)
Mgi5ZrCai5S1320096 2.125 6 395.8 0.81756 -3.778E-03 4.405E-05
(2b, 2¢)
VIMg2 +VIMg? > Zr+ vt MgeZrCasgSiisOas 2.117 6 371.5 0.77325 -5.224E-03 9.424E-05
(2¢)
orthopyroxene
Si*teZr+ Mg32Si31ZrO96 (2¢) 1.976 4 538.2 1.12083 -6.059E-03 1.031E-04
68
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MgeaSi63210192
(2b, 2¢)

1.975 4

540.0

1.12450

-6.078E-03

1.034E-04

oNOYTULT D WN =

VIMg2+ (M 1 )+ VIMg2+ (Mz)

7+

Mg3oeri32096 (2C)

2.131 6

409.0

0.85185

-4.604E-03

7.833E-05

Mg6zeri640192 (2b, 20)

2.130 6

olivine

S i4+ PN Zr4+

Mg3zsilszl‘064 (2a, 2C)

1.970 4

562.3

1.17094

-6.329E-03

1.077E-04

Mge4Si31Z1rO128
(2a, 2b, 2¢)

1.969 4

566.4

1.17947

-6.376E-03

1.085E-04

19 VIMg2+ (Mz) + VIMg2+ (Ml)

7+

Mg3ozl‘Si16064 (2a, 2C)

2.124 6

378.7

0.78861

-4.263E-03

7.252E-05

Mge2Z1Si300128
(2a, 2b, 2¢)

2.123 6

380.1

0.79152

-4.278E-03

7.279E-05

quartz

S i4+ PN Zr4+

SigoZrO162 (321, 3b, 30)

1.961 4

561.0

1.16823

-6.315E-03

1.074E-04

Si9sZ1rO192 (4a, 4b, 2c¢)

1.960 4

K-feldspar

v A13+ +VIHK+ PEN Zr4+Al +

K7A17S124064
(2¢)

1.969 4

540.1

1.12488

-8.154E-03

1.529E-04

Ki5Al15ZrSi430128
(2a, 2¢)

1.968 4

544.3

1.13321

-8.215E-03

1.530E-04

apatite
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XCa?+VlICa?* e Zr++ Ca33ZrP24096Fs (22, 2b) 2.183 6 297.1 0.61798 -2.856E-03 3.330E-05
Ca73ZrP4g0192F 16 2.179 6 -
(2a, 2b, 2¢)
geikielite
Ti*Zr*" Mg>4Ti23Z1rO72 (2a, 2b) 2.117 6 407.6 0.84873 -4.588E-03 7.805E-05
MgusTi47ZrO144 2.116 6 410.0 0.85581 -4.626E-03 7.870E-05
(2a, 2b, 2¢)
ilmenite
Ti*Zr*" Fex4Ti23ZrO72 (2a, 2b) 2.129 6 279.6 0.58224 -3.147E-03 5.354E-05
FeasTi47Zr0144 2.128 6 283.4 0.59015 -3.190E-03 5.427E-05
(2a, 2b, 2¢)
MgFe2O4 magnetite
VIFe3 '+ VFe¥ o Zr+yipet Mgi17ZrFe300e64 (22) 2.111 6 294.4 0.61306 -3.314E-03 5.638E-05
Mg 1v.re Mg33ZrFes:O12s 2.110 6 -
(2a, 2b)
tremolite
Si*teZr+ Mg4oCai6Si63ZrH160192 1.978 4 533.6 1.11117 -6.006E-03 1.0218E-04
(2a, 2¢)
*ViMg?t (M2) + VIMg? Mg18ZrCagSi32HgOos 2.113 6 383.3 0.79930 -4.320E-03 7.350E-05
(M1)eZr* v+ (2¢)
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MgssZrCai6SicaH160192 2.112 6 -
(2a, 2¢)

pyrope
VSi* e Zrt* Mg24Al16S123Z1O096 1.979 4 512.7 1.06679 -9.705E-03 1.902E-04
HIAPH Vi 74+ APR* Mg24Al16S123Z1O096 2.074 6 433.5 0.90215 -7.151E-03 1.354E-04
ViV g2+ VM g2t Zr*+ Mg22ZrAl16Si24096 2.240 8 345.7 0.71955 -4.862E-03 8.769E-05
zircon Z1S1x0g 2.228 8 334.7 0.69698 -3.767E-03 6.409E-05
baddeleyite Zr40s 2.187 7 3234 0.67268 -3.109E-03 3.624E-05
Ca-catapleiite CasZr4S112H16044 2.114 6 369.2 0.77571 -5.704E-03 1.226E-04

Chemical composition

Average Hf-O CN  Hf Force

Polynomial expansion coefficients”

bond length constant A1 A A3
A) (N/m)
zircon * >"ZI‘15HfSi16064 2. 140
3273 0.09094  -401E-04  7.49E-06
(2a, 2b, 2¢)
Zr3 HfSis0 2.140 8
TSI 18 326.4 0.09067  -4.00E-04  7.46E-06
(2a, 2b, 2¢)
ilmenite **Fe16T11sHIO4g 2.092 6
297.1 0.08254  -3.64E-04  6.79E-06
(2a, 2b, 2¢)
FeTinsHfO 2.092 6
243 HIn 294 0.08167  -3.60E-04  6.72E-06
(2a, 2b)
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Ca-catapleiite CayZr;HfSi12H16044 2.081 6 393.3 0.10928 -4.82E-04 8.99E-06
CasZr7HfSizsH3,0s5 (2a) 2.082 6 394.1 0.10951 -4.83E-04 9.01E-06

1531
1532
1533
1534
1535
1536
1537
1538
1539

represents vacancy.
*The polynomial expansion equation is: 10°Inf=A| x+A, x*+A3 x>, where x=10%/T2. T is temperature in Kelvin.
Abbreviations after chemical formulas refer to the expansion way of primitive cells to generate supercells and investigate the effect of
dilution. For instance, ““2a, 2b, 2¢” represents the supercell is generated by expanding the primitive cell twice along a, b, and ¢ directions.
*These substitutions are favored by spectroscopic observations'?.

**The primitive cells of zircon (Zr2Si,0s) and ilmenite (Fe.Ti2O¢) are used to construct the supercell.
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