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Summary 
 
Antibodies are crucial to immune protection against SARS-CoV-2, with some in emergency 

use as therapeutics. Here we identify 377 human monoclonal antibodies (mAbs) recognizing 

the virus spike, and focus mainly on 80 that bind the receptor binding domain (RBD). We 

devise a competition data driven method to map RBD binding sites. We find that although 

antibody binding sites are widely dispersed, neutralizing antibody binding is focused, with 

nearly all highly inhibitory mAbs (IC50<0.1µg/ml) blocking receptor interaction, except for 

one that binds a unique epitope in the N-terminal domain. Many of these neutralizing mAbs 

use public V-genes and are close to germline. We dissect the structural basis of recognition 

for this large panel of antibodies through X-ray crystallography and cryo-electron microscopy 

of 19 Fab-antigen structures. We find novel binding modes for some potently inhibitory 

antibodies and demonstrate that strongly neutralizing mAbs protect, prophylactically or 

therapeutically, in animal models. 
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Introduction 

A severe viral acute respiratory syndrome named COVID-19 was first reported in Wuhan, 

China in December 2019. The virus rapidly disseminated globally leading to the pandemic 

we are suffering, with over 100M confirmed infections and over 2.2M deaths 

(https://www.worldometers.info/coronavirus/). The causative agent, SARS-CoV-2, is a beta 

coronavirus, related to SARS-CoV-1 and MERS coronaviruses, which both cause severe 

respiratory syndromes.  

 

The sequence of SARS-CoV-2 was released in early January 2020 and this led to the 

mobilisation of an unprecedented international scientific response (Chen et al., 2020a). Over 

two hundred vaccine candidates are in development (Krammer, 2020) and 13 are in phase III 

clinical trials (https://www.who.int/publications/m/item/draft-landscape-of-covid-19-

candidate-vaccines) with Novovax and Janssen having reported efficacy recently and 

Pfizer/BioNTech, Moderna and Oford-AstraZeneca having received, emergency use 

authorization (EUA) in a number of countries. 

 

Coronaviruses have 4 structural proteins, nucleocapsid, envelope, membrane and spike (S). S 

from both SARS-CoV-2 and SARS-CoV-1 uses angiotensin-converting enzyme 2 (ACE2) as 

the cell surface receptor (Hoffmann et al., 2020), ACE2 is expressed in a number of tissues, 

including epithelial cells of the upper and lower respiratory tracts. S consists of two subunits, 

S1 which mediates receptor binding and S2 responsible for viral and host cell membrane 

fusion (Walls et al., 2020; Wrapp et al., 2020). It is a dynamic structure capable of 

transitioning to a post-fusion state (Cai et al., 2020) by cleavage between S1 and S2 

following receptor binding or trypsin treatment. In most SARS-CoV-2 sequences a furin 

protease cleavage site is inserted between the S1 and S2 subunits and mutation of the 
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cleavage site attenuates disease in animal models (Johnson et al., 2020).  The S1 fragment, at 

the membrane distal tip of S, includes an N-terminal domain (NTD) and receptor binding 

domain (RBD). While both regions are immunogenic, the RBD contains the interacting 

surface for ACE2 binding (Lan et al., 2020). Although usually packed down against the top 

of S2, RBDs can swing upwards to engage ACE2 (Roy et al., 2020). Monoclonal antibodies 

(mAbs) recognize one or both of ‘up’ and ‘down’ conformations (Zhou et al., 2020; Liu et 

al., 2020). The S protein is relatively conserved between SARS-CoV-2 and SARS-CoV-1 

(76%), but the RBD and NTD are less conserved (74% and 50% respectively) than the S2 

domain (90%) (Jaimes et al., 2020). Conservation with MERS-CoV and the seasonal human 

coronaviruses is much lower (19-21%). Overall SARS-CoV-2 antibodies show limited cross-

reactivity even with SARS-CoV-1 (Tian et al., 2020). 

 

Previous studies of SARS-CoV-2 have indicated that most potent mAbs bind close to the 

ACE2 interacting surface on the RBD to block the interaction with ACE2 (Zost et al., 2020; 

Liu et al., 2020) expressed on target cells or disrupt the pre-fusion conformation (Huo et al., 

2020; Yuan et al., 2020a; Zhou et al., 2020). There has been intense interest in S for the 

development of protective SARS-CoV-2 vaccines or for therapeutic mAbs, several of which 

are in clinical evaluation and even being deployed under EUA (DeFrancesco, 2020).  

 

Here we characterize a panel of 377 human mAbs from recovered COVID-19 patients. We 

devise a generally applicable method combining biophysical competition measurements with 

a smaller number of crystallographic structure determinations, to pin-point the attachment 

site for all 80 mAbs that bind the RBD. The resulting map shows that the antibody footprints 

cover the majority of the RBD surface, grouping into five epitopes by cluster analysis. In 

addition, we have determined 19 structures, mainly of Fab fragments with either spike or 
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RBD, by X-ray crystallography or cryo-electron microscopy (cryo-EM). These include many 

of the most potently inhibitory antibodies, all RBD-binders except for a single N-terminal 

domain binder. We analyse the modes of binding for antibodies with several public heavy 

chain (HC) V-regions. Of these some engage identical sites through conserved HC CDR1 and 

CDR2 (H1, H2) interactions, whilst others use variable length HC CDR3s (H3) to bind at 

different points. We find that shuffling the light chain pairing within one of these families 

leads to tighter binding. Other potently neutralizing antibodies have novel interaction sites 

and several of these bear somatic mutations that create N-linked glycosylation sites in H1-H3 

(Zhang et al., 2016). By studying the valency of antibody binding to virus particles we show 

that some of the most potent antibodies can neutralise at low receptor occupancies. The most 

potent mAbs neutralize the virus in the low picomolar range and show both prophylactic and 

therapeutic activity in a stringent murine model of SARS-CoV-2 pathogenesis. 

 

Results  

Characterization of mAbs 

We studied a cohort of 42 patients who had proven SARS-CoV-2 infection diagnosed by 

qRT-PCR (Table S1). Patients were recruited using the ISARIC protocol following informed 

consent and recalled following convalescence (31-62 days). ELISAs were performed against 

full-length stabilized S protein (Wuhan-Hu-1 strain, MN908947) where residues 986 and 987 

in the linker between two helices in S2 were mutated to a Pro-Pro sequence to prevent the 

conversion to the post-fusion helical conformation (Walls et al., 2020; Wrapp et al., 2020), 

RBD (aa 330-532) or N protein (Figure S1A). As has been described previously, antibody 

titres varied between patients, and there was a strong correlation between neutralization titre 

or the level of anti-S expressing memory B cells with disease severity (Chen et al., 2020b) 

(Figure S1B-C). 
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To generate mAbs, two strategies were used. First, IgG expressing B cells were sorted, 4 cells 

per well, cultured with IL-2, IL-21 and 3T3-msCD40L cells for 13-14 days, and supernatants 

were tested for reactivity to S protein; positive clones were identified by RT-PCR (Figure 

S2A). In a second method, B cells were stained with labelled S or RBD proteins, and single 

positive cells were sorted and subjected to RT-PCR (Figure S2B). Cell recovery was higher 

in the severe COVID-19 cases (Figure S1C), and in total we isolated mAbs from 16 patients 

(9 mild, 7 severe). 

 

377 antibodies were produced, which reacted to full length S by ELISA. MAbs were further 

screened for reactivity to S1 (34%), S2 (53%), RBD (21%) and the NTD (11%), with the 

remaining 13% reactive only to full-length trimeric spike (Figure S3A). Analysis of antibody 

sequences revealed low levels of somatic mutation of germline sequences for both heavy 

(mean 4.11 ± 2.75 amino acids) and light chains (mean 4.10 ± 2.84 amino acids) (Figure 

S3B). In general, responses within and between individuals were highly polyclonal with 

diverse V-gene usage (Figure S3C).  We tested cross-reactivity of the 377 anti-S antibodies 

generated from SARS-CoV-2 patients to full-length S proteins from all human alpha and 

beta-coronaviruses (Figure 1A). Cross-reactivity was observed with SARS-CoV-1 (52%), 

MERS (7%), OC43 (6%), HKU1 (7%), 229E (1%), and NL63 (1%). However, for antibodies 

recognising RBD, cross-reactivity was restricted to SARS-CoV-1, the RBD of which shares 

74% sequence identity with SARS-CoV-2, much more than the other human CoVs (19-21%). 

Antibodies cross-reacting between the RBDs of SARS-CoV-2 and SARS-CoV-1 showed 

similarly low levels of germline mutation to the whole pool of S reactive antibodies. 

However, for antibodies cross-reacting between SARS-CoV-2 and the four seasonal 

coronaviruses there were more germline mutations particularly in the heavy chain (Figure 
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S3D). One plausible explanation for the increase in germline mutation in the cross-reactive 

clones is that they were selected from the memory pool of seasonal coronavirus-specific B 

cells, rather than generated de novo after SARS-CoV-2 infection.  

 

Neutralization activity of SARS-CoV-2 mAbs  

Next, we investigated the neutralizing activity of all 377 mAbs using a focus reduction 

neutralization test (FRNT) using Vero cells. Only 5% of non-RBD mAbs showed 

neutralizing activity (IC50 < 10 µg/ml), whereas 60% of RBD-specific mAbs showed 

neutralizing activity (Figure 1B) consistent with previous studies of SARS-CoV-1 and 

SARS-CoV-2 (Barnes et al., 2020).  

 

In total, 19 of 80 anti-RBD antibodies yielded IC50 levels of < 0.1 µg/ml (Figure 1C), which 

we define as potent neutralizers. FRNT50 values for a selection of antibodies is shown in 

Table S2. A number of antibodies outside the RBD had weak neutralizing activity (IC50 

values of 0.29-7.38 µg/ml). MAb 159, which binds to the NTD (see below), was one of the 

most potent inhibitory antibodies we obtained with an IC50 of 5 ng/ml. 

 

We measured the ability of anti-RBD mAbs to block interaction with ACE2 using a 

competitive ELISA. For antibodies showing neutralization, there was broad correlation 

between inhibitory potency and ACE2 blocking while NTD-binding mAb 159 did not block 

ACE2 binding (Figure 1C).  

 

To investigate the contribution of RBD binding antibodies to neutralization in polyclonal 

serum, we immunodepleted sera from 8 convalescent donors with recombinant RBD; 

depletion of anti-RBD activity was confirmed by ELISA. Neutralization assays were 
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performed in RBD-depleted and mock-depleted samples and showed the major contribution 

made by anti-RBD antibodies with 55-87% (mean 61.5%) of neutralisation due to RBD-

binders. Whilst some RBD epitopes (eg quaternary epitopes) may be resilient to RBD 

depletion this indicates that although the large majority of non-RBD antibodies do not 

neutralise, those that do have a substantive role in the polyclonal neutralizing response to 

SARS CoV-2 (Figure 1D). 

 

Mapping the RBD antigenic surface  

To acquire greater insight as to the mAb binding sites on the RBD, we measured pairwise 

competition between antibodies using biolayer interferometry (BLI) in a 96-well plate 

format. For 80 antibodies, 4404 of the 6340 non-diagonal elements of the square competition 

matrix were populated. The antibodies were classified into mutually competing groups using 

cluster analysis (Methods). We derived the topography of binding for all the tested antibodies 

directly from the competition data with the aid of existing structural data. We expanded the 

competition matrix to include 3 additional (‘external’) antibodies of known binding positions 

(Methods). The external antibodies and one structure determined in the present study were set 

to their known positions on a smoothened mesh derived from the solvent-accessible surface 

of the RBD. The remaining 79 antibodies were assigned randomly to a starting vertex on the 

mesh and their positions refined by iterative minimization of a simple target function to 

match observed competition (antibodies were modelled as competing spheres of 22 Å 

diameter, see Methods). Minimization was performed 1000 times using Monte Carlo 

sampling from random starting positions. The results with lowest residuals were filtered 

using cluster4x (Ginn, 2020). The final positions of the mAbs (Table S3) were taken as the 

sampled position with the lowest average square distance to all other sampled positions. This 

consensus prediction replicates well the observed competition data (correlation coefficient 
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0.84). To assess the accuracy of the method, six antibodies whose positions we have since 

determined (see below), were compared with their predicted locations. The average error was 

7.6 Å. 

 

To facilitate interpretation of the results, we introduce a naming convention for the RBD by 

comparison with a human torso (Figure 2A). The predicted locations, covering most of the 

RBD surface, were classified into 5 groups using a clustering algorithm (Methods and 

cluster4x (Ginn, 2020)) (Figure 2B,C). The left flank cluster is distinct from the other 4 

clusters which show marked competition at their boundaries and interact sequentially from 

the left shoulder, neck, right shoulder to right flank. Competition was strongest between the 

left shoulder and neck, although the neck and right shoulder groups also cross-compete 

strongly (Figure 2C).  

 

The ACE2 binding site is shown in Figure 2D, and the positions of the 80 individual 

antibodies (plus externals) are depicted in Figure 2E. The neck cluster is the site of 

attachment of a number of antibodies possessing the public IGVH3-53 V-region (Yuan et al., 

2020b) and strongly overlaps the ACE2 binding site (Figure 2D-E). The left flank cluster 

includes previously determined structures EY6A, CR3022 and H014, all of which are 

reported to show neutralizing activity, but do not compete with ACE2 binding (Yuan et al., 

2020a; Huo et al., 2020; Zhou et al., 2020; Lv et al., 2020; Wrobel et al., 2020). Although the 

left flank is largely separated from the neck and shoulders, two mAbs (38, 178) nevertheless 

compete and are situated closer to antibodies of the left shoulder, compared to more isolated 

antibodies (1, 22, 177) (Figure 2E).  Some regions of the RBD are notable for the lack of 

antibody binding. The right and left flank clusters both interact with the neck and shoulder 

clusters, but this does not produce a complete ‘belt’ of antibodies around the waist of the 
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RBD. Antibodies are not seen against the N and C-termini, either because of incomplete 

presentation on the RBD or occlusion by other parts of the spike. 

 

Mapping neutralization 

In Figure 2F we map neutralisation to antibody position on the RBD. As expected, there is 

good correlation between overlap with the ACE2 footprint and neutralisation. However, there 

were examples of non-neutralizing antibodies that were good ACE2 blockers, and it is not 

clear why these antibodies performed poorly. From the competition data, we can identify 

pairs of non-competing potently neutralizing mAbs and, if we relax the potency threshold, 

triplets (Table S3).  Such combinations might prove useful in therapeutic cocktails (Baum et 

al., 2020;Dong et al., 2021).  

 

There are undoubtedly mechanisms of neutralization beyond ACE2 blocking, for instance 

159 binds the NTD, remote from the ACE2 binding site (see below).  Interestingly, 

antibodies co-locating with known neutralizing/protecting antibodies EY6A/H014 and S309 

(Huo et al., 2020; Zhou et al., 2020; Lv et al., 2020) in the left and right flank clusters 

respectively did not show appreciable neutralization in our assays. We speculate that our 

assay might not be equally sensitive to all mechanisms of neutralisation. 

 

Biophysical characterisation of selected antibodies 

We determined the kinetics of RBD attachment for 20 potent RBD binders (Table S2). KD 

values for Fab fragments ranged from 0.7 to 7.6 nM and off-rates, potentially associated with 

therapeutic efficacy, were in the order of 1,000-10,000 s (Ylera et al., 2013). We also 

characterised expression levels, thermostability, monodispersity, and freeze-thaw robustness 

for 34 mAbs (Table S4). All were stable at elevated temperatures with a first observed Tm at 
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65-80 °C (Walter et al., 2012) with more than 99% of the mass in a single species. A few 

appeared to have more complex unfolding pathways.  Nearly all were resilient to 20 freeze-

thaw cycles. 

 

Structural analysis of potent monoclonal antibodies - focusing on limited epitopes 

Based primarily upon the neutralization data (Table S2), we selected antibodies for structural 

analysis. Structures of 19 complexes, usually of either Fabs bound to isolated RBD (8, by 

crystallography) or of individual Fabs or mAbs bound to trimeric spike (11, by cryo-EM) 

were determined. Antibody 159 binds to the NTD, whereas all other antibodies bind the RBD 

(Figures 3, 4A, 4B, Methods, Tables S5, S6, Figures S4, S5). Many RBD-binders (40, 150, 

158 and 269) bind to a tightly defined site in the neck cluster; 253, 316 and 384 bind more 

towards the front of the left shoulder; 88 binds towards the back of the left shoulder (although 

the footprints overlap); and mAb 75 binds at the right shoulder. The footprint of all of these 

antibodies overlap with that of ACE2 (Figures 3, S4, S5). 

 

By selecting antibodies that are the most potent in the FRNT assay, we omitted a large 

number of high affinity antibodies. This can be seen for instance in mAb 45, which had a KD 

of 0.018 µg /ml. This mAb showed weak neutralisation (IC50 2 µg /ml) and was predicted as 

mapping to the right flank (Figure 4C). Structure determination of 45 in a ternary complex 

with potent neutraliser 88 and RBD, revealed binding in the predicted position, a site not 

reported previously, adjacent to S309, an antibody with 79 ng ml−1 IC50 (Pinto et al., 2020; 

Piccoli et al., 2020) (Figures 3, 4C, 4D), demonstrating the value of the predictive mapping 

in identifying novel epitopes. 

 

Potent antibody 384 binds in a previously unreported mode 
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Antibody 384 is our most potently neutralizing mAb with an IC50 of 2 ng/ml. Its binding 

mode is unlike any other SARS-CoV-2 antibody reported to date. It approaches the binding 

site on the top of the neck and left shoulder from the front with a relatively small footprint of 

630 Å2 (460 Å2 contributed by the heavy chain and 170 Å2 by the light chain). Although the 

orientation of 384 is similar to a group of previously reported Fabs (CV07-270, p2b-2f6 and 

bd629, (Kreye et al., 2020;  Ju et al., 2020; Du et al., 2020)), it is shifted 20 Å towards the left 

shoulder such that it does not contact the right chest (Figures 3, 4E). Only CDRs H2 and H3 

of the Fab 384 HC interact with the antigen (Figure 5A). It is unusual in that the 18-residue 

long H3 of Fab 384 binds across the top of the neck to reach the H3 binding site of the 

important IGVH3-53 group of Fabs (discussed below), making hydrophobic interactions 

from F104 and L105 at the tip to L455 and F456 of the RBD (Figure 5A). However, the 

main interactions that contribute to the binding affinity and orientation are with RBD residues 

482-486 on top of the shoulder. W107 of H3 makes strong π-interactions with G485, Y59 of 

H2 contacts V483 and makes bifurcated H-bonds to the carbonyl oxygen of G482 and amino 

nitrogen of E484 which in turn salt-bridges with R52 and H-bonds to the side-chains of T57 

and Y59 (Figure 5A). E484-F486 also form a two-stranded antiparallel β-sheet with residues 

A92-A94 of L3 and make stacking interactions from F486 to Y32 of L1.  

 

Repeated usage of heavy chain V-regions demonstrates potent public responses 

The potent neutralisers we have identified frequently use public HC V-regions (shared by 

most people, compared to private, patient specific responses). Thus 5 potent mAbs use 

IGVH3-53 (bearing 3-10 non-silent mutations) (Figure 5B). IGVH3 antibodies have been 

observed before (e.g., B38, CB6 and CC12.3 (Wu et al., 2020b; Shi et al., 2020; Yuan et al., 

2020b; Hurlburt et al., 2020; Wu et al., 2020a; Du et al., 2020; Clark et al., 2020)). Our 

competition data showed that these all bind at a similar site. We determined structures for 
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three members of the group, 150, 158 and 269 (the others are 175 and 222) and found that 

they bind almost identically at the back of the neck with similar footprints of about 800 Å2 

(Figures 3, S4B). The flat binding site of the RBD and the approach angle of the Fabs limit 

their H3 length (11 residues) and the number of contacts H3 makes with the RBD (Figure 

5C), which is compensated for by the interactions from H1, H2 and all CDRs of the light 

chain. Thus for 158, H3 makes four direct contacts (≤ 4 Å) and two hydrogen bonds to the 

RBD, whilst H1 and H2 together make 11 contacts and 6 hydrogen bonds, and the three LC 

CDRs contribute 6 contacts and 5 hydrogen bonds (Figure 5C). We note strong LC 

interactions with residue N501 of the RBD, which is mutated in recent variants (B.1.1.7, 

B.1.351, P.1). The H3 length matches that reported as optimal for this V-region (Yuan et al., 

2020b), and the H3 sequence of mAb 150 is strongly similar to that of CC1.12 (Yuan et al., 

2020b) (Figure S4A). Thus H1 and H2 determine the mode of engagement, as seen in 

previous studies of antibodies with this V-region (Figure S4C) (Yuan et al., 2020b).  

 

A second V-region which repeatedly confers potent (IC50 < 0.1µg/ml) neutralisation is 

IGVH1-58 (mAbs: 55, 165, 253 and 318). These have even fewer non-silent mutations (2 to 

5) and longer HC CDR3s (12-16 residues). Three antibodies (55, 165, 253) harbour a 

disulfide bond in their CDR3s, compete strongly with each other for binding and map to the 

neck epitope, but do not compete with mAb 318. In mAb 253 the disulfide brackets a 

glycosylation sequon (see below). The crystal structure of a complex including Fab 253 

confirmed that it binds within the dominant neck epitope (Figure 3). In contrast competition 

mapping indicates that Fab 318 binds at the right shoulder epitope (Figure 2E). It appears 

that for this V-region the CDR3 is more critical to recognition and can switch binding to 

different epitopes on the same antigen, but nevertheless can bind strongly with near germline 

V-region sequences. 
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The final V-region with at least 2 potent neutralizers is IGHV3-66, which was found a total 

of 5 times with 2 potent neutralizers (282 and 40). These two (with rather few mutations from 

germline and CDR3 lengths 12 and 13 respectively) compete strongly. Once again, we 

determined a complex structure for one (Fab 40) and demonstrated that, as expected from the 

competition data, this antibody binds squarely in the dominant neck epitope, almost 

indistinguishable from those using IGHV3-53 (Figure 5D). One IGHV3-66 mAb (398) has a 

much longer H3, 21 residues, and is predicted to bind on the edge of the neck epitope (Figure 

2E). 

 

IGHV3.11 is found in the most potent neutraliser, 384 but is also used by CV07-270 (Kreye 

et al., 2020).  CV07-270 is swung forward and sideways (compared to 384, Figure 4E) so 

that it does not compete with ACE2 binding, suggesting that the potency of 384 derives from 

the extended H3 interaction which reaches across the ACE2 binding site. 

 

Whilst IGHV3-30 is found in 11 RBD binders, none are potent neutralisers. H3 lengths for 

IGHV3-30 RBD binders vary from 12 to 20 residues, suggesting they bind at different sites, 

as confirmed by the structures of two representatives, 75 (in a ternary complex with 253) and 

45 (in a ternary complex with 88) (Table S5). 75 binds on the right shoulder and overlaps the 

ACE2 binding site (Figure 3), however the only HC-RBD contact is via the extended 20 

residue H3, whereas the bulk of the interaction is with the LC, outside of the ACE2 footprint, 

and ACE2 binding could likely displace the extended H3 loop (Figure 5E). 45, with an H3 

length of 14 residues, binds differently, well away from the ACE2 binding site on the left 

flank and so would not be expected to neutralise (Figure 3). Thus for IGHV3-30 antibodies, 
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the mode of binding is modulated by H3 and not focused on a region overlapping the ACE2 

site.  

 

In summary, the major public V-regions used by potent antibodies generally target the neck 

epitope, usually with a common mode of binding dictated by the V-region (although they can 

occasionally switch epitopes), but this is not true for weaker neutralisers. This likely explains 

the overwhelming representation of a common mode of binding at the neck epitope in the 

structures determined to date (Figure S4C). 

 

Light chain mixing can increase neutralization titre 

For the three potent anti-RBD antibody clusters where >2 members shared the same IGVH 

(IGHV3-53, IGHV1-58 and IGHV3-66), we performed a mixing experiment, where each 

IGVH was matched with all the IGVL within that cluster (Figure 6A). Chimeric antibodies 

were expressed and neutralizations were performed and compared with the original mAb 

clone. Unexpectedly, we found a 10-fold increase in neutralization titres when the heavy 

chain of mAb 253 (IGVH1-58, IGVK3-20) was combined with the light chains of mAbs 55 

and 165, which are also (IGVH1-58, IGVK3-20) but contain the IGKJ1 region in contrast of 

IGKJ2 in mAb 253 (Figure 6B). Remarkably the sole difference in contact residues is a Trp 

for Tyr substitution in mAbs 55 and 165 (Figure 6C). Structural analyses of Fab-complexes 

with RBD reveals the large hydrophobic tryptophan side chain stabilising a hydrophobic 

region of the antibody and nestled against the key hydrophobic region (E484-F486) of the 

RBD used by many potent neutralisers, whilst the smaller tyrosine side chain makes fewer 

contacts. 

 

The role of N-linked glycan in antibody interaction 
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Although 15-25% of IgGs bear N-linked glycans in their variable regions, sometimes with 

impact on antigen binding, this finding is relatively poorly studied at the molecular level 

(Wright et al., 1991; van de Bovenkamp and Hafkenscheid, 2016). Of 80 RBD-binding 

antibodies described here, 14 (17.5%) contain glycosylation sequons arising from somatic 

mutations in their variable region. For 8 mAbs (1, 88, 132, 253, 263, 316, 337, 382) the 

sequons are in the HC and for 5 they lie in a CDR. Several of the HC mutations, but none of 

the LC mutations, are in potently inhibitory antibodies (neutralization IC50 < 0.1 µg/ml). Two 

of these (88 and 316) could be de-glycosylated without denaturation, and BLI analysis 

showed that this had negligible effect on RBD/Fab affinities (KD = 0.8/1.2 nM and 1.0/2.0 

nM, de-gylcosylated/glycosylated respectively for 88 and 316), although the on-rate was a 

little faster in the absence of sugar (e.g. 3.8x105 1/Ms compared to 1.4x105 1/Ms for mAb 88. 

However, mutations that eliminate glycosylation had a deleterious effect on neutralisation for 

these two and for the 253H165L chimera (Figure S6). Structures were therefore determined 

for mAbs 88, 316 and 253 in complex with RBD and with spike (Figures 3, 6D, S6, Tables 

S5, S6).  

 

Antibodies 88 and 316 contain glycosylation sites in H1 (N35) and H2 (N59) respectively. 

The crystal structure of the RBD-316 Fab complex at 2.3 Å resolution shows well-defined 

density for 3 glycans including an α1,6 linked fucose (Figure 6D and S6E). The structure of 

Fab 88 was determined in a ternary complex with 45 and RBD to 2.53 Å resolution (the ChCl 

domains of 88 were disordered but the VhVl domains had well defined density). Antibody 88 

binds to the back of the neck whereas 316 binds to the top of the neck, orientated radically 

differently, however the H3s of the two Fabs overlap well (Figure 6D and S6). The glycans 

of Fab 88 surround the back of the left shoulder like a necklace and those of Fab 316 sit on 

the top of the same shoulder. Fab 88 has a footprint of 1110 Å2 (390 Å2, 420 Å2 and 300 Å2 
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from HC, LC and glycans, respectively), whereas Fab 316 has a footprint of 950 Å2 (610 Å2, 

150 Å2 and 190 Å2 from HC, LC and glycans, respectively). As we describe above for mAb 

384, residues E484-F486 of the RBD make extensive interactions in these antibodies with 

residues from the 3 CDRs of the HC and L1 and L3 of the LC, thus for 316 the side chain of 

E484 H-bonds to N52 and S55 of H2 and Y33 of H1, G485 contacts W50 of H2, and F486 

makes strong ring stacking interactions with Y93 and W99 of L3 and Y34 of L1. This 

suggests E484-F486 constitutes a hot-spot of the epitope. These residues are accessible from 

a variety of different angles of attack, thus Fabs 384, 316 and 88 all interact with this region 

despite their markedly different poses on the RBD. In contrast, the H3 of 253 overlaps with 

the glycans of mAb 88 and the glycan of mAb 253 makes no direct interactions with the RBD 

(Figure 6D). 

 

In all cases the sugar is presented close to the top of the left shoulder, and in 2 out of 3 cases 

interacts directly but rather weakly with the antigen. The high frequency of sequon 

generation despite the rather few somatic mutations is intriguing and suggests positive 

selection. 

 

Binding in the context of the trimeric spike 

On isolated stabilised spikes the RBD is found in two orientations; ‘up’ and ‘down’ (Yuan et 

al., 2017; Roy et al., 2020). Both of these form an ensemble of conformations, up 

conformations vary by up to 20° (Zhou et al., 2020) and down can include a tighter packed 

‘locked’ conformation (Ke et al., 2020; Toelzer et al., 2020; Carrique et al., 2020; Xiong et 

al., 2020). The structures we see by cryo-EM have the RBD in either the classic up or down 

conformation (see Figure 7A), although antibody binding sometimes introduces small 

perturbations in the RBD orientation. The most common configuration observed for the spike 
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construct we have used is 1 RBD-up and 2-down. ACE2 can only attach to the up 

conformation, which is assumed to be less stable, favouring conversion to the post-fusion 

state. In our structures, we see Fabs 40, 150, 158 and the chimeras 253H55L and 253H165L 

binding to the spike in this one-up configuration. 253H55L also binds to the all-down 

configuration (1 Fab/trimer), as does Fab 316 (3 Fabs/trimer) and Fab 384 (1 Fab/trimer). In 

contrast, Fab 88 binds (3 Fabs/trimer) in the all-up configuration (Table S6 and Figure 7A).  

 

Although Fab 384, despite its high potency, predominantly binds only one RBD per trimer, 

analysis of different particle classes revealed some weak density decorating the other RBDs, 

also in the down position, while a subtle movement can be seen between the RBDs of 

different classes (Figure S5L). This could be attributed to a more favourable RBD 

conformation that can only be sustained by one RBD at a time. 

 

To visualise the binding of the highly potent mAb 159, it was necessary to incubate spike 

with 159 IgG (the Fab alone showed no binding). This revealed all three NTDs of the spike 

decorated by 159 with RBDs in either one-up or all-down configurations (Figure S5M). The 

159 binding site is ~15 Å from that of a previously reported NTD binder, 4A8 (Chi et al., 

2020), in which the CDR-H3 binds on the side of the NTD between the 144-153 and 246-258 

loops (Figure 7B). The CDR-H3 of 159 is 11 residues shorter than that of 4A8 (Chi et al., 

2020) and binds on the top centre of the NTD interacting with residues 144-147, 155-158, 

250-253 and the N-terminus of NTD. All 3 CDRs of the heavy chain contribute to a foot-

print of 515 Å2 on the NTD, whereas the light chain has little contact with the NTD (35 Å2), 

similar to 4A8 (Chi et al., 2020) (Figure 7B, C). 

 

Valency of interaction 
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We measured binding of full-length mAbs and Fab fragments to intact SARS-CoV-2 by 

ELISA and compared these with neutralization curves for antibodies for which we have 

structural information (Figure 7D and Table S7). For the anti-NTD mAb-159 binding of 

full-length and Fab to virions were nearly identical, in-line with NTDs on a trimer being too 

far apart to allow bivalent engagement (118 Å) (Figure 7C) and suggesting that mAb-159 

cannot span adjacent spike trimers at the virion surface. Interestingly, whilst IgG-159 is a 

potent neutraliser, Fab-159 has no neutralizing activity, suggesting that the Fc portion is 

crucial for activity, although the mechanism is not immediately apparent and does not 

involve blocking ACE2 interaction. 

 

Loss in binding and neutralisation with Fabs compared to IgG is quite modest for mAb-88, 

which attaches in the all-up conformation (Figure 7D and S6), but much more marked for 

mAbs that bind the all-down form of the spike (253, 316, 384). Thus mAb-384 showed 79-

fold less virus binding and a 486-fold loss of neutralisation activity when reduced to Fab, 

suggesting that both Fab arms are used when antibody interacts with virions and also 

highlights the exceptional KD of Fab-159, 2.5 to 81-fold better than the other Fabs depicted in 

Figure 7D and Table S7. Finally, we have used the following formula to estimate the 

relationship between antibody binding and neutralization: Percent occupancy = BMax* 

[Ab]/(Kd+[Ab]), where the BMax is percent maximal binding, [Ab] is the concentration of 

Ab required to reach 50% FRNT and Kd is the concentration of Ab required to reach half-

maximal binding. mAb-384 can achieve NT50 with an estimated average occupancy of 12% 

of the maximum available antibody binding sites on each virion, perhaps in part due to the 

avidity conferred by bivalent attachment (Table S7). Bivalent attachment to the down 

conformation may also lock all three RBDs, preventing attachment to ACE2. Some of the 

variation in the effects seen in Figure 7D and Table S7 probably arises from the interplay 
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between the angle and position of attack of the antibody arm to the RBD and the constraints 

on flexibility in the system.  

 

In vivo efficacy 

We determined the efficacy of our most promising neutralizing human mAbs in vivo. We 

utilized the K18-hACE2 transgenic mouse model of SARS-CoV-2 pathogenesis wherein 

human ACE2 expression is driven by an epithelial cell specific, cytokeratin-18 gene promoter 

(McCray et al., 2007; Winkler et al., 2020). In this model, SARS-CoV-2 infected animals 

develop severe pulmonary disease and high levels of viral infection in the lung that is 

accompanied by immune cell infiltration and tissue damage (Winkler et al., 2020). Initially, a 

single 250 µg (10 mg/kg) dose of mAbs 40 and 88 were administered as prophylaxis by 

intraperitoneal injection 1-day prior (D-1) to intranasal (i.n.) challenge with 103 PFU of 

SARS-CoV-2. Passive transfer of mAb 40 or 88, but not an isotype control mAb (hE16), 

prevented SARS-CoV-2-induced weight loss (Figure S7A). In the lung homogenates of 

antibody 40 and 88 treated animals, no infectious virus was detected at 7 dpi, whereas 

substantial amounts were present in animals treated with the isotype control mAb (Figure 

S7B). Consistent with these results, viral RNA levels were reduced by approximately 10,000-

100,000-fold compared to isotype control mAb- treated animals (Figure S7C). In peripheral 

organs, including the heart, spleen, or brain viral RNA levels were reduced or undetectable in 

mAb 40 or 88 treated animals (Figure S7D-G). Moreover, levels of viral RNA at 7 dpi were 

markedly lower in the nasal washes of animals treated with mAbs 40 and 88 compared to the 

isotype control. 

 

To further evaluate the in vivo potency of our mAbs, we assessed the therapeutic activity of a 

larger panel at 1 dpi (D+1) with 103 PFU of SARS-CoV-2. Although varying degrees of 
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protection were observed for individual mAbs, weight loss was significantly reduced in all 

animals treated with anti-SARS-CoV-2 mAbs at 6 and 7 dpi compared to the isotype control 

(Figure 7E). Whereas the lungs of isotype control mAb-treated animals had infectious virus 

levels of ~106 PFU/g of tissue, we barely detected infectious virus in animals treated with the 

mAbs 40, 88, 159, 384, or 253H55L (Figure 7F). Lung viral RNA levels at 7 dpi also were 

reduced in animals treated with mAbs 40, 159, 384, and 253H55L, although statistical 

significance was not achieved with mAb 88 despite mean reductions of ~100-fold (Figure 

7G). At sites of disseminated infection, notably the heart, spleen, and brain, all anti-SARS-

CoV-2 mAbs showed protective activity although mAbs 384 and 253H55L conferred the 

greatest reductions in viral RNA levels (Figure 7H-K). In nasal washes, mAbs 159 and 384 

showed the best ability to reduce viral RNA levels (Figure 7J). Collectively, these data 

demonstrate several mAbs in our panel can reduce infection in the upper airway, lower 

airway, and at distant sites when administered after infection.  

 

Discussion 

There is now a substantial database of antibody/antigen complexes for the SARS-CoV-2 

spike (84 PDB depositions as of 12 December 2020, including nanobody structures). The 

number of unique structures is smaller than this and the focus on potently neutralising public 

V-regions means that many have near identical binding modes (Figure S4).  Here we report, 

in contrast, a comprehensive analysis of anti-SARS-CoV-2 human mAbs. We measured the 

neutralisation ability of a set of 377 mAbs from a substantial cohort of COVID-19 patients 

and identified that 80 of these bind the RBD. For these, we have determined the binding sites 

of all 80 of these, using a combination of structural methods and a novel computational 

algorithm based on bio-layer interferometry competition measurements. This defines five 

binding clusters or epitopes. By analogy with a human torso four of these clusters form a 

Jo
urn

al 
Pre-

pro
of



 23 

continuous swathe running from the left shoulder to the neck, right shoulder and down the 

right flank of the torso whilst the fifth forms a more discrete site towards the left flank. These 

sites are widely distributed over the surface, however all but one of the 20 most potent (IC50 

<0.1µg/ml) neutralizing mAbs block receptor attachment to the neck. The single exception, 

mAb 159, binds the NTD and the mechanism of neutralisation is unclear. 

 

The large body of structural results allowed us  to dissect the high-resolution details of 

binding of the major classes of potent neutralisers that bind the RBD. Highly potent ACE2 

blocking mAbs map to two sites in the region of the neck and left shoulder, residues E484-

F486 bridge the epitopes and are accessible to Fabs binding from a variety of different angles 

of attack. It is notable that mutation F486L has been identified as a recurrent mutation 

associated with host-adaptation in mink (van Dorp et al., 2020) and likewise mutation E484K 

is found in the recently identified B.1.351 and P.1 lineages. We would expect these changes 

to impact on the binding of many of our most potent mAbs, including 384. A characterisation 

of the polyclonal antibody response would give insight into the potential for vaccine escape. 

 

There is a close association between potent neutralizers and public V-genes suggesting that 

vaccination responses should be strong (Yuan et al., 2020b).  Three public V-region genes are 

represented at least twice in our set, i) IGHV3-53: mAbs 150, 158, 175, 222 and 269, ii) 

IGHV1-58: 55, 165, 253 and 318 and iii) IGHV3-66: 282 and 40. The potent binders focus 

around the neck cluster, often with binding pose determined by the H1 and H2 loops. By 

switching light chains within these sets, we found that one (253) could improve functionally 

by an order of magnitude by using an alternate light chain to achieve better hydrophobic 

interactions with the key bridging region we identify, E484-F486. The most highly potent 
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mAb, 384, adopts a unique pose, with a footprint extending from the left shoulder epitope 

across to the neck epitope via an extended H3.  

 

Despite the most potently neutralizing mAbs being close to germline, somatic mutations 

introduce N-linked glycosylation sites into the variable region of 17.5% of the potent 

neutralisers. These can contribute to the interaction with the RBD, and although they appear 

to have relatively little effect on affinity they significantly enhance neutralisation. The 

enhanced neutralisation we observe (along with other favourable properties, e.g. solubility, 

stability and mitigation of auto-antigen responses) warrant investigation of production 

methods to allow variable region glycosylated Fabs to routinely meet regulatory standards 

(Zhang et al., 2016). 

 

 We find that there is a correlation between Fab vs IgG binding/neutralisation and the mode 

of attachment to the prefusion spike as seen by cryoEM. Those antibodies which bind the 

spike in the down conformation appear to show a marked avidity boost to binding and 

neutralisation when Fab and full length IgG1 are compared (e.g. 316 and 384), suggesting 

that there is a relationship between the mode of attachment and neutralisation which is still 

not fully understood, as also seen from the potent neutralisation reported for antibodies that 

bind at the left and right flank (S309 and EY6A/H014 (Pinto et al., 2020; Zhou et al., 2020; 

Lv et al., 2020) epitopes that do not report strong neutralisation in the assay we use in this 

report.  

 

Finally, we demonstrate that the most potent antibodies we have identified can protect in an 

animal model, when administered prophylactically or therapeutically. The competition 

mapping method we have devised suggests a series of combinations of neutralising 
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antibodies with non-overlapping epitopes which could create an immunotherapy with greater 

protection and resistance against mutation than a single monoclonal antibody.  

 

Limitations of the Study 

The mechanisms of neutralization by antibodies which bind to the NTD is not yet established 

and will be the subject of further study. The correlates of protection from SARS-CoV-2 

infection have not yet been established and the role of T cells needs further study. It is also 

the case that in vitro neutralization assays do not capture the contributions of Fcγ receptor 

interactions and complement activation which likely contribute to protection in vivo. The 

mapping methodology could be improved, for instance by covalently anchoring the antigen, 

by more complete sampling or better modelling of the antibody shape. It could also be made 

more routine by higher density testing (e.g. 384-well plates).  However, the approach could 

be applied equally to other data, e.g. surface plasmon resonance or ELISA to provide a 

general way of rapidly determining locations from highly redundant competition 

experiments. 

 

 

Acknowledgements 

National Institute for Health Research Biomedical Research Centre Funding Scheme (to 

G.R.S.), the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical 

Science (CIFMS), China (grant number: 2018-I2M-2-002) to D.I.S. and G.R.S., and G.R.S. is 

supported as a Wellcome Trust Senior Investigator (grant 095541/A/11/Z). H.M.E.D. and 

J.Ren are supported by the Wellcome Trust (101122/Z/13/Z), Y.Z. by Cancer Research UK 

(C375/A17721) and D.I.S. by the UK Medical Research Council (MR/N00065X/1). J.C.K. is 

supported as a Wellcome Trust Senior Investigator (204969/Z/16/Z) and the NIHR Oxford 

Jo
urn

al 
Pre-

pro
of



 26 

Biomedical Research Centre. T.K.T. is funded by the EPA Cephalosporin Early Career and 

Teaching Fellowship and Townsend Jeantet Charitable Trust (charity number 1011770). P.K. 

is supported by an NIHR (SF), WT (109965MA), MRC (UK-CIC). D.I.S. and GRS are 

Jenner Investigators. N.M.K is supported by T32AI007172. The National Institute for Health 

Research Biomedical Research Centre Funding Scheme supports G.R.S. We are also grateful 

for a Fast Grant from Fast Grants, Mercatus Center to support the isolation of human 

monoclonal antibodies to SARS-2 and Schmidt Futures for support of this work. G.R.S. is 

also supported as a Wellcome Trust Senior Investigator (grant 095541/A/11/Z). This is a 

contribution from the UK Instruct-ERIC Centre. The Wellcome Centre for Human Genetics 

is supported by the Wellcome Trust (grant 090532/Z/09/Z). Virus used for the neutralisation 

assays was a gift from Julian Druce, Doherty Centre, Melbourne, Australia. The NP protein 

plasmid was a gift from Fred Antson. We acknowledge Diamond Light Source for time on 

Beamline I03 under Proposal lb27009 and for electron microscope time at the UK national 

electron bio-imaging centre (eBIC), Proposal BI26983, both COVID-19 Rapid Access. Huge 

thanks to the teams, especially at the Diamond Light Source and Department of Structural 

Biology, Oxford University that have enabled work to continue during the pandemic. The 

computational aspects of this research were supported by the Wellcome Trust Core Award 

Grant Number 203141/Z/16/Z and the NIHR Oxford BRC. This study was supported by 

grants from NIH (R01 AI157155) and the Defense Advanced Research Project Agency 

(HR001117S0019). The Temperton group is funded by the Wellcome Trust (GB-CHC-

210183), the MRC (MC_PC_19060) and MRC/NIHR (MC_PC_20016), J.B is supported by 

Georg and Maria von Opel Foundation and J.B.C. by a Helen Hay Whitney Foundation 

postdoctoral fellowship. We acknowledge the ISARIC investigators: Kenneth Baillie, Shona 

Moore, Peter Openshaw, Malcolm Semple and Lance Turtle for the provision of samples. 

 

Jo
urn

al 
Pre-

pro
of



 27 

Author contributions 

D.Z. performed interaction analyses. T.S.W. performed biophysical analyses. Y.Z. prepared 

protein for structural studies. Y.Z., D.Z., J.Ren, performed sample preparation for and 

crystallographic experiments and processed the data. D.R.H., F.K.R.B., M.A.W. and N.G.P. 

assisted with X-ray diffraction data collection. T.K.T, A.R.T and K-Y.A.H. provided 

materials. J.Ren refined the structures and together with E.E.F. and D.I.S. analysed the 

results. W.D., J.M., G.C.P., P.S., J.S-C, and C.L-C prepared proteins. W.D, P.S, C.L, and 

B.W. produced antibodies W.D., C.T., J.B., A.F., S.G., J.G-J., W.J., M.K. and M.W.C. and 

performed neutralization assays. T.K.T generated MDCK-NTD A.J.M, D.S, C.D, Y.P, R.L. 

T.D, A.J.P, J.C.K, P.K worked on sample collection and data curation. H.M.E.D. performed 

cryo-EM sample preparation, collection, screening and processing. C.A.S., J.Raedecke, 

D.K.C., A.H. and Y.S. organised and performed cryo-EM data collection and J.Ren refined 

the cryo-EM structures. H.M.G. wrote the software for the epitope mapping and performed 

mapping and cluster analysis. J.B.C., N.M.K., A.L.B., and R.E.C. performed mouse 

experiments and clinical analyses. J.B.C. and B.Y. performed viral burden analyses. J.B.C., 

M.S.D., and G.R.S. designed mouse experiments and analysed results. J.B.C., M.S.D., G.R.S. 

and D.I.S. wrote the initial manuscript draft with other authors providing editorial comments. 

All authors read and approved the manuscript. 

 

DECLARATION OF INTERESTS 

M.S.D. is a consultant for Inbios, Vir Biotechnology, NGM Biopharmaceuticals and Carnival 

Corporation and on the Scientific Advisory Boards of Moderna and Immunome. The M.S.D. 

laboratory has received unrelated funding support in sponsored research agreements from 

Moderna, Vir Biotechnology, and Emergent BioSolutions. GRS sits on the GSK Vaccines 

Scientific Advisory Board. AJP is Chair of UK Dept. Health and Social Care’s (DHSC) Joint 

Jo
urn

al 
Pre-

pro
of



 28 

Committee on Vaccination & Immunisation (JCVI), but does not chair or participate in the 

JCVI COVID19 committee, and is a member of the WHO’s SAGE. The views expressed in 

this article do not necessarily represent the views of DHSC, JCVI, NIHR or WHO. The 

University of Oxford has entered into a partnership with AstraZeneca on coronavirus vaccine 

development. All other authors declare no competing financial interests. The University of 

Oxford has protected intellectual property disclosed in this publication. 

 

 

Figure legends 

Figure 1. Characterization of SARS-CoV-2-specific mAbs. (A) Cross-reactivity of 299 

anti-spike (non-RBD) and 78 anti-RBD antibodies to trimeric spike of human alpha and beta- 

coronaviruses by capture ELISA. (B) Comparison of neutralization potencies (IC50) between 

anti-spike (non-RBD) and anti-RBD antibodies against authentic SARS-CoV-2 using focus 

reduction neutralization test (FRNT). The Mann–Whitney U test was used for the analysis 

and two-tailed P values were calculated. (C) Correlation between SARS-CoV-2 

neutralization and RBD:ACE2 blocking by anti-RBD antibodies. Antibodies with IC50 < 0.1 

µg/ml, 0.1-1 µg/ml and 1-10 µg/ml are highlighted in red, blue and orange, respectively. (D) 

Plasma was depleted of RBD-specific antibodies using Ni-NTA beads coated with or without 

RBD, then evaluated for SARS-CoV-2 neutralizing activity by FRNT assay (n = 8). Results 

are expressed as percent neutralization of control without plasma. The percentage of 

depletion of neutralizing antibodies for each sample tested is indicated at the top of each 

panel. 

 

Figure 2. RBD anatomy and epitope definition based on mapping results. (A) Pale grey 

RBD surface with cartoon depiction of one monomer rainbow coloured from blue (N-
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terminus) to red (C-terminus) alongside grey surface depiction of RBD labelled to correspond 

to the adjacent torso (Torso Gaddi, Wikipedia, CC BY-SA 3.0, modified in Adobe 

Photoshop) used by analogy to enable definition of epitopes. (B) Cluster maps showing the 

output of the mapping algorithm with each spot corresponding to a ‘located’ antibody and 

colour-coded according to epitope. (C) BLI antibody data competition matrix (calculated 

values) output from cluster analysis showing the clustering into 5 epitopes. (D) RBD (grey) – 

ACE2 (purple) complex. RBD residues contacting ACE2 are shown in green. (E) Located 

antibodies mapped onto the RBD shown as a grey surface with the ACE2-binding site in 

green. The individual antibodies are depicted as spheres and colour coded as in (B), those 

central to this paper are labelled. (F) as for (E) but antibodies are colour coded according to 

their ability to neutralize see inset scale, red strongest neutralizers, blue weakest neutralizers.  

 

Figure 3 RBD complexes. The Fab–RBD complexes reported in this paper as determined by 

a combination of X-ray crystallography, with the exception of Fab 40 for which the Fab–

RBD has been excised from a cryo-EM structure of Fab 40 bound to the S protein. Panel (A) 

shows the front view and panel (B) the back view with the RBD surface shown in grey and 

Fabs drawn as cartoons with the heavy chain in red and the light chain in blue. The ACE2 

footprint on the RBD is coloured in green. 

 

Figure 4 Spike morphology and Fab binding. (A) Orthogonal views of the trimeric spike 

as a pale grey surface with one monomer depicted as a cartoon and rainbow coloured from 

the N- to the C-terminus (blue to red). (B) Surface depiction of the electron potential map for 

the Spike-mAb 159 complex determined by cryo-EM to 4.6 Å resolution. The Spike is shown 

tilted forwards and coloured in teal apart from the RBDs (grey) and the fragment of mAb 159 

that can be visualized is shown in orange. (C) Grey surface depiction of the RBD with a blue 
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sphere denoting the location of Fab 45 as predicted using the mapping algorithm reported 

here. (D) Grey surface depiction of the X-ray crystallographic structure of the observed 

RBD-Fab 45 complex. Fab 45 binds close to the predicted position but is slightly translated. 

The S309 Fab (the closest structure in the competition matrix on which the mapping 

algorithm was based) is shown superimposed. Both Fabs are depicted as a cartoon with the 

heavy chain in magenta and light chain in blue. (E) Orthogonal grey surface depictions of the 

RBD with Fab 384 bound and Fab CV07-270 superimposed onto the complex. These Fabs 

use the same heavy chain V-gene but bind differently. They are drawn as cartoons with the 

heavy and light chains for Fab 384 in magenta and blue and those for CV07-270 in pale pink 

and light blue respectively. 

  

Figure 5 Determinants of binding, CDR length (A). Fab 384 interaction: left panel 

overview of the interacting CDRs from the heavy chain (magenta) and light chain (cyan) with 

the RBD (grey surface). The interactions of the H3, H2 and L1 and L3 loops are shown in the 

adjacent panels. (B) The distribution of IGHV, IGKV and IGLV gene usage of anti-RBD 

antibodies. Antibodies are grouped and coloured according to their neutralization IC50 values. 

(C) Left panel overview of the CDR interactions for Fabs 150 (magenta), 158 (cyan) and 269 

(orange). Adjacent panels (top) show a close up of the H3 loop interactions for each of these 

antibodies retaining the same colour coding and the bottom panel shows the interactions of 

the L3 loop and also the sequence alignment for the loops. (D) Back and side views of the 

complex of Fab 40 and RBD (grey surface) with the Fab drawn as a cartoon with the heavy 

chain in magenta and the light chain in blue. Fab 158 (grey cartoon) is superimposed. Note 

despite Fab 40 using the IGVH3-66 public V-gene whilst 158 uses IGVH3-53 they bind 

almost identically. (E) Fab 75-RBD complex with the RBD drawn as a cartoon in magenta 

and the Fab similarly depicted with the heavy chain in orange and the light chain in grey. 
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This antibody uses IGHV3-30 and is not a potent neutralizer. It can be seen that the only 

heavy chain contact is via the extended H3 loop.  

 

Figure 6 Determinants of binding, light chain swapping and glycosylation. (A) Table of 

sequences of MAbs 253, 55 and 165. (B) Neutralization activity of authentic SARS-CoV-2 

by the original mAb253, chimeric mAb253H55L and chimeric 253H165L (presented as IC50 

values). Immunoglobulin heavy and light-chain gene alleles are presented in the table. Data 

are from 3 independent experiments, each with duplicate wells and the data are shown as 

mean ± s.e.m. (C) The chimeric Fab 253H55L ((mAb 253 (IGVH1-58, IGVK3-20) heavy 

chain combined with the light chain of mAb 55 also (IGVH1-58, IGVK3-20) but containing 

the IGKJ1 region in contrast of IGKJ2 in mAb 253 in complex with the RBD here shown as a 

hydrophobic surface. The Fab is drawn as a ribbon with the heavy chain in magenta and the 

light chain in blue. This 10-fold increase in neutralization titre of this Fab compared to 253 

appears to come from the single substitution of a tryptophan for a tyrosine making a 

stabilizing hydrophobic interaction. (D) CDRs with sugar bound in the RBD complexes with 

Fabs 88 (top panel) sugar bound to N35 in the H1 loop, 316 (middle panel) sugar bound to 

N59 in the H2 loop and 253 (bottom panel) sugar bound to N102 in the H3 loop. Note Phe 

486, is marked by a diamond to enable the various orientations to be related.  

 

Figure 7 Determinants of binding, valency of interaction and in vivo studies. (A) Cryo-

EM Spike-Fab complexes showing different RBD conformations. The density for the Spike is 

shown in teal, the RBD in grey and Fab in orange. Left ‘all RBDs down’ conformation with 

Fab 316 bound, middle ‘one RBD up’ conformation with one Fab 158 bound, right ‘all RBDs 

up’ conformation with 3 Fab 88s bound. (B)  Potently neutralizing Fab 159 (cartoon 

representation with red heavy chain and blue light chain) in complex with the NTD (grey 
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transparent surface) and adjacent depicted with another NTD binding Fab (4A8) 

superimposed as a grey ribbon, the binding sites are separated by ~15 Å. (C) Fab 159 (HC 

magenta, LC blue) is drawn as a cartoon in its binding location on top of the NTD of the 

Spike which is drawn as a grey surface and viewed from the top (a full IgG is modelled onto 

one monomer showing that it cannot reach across to bind bivalently). (D) ELISA binding 

(blue) and FRNT neutralization (red) curves of ten full-length antibodies (solid lines) and 

corresponding Fab molecule (dash lines) against SARS-CoV-2. Data are from 2 independent 

experiments (mean ± s.e.m.). E-K. Seven to eight-week-old male and female K18-hACE2 

transgenic mice were inoculated by an intranasal route with 103 PFU of SARS-CoV-2. At 1 

dpi, mice were given a single 250 µg (10 mg/kg) dose of the indicated mAb by 

intraperitoneal injection. E, Weight change (mean ± SEM; n = 5-10, two independent 

experiments: two-way ANOVA with Sidak’s post-test: ns, not significant, * P < 0.05, ** P < 

0.01, **** P < 0.0001; comparison to the isotype control mAb treated group). F-K. At 7 dpi 

tissues were harvested and viral burden was determined in the lung (F-G), heart (H), spleen 

(I), nasal washes (J), and brain (K) by plaque (F) or RT-qPCR (G-K) assay (n = 7-11 mice 

per group; Kruskal-Wallis test with Dunn’s post-test: ns, not significant, * P < 0.05, ** P < 

0.01, *** P < 0.001, **** P < 0.0001). Dotted lines indicate the limit of detection. 

 

Figure S1. SARS-CoV-2 elicits binding and neutralizing antibodies against trimeric 

spike, RBD and NP proteins, related to Figure 1. (A) Plasma from donors with confirmed 

SARS-CoV-2 infection were collected at 1-2 months after onset of symptoms and tested for 

binding to SARS-CoV-2 spike, RBD and N proteins by capture ELISA. (B) neutralizing titres 

to authentic live virus. Data are representative of one experiment with 42 samples and 

presented as means ± s.e.m. (C) Comparison of the frequency of spike-reactive IgG 

expressing B cells in mild cases and severe cases measured by FACS. Small horizontal lines 

Jo
urn

al 
Pre-

pro
of



 33 

indicate the median. Data are representative of one experiment with 16 samples. The Mann–

Whitney U test was used for the analysis and two-tailed P values were calculated (in B and 

C). 

 

Figure S2. SARS-CoV-2 antibody isolation strategies, related to Figure 1. Human 

monoclonal antibodies from memory B cells were generated using two different strategies. 

(A) IgG expressing B cells were isolated and cultured with IL-2, IL-21 and 3T3-msCD40L 

cells for 13-14 days. Supernatants were harvested and tested for reactivity to spike protein by 

ELISA. (B) Antigen-specific single B cells were isolated using labelled recombinant spike or 

RBD proteins as baits. The IgG heavy and light chain variable genes from both strategies 

were amplified by nested PCR and cloned into expression vectors to produce full-length 

IgG1antibodies. 

 

Figure S3. Specificity and sequence analysis of 377 human antibodies, related to Figures 

1, 2 and 5. (A) Epitope mapping of SARS-CoV-2 -specific antibodies against the RBD, 

S1subunit (aa 16–685) and S2 subunit (aa 686-1213) were evaluated by ELISA, and the 

NTD-binders were identified by cell-based fluorescent immunoassay. Antibodies interacting 

with none of the subdomains were defined as trimeric spike. The number in the centres 

indicate the total number of tested antibodies. (B) Frequency of amino acid substitutions from 

germline in SARS-CoV2-specific heavy and light chains (n = 377). (C) Repertoire analysis of 

antibody heavy and light chains of anti-S (Non-RBD) and anti-RBD antibodies. At the centre 

is the number of antibodies. Each slice represents a distinct clone and is proportional to the 

clone size. (D) Frequency of amino acid substitutions from germline in heavy and light 

chains of antibodies cross-reacting between SARS-CoV-2 and the 4 seasonal coronaviruses 

(n = 20). 
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Figure S4. Crystal structures of the ternary complexes and overrepresentation of 

binding modes, related to Figures 4-7. (A) RBD-88-45, (B) RBD-253-75, (C) RBD-

253H55L-75 and (D) RBD-384-S309  complexes. (E) Sequence alignment for HC CDR3s 

using public V-region 3-53, antibodies are represented by a number (from this study) or by 

PBD code and a name. (F) Comparison of binding modes of 150 (orange), 158 (cyan), 269 

(magenta). (G) Superimposition of RBD-Fab complexes available in PDB (up to 21st Oct. 

2020). RBD is shown as grey surface, Febs as Cα traces with heavy chains in warm colour 

and light chains in cool colour. (H) The bound Fabs can be divided into four major clusters, 

neck (B38(7bZ5), CB6(7C01), CV30(6XE1), CC12.3(6XC4), CC12.1(6XC3), COV2-

04(7JMO), BD629(7CHC), BD604(7CH4), BD236(7CHB)), left shoulder (p2b-2f6(7BWJ), 

BD368(7CHC), C07-270(6XKP)), left flank (EY6A(6ZCZ), CR3022(6YLA), S304(7JX3), 

COVA1-16(7JMW)) and right flank (S309 (7JX3)), according to their binding modes on 

RBD. (I) Outliers that include right shoulder binders (REGN10987 (6XDG), COVA2-39 

(7JMP), CV07-250 (6XKQ), S2H14 (7JX3)). One Fab in the neck cluster is drawn as red and 

blue surface to show the relative position of the outliers. 

 

Figure S5. Cryo-EM Data, related to Figures 3, 4 and 7. Resolution and map quality at the 

RBD-Fab/IgG interface. (A-K) [left] Gold-standard FSC curve (FSC = 0.143 marked) 

generated by cryoSPARC for fab (or IgG in the case of 159)-spike structures [right] showing 

map quality at the antigen/antibody interface with 40, 88, 150, 158, 316, 384, 253H55L RBD 

up, 253H55L RBD down, 253H165L, 159 RBD down, 159 RBD up, respectively. 

Classification of Cryo-EM datasets show Spike heterogeneity for 384 and 159. (L) Gaussian 

filtered reconstructed volume (transparent grey) with refined spike (from two clusters of 384 

following local variability analysis using cryoSPARC). At very low contour levels, and with 
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gaussian filtering, we are able to see slight evidence of one (right), or two (left) additional 

bound fabs. (M) Reconstructed volume for 159 in the RBD up (left) and down (right) 

positions, coloured by spike chain (blue, green, purple) and IgG (orange). The RBD in the up 

position is indicated by a red arrow. 

 

 

Figure S6. Importance of antibody glycosylation, related to Figure 6. (A-C) Effect of 

mutation of the Asn residue glycosylated in the heavy chains of antibodies 88, 253 and 316 

respectively. (D-F) |2Fo-Fc| electron density maps contoured at 1.2 σ showing the glycans at 

glycosylation sites at N35 of 88 (D) N59 of 316 (E) and N102 of 253 (F). (G)  Relative 

binding position and orientation of CDR-H3 and glycans between 316 (green) and 88 

(orange), and (H) between 316 and 253 (cyan). RBD is shown as a grey surface.  

 

Figure S7. Prophylaxis with mAbs 40 and 88 protects against weight loss and decreases 

viral burden, related to Figure 7. A-G. Seven to eight-week-old male and female K18-

hACE2 transgenic mice were given a single 250g dose of the indicated mAbs by 

intraperitoneal injection. One day later mice were inoculated by intranasal route with 103 

PFU of SARS-CoV-2. (A) Weight change (mean ± s.e.m; n=6, two independent experiments: 

two-way ANOVA with Sidak’s post test: ns, not significant, *P<0.05, ****P<0.0001; 

comparison is to the isotype control mAb treated group). B-G. At 7dpi tissues were harvested 

and viral burden was determined in the lung (B-C), heart (D), spleen (E), nasal washes (F) 

and brain (G) by plaque assay (B) or RT-qPCR (C-G) assay (n=6 mice per group. Kruskal-

Wallis test with Dunn’s post-test: ns, not significant, *P<0.05, **P<0.01, ***P<0.001). 

Dotted lines indicate the limit of detection. 
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STAR Methods 

RESOURCE AVAILABILITY  

Lead Contact 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, David I Stuart (dave@strubi.ox.ac.uk). 

Materials Availability 

Recombinant proteins and antibodies generated in this study are available from the Lead 

Contact with a completed Materials Transfer Agreement.  

Data and Code Availability 

The coordinates and structure factors of the crystallographic complexes are available from 

the PDB with accession codes 7BEL, 7BEI, 7BEJ, 7BEK, 7BEN, 7BEO, 7BEM, 7BEH, 

7BEP (see Table S5). EM maps and structure models are deposited in EMDB and PDB with 

accession codes EMDB-12274, EMDB-12275, EMDB-12276, EMDB-12277, EMDB-12278, 

EMDB-12279, EMDB-12280, EMDB-12281, EMDB-12282, EMDB-12283, EMDB-12284 

and 7ND4, 7ND5, 7ND6, 7ND7, 7ND8, 7ND9, 7NDA, 7NDB, 7NDC, 7NDD respectively 

(see Table S5). The data that support the findings of this study are available from the 

corresponding authors on request. Code for the competition driven mAb mapping and 

clustering (mabscape) is available from https://github.com/helenginn/mabscape 

https://snapcraft.io/mabscape . 

 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Patient and blood samples 

Patients were recruited from the John Radcliffe Hospital in Oxford, UK, between March and 

May 2020 by identification of patients hospitalised during the SARS-CoV-2 pandemic and 
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recruited into the Sepsis Immunomics project [Oxford REC C, reference:19/SC/0296] 

ISARIC/WHO Clinical Characterisation Protocol for Severe Emerging Infections [Oxford 

REC C, reference 13/SC/0149]. Time between onset of symptoms and sampling were known 

for all patients and if labelled as convalescent patients were sampled at least 28 days from the 

start of their symptoms. Written informed consent was obtained from all patients. All patients 

were confirmed to have tested positive for SARS-CoV-2 using the reverse transcriptase 

polymerase chain reaction (RT-PCR) from an upper respiratory tract (nose/throat) swab 

tested in accredited laboratories. The degree of severity was identified as a mild, severe or 

critical infection according to recommendations from the World Health Organisation. Severe 

infection was defined for COVID-19 confirmed patients with one of the following 

conditions: respiratory distress with RR > 30/min; blood oxygen saturation < 93%; arterial 

oxygen partial pressure (PaO2) / fraction of inspired O2 (FiO2) < 300 mmHg; and critical 

infection was defined as respiratory failure requiring mechanical ventilation or shock; or 

other organ failures requiring admission to ICU. Comparator samples from healthcare 

workers or epidemiologically detected early clusters with confirmed SARS-CoV-2 infection 

who all had mild non-hospitalised disease were collected under the Gastro-intestinal illness in 

Oxford: COVID sub study [Sheffield REC, reference: 16/YH/0247]. 

Blood samples were collected and separated into plasma by centrifugation at 500 g for 10 

mins. Plasma was removed from the uppermost layer and stored at -80 °C. The PBMC layer 

was then gently suspended in the remaining plasma and RPMI media, and then isolated by 

Ficoll-Hypaque gradient centrifugation. All PBMC samples were stored in liquid nitrogen 

until use. 

Bacterial Strains and Cell Culture 
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Vero (ATCC CCL-81) cells and Vero-furin cells (Mukherjee et al., 2016) were  cultured at 

37 °C in Dulbecco’s Modified Eagle medium (DMEM) supplemented with 10% fetal bovine 

serum (FBS), 10 mM HEPES, and 100 U/ml of penicillin–streptomycin Spike ectodomain, 

human mAbs and Fabs were expressed in HEK293T cells cultured in FreeStyle™ 293 

Expression Medium (12338018, ThermoFisher) at 37 °C with 8% CO2. Nucleoprotein was 

expressed using 2-L cultures of Rosettagami2(DE3)pLysS bacteria (Novagen) in terrific 

broth medium containing 40 mg/L kanamycin, at 15˚C for 40 hrs following induction 

with Isopropyl ß-D-1-thiogalactopyranoside (1mM final concentration, Meridian Bioscience). 

For ACE2 and RBD, transient expression used Expi293F™ cells (Thermo Fisher, Cat# 

A14527) grown in Expi293™ Expression Medium (Thermo Fisher Cat# A1435103) in 

suspension with 8% CO2 at 30 or 37 °C and shaking at 130 rpm. For production of Spike 

protein for structural analysis, HEKExpi293F cells (Thermo Fisher Scientific) were 

transfected with the construct together with a phiC31 integrase expression plasmid and grown 

in adhesion roller bottles with the high glucose DMEM (Sigma) with 2% FBS for 6 days at 

30 °C. His-tagged RBD for structural analysis was expressed in a stable HEK293S cell line 

cultured in DMEM (high glucose, Sigma) supplemented with 10% FBS (Invitrogen), 1 mM 

glutamine and 1x non-essential amino acids at 37 °C. Cells were transferred to roller bottles 

(Greiner) and cultured in DMEM supplemented with 2% FBS, 1 mM glutamine and 1x non-

essential amino acids at 30 °C for 10 days for protein expression. For plaque assays Vero-

furin cells (Mukherjee et al.,2016) were cultured at 37 °C in Dulbecco’s Modified Eagle 

medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 10 mM HEPES, and 

100 U/ml of penicillin–streptomycin. 

Viral stocks 

SARS-CoV-2/human/AUS/VIC01/2020 (Caly et al., 2020) was grown in Vero (ATCC CCL-

81) cells. Virus containing supernatant was spun at 2000 rpm at 4 °C before being stored at -
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80 °C. Viral titres were determined by a focus-forming assay on Vero cells. For mouse 

experiments, the 2019n-CoV/USA_WA1/2020 isolate of SARS-CoV-2 was obtained from 

the US Centers for Disease Control (CDC). Infectious stocks were propagated by inoculating 

Vero CCL81 cells and collecting supernatant upon observation of cytopathic effect; debris 

was removed by centrifugation and passage through a 0.22 µm filter. Supernatant was 

aliquoted and stored at -80 oC. 

 

Mouse experiments.  

Animal studies were carried out in accordance with the recommendations in the Guide for the 

Care and Use of Laboratory Animals of the National Institutes of Health. The protocols were 

approved by the Institutional Animal Care and Use Committee at the Washington University 

School of Medicine (assurance number A3381–01). Virus inoculations were performed under 

anaesthesia that was induced and maintained with ketamine hydrochloride and xylazine, and 

all efforts were made to minimize animal suffering. 

 

Heterozygous K18-hACE C57BL/6J mice (strain: 2B6.Cg-Tg(K18-ACE2)2Prlmn/J) were 

obtained from The Jackson Laboratory. Seven to eight-week-old male and female animals 

were inoculated with 103 PFU of SARS-CoV-2 via intranasal administration. 

 

METHOD DETAILS 

Trimeric spike of SARS-CoV-2 

To construct the expression plasmids for SARS-CoV-2 spike protein, a gene encoding 

residues 1−1208 of the spike ectodomain with a mutation at the furin cleavage site (residues 

682-685) from RRAR to GSAS, proline substitutions at residues 986 and 987, followed by 

the T4 fibritin trimerization domain, a HRV3C protease cleavage site, a twin Strep Tag and 
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an 8XHisTag, was synthesized and optimized for mammalian expression (Wrapp et al., 

2020). An optimized coding sequence was cloned into the mammalian expression vector 

pHLsec. 

 

Trimeric spike of SARS-CoV, MERS-CoV, OC63-CoV, HKU1-CoV, 229E-Cov, NL63-CoV 

Expression plasmids were constructed using synthetic fragments coding for human codon-

optimized Spike glycoprotein sequences from CoV-229E (GenBank accession number 

NC_002645.1; amino acids 1–1113), CoV-HKU1 (GenBank accession number 

NC_006577.2; amino acids 1-1300), CoV-NL63 (GenBank accession number NC_005831.2; 

amino acids 1–1289), CoV-OC43 (GenBank accession number NC_006213.1; amino acids 

1–1297), CoV-MERS (GenBank accession number AFS88936.1; amino acids 1-1291) (Zhao 

et al., 2013), CoV-SARS1 (GenBank accession number AY27874; amino acids 11-1195) 

(Simmons et al., 2004) and CoV-SARS2 (GenBank accession number MN908947; amino 

acids 1-1208). Fragments were cloned in pHLsec vectors downstream of the chicken β-

actin/rabbit β-globin hybrid promoter and followed by a T4 fibritin trimerization domain, an 

HRV 3C cleavage site, a His-8 tag and a Twin-Strep-tag at the C terminus as previously 

reported by Wrapp et al. (Wrapp et al., 2020). 

Mutations coding for stabilising proline residues and to eliminate putative furin cleavage sites 

were inserted in each sequence as follows: For CoV-229E, TI>PP (aa 871-872); for CoV-

HKU1, RRKR>GSAS (aa 756-759) and AL>PP (aa 1071-1072); for CoV-NL63, 

RRSR>GSAS (aa 754-757) and SI>PP (aa 1052-1053); for CoV-OC43, AL>PP (aa 1070-

1071); for CoV-MERS, RSVG>ASVG (aa 748), RSAR>GSAS (aa 884-887) and VL>PP 

1060-1061; for CoV-SARS1, KV>PP (aa 968-969); for CoV-SARS2, RRAR>GSAS (aa 682-

685) and KV>PP (aa 986-987). All sequences were verified by DNA sequencing.     
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DNA plasmids encoding the Strep-Tag-tagged spike proteins were transfected into HEK293T 

cells cultured in FreeStyle™ 293 Expression Medium (12338018, ThermoFisher) by PEI-

mediated transfection (MW: 25,000; branched: Sigma-Aldrich 408727) and incubated at 

37 °C for 7 days. Supernatants were then collected and cleared by centrifugation followed by 

filtration. CoV Spike protein trimers were affinity-purified using the Strep-Tactin®XT 

purification system (IBA Lifesciences) according to the instructions of the manufacturer. In 

the case of CoV-229E and CoV-NL63, the spike proteins were further purified by SEC 

(Superose 6 increase 30/100 GL column, GE Life Sciences; elution buffer: Tris 20mM, NaCl 

150mM, pH 7) to remove aggregates. The purity of the proteins was assessed by reducing 

(10% β-mercaptoethanol (β-ME)) and non-reducing sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE) (~3 µg of protein). Purified proteins were concentrated in 

PBS, quantified by spectrophotometry, sterilized by filtration (Spin-X tube filter; 8160; 

Costar) and kept at −80 °C until use. 

Nucleoprotein (NP) 

The native SARS-CoV-2 nucleoprotein gene was cloned into a pET28a(+) vector (Novagen) 

downstream of the coding sequence for an N-terminal hexa-histidine tag and 3C-protease 

cleavage site (a gift from Fred Antson). Expression was carried out using 2-L cultures of 

Rosettagami2(DE3)pLysS bacteria (Novagen) in terrific broth medium containing 40 mg/L 

kanamycin, at 15˚C for 40 hrs following induction with Isopropyl ß-D-1-

thiogalactopyranoside (1mM final concentration, Meridian Bioscience). Upon centrifugation 

(10,000 x g; 20 minutes, 4 ˚C), pellets were resuspended in 60 ml H2O containing 10 mg/ml 

lysozyme (Sigma). After adding 70 ml buffer S (200 mM Tris pH 8.0, 2.5 M NaCl, 60 mM 

imidazole, 4 mM MgSO4, 0.2% triton X100) the suspension was sonicated (40% amplitude, 

10 seconds on-10 seconds off cycles, 20 min, 4 ˚C). Turbonuclease (3,000 units, Sigma) and 

RNAseA (500 units, Qiagen) were added, and the solution was clarified (20,000 x g, 30 min, 
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4 ˚C) before purification over a 5-ml HisTrap column (Cytiva), using a 20 mM to 1 M 

imidazole gradient in 25 mM Tris pH 8.0, 1.5 M NaCl. Nucleoprotein-containing fractions 

were further purified over a Superdex 200 Increase 10/300 GL column (Cytiva) using a 25 

mM Tris pH 8.0, 1 M NaCl running buffer, followed by buffer exchange into phosphate-

buffered saline (PBS, Sigma) using PD-10 columns (Cytiva), and heparin-affinity 

chromatography using a 5-ml HiTrap heparin HT column (Cytiva) and a 0.15 - 1 M NaCl 

gradient in 40 mM sodium phosphate pH 7.4.  

 

Depletion of anti-RBD antibodies from plasma samples.  

Nickel charged agarose beads (nickel-nitrilotriacetic acid [Ni-NTA]; Qiagen) were washed 3 

times in PBS and then incubated overnight, rotating at 4 °C, with His-tagged RBD. Twenty 

micrograms of protein were added for every 50 µl of beads used in a final incubation volume, 

twice the bead volume. Beads incubated in the absence of RBD antigen were used as a beads-

only, mock control. The beads were then washed 3 times with PBS and precleared for 2h at 

RT with a pooled SARS-CoV-2 negative plasma at a dilution of 1 in 100 in an incubation 

volume 2 times the bead volume. Beads were then washed 3 times in PBS and incubated with 

the human plasma samples of interest at a dilution of 1:50 in PBS+, PBS containing an 

additional 150 mM NaCl and 20 mM imidazole, for 2h at 4 °C (50 µl beads per 200-µl 

sample). The remaining depleted samples were collected, filter sterilized, and tested for 

complete depletion by RBD direct ELISA. 

 

ACE2 and RBD 

Constructs are as described in Huo et al. 2020 (Huo et al., 2020) and production was as 

described in Zhou et al. 2020 (Zhou et al., 2020). 
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Isolation of human monoclonal antibodies from peripheral B cells by memory B cell 

stimulation 

To generate human monoclonal antibodies from peripheral blood B cells, CD22+ B cells 

were isolated from PBMCs using CD22 Microbeads (130-046-401; Miltenyi Biotec). Pre-

enriched B cells were stained with anti-IgM-APC, IgA-FITC and IgD-FITC. Double negative 

memory B cells (IgM-,IgA-/D-cells) were sorted by FACS and plated on 384-well plates at a 

density of 4 B cells per well. Cells were stimulated to proliferate and produce IgG by 

culturing with irradiated 3T3-msCD40L feeder cells (12535; NID AIDS Reagent Program), 

100 U/ml IL-2 (200-02; Peprotech) and 50 ng/ml IL-21 (200-21; Peprotech) for 13-14 days. 

Supernatants were harvested from each well and screened for SARS-CoV-2 binding 

specificity by ELISA. Lysis buffer was added to positive wells containing SARS-CoV-2-

specific B cells and immediately stored at −80 °C for future use in Ig gene amplification and 

cloning. 

 

Isolation of Spike and RBD-specific single B cells by FACS 

To isolate Spike and RBD-specific B cells, PBMCs were sequentially stained with 

LIVE/DEAD Fixable Aqua dye (Invitrogen) followed by recombinant trimeric spike-twin-

Strep or RBD-biotin. Cells were then stained with antibody cocktail consisting of CD3-FITC, 

CD14-FITC, CD56-FITC, CD16-FITC, IgM-FITC, IgA-FITC, IgD-FITC, IgG-BV786, 

CD19-BUV395 and Strep-MAB-DY549 (iba) or streptavidin-APC (Biolegend) to probe the 

Strep tag of spike or biotin of RBD. Spike or RBD-specific single B cells were gated as 

CD19+, IgG+, CD3-, CD14-, CD56-, CD16-, IgM-, IgA-, IgD-, Spike+ or RBD+ and sorted 

into each well of 96-well PCR plates containing RNase inhibitor (N2611; Promega). Plates 

were centrifuged briefly and frozen on dry ice before storage at −80 °C for future use in Ig 

gene amplification and cloning. 
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Cloning and expression of SARS CoV2-specific human mAbs. 

Genes encoding Ig VH, Ig Vκ and Vλ from positive wells were recovered using RT-PCR 

(210210; QIAGEN). Nested PCR (203205; Qiagen) was then performed to amplify genes 

encoding γ-chain, λ-chain and κ-chain with 'cocktails' of primers specific for human IgG. 

PCR products of genes encoding heavy and light chains were joined with the expression 

vector for human IgG1 or immunoglobulin κ-chain or λ-chain (gifts from H. Wardemann) by 

Gibson assembly. For the expression of antibodies, plasmids encoding heavy and light chains 

were co-transfected into the 293T cell line by the polyethylenimine method (408727; Sigma), 

and antibody-containing supernatants were harvested for further characterization. 

 

Construction of Fab expression plasmids 

Heavy chain expression plasmids of specific antibodies were used as templates to amplify the 

first fragment, heavy chain vector include the variable region and CH1 until Kabat amino 

acid number 233. The second fragment of thrombin cleavage site and twin-Strep-tag with 

overlapping ends to the first fragment were amplified. The two fragments were ligated by 

Gibson assembly to make the Fab heavy chain expression plasmid. 

 

Construction of scFv antibody plasmid 

Heavy chain and light chain expression plasmids of specific antibodies were used as a 

template to amplify variable region gene of heavy and light chain respectively. Firstly, heavy 

chain gene products having the AgeI–SalII restriction enzyme sites were cloned into a scFv 

vector which is a modified human IgG expression vector which has a linker between the H 

chain and L chain genes followed by a thrombin cleavage site and twin-Strep-tags. Light 
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chain gene products having NheI-NotI restriction enzyme site were cloned into scFv vector 

containing the heavy chain gene insert to produce scFv expression plasmids. 

 

Fab and scFv production and purification 

Protein production was done in HEK293T cells by transient transfection with 

polyethylenimine in FreeStyle 293 medium. For Fab antibody production, Fab heavy chain 

expression plasmids were co-transfected with the corresponding light chain. For scFv 

antibody production, scFv expression plasmid of specific antibody was used for transfection. 

After 5 days of culture at 37°C and 5% CO2, culture supernatant was harvested and filtered 

using a 0.22 mm polyethersulfone (PES) filter. Fab and scFv antibody were purified by 

Strep-Tactin affinity chromatography (IBA lifescience) according to the Strep-Tactin XT 

manual. 

 

Determination of plasma and antibody binding to recombinant protein by ELISA 

MAXISORP immunoplates (442404; NUNC) were coated with 0.125 µg of StrepMAB-

Classic (2-1507-001;iba) at 4 °C overnight and blocked with 2% skimmed milk in PBS (for 

plasma) or 2% BSA in PBS (for mAbs) for 1 h, plates were incubated with 50 µL of 10 

µg/mL double strep-tag recombinant spike of SARS-CoV-2, SARS-CoV, MERS-CoV, 

OC43-CoV, HKU1-CoV, 229E-CoV and NL43-CoV. After one hour, 50 µL of serially 

diluted plasma or mAbs was added, followed by ALP-conjugated anti-human IgG (A9544; 

Sigma) at 1:10,000 dilution. The reaction was developed by the addition of PNPP substrate 

and stopped with NaOH. The absorbance was measured at 405nm. To determine the binding 

to SARS-CoV-2 RBD, SARS-CoV-2 NP, SARS-CoV-2 spike S1 (40591-V08H; Sino 

Biological Inc) and SARS-CoV-2 spike S2 (40590-V08B; Sino Biological Inc), 

immunoplates were coated with 0.125 µg of Tetra-His antibody (34670; QIAGEN) followed 
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by 5 µg/mL of His-tag recombinant SARS-CoV-2 RBD, SARS-CoV-2 NP, SARS-CoV-2 

spike S1 and SARS-CoV-2 spike S2. The plasma endpoint titres (EPTs) were defined as 

reciprocal plasma dilutions that corresponded to two times the average OD values obtained 

with mock. EC50 of mAbs were evaluated using non-linear regression (curve-fit), GraphPad 

Prism 8 software. 

 

Whole Virus ELISA 

To determine the binding affinity of antibody to SARS-CoV-2 virus, virus was captured onto 

plates coated with mouse anti-SARS-CoV-2 spike (mAb31 with murine Fc) and then 

incubated with serial dilutions of SARS-CoV-2-specific human mAbs (full length IgG or 

Fab) followed by ALP-conjugated anti-human IgG (A8542, Sigma). The reaction was 

developed with PNPP substrate and stopped with NaOH. The absorbance was measured at 

405 nm. 

Results are expressed as the percentage of total binding, with 100% binding determined from 

the Ab concentration that gave maximum absorbance. GraphPad PRISM software was used 

to perform nonlinear regression curve-fitting analyses of binding data to estimate dissociation 

constants (Kd). Percent occupancy at IC50 was determined using the following formula: 

Percent occupancy = BMax* [Ab]/(Kd+[Ab]), where the BMax is percent maximal binding, 

[Ab] is the concentration of Ab required to reach 50% FRNT and Kd is the concentration of 

Ab required to reach half-maximal binding. 

 

Focus Reduction Neutralization Assay (FRNT) 

The neutralization potential of Ab was measured using a Focus Reduction Neutralization Test 

(FRNT), where the reduction in the number of the infected foci is compared to a no antibody 

negative control well. Briefly, serially diluted Ab was mixed with authentic SARS-CoV-
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2/human/AUS/VIC01/2020 (Caly et al., 2020) and incubated for 1 hr at 37 °C. The mixtures 

were then transferred to Vero cell monolayers and incubated for 2 hrs followed by the 

addition of 1.5% semi-solid carboxymethyl cellulose (CMC) overlay medium to each well to 

limit virus diffusion. A focus forming assay was then performed by staining Vero cells with 

human anti-NP mAb (mAb206) followed by peroxidase-conjugated goat anti-human IgG 

(A0170; Sigma). Finally, the foci (infected cells) were visualized by adding TrueBlue 

Peroxidase Substrate. The percentage of focus reduction was calculated and IC50 was 

determined using the probit program from the SPSS package. 

 

NTD Binding Assay 

MAbs were screened for binding to MDCK-SIAT1 cells expressing the N-terminal domain 

(NTD) of SARS-CoV-2 spike glycoprotein (MDCK-NTD). MDCK-NTD was created by 

stably transfecting MDCK-SIAT1 cells (ECACC 05071502) (Matrosovich et al., 2003) with 

cDNA encoding the SARS-CoV-2 NTD (amino acids VNLT…TLKS) fused to the 

transmembrane domain of haemagglutinin H7 (A/HongKong/125/2017) (EPI977395) at the 

C-terminus for surface expression using a second-generation lentiviral vector system. NTD 

expressing cells were FACS sorted using the FD7C mAb (Huang et al., 2020). In brief, 

MDCK-NTD cells were seeded at 3 × 104 per well in flat-bottomed 96-well plates (TPP) in 

high glucose DMEM containing 10% fetal bovine serum (FBS) at 37 ℃ overnight. The 

medium was then removed and washed with 2% FBS in PBS (PBS/2% FBS) twice. 10 µg/ml 

of mAbs supernatants from transfected 293T cells were added (50 µl per well) and incubated 

at room temperature for 1 h. A second antibody Goat anti-human IgG Fc specific-FITC 

(F9512, Sigma-Aldrich) diluted 1:300 in PBS/2% FBS was then added (50 µl per well) and 

incubated for another 1 h at room temperature. After washing twice with PBS, the wells were 
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fixed with 1% formaldehyde in PBS. The binding antibodies were detected by fluorescence 

intensities using a Clariostar plate reader (BMG, Labtech).  

 

ELISA based ACE2 binding inhibition assay 

For the ACE2 competition ELISA, 250 ng of ACE2 protein was immobilized to a 

MAXIXORP immunoplate and the plates were blocked with 2% BSA in PBS. In the 

meantime, serially diluted Ab was mixed with recombinant RBD-mFc (40592-V05H; Sino 

Biological) and incubated for 1 h at 37 °C. The mixtures were then transferred to the ACE2 

coated plates and incubated for 1 h followed by goat anti-mouse IgG Fc-AP (Invitrogen 

#A16093) at 1:2000 dilution. The reaction was developed by the addition of PNPP substrate 

and stopped with NaOH. The absorbance was measured at 405 nm. The ACE2/RBD binding 

inhibition rate was calculated by comparing to antibody-free control well. IC50 were 

determined using the probit program from the SPSS package. 

 

Spike protein production for structural analysis 

The stable cell line generation vector pNeoSec was used for cloning of the SARS-Cov2 Spike 

ectodomain comprising amino acids 27-1208 with mutations of the furin cleavage site 

(RRAR > GSAS at residues 682-685) and the PP (KV>PP at residues 986-987). At the N-

terminus, there is a twin StrepII tag and at the C-terminus fused with a T4 fibritin 

trimerisation domain, an HRV 3C cleavage site and a His-8 tag. The human embryonic 

kidney (HEK) Expi293F cells (Thermo Fisher Scientific) were transfected with the construct 

together with a phiC31 integrase expression plasmid as described earlier (Zhao et al., 2014). 

The polyclonal G418 resistant (1 mg/ml) cell population were used for protein production. 

Expi293F cells were grown in adhesion in roller bottles with the high glucose DMEM 

(Sigma) with 2% FBS for 6 days at 30 °C. The soluble spike protein was captured from the 
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dialysed conditional media with prepacked 5 ml Columns of HisTrap excel (GE Healthcare 

Life Sciences). The protein was eluted in 300 mM imidazole containing phosphate-buffered 

saline (PBS) after a 20 mM imidazole PBS wishing step. The protein was further purified 

with a 16/600 Superdex 200 size exclusion chromatography with an acidic buffer (20 mM 

Acetate, 150 mM NaCl, pH 4.6) for the low pH Spike incubations, or a neutral buffer (2 mM 

Tris, 150 mM NaCl, pH 7.5). 

 

Production of RBD for structural analysis 

Stable HEK293S cell line expressing His-tagged RBD was cultured in DMEM (high glucose, 

Sigma) supplemented with 10% FBS (Invitrogen), 1 mM glutamine and 1x non-essential 

amino acids at 37 °C. Cells were transferred to roller bottles (Greiner) and cultured in DMEM 

supplemented with 2% FBS, 1 mM glutamine and 1x non-essential amino acids at 30 °C for 

10 days for protein expression. For protein purification, the dialyzed media was passed 

through a 5 mL HisTrap Nickel column (GE Healthcare). The column was washed with 

buffer 20 mM Tris pH 7.4, 200 mM NaCl, 30 mM imidazole and RBD was eluted using 

buffer 20 mM Tris pH 7.4, 200 mM NaCl, 300 mM imidazole. A volume of 30 µl 

endoglycosidase H1 (~1 mg ml−1) was added to ~30 mg RBD and incubated at room 

temperature for 2 h. Then the sample was further purified with a Superdex 75 HiLoad 16/600 

gel filtration column (GE Healthcare) using 10 mM HEPES pH 7.4, 150 mM NaCl. Purified 

RBD was concentrated using a 10-kDa ultra centrifugal filter (Amicon) to 10.6 mg ml−1 and 

stored at -80 °C. 

 

Preparation of Fabs from IgGs 

Fab fragments were digested from purified IgGs with papain using a Pierce Fab Preparation 

Kit (Thermo Fisher), following the manufacturer’s protocol. 
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Physical assays 

Thermal stability was assessed using Thermofluor (DSF). Briefly, 3 µg of the Ab preparation 

was used in a 50 µl reaction containing 10 mM HEPES pH 7.5, 100 mM NaCl, 3X 

SYPROorange (Thermo Fisher). Samples were heated from 25-97 °C in a RT-PCR machine 

(Agilent MX3005p) and the fluorescence monitored at 25 °C after every 1 °C of heating. 

Melting temperatures (Tm) were calculated by fitting of a 5-parameter sigmoid curve using 

the JTSA software (P. Bond, https://paulsbond.co.uk/jtsa). Polydispersity was assessed by 

DLS using 10 µg of the Ab preparation in an UNCLE instrument (Unchained Labs). Freeze 

thaw experiments on 4 of the mAbs were performed with material at 1 mg/ml by flash-

freezing using LN2, thawing and centrifuging an aliquot (10 minutes at 20000 g) before 

measuring the absorbance at 280nm of the soluble fraction.  

 

Crystallization 

Purified RBD was combined separately with Strep-tagged Fab150, Fab58, scFv269 and 

Fab316 in a 1:1 molar ratio, with final concentrations of 13.2, 9.4, 12.7 and 13.0 mg ml-1, 

separately. RBD was combined with Fab45 and Strep-tagged Fab88, Fab75 and Fab253, and 

Fab 75 and Strep-tagged chimeric Fab 253H55L in a 1:1:1 molar ratio all with a final 

concentration of 7 mg ml−1, separately. Glycosylated RBD was combined with Fab 

S309(Pinto et al., 2020) and Fab384 in a 1:1:1 molar ratio with a final concentration of 

8 mg ml−1. These complexes were separately incubated at room temperature for 30 min. 

Initial screening of crystals was set up in Crystalquick 96-well X plates (Greiner Bio-One) 

with a Cartesian Robot using the nanoliter sitting-drop vapor-diffusion method, with 100 nl 

of protein plus 100 nl of reservoir in each drop, as previously described (Walter et al., 2003). 

Good crystals of RBD-150 complex were formed in Molecular Dimensions Morpheus 
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condition C2, containing 0.09 M of NPS (nitrate, phosphate and sulphate), 0.1 M 

MES/imidazole pH 6.5, 10% (w/v) PEG 8000 and 20% (v/v) ethylene glycol and crystals 

also formed in Hampton Research PEGRx condition D11, containing 0.1 M imidazole pH 7.0 

and 12% (w/v) PEG 20000. Some good crystals of RBD-158 were obtained from Index 

condition C01, containing 3.5 M NaCOOH pH 7.0, while some crystals were formed in 

Proplex condition C1, containing 0.15 M (NH4)2SO4, 0.1 M Tris pH 8.0 and 15% (w/v) PEG 

4000 and further optimized in 0.15 M (NH4)2SO4, 0.1 M Tris pH 7.6 and 14.6% (w/v) PEG 

4000. Crystals of RBD-scFv269 complexed were obtained from Index condition F01, 

containing 0.2 M Proline, 0.1 M HEPES pH 7.5 and 10% (w/v) PEG 3350. Good crystals for 

the RBD-316 complex were obtained from Index condition G10, containing 0.2 M MgCl2, 

0.1 M bis-Tris pH 5.5 and 25 % (w/v) PEG 3350. Crystals of RBD-45-88 complex were 

obtained from PEGRx condition G12, containing 10% (v/v) 2-Propanol, 0.1 M Sodium 

acetate trihydrate pH 4.0, 22% (w/v) PEG 6000. Crystals of RBD-75-253 complex were 

obtained from PEGRx condition D8, containing 0.1 M BIS-TRIS pH 6.5, 16% (w/v) PEG 

10000. Crystals of RBD-75-253H55L were obtained from Index condition F5, containing 0.1 

M ammonium acetate, 0.1 M bis-Tris pH 5.5 and 17% (w/v) PEG 10000. For the RBD-S309-

384 ternary complex, good crystals were obtained from Morpheus condition H1, containing 

0.1 M amino acids (Glu, Ala, Gly, Lys, Ser), 0.1 M MES/imidazole/ pH 6.5, 10% (w/v) PEG 

20000 and 20% (w/v) PEG MME 550.  

 

X-ray data collection, structure determination and refinement 

Crystals were soaked in a solution containing 25% glycerol and 75% reservoir solution for a 

few seconds and then mounted in loops and frozen in liquid nitrogen prior to data collection. 

Diffraction data were collected at 100 K at beamline I03 of Diamond Light Source, UK. 

Diffraction images of 0.1° rotation were recorded on an Eiger2 XE 16M detector with 

Jo
urn

al 
Pre-

pro
of



 52 

exposure time ranging from 0.004 to 0.01 s per frame, beam size 80×20 µm and 100% beam 

transmission. Data were indexed, integrated and scaled with the automated data processing 

program Xia2-dials or Xia2-3dii (Winter, 2010; Winter et al., 2018). For RBD-158 crystal 

form 2, RBD-316 and the ternary complexes of RBD88-45, RBD-253H55L and RBD-384-

S309 data sets of 360° were collected from a single frozen crystal each, and 720° of data 

from 2 crystals for RBD-150, RBD-scFv269, RBD-158 crystal form 1 and RBD-253-75.  

 

The structures were determined by molecular replacement with PHASER (Liebschner et al., 

2019) using search models of the RBD, VhVl and ChCl domains of a closely related Fab in 

sequence for each complex. Sequence corrections to the target Fabs from the search models 

and model rebuilding were done with COOT (Emsley and Cowtan, 2004). All the structures 

were refined with PHENIX (Liebschner et al., 2019) resulting in good R-factors and 

stereochemistry for most of  the structures except for RBD-88-45 and RBD-53-75 in each of 

which there is presence of translational NCS with vectors (-0.003 0.502 0.489) and (0.044, 0, 

0.5) and can only be refined to Rwork/Rfree of 0.250/0.285 and 0.242/0.284 to 2.53 Å and 2.50 

Å, respectively. The ChCl domains of Fab 88 in the RBD-88-45 complex are disordered. 

Data collection and structure refinement statistics are given in Table S5.   

 

Cryo-EM Grid Preparation 

For all Fab or IgG-Spike complexes, a 3 µL aliquot of S ~0.6 µm (determined by OD) with 

Fab (1:6 molar ratio) was prepared, aspirated and almost immediately applied to a freshly 

glow-discharged Cu support Cflat 2/1-200 mesh holey carbon-coated grid (high intensity, 20 

s, Plasma Cleaner PDC-002-CE, Harrick Plasma). Excess liquid was removed by blotting for 

5-5.5 s with a force of -1 using vitrobot filter paper (grade 595, Ted Pella Inc.) at 4.5 °C, 
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100% reported humidity before plunge freezing into liquid ethane using a Vitrobot Mark IV 

(Thermo Fisher). 

 

Cryo-EM Data collection and processing 

40, 253H55L and 253H165L spike complexes: 

For sample-specific details, refer to Table S6.  

 

Movies were collected in compressed tiff format on a Titan Krios G2 (Thermo Fisher) 

operating at 300 kV with a K3 detector (Gatan) in super resolution counting mode using a 

custom version of EPU 2.5 (Thermo Fisher). A defocus range of 0.8-2.6 µm was applied with 

a nominal magnification of x105,000, corresponding to a calibrated pixel size of 0.83 Å/pixel 

and with a total dose of 43-47 e/ Å2, see Table S6.  

 

Two-times binned movies were then motion corrected and aligned on the fly using 

Relion(3.1) scheduler (Zivanov et al., 2018) with a 5 x 5 patch based alignment. CTF-

estimation of full-frame non-weighted micrographs was performed with the GCTF (1.06) 

(Zhang, 2016) module in cryoSPARC(v2.14.1-live) (Punjani et al., 2017). 

 

88, 150, 158, 159IgG, 316 and 384 spike complexes: 

Data for 88, 150, 158 were collected Titan Krios G2 (Thermo Fischer) operating at 300 kV 

with a K2 camera and a GIF Quantum energy filter (Gatan) with a 30 eV slit. For 159 (IgG), 

384 and 316 , data were collected as for 88, 150 and 158, except using a 20 keV slit. Rapid 

multi-shot data acquisition was set up using custom scripts with SerialEM (version 3.8.0 

beta) (Mastronarde, 2005)  at a nominal magnification of 165 kX, corresponding to a 

calibrated pixel size of 0.82 Å per pixel. A defocus range of -0.8 µm to -2.6 µm was used 
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with a total dose of ~45-57 e-/Å2 applied across 40 frames. Motion and CTF correction of raw 

movies was performed on the fly using cryoSPARC live patch-motion and patch-CTF 

correction(Punjani et al., 2017).  

 

40, 253H55L, 253H165L, 88, 150, 158, 159 IgG, 316 and 384 complexes: 

Poor-quality images were discarded after manual inspection of CTF and motion estimations. 

Particles were then blob picked in cryoSPARC (Punjani et al., 2017)  and initially extracted 

with four times binning. After inspection of 2D classes, classes of interest were selected to 

generate templates for complete particle picking. Binned particles were then subjected to one 

to three rounds of reference free 2D classification followed by 3D classification with an ab-

initio derived model before further refinement and unbinning. 

 

For both 150 and 158, two data separate data collections were set up on the same grid, and 

refined particle sets from each collection were separated by exposure groups before being 

combined. For 150, a total of 77,265 exposure-group split particles were initially combined 

(51,554 from 4726 movies and 25,711 from 2079 movies), re-classified into five classes, and 

the two best classes (42,655 particles) subjected to further non-uniform refinement, with 

obvious density for Fab bound to one RBD in an ‘up’ conformation. Notably, discarded 

classes included a high proportion of undecorated S (28,463 particles, 4.4 Å reported 

resolution at GSFSC = 0.143, -43 Å2 B-factor).  

 

Classification using heterogeneous refinement in cryoSPARC was found to be generally 

poor, and, instead, 3D variability analysis was employed to try to better resolve full spike-Fab 

structures. Local refinements were also performed with masks focused around the Fab/RBD 

region (not reported here), but maps were still insufficient to clearly build a model at the 
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RBD/Fab interface and far inferior to the crystallographic maps. 3D variability analysis was 

found to be essential for isolating the RBD up and RBD down conformations for 159-IgG. 

Results from this are presented for 159-IgG and 384. Briefly, data were separated into eight 

clusters using the 3D variability analysis module with a 6 Å resolution filter and a mask 

around the RBD/Fab region. Masks were generated by initially rigid body fitting a model of 

the spike and a Fab into a refined map in Chimera before selecting an area of the model 

including the RBD and fab and using the ‘color zone’ module to crop out this desired part of 

the map. The resulting map was smoothed with a gaussian filter (Pettersen Ef Fau - Goddard 

et al., 2004), converted into a mask format using Relion3.1 ‘Mask Create’ before import into 

cryoSPARC. Resolution estimates quoted in the Table S6 were taken from Gold standard-

FSC (FSC = 0.143) reported in the local resolution module in cryoSPARC (Punjani et al., 

2017). 

 

Competition assay of antibodies 

Competition assay of anti-RBD antibodies was performed on a Fortebio Octet RED96e 

machine with Fortebio Anti-HIS (HIS2) Biosensors. 2 µg ml−1 of His-tagged RBD dissolved 

in the running buffer (10 mM HEPES, pH 7.4 and 150 mM NaCl) was used as the ligand and 

was first immobilized onto the biosensors. The biosensors were then washed in the running 

buffer to remove unbound RBD. Each biosensor was dipped into different saturating 

antibodies (Ab1) to saturate the bound RBD, except one biosensor was into the running 

buffer in this step, acting as the reference. The concentration of saturating antibodies used 

was 15 µg ml−1. Higher concentrations were applied if 15 µg ml−1 was not enough to obtain 

saturating. Then all biosensors were washed with the running buffer again and dipped into 

wells containing the same competing antibody (Ab2). The concentration of competing 

antibodies used was 5 µg ml−1. The Y-axis values of signals of different saturating antibodies 
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in this step were divided by the value of the reference channel to get ratio results of different 

Ab1-Ab2 pairs. Ratio result close to 0 indicated total competition while 1 indicated no 

competition. In total, 50 IgGs and 4 Fabs (Fabs 40, EY6A (Zhou et al., 2020), FD5D 

(unpublished) and S309 (Pinto et al., 2020)) were used as the saturating antibodies and 80 

IgGs as the competing antibodies. 

 

Competition mapping of antibodies 

Gross binning of antibodies: Competition values were prepared for cluster analysis and 

binning by capping all competition values between 0 and 1. Competition values between 

antibodies i and j were averaged with the competition value for j and i when both were 

available. Cluster4x (Ginn, 2020) was used to cluster antibodies into three distinct groups 

using single value decomposition on the matrix of competition values. 

 

Preparation of RBD surface and mesh: A surface of the receptor-binding domain was 

generated in PyMOL (The PyMOL Molecular Graphics System, Version 1.2r3pre, 

Schrödinger, LLC) from chain E of PDB code 6YLA. A mesh was generated and iteratively 

contracted and restrained to the surface of the RBD to provide a smoother surface on which 

to direct antibody refinement, reducing intricate surface features which could lead to 

unrealistic exploration of local minima. 

 

Fixing positions of antibodies with known structure: In order to provide an objective position 

for those antibodies of known structure (FD5D (unpublished), EY6A (Zhou et al., 2020), 

S309 (Pinto et al., 2020) and mAb  40), to reflect the occluded region, all non-hydrogen 

antibody atoms were found within 20 Å of any RBD atom, and likewise all RBD atoms 

within 20 Å of an antibody atom. From each group, the atoms with the lowest sum-of-square-
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lengths from all other members were identified and the midpoint of these two atoms was 

locked to the nearest vertex on the mesh. Solvent molecules were ignored, but in the case of 

S309, the glycan cofactor was included in the set of antibody atoms. 

 

The target function: On an evaluation of the target function, either all unique pairs of 

antibodies were considered (all-pairs), or only unique pairs where one of the antibodies was 

fixed (fixed-pairs), depending on the stage of the minimisation protocol.  Competition levels 

were estimated for each pair of antibodies as described by f(x) in Eq. 1 

where r is the working radius of the antibody, set to 11 Å, accounting for the approximate 

antibody radius.  The distance between the pair of antibodies at a given evaluation of the 

function is given by d in Angstroms. The target function was the sum of squared differences 

between the competition estimation and the competition value from SPR data. 

 

Obtaining a self-consistent set of refined antibody positions: Minimisation was carried out 

globally by 1000 macrocycles of Monte Carlo-esque sampling using LBFGS refinement. A 

random starting position for each antibody was generated by randomly assigning a starting 

vertex on the RBD mesh and the target function minimised for 20 cycles considering data 

points for pairs with at least one fixed antibody, followed by 40 cycles for all data points. 

Between each cycle, antibody positions were locked onto the nearest mesh vertex.  

Depending on the starting positions of antibodies, results were a mixture of well-refined and 

poorly refined solutions. Results were ordered in ascending target function scores. Positions 

of antibodies for each result was passed into cluster4x as dummy C-alpha positions (Ginn, 

2020). A clear self-consistent solution was enriched in lower target function scores and 

separated using cluster4x for further analysis. The average position for each antibody was 
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chosen as the sampled position which had the lowest average square distance to very other 

sampled position, and the RMSD calculated from all contributing antibody positions. 

 

Measurement of viral burden (in vivo experiments).  

Tissues were weighed and homogenized with zirconia beads in a MagNA Lyser instrument 

(Roche Life Science) in 1000 µL of DMEM supplemented to contain 2% heat-inactivated 

FBS. Tissue homogenates were clarified by centrifugation at 10,000 rpm for 5 min and stored 

at −80 °C. RNA was extracted using the MagMax mirVana Total RNA isolation kit (Thermo 

Scientific) on a Kingfisher Flex extraction robot (Thermo Scientific). RNA was reverse 

transcribed and amplified using the TaqMan RNA-to-CT 1-Step Kit (ThermoFisher). Reverse 

transcription was carried out at 48 °C for 15 min followed by 2 min at 95 °C. Amplification 

was accomplished over 50 cycles as follows: 95 °C for 15 s and 60 °C for 1 min. Copies of 

SARS-CoV-2 N gene RNA in samples were determined using a previously published assay 

(PubMed ID 32553273). Briefly, a TaqMan assay was designed to target a highly conserved 

region of the N gene (Forward primer: ATGCTGCAATCGTGCTACAA; Reverse primer: 

GACTGCCGCCTCTGCTC; Probe: /56-

FAM/TCAAGGAAC/ZEN/AACATTGCCAA/3IABkFQ/). This region was included in an 

RNA standard to allow for copy number determination. The reaction mixture contained final 

concentrations of primers and probe of 500 and 100 nM, respectively.  

 

Plaque assay.  

Vero-furin cells (Mukherjee et al., 2016)  were seeded at a density of 2.5×105 cells per well 

in flat-bottom 12-well tissue culture plates. The following day, medium was removed and 

replaced with 200 µL of 10-fold serial dilutions of the material to be titrated, diluted in 

DMEM+2% FBS. After incubation for 1 h at 37 oC, 1 mL of methylcellulose overlay was 
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added. Plates were incubated for 72 h, then fixed with 4% paraformaldehyde (final 

concentration) in phosphate-buffered saline for 20 min. Plates were stained with 0.05% (w/v) 

crystal violet in 20% methanol and washed twice with distilled, deionized water prior to 

plaque enumeration.  

 

Affinity determination using biolayer interferometry 

Octet RED 96e (ForteBio) was used to determine the binding affinities of antibodies with 

RBD or spike. Anti-RBD IgGs were immobilized onto AR2G biosensors (ForteBio) while 

RBD was used as the analyte with serial dilutions. For IgG159, spike was immobilised onto 

AR2G biosensors with IgG159 acting as the analyte with serial dilutions. Kd values were 

calculated using Data Analysis HT 11.1 (ForteBio) with a 1:1 global fitting model. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

ELISA Kd and EC50 values were estimated using nonlinear regression curve-fitting analyses 

of binding data, Prism Version 8 software (GraphPad). The percentage of focus reduction 

was calculated and IC50 was determined using the probit program from the SPSS package. 

IC50 were determined using the probit program from the SPSS package. Neutralization 

potencies (IC50) between 2 groups of antibodies were compared using two-tailed Mann–

Whitney U test, Prism Version 8 software (GraphPad). BLI Kd values were calculated using 

Data Analysis HT 11.1 (ForteBio) with a 1:1 global fitting model. Statistical analysis of 

weight change and viral burden in vivo were determined by two-way ANOVA with Sidak’s 

post-test and Kruskal-Wallis test with Dunn’s post-test, Prism Version 8 software 

(GraphPad), respectively. 

 

References  

Jo
urn

al 
Pre-

pro
of



 60 

Barnes, C.O., West, A.P., Huey-Tubman, K.E., Hoffmann, M.A.G., Sharaf, N.G., Hoffman, 

P.R., Koranda, N., Gristick, H.B., Gaebler, C., Muecksch, F., et al. Structures of Human 

Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features 

of Antibodies. Cell. 2020; 182: 828–842. 

Baum, A., Fulton, B.O., Wloga, E., Copin, R., Pascal, K.E., Russo, V., Giordano, S., Lanza, 

K., Negron, N., Ni, M., et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid 

mutational escape seen with individual antibodies. Science. 2020; 369: 1014–1018. 

van de Bovenkamp, F.S., and Hafkenscheid, L. Glycosylation in Immunity The Emerging 

Importance of IgG Fab Rispens and Yoann Rombouts. J Immunol Ref. 2016; 196: 1435–

1441. 

Cai, Y., Zhang, J., Xiao, T., Peng, H., Sterling, S.M., Walsh, R.M., Rawson, S., Rits-Volloch, 

S., and Chen, B. Distinct conformational states of SARS-CoV-2 spike protein. Science. 2020; 

369: 1586–1592. 

Caly, L., Druce, J., Roberts, J., Bond, K., Tran, T., Kostecki, R., Yoga, Y., Naughton, W., 

Taiaroa, G., Seemann, T., et al.  Isolation and rapid sharing of the 2019 novel coronavirus 

(SARS-CoV-2) from the first patient diagnosed with COVID-19 in Australia. Med. J. Aust. 

2020; 212: 459–462. 

Carrique, L., Duyvesteyn, H.M., Malinauskas, T., Zhao, Y., Ren, J., Zhou, D., Walter, T.S., 

Radecke, J., Huo, J., Ruza, R.R., et al. The SARS-CoV-2 Spike harbours a lipid binding 

pocket which modulates stability of the prefusion trimer. BioRxiv. 2020; 

https://doi.org/2020.08.13.249177. 

Chen, L., Liu, W., Zhang, Q., Xu, K., Ye, G., Wu, W., Sun, Z., Liu, F., Wu, K., Zhong, B., et 

al. RNA based mNGS approach identifies a novel human coronavirus from two individual 

pneumonia cases in 2019 Wuhan outbreak. Emerg. Microbes Infect. 2020a; 9: 313–319. 

Chen, X., Pan, Z., Yue, S., Yu, F., Zhang, J., Yang, Y., Li, R., Liu, B., Yang, X., Gao, L., et 

Jo
urn

al 
Pre-

pro
of



 61 

al. Disease severity dictates SARS-CoV-2-specific neutralizing antibody responses in 

COVID-19. Signal Transduct. Target. Ther. 2020b; 5: 180. 

Chi, X., Yan, R., Zhang, J., Zhang, G., Zhang, Y., Hao, M., Zhang, Z., Fan, P., Dong, Y., 

Yang, Y., et al.  A neutralizing human antibody binds to the N-terminal domain of the Spike 

protein of SARS-CoV-2. Science. 2020; 369: 650–655. 

Clark, S.A., Clark, L.E., Pan, J., Coscia, A., McKay, L.G.A., Shankar, S., Johnson, R.I., 

Griffiths, A., and Abraham, J.  Molecular basis for a germline-biased neutralizing antibody 

response to SARS-CoV-2. BioRxiv. 2020;  https://doi.org/2020.11.13.381533. 

DeFrancesco, L. COVID-19 antibodies on trial. Nat. Biotechnol. 2020; 38: 1242–1252. 

Dong, J., Zost, S.J., Greaney, A.J., Starr, T.N., Dingens, A.S., Chen, E.C., Chen, R.E., Brett 

Case, J., Sutton, R.E., Gilchuk, P., et al. Genetic and structural basis for recognition of 

SARS-CoV-2 spike protein by 2 a two-antibody cocktail 3 4. BioRxiv. 2021; https://doi.org/ 

2021.01.27.428529. 

Du, S., Cao, Y., Zhu, Q., Yu, P., Qi, F., Wang, G., Du, X., Bao, L., Deng, W., Zhu, H., et al. 

Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected 

Hamsters and Provides a Potent Cocktail Pairing Strategy. Cell. 2020; 183: 1013–1023. 

Emsley, P., and Cowtan, K. (2004). Coot: Model-building tools for molecular graphics. Acta 

Crystallogr. Sect. D Biol. Crystallogr. 60, 2126–2132. 

Ginn, H.M. Pre-clustering data sets using cluster 4 x improves the signal-to-noise ratio of 

high-throughput crystallography drug-screening analysis. Acta Crystallogr. Sect. D Struct. 

Biol. 2020; 76: 1134–1144. 

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Mü, M.A., Drosten, C., and Pö, S. SARS-

CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven 

Protease Inhibitor. Cell. 2020; 181: 271-280. 

Huang,K-Y.A., Tan,T.K., Chen,T-H., Huang, C-G., Harvey,R., Hussain, S.,  Chen,C-

Jo
urn

al 
Pre-

pro
of



 62 

P., Harding, A., Gilbert-Jaramillo, J., Liu,X., et al. Plasmablast-derived antibody response to 

acute SARS-CoV-2 infection in humans. BioRxiv. 2020; https://doi.org/2020.08.28.267526. 

Huo, J., Zhao, Y., Ren, J., Zhou, D., Duyvesteyn, H.M., Ginn, H.M., Carrique, L., 

Malinauskas, T., Ruza, R.R., Shah, P.N., et al. Neutralization of SARS-CoV-2 by Destruction 

of the Prefusion Spike. Cell Host Microbe. 2020; 28: 445-454. 

Hurlburt, N.K., Seydoux, E., Wan, Y.H., Edara, V.V., Stuart, A.B., Feng, J., Suthar, M.S., 

McGuire, A.T., Stamatatos, L., and Pancera, M. Structural basis for potent neutralization of 

SARS-CoV-2 and role of antibody affinity maturation. Nat. Commun. 2020; 11: 5413. 

Jaimes, J.A., André, N.M., Chappie, J.S., Millet, J.K., and Whittaker, G.R. Phylogenetic 

Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary 

Distinct and Proteolytically Sensitive Activation Loop. J. Mol. Biol. 2020; 432: 3309–3325. 

Johnson, B.A., Xie, X., Kalveram, B., Lokugamage, K.G., Muruato, A., Zou, J., Zhang, X., 

Juelich, T., Smith, J.K., Zhang, L., et al. Furin Cleavage Site Is Key to SARS-CoV-2 

Pathogenesis. BioRxiv. 2020; https://doi.org/2020.08.26.268854. 

Ju, B., Zhang, Q., Ge, J., Wang, R., Sun, J., Ge, X., Yu, J., Shan, S., Zhou, B., Song, S., et al. 

Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature. 2020; 584: 115–

119. 

Ke, Z., Oton, J., Qu, K., Cortese, M., Zila, V., McKeane, L., Nakane, T., Zivanov, J., 

Neufeldt, C.J., Cerikan, B., et al. Structures and distributions of SARS-CoV-2 spike proteins 

on intact virions. Nature. 2020; 588: 498–502. 

Krammer, F. SARS-CoV-2 vaccines in development. Nature. 2020; 586: 516–527. 

Kreye, J., Reincke, S.M., Kornau, H.C., Sánchez-Sendin, E., Corman, V.M., Liu, H., Yuan, 

M., Wu, N.C., Zhu, X., Lee, C.C.D., et al. A Therapeutic Non-self-reactive SARS-CoV-2 

Antibody Protects from Lung Pathology in a COVID-19 Hamster Model. Cell. 2020. 183: 

1058–1069. 

Jo
urn

al 
Pre-

pro
of



 63 

Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., et 

al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. 

Nature. 2020; 581: 215–220. 

Li, F. Receptor Recognition Mechanisms of Coronaviruses: a Decade of Structural Studies. J. 

Virol. 2015; 89: 1954-1964. 

Liebschner, D., Afonine, P. V., Baker, M.L., Bunkoczi, G., Chen, V.B., Croll, T.I., Hintze, 

B., Hung, L.W., Jain, S., McCoy, A.J., et al. Macromolecular structure determination using 

X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. Sect. D 

Struct. Biol. 2019; 75: 861–877. 

Liu, L., Wang, P., Nair, M.S., Yu, J., Rapp, M., Wang, Q., Luo, Y., Chan, J.F.W., Sahi, V., 

Figueroa, A., et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 

spike. Nature. 2020; 584: 450–456. 

Lv, Z., Deng, Y.Q., Ye, Q., Cao, L., Sun, C.Y., Fan, C., Huang, W., Sun, S., Sun, Y., Zhu, L., 

et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent 

therapeutic antibody. Science. 2020; 369: 1505–1509. 

Mastronarde, D.N. Automated electron microscope tomography using robust prediction of 

specimen movements. J. Struct. Biol. 2005; 152: 36–51. 

Matrosovich, M., Matrosovich, T., Carr, J., Roberts, N.A., and Klenk, H.D. Overexpression 

of the alpha-2,6-sialyltransferase in MDCK cells increases influenza virus sensitivity to 

neuraminidase inhibitors. J Virol. 2003; 77: 8418-25.  

McCray, P.B., Pewe, L., Wohlford-Lenane, C., Hickey, M., Manzel, L., Shi, L., Netland, J., 

Jia, H.P., Halabi, C., Sigmund, C.D., et al. Lethal Infection of K18-hACE2 Mice Infected 

with Severe Acute Respiratory Syndrome Coronavirus. J. Virol. 2007; 81: 813–821. 

Mukherjee, S., Sirohi, D., Dowd, K.A., Chen, Z., Diamond, M.S., Kuhn, R.J., and Pierson, 

T.C. Enhancing dengue virus maturation using a stable furin over-expressing cell line. 

Jo
urn

al 
Pre-

pro
of



 64 

Virology. 2016; 497: 33–40. 

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and 

Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. 

Comput. Chem. 2004; 25: 1605-1612. 

Piccoli, L., Park, Y.J., Tortorici, M.A., Czudnochowski, N., Walls, A.C., Beltramello, M., 

Silacci-Fregni, C., Pinto, D., Rosen, L.E., Bowen, J.E., et al. Mapping Neutralizing and 

Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-

Guided High-Resolution Serology. Cell. 2020; 183: 1024–1042. 

Pinto, D., Park, Y.J., Beltramello, M., Walls, A.C., Tortorici, M.A., Bianchi, S., Jaconi, S., 

Culap, K., Zatta, F., De Marco, A., et al. Cross-neutralization of SARS-CoV-2 by a human 

monoclonal SARS-CoV antibody. Nature. 2020; 583: 290–295. 

Punjani, A., Rubinstein, J.L., Fleet, D.J., and Brubaker, M.A. CryoSPARC: Algorithms for 

rapid unsupervised cryo-EM structure determination. Nat. Methods. 2017; 14: 290–296. 

Roy, S., Jaiswar, A., and Sarkar, R. Dynamic Asymmetry Exposes 2019-nCoV Prefusion 

Spike. J. Phys. Chem. Lett. 2020; 11: 7021–7027. 

Shi, R., Shan, C., Duan, X., Chen, Z., Liu, P., Song, J., Song, T., Bi, X., Han, C., Wu, L., et 

al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature. 

2020; 584: 120–124. 

Simmons, G., Reeves, J.D., Rennekamp, A.J., Amberg, S.M., Piefer, A.J., and Bates, P. 

Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) 

spike glycoprotein-mediated viral entry. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 4240–

4245. 

Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., Lu, L., Jiang, S., Yang, Z., Wu, Y., et al. 

Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific 

human monoclonal antibody. Emerg. Microbes Infect. 2020; 9: 382–385. 

Jo
urn

al 
Pre-

pro
of



 65 

Toelzer, C., Gupta, K., Yadav, S.K.N., Borucu, U., Davidson, A.D., Kavanagh Williamson, 

M., Shoemark, D.K., Garzoni, F., Staufer, O., Milligan, R., et al. Free fatty acid binding 

pocket in the locked structure of SARS-CoV-2 spike protein. Science. 2020; 370: 6517. 

van Dorp, L., Tan, C.C.S., Lam, S.D., Richard, D., Owen, C., Berchtold, D., Orengo, C., 

Balloux, F. Recurrent mutations in SARS-CoV-2 genomes isolated from mink point to rapid 

host-adaptation. bioRxiv. 2020; doi:https://doi.org/10.1101/2020.11.16.384743 

Walls, A.C., Park, Y.-J., Tortorici, M.A., Wall, A., McGuire, A.T., and Veesler, D.  

Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020 

181: 281–292. 

Walter, T.S., Diprose, J., Brown, J., Pickford, M., Owens, R.J., Stuart, D.I., and Harlos, K. A 

procedure for setting up high-throughput nanolitre crystallization experiments. I. Protocol 

design and validation. J. Appl. Crystallogr. 2003; 36: 308–314. 

Walter, T.S., Ren, J., Tuthill, T.J., Rowlands, D.J., Stuart, D.I., and Fry, E.E. A plate-based 

high-throughput assay for virus stability and vaccine formulation. J. Virol. Methods. 2012; 

185: 166–170. 

Winkler, E.S., Bailey, A.L., Kafai, N.M., Nair, S., McCune, B.T., Yu, J., Fox, J.M., Chen, 

R.E., Earnest, J.T., Keeler, S.P., et al. SARS-CoV-2 infection of human ACE2-transgenic 

mice causes severe lung inflammation and impaired function. Nat. Immunol. 2020; 21: 11. 

Winter, G. Xia2: An expert system for macromolecular crystallography data reduction. J. 

Appl. Crystallogr. 2010; 43: 186–190. 

Winter, G., Waterman, D.G., Parkhurst, J.M., Brewster, A.S., Gildea, R.J., Gerstel, M., 

Fuentes-Montero, L., Vollmar, M., Michels-Clark, T., Young, I.D., et al.  DIALS : 

implementation and evaluation of a new integration package. Acta Crystallogr. Sect. D 

Struct. Biol. 2018; 74: 85–97. 

Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.-L., Abiona, O., Graham, 

Jo
urn

al 
Pre-

pro
of



 66 

B.S., and McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion 

conformation. Science. 2020; 367: 1260–1263. 

Wright, A., Tao, M.H., Kabat, E.A., and Morrison, S.L. Antibody variable region 

glycosylation: Position effects on antigen binding and carbohydrate structure. EMBO J. 1991; 

10: 2717–2723. 

Wrobel, A.G., Benton, D.J., Hussain, S., Harvey, R., Martin, S.R., Roustan, C., Rosenthal, 

P.B., Skehel, J.J., and Gamblin, S.J. Antibody-mediated disruption of the SARS-CoV-2 spike 

glycoprotein. Nat. Commun. 2020; 11: 5337. 

Wu, N.C., Yuan, M., Liu, H., Lee, C.C.D., Zhu, X., Bangaru, S., Torres, J.L., Caniels, T.G., 

Brouwer, P.J.M., van Gils, M.J., et al. An Alternative Binding Mode of IGHV3-53 

Antibodies to the SARS-CoV-2 Receptor Binding Domain. Cell Rep. 2020a; 33: 108274. 

Wu, Y., Wang, F., Shen, C., Peng, W., Li, D., Zhao, C., Li, Z., Li, S., Bi, Y., Yang, Y., et al. 

A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its 

receptor ACE2. Science. 2020b;  368: 1274–1278. 

Xiong, X., Qu, K., Ciazynska, K.A., Hosmillo, M., Carter, A.P., Ebrahimi, S., Ke, Z., 

Scheres, S.H.W., Bergamaschi, L., Grice, G.L., et al. A thermostable, closed SARS-CoV-2 

spike protein trimer. Nat. Struct. Mol. Biol. 2020; 27: 934–941. 

Ylera, F., Harth, S., Waldherr, D., Frisch, C., and Knappik, A. Off-rate screening for 

selection of high-affinity anti-drug antibodies. Anal. Biochem. 2013; 441: 208–213. 

Yuan, M., Wu, N.C., Zhu, X., Lee, C.-C.D., So, R.T.Y., Lv, H., Mok, C.K.P., and Wilson, 

I.A. A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and 

SARS-CoV. Science. 2020a;  368: 630–633. 

Yuan, M., Liu, H., Wu, N.C., Lee, C.C.D., Zhu, X., Zhao, F., Huang, D., Yu, W., Hua, Y., 

Tien, H., et al. Structural basis of a shared antibody response to SARS-CoV-2. Science. 

2020b;  369: 1119–1123. 

Jo
urn

al 
Pre-

pro
of



 67 

Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Wu, Y., Yan, J., Shi, Y., et al. 

Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic 

receptor binding domains. Nat. Commun. 2017; 8: 15092. 

Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 2016; 193: 1–

12. 

Zhang, P., Woen, S., Wang, T., Liau, B., Zhao, S., Chen, C., Yang, Y., Song, Z., Wormald, 

M.R., Yu, C., et al. Challenges of glycosylation analysis and control: An integrated approach 

to producing optimal and consistent therapeutic drugs. Drug Discov. Today. 2016; 21: 740–

765. 

Zhao, G., Du, L., Ma, C., Li, Y., Li, L., Poon, V.K., Wang, L., Yu, F., Zheng, B.J., Jiang, S., 

et al. A safe and convenient pseudovirus-based inhibition assay to detect neutralizing 

antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-

CoV. Virol. J. 2013; 10: 266. 

Zhao, Y., Ren, J., Padilla-Parra, S., Fry, E.E., and Stuart, D.I. Lysosome sorting of β-

glucocerebrosidase by LIMP-2 is targeted by the mannose 6-phosphate receptor. Nat. 

Commun. 2014; 5: 4321. 

Zhou, D., Duyvesteyn, H.M.E., Chen, C.P., Huang, C.G., Chen, T.H., Shih, S.R., Lin, Y.C., 

Cheng, C.Y., Cheng, S.H., Huang, Y.C., et al. Structural basis for the neutralization of 

SARS-CoV-2 by an antibody from a convalescent patient. Nat. Struct. Mol. Biol. 2020; 27: 

950–958. 

Zivanov, J., Nakane, T., Forsberg, B.O., Kimanius, D., Hagen, W.J.H., Lindahl, E., and 

Scheres, S.H.W. New tools for automated high-resolution cryo-EM structure determination in 

RELION-3. Elife. 2018; 7:e42166. 

Zost, S.J., Gilchuk, P., Case, J.B., Binshtein, E., Chen, R.E., Nkolola, J.P., Schäfer, A., 

Reidy, J.X., Trivette, A., Nargi, R.S., et al. Potently neutralizing and protective human 

Jo
urn

al 
Pre-

pro
of



 68 

antibodies against SARS-CoV-2. Nature. 2020; 584: 443–444. 

Jo
urn

al 
Pre-

pro
of



Highlights 

• Map 377 mAbs: 19 of 80 recognizing the RBD are potent neutralizers; 1 potent NTD binder 

• 19 Fab-antigen complex structures; 80 mAbs mapped on RBD and clustered into 5 epitopes 

• Most potent mAbs are ACE2 blockers, neutralize with few ACE2s, some Fabs glycosylated 

• mAbs reveal unique examples of  NTD binding, RBD binding mode and LC optimization 

 

In brief 

Dejnirattisai et al. present an in-depth study of the human antibody response to SARS-CoV-2 

infection. By characterizing 377 human mAbs from recovered COVID-19 patients, and determining 

19 protein structures, they construct a map of antibody footprints on the RBD describe in great 

detail its antigenic anatomy. 
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