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Some Examples of Projective and
c-projective Compactifications of Einstein
Metrics

Maciej Dunajski, A. Rod Gover and Alice Waterhouse

Abstract. We construct several examples of compactifications of Einstein
metrics. We show that the Eguchi–Hanson instanton admits a projective
compactification which is non-metric, and that a metric cone over any
(pseudo)-Riemannian manifolds admits a metric projective compactifica-
tion. We construct a para-c-projective compactification of neutral signa-
ture Einstein metrics canonically defined on certain rank-n affine bundles
M over n-dimensional manifolds endowed with projective structures.

1. Introduction

There are several notions of compactifications of a (pseudo) Riemannian man-
ifold (M, g). In a conformal compactification (M, g), one has that M is a man-
ifold with boundary such that M is the interior of M , and there is a defining
function T for the boundary such that the metric g = T 2g smoothly extends
to the boundary ∂M of M (T being a defining function for ∂M means that
∂M = Z(T ) := {p ∈ M : T (p) = 0} and dT is nowhere zero on ∂M .) The
geodesics of g do not correspond to geodesics of g, but the angles are preserved.
This kind of compactification has proven to be useful in studying the causal
structure of space times in general relativity [21], and quantum field theory
[23]. It also underlies formulating the boundary conditions [22] of conformally
invariant field equations like the Yang–Mills theory where the curvature decay
rate on R

4 is equivalent to the connection extending to a one-point compactifi-
cation R

4
= R

4∪{∞} = S4. In this case, the round metric on S4 is conformally
equivalent to a flat Euclidean metric on R

4.
The conformal compactification is not available or not natural for many

complete metrics that one may want to compactify, which motivates a search
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for other compactification mechanisms. In a projective compactification of
a pseudo-Riemannian manifold [6], the unparametrised geodesics of (M, g)
smoothly extend to a boundary ∂M of the manifold M = M ∪ ∂M (see Sect.
2 for definitions). In general, this manifold does not carry a metric, but only
an affine connection ∇ belonging to the projective equivalence class contain-
ing the Levi–Civita connection of g. This kind of compactification is naturally
applicable to scattering problems [19].

There are two related concepts of compactifications: In a c-projective
compactification [7] of an almost complex manifold (M,J) with complex con-
nection ∇, the compactifying connection ∇ belongs to the c-projective equiva-
lence class of ∇, i.e. ∇ and ∇ preserve J , have the same torsion, and share the
same J-planar curves (see §3 for definitions). In the para-c-projective compact-
ification which we shall introduce in Sect. 3, the endomorphism J : TM → TM
squares to identity. The boundary ∂M acquires a contact structure, and a con-
formal metric on the contact distribution.

This paper is organised as follows. In Sect. 2, we shall review the notion
of the projective compactification and show that the Eguchi–Hanson gravi-
tational instanton can be projectively compactified. We shall then introduce
the notion of a metric projective compactification, where the connection ∇
is the Levi–Civita connection of some metric g on M . We shall prove (The-
orem 2.4) that a metric cone over a (pseudo)-Riemannian manifold admits
a metric projective compactification. In Sects. 3 and 4, we shall construct
a para-c-projective compactification of a neutral signature Einstein metric g
defined on a projectivised tractor bundle M of any projective structure (Theo-
rems 4.2 and 4.3). The model for this construction will be the compactification
of M = SL(n + 1)/GL(n) which corresponds to the flat projective structure
on RP

n.

2. Metric and non-metric projective compactifications

In this section, we shall introduce the concept of a metric projective compact-
ification of a manifold M with an affine connection ∇ and give some examples
of metric and non-metric projective compactifications.

Definition 2.1. An affine connection ∇ on M admits a projective compactifi-
cation of order α to a manifold with boundary M = M ∪ ∂M if there exists
a function T : M → R such that T = 0 is the boundary ∂M ⊂ M , the differ-
ential dT does not vanish on ∂M , and a projectively equivalent connection ∇
on M defined by

∇XY = ∇XY + Υ(X)Y + Υ(Y )X (2.1)

with

Υ =
dT

αT

extends smoothly to ∂M .
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In [6], it was shown that if ∇ is the Levi–Civita connection of a (pseudo)-
Riemannian metric g on M , then a sufficient condition for a projective com-
pactification of order α > 0 (such that 2/α ∈ Z) to exist is that near the
boundary Z(T ) the metric g can be put in the form

g = C
dT 2

T 4/α
+

1
T 2/α

h, (2.2)

for some h which smoothly extends to the boundary Z(T ) and restricts to
a pseudo-Riemannian metric there, and some constant C. Moreover if g is
Ricci-flat, and a projective compactification exists, then necessarily α = 1.

In the examples below, we shall make use of a stronger notion of metric
projective compactifications

Definition 2.2. A projective compactification from Definition 2.1 is metric if
∇ is the Levi–Civita connection of some (pseudo)-Riemannian metric g on M .

2.1. Example: Flat Space

Consider a flat metric on R
n of the form

gflat = dr2 + r2γSn−1 , (2.3)

where γSn−1 is the round metric on a sphere Sn−1 with Ricci scalar equal
to (n − 1)(n − 2). Setting T = r−1 puts gflat in the form (2.2), but the
resulting connection (2.1) is not metric1. To construct a metric projective-
compactification consider a defining function given by

T =
1√

r2 + 1
.

The metric gflat takes the form

gflat =
dT 2

T 4
+

1
T 2

(
(1 − T 2)γSn−1 +

1
1 − T 2

dT 2
)

and h reduces to γSn−1 on the boundary Z(T ). It can now be verified by
direct calculation that the connection (2.1) with Υ = T−1dT is the Levi–
Civita connection of the metric

g =
dr2

(1 + r2)2
+

r2

r2 + 1
γSn−1 =

dT 2

1 − T 2
+ (1 − T 2)γSn−1 . (2.4)

The metric g has constant positive curvature, is defined on an open set of a
round sphere Sn, and extends to the boundary T = 0 where it induces the
metric γSn−1 .

This construction has the following natural geometric interpretation (Fig-
ure 2.1). Consider a central projection π from a hemisphere S ⊂ Sn to R

n. If
the metric on Sn is

gSn = dθ2 + cos θ2γSn−1

1To show this, compute the Ricci tensor R of (2.1). If (2.1) was metric for some metric g

then R would be a Ricci tensor of g, and so (as g is projectively flat) it would have to be a
constant multiple of g by the Beltrami theorem. Computing the Ricci tensor of the metric
given by R shows that it is impossible for any α.
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Figure 1. Central projection

and the inverse map π−1 : Rn → S is given by cos2 θ = r2(r2 + 1)−1 then the
pull back of (π−1)∗gSn+1 to R

n+1 is given by (2.4).

2.2. Example: The Eguchi–Hanson Manifold

The Eguchi–Hanson metric [14] is given by2

g =
(
1 − a4

r4

)−1

dr2 +
1
4
r2

(
1 − a4

r4

)
σ2
3 +

1
4
r2(σ2

1 + σ2
2). (2.6)

The apparent singularity at r = a is removed by allowing

r > a, 0 ≤ ψ ≤ 2π, 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π.

Setting ρ2 = r2(1 − (a/r)4) and expanding the metric near r = a and fixing
(θ, φ) gives g ∼ (dρ2 + ρ2dψ2)/4. In the standard spherical polar coordinates,
ψ has a period 4π on SU(2). In our case, the period of ψ is 2π to achieve
regularity. Therefore, the surfaces of constant r are real projective planes de-
fined by identifying the antipodal points on the sphere, RP3 = S3/Z2. At large
values of r, the metric looks like R

4/Z2 rather than Euclidean space. Thus the
Eguchi–Hanson metric is an example of the asymptotically locally Euclidean
manifold (see e.g. [1] for a discussion of this class of manifolds in the context
of twistor theory).

To projectively compactify (2.6) and introduce the defining function

T =
1
r

so that (2.6) takes the form (2.2) with

h =
4a4T 6

1 − a4T 4
dT 2 + (1 − a4T 4)σ2

3 + σ2
1 + σ2

2 .

and the topology of the boundary is RP
3. The resulting connection (2.1) is

non-metric. One can ask whether there exists another choice of the defining
function which leads to a metric projective compactification. The answer to

2Left invariant one-forms σi, i = 1, 2, 3 on the group manifold SU(2) satisfy

dσ1 + σ2 ∧ σ3 = 0, dσ2 + σ3 ∧ σ1 = 0, dσ3 + σ1 ∧ σ2 = 0. (2.5)
These one-forms can be represented in terms of Euler angles by

σ1 + iσ2 = e−iψ(dθ + i sin θdφ), σ3 = dψ + cos θdφ,

where to cover SU(2) = S3 we require the ranges

0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 4π.
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that question is negative, as Eguchi–Hanson is geodesically rigid: up to a con-
stant non-zero multiple there exists only one metric in its projective class.
This follows from a combination of the following two facts: (A) Two Ricci-
flat metrics in dimension four are projectively equivalent iff they are affinely
equivalent (i.e. they share the same Levi–Civita connection). (B) In the pos-
itive signature, two affine equivalent Ricci–flat metrics are flat. See [18] for
proofs of these facts.

2.3. Metric Cones

The projective equivalence of (2.4) and (2.3) is an example of the following
result of Levi–Civita [17].

Proposition 2.3. The metrics

g = dr2 + f(r)γ, and g =
1

(κf(r) + 1)2
dr2 +

f(r)
κf(r) + 1

γ

are projectively equivalent for any constant κ. Here f is an arbitrary function
of r, and γ is an arbitrary r-independent metric.

Proof. One way to establish this proposition is to observe that Levi–Civita
connections of g and g are related by (2.1) with

Υ = − κ

2(1 + κf(r))
df

dr
dr.

�
Let (N, γ) be a (pseudo) Riemannian manifold of dimension (n − 1). A

metric cone of (N, γ) is a (pseudo) Riemannian manifold M = N × R
+ with

the metric
g = dr2 + r2γ (2.7)

We shall use Proposition 2.3 to prove the following

Theorem 2.4. The metric cone (M, g) given by (2.7) of a (pseudo)-Riemannian
manifold (N, γ) admits a metric projective compactification of order 1.

Proof. Taking the defining function to be

T =
1√

r2 + 1
leads to

g =
dT 2

T 4
+

1
T 2

h, where h =
dT 2

1 − T 2
+ (1 − T 2)γ.

The connection ∇ given by (2.1) with Υ = T−1dT extends to the boundary,
and is the Levi–Civita connection of the metric

g =
dr2

(1 + r2)2
+

r2

1 + r2
γ

=
dT 2

1 − T 2
+ (1 − T 2)γ

in agreement with Proposition 2.3. The metric g extends to the boundary. �
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This construction leads to global examples of metric projective compacti-
fications. It follows from the general theory [3] that metrics cones over Einstein
manifolds with non-zero Ricci scalar which admit Killing spinors are manifolds
with special holonomy. In fact the first examples of non-compact manifolds
with exceptional holonomies G2 and Spin(7) were constructed by Bryant [4]
as metric cones over the nearly Kähler manifold SU(3)/T 2 and the weak G2

holonomy manifold SO(5)/SO(3), respectively. In view of Theorem 2.4, these
metric cones admit metric projective compactifications.

3. Para-c-Projective Compactifications of Einstein Metrics

In [7], the concept of c-projective compactification was defined. It is based on
almost c-projective geometry [10], an analogue of projective geometry defined
for almost complex manifolds (M,J) in which the equivalence class of con-
nections defining the c-projective structure must be complex and minimal.3

Here we review the definition of c-projective compactification, modifying to
the “para” case where the para-almost-complex structure squares to Id rather
than −Id. We then introduce a class of 2n-dimensional, neutral signature Ein-
stein metrics arising from projective structures in dimension n and show that
these admit a compactification which we call para-c-projective.

Although c-projective compactification is defined for any almost complex
manifold, the definition can be applied to pseudo-Riemannian metrics g which
are Hermitian with respect to the almost complex structure so long as there
exists a connection which preserves both g and J and has minimal torsion. Such
Hermitian metrics are said to be admissible. Note that such a connection, if it
exists, is uniquely defined, since the conditions that it be complex and minimal
determine its torsion. It is thus given by the Levi–Civita connection of g plus
a constant multiple of the Nijenhuis tensor of J .

We make the following definition in the para-c-projective case.

Definition 3.1. Let (M, g, J) be a para-Hermitian manifold, and let ∇L be
a connection which preserves both g and J and has minimal torsion. The
structure (M, g, J) admits a para-c-projective compactification to a manifold
with boundary M = M ∪ ∂M , if there exists a function T : M → R such that
Z(T ) (the set where T = 0 on M) is the boundary ∂M ⊂ M , the differential
dT does not vanish on ∂M , and the connection

∇L
XY = ∇L

XY + Υ(X)Y + Υ(JX)JX + Υ(Y )X + Υ(JY )JX, where

Υ =
dT

2T
,

extends to M .

3Recall that a connection on an almost complex manifold (M, J) is called complex if it
preserves J and minimal if the torsion is just the Nijenhuis tensor of J up to a constant
factor.
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Note that the para-c-projective change of connection ∇L → ∇L differs
from the c-projective case in the signs of some of the terms, to account for the
fact that J squares to the Id rather than −Id.

It follows easily from this definition that the endomorphism J on M

naturally extends to all of M by parallel transport with respect to ∇L. It thus
defines an almost para-CR structure on the hypersurface distribution D defined
by Dx := Tx∂M ∩ J(Tx∂M). It can be shown (see Lemma 5 of [7] and modify
to the case J2 = Id) that this almost para-CR structure is non-degenerate if
and only if for any local defining function T the one-form θ = dT ◦ J restricts
to a contact form on ∂M .

The first main result of [7] is Theorem 8 in this reference, which gives a
local form for an admissible Hermitian metric which is sufficient for the cor-
responding c-projective structure to be c-projectively compact. The theorem
is stated below, adapted to the para-c-projective case. Note that this includes
an assumption that the Nijenhuis tensor N of J takes so-called asymptoti-
cally tangential values. This is equivalent to the following statement in index
notation: (

N a
bc∇aT

)
|T=0 = 0. (3.1)

The following result arises by a trivial adaption of the arguments in [7] for the
almost complex case, and so further details may be obtained from that source.

Theorem 3.2 [7]. Let M be a smooth manifold with boundary ∂M and inte-
rior M . Let J be an almost para-complex structure on M , such that ∂M is
non-degenerate and the Nijenhuis tensor N of J has asymptotically tangen-
tial values. Let g be an admissible pseudo-Riemannian Hermitian metric on
M . For a local defining function T for the boundary defined on an open sub-
set U ⊂ M , put θ = dT ◦ J and, given a non-zero real constant C, define a
Hermitian

(
0
2

)
-tensor field hT,C on U ∩ M by

hT,C := Tg +
C

T
(dT 2 − θ2).

Suppose that for each x ∈ ∂M there is an open neighbourhood U of x in M , a
local defining function T defined on U , and a non-zero constant C such that

• hT,C admits a smooth extension to all of U
• for all vector fields X,Y on U with dT (Y ) = θ(Y ) = 0, the function

hT,C(X,JY ) approaches Cdθ(X,Y ) at the boundary.
Then g is c-projectively compact.

The statement in Theorem 3.2 does not depend on the choice of T . Dif-
ferent choices of T result in rescalings of the contact form θ on the boundary
by a nowhere vanishing function.

4. Example: A Class of Neutral Signature Einstein Metrics

In this section, we shall introduce a class of para-Hermitian metrics, which we
will show to be para-c-projectively compact by virtue of Theorem 3.2.
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Definition 4.1. A projective structure [∇] on an n-dimensional manifold N is
an equivalence class of torsion-free affine connection on N which share the
same unparametrised geodesics. Two connections ∇ and ∇ belong to the same
projective class if they are related by (2.1) for some one-form Υ on N .

Given a projective structure [∇] on an n-dimensional manifold N , there
exists a canonical neutral signature Einstein metric g with non-zero scalar
curvature, as well as a symplectic form Ω, on the total space M of a certain rank
n affine bundle over N . The general construction of this metric and the proof
of the projective invariance has been presented in [13] in dimension four, and in
[12] in general dimension. Here we shall give an explicit coordinate description
from [13]. In Theorem 4.2, we shall show how to recover the metric and the
symplectic form (4.1) from the natural pairing on the co-tractor bundle.

The sections of the affine bundle M → N are in one-to-one correspon-
dence with the [∇] representative connections (see §2.4 and §3.4 in [13]), and
hence the choice of a representative connection ∇ ∈ [∇] provides a diffeomor-
phism T ∗N → M . Pulling back the pair (g,Ω) with this diffeomorphism gives
a pair (g∇,Ω∇) on T ∗N which—in local coordinates (xi, ξi) on the cotangent
bundle ν : T ∗N → N—takes the form

g =
(
dξi −

(
Γk

ijξk − ξiξj − P(ij)

)
dxi

)
 dxj ,

Ω = dξi ∧ dxi + P[ij]dxi ∧ dxj , where i, j = 1, . . . , n. (4.1)

Here Γi
jk denote the Christoffel symbols and Pij is the Schouten tensor of ∇.

In [13] it was shown that the manifold M can be identified with the
complement of an RP

n−1 sub-bundle in the projectivisation P(T ∗) of a certain
rank (n+1) vector bundle (the so-called co-tractor bundle) T ∗ over N . In the
special case where N = RP

n, and [∇] is projectively flat the manifold M =
SL(n+1,R)/GL(n,R) can be identified with the projection of Rn+1×Rn+1\Z,
where Z denotes the set of incident pairs (point, hyperplane). See [20] for other
applications of (4.1).

The compactification procedure described in Theorem 4.3 will, for the
model, attach these incident pairs back to M , and more generally (in case
of a curved projective structure on N) will attach the RP

n−1 sub-bundle of
P(T ∗). The boundary ∂M from Definition 3.1 will play a role of a submanifold
manifold separating two open sets in P(T ∗) in the sense described in the next
subsection.

4.1. The Constructions in Tractor Terms

Let the projective structure (N, [∇]), be represented by some torsion-free affine
connection ∇ on N , where the latter has dimension at least 2. Let E(1) → N
be the line bundle which is the standard −2(n + 1)th root of the square of the
canonical bundle of N (which, note, is canonically oriented). For any vector
bundle B and line bundle E(w) we write B(w) as a shorthand for B ⊗ E(w).

Canonically on the projective manifold (N, [∇]), there is the rank (n+1)
co-tractor bundle [2]

T ∗ → N.
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This has a composition sequence

0 → T ∗N(1) → T ∗ X→ E(1) → 0, (4.2)

where the map X ∈ Γ(T (1)) is called the (projective) canonical tractor. Choos-
ing a connection in [∇] determines a splitting of this sequence and so then
have T ∗ = E(1) ⊕ T ∗N(1), and we can represent an element V of T ∗ as a pair
(σ, μ) = [V ]∇ (see e.g. [6]). Any other connection ∇ in [∇] is related to ∇ by
(2.1), for some 1-form field Υ on N , and the corresponding transformation

[V ]∇ = (σ, μ) �→ (σ, μ + σΥ) = [V ]∇. (4.3)

The main importance of T ∗ is that it admits a canonical projectively invariant
tractor connection ∇T ∗

given by

∇T
i

(
σ
μj

)
=

(
∇iσ − μi

∇iμj + Pijσ

)
. (4.4)

We shall now present two variants of the construction of [13], and then its
compactification (to be made precise in Theorem 4.3). We begin with com-
pactification of the construction in [13]. For simplicity, let us assume that N
is orientable.

4.1.1. Compactification by Line Projectiviation. On the total space of T ∗, we
pullback π : T ∗ → N along π to get π∗(T ∗) → T ∗ as a vector bundle over
the total space T ∗. By construction, this bundle has a tautological section
U ∈ Γ(π∗(T ∗)). We also have π∗(T (w)) for any weight w, and we shall write
simply X ∈ Γ(π∗(T (1))) for the pullback to T ∗ of the canonical tractor X on
N .

There is a canonical density τ ∈ Γ(π∗E(1)) given by

τ := X U.

Now define
κ : T ∗ −→ M := P(T ∗) (4.5)

by the fibrewise projectivisation, and use also π for the map to N :

π : M → N.

Note that τ is homogeneous of degree 1 up the fibres of the map T ∗ → M.
Thus τ determines, and is equivalent to, a section (that we also denote) τ of
a certain density bundle π∗(E(1)) ⊗ ET ∗(1), on M that for simplicity we shall
denote E(1, 1). So M is stratified according to whether or not τ is vanishing,
and we write Z(τ) to denote, in particular, the zero locus of τ .

To elaborate on the densities used here, and their generalisation to ar-
bitrary weights: By ET ∗(w′), for w′ ∈ R, we mean the line bundle on P(T ∗)
whose sections correspond to functions f : π∗T ∗ → R that are homogeneous
of degree w in the fibres of π∗T ∗ → P(T ∗). Then for any weight w we also
have E(w) on N and its pull back to the bundle π∗E(w) → P(T ∗). Then

E(w,w′) := π∗E(w) ⊗ ET ∗(w′).

Using these tools, we can recover the metric of [13]:
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Theorem 4.2. There is a neutral signature metric on M\Z(τ) determined by
the canonical pairing of the horizontal and vertical subspaces of T (T ∗). This
metric is Einstein, with non-zero Ricci scalar, and agrees with (4.1).

Proof. Considering first the total space T ∗ and then its tangent bundle, note
that there is an exact sequence

0 → π∗T ∗ → T (T ∗) → π∗TN → 0, (4.6)

where we have identified π∗T ∗ as the vertical sub-bundle of T (T ∗). A connec-
tion on the vector bundle T ∗ → N is equivalent to a splitting of this sequence;
a connection identifies π∗TN with a distinguished sub-bundle of horizontal
subspaces in T (T ∗). Thus, in particular, the projective tractor connection on
T ∗ → N gives a canonical splitting of the sequence (4.6). So we have

T (T ∗) = π∗TN ⊕ π∗T ∗. (4.7)

We move now to the total space of PT ∗, and we note that again the
tractor (equivalently, Cartan) connection determines a splitting of the tangent
bundle T (PT ∗), see [8]. From the usual Euler sequence of projective space (or
see (4.26) in the last section), it follows that for T (PT ∗) the second term of
the display (4.7) is replaced by a quotient of π∗T ∗(0, 1). Indeed, if we work at
a point p ∈ P(T ∗), observe that π∗T ∗(0, 1) has a filtration

0 → E(0, 0)p
Up→ π∗T ∗(0, 1)|p → π∗T ∗(0, 1)|p/〈Up〉 → 0 (4.8)

where, as usual, U is the canonical section. But away from Z(τ), we have that
U canonically splits the appropriately re-weighted pull back of the sequence
(4.2)

0 → π∗T ∗N(1, 1) → π∗T ∗(0, 1)
X/τ→ E(0, 0) → 0.

This identifies the quotient in (4.8), and thus we have canonically

T (P(T ∗)\Z(τ)) = π∗TN ⊕ π∗T ∗N(1, 1).

It follows that on M there is canonically a metric g and symplectic form Ω
taking values in E(1, 1), given by

g(w1, w2) =
1
2

(
ΠH(w1) ΠV (w2) + ΠH(w2) ΠV (w1)

)
and

Ω(w1, w2) =
1
2

(
ΠH(w1) ΠV (w2) − ΠH(w2) ΠV (w1)

)

where

ΠH : T (M\Z(τ)) → π∗TN and ΠV : T (M\Z(τ)) → π∗T ∗N(1, 1)

are the projections. Then we obtain the metric and symplectic form by

g :=
1
τ
g and Ω :=

1
τ
Ω. (4.9)

What remains to be done is to show that (4.9) agrees with the normal form
(4.1) once a trivialisation of T ∗ → N has been chosen.

Let p ∈ N and let W ⊂ N be an open neighbourhood of p with lo-
cal coordinates (x1, . . . , xn) such that TpN = span(∂/∂x1, . . . , ∂/∂xn). The
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connection (4.4) gives a splitting of T (T ∗) into the horizontal and vertical
sub-bundles

T (T ∗) = H(T ∗) ⊕ V (T ∗),

as in (4.7). To obtain the explicit form of this splitting, let Vα, α = 0, 1, . . . , n
be components of a local section of T ∗ in the trivialisation over W. Then

∇T ∗
Vβ = dVβ − γα

β Vα,

where γβ
α = γβ

iαdxi, and the components of the co-tractor connection γβ
iα are

given in terms of the connection ∇ on N , and its Schouten tensor, and can be
read-off from (4.4):

γ0
i0 = 0, γj

i0 = δj
i , γk

ij = Γk
ij , γ0

ij = −Pij .

In terms of these components, we can write

H(T ∗) = span
( ∂

∂xi
+ γβ

iαVβ
∂

∂Vα
, i = 1, . . . , n

)
,

V (T ∗) = span
( ∂

∂Vα
, α = 0, 1, . . . , n

)
.

Setting ξi = Vi/V0, where τ = V0 �= 0 on the complement of Z(τ), we can
compute the push forwards of these spaces to P(T ∗)\Z(τ):

κ∗H(T ∗) = span
(
hi ≡ ∂

∂xi
− (Pij + ξiξj − Γk

ij ξk)
∂

∂ξj

)
,

κ∗V (T ∗) = span
(
vi ≡ ∂

∂ξi

)
.

The non-zero components of the metric (4.9) are given by

g(vi, hj) = δi
j

which indeed agrees with (4.1) which is known to be Einstein [13]. �

Next we observe that P(T ∗)\Z(τ) is an affine bundle modelled on T ∗N .
The point is that given ∇ in the projective class there is a smooth fibre bundle
isomorphism

ι : T ∗N → P(T ∗)\Z(τ). (4.10)
First, given ∇, we can represent an element U ∈ T ∗

p (p ∈ N) by the pair
(τ, μ) ∈ E(1)p ⊕ T ∗

p N(1), or, if we choose coordinates on N , by collection

U = (τ, μi), i = 1, . . . , n. (4.11)

Then, dropping the choice ∇ ∈ [∇], U ∈ T ∗
p is an equivalence class of such pairs

by the equivalence relation (4.3) that covers the equivalence relation between
elements of [∇].

Thus, given ∇, and from the naturality of all maps, it follows that the
total space of T ∗N can be identified with P(T ∗)\Z(τ) by (for each p ∈ N)

T ∗
p N � ξi �→ [(1, ξi)] = [(τ, τξi)] ∈ P(T ∗)\Z(τ). (4.12)

Thus we may view M as a compactification of T ∗N and, by construction,
this is a closed manifold iff N is closed.
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Note that by this construction, it is easily verified that the zero locus of τ
is a smoothly embedded hypersurface in M, and from (4.2) it follows at once
that this may be identified with the total space of the fibrewise projectivisation
P(T ∗N) (which is well known to have a para-CR structure).

A feature of this construction is that in each dimension n (of N) either
the hypersurface Z(τ) (if n odd) is not orientable, or M (if n even) is not
orientable.

4.1.2. Compactification by Ray-Projectiviation. Instead we may follow the
construction above but instead define M := π∗(P+(T ∗)), where P+(T ∗) is
the ray-projectivisation of T ∗ (i.e. the fibres of T ∗ → P+(T ∗) are isomorphic
to R+). Then the bundles E(w,w′) should also be defined via ray homogene-
ity. In this case, for N orientable, both Z(τ) and M are orientable, and again
M is closed iff N is. Now from (4.2) we have that Z(τ) may be identified
with the fibrewise ray-projectivisation P+(T ∗N). In this variant of the con-
struction, there are two copies M± of T ∗N in M according to the sign of τ .
Moreover, each of M\M∓ is a manifold that is globally a para-c-projective
compactification of M± in sense of Theorem 3.2.

4.1.3. Remark on Continuing the Tractor Approach. It would be possible to
achieve our main aims by continuing the tractor approach. We will not pur-
sue this here as we want to emphasise that with little effort the main result
now follows directly form the properties of the metric. However, we sketch just
the basic idea: By our construction above, it follows that M has a canonical
para-c-projective geometry. In the notation as above, π∗T ⊕ π∗T ∗ is the cor-
responding para-c-projective tractor bundle and this has a canonical tractor
connection that trivially extends (in fibre directions) the pull back of the pro-
jective connection (that is available in horizontal directions). The dual-pairing
between π∗T and π∗T ∗ determines a fibre metric and compatible symplectic
form on the bundle π∗T ⊕ π∗T ∗ and this is obviously preserved by the con-
nection. What remains is to show that the tractor connection so constructed
satisfies properties that mean that it is normal in the sense defined in e.g.
[9]. With this established then the main results then follow from the general
holonomy theory in [8].

4.2. The Main Theorem

In the previous Sect. 4.1.2, we have presented a candidate M ≡ M\M∓
for a para-c-projective compactification of the Einstein para-Kahler manifold
(M, g,Ω) given by (4.1). What remains to be done is to show that near the
boundary Z(τ) = 0 of M the metric (4.1) can be put in the local normal form
of Theorem 3.2.

The endomorphism J : TM → TM defined by Ω(X,Y ) = g(JX, Y )
satisfies J2 = Id, and the associated Libermann connection ∇L [16] is given
by

∇L
aXb = ∇g

aXb − Gc
abXc, where Gc

ab = −Ωcd∇g
dΩab (4.13)
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and ∇g is the Levi–Civita connection of g. This connection is metric, has
minimal torsion, and preserves the almost para-complex structure J . It thus
belongs to a para-c-projective equivalence class which we will show to be com-
pactifiable in the sense of Theorem 3.2.

Theorem 4.3. The Einstein almost para-Kähler metric (M, g,Ω) given by (4.1)
admits a para-c-projective compactification M . The structure on the (2n −
1)-dimensional boundary ∂M ∼= P(T ∗N) of M includes a contact structure
together with a conformal structure and a para-CR structure defined on the
contact distribution.

Proof. In the proof below, we shall explicitly construct the boundary ∂M to-
gether with the contact structure and the associated conformal structure on the
contact distribution. We shall first deal with the model M = SL(n+1)/GL(n)
and then explain how the curvature of (N, [∇]) modifies the compactification.

In the model case, we can define coordinates xi on N = RP
n by taking

X = (1, x1, . . . , xn), where (X0, . . . , Xn) are homogeneous coordinates and we
are working in an open set where X0 �= 0. The xi are flat coordinates, so
the connection components (and hence the Schouten tensor) vanish and (4.1)
reduces to

g = dξidxi+ξiξjdxidxj , Ω = dξi∧dxi where i, j = 1, . . . , n. (4.14)

We can relate [13] the affine coordinates ξi on the fibres of T ∗N to the tractor
coordinates (4.11) by setting ξi = μi/τ on the complement of the zero locus
Z(τ) of τ .

Now consider an open set U ⊂ M given by ξix
i > 0, and define the

function T on U by

T =
1

ξixi
. (4.15)

We shall attach a boundary ∂U to the open set U such that T extends to a
function T on U ∪ ∂U , and T is the defining function for this boundary. We
then investigate the geometry on M in the limit T → 0. It is clear from above
that the zero locus of T will be contained in the zero locus Z(τ) of τ , and
therefore belongs to the boundary of M . We will use T as a defining function
for M in an open set U ⊂ M . The strategy of the proof is to extend T to
a coordinate system on U , such that near the boundary the metric g takes a
form as in Theorem 3.2.

First define θ ∈ Λ1(M) by

V θ = J(V ) dT, or equivalently θa = Ωacg
bc∇g

bT, a, b, c = 1, . . . , 2n
(4.16)

where J is the para-complex structure of (g,Ω). Using (4.14) this gives

θ = 2T (1 − T )ξidxi − dT.

We need n open sets U1, . . . , Un such that ξk �= 0 on Uk to cover the zero locus
of T . Here we chose k = n, and adapt a coordinate system (which we will
prove to be Pfaff) given by

(T,Z1, . . . , Zn−1,X
1, . . . , Xn−1, Y ),
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where T is given by (4.15) and

ZA =
ξA

ξn
, XA = xA, Y = xn, where A = 1, . . . , n − 1.

We compute

θ = 2(1 − T )
dY + ZAdXA

K
− dT, ξn =

1
KT

, where K ≡ Y + ZAXA,

and substitute

ξidxi =
1

KT
(dY + ZAdXA)

into (4.14). This gives

g =
θ2 − dT 2

4T 2
+

1
T

h, (4.17)

where

h =
1

4(1 − T )
(θ2 − dT 2) +

1
K

(
dZA  dXA − 1

2(1 − T )
XAdZA  (θ + dT )

)

is regular at the boundary T = 0. This is in agreement with the asymptotic
form in Theorem 3.2 (see [7] for further details).

The restriction h to ∂M gives a metric on a distribution D = Ker(θ|T=0)

θ|T=0 = 2
dY + ZAdXA

Y + ZAXA
, h0 =

1
4
(θ|T=0)

2 +
1

2(Y + ZAXA)

(2dZA  dXA − XAdZA  (θ|T=0)). (4.18)

Note that T is only defined up to multiplication by a positive function. Chang-
ing the defining function in this way results in a conformal rescalling of θ|T=0,
thus the metric on the contact distribution is also defined up to an overall
conformal scale. We shall choose the scale so that the contact form is given by
θ0 ≡ Kθ|T=0 on T (∂M), with the metric on D given by

hD = dZA  dXA. (4.19)

We now move on to deal with the curved case where the metric on M
is given by (4.1). The coordinate system (T,ZA,XA, Y ) is as above, and the
one-form θ in (4.16) is given by

θ = 2T (1 − T )ξidxi − dT + 2T 2(Pij − Γk
ijξk)xidxj ,

or in the (T,ZA,XA, Y ) coordinates,

θ = 2(1 − T )
ZAdXA + dY

K
− dT

+ 2T 2

[(
PAB − ΓC

ABZC + Γn
AB

TK

)
XAdXB +

(
PnB − ΓC

nBZC + Γn
nB

TK

)
Y dXB

+

(
PAn − ΓC

AnZC + Γn
An

TK

)
XAdY +

(
Pnn − ΓC

nnZC + Γn
nn

TK

)
Y dY

]
.
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Guided by the formula (4.17), we define

h = Tg − 1
4T

(θ2 − dT 2),

which we find to be

h =
1

4(1 − T )
(θ2 − dT 2) +

1
K

(
dZA  dXA − 1

2(1 − T )
XAdZA  (θ + dT )

)

− 1
K

(
(ΓC

ABZC + Γn
AB)dXA  dXB + (ΓC

nnZC + Γn
nn)dY  dY

+ 2(ΓC
AnZC + Γn

An)dXA  dY
)

+ T (PABdXA  dXB + 2PAndXA  dY + PnndY  dY ).
(4.20)

This is smooth as T → 0.
Restricting h to T = 0 yields a metric which differs from (4.18) by the

curved contribution given by the components of the connection, but not the
Schouten tensor. Substituting dY = Kθ|T=0/2 − ZAdXA, disregarding the
terms involving θ|T=0 in h, and conformally rescalling by K yields the metric

hD = (dZA − ΘABdXB)  dXA, where (4.21)

ΘAB = ΓC
ABZC + Γn

AB + (ΓC
nnZC + Γn

nn)ZAZB − 2(ΓC
AnZC + Γn

An)ZB

defined on the contact distribution D = Ker(θ0), where θ0 = 2(dY +ZAdXA).
We now invoke Theorem 3.2, verifying by explicit computation that the

remaining two conditions are satisfied. The first of these conditions is that the
metric hD is compatible with the Levi-form of the almost para-CR structure
induced on ∂M by J , i.e.

hD(X,Y ) = dθ0(JX, Y ), for X ∈ D. (4.22)

The second is that the Nijenhuis tensor takes asymptotically tangential values,
i.e. that (3.1) is satisfied.

Both of these follow from computing the para-complex structure J in the
(T,ZA,XA, Y ) coordinates. We find

J |T=0 = − ∂

∂XA
⊗ dXA +

∂

∂Y
⊗ dY +

∂

∂ZA
⊗ dZA +

∂

∂T
⊗ dT

− ZB

K

∂

∂T
⊗ dXB − 1

K

∂

∂T
⊗ dY

−
(
ΓD

ABZD + Γn
AB

) ∂

∂ZA
⊗ dXB +

(
ΓD

nBZD + Γn
nB

)
ZC

∂

∂ZC
⊗ dXB

−
(
ΓD

AnZD + Γn
An

) ∂

∂ZA
⊗ dY +

(
ΓD

nnZD + Γn
nn

)
ZC

∂

∂ZC
⊗ dY.

(4.23)
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Restricting to vectors in D amounts to substituting dY = θ0/2 − ZAdXA and
disregarding the terms involving θ0 as above, so that

J |D = − ∂

∂XA
⊗ dXA + ZA

∂

∂Y
⊗ dXA +

∂

∂ZA
⊗ dZA +

∂

∂T
⊗ dT

− 2ZB

K

∂

∂T
⊗ dXB − ΘAB

∂

∂ZA
⊗ dXB

and (4.22) is satisfied.
For the Nijenhuis condition, we use the formula

N a
bc = Jd

[b∂|d|J
a
c] − Jd

[b∂c]J
a
d.

Note that we need only consider components of this with a = T , and thus only
need to work with the ∂/∂T components of J to find the terms which look like
∂J . This is a one-form which we shall call J (T ) and find to be

J (T ) =
(

− ZB

K
+

T [2ZB + (ΓD
ABZD + Γn

AB)XA + (ΓD
nBZD + Γn

nB)Y ]
K

− T 2[PABXA + PnBY ]
)

dXB

(
− 1

K
+

T [2 + (ΓD
AnZD + Γn

An)XA + (ΓD
nnZD + Γn

nn)Y ]
K

− T 2[PAnXA + PnnY ]
)

dY.

Note that this agrees with (4.23) when T = 0. We use it to calculate N a
bc∇aT ,

dropping terms which vanish when T = 0 to verify (3.1). �

4.3. Two-Dimensional Projective Structures

In the case if n = 2 the coordinates on ∂M are (X,Y,Z), and (4.21) yields

hD = dZ  dX − [Γ2
11 + (Γ1

11 − 2Γ2
12)Z + (Γ2

22 − 2Γ2
12)Z

2 + Γ1
22Z

3]dX  dX,

which is transparently invariant under the projective changes

Γk
ij −→ Γk

ij + δk
i Υj + δk

j Υi

of ∇. In the two-dimensional case, the projective structures (N, [∇]) are equiv-
alent to second-order ODEs which are cubic in the first derivatives (see, e.g.
[5])

d2Y

dX2
= Γ1

22

(dY

dX

)3

+ (2Γ1
12 − Γ2

22)
(dY

dX

)2

+ (Γ1
11 − 2Γ2

12)
(dY

dX

)
− Γ2

11, (4.24)

where the integral curves of (4.24) are the unparametrised geodesics of ∇.
The integral curves C of (4.24) are integral submanifolds of a differential ideal
I =< θ0, θ1 >, where

θ0 = dY + ZdX, θ1 = dZ

−
(
Γ2
11 + (Γ1

11 − 2Γ2
12)Z + (Γ2

22 − 2Γ1
12)Z

2 + Γ1
22Z

3
)
dX

are one-forms on a three-dimensional manifold B = P(T ∗N) with local coor-
dinates (X,Y,Z). If f : C → B is an immersion, then f∗(θ0) = 0, f∗(θ1) = 0 is
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equivalent to (4.24) as long as θ2 ≡ dX does not vanish. In terms of these three
one-forms the contact structure, and the metric on the contact distribution are
given by θ0, hD = θ1  θ2.

4.4. The Model via an Orbit Decomposition

In this section, we describe here the flat (in the sense of parabolic geometries)
model [11,13] of our construction in tractor terms.

The flat projective structure on N = RP
n gives rise to the neutral signa-

ture para–Kähler Einstein metric on M = SL(n + 1)/GL(n)

g = dξi  dxi + (ξidxi)2, Ω = dξi ∧ dxi, where i, j, . . . = 1, . . . , n. (4.25)

In [13], §7.1 it was explained how this homogeneous model corresponds to the
projectivised co-tractor bundle of RPn, with an RPn−1 removed from each RPn

fibre. This RPn−1 corresponds to incident pairs of points and hyperplanes in
R

n+1 × Rn+1.
Here we shall instead take N to be the sphere Sn with its standard pro-

jective structure as this is orientable in all dimensions and, more importantly,
on this (double cover of RPn) the tractor bundle is trivial, and this simplifies
the discussion. The underlying space of the (compactified) model of dimension
2n is Sn × Sn where both Sn and Sn denote spheres that are dual as we shall
explain.

Consider first two vector spaces each isomorphic to R
n+1:

V ∼= R
n+1 W ∼= R

n+1

and view each as a representation space for an SL(n + 1,R) action. So G :=
SL(V ) × SL(W ) acts on V × W . (Note that we may wlog consider V and W
as, respectively, the ±1 eigenspaces of the single vector space V := V ⊕ W
equipped with a J s.t. J2 = 1.)

Now the action of SL(V ) descends to a transitive action on the ray pro-
jectivisation P+(V ) and similarly SL(W ) acts transitively on P+(W ). Thus
G := SL(V ) × SL(W ) acts transitively on the manifold

M := P+(V ) × P+(W ).

We can represent an element of M in terms of pairs of homogeneous coordi-
nates ([Y ], [Z]) where 0 �= Y ∈ V and 0 �= Z ∈ W .

Note that as a smooth manifold M = Sn × Sn, but as a homogeneous
manifold it is

G/P =
(
SL(V )/PX

)
×

(
SL(W )/PU

)

where PX (resp. PU ) is the parabolic subgroup in SL(V ) that stabilises a point
[X] in P+(V ) (resp. [U ] ∈ P+(W ) ), and P is the group product PX × PW

which itself is a parabolic subgroup of the semisimple group G.
Now introduce an additional structure which breaks the G symmetry.

Namely we fix an isomorphism

I : W → V ∗
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where V ∗ denotes the dual space to V . The subgroup H ∼= SL(n + 1,R) of
G that fixes this may be identified with SL(V ) which acts on a pair (Y,Z) ∈
V × V ∗ by the defining representation and on the first factor and by the dual
representation on the second factor.

Given this structure we may now (suppress I and) view M as consisting
of pairs ([X], [U ]) where 0 �= X ∈ V and 0 �= U ∈ V ∗. That is

M = P+(V ) × P+(V ∗).

This is useful as follows: Each element [U ] in P+(V ∗) determines an
oriented hyperplane in V and each [X] ∈ P+(V ) an oriented line in V . So
now we consider the H action on M . This has two open orbits and a closed
orbit. The last is the incidence space

Z = {([X], [U ]) ∈ M | U(X) = 0}
which sits as smooth orientable separating hypersurface in M. Then there are
the open orbits

M+ = {([X], [U ]) ∈ M | U(X) > 0} and
M− = {([X], [U ]) ∈ M | U(X) < 0}.

We may think of Z as the ‘boundary’ (at infinity) for the open orbits M±.
We now describe the geometries on the orbits. The claim is that there

are Einstein metrics in M±, while Z is well known as the model for so-called
contact Langrangian (or sometimes called para-CR) geometry, this is a real
analogue of hypersurface-type CR geometry.

First observe that NV := P+(V ) is the flat model of projective geometry.
So in particular we have

0 → EV (−1) X→ TV → TNV (−1) → 0

where TV is the projective tractor bundle on NV and X is the tautological
section of T (1), which coincides with the canonical tractor. Similarly there is
a sequence on NW := P+(V ∗)

0 → EW (−1) U→ T W → TNW (−1) → 0. (4.26)

There is a natural tractor bundle T := TV ⊕ T W on M , where X and
U are not incident this induces a metric on M as follows. Observe that, at a
point ([X], [U ]) where X U �= 0, the tractor field U splits the first sequence
by ν ∈ Γ(E(−1, 0)) defined by

ν := U/τ

with τ := X U (and where we have used an obvious weight notation). This
follows as X ν = 1. Similarly

x := X/τ ∈ Γ(E(0,−1))

splits the second short exact sequence because x U = 1. Thus we obtain a
neutral signature metric on TNV ⊕TNW by these two steps: First, using these
splittings yields a bundle monomorphism

TNV (−1, 0) ⊕ TNW (0,−1) → TV ⊕ T W .
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Second, this gives a symmetric form g and symplectic form Ω on TNV (−1, 0)⊕
TNW (0,−1) by then using the canonical metric and symplectic form on TV ⊕
T W given by the duality of TV and T W . Thus g ∈ Γ(S2T ∗M(1, 1)) and Ω ∈
Γ(Λ2T ∗M(1, 1)). Then set

g :=
1
τ
g and Ω :=

1
τ
Ω.

The metric g is easily seen to have neutral signature. It is Einstein because the
tractor metric on T is parallel for the tractor connection (see [8] for the anal-
ogous c-projective case). The tractor connection arises from the usual parallel
transport on the vector space V ⊕ V ∗ viewed as an affine manifold.
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