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Abstract. We discuss an alternative approach to the conformal geomet-
ric algebra (CGA) in which just a single extra dimension is necessary, as
compared to the two normally used. This is made possible by working in
a constant curvature background space, rather than the usual Euclidean
space. A possible benefit, which is explored here, is that it is possible to
define cost functions for geometric object matching in computer vision
that are fully covariant, in particular invariant under both rotations and
translations, unlike the cost functions which have been used in CGA so
far. An algorithm is given for application of this method to the problem
of matching sets of lines, which replaces the standard matrix singu-
lar value decomposition, by computations wholly in Geometric Algebra
terms, and which may itself be of interest in more general settings. Sec-
ondly, we consider a further perhaps surprising application of the 1d up
approach, which is to the context of a recent paper by Joy Christian
published by the Royal Society, which has made strong claims about
Bell’s Theorem in quantum mechanics, and its relation to the sphere S7

and the exceptional group E8, and proposed a new associative version
of the division algebra normally thought to require the octonians. We
show that what is being discussed by Christian is mathematically the
same as our 1d up approach to 3d geometry, but that after the removal
of some incorrect mathematical assertions, the results he proves in the
first part of the paper, and bases the application to Bell’s Theorem on,
amount to no more than the statement that the combination of two
rotors from the Clifford Algebra Cl(4, 0) is also a rotor.
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1. Introduction

For the usual CGA approach to 3d space (e.g. [6]) it is well known that we
add two extra vectors. In the notation I will adopt here, these are e, which
has e2 = +1 and ē, where ē2 = −1. We then define two null vectors

n = e + ē, n̄ = e − ē

and use these to represent 3d points x using 5d null vectors via

X = F (x) = 1
2

(
x2n + 2x − n̄

)

In this setup, Euclidean transformations of the base 3d space correspond
to transformations that keep the point at infinity n invariant in the 5d space.
If instead, we look for transformations that keep ē invariant, we get spher-
ical geometry. If we look for transformations that keep e invariant, we get
hyperbolic geometry, as pictured in Fig. 1 in a 2d example.

It is certainly possible to use this 2d-up approach to non-Euclidean
geometry, and the CGA is quite good for this, but one soon gets faced with
questions like: take X + LXL, where L is a line—it is clearly a covariant
object, but what does it mean? Clearly it is no longer null, so it is not
a point. One can then say using a similar approach as used for projective
geometry in [7]

Figure 1. A rendition of Escher’s circle limit III, taken from
[3]
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Y ′ = X + LXL and then write Y ′ = αX ′ + β

⎧
⎪⎨

⎪⎩

e if hyperbolic
ē if spherical
n if Euclidean

to recover a new null vector X ′. This turns out to be a covariant operation,
and so yields something geometrically meaningful. However, one quickly finds
that all the extra e’s or ē’s or n’s we have to laboriously carry around with us
and then separate off, are basically irrelevant! If points don’t have to be null,
then we don’t have to use a null vector as origin. Also hyperbolic geometry
rotors do not contain e (since we have to leave this invariant). E.g. the form
of translation rotor is ∝ λ + ēa, where a is the translation vector, and λ is
a constant with dimensions ‘length’ which sets the curvature scale of space.
Similarly for spherical rotors, there is no ē in them.

Therefore, e.g. in the hyperbolic case, we can now use ē as the origin,
and move this around using rotors (translation and rotation) which do not
contain e. Therefore terms in e never arise this way. Similarly in the spherical
case e used as origin means ē is never used.

Thus in both these cases, one can make do with only having one vector
extra! E.g.—3d geometry needs a 4d basis, not 5d, 4d geometry (spacetime)
needs a 5d basis not 6d. One cannot do this in the Euclidean case, since the
translations there are of the form 1 + (1/2)an therefore n always generates
both e and ē no matter what we take as origin.

So here is the proposal: let us do the geometry we want (even in engi-
neering applications) in either spherical or hyperbolic space, and recover
Euclidean results (if needed) by taking the limit as the length scale λ → ∞
at the end (see below for more details of this process). In many cases this
will mean 1d less for computations, and can save time in implementations.

E.g. suppose we have 4 points a, b, c, d in a spherical space—how do
we get the centre of a sphere passing through them? The ‘old approach’
would be: take 5d null vector representatives A, B, C, D. The sphere centre
is SnS where S = A∧B∧C∧D. The ‘new approach’ is: take 4d unit vector
representatives Ai (i = 1 · · · 4), and form the reciprocal frame Aj defined by

Ai·Aj = δj
i

Now define

D =
4∑

i=1

Ai

then we find that after normalisation, D is the point representing the sphere’s
centre and its radius can be found from D2. This is much faster computa-
tionally. Note for more details of the 1d up approach being adopted here, see
the paper [8], which has a specific focus on rigid body mechanics, but also
discusses some of the geometrical issues. Further information can be found
in [7].
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λ = 10

λ = 5

λ = 3

Figure 2. Lines through the fixed points (1, 0) and (0, 2),
corresponding to the values 3, 5 and 10 for the parameter λ

2. Matching Groups of Lines

We will now give a more extended example, relevant to one of the topics
discussed in further papers in this collection, and which is needed in a lot of
computer graphics and computer vision applications.

As an illustration, we will look at the problem of finding a common rotor
(involving both translation and rotational degrees of freedom) for moving
from one set of lines to a matching set. The first obvious question is how
do we set up lines in the 1d-up approach? These are wedges of two ‘points’.
A ‘point’ is a unit vector (actually length −1, since all basis vectors square
to −1 in my approach, which is derived as a restriction to 3d space of a
spacetime metric.) Given two points we form L = A∧B and then if Y is a
general point, the equation of the line is

Y ∧L = Y ∧A∧B = 0

How this looks in our x-space, is then a function of the scale of the line
relative to the curvature of the space, which is 4/λ2. E.g., considering lines
through the points (1, 0) and (0, 2), we get the lines shown in Fig. 2 for λ = 3,
5 and 10.

How do we rotate from one line to another? Suppose we have two nor-
malised lines, L1 and L2 (i.e. such that L2

1 = L2
2 = −1). What we need to do is

similar to what’s already been described in the 2d-up approach in the papers
by Lasenby et al. [5,10]. To start, we need to form the anti-commutator

L1L2 + L2L1 = α + βI

where I is the pseudoscalar for the 4d space spanned by e1, e2, e3 and ē.
(Note for any bivectors B and C in a space of any dimension or signature,
we can always write



Vol. 30 (2020) A 1d Up Approach to Conformal Geometric Algebra Page 5 of 16 22

Figure 3. Two sets of lines related by a common rotation
and translation. The first set are the black, red and blue
lines, and the second set are ‘dashed’ versions of these

BC = B·C + B×C + B∧C = 1
2 (BC + CB) + 1

2 (BC − CB)

so in 4d, the symmetric part pulls out a scalar (α) and pseudoscalar part
(βI). Both of these will be invariant under all rotations in the 4d space.)

Defining

u =
√

2 − α + β, v =
√

2 − α − β

then it turns out that the following rotates from L1 to L2

R =
1

2uv
(u + v + (u − v) I) (1 − L2L1)

So given two lines, we can get from one to another. What about if we
have a set of lines, Li, i = 1 · · · N and another set L′

i, i = 1 · · · N , which are
meant to be related to the first set by a common rotation and translation.
An example of such sets of lines is shown in Fig. 3. As a cost function, we
think the best way to proceed is to minimise

S = −
∑

i

〈(
L′

i − RLiR̃
)2

〉

0

with respect to varying the rotor R. This works, since even though(
L′

i − RLiR̃
)2

can have a grade 4 part of either sign, its scalar part is always

strictly negative, unless L′
i − RLiR̃ happens to be 0. (Note this is a crucial

difference with the 2d-up approach—there one can get 0 as the scalar part
of a square, even if the difference is non-zero—e.g. for parallel lines—due to
n2 = 0.)

This problem is now very similar to the equivalent one for lines in ordi-
nary 3d space, which Lasenby et al. looked at in 1996 [9]. Since we wish to
discuss what’s written in this text, we now give two short extracts.
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As an example of multivector differentiation we will consider the prob-
lem of finding the rotor R which ‘most closely’ rotates the vectors {u i}
onto the vectors {v i} , i = 1, . . . , n. More precisely, we wish to find the
rotor R which minimizes

φ =
n∑

i=1

(
v i − Ru iR̃

)2

Expanding φ gives

φ =
n∑

i=1

(
v2

i − v iRu iR̃ − Ru iR̃v i + R
(
u2

i

)
R̃

)

=
n∑

i=1

{(
v2

i + u2
i

) − 2
〈
v iRu iR̃

〉}

To minimize φ we choose not to differentiate directly with respect to
R since the definition of R involves the constraint RR̃ = 1, and this
would have to be included via a Lagrange multiplier. Instead we use Eq.
(47) to take the multivector derivative of φ with respect to ψ, where we

replace Ru iR̃ with ψu iψ
−1.

∂ψφ(ψ) = −2
n∑

i=1

∂ψ

〈
v iψu iψ

−1〉

= −2

n∑

i=1

{
∂̇ψ

〈
ψ̇Ai

〉
+ ∂̇ψ

〈
Biψ

−1〉
}

where Ai = u iψ
−1v i and Bi = v iψu i (using the cyclic reordering

property). The first term is easily evaluated to give Ai. To evaluate the

second term we can use Eq. (47) One can then substitute ψ = R and

note that R−1 = R̃ as RR̃ = 1.

The crucial step here is the formula ∂ψ

〈
Mψ−1

〉
= ψ−1Pψ(M)ψ−1 which

is the Eq. (47) referred to in the above extract. Then quoting again from [9],
one uses this to say

∂ψφ(ψ) = −2
n∑

i=1

{
u iψ

−1v i − ψ−1 (v iψu i) ψ−1}

= −2ψ−1
n∑

i=1

{(
ψu iψ

−1) v i − v i

(
ψu iψ

−1)}

= 4R̃

n∑

i=1

v i ∧
(
Ru iR̃

)

Thus the rotor which minimizes the least-squares expression φ(R) =
∑n

i=1

(
v i − Ru iR̃

)2

must satisfy

n∑

i=1

v i ∧
(
Ru iR̃

)
= 0 (54)

This is intuitively obvious—we want the R which makes u i ‘most paral-

lel’ to v i in the average sense. The solution of Eq. (54) for R will utilize
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the linear algebra framework of geometric algebra and will be described

in Section 3.3.

What then happened in the IJCV paper [9], was that we manipulated
this into a matrix form on which a singular value decomposition (SVD) could
be employed to find R. Of interest here is to recast these steps into wholly GA
form, and as applied to ‘1d-up’ bivectors, rather than ordinary 3d vectors.
The equivalent problem here, is to find the R which satisfies

∑

i

L′
i×(RLiR̃) = 0

where the Li are the set of original lines, and the L′
i are the ‘destination’ lines,

for which we want to find the best rotor R. One soon finds this is equivalent
to finding a rotor R which makes the following function g symmetric:

g(B) = Rf(B)R̃, and where f(B) =
∑

i

(B·L′
i)Li

The GA way in which we can attack this is analogous to the ‘polar decompo-
sition’ for an object in the conventional CGA discussed by Dorst and Valken-
burg [2]. Specifically, in that approach, given an object X, we seek to split
it up as X = US with U a rotor and S a ‘self-reverse’ element. The starting
point is to form X̃X = S̃S = S2 which we then ‘square root’ and can then
read off U as XS−1. Analogously, here we form the function F = gg, which
it’s easy to show is the same as ff , so we can explicitly calculate it without
knowing R. (Note for clarity we are now putting an underline on the original
function, to match the overbar on the adjoint.) In fact explicitly

F (B) =
∑

i

∑

j

(B·L′
j)L

′
i (Li·Lj)

We then calculate the eigenbivectors and eigenvalues of F—these are the
solutions of

F (B) = λB

and we find 4 of them here, which we label λk and Bk, k = 1 · · · 4. We can
express F in terms of them as

F (B) =
∑

k

λk(B·Ek)Ek

where the Ek are the reciprocal frame to the Ek (this takes care of sign issues).
We then note, following from the reciprocal frame properties, that

Fn(B) =
∑

k

λn
k (B·Ek)Ek

We then employ this with n = −1/2 to deduce, in the case that g is symmet-
ric, which is what we want our rotor to achieve

F−1/2(B) = (gg)−1/2(B) = (gg)−1/2(B) = g−1(B) = (ff)−1/2(B)

But quite generally

g−1(B) = f−1(R̃BR)
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Hence

(ff)−1/2(B) = f−1(R̃BR)

and so, unwrapping this,

RBR̃ = (ff)−1/2f(B)

and we have succeeded in finding the action of our rotor on an arbitrary
bivector.

Hopefully it will be possible to code this up soon, and test against other
methods for matching line sets. As aimed for, the ‘cost function’ here is com-
pletely covariant and automatically decides the relative ratio of importance
of rotational and translational errors. It has not yet been examined how the
value of the inverse curvature scale λ affects things—presumably it is this
which tunes the relative importance of one set of errors versus the other,
and it will be interesting to compare with results for matching in the 2d-up
setting found by Joan Lasenby et al. [5].

The 2d-up setting in this latter paper is of course dealing with Euclidean
rather than non-Euclidean geometry, and it may be wondered how we can
make a transition to Euclidean geometry in the current approach. This was
speculated about at the end of Section 18.3 in [8], where it was suggested that
retaining appropriate terms in a power series expansion in λ would be a way of
achieving this. This approach has now been verified to work, and surprisingly,
as suggested in [8], the appropriate terms are not the zeroth order results,
but those at first order (and in some particular cases second order) in λ. This
will be explained in detail elsewhere, but we show in Fig. 4. the equivalent
to Fig. 3 obtained by making a first order expansion of the relevant rotors
in λ. This successfully produces the equivalent setup of ‘before’ and ‘after’
lines in Euclidean space. We believe the procedure is entirely covariant, so
again, it will be interesting to see how this interacts with the ‘1d-up’ cost
function, and what it means for the cost function in Euclidean space. It
will also be interesting to compare with the ‘Projective Geometric Algebra’
approach to Euclidean space by Gunn and De Keninck [4], which also only
uses 1 dimension extra.

3. Some Comments on a Recent Paper by Joy Christian

In 2018, a paper was published in a Royal Society journal by Christian [1],
which was discussed during the AGACSE 2018 meeting in Campinas, Brazil.
This paper is called ‘Quantum correlations are weaved by the spinors of the
Euclidean primitives’, and makes some strong claims about Bell’s Theorem
in quantum mechanics, and its relation to the sphere S7 and the exceptional
group E8. Perhaps most startling mathematically, as against physically, how-
ever, is the author’s claim to have discovered a new associative version of the
normed division algebra hitherto represented by the octonians. Joy Chris-
tian uses Geometric Algebra in his work, and claims that his new physical
results in Quantum Mechanics stem from the employment of GA, and the
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Figure 4. Same as in Fig. 3 but in the Euclidean limit
obtained by a first order expansion of the rotors in the scale
parameter λ

additional geometrical elements of reality which it can introduce in addi-
tion to the usual complex numbers used in Quantum Mechanics. In previous
papers he has mainly considered the ordinary GA, but in the 2018 Royal
Society paper he says he is considering the ‘Conformal Geometric Algebra’
and explicitly links the ‘Euclidean primitives’ of CGA with his statements
about Bell’s Theorem.

Christian work has repeatedly been criticised mathematically, but he
has several times stated that no one well-versed in Geometric Algebra has
explicitly criticised his mathematics in print, and that this suggests his critics
simply do not understand the GA in his work, not that his mathematics is
wrong. Stimulated by the discussion at the AGACSE meeting, I have looked
at the first sections of the Royal Society paper, and found that (a), quite
surprisingly, the CGA he is using is in fact a version of the 1d-up approach
I have been suggesting, and (b) it is possible to find where the mathemat-
ical mistakes lie which lead to his conclusions concerning a new associative
division algebra . Thus this current contribution on the 1d-up approach, pro-
vides an opportunity to record these comments as regards the mathematics
that he appears to be using, and hopefully warn about the mistakes involved.
However, it is very necessary to stress that this in no way is meant to transfer
through to being a comment about what Christian is saying as regards Bell’s
Theorem. At a certain level there is certainly an interest in taking a 1d-up
approach to quantum mechanics and electromagnetism, as discussed briefly
by myself in a relativistic context in [7], but this area lies outside the dis-
cussion we will attempt here. In particular the comments here only relate to
Sections 1 and 2 of the Christian paper, before the main work on Bell’s The-
orem begins. Of course the mathematical problems and misstatements in this
first part of the paper would certainly need to be remedied before being able
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to approach the second part properly, hence it seems of value to record the
objections here. (Note several of the points made here have been made inde-
pendently by Richard D. Gill and others in the discussion thread attached
to the Royal Society paper: https://royalsocietypublishing.org/doi/full/10.
1098/rsos.180526#disqus thread, but what may be useful here is decoding
what Christian is claiming in terms of the unexpected link with the 1d-up
approach, and also making a statement on these issues from a practicing GA
person.

3.1. Initial Problems

(Note most equation numbers from now on relate to those in the paper [1],
and we will say explicitly if we mean an equation in the current contribution.)

The first maths problem comes in Christian’s Eq. (2.20), which says

e2
∞ = 0 (3.1)

and then that
Such a vector that is orthogonal to itself is called a null vector
in Conformal Geometric Algebra [18]. It is introduced to repre-
sent both finite points in space as well as points at infinity [19]. As
points thus defined are null-dimensional or dimensionless, addition
of e∞ into the algebraic structure of E

3 does not alter the latter’s
dimensions but only its point-set topology, rendering it diffeomor-
phic to a closed, compact, simply connected 3-sphere . . .
I do not see how it can be thought introducing e∞ into the algebraic

structure of E
3 does not alter its dimensions. Also, since null vectors are

described as representing both finite points as well as points at infinity, which
is true in the CGA, the logic of this paragraph seems to be that since these
points are null-dimensional or dimensionless then addition of any of them
into E

3 could go ahead and E
3 would only be changed in topology.

The main problem with (2.20), however, is that it is shortly contradicted
by (2.32), which says that e2

∞ = 1. To give the full context at this point, it
is said:

The three-dimensional physical space—i.e. the compact 3-sphere
we discussed above—can now be viewed as embedded in the four-
dimensional ambient space, R

4, as depicted in Fig. 2. In this higher
dimensional space, e∞ is then a unit vector,

||e2
∞|| = e∞·e∞ = 1 ⇐⇒ e2

∞ = 1

and the corresponding algebraic representation space (2.31) is
nothing but the eight-dimensional even sub-algebra of the 24 =
16-dimensional Clifford algebra Cl4,0. Thus, a one-dimensional
subspace—represented by the unit vector e∞ in the ambient space
R

4—represents a null-dimensional space—i.e. the infinite point of
E

3—in the physical space S3.
Again this is very difficult to understand mathematically, as anything

which tries to reconcile e2
∞ = 0 in 3d, but with the same object squaring to

+1 when interpreted as living in 4d, is bound to be.

https://royalsocietypublishing.org/doi/full/10.1098/rsos.180526#disqus_thread
https://royalsocietypublishing.org/doi/full/10.1098/rsos.180526#disqus_thread
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The next problem is Eq. (2.25), which concerns the reversion properties
of the pseudoscalar Ic, which is introduced in Eq. (2.24) as

Ic = exeyeze∞. (3.2)

The multiplication properties given for the 8 quantities

{1, exey, ezex, eyez, exe∞, eye∞, eze∞, Ic}
in Table 1, tell us unambiguously that these quantities correspond to the 8
elements of the even subalgebra of Cl4,0, with Ic being the pseudoscalar for
this space. This is not different from what Christian says, but he says in Eq.
(2.25) that Ic reverses to minus itself, i.e. (to quote)

I†
c = I†

3e∞ = −I3e∞ = −Ic (3.3)

(Note there appears to be no dispute over the dagger operation being ‘rever-
sion’, and we will denote it with the usual tilde from now on.)

But this equation is wrong. We have

Ĩc = e∞ezeyex = −ezeyexe∞ = −eyexeze∞ = exeyeze∞ = Ic (3.4)

i.e. it reverses to plus itself. Thus if Christian’s Eq. (2.25) is used anywhere,
it will lead to error.

The next problem is with Eqs. (2.33) and (2.34), which read

K+ = span{1, exey, ezex, eyez, exe∞, eye∞, eze∞, Ic}
K− = span{1,−exey,−ezex,−eyez,−exe∞,−eye∞,−eze∞,−Ic}

(3.5)

It seems to be important to Christian’s later purposes that K+ and
K− are different, but as spans of objects which differ just by scalar factors
from the same objects in the other set, they are mathematically identical.
Presumably something different is meant from what is actually written at this
point, but this would have to be explained, using some concrete definitions,
before the differences between K+ and K− could be used later in the paper.

The next problem is with the title and initial remarks of Section 2.4
in the Christian paper. The title is ‘Representation space Kλ remains closed
under multiplication’ and the initial remarks are ‘As an eight-dimensional
linear vector space, Kλ has some remarkable properties. To begin with, Kλ is
closed under multiplication.’ The title and remarks seem odd—we are dealing
with the even subset of the Clifford algebra Cl4,0 so what is said here follows
immediately from this fact. The properties are hardly remarkable per se.

More serious is what happens next. It is clear from Christian’s Eq. (2.8)
that by ‘norm’ of a general multivector M he means

||M || =
√

〈MM̃〉. (3.6)

We can see that this square root is valid, and won’t lead to imaginaries,
as follows. Let us set up a general M via defining two 2-spinors φ and χ as

φ = a0 + a1eyez + a2ezex + a3exey

χ = b0 + b1eyez + b2ezex + b3exey
(3.7)
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(where the aμ and bμ, μ = 0, . . . , 3, are scalars) and write

M = φ + Iχ (3.8)

(Note we are going to write Ic as I from now on). Since I2 = 1 we have

MM̃ = φφ̃ + χχ̃ + I
(
φχ̃ + χφ̃

)
. (3.9)

Now, let us define two 4-vectors using the components of φ and χ

a = a0e∞ + a1e1 + a2e2 + a3e3

b = b0e∞ + b1e1 + b2e2 + b3e3
(3.10)

(Note we are not saying that φ or χ are 4-vectors. We are just defining
objects that make it easy to display the components of MM̃ .) Then we find
φφ̃ + χχ̃ = a2 + b2 and φχ̃ + χφ̃ is the scalar 2a·b, meaning

MM̃ = a2 + b2 + 2a·bI. (3.11)

This shows us that 〈MM̃〉 = a2 +b2 is indeed positive if M is non-zero, hence
the norm is well-defined.

Given any two general elements X and Y , Christian then decides to
normalise them, setting

||X||2 = 1, ||Y ||2 = 1. (3.12)

It is not clear why we would wish to do this, but as just established, it is
something we can indeed carry out for any non-zero elements.

So far, so good. However, things go very wrong with Eq. (2.40). Christian
states:

We shall soon see that for vectors X and Y in Kλ (not necessarily
unit) the following relation holds:

||XY || = ||X|| ||Y || (2.40).

(By ‘vector’ Christian means what we would call ‘multivector’ here, as
is clear from the context.) However, this is false. Consider the quantities

I+ = 1
2 (1 + I), I− = 1

2 (1 − I). (3.13)

Since I squares to 1 and is its own reverse, then these satisfy the relations

I2
+ = I+Ĩ+ = I+, I2

− = I−Ĩ− = I−, I+I− = I−I+ = 0 (3.14)

We call such quantities ‘idempotents’ (since they square to themselves) and
this particular pair are ‘orthogonal’ (since their product is zero). Now let

X =
√

2I+, Y =
√

2I− (3.15)

These satisfy

||X|| = 1, ||Y || = 1, but ||XY || = 0. (3.16)

This disproves the assertion in Christian’s (2.40). It also means that the
assertion which follows it:

One of the important observations here is that, without loss of
generality, we can restrict our representation space to a set of unit
vectors in Kλ
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is false, since if ||X|| and ||Y || are unit vectors, it does not follow that
Z = XY is also a unit vector, despite what Christian says in his Eq. (2.41).

In Sect. 2.5 there is a further confusion about a quantity which when
first introduced squares to 0, but then later squares to 1. In (2.47) and (2.48)
the quantity ε, which satisfies ε2 = 0 is brought in to allow the definition of
biquaternions, via

Qz = qr + qdε (3.17)

where qr and qr are quaternions. In Eq. (2.51), however, ε is identified with
−I, and it is stated that ε2 = +1. Thus the previous reference to biquater-
nions is not correct. What is actually being introduced is the construction we
have used above, where one can write a general element of the even subalgebra
of Cl(4,0) as

M = φ + Iχ (3.18)

with φ and χ as given in Eq. (3.7). We called these 2-spinors above, but it
is fine to identify them as quaternions as well. So this shows that translating
the quantities introduced by Christian in this section into our notation, we
have

qr = φ, qd = χ, Qz = qr + qdε = M = φ + Iχ (3.19)

(A slight problem is that since Christian says that ε is equal to the reverse
of I and he believes (wrongly) that this is −I, some signs will start to get
out of drift as regards components of his qd quaternion versus our χ, but this
does not seem crucial.)

Now we have so far skipped over one feature of the construction of Qz,
which is that Christian wants each of qr and qd to be normalised, with

||qr|| = ||qd|| = � (3.20)

where � is some fixed scalar. He then correctly says in Eq. (2.53) that this
means

||Qz|| =
√

2�. (3.21)

However, things go very wrong in the next equation. Christian says
Now the normalization of Qz in fact necessitates that every qr be
orthogonal to its dual qd

||Qz|| =
√

2� =⇒ qrq̃d + qdq̃r = 0. (3.22)

This is false. The same result in the above notation [as used in our Eq.
(3.11)] would be that

||a|| = � and ||b|| = � =⇒ a·b = 0 (3.23)

which is patently wrong. So can we understand why Christian believes this?
Tracing through what happens in the following two equations, it is clear that
the mistake is made at the point where he says that it is needed for QzQ̃z to
be a scalar. If it were needed then indeed it follows that 2a·b = qrq̃d + qdq̃r

would have to vanish, but from what has been said about Qz so far there is
no such requirement—it has just been required that the norm (as defined by
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Christian and which we examined above) has to have value 2�. It looks as
though what is happening is that Christian has temporarily forgotten that
the norm is just the scalar part of the product MM̃ , not both the scalar and
grade-4 parts. This is a very important mistake.

Of course we needed a significant mistake, since it is needed to be able
to prove the (false) assertion above the product of the norms being the norm
of the product. This is repeated in terms of Qs in Eq. (2.59). The ‘proof’
of this amounts to the fact that if two Qs each individually have vanishing
grade-4 part when forming QzQ̃z, then the product of their norms is equal to
the norm of their product. This is fine, but only applies to this special class
of Qs, not the whole even subalgebra of Cl(4,0), as Christian claims.

There is a lot of discussion around this part of Sect. 2.5, attempting to
say that due to the relations proved for the norms, therefore he has discovered
a new associative version of the normed division algebra hitherto represented
by the octonians, but of course this is false, as it had to be, since the relations
he is talking about only apply to a limited subset of the space, not the whole
space.

3.2. Discussion

This completes a quick survey of the initial problems in the Christian paper,
taking us through to the start of the discussion concerning quantum states.
Hence this is a good time to set down what the mathematical apparatus
Christian has assembled to this point actually amounts to, when stripped of
the incorrect results. This can be summarised as follows.

Let us consider the even subalgebra of Cl(4,0) and pick out the elements
R from this which satisfy

RR̃ = 1

i.e. we pick out the set of what are usually called rotors in this space. Then
Christian’s working to this point boils down to the result that if S is another
rotor, then the combination SR is a further rotor, since it satisfies

SR(̃SR) = SRR̃S̃ = 1. (3.24)

This is for objects which are already normalised to 1. Slightly more generally,
if we define X = ρ1R and Y = ρ2S, where ρ1 and ρ2 scalars, then the relation

||XY || = ||X|| ||Y ||
which is the basis for Christian’s claims, is true. However, this relation does
not apply to all X and Y in Kλ, but only to an X and Y which are scaled
rotors. Of course we knew it could not apply to all of Kλ since above we gave
an explicit counterexample.

Now it is a fact that the scaled rotors, while they form a group under
composition (basically multiplication from the left), they do not form a group
under addition. If we add two of them with some scalar coefficients, then the
resulting object when multiplied with its reverse will in general have a grade-
4 part, meaning it is no longer a scaled rotor. This kills off any hope that the
set of such objects can form a normed division algebra, as claimed.
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We can contrast this in an unambiguous fashion with the situation which
operates for S3, and its relation to the quaternions. There, if Q is a quaternion
(the set of which are just the even subalgebra of Cl3,0), then QQ̃ automati-
cally has only a scalar part, we do not need to artificially set any other part
to 0, and so there is an automatic match to S3. As we have seen, this same
type of match does not occur for the even subalgebra of Cl4,0, since while the
scalar part of XX̃ sets up a nice match with S7, the extra constraint from
〈XX̃〉4 = 0 reduces the overall dimension down to 6, and we are working just
with the rotor group.

It is necessary to state that none of this is brought out or stated in the
Royal Society paper itself. There it categorically states that

||XY || = ||X|| ||Y ||

applies to all of the even subalgebra of Cl4,0, which if true would make it
a genuine normed division algebra, but of course we have seen that this is
mistaken.

Thus Sects. 1 and 2 of the paper succeed only in showing that the set of
rotors of Cl4,0 (i.e. even elements of Cl4,0 which satisfy MM̃ = 1) are closed
under multiplication. This is a trivial result which can be established in only
a few lines. All the associated statements about normed division algebras,
oriented bases, Hopf fibrations, S7, E8 etc. appear to be irrelevant and not
substantiated by what is shown in the paper. Moreover, the paper itself gives
no inkling that the restriction to rotors is being applied and indeed stresses
the applicability of crucial formulae, such as (2.40), to all members of Cl4,0,
which is unfortunately false.

It is of course possible that all Christian needs in the second part of the
paper, beginning Sect. 3, is the reduced result concerning scaled rotors that
has just been described, but this would need a separate development with
some quite different mathematics than actually given in the paper.
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