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Abstract Germ cells are unique cell types that generate a

totipotent zygote upon fertilization, giving rise to the next

generation in mammals and many other multicellular

organisms. How germ cells acquire this ability has been of

considerable interest. In mammals, primordial germ cells

(PGCs), the precursors of sperm and oocytes, are specified

around the time of gastrulation. PGCs are induced by sig-

nals from the surrounding extra-embryonic tissues to the

equipotent epiblast cells that give rise to all cell types.

Currently, the mechanism of PGC specification in mam-

mals is best understood from studies in mice. Following

implantation, the epiblast cells develop as an egg cylinder

while the extra-embryonic ectoderm cells which are the

source of important signals for PGC specification are

located over the egg cylinder. However, in most cases,

including humans, the epiblast cells develop as a planar

disc, which alters the organization and the source of the

signaling for cell fates. This, in turn, might have an effect

on the precise mechanism of PGC specification in vivo as

well as in vitro using pluripotent embryonic stem cells.

Here, we discuss how the key early embryonic differences

between rodents and other mammals may affect the

establishment of the pluripotency network in vivo and

in vitro, and consequently the basis for PGC specification,

particularly from pluripotent embryonic stem cells in vitro.
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Introduction

In mammals, germ cells are specified at a very early stage

of development from the post-implantation epiblast cells

following blastocyst implantation. The inner cell mass

(ICM) of blastocysts is the source of epiblast cells as well

as embryonic stem cells (ESCs). The ICM is segregated

into epiblast and hypoblast or the primitive endoderm.

Epiblast cells are equipotent and give rise to all the somatic

cells and germ cells [1], as well as epiblast stem cells

(EpiSCs) in vitro. In mice, precursors of the primordial

germ cells (PGCs) are specified in the extreme proximal

region of the epiblast adjacent to the extra-embryonic

ectoderm (ExE) [2, 3]. Subsequently, nascent PGCs pro-

liferate and migrate through the developing hindgut into

the genital ridges [4]. PGCs stain strongly and specifically

for alkaline phosphatase (AP) [5–7]. PGCs are also able to

become pluripotent stem cells (PSCs) in vitro, called

embryonic germ cells (EGCs) under defined culture con-

ditions [8, 9].

Many studies on mammalian development and PGC

specification have been conducted in the mouse model.

However, there are some key embryological differences

between mice and other mammals, especially at the epi-

blast stage when PGCs are specified. For example, rodent

epiblast forms a cup-shaped egg cylinder but most other

mammals have a flat disc-like epiblast. Signals from extra-

embryonic tissues induce germ cell fate in a subset of

epiblast at a specific position with optimal concentration

and timing of the signals. As PGC specification largely

depends on signals from surrounding tissues, the mor-

phology of the embryo is a crucial consideration for dis-

secting the mechanism of germline establishment in

different mammals. Earlier events, such as formation of

epiblast from zygotes as well as establishment of
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pluripotency, are also fundamental for PGC specification,

since PGCs share some key features with pluripotent cells

in vivo and in vitro. Thus, differences during early

embryogenesis among mammals are essential to under-

standing the development of mammalian germ cells.

There have been successful attempts to recapitulate

germ cell specification in vitro using mouse PSCs, but no

similar or extensive studies have been described in other

mammals. It is possible that differences in PSCs and plu-

ripotency signaling between rodents and other mammals

may reflect differences in their early embryology, and

therefore the underlying mechanism of germ cell specifi-

cation. By appreciating these fundamental discrepancies,

we propose strategies to further dissect the mechanism of

human germ cell specification and the pluripotency

network.

Pre-implantation embryogenesis and pluripotency

in mammals

There are differences between rodents and the other

mammals as early as zygote formation. The centrosome,

which is critical for successful fertilization, is contributed

by sperm in most mammals, but by oocytes in rodents [10].

Global DNA demethylation in early embryos for active

paternal DNA demethylation in zygotes is known to occur

in mice and rats [11], but only partially in humans and

rabbits [12, 13]. X chromosome inactivation in female

mouse embryos first occurs in response to the paternal

imprint of Xist non-coding RNA transcript at the 2- to

4-cell stage followed by paternal X chromosome inacti-

vation [14], which persists in the extra-embryonic tissues.

However, in the embryo, paternal X chromosome reacti-

vation precedes random X inactivation in the ICM [15]. In

contrast, transcripts of Xist are detected from both X

chromosomes in human and rabbit early embryos [15–18].

In rabbits, Xist expression becomes monoallelic only at the

late blastocyst stage, first in the trophoblast, and then in the

embryonic cells. The functional consequence of Xist

expression, i.e., repression of X-linked genes, seems to

occur only at the blastocyst stage in rabbits [15]. Both the

non-imprinted early biallelic expression of Xist and the

delay of X-linked genes inactivation are common to rabbit

and human embryos. Thus, the mouse appears to show

unique DNA demethylation and X chromosome inactiva-

tion mechanisms compared to humans and rabbits.

After trophectoderm (TE) and ICM formation at the

blastocyst stage, the embryo undergoes remethylation of

DNA. In humans, 5-methylcytosine is higher in the TE

than in the ICM while in the mouse it is the other way

round [12]. On the other hand, both ICM and TE DNA in

bovine blastocysts are highly methylated. Early cell lineage

commitment during blastocyst formation is another exam-

ple where the embryos of different mammals clearly vary

between species [19] (Fig. 1).

Regulation of pluripotency molecules in pre-

implantation embryos in mammals

OCT4, the octamer-binding transcription factor (also

known as POU5F1) is essential for the establishment of

pluripotency during early embryogenesis and in in vitro

PSCs.

In mice, Oct4 and Cdx2 are essential for formation of

ICM and TE, respectively [20–22]. Cdx2 represses Oct4 in

mouse TE of early blastocysts, but in humans, rabbits,

cows and some other mammals, OCT4 expression persists
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in the TE until the late blastocyst stage [23–34]. In bovines,

Cdx2 is required for TE maintenance but not for repression

of Oct4 expression. Interestingly, mouse Oct4 promoter has

Tcfap2 (required for trophectoderm maintenance and PGC

development in mice) binding sites mediating Oct4

repression. However, bovine, human, and rabbit Oct4

promoters do not contain these sites and maintain high

Oct4 levels in the TE [24]. Indeed, early TE cells from

bovine embryos can contribute to chimeric embryos after

introduction to blastocysts [19]. Furthermore, the plating of

intact human blastocysts resulted predominantly in the

outgrowth of TE-like cells, rather than leading to ESC

derivation as in the case of mice [35]. This suggests that

regulation of pluripotency in early embryos seems to be

different in mice compared to other mammals (Fig. 1).

Gastrulation-stage/peri-implantation embryo

and primordial germ cell specification in mammals

In mammals, the body plan is set with regard to axis for-

mation and the starting point for germ layer formation

during gastrulation. One of the critical events at this stage

is PGC specification in the epiblast.

There are topological differences with respect to the

arrangement and the timing involved of the start of gas-

trulation and implantation [36] (Fig. 2). While a mouse

blastocyst implants in the uterus by E4.5, a human blas-

tocyst grows for a little longer before implanting at E6–12

with highly invasive trophoblast outgrowth ahead of gas-

trulation. In rabbits, cows, pigs and sheep, blastocysts

undergo gastrulation prior to implantation [19, 37]. Cow

embryo implantation occurs particularly late, i.e., [5 days

following germ layer formation and 10 days after blasto-

cyst formation [38]. However, the pattern of brachyury

gene expression which is a marker of vertebrate gastrula-

tion in the bovine embryo is similar to the pattern found in

mice [39]. These observations suggest that gastrulation in

mammals is regulated irrespective of implantation [40].

However, the schedule of gastrulation and implantation has

a considerable effect on the size and mutual contact areas

of the trophoblast, epiblast and hypoblast of mammalian

embryos.

The embryo proper of most gastrulation-stage mammals,

including humans, rabbits and pigs, has the shape of a flat

disc with two cell layers—epiblast and hypoblast (Figs. 1,

2) [37, 41–43]. However, in rodents, the embryonic disc is

forced into a complex shape called the ‘egg cylinder’ in

which the anterior and posterior poles of the embryo come

to lie in close proximity to each other, whereby an addi-

tional proximal–distal body axis has to be taken into

account (Fig. 2) [44].

In mice, when the syncytiotrophoblast starts to penetrate

the wall of the uterus, the epiblast and hypoblast are

physically constrained and form a bilaminar embryo within

12 h [45]. The internal epiblast cells reorganize from a ball

of cells into a cup-shaped epithelium surrounded by

hypoblast. Immediately before gastrulation (E6.0 and

E6.5), the mouse embryo can be visualized as a thick-

walled cup of tissue (the epiblast or embryonic ectoderm),

which gives rise to the entire fetus and some of the pla-

cental membranes. A second thick-walled cup of tissue (the

ExE) placed overturned on the epiblast will give rise to the

main part of the placenta. Both cups are enclosed in a thin

bag of primitive endoderm. Around E4.5 and E5.5, the ExE

arises from the polar TE and makes contact with the

underlying epiblast, which expresses BMP4, a critical

factor for PGC specification. At E6.5, gastrulation starts

with the formation of the primitive streak at the posterior

region of the embryo. Epiblast cells migrating first through

this structure include the PGC precursors which form the

extra-embryonic mesoderm.

In humans, the formation of the embryonic bilaminar

disc occurs after implantation and prior to embryonic

folding (between about E14–21). The embryonic disc is

derived from the epiblast layer, which lies between the

hypoblast layer and the amnion and is derived from the

ICM. The formation of the bilaminar embryonic disc pre-

cedes gastrulation. Following gastrulation, polar TE above

the epiblast differentiates into the syncytiotrophoblast that

invades the uterine tissue and the cytotrophoblast contact-

ing the epiblast. At the beginning of the third week, the

primitive streak appears and the gastrulation begins. The

hypoblast in human can be considered equivalent to the

mouse visceral endoderm (VE), while no structure equiv-

alent to the mouse ExE apparently exists. Around the end

of the third week, the place where PGCs can be first

identified in human embryos is the same as in the mouse,
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Fig. 2 Primordial germ cell specification of mice, humans and

rabbits is induced from signals such as BMPs from surrounding

tissues at pre-implantation epiblast stage. Mouse epiblast is an egg

cylinder and human/rabbit epiblast is a flat disc-shaped epiblast. ExE

extraembryonic ectoderm, VE visceral endoderm
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i.e., in the endoderm of the wall of the yolk sac at an angle

with the allantois [46].

Gastrulation in the rabbit starts at E6, i.e., at a stage

when implantation has not yet started. A crescent-like

dense area in the anterior part of the embryonic disc

appears [47], followed by a sickle-shaped elongation of

reduced density at the posterior pole (posterior gastrula

extension, PGE) about 6 h later [48]. The primitive streak

appears in the midline of the PGE generating the first

mesoderm cells. The mesoderm is formed by epithelio-

mesenchymal transition of epiblast cells under the ‘fine-

tuning’ influence of the hypoblast [49]. The movement,

migration, and epithelio-mesenchymal transformation of

epiblast cells result in the formation of the primitive streak

[48] until it encompasses up to half of the longitudinal axis

of the embryonic disc. The appearance of Hensen’s node at

the tip of the primitive streak coincides with the time when

implantation starts.

One of the most important events—PGC induction in

epiblast cells—occurs at this stage, and is dependent on

signals from surrounding tissue. The most critical structure

in mice for PGC specification—ExE secreting BMP4—

does not exist as the same structure in the other mammals.

These differences may have a critical effect on PGC

specification factors.

Germ cell lineage specification in vivo

PGCs arise at the onset of gastrulation through a process of

inductive signaling. Specific signals secreted by neigh-

boring cells induce the commitment and specification of

PGC precursors in a subset of epiblast cells. Specified

PGCs migrate from an extra-embryonic region into the

embryo proper, then move through the hindgut and dorsal

mesentery into the developing genital ridges, where they

undergo sexual differentiation. Concomitant to migration,

PGCs undergo comprehensive epigenetic reprogramming,

which includes imprint erasure, X-reactivation, global

DNA demethylation and dynamic changes in histone

modification states.

In mice, signals from ExE and VE play an essential role

in the induction of PGCs. BMP signaling is indispensable

for mouse PGC specification. Mutant embryos with tar-

geted disruption of BMP signaling components, including

Bmp2, Bmp4, Bmp8b, Smad1, Smad4, Smad5 or Alk2, all

demonstrated loss or reduced numbers of AP-positive

(AP?) PGCs. Blimp1 (B-lymphocyte-induced maturation

protein 1, also known as Prdm1) is the earliest known

marker of nascent PGCs [50]. BMP4 and BMP8b secreted

by the ExE and BMP2 from the proximal VE induce the

formation of Blimp1-positive (?) PGC precursors at the

posterior proximal epiblast in the pregastrulation embryo at

E6.25 (Fig. 2). Induction of Blimp1? PGC precursors in

isolated E6 epiblast relies on BMP4 and BMP2 in a dose-

dependent manner, from which BMP4 is the most potent

inducer. Specified PGCs are restricted to the posterior

epiblast, apparently due to antagonistic signals emitted

from the anterior VE that is adjacent to the anterior epi-

blast. These inhibitory signals, which include Cer1 against

BMP and Nodal, Lefty1 against Nodal, and Dkk1 against

Wnt, prevent posteriorization of the anterior epiblast.

Interestingly, Smad2 and FoxH1 mutant embryos, which

lack the anterior VE, showed Blimp1? PGC induction in

both anterior and posterior proximal epiblast [51]. WNT

signaling has also been implicated in PGC specification.

Wnt3 is initially expressed in both the anterior and pos-

terior epiblast of the egg cylinder at E6.25; it is then

restricted to the posterior proximal epiblast and the proxi-

mal VE [52]. Wnt3 knockout embryos develop a normal

egg cylinder but do not form a primitive streak and

mesoderm. Blimp1? PGCs are absent in Wnt3 mutant

embryos at E7.5 [51]. Although Wnt3-deficient embryos

emit BMP4 from ExE and express BMP signaling com-

ponents, the epiblast of these mutants failed to respond to

BMP4 and showed the absence of phosphorylated Smad1/

5/8 (indicator of active BMP signaling). Thus, Wnt3 may

be necessary for the epiblast to achieve competence to

respond to BMP signaling for germ cell formation. Inter-

estingly, WNT3 induces many transcription factors asso-

ciated with mesoderm in in vitro epiblast-like cells

(EpiLCs) through b-catenin. Among these, T (also known

as brachyury) was essential for robust activation of Blimp1

and Prdm14 by binding distinct regulatory elements of both

Blimp1 and Prdm14 genes directly. WNT3 has a permis-

sive role of BMP4 in PGC specification [53].

Signaling pathways/networks for PGC specification

in vivo in other mammals, including humans, are largely

unexplored. Next to mice, rabbits are the only other

mammal in which BMP signaling and PGC specification

has been studied [54] (Fig. 2). In order to relate the two

distinct configurations, Behringer et al. [55] proposed a

flattened model of the mouse embryo. While the hypoblast

underneath the epiblast in the embryonic disc may be

equivalent to VE in mice, the extra-embryonic trophoblast

and yolk sac epithelium immediately surrounding the

periphery of the embryonic disc can be regarded as rodent

ExE and extra-embryonic VE, respectively. Interestingly,

in rabbits (a flat disc-like epiblast), BMP2 and BMP4 are

enriched in annular domains at the boundary of the

embryonic disc, which corresponds to the junction between

the proximal epiblast, the ExE and the surrounding VE in

mice, where PGCs are specified from (Fig. 2) [54]. In

pregastrulation rabbit embryos, BMP2 is first expressed

from the hypoblast and yolk sac epithelium at the boundary

of the embryonic disc, which is equivalent to the proximal
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VE and extra-embryonic VE in mice, respectively. Rabbit

BMP4 expression is significantly delayed compared to the

mouse. In rabbits, BMP4 is first detected during primitive

streak formation and is expressed peripherally in intra-

embryonic hypoblast and epiblast and in the mesoderm at

the posterior pole of the embryonic disc. Interestingly,

Blimp1? single PGC precursors are detected before

primitive streak formation and Blimp1 mRNA distribution

closely follows the expression pattern of BMP2. Thus,

BMP2 may play a more essential role in rabbit PGC

specification than BMP4. Regarding antagonistic signals,

mRNA of Cer1 is restricted to the anterior region of the

embryonic disc as well as the anterior primitive streak in

rabbits [49]. This is likely to restrict PGC specification to

the posterior epiblast. Further expression studies are nec-

essary to reveal the potential roles of BMPs and other

signals, such as Wnt3 and BMP8b, in non-rodent PGC

specification.

In mice, shortly after the induction of Blimp1, PGC

precursors begin to express another two key transcription

factors, Prdm14 (PR domain-containing protein 14) and

Tcfap2c (transcription factor AP-2, gamma), at E6.5 and

E6.75, respectively. As PGCs are specified from posterior

epiblast cells originally primed towards a somatic fate,

nascent PGCs initially express mesodermal genes such as

Hoxa1, Hoxb1 and T. However, Blimp1, Prdm14 and

Tcfap2c form a tripartite transcription factor network

which facilitates mouse PGC specification by suppressing

somatic gene expression, initiating the germ cell tran-

scriptional program, and triggering genome-wide epige-

netic reprogramming [56]. Knockout embryos of any of the

three factors lose early germ cells due to failure of the early

PGC specification processes. In contrast, overexpression of

these three factors together in competent EpiLCs derived

in vitro (see later sections) is sufficient to induce mouse

germ cell formation in the absence of cytokines [56]. This

study highlights the essential roles of the three transcription

factors in germ cell formation and maintenance. With the

establishment of germ cell fate, mouse PGCs increase in

number and move out of the embryo through the forming

primitive streak to the extra-embryonic mesoderm at the

base of the allantois at E7.25. PGCs form a cluster of cells,

which have strong AP activity. From E8 to E11, PGCs

migrate into the midgut and hindgut endoderm through the

dorsal mesentery, to the forming genital ridge.

In addition to germ cell-specific genes, such as AP,

Nanos3, Dazl, Mvh and Dnd1, mouse PGCs also express

pluripotency-associated genes, including Oct4, Nanog,

Sox2, Klf2 and Stella. While Klf2 (germline phenotype not

described in knockout embryos) and Stella are apparently

dispensable for PGC development [57], the three core

pluripotency factors Oct4, Nanog and Sox2 are important

for the germline. Oct4 is uniformly expressed in post-

implantation epiblast and also in nascent PGCs during

specification. Oct4 expression remains high until germ

cells undergo sexual differentiation in the gonad [58, 59].

Oct4 is apparently essential for both germ cell specification

[60] and maintenance [61]. Nanog is enriched at the

proximal posterior epiblast, the position where PGCs are

specified from, in E6.5 and E7.5 embryos [62–64].

Intriguingly, Stella? PGCs located proximal to the allan-

toic rudiment do not show Nanog staining at E7.5, but

become positive at E7.75 [63, 65]. It is not clear whether

PGCs are specified from Nanog-negative cells or from

Nanog-positive proximal posterior epiblast which tran-

siently downregulate Nanog after specification. Nanog-null

ESCs can contribute to PGCs in chimeric embryos, but

these PGCs are lost by E12.5 [66], likely due to apoptosis

[67]. Thus, Nanog appears to be dispensable for mouse

PGC specification but is essential for germ cell mainte-

nance. Sox2 is detected in mouse PGC from E7.5 onwards.

Conditional knockout of Sox2 shortly after specification

caused a dramatic decrease of germ cell numbers by E7.5

and are undetectable by E13.5 [68]. Sox2 directly regulates

Kit expression, which is important for PGC survival and

proliferation.

Among the genes critical for mouse PGC specification,

Blimp1? PGC precursors were first observed as single

epiblast cells in rabbit at the posterior end of the embryonic

disc shortly before gastrulation [54]. Blimp1? cells are

then observed in the mesoderm at the posterior end of the

primitive streak. They are later distributed within a bi-

lobbed area that flanks the posterior margin, where positive

staining by germ cell-specific antibody PG-2 is also

observed [54, 69]. In pig pregastrulation embryos at around

E13, Oct4 is expressed uniformly in most of the epiblast,

while Nanog is localized to a minor portion of epiblast,

which are scattered throughout the embryonic disc and

have Oct4 downregulated. Interestingly, at the same stage,

some of the marginal posterior epiblast cells co-express

OCT4 and NANOG and are likely to be PGC precursors.

After formation of the primitive streak at E15, Nanog is

clearly restricted to OCT4? PGCs at the posterior pole of

the epiblast. Similar to mouse, these pig PGC precursors

later form a cluster at the posterior end of the filamentous

embryo and can also be found as individual cells at the wall

of the yolk sac. Thus, OCT4 and NANOG are both

expressed during pig PGC specification and may play a

part in the process. While the expression of NANOG at

subsequent stages is unknown, pig PGCs continue to

express OCT4 during migration through the hindgut (E17)

and colonization of the genital ridges at E20 until at least

E28 [70]. Migratory pig PGCs also express other germ cell

markers, including AP, cKIT, SSEA1 and EMA1 [71]. In

addition to pig, OCT4 has also been reported to be

expressed in canine and sheep PGCs [72, 73].
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Due to ethical and technical reasons, there is little

information on the origin of human PGCs in post-implan-

tation embryos. In later stages, human PGCs are distin-

guished by their large size, spherical shape, the presence of

abundant glycogen granules in the cytoplasm and promi-

nent nucleoli. Human PGCs are first identified at E24 in the

extra-embryonic yolk sac close to the junction with the

allantois [74], similar to the position of mouse PGCs at E8.

A few days later, at E26, PGCs are found in the hindgut

and they migrate into the dorsal mesentery at E28. By E37,

human PGCs have colonized the genital ridges. In general,

human migratory PGCs/gonocytes express a similar set of

markers to mouse PGCs, including BLIMP1, TFAP2C,

OCT4, NANOG, AP, SSEA1, cKIT, VASA and DAZL.

While Sox2 has been shown to be essential for early mouse

PGC development, it is surprisingly not expressed in

human PGCs. Instead of SOX2, another SOX family

member SOX17 is found in human PGCs [75]. The

expression of other key mouse PGCs markers, such as

Prdm14 and Stella, remain to be investigated.

In vitro PSCs from mammals—ESCs, EpiSCs, EGCs

and iPSCs

Pluripotent cell lines have now been established from a

variety of mammals. There are both similarities and dif-

ferences in the morphology of the colonies and the sig-

naling and transcriptional regulation for maintaining the

pluripotency of mammalian stem cells (Fig. 3).

The first ESC line was established from mouse blasto-

cyst in 1981 [76, 77], followed by primates (rhesus

macaques) in 1995 [78], marmosets in 1996 [79], and

finally humans in 1998 [80]. Furthermore, ESCs or ES-like

cells have been derived from the rabbit [81–83], and pig

[84]; however, in the majority of studies the ESCs and

induced PSCs (iPSCs), besides mice and humans, did not

meet all criteria for pluripotency, specifically in the in vivo

tests.

On the other hand, EpiSCs are derived from mouse post-

implantation embryo [85, 86] and presumptive EpiSCs are

derived from pig [84]. EGCs are established from mouse

PGCs [8, 9] and have been attempted from human [46],

rabbit [87], pig [84] and cattle [84] PGCs. After the dis-

covery of iPSCs from mouse cells [88], this was followed

by human [89], monkey [90], rabbit [91], and pig [84].

Most of the in vitro PSCs grow as AP? colonies and

share the expression of pluripotent regulatory genes,

OCT4, SOX2, and NANOG. Stem cells in vitro can gen-

erally be divided into two types by regulatory signaling and

morphology. One is dependent on leukemia inhibitor factor

(LIF) and forms a compact dome-shaped colony, and the

other is not dependent on LIF but sometimes dependent on

FGF2, forming larger flattened colonies, which cannot be

passaged as single cells. They are termed ‘naive’ and

‘primed’, respectively, although there are some PSC lines

that show both or intermediate features of naive and primed

(Fig. 3). In the case of mouse cells, ESCs are from blas-

tocysts and EpiSCs are from post-implantation epiblast;

both express Oct4 but are driven by different enhancers
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Fig. 3 PSCs from various

developmental stages of mice,

rabbits and humans. There are

two major types of PSCs—the

naive state which are dependent

on LIF and have compact

colonies and the primed state

which are dependent on FGF

and activin and have flat

colonies. Naive PSCs are able to

be dissociated and passaged as

single cells, while primed PSCs

are passaged as a small clump of

cells or with ROCK inhibitors
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[86]. Interestingly, most ESCs apart from rodents, share

defining features of ‘primed’ PSCs. iPSCs from somatic

cells in mice have naive characteristics, while human

iPSCs have primed characteristics. Mouse EpiSCs are often

compared to human ESCs as they largely conform to the

‘primed’ state, although their transcriptional network has

some key differences. For example, critical pluripotent

genes PRDM14, REX1 and STELLA, which are expressed

in human ESCs/iPSC, are not expressed in mouse EpiSCs

[92, 93].

Mouse ESCs/iPSCs require LIF, which activates the Jak/

Stat3 pathway, and BMP4, which is part of the trans-

forming growth factor-beta (TGF-ß) signaling pathway and

promotes the expression of inhibitors of differentiation.

The Wnt signaling pathway has also been implicated in

maintaining mouse ESC self-renewal and the naive plu-

ripotent state [94]. The addition of Wnt and LIF in a

defined condition is sufficient to support mouse ESC self-

renewal. Self-renewal of mouse EGCs requires LIF-STAT3

signaling, but LIF signaling is not required for germ cell

differentiation. On the other hand, LIF and its related

cytokines fail to support human and non-human primate

ESCs in serum-containing media that supports mouse ESCs

[80, 95–97]. Components of the BMP pathway are all

present in human ESCs [98], but unlike mouse ESCs, the

addition of BMPs otherwise supports self-renewal, causes

rapid differentiation [99]. Furthermore, WNT/b-catenin

signaling induces human ESC differentiation under chem-

ically defined conditions [100]. Human ESCs/iPSCs

require FGF2 and Activin/Nodal supplementation for the

derivation and culture of human ESCs. Interestingly,

mouse EpiSCs can also be maintained by FGF2 and

Activin/Nodal-supplemented medium.

The Activin/Nodal signaling pathway is necessary for

Nanog expression in both mouse EpiSCs and human ESCs

[101]. However, while FGF2 is necessary to support human

ESCs/iPSCs, it fails to actively support self-renewal in

mouse EpiSCs via Nanog expression. Additionally, in

human ESCs, OCT4 binds to the FGF2 promoter estab-

lishing an autocrine loop, whereas in mouse EpiSCs, there

is no evidence for the regulation of Fgf2 by Oct4 [101]. On

the contrary, FGF2 induces mouse ESCs to differentiate

toward the mesodermal lineage. Inhibition of FGF2/ERK

signaling by chemical MEK inhibitor plus GSK3 inhibitor

shields mouse ESCs from differentiation-inducing stimuli

in a defined condition in the presence of LIF in a naive

‘ground state’ [102].

ES-like cells and iPSCs from monkeys, rabbits and pigs

show flatter colonies (primed state) that resemble human

ESCs and mouse EpiSCs but not mouse ESCs. LIF and its

related pathways are dispensable for maintenance of

undifferentiated status in primate, rabbit, pig ESCs [103,

104]. Treatment of rabbit ESCs with Rho-associated kinase

(ROCK) inhibitor, Y27632, significantly enhanced cell

growth similar to human ESCs [91, 105, 106]. Although

there is little effect of FGF2 addition on the growth of

monkey ESCs [107], FGF2 and Activin/Nodal signaling

can maintain the undifferentiated status through Smad2/3

activation of rabbit and porcine ESCs and iPSCs [103,

105]. Interestingly, canine iPSCs are dependent on both

FGF2 and LIF in order to maintain their pluripotency

[108].

Interestingly, mouse ESCs/iPSCs, EGCs and EpiSCs

express SSEA1 as a cell surface marker, while human

ESCs/iPSCs express SSEA3, SSEA4, TRA1-60, TRA-1-81

but not SSEA1. On the other hand, human PGCs are known

to express SSEA1 [109] and human EGCs also express

SSEA1 in addition to SSEA3, SSEA4 and TRA-1-60,

unlike human ESCs/iPSCs [109, 110]. Human ESCs

express the ICM-associated marker REX1, like naive

mouse ESCs, which is not the case in EpiSCs. Human

ESCs do not express FGF5, a key EpiSC-associated mar-

ker. Non-human primate and pig ESCs/iPSCs express

SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81 instead of

SSEA1, which is similar to human ESCs but not mouse

ESCs/iPSCs [103, 107, 111, 112]. Canine PSCs express

SSEA1, SSEA4, TRA1-60, TRA1-81, and Rex1 [113]. In

rabbit ESCs, SSEA-1, SSEA-3, SSEA-4, TRA-1–60 and

TRA-1–81 are not detectable [81, 82, 91].

While naive mouse ESCs/iPSCs show two active X

chromosomes, primed human and pig ESCs/iPSCs and

mouse EpiSCs show X chromosome inactivation in

females. Canine iPSCs show reactivation of the inactive X

chromosome. Interestingly, unlike mouse EpiSCs, primed

pig iPSCs can give rise to chimeras with apparent high

efficiency [114].

Reversion of primed pluripotent to naive state that can

grow in LIF with 2i condition has been attempted [115].

Studies on mouse EpiSCs and human ESCs/iPSCs have

included forced expression or addition of extra factors such

as Prdm14/Klf2 for mouse EpiSCs [116] and OCT4, KLF2,

KLF4 [117], Rarg (RAR-gamma) and Lrh-1 (liver receptor

homolog 1; Nr5a2) [118] and histone deacetylase inhibitors

[119]. Recently, naive-like human PSCs cultured with a

combination of small molecules in addition to 2i and LIF

have been reported [120, 121]. Furthermore, naive-like

rabbit iPSCs and pig iPSCs have been reported [122, 123].

Looking through all the reported PSCs, rodent stem cells

have some unique features in terms of morphology, sig-

naling and gene expression markers. Therefore, the ques-

tion arises as to whether or not ‘naive’ state PSCs described

for mice exist naturally in other mammals. When com-

paring mouse ICM and naive ESCs with human ICM and

primed ESCs, some common as well as different features

are seen [124, 125]. It is hard to conclude that primed

human ESCs are not the real pluripotent state for human
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cells. Another possibility is that because of the differences

between mice and the rest of early mammalian embryo-

genesis, the transient state of naive pluripotency cannot be

captured in vitro in the latter. During formation of the

rodent egg cylinder, the epiblast cells must reorganize from

a ball of cells into cup-shaped epithelium surrounded by

hypoblast. Conversely, in non-rodent embryo cultures,

there may not be a major barrier for progression to primed

epiblast, and the opportunity for capturing the transient

naive state (if it exists) may be minimal. In another

example, monkey blastomeres, but not ICM cells, were

shown to generate chimeric monkeys through embryo

aggregation, whereas in rodents, both blastomeres and ICM

cells have the unrestricted developmental potency to con-

tribute to chimeric animals. This suggests that the state of

pluripotency in ICM from non-rodent mammals may be

waning compared to blastomeres.

To understand PSC biology in vitro, even though it

might diverge from pluripotent cells in vivo, might provide

insights on their differentiation potential, including germ

cell biology (Fig. 3).

In vitro germ lineage differentiation

The ability to generate PGCs from epiblast cells provides

the knowledge for the generation of functional PGCs from

PSCs in vitro [126], most successfully using mouse PSCs.

One of the most defined and efficient protocols of PGC-like

cell (PGC-LC) induction is from naive mouse ESCs to

induce into EpiLCs first by treatment with ActivinA, FGF2,

and a low concentration of KSR [127]. The EpiLCs are a

transient entity and show a global gene expression profile

similar to that of the pre-gastrulating epiblast at E5.75, but

distinct from that of EpiSCs [85, 86, 127]. EpiLCs produce

Blimp1, Prdm14, and Stella-positive PGC-LCs in the pre-

sence of BMP4 and the other cytokines, whereas EpiSCs

show some Blimp1 but not Stella expression. The PGC-LCs

show a global gene expression profile very similar to that of

PGCs at E9.5, genome-wide epigenetic reprogramming

(reduction of H3K9me2 and elevation of H3K27me3), and

undergo spermatogenesis when transplanted into the testes

of neonatal W/Wv mice, and the resultant sperm contribute

to healthy, fertile offspring [127, 128]. As an alternative

strategy, they ectopically induce some key transcription

factors for PGC development, such as Blimp1, Prdm14 and

Tcfapc2 in EpiLCs and also efficiently induce PGC-LCs

even without cytokine addition. These transcription factor-

induced PGC-LCs, when transplanted into seminiferous

tubules of neonatal mice, can also undergo spermatogenesis

and contribute to fertile offspring [129].

Mouse ESCs induced to form PGC-LCs using sponta-

neous differentiation protocol exhibit very low efficiency.

On the other hand, the defined induction protocol of human

PGC-LCs from human PSCs in vitro has not yet been

reported. However, a number of studies show that human

PSCs can spontaneously differentiate into PGC-LCs at a

low frequency (around 5 %). The efficiency of spontaneous

differentiation to PGCs can be increased with the addition

of BMP4, 7, and 8b. Small changes in stem cell culture

conditions or co-culture with human fetal gonad stromal

cells, or MEF in the presence of FGF2, have been also

reported to favor the formation of putative human PGCs

in vitro [126]. In addition, silencing the NANOS3 genes in

human ESCs resulted in a marked reduction in the capa-

bility to give rise to PGC-LCs [130]. These PGCLCs show

some PGC markers, ongoing removal of parental imprint-

ing, erasure of global DNA methylation, and histone

modifications typical of mouse PGCs supporting the PGC

identity. Furthermore, expression of DAZ family genes

with spontaneous differentiation in human ESCs apparently

induced 1 % of haploid-like cells with some meiotic

markers [131]. Some reports show that human ESCs and

iPSCs express a panel of PGC markers such as AP, SSEA4,

OCT4, NANOG, STELLAR (stella-related), and BLIMP1,

DAZ, DAZL, NANOS1, NANOS3 in some but not all ESC

lines, and c-KIT, but not SSEA1, CXCR4, and VASA or

synaptonemal complex protein 1 and 3 (SCP1 and SCP3)

markers of pre- and meiotic germ cells. On the other hand,

ESCs and iPSCs express some markers that human PGCs

do not, such as SSEA3, tumor rejection antigen 1–60, 1–81

(TRA1-60, TRA1-81), and SOX2 [46].

Cynomolgus monkey ESCs show NANOS, SSEA1,

OCT-4, and VASA and PIWIL1 expression during spon-

taneous differentiation which results in embryoid body

formation [132, 133]. The addition of BMP4 to differen-

tiating ESCs increased the expression of SCP1, a meiotic

marker [133]. After 8 days of differentiation, LIF addition

induced dome-shaped germ cell colonies as indicated by

the intense expression of AP activity. These cells also

demonstrate high-level expression of the germ cell markers

VASA, OCT-4, and BLIMP-1, and show SSEA-1 expres-

sion [134]. Additionally, in common marmoset ESCs, upon

non-directed differentiation, the cells expressed the germ

cell markers VASA, BOULE, germ cell nuclear fac-

tor (GCNF) and SCP3 [112]. Pig EpiSCs in response to

BMP4 induce VASA and DAZL-positive PGC-LC [104].

While mouse ESCs are difficult to differentiate directly

into PGC-LCs, human and especially primate pluripotent

cells seem to have a tendency to differentiate spontane-

ously into PGC-LCs. This might be because non-rodent

PSCs are in a ‘primed state’ and possibly with some PGC

precursors already in the heterogeneous population in the

colonies. However, mouse EpiSCs, which are called

‘primed’ state, differentiate into PGC-LCs with very low

efficiency. This suggests that the mouse ‘primed’ EpiSCs
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and ‘primed’ human ESCs have a different ability for PGC

differentiation. On the other hand, mouse EpiLCs, which

are differentiated from mouse naive ESCs, have a high

ability to become PGCs and functional germ cells after

in vivo transplantation. The human spontaneous PGC dif-

ferentiation protocol in vitro is not as efficient as the

defined mouse protocol. To improve the efficiency of

human PGC-LC induction in vitro, they may require pro-

gression towards a more competent state as a starting point.

Perspective

In 1859, Charles Darwin concludes that ‘‘community of

embryonic structure reveals community of descent’’. He

suggested that embryonic resemblance could be a strong

remark for the genetic connectedness of different animal

groups [135].

To understand the biological fundamental process of

organisms, we have to choose the organism as an

experimental model dependent on the purpose or prac-

tical technical reasons. To apply the results or inter-

pretation which is from one organism to another

organism has to be judged carefully. When we focus on

early mammalian development, differences between

rodents and other species are evident. Germ cells are the

only cells able to give rise to the next generation, and

they are set aside during early development. An inves-

tigation on this key event is informative on the conti-

nuity of life. The mechanisms for establishing a

germline are diverse. Even in mammals, pluripotency

and germ cell specification are quite different at

molecular and cellular morphological levels.

A non-negligible observation here is that rats and mice

share an unusual method of early formation of egg cylinder

epiblast and form unique characteristics of ESCs/iPSCs. In

contrast, other mammals show epiblast delamination as a

simple flattened embryonic disc and flattened, primed

colonies of ESCs/iPSCs. The derivation and maintenance

of mESCs/iPSCs with the same condition of human ESCs

or human ESCs/iPSCs with the same condition of mouse

ESCs/iPSCs without additional treatment has not been

demonstrated. It might suggest that it may not be the

quality or timing of the embryo, but that the naive and

primed pluripotency are representative of pluripotent states

of rodents and non-rodents, respectively. The validity of

the ground state hypothesis for other mammals besides

rodents is open to further investigation. Germ cells and

in vitro PSCs share some features in terms of molecular

regulatory mechanism. To understand embryogenesis and

in vitro pluripotency regulation of mammals comparatively

would give some clues on the mechanism of PGC speci-

fication and development. With the emergence of new

genome editing tools, there are opportunities for broader

insights and deeper knowledge on early embryogenesis and

stem cell science across different species.
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Beck F. Homeosis and intestinal tumours in Cdx2 mutant mice.

Nature. 1997;386:84–7.

21. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius

D, Chambers I, et al. Formation of pluripotent stem cells in the

mammalian embryo depends on the POU transcription factor

Oct4. Cell. 1998;95:379–91.

22. Strumpf D, Mao C-A, Yamanaka Y, Ralston A, Chawengs-

aksophak K, Beck F, et al. Cdx2 is required for correct cell fate

specification and differentiation of trophectoderm in the mouse

blastocyst. Development. 2005;132:2093–102.
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