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Abstract. In the age of Big Data, the amount of data-driven research activities 

has increased significantly. However, when it comes to collaborative data 

processing in scientific workflows, provenance information of the used data is 

not always accessible. Especially in complex data ecosystems with multiple 

decentralized data sources, it is hard to keep track of the processing operations 

once they are completed. When sharing such data between different researchers 

and other involved parties, poor traceability of processing steps may also obstruct 

this process. In this paper, we introduce a blockchain based data provenance 

information system, which enables decentralized sharing of this information. We 

then integrate this system into the decentralized data sources context and address 

trust and traceability issues in the network with an identity-based solution. 

Furthermore, the system’s performance is evaluated, and the concept is examined 

in a case study on the e-Maritime Integrated Reference Platform (eMIR). 

Keywords: data provenance, blockchain, scientific data management. 

1 Introduction 

The automated recording and storage of huge amounts of data is increasingly important 

in both research and industry. The management of such big data data sets has long since 

ceased to be trivial and has become a major challenge for research and industry [1]. 

Additionally, the growing need for high-quality data assets in nearly any branch of 

industry has led to a new awareness of the actual value of data. In a data ecosystem 

controlled by different Data Producers, Data Owners, Data Consumers and Data Miners 

all represented by different physical entities, there is a need for tracking the production, 

transformation, and provision of data [2]. Also, it is a common scenario in industry and 

research that project partners agree on a specific objective and work together with 

different sets of data and data transformation nodes in shared networks. While this often 

happens in private networks, there are also emerging concepts for the usage of 

potentially public data spaces (cf. [3]  for a general description or [4] for a reference 

architecture). Especially in research, specific data often must be selected, pre-

processed, transformed and analyzed from a multitude of data. This digital process 

known as e-Science workflow has been discussed in a great number of publications (see 

e.g. [5] for an introduction to the topic, [6] for a taxonomy of e-Science workflow 



systems, and [7] for a more extensive overview). It is really important to be able to 

track every process step in the e-Science workflow to guarantee a high-quality data-

driven research methodology [8]. Moreover, other researchers must be able to verify 

the authenticity and non-repudiation of the workflow metadata thus created to fully 

understand the process from which research findings have been made. The enormous 

value of scientific data for further processing in industrial applications, such as the 

training of decision-supporting machine learning models cannot be denied. Currently, 

many of the challenges of collaborative data processing are being addressed by 

upcoming cloud-based platform solutions [9]. While the cloud platform provider may 

be trustworthy and reliable, different parties providing, preparing, and transforming the 

data may not. Keeping track of the creation, the changes and the provision of data is a 

challenge in platform supported data spaces. Most of these problems can be observed 

in research activities involving industrial partners with economic interests: For 

instance, how could shipping companies provide data on vessel movement and fuel 

consumption as a basis for a collaborative research project on traffic optimization? 

Also, areas in which multiple partners need to cooperate, as it is done for example in 

the logistics industry, face similar problems: For instance, how could data from 

independent storage and transportation companies be securely made available, be 

processed and analyzed by other companies to gather knowledge about influence 

factors that can affect efficiency? The goal of this paper is to provide a decentral 

solution that closes these gaps and fits into the scientific data ecosystem. Our 

contributions are as follows: Firstly, we describe the setting of data provenance in e-

Science. Secondly, with the assumption of an existing data space setup, we elicit the 

requirements a decentral solution needs to satisfy and motivate how the use of 

blockchain with an identity-based consensus method is best suited to this purpose. 

Thirdly, we present the architecture of our system. Finally, a prototypical 

implementation is evaluated in an example with an existing maritime data space.   

2 Scientific Data Management in a Decentralized Context 

2.1 Scientific Workflows and Data Provenance 

The activity of scientific data management is often presented in cycles or processes. In 

general, this includes the steps from the import of source data to the extraction of 

knowledge from the processed data. This procedure is an important element of e-

Science (electronic science), which deals with the generation of knowledge using 

digital infrastructures [10]. A well-founded and detailed model for the scientific data 

management process is provided by Crowston and Qin [11]. In a comparison of nine 

data management cycles/process models by Ball [12], the model of Crowston and Qin 

is identified as one of the most comprehensive models. Fig. 1 shows a summary of the 

model. For workflow-oriented e-Science, data provenance is a very relevant topic: As 

a large number of publications with data-driven approaches for problem analysis and 

solving is emerging, the insufficient availability of trustworthy traceability measures is 

increasingly becoming a problem [13]. In the case of a poorly documented data 



processing workflow, other researchers would not be able to reproduce the author’s 

results. Buneman et al. [14] define data provenance as follows: “Data provenance – is 

the description of the origins of a piece of data and the process by which it arrived in 

a database”. The work of Simmhan et al. [2] provides a taxonomy of data provenance 

in e-Science: The application of provenance is subdivided into the sections of data 

quality, audit trail, replication recipes, attribution, and informational purposes. It also 

can be distinguished if the provenance information is related to the data product or the 

process of its creation. In this work, we will keep the focus on the audit trail for the 

whole process from data creation to the final data product.  
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Fig. 1. Summary of the Scientific Data Management Process as described by [11]. 

2.2 Decentralized Data in Data Spaces 

The term “data space” is widely used in different contexts. In the scope of this paper, 

we use the definition of data spaces given by Franklin et al. [3] who define a data space 

as a co-existent amount of data which is linked by a “data space support system” (or 

specifically a “data space support platform (DSSP)”). This system must fulfil a set of 

requirements to be recognized as such. Firstly, it must support a wide range of data 

types and formats covering all data in the data space. Secondly, it must offer means of 

searching, querying, updating, and administrating the data space. Data space queries 

are not required to result in a complete result of available data, an approximation is 

sufficient. And lastly, it must support tools to create a tighter integration of the data in 

the data space.  

Data spaces can be found in situations where partial control over or knowledge of 

several data sources is available to a central entity. This central entity, however, is not 

able to maintain full control over the data sources and therefore tasks like data ingestion 

and harmonization are not trivial. Additionally, data spaces typically contain sets of 

syntactically and semantically different data. [15] 

Data space architectures have already been realized in several publications, e.g. as a 

vehicular data space [16], IoT data space [17] or maritime data space [18].  

2.3 Identity-Based Blockchain 

The blockchain concept has increasingly been applied in a large number of cases for 

enhancing cyber security and decentralizing control structures and has also been 



investigated for usage in a scientific research context e.g. in [19]. A blockchain 

typically works like a distributed database with some special functional principles, such 

as finding a network consensus on adding new information to the blockchain. Most 

consensus algorithms for blockchain applications require the cooperation of a vast 

number of nodes in the blockchain network. This often leads to slow performance when 

a new block needs to be accepted. Assuming that a smaller group of nodes with trusted 

identities, and only these nodes are used to determine a consensus, the performance can 

be improved significantly. Consensus algorithms utilizing this assumption are called 

Proof-of-Authority consensus [20]. Another important factor in the application of 

blockchain technology is the permission policy of the network. Common policies for 

blockchain are public, consortium-based, and private. These approaches mainly differ 

in the degree of centralization. Furthermore, permissions for reading data from and 

writing data to the blockchain may also be restricted depending on the permission 

policy of the blockchain [21].   

2.4 Related Work 

For the literature review, we analyze work in the area of data provenance in scientific 

data management with special regards to security, architecture, and workflow models. 

Additionally, we discuss work that uses blockchain technology in the context of storing 

data provenance information. The importance of data provenance for scientific data 

processing has already been discussed in a significant number of publications (see e.g. 

[22] for an overview, and [23], [24] for applications). Additional work on the security 

of data provenance has also been conducted in the past years. The work of Bertino et 

al. [25] gives a good overview of this topic and presents an architecture framework and 

methods for the secure exchange of data provenance. However, collaborative editing of 

this information is not considered. Hasan et al. [26] introduce a formal model for a 

secure provenance chain, in which document editing steps are cryptographically signed 

by their originators. In addition to that, hashes of the changed data are appended to the 

blocks of the editing chain. The model relies on public key cryptography and provides 

a good baseline for the secure provenance documentation. A framework for finding a 

consensus on a valid edit in a network of editing users is not discussed. Closely related 

to the work in this paper are the approaches of Ramachandran et al. [27] and Liang et 

al. [28], which both use a blockchain-based approach for securely organizing data 

provenance information. Ramachandran et al. use the Ethereum blockchain and smart 

contracts with the Open Provenance Model (see [29]) as their base. The consensus on 

a change of a document is determined by voting with all nodes or by randomized 

threshold voting and therefore seems very comprehensible for participants. The 

approach is evaluated with two real-world use-cases and the performance is considered 

applicable by the authors of the paper. Liang et al. also propose a blockchain based 

architecture, which, however, aims at integrating a central cloud-provider that stores 

the data that is being edited. An action-based method for tracking the changes in 

documents is utilized for creating the data provenance information. The blockchain is 

used to carry a distributed database which includes the tracked changes of the 

documents. Both works do not solve the problem of unidentifiable entities and only 



partially discuss the challenges of decentralized data sources. Apart from these papers, 

there are some others that partly address some of the discussed problems. Chen et al. 

[30] present a formal model for a blockchain data structure for efficient sharing of 

scientific workflow provenance data. Neisse et al. [31] discuss different design choices 

of a blockchain-based data provenance approach and their compliance with the GDPR. 

Finally, Tosh et al. [32] compare different consensus methods for cloud-based data 

provenance and come to the conclusion, that a Proof-of-Stake consensus seems to be 

the best method in such a setup.  

2.5 Research Objective 

There is an increasing need for data provenance solutions for scientific data 

management. Especially in data space environments, solutions with the ability to handle 

a high degree of decentralization of data need to be developed. In existing work, the 

problem of permissions to edit provenance information or having the right to vote for 

appending new data provenance information is not solved entirely. An identity-based 

permission system could possibly solve this issue and establish trust in a system of 

different editing parties. Also, the existing architectures cannot address the decentrality 

of the actual data in a data space setup. Requirements for scientific data processing are 

also only being discussed partially. Therefore, a permissioned, identity-based 

blockchain seems to be a candidate technology for establishing a data provenance 

information system. This seems to fit best to the presented scenario, as a central ledger 

infrastructure may not be able to establish overall trust. Moreover, it would require an 

independent organization to govern the ledger and protect it against security risks. 

While it is still possible to have authenticated and authorized entities, a central party 

would need to take the responsibility for the system, which would be a problem with 

several parties that may have conflicting interests that would have to be resolved for 

each workflow individually. A data provenance information system must be able to 

ensure the secure documentation of data provenance information and its consistency 

with the actual data in a trustworthy and reliable way for authorized entities. 

Additionally, it should be visible to researchers who authored the data provenance 

information. The system should be adapted to the needs of a data-driven science 

process, being able to track single workflow steps of data processing.   

3 Design of the Data Provenance Blockchain with Identifiable 

Entities 

3.1 Architectural Components 

To introduce a secure documentation of data provenance in scientific workflows, 

several architectural components are required.  Fig. 2 gives an overview of the involved 

entities and components and their interactions. We assume, that an existing data space 

is present and has a DSSP as the corresponding support system (cf. section 2.2) as this 

setup is one of the most common solutions. 
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Fig. 2. Architecture overview of the data provenance management concept. 

The architectural components can be described as follows: 

• Identity Provider: The Identity Provider is assumed to be a trusted entity with the 

function of providing cryptographic key-pairs linked to legal entities. Prerequisite 

for this is the existence of a Public-Key Infrastructure (PKI). The Identity Provider 

is needed for the identity-based consensus in our blockchain setup.  

• Data Space Support Platform (DSSP): The Data Space Support Platform is the 

access point for data space access requests. It may also fulfil the functions of a Data 

Processing Entity as workflow steps of the e-Science Workflow may also be 

executed on the platform. 

• Data Processing Entity: The Data Processing Entity is processing data from or 

provides data to the data space, which it accesses via the DSSP. Several Data 

Processing Entities can be involved in the processing of a single data set. 

• Blockchain Data Storage: The Blockchain Data Storage contains the actual data 

provenance information and may also be used to organize data space access rights 

via smart contracts.  

When a dataset is created, the originator, i.e. the first Data Processing Entity, provides 

first information on the data and makes the data available to the data space via the 

DSSP. The metadata of the data creation is then stored in the blockchain and can be 

retrieved by the next Data Processing Entity in the workflow. The data is then again 

processed, made available to the data space and the metadata is stored in the blockchain. 

Access to the blockchain always requires a cryptographic identity, provided by the 

Identity Provider.  

 

3.2 Data Provenance Model 

The classes and attributes of a data provenance model always depend on their use-case 

and the domain they are applied to. The data provenance model in our approach should 

describe the creation and processing of scientific data in e-Science workflows. We 

assume, that every transformation of the data can be partitioned into a chain of single 

processing steps. As a proof of concept, we use a simple workflow-oriented model 



whose steps are derived from the tasks of Crowston and Qin’s model (see section 2.1). 

We design this model in such a way that it can act as a template and can be extended 

further easily. Hence, we deliberately keep the attributes in our model general. We 

generalize the steps of the e-Science workflow to the following tasks: Data Acquisition 

Process, Anonymization (to comply with data protection regulations), Data Quality 

Analysis, Preprocessing and Transformation and Conversion and Validation. A 

formalized model of the proposed tasks is used to represent the data provenance 

information. Instances of this model for workflow steps can be serialized and then 

stored in the body of a blockchain block. The stakeholders in the processing of scientific 

data in our data space set-up can be modelled through the following roles (cf. [4]): 

Data Owner. The Data Owner is considered possessing the actual data. This can be 

interpreted in a legal or technical sense and is not further specified for our approach. 

The Data Owner determines the access rights to the data. 

Data Provider. The Data Provider is an entity which provides the technical means to 

access a specific data set. The Data Provider must be authorized by the Data Owner and 

only provide the data to other entities with access rights granted by the Data Owner. 

Data Consumer. The Data Consumer is accessing a data set as a client of the Data 

Provider. 

Physical entities in this model can also have multiple roles at the same time. Refer to 

section 4.1 for an example. 

3.3 Blockchain Architecture 

Identities. In a collaborative research scenario, the anonymity (as e.g. found in crypto-

currency blockchains) of Data Processing Entities would lead to less traceability and 

trust between different parties as manipulations of the data would not cause any 

negative reputation for the guilty parties. Furthermore, the research community would 

benefit from a secure and transparent documentation of data processing workflows as 

investigations become easier reproducible. In our context, it is not a given that the 

transformations on a data set always can be reproduced and verified (against a hash) by 

any participant. Hence, for our system we require technological measures to be in place 

so that an entity that has processed data cannot repudiate their processing step and can 

be held responsible for the result. These considerations lead to the conclusion that a 

blockchain, applied to this problem would only fulfil its purpose if Data Processing 

Entities in a scientific workflow can be identified. We assume that physical identities 

are bound to cryptographic key pairs. To obtain such a key pair, Data Processing entities 

must fulfil several requirements, which are defined through the Identity Provider. These 

could be for example the evidence that a Data Processing Entity is part of a legally 

registered organization. After obtaining a key pair and a certificate stating its validity 

from the Identity Provider, the Data Processing Entity can participate in the blockchain 

network (see Fig. 2). Every transaction in the network that is committed by a Data 

Processing Entity must be signed with its private key, so that other entities can trace his 

interactions with the processed data. 

Transactions. Storing data provenance information in the blockchain can be achieved 

in several different ways. Nevertheless, it must be kept in mind that any data, which is 



stored in a conventional blockchain is replicated by every node in the network and 

therefore causes traffic. Typically, data that is stored in a blockchain can be represented 

as transactions. From the perspective of a data space entity, the smallest monitorable 

change of a data set in our model is a single workflow step. For an entity who is 

executing a workflow step, there may be smaller processing steps as parts of its 

implementation of the workflow step, but these are normally not visible to any other 

entities. Hence, it is appropriate to define a workflow step as a transaction in the 

blockchain. Transactions also must contain a hash of the processed data to later enable 

other entities to verify that a transaction was related to a specific workflow step. This 

binds the data provenance information in the blockchain to the actual data set. In 

addition to the hash, meta-information (see section 3.2) for processing the data by the 

system is also stored. However, this information cannot always be expected to include 

exact descriptions of used processes, as they may contain proprietary algorithms.   

Blockchain Structure. It must be kept in mind, that in a data space, there is not only a 

single data set, that is being processed by its entities. Thus, there are several chains of 

transactions that must be stored in the blockchain network. For this reason, we propose 

to use multiple shorter chains, each representing a workflow for a single source data set 

(see Fig. 3).  
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Fig. 3. Data set specific blockchain setup with multiple chains. 

This has some advantages over a conventional, single blockchain: First, permissions 

can easily be set for every data set separately. Also, entities do not need to keep track 

of data sets, which they are not permissioned to access or not interested in. This reduces 

the locally used storage of the blockchain instance and prevents entities from wasting 

their computational resources to track transactions, in which they do not have any 

interests. To keep track of the different chains in the network, the DSSP can provide a 

central lookup table or any other means for optimizing access to the blockchain 

network. This task falls directly within the remit of such a platform. The permission 

model and deployment of the blockchain should follow a standardized process. In a 

more proprietary setup, Data Owner, Provider and Consumer may also have problems 

on finding a consensus on a process, even in a small group due to conflicting interests 

or because data exchange setups can also be dynamic or even fully automated. 

Standardization will largely prevent the occurrence of these problems and support the 



balance between administrative burden and benefits of the proposed method. 

Standardized procedures can also be supported by the DSSP. 

Consensus and Smart Contracts. In the defined setup, the stakeholders in the process 

of data processing in the data space have been clearly identified. The existence of an 

Identity Provider now makes it possible to use a Proof-of-Authority (or identity-based) 

consensus method. The Data Owner of a source data set has been defined as the entity 

which holds the rights to distribute and modify the data set. We propose that the Data 

Owner nominates a subset of entities in the network that are authorized to vote on data 

provenance auditing for the data provenance information related to the specific data set 

(see Fig. 4).  
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Fig. 4. Conceptual overview of Proof-of-Authority consensus mechanism. 

The Data Owner can verify the identities of these validators via the Identity Provider. 

It is left open how the Data Owner determines this subset, as there can be several legal, 

organizational, or technical requirements which will be specific to the case. For 

example, the authorization of being a validator may include contractual agreements, 

which require validators to pay penalties, if agreements are violated. In return, a Data 

Owner may provide access to its data or act as a validator for the other party. Also, for 

scenarios with a stronger need to protect data, entities may also consider paying an 

independent organization to provide validation facilities. However, in the case of 

working with highly sensitive data, validators must be included in the process of the 

data processing and may be selected from the set of existent and authorized Data 

Processing Entities for validating the data processing steps of other authorized Data 

Processing Entities. Also, in less critical workflows, validators may also base their 

decisions on data processing metadata, without requiring access to the actual data sets.  

Anytime a new block will be added to the blockchain, only the validators vote on the 

changes included in this block. In this way, our setup fulfils the definition of a 

consortium blockchain. Consensus algorithms like e.g. Aura or Clique can be used to 

implement the building of a consensus [20].   

In the near past and with the approach of the Ethereum blockchain, so-called smart 

contracts have been in the focus of blockchain researchers and developers [33]. Smart 

contracts are pieces of code, which run on the blockchain and execute contract terms 

that have been defined in the code [34]. In the arrangement in Fig. 4, the Data 

Processing Entity accesses and processes the data, provided by the Data Owner via the 



data space. We propose to use the data provenance blockchain to deploy smart contracts 

between the Data Owner and Data Processing Entities for the determination of access, 

modification, and distribution rights of data sets. The smart contracts will be deployed 

on the blockchain that is linked to the corresponding workflow. The DSSP can then 

subscribe to these smart contracts and manage data space access accordingly. 

Additionally, the nomination of validators may also be carried out via a smart contract. 

This formalizes the processes of data and right management and makes it decentrally 

available to all authorized parties. This completes our system design. 

3.4 Security Analysis  

The proposed system stores data provenance information without giving unauthorized 

parties the possibility to tamper with this information or its consistency with the data 

sets it relates to. Moreover, the system provides traceability (transactions can be traced 

to a legal identity) and non-repudiation (a participant cannot deny having carried out a 

transaction on the data set): this is implemented via the signatures within the blockchain 

structure and the binding of the access control to the data sets to the permissions given 

through the blockchain structure. We analyze what can happen when an unauthorized 

or authorized entity is compromised as well as blockchain specific attacks: 

Threat 1: Unauthorized entities. When an unauthorized entity tries to add false 

information to the data provenance blockchain, this will be detected by the validators 

of the blockchain and the transaction will be discarded due to invalid signatures.  

Similarly, unauthorized entities will not have access rights to tamper with the data set.  

Threat 2: Compromised validators. In general, there must be a significant amount of 

compromised validators [20], which is relatively unlikely in a data space setup with 

independent validators. However, if the Data Owner nominates a set of highly 

dependent validators this can become a security issue if he does not ensure that they are 

highly trustworthy at the same time. Also, conspiring validators will suffer a loss of 

reputation and possibly legal consequences if this attack is detected.  

Threat 3: Compromised Data Owner. If a Data Owner is compromised, then he will 

perhaps be able to provide fake data within the original data set. However, since he 

must sign the data provenance information in the blockchain it cannot be denied having 

made the claim that it is real data later. Hence, when someone discovers that the data is 

not authentic, the compromised Data Owner risks his repudiation as Data Provider or 

could even be made liable if damage is caused. If a compromised Data Owner tries to 

tamper with the transactions or adds transactions, he is not authorized for then this will 

be spotted by the validators. Even though as the Data Owner he could nominate 

conspirator validators this is unlikely (cf. Threat 2). The case of a compromised Data 

Processing Entity is analogous. 

Threat 4: Compromised DSSP lookup table. If the lookup table would contain false 

information, this would only lead to false access in the blockchain, which would be 

detected by any entity verifying the signatures or hash-values in the blockchain by cross 

checking with the identities of the expected entities with the help of the Identity 

Provider. The attacker might still duplicate a chain or prefix of a chain. However, this 

will not cause any harm as each block (describing data transactions) contains the hash 



of the actual data, and this data hash is cryptographically bound together with the 

metadata by the signature of the processing party. Moreover, if a regular party or the 

attacker tries to add blocks to a duplicated blockchain or prefix in a way that would 

lead to a fork of the workflow with respect to the respective blockchain then this will 

not pass the consensus algorithm as usual. If the attacker tries to add a new block with 

an inconsistent match between metadata and an existing data set, then this will be 

detected by the validating nodes as usual. At most, if the attacker duplicates a prefix of 

a chain the information that a data set was deleted might be lost, and a regular party 

who follows the corresponding link will not be able to access the data set as expected. 

In general, duplication is less of a problem here than in currency blockchains since the 

data sets and their provenance records are not "consumed" but rather a derived data set 

has to be deleted explicitly. 

Threat 5: General blockchain attack scenario. There are a few general attack scenarios 

against a blockchain instance [35]. Attacks in which single nodes flood the blockchain 

with transactions are possible. Not all these attacks are always applicable. Since we 

deploy multiple chains with different permissions this will typically affect only a small 

section of our proposed blockchain network.  

Threat 6: Compromised Identity Provider. A compromised Identity Provider would 

have fatal consequences for the proposed system. An attacker could invalidate the 

identities of authorized nodes, masquerade as an existing identity, and create new, 

malicious identities. A countermeasure for this attack would be the utilization of an 

identity provider with decentralized structures (see also section 4.1).  

This high-level analysis is only meant to show that the presented system is also 

promising with respect to security. We will provide a detailed design and state-of-the-

art verification of the cryptographic architecture together with a resilience analysis in 

case of key compromises in future work. 

4 Evaluation 

4.1 Case Study: AIS Data Processing in a Maritime Data Space 

In 2002 The Automatic Identification System (AIS) was introduced by the IMO 

SOLAS Agreement. It facilitates the submission of dynamic and static vessel properties 

(such as position, speed, destination, size, etc.) by vessels via VHF. Several 

publications make use of historical AIS data in their research process (see e.g. [36] for 

AIS-based collision risk analysis, [37] for anomaly detection or [38] for route 

prediction). Even though AIS is not encrypted and theoretically can be recorded by 

anyone, it requires powerful equipment to record it for larger areas. For this reason, it 

is often the case, that AIS data for a specific area needs to be exchanged between the 

recorder and users of the data, which is a typical business case in the maritime data 

domain (see e.g. MarineTraffic1). As a representative scientific workflow for a 

maritime data space, we use the process of creating a heat map for vessel traffic density 

 
1 https://www.marinetraffic.com/en/p/ais-historical-data 



for the German Bight from raw AIS data (in the NMEA0183 format, see [39]). Traffic 

density heat maps can especially be useful for traffic optimization and could, for 

instance, be used as a data source by Vessel Traffic Services (VTS) for optimizing 

traffic efficiency. For implementing this process, the e-Maritime Integrated Reference 

Platform (eMIR) [40], which offers an open modular research and test environment 

used for scientific analysis of maritime systems and data generation with a variety of 

maritime data sources, is utilized. The workflow is illustrated in Fig. 5: eMIR2 uses a 

network of distributed sensors to continuously record the raw AIS messages from 

vessels in the German Bight (approx. 2.700.000 messages per day). This data is 

persisted in a PostgreSQL database. As AIS data contains public, unique ship identifiers 

(MMSI and IMO numbers), which must be treated as personal information, the data is 

anonymized by replacing the MMSI and IMO with a hashed value. All of this is done 

by an arbitrary Organization A (Data Owner / Data Provider) to create the source data 

set, which is distributed via the data space. In our example, Organization B (Data 

Consumer/ Data Provider) uses this data set as a starting point for enhancing the data 

for further processing: Faulty entries are removed, and unnecessary attributes are 

filtered. A data science researcher from Organization C (Data Consumer) can then use 

the prepared data set to create a heat map for his research project.   

Distributed Sensor 
Network

Raw Data Storage
NMEA0183 -> 
PostgreSQL DB

Anonymization:
Hash MMSIs

Preprocessing:
Remove faulty

entries

Transformation:
Filter attributes

Data 
Science 

Researcher

Organization A
(Data Owner, Provider)

Organization B
(Data Consumer, Provider)

Organization C
(Data Consumer)

AIS Vessel Traffic Heatmap

 

Fig. 5. Workflow for creating a Vessel Traffic Heatmap in a maritime data space. 

For the realization, we instantiated the proposed concept in section 3 in the eMIR data 

space setup to operate with its available resources. Fig. 6 illustrates a technical 

overview of the realization for this case study: The Maritime Connectivity Platform3 

(MCP) is a platform to support the implementation of digital services for supporting 

the maritime industry and was selected as an identity provider as it features a 

decentralized management of identities (cf. Threat 6 in section 3.4). For the realization 

of the blockchain network, R3’s Corda Open Source4 was selected as it provides 

interfaces to model real-world relations independently from crypto-currency features. 

Furthermore, it was optimized to run as a permissioned blockchain network and allows 

easy integration of blockchain peers and data processing logic. The process for creating 

the heatmap is completely automated and can for example be executed daily for 

tracking changes in traffic. In our case, we worked with data sets of 1.000.000 AIS data 

points. The documentation of the workflow in our system starts with the internal data 

acquisition, conversion, and anonymization of the data by Organization A. The data set 

 
2 https://www.emaritime.de/ 
3 https://maritimeconnectivity.net/ 
4 https://www.corda.net/ 
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is then made available to the data space for further processing by Organization B and 

C. 

Blockchain Network
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Data Processing
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eMIR Data Space

Data Space 
Support Platform

Decentral Data Sources
MCP-Signed
Certificates

 

Fig. 6. Realization of the data provenance information system with Corda OS and the MCP. 

Note, that the data acquisition, conversion, and anonymization cannot be observed by 

other participants of the data space. However, as the data is bound to the transactions 

by its hashes and the transactions are signed by their originator, the data and their 

processing could be revealed later in case of discrepancies to proof the validity of the 

data provenance information. For a single instance of the workflow, a total of six 

workflow steps were added to the data provenance system adding ~3KB of provenance 

data to the blockchain (per million AIS data points). Assuming ~2.7 million AIS data 

points are recorded per day, this would create ~9KB of provenance data in the 

blockchain per day, for the presented workflow. Finally, the case study successfully 

showed the applicability of the proposed concept. It could be seen that our concept can 

be integrated into existing workflows and the workflow model can be used to represent 

typical data processing steps. However, the integration of existing infrastructure, such 

as external identity providers is not always trivial. In our example, MIR keys could not 

directly be integrated into to the Corda OS framework, as they did not match the 

cryptographic requirements. For this reason, we authorized the Corda CA certificates 

making use of the MIR keys for each entity and made this information available via the 

DSSP for validation of signatures (as shown in Fig. 6). Finally, it could be shown that 

the system can be used to support typical data exchange problems that can be found in 

the maritime data domain and close the gaps of existing work. Gaining global data 

coverage for larger areas is very important to the international maritime industry. As 

this task is often not achievable for a single entity, data needs to be exchanged and 

analyzed collaboratively.  

4.2 Performance Evaluation 

We have implemented and evaluated a network of nodes that allows us to consider 

complete workflows and several validators. We used a typical windows machine (AMD 



Ryzen 7 1700 @ 3 GHz, 16 GB RAM) for performance testing. Our focus in this 

evaluation is on changes in the node-setup, to derive implementation/setup-independent 

performance insights. Therefore, we mainly used a network of 10 nodes with different 

workflows and role set-ups (as shown in Table 1). 

Table 1. Performance evaluation results.5 

Number of Nodes Workflow Setup Avg. Time per 

Transaction 

10 1 Workflow, 1 Validator 1860 ms 

10 1 Workflow, 2 Validators 2366 ms 

10 1 Workflow, 4 Validators 2801 ms 

10 1 Workflow, 6 Validators 3379 ms 

10 2 Workflows, 2 Validators each 1364 ms 

10 3 Workflows, 1 Validator each 790 ms 

5 1 Workflow, 2 Validators 1195 ms 

In the first four trials we set up a single workflow and constantly raised the number of 

validators for that workflow. Consequently, the average time per transaction also 

significantly increased. This is obviously due to the higher number of nodes that need 

to communicate to find a consensus on adding a new workflow step. As stated in section 

3.4, a higher number of validators increases the security of the system. Finding the right 

balance of security and performance in terms of validators therefore can be identified 

as a challenge of the proposed system and could lead to poorly configured systems. 

Secondly, we investigated how parallel-running workflows affect the performance of 

the system. With the same number of nodes and validators (cf. rows 3 and 5 of Table 

1), we already have a 52% faster transaction speed with two parallel workflows. 

Additionally, we conducted a test with 5 nodes and 2 validators in a single workflow. 

It was seen that two parallel running workflows almost have the same performance as 

a single workflow (cf. rows 5 and 7 of  Table 1). We interpret this as a result of our 

permissioned approach with multiple chains. Lastly, it could be seen that the ‘time per 

transaction’-measurements for our case study were already relatively high. According 

to R3 Ltd. [41], this seems to be a general problem of the open source implementation 

of Corda and is probably not related to our consensus mechanism. Also, due to our 

blockchain architecture, we do not expect scenarios in which thousands of participants 

issue transactions at a single blockchain instance. For an increasing number workflows, 

the system can easily and efficiently be scaled horizontally by adding additional 

blockchain instances as the results of the performance evaluation could show. 

4.3 Extended Example: Setting with Confidential Data Sets 

We now extend our case study to illustrate how our design can handle a setting where 

two participating organizations are competitors and have therefore an interest in 

keeping some of their data sets confidential. Assume there are three more participating 

 
5 Our implementation is available under: https://doi.org/10.5281/zenodo.3960262 . 

https://doi.org/10.5281/zenodo.3960262


organizations D, E, and F: both, D and E, are companies that specialize in algorithms 

to optimize AIS data sets for use in ship navigation systems; F is a company that 

develops ship navigation systems (potential client of both D and E). Moreover, E 

wishes to provide a demo service, where F could view up to three results of their latest 

algorithm run on data sets selected by F from the data space. Naturally, E does not wish 

that competitors such as D have access to the resulting data sets. With many demo data 

sets publicly available a competitor could at some point be able to reengineer the 

algorithm. The participants in this example will choose a legal contract (from a set of 

standardized templates) where every industrial participant is allowed to restrict access 

to data sets that result from one of their processing steps to other industrial participants 

of their choice. These in turn are then also bound to confidentiality (by the legal 

contract). Technically, E will establish a secret key K with F, encrypt the confidential 

data set under K, and only store it in encrypted form on the data space. The data hash 

for the provenance blockchain can be computed over the encrypted data set. Hence, the 

workings of the blockchain system are as usual. Naturally, this is also an example for 

the case when the validators will neither be able to nor obliged to verify that the 

processed data set is indeed the result of the transformation described in the data 

provenance information. Other scenarios where confidential data must be accessed by 

several participants can make use of multi-party key establishment schemes.      

5 Discussion and Conclusion 

In this work, we designed a blockchain-based data provenance system and integrated it 

into an existing data space setup. For this purpose, a scientific workflow-based model 

was utilized to track each data processing step of an e-Science approach. We used an 

external Identity Provider and a Proof-of-Authority-like consensus method to secure 

the blockchain against attacks and make the process of data provenance for scientific 

workflows more transparent and verifiable. Our multi-chain concept for separating data 

provenance information by their belonging workflows improved security and 

performance of the system. However, we identified the need to carefully consider 

certificate and performance requirements for implementations of our system. Also, the 

cases of several data sets being merged by a processing step or forks on the chain of 

data processing need to be evaluated further. We expect that our framework can easily 

be extended to these cases since it seems the best strategy to generate a new data set in 

such cases. The scenario of continuously changing data processing entities as 

permissioned users also should be investigated further as transactions in a blockchain-

setup are immutable. In general, we aim to further integrate our concept into the data 

architecture of the eMIR Platform to provide an overall architecture for collaborative 

data science and integrated data provenance tracking. As the volume, variety and 

velocity of available data is increasing continuously, we cannot deny that data 

provenance management will play an equally important role. Collaborative e-Science 

has a big impact on today’s research methodologies and needs solutions for trust issues 

and the problem of decentralized data. We expect concepts like ours to fill these gaps 

in the future and provide a secure and efficient possibility to track data provenance. 
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